page allocator: inline buffered_rmqueue()
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
52d4b9ac 47#include <linux/page_cgroup.h>
3ac7fe5a 48#include <linux/debugobjects.h>
dbb1f81c 49#include <linux/kmemleak.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
ac924c60 52#include <asm/div64.h>
1da177e4
LT
53#include "internal.h"
54
55/*
13808910 56 * Array of node states.
1da177e4 57 */
13808910
CL
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66 [N_CPU] = { { [0] = 1UL } },
67#endif /* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
6c231b7b 71unsigned long totalram_pages __read_mostly;
cb45b0e9 72unsigned long totalreserve_pages __read_mostly;
22b31eec 73unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 74int percpu_pagelist_fraction;
1da177e4 75
d9c23400
MG
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
d98c7a09 80static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 81
1da177e4
LT
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
1da177e4 92 */
2f1b6248 93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 94#ifdef CONFIG_ZONE_DMA
2f1b6248 95 256,
4b51d669 96#endif
fb0e7942 97#ifdef CONFIG_ZONE_DMA32
2f1b6248 98 256,
fb0e7942 99#endif
e53ef38d 100#ifdef CONFIG_HIGHMEM
2a1e274a 101 32,
e53ef38d 102#endif
2a1e274a 103 32,
2f1b6248 104};
1da177e4
LT
105
106EXPORT_SYMBOL(totalram_pages);
1da177e4 107
15ad7cdc 108static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 109#ifdef CONFIG_ZONE_DMA
2f1b6248 110 "DMA",
4b51d669 111#endif
fb0e7942 112#ifdef CONFIG_ZONE_DMA32
2f1b6248 113 "DMA32",
fb0e7942 114#endif
2f1b6248 115 "Normal",
e53ef38d 116#ifdef CONFIG_HIGHMEM
2a1e274a 117 "HighMem",
e53ef38d 118#endif
2a1e274a 119 "Movable",
2f1b6248
CL
120};
121
1da177e4
LT
122int min_free_kbytes = 1024;
123
86356ab1
YG
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
a3142c8e 126static unsigned long __meminitdata dma_reserve;
1da177e4 127
c713216d
MG
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 /*
183ff22b 130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
135 */
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
148
98011f56
JB
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 153 static unsigned long __initdata required_kernelcore;
484f51f8 154 static unsigned long __initdata required_movablecore;
b69a7288 155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
156
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
c713216d
MG
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
418508c1
MS
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164EXPORT_SYMBOL(nr_node_ids);
165#endif
166
9ef9acb0
MG
167int page_group_by_mobility_disabled __read_mostly;
168
b2a0ac88
MG
169static void set_pageblock_migratetype(struct page *page, int migratetype)
170{
49255c61
MG
171
172 if (unlikely(page_group_by_mobility_disabled))
173 migratetype = MIGRATE_UNMOVABLE;
174
b2a0ac88
MG
175 set_pageblock_flags_group(page, (unsigned long)migratetype,
176 PB_migrate, PB_migrate_end);
177}
178
13e7444b 179#ifdef CONFIG_DEBUG_VM
c6a57e19 180static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 181{
bdc8cb98
DH
182 int ret = 0;
183 unsigned seq;
184 unsigned long pfn = page_to_pfn(page);
c6a57e19 185
bdc8cb98
DH
186 do {
187 seq = zone_span_seqbegin(zone);
188 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 ret = 1;
190 else if (pfn < zone->zone_start_pfn)
191 ret = 1;
192 } while (zone_span_seqretry(zone, seq));
193
194 return ret;
c6a57e19
DH
195}
196
197static int page_is_consistent(struct zone *zone, struct page *page)
198{
14e07298 199 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 200 return 0;
1da177e4 201 if (zone != page_zone(page))
c6a57e19
DH
202 return 0;
203
204 return 1;
205}
206/*
207 * Temporary debugging check for pages not lying within a given zone.
208 */
209static int bad_range(struct zone *zone, struct page *page)
210{
211 if (page_outside_zone_boundaries(zone, page))
1da177e4 212 return 1;
c6a57e19
DH
213 if (!page_is_consistent(zone, page))
214 return 1;
215
1da177e4
LT
216 return 0;
217}
13e7444b
NP
218#else
219static inline int bad_range(struct zone *zone, struct page *page)
220{
221 return 0;
222}
223#endif
224
224abf92 225static void bad_page(struct page *page)
1da177e4 226{
d936cf9b
HD
227 static unsigned long resume;
228 static unsigned long nr_shown;
229 static unsigned long nr_unshown;
230
231 /*
232 * Allow a burst of 60 reports, then keep quiet for that minute;
233 * or allow a steady drip of one report per second.
234 */
235 if (nr_shown == 60) {
236 if (time_before(jiffies, resume)) {
237 nr_unshown++;
238 goto out;
239 }
240 if (nr_unshown) {
1e9e6365
HD
241 printk(KERN_ALERT
242 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
243 nr_unshown);
244 nr_unshown = 0;
245 }
246 nr_shown = 0;
247 }
248 if (nr_shown++ == 0)
249 resume = jiffies + 60 * HZ;
250
1e9e6365 251 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 252 current->comm, page_to_pfn(page));
1e9e6365 253 printk(KERN_ALERT
3dc14741
HD
254 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
255 page, (void *)page->flags, page_count(page),
256 page_mapcount(page), page->mapping, page->index);
3dc14741 257
1da177e4 258 dump_stack();
d936cf9b 259out:
8cc3b392
HD
260 /* Leave bad fields for debug, except PageBuddy could make trouble */
261 __ClearPageBuddy(page);
9f158333 262 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
263}
264
1da177e4
LT
265/*
266 * Higher-order pages are called "compound pages". They are structured thusly:
267 *
268 * The first PAGE_SIZE page is called the "head page".
269 *
270 * The remaining PAGE_SIZE pages are called "tail pages".
271 *
272 * All pages have PG_compound set. All pages have their ->private pointing at
273 * the head page (even the head page has this).
274 *
41d78ba5
HD
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function. Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
1da177e4 278 */
d98c7a09
HD
279
280static void free_compound_page(struct page *page)
281{
d85f3385 282 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
283}
284
01ad1c08 285void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
286{
287 int i;
288 int nr_pages = 1 << order;
289
290 set_compound_page_dtor(page, free_compound_page);
291 set_compound_order(page, order);
292 __SetPageHead(page);
293 for (i = 1; i < nr_pages; i++) {
294 struct page *p = page + i;
295
296 __SetPageTail(p);
297 p->first_page = page;
298 }
299}
300
301#ifdef CONFIG_HUGETLBFS
302void prep_compound_gigantic_page(struct page *page, unsigned long order)
1da177e4
LT
303{
304 int i;
305 int nr_pages = 1 << order;
6babc32c 306 struct page *p = page + 1;
1da177e4 307
33f2ef89 308 set_compound_page_dtor(page, free_compound_page);
d85f3385 309 set_compound_order(page, order);
6d777953 310 __SetPageHead(page);
18229df5 311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
d85f3385 312 __SetPageTail(p);
d85f3385 313 p->first_page = page;
1da177e4
LT
314 }
315}
18229df5 316#endif
1da177e4 317
8cc3b392 318static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
319{
320 int i;
321 int nr_pages = 1 << order;
8cc3b392 322 int bad = 0;
1da177e4 323
8cc3b392
HD
324 if (unlikely(compound_order(page) != order) ||
325 unlikely(!PageHead(page))) {
224abf92 326 bad_page(page);
8cc3b392
HD
327 bad++;
328 }
1da177e4 329
6d777953 330 __ClearPageHead(page);
8cc3b392 331
18229df5
AW
332 for (i = 1; i < nr_pages; i++) {
333 struct page *p = page + i;
1da177e4 334
e713a21d 335 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 336 bad_page(page);
8cc3b392
HD
337 bad++;
338 }
d85f3385 339 __ClearPageTail(p);
1da177e4 340 }
8cc3b392
HD
341
342 return bad;
1da177e4 343}
1da177e4 344
17cf4406
NP
345static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
346{
347 int i;
348
6626c5d5
AM
349 /*
350 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 * and __GFP_HIGHMEM from hard or soft interrupt context.
352 */
725d704e 353 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
354 for (i = 0; i < (1 << order); i++)
355 clear_highpage(page + i);
356}
357
6aa3001b
AM
358static inline void set_page_order(struct page *page, int order)
359{
4c21e2f2 360 set_page_private(page, order);
676165a8 361 __SetPageBuddy(page);
1da177e4
LT
362}
363
364static inline void rmv_page_order(struct page *page)
365{
676165a8 366 __ClearPageBuddy(page);
4c21e2f2 367 set_page_private(page, 0);
1da177e4
LT
368}
369
370/*
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
373 *
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
376 * B2 = B1 ^ (1 << O)
377 * For example, if the starting buddy (buddy2) is #8 its order
378 * 1 buddy is #10:
379 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
380 *
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
383 * P = B & ~(1 << O)
384 *
d6e05edc 385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
386 */
387static inline struct page *
388__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
389{
390 unsigned long buddy_idx = page_idx ^ (1 << order);
391
392 return page + (buddy_idx - page_idx);
393}
394
395static inline unsigned long
396__find_combined_index(unsigned long page_idx, unsigned int order)
397{
398 return (page_idx & ~(1 << order));
399}
400
401/*
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
13e7444b 404 * (a) the buddy is not in a hole &&
676165a8 405 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
676165a8
NP
408 *
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 411 *
676165a8 412 * For recording page's order, we use page_private(page).
1da177e4 413 */
cb2b95e1
AW
414static inline int page_is_buddy(struct page *page, struct page *buddy,
415 int order)
1da177e4 416{
14e07298 417 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 418 return 0;
13e7444b 419
cb2b95e1
AW
420 if (page_zone_id(page) != page_zone_id(buddy))
421 return 0;
422
423 if (PageBuddy(buddy) && page_order(buddy) == order) {
424 BUG_ON(page_count(buddy) != 0);
6aa3001b 425 return 1;
676165a8 426 }
6aa3001b 427 return 0;
1da177e4
LT
428}
429
430/*
431 * Freeing function for a buddy system allocator.
432 *
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
676165a8 443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 444 * order is recorded in page_private(page) field.
1da177e4
LT
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other. That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
450 *
451 * -- wli
452 */
453
48db57f8 454static inline void __free_one_page(struct page *page,
1da177e4
LT
455 struct zone *zone, unsigned int order)
456{
457 unsigned long page_idx;
458 int order_size = 1 << order;
b2a0ac88 459 int migratetype = get_pageblock_migratetype(page);
1da177e4 460
224abf92 461 if (unlikely(PageCompound(page)))
8cc3b392
HD
462 if (unlikely(destroy_compound_page(page, order)))
463 return;
1da177e4
LT
464
465 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
466
725d704e
NP
467 VM_BUG_ON(page_idx & (order_size - 1));
468 VM_BUG_ON(bad_range(zone, page));
1da177e4 469
d23ad423 470 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
471 while (order < MAX_ORDER-1) {
472 unsigned long combined_idx;
1da177e4
LT
473 struct page *buddy;
474
1da177e4 475 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 476 if (!page_is_buddy(page, buddy, order))
3c82d0ce 477 break;
13e7444b 478
3c82d0ce 479 /* Our buddy is free, merge with it and move up one order. */
1da177e4 480 list_del(&buddy->lru);
b2a0ac88 481 zone->free_area[order].nr_free--;
1da177e4 482 rmv_page_order(buddy);
13e7444b 483 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
484 page = page + (combined_idx - page_idx);
485 page_idx = combined_idx;
486 order++;
487 }
488 set_page_order(page, order);
b2a0ac88
MG
489 list_add(&page->lru,
490 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
491 zone->free_area[order].nr_free++;
492}
493
224abf92 494static inline int free_pages_check(struct page *page)
1da177e4 495{
985737cf 496 free_page_mlock(page);
92be2e33
NP
497 if (unlikely(page_mapcount(page) |
498 (page->mapping != NULL) |
499 (page_count(page) != 0) |
8cc3b392 500 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 501 bad_page(page);
79f4b7bf 502 return 1;
8cc3b392 503 }
79f4b7bf
HD
504 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506 return 0;
1da177e4
LT
507}
508
509/*
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
207f36ee 512 * count is the number of pages to free.
1da177e4
LT
513 *
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
516 *
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
519 */
48db57f8
NP
520static void free_pages_bulk(struct zone *zone, int count,
521 struct list_head *list, int order)
1da177e4 522{
c54ad30c 523 spin_lock(&zone->lock);
e815af95 524 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 525 zone->pages_scanned = 0;
48db57f8
NP
526 while (count--) {
527 struct page *page;
528
725d704e 529 VM_BUG_ON(list_empty(list));
1da177e4 530 page = list_entry(list->prev, struct page, lru);
48db57f8 531 /* have to delete it as __free_one_page list manipulates */
1da177e4 532 list_del(&page->lru);
48db57f8 533 __free_one_page(page, zone, order);
1da177e4 534 }
c54ad30c 535 spin_unlock(&zone->lock);
1da177e4
LT
536}
537
48db57f8 538static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 539{
006d22d9 540 spin_lock(&zone->lock);
e815af95 541 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 542 zone->pages_scanned = 0;
0798e519 543 __free_one_page(page, zone, order);
006d22d9 544 spin_unlock(&zone->lock);
48db57f8
NP
545}
546
547static void __free_pages_ok(struct page *page, unsigned int order)
548{
549 unsigned long flags;
1da177e4 550 int i;
8cc3b392 551 int bad = 0;
1da177e4 552
1da177e4 553 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
554 bad += free_pages_check(page + i);
555 if (bad)
689bcebf
HD
556 return;
557
3ac7fe5a 558 if (!PageHighMem(page)) {
9858db50 559 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
560 debug_check_no_obj_freed(page_address(page),
561 PAGE_SIZE << order);
562 }
dafb1367 563 arch_free_page(page, order);
48db57f8 564 kernel_map_pages(page, 1 << order, 0);
dafb1367 565
c54ad30c 566 local_irq_save(flags);
f8891e5e 567 __count_vm_events(PGFREE, 1 << order);
48db57f8 568 free_one_page(page_zone(page), page, order);
c54ad30c 569 local_irq_restore(flags);
1da177e4
LT
570}
571
a226f6c8
DH
572/*
573 * permit the bootmem allocator to evade page validation on high-order frees
574 */
af370fb8 575void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
576{
577 if (order == 0) {
578 __ClearPageReserved(page);
579 set_page_count(page, 0);
7835e98b 580 set_page_refcounted(page);
545b1ea9 581 __free_page(page);
a226f6c8 582 } else {
a226f6c8
DH
583 int loop;
584
545b1ea9 585 prefetchw(page);
a226f6c8
DH
586 for (loop = 0; loop < BITS_PER_LONG; loop++) {
587 struct page *p = &page[loop];
588
545b1ea9
NP
589 if (loop + 1 < BITS_PER_LONG)
590 prefetchw(p + 1);
a226f6c8
DH
591 __ClearPageReserved(p);
592 set_page_count(p, 0);
593 }
594
7835e98b 595 set_page_refcounted(page);
545b1ea9 596 __free_pages(page, order);
a226f6c8
DH
597 }
598}
599
1da177e4
LT
600
601/*
602 * The order of subdivision here is critical for the IO subsystem.
603 * Please do not alter this order without good reasons and regression
604 * testing. Specifically, as large blocks of memory are subdivided,
605 * the order in which smaller blocks are delivered depends on the order
606 * they're subdivided in this function. This is the primary factor
607 * influencing the order in which pages are delivered to the IO
608 * subsystem according to empirical testing, and this is also justified
609 * by considering the behavior of a buddy system containing a single
610 * large block of memory acted on by a series of small allocations.
611 * This behavior is a critical factor in sglist merging's success.
612 *
613 * -- wli
614 */
085cc7d5 615static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
616 int low, int high, struct free_area *area,
617 int migratetype)
1da177e4
LT
618{
619 unsigned long size = 1 << high;
620
621 while (high > low) {
622 area--;
623 high--;
624 size >>= 1;
725d704e 625 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 626 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
627 area->nr_free++;
628 set_page_order(&page[size], high);
629 }
1da177e4
LT
630}
631
1da177e4
LT
632/*
633 * This page is about to be returned from the page allocator
634 */
17cf4406 635static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 636{
92be2e33
NP
637 if (unlikely(page_mapcount(page) |
638 (page->mapping != NULL) |
639 (page_count(page) != 0) |
8cc3b392 640 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 641 bad_page(page);
689bcebf 642 return 1;
8cc3b392 643 }
689bcebf 644
4c21e2f2 645 set_page_private(page, 0);
7835e98b 646 set_page_refcounted(page);
cc102509
NP
647
648 arch_alloc_page(page, order);
1da177e4 649 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
650
651 if (gfp_flags & __GFP_ZERO)
652 prep_zero_page(page, order, gfp_flags);
653
654 if (order && (gfp_flags & __GFP_COMP))
655 prep_compound_page(page, order);
656
689bcebf 657 return 0;
1da177e4
LT
658}
659
56fd56b8
MG
660/*
661 * Go through the free lists for the given migratetype and remove
662 * the smallest available page from the freelists
663 */
728ec980
MG
664static inline
665struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
666 int migratetype)
667{
668 unsigned int current_order;
669 struct free_area * area;
670 struct page *page;
671
672 /* Find a page of the appropriate size in the preferred list */
673 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
674 area = &(zone->free_area[current_order]);
675 if (list_empty(&area->free_list[migratetype]))
676 continue;
677
678 page = list_entry(area->free_list[migratetype].next,
679 struct page, lru);
680 list_del(&page->lru);
681 rmv_page_order(page);
682 area->nr_free--;
683 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
684 expand(zone, page, order, current_order, area, migratetype);
685 return page;
686 }
687
688 return NULL;
689}
690
691
b2a0ac88
MG
692/*
693 * This array describes the order lists are fallen back to when
694 * the free lists for the desirable migrate type are depleted
695 */
696static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
697 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
699 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
700 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
701};
702
c361be55
MG
703/*
704 * Move the free pages in a range to the free lists of the requested type.
d9c23400 705 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
706 * boundary. If alignment is required, use move_freepages_block()
707 */
b69a7288
AB
708static int move_freepages(struct zone *zone,
709 struct page *start_page, struct page *end_page,
710 int migratetype)
c361be55
MG
711{
712 struct page *page;
713 unsigned long order;
d100313f 714 int pages_moved = 0;
c361be55
MG
715
716#ifndef CONFIG_HOLES_IN_ZONE
717 /*
718 * page_zone is not safe to call in this context when
719 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
720 * anyway as we check zone boundaries in move_freepages_block().
721 * Remove at a later date when no bug reports exist related to
ac0e5b7a 722 * grouping pages by mobility
c361be55
MG
723 */
724 BUG_ON(page_zone(start_page) != page_zone(end_page));
725#endif
726
727 for (page = start_page; page <= end_page;) {
344c790e
AL
728 /* Make sure we are not inadvertently changing nodes */
729 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
730
c361be55
MG
731 if (!pfn_valid_within(page_to_pfn(page))) {
732 page++;
733 continue;
734 }
735
736 if (!PageBuddy(page)) {
737 page++;
738 continue;
739 }
740
741 order = page_order(page);
742 list_del(&page->lru);
743 list_add(&page->lru,
744 &zone->free_area[order].free_list[migratetype]);
745 page += 1 << order;
d100313f 746 pages_moved += 1 << order;
c361be55
MG
747 }
748
d100313f 749 return pages_moved;
c361be55
MG
750}
751
b69a7288
AB
752static int move_freepages_block(struct zone *zone, struct page *page,
753 int migratetype)
c361be55
MG
754{
755 unsigned long start_pfn, end_pfn;
756 struct page *start_page, *end_page;
757
758 start_pfn = page_to_pfn(page);
d9c23400 759 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 760 start_page = pfn_to_page(start_pfn);
d9c23400
MG
761 end_page = start_page + pageblock_nr_pages - 1;
762 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
763
764 /* Do not cross zone boundaries */
765 if (start_pfn < zone->zone_start_pfn)
766 start_page = page;
767 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
768 return 0;
769
770 return move_freepages(zone, start_page, end_page, migratetype);
771}
772
b2a0ac88
MG
773/* Remove an element from the buddy allocator from the fallback list */
774static struct page *__rmqueue_fallback(struct zone *zone, int order,
775 int start_migratetype)
776{
777 struct free_area * area;
778 int current_order;
779 struct page *page;
780 int migratetype, i;
781
782 /* Find the largest possible block of pages in the other list */
783 for (current_order = MAX_ORDER-1; current_order >= order;
784 --current_order) {
785 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
786 migratetype = fallbacks[start_migratetype][i];
787
56fd56b8
MG
788 /* MIGRATE_RESERVE handled later if necessary */
789 if (migratetype == MIGRATE_RESERVE)
790 continue;
e010487d 791
b2a0ac88
MG
792 area = &(zone->free_area[current_order]);
793 if (list_empty(&area->free_list[migratetype]))
794 continue;
795
796 page = list_entry(area->free_list[migratetype].next,
797 struct page, lru);
798 area->nr_free--;
799
800 /*
c361be55 801 * If breaking a large block of pages, move all free
46dafbca
MG
802 * pages to the preferred allocation list. If falling
803 * back for a reclaimable kernel allocation, be more
804 * agressive about taking ownership of free pages
b2a0ac88 805 */
d9c23400 806 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
807 start_migratetype == MIGRATE_RECLAIMABLE) {
808 unsigned long pages;
809 pages = move_freepages_block(zone, page,
810 start_migratetype);
811
812 /* Claim the whole block if over half of it is free */
d9c23400 813 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
814 set_pageblock_migratetype(page,
815 start_migratetype);
816
b2a0ac88 817 migratetype = start_migratetype;
c361be55 818 }
b2a0ac88
MG
819
820 /* Remove the page from the freelists */
821 list_del(&page->lru);
822 rmv_page_order(page);
823 __mod_zone_page_state(zone, NR_FREE_PAGES,
824 -(1UL << order));
825
d9c23400 826 if (current_order == pageblock_order)
b2a0ac88
MG
827 set_pageblock_migratetype(page,
828 start_migratetype);
829
830 expand(zone, page, order, current_order, area, migratetype);
831 return page;
832 }
833 }
834
728ec980 835 return NULL;
b2a0ac88
MG
836}
837
56fd56b8 838/*
1da177e4
LT
839 * Do the hard work of removing an element from the buddy allocator.
840 * Call me with the zone->lock already held.
841 */
b2a0ac88
MG
842static struct page *__rmqueue(struct zone *zone, unsigned int order,
843 int migratetype)
1da177e4 844{
1da177e4
LT
845 struct page *page;
846
728ec980 847retry_reserve:
56fd56b8 848 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 849
728ec980 850 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 851 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 852
728ec980
MG
853 /*
854 * Use MIGRATE_RESERVE rather than fail an allocation. goto
855 * is used because __rmqueue_smallest is an inline function
856 * and we want just one call site
857 */
858 if (!page) {
859 migratetype = MIGRATE_RESERVE;
860 goto retry_reserve;
861 }
862 }
863
b2a0ac88 864 return page;
1da177e4
LT
865}
866
867/*
868 * Obtain a specified number of elements from the buddy allocator, all under
869 * a single hold of the lock, for efficiency. Add them to the supplied list.
870 * Returns the number of new pages which were placed at *list.
871 */
872static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
873 unsigned long count, struct list_head *list,
874 int migratetype)
1da177e4 875{
1da177e4 876 int i;
1da177e4 877
c54ad30c 878 spin_lock(&zone->lock);
1da177e4 879 for (i = 0; i < count; ++i) {
b2a0ac88 880 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 881 if (unlikely(page == NULL))
1da177e4 882 break;
81eabcbe
MG
883
884 /*
885 * Split buddy pages returned by expand() are received here
886 * in physical page order. The page is added to the callers and
887 * list and the list head then moves forward. From the callers
888 * perspective, the linked list is ordered by page number in
889 * some conditions. This is useful for IO devices that can
890 * merge IO requests if the physical pages are ordered
891 * properly.
892 */
535131e6
MG
893 list_add(&page->lru, list);
894 set_page_private(page, migratetype);
81eabcbe 895 list = &page->lru;
1da177e4 896 }
c54ad30c 897 spin_unlock(&zone->lock);
085cc7d5 898 return i;
1da177e4
LT
899}
900
4ae7c039 901#ifdef CONFIG_NUMA
8fce4d8e 902/*
4037d452
CL
903 * Called from the vmstat counter updater to drain pagesets of this
904 * currently executing processor on remote nodes after they have
905 * expired.
906 *
879336c3
CL
907 * Note that this function must be called with the thread pinned to
908 * a single processor.
8fce4d8e 909 */
4037d452 910void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 911{
4ae7c039 912 unsigned long flags;
4037d452 913 int to_drain;
4ae7c039 914
4037d452
CL
915 local_irq_save(flags);
916 if (pcp->count >= pcp->batch)
917 to_drain = pcp->batch;
918 else
919 to_drain = pcp->count;
920 free_pages_bulk(zone, to_drain, &pcp->list, 0);
921 pcp->count -= to_drain;
922 local_irq_restore(flags);
4ae7c039
CL
923}
924#endif
925
9f8f2172
CL
926/*
927 * Drain pages of the indicated processor.
928 *
929 * The processor must either be the current processor and the
930 * thread pinned to the current processor or a processor that
931 * is not online.
932 */
933static void drain_pages(unsigned int cpu)
1da177e4 934{
c54ad30c 935 unsigned long flags;
1da177e4 936 struct zone *zone;
1da177e4 937
ee99c71c 938 for_each_populated_zone(zone) {
1da177e4 939 struct per_cpu_pageset *pset;
3dfa5721 940 struct per_cpu_pages *pcp;
1da177e4 941
e7c8d5c9 942 pset = zone_pcp(zone, cpu);
3dfa5721
CL
943
944 pcp = &pset->pcp;
945 local_irq_save(flags);
946 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
947 pcp->count = 0;
948 local_irq_restore(flags);
1da177e4
LT
949 }
950}
1da177e4 951
9f8f2172
CL
952/*
953 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
954 */
955void drain_local_pages(void *arg)
956{
957 drain_pages(smp_processor_id());
958}
959
960/*
961 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
962 */
963void drain_all_pages(void)
964{
15c8b6c1 965 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
966}
967
296699de 968#ifdef CONFIG_HIBERNATION
1da177e4
LT
969
970void mark_free_pages(struct zone *zone)
971{
f623f0db
RW
972 unsigned long pfn, max_zone_pfn;
973 unsigned long flags;
b2a0ac88 974 int order, t;
1da177e4
LT
975 struct list_head *curr;
976
977 if (!zone->spanned_pages)
978 return;
979
980 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
981
982 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
983 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
984 if (pfn_valid(pfn)) {
985 struct page *page = pfn_to_page(pfn);
986
7be98234
RW
987 if (!swsusp_page_is_forbidden(page))
988 swsusp_unset_page_free(page);
f623f0db 989 }
1da177e4 990
b2a0ac88
MG
991 for_each_migratetype_order(order, t) {
992 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 993 unsigned long i;
1da177e4 994
f623f0db
RW
995 pfn = page_to_pfn(list_entry(curr, struct page, lru));
996 for (i = 0; i < (1UL << order); i++)
7be98234 997 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 998 }
b2a0ac88 999 }
1da177e4
LT
1000 spin_unlock_irqrestore(&zone->lock, flags);
1001}
e2c55dc8 1002#endif /* CONFIG_PM */
1da177e4 1003
1da177e4
LT
1004/*
1005 * Free a 0-order page
1006 */
920c7a5d 1007static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1008{
1009 struct zone *zone = page_zone(page);
1010 struct per_cpu_pages *pcp;
1011 unsigned long flags;
1012
1da177e4
LT
1013 if (PageAnon(page))
1014 page->mapping = NULL;
224abf92 1015 if (free_pages_check(page))
689bcebf
HD
1016 return;
1017
3ac7fe5a 1018 if (!PageHighMem(page)) {
9858db50 1019 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1020 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1021 }
dafb1367 1022 arch_free_page(page, 0);
689bcebf
HD
1023 kernel_map_pages(page, 1, 0);
1024
3dfa5721 1025 pcp = &zone_pcp(zone, get_cpu())->pcp;
1da177e4 1026 local_irq_save(flags);
f8891e5e 1027 __count_vm_event(PGFREE);
3dfa5721
CL
1028 if (cold)
1029 list_add_tail(&page->lru, &pcp->list);
1030 else
1031 list_add(&page->lru, &pcp->list);
535131e6 1032 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1033 pcp->count++;
48db57f8
NP
1034 if (pcp->count >= pcp->high) {
1035 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1036 pcp->count -= pcp->batch;
1037 }
1da177e4
LT
1038 local_irq_restore(flags);
1039 put_cpu();
1040}
1041
920c7a5d 1042void free_hot_page(struct page *page)
1da177e4
LT
1043{
1044 free_hot_cold_page(page, 0);
1045}
1046
920c7a5d 1047void free_cold_page(struct page *page)
1da177e4
LT
1048{
1049 free_hot_cold_page(page, 1);
1050}
1051
8dfcc9ba
NP
1052/*
1053 * split_page takes a non-compound higher-order page, and splits it into
1054 * n (1<<order) sub-pages: page[0..n]
1055 * Each sub-page must be freed individually.
1056 *
1057 * Note: this is probably too low level an operation for use in drivers.
1058 * Please consult with lkml before using this in your driver.
1059 */
1060void split_page(struct page *page, unsigned int order)
1061{
1062 int i;
1063
725d704e
NP
1064 VM_BUG_ON(PageCompound(page));
1065 VM_BUG_ON(!page_count(page));
7835e98b
NP
1066 for (i = 1; i < (1 << order); i++)
1067 set_page_refcounted(page + i);
8dfcc9ba 1068}
8dfcc9ba 1069
1da177e4
LT
1070/*
1071 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1072 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1073 * or two.
1074 */
0a15c3e9
MG
1075static inline
1076struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1077 struct zone *zone, int order, gfp_t gfp_flags,
1078 int migratetype)
1da177e4
LT
1079{
1080 unsigned long flags;
689bcebf 1081 struct page *page;
1da177e4 1082 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1083 int cpu;
1da177e4 1084
689bcebf 1085again:
a74609fa 1086 cpu = get_cpu();
48db57f8 1087 if (likely(order == 0)) {
1da177e4
LT
1088 struct per_cpu_pages *pcp;
1089
3dfa5721 1090 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1091 local_irq_save(flags);
a74609fa 1092 if (!pcp->count) {
941c7105 1093 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1094 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1095 if (unlikely(!pcp->count))
1096 goto failed;
1da177e4 1097 }
b92a6edd 1098
535131e6 1099 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1100 if (cold) {
1101 list_for_each_entry_reverse(page, &pcp->list, lru)
1102 if (page_private(page) == migratetype)
1103 break;
1104 } else {
1105 list_for_each_entry(page, &pcp->list, lru)
1106 if (page_private(page) == migratetype)
1107 break;
1108 }
535131e6 1109
b92a6edd
MG
1110 /* Allocate more to the pcp list if necessary */
1111 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1112 pcp->count += rmqueue_bulk(zone, 0,
1113 pcp->batch, &pcp->list, migratetype);
1114 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1115 }
b92a6edd
MG
1116
1117 list_del(&page->lru);
1118 pcp->count--;
7fb1d9fc 1119 } else {
1da177e4 1120 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1121 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1122 spin_unlock(&zone->lock);
1123 if (!page)
1124 goto failed;
1da177e4
LT
1125 }
1126
f8891e5e 1127 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1128 zone_statistics(preferred_zone, zone);
a74609fa
NP
1129 local_irq_restore(flags);
1130 put_cpu();
1da177e4 1131
725d704e 1132 VM_BUG_ON(bad_range(zone, page));
17cf4406 1133 if (prep_new_page(page, order, gfp_flags))
a74609fa 1134 goto again;
1da177e4 1135 return page;
a74609fa
NP
1136
1137failed:
1138 local_irq_restore(flags);
1139 put_cpu();
1140 return NULL;
1da177e4
LT
1141}
1142
7fb1d9fc 1143#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1144#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1145#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1146#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1147#define ALLOC_HARDER 0x10 /* try to alloc harder */
1148#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1149#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1150
933e312e
AM
1151#ifdef CONFIG_FAIL_PAGE_ALLOC
1152
1153static struct fail_page_alloc_attr {
1154 struct fault_attr attr;
1155
1156 u32 ignore_gfp_highmem;
1157 u32 ignore_gfp_wait;
54114994 1158 u32 min_order;
933e312e
AM
1159
1160#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1161
1162 struct dentry *ignore_gfp_highmem_file;
1163 struct dentry *ignore_gfp_wait_file;
54114994 1164 struct dentry *min_order_file;
933e312e
AM
1165
1166#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1167
1168} fail_page_alloc = {
1169 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1170 .ignore_gfp_wait = 1,
1171 .ignore_gfp_highmem = 1,
54114994 1172 .min_order = 1,
933e312e
AM
1173};
1174
1175static int __init setup_fail_page_alloc(char *str)
1176{
1177 return setup_fault_attr(&fail_page_alloc.attr, str);
1178}
1179__setup("fail_page_alloc=", setup_fail_page_alloc);
1180
1181static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1182{
54114994
AM
1183 if (order < fail_page_alloc.min_order)
1184 return 0;
933e312e
AM
1185 if (gfp_mask & __GFP_NOFAIL)
1186 return 0;
1187 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1188 return 0;
1189 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1190 return 0;
1191
1192 return should_fail(&fail_page_alloc.attr, 1 << order);
1193}
1194
1195#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1196
1197static int __init fail_page_alloc_debugfs(void)
1198{
1199 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1200 struct dentry *dir;
1201 int err;
1202
1203 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1204 "fail_page_alloc");
1205 if (err)
1206 return err;
1207 dir = fail_page_alloc.attr.dentries.dir;
1208
1209 fail_page_alloc.ignore_gfp_wait_file =
1210 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1211 &fail_page_alloc.ignore_gfp_wait);
1212
1213 fail_page_alloc.ignore_gfp_highmem_file =
1214 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1215 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1216 fail_page_alloc.min_order_file =
1217 debugfs_create_u32("min-order", mode, dir,
1218 &fail_page_alloc.min_order);
933e312e
AM
1219
1220 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1221 !fail_page_alloc.ignore_gfp_highmem_file ||
1222 !fail_page_alloc.min_order_file) {
933e312e
AM
1223 err = -ENOMEM;
1224 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1225 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1226 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1227 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1228 }
1229
1230 return err;
1231}
1232
1233late_initcall(fail_page_alloc_debugfs);
1234
1235#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1236
1237#else /* CONFIG_FAIL_PAGE_ALLOC */
1238
1239static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1240{
1241 return 0;
1242}
1243
1244#endif /* CONFIG_FAIL_PAGE_ALLOC */
1245
1da177e4
LT
1246/*
1247 * Return 1 if free pages are above 'mark'. This takes into account the order
1248 * of the allocation.
1249 */
1250int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1251 int classzone_idx, int alloc_flags)
1da177e4
LT
1252{
1253 /* free_pages my go negative - that's OK */
d23ad423
CL
1254 long min = mark;
1255 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1256 int o;
1257
7fb1d9fc 1258 if (alloc_flags & ALLOC_HIGH)
1da177e4 1259 min -= min / 2;
7fb1d9fc 1260 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1261 min -= min / 4;
1262
1263 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1264 return 0;
1265 for (o = 0; o < order; o++) {
1266 /* At the next order, this order's pages become unavailable */
1267 free_pages -= z->free_area[o].nr_free << o;
1268
1269 /* Require fewer higher order pages to be free */
1270 min >>= 1;
1271
1272 if (free_pages <= min)
1273 return 0;
1274 }
1275 return 1;
1276}
1277
9276b1bc
PJ
1278#ifdef CONFIG_NUMA
1279/*
1280 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1281 * skip over zones that are not allowed by the cpuset, or that have
1282 * been recently (in last second) found to be nearly full. See further
1283 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1284 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1285 *
1286 * If the zonelist cache is present in the passed in zonelist, then
1287 * returns a pointer to the allowed node mask (either the current
37b07e41 1288 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1289 *
1290 * If the zonelist cache is not available for this zonelist, does
1291 * nothing and returns NULL.
1292 *
1293 * If the fullzones BITMAP in the zonelist cache is stale (more than
1294 * a second since last zap'd) then we zap it out (clear its bits.)
1295 *
1296 * We hold off even calling zlc_setup, until after we've checked the
1297 * first zone in the zonelist, on the theory that most allocations will
1298 * be satisfied from that first zone, so best to examine that zone as
1299 * quickly as we can.
1300 */
1301static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1302{
1303 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1304 nodemask_t *allowednodes; /* zonelist_cache approximation */
1305
1306 zlc = zonelist->zlcache_ptr;
1307 if (!zlc)
1308 return NULL;
1309
f05111f5 1310 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1311 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1312 zlc->last_full_zap = jiffies;
1313 }
1314
1315 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1316 &cpuset_current_mems_allowed :
37b07e41 1317 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1318 return allowednodes;
1319}
1320
1321/*
1322 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1323 * if it is worth looking at further for free memory:
1324 * 1) Check that the zone isn't thought to be full (doesn't have its
1325 * bit set in the zonelist_cache fullzones BITMAP).
1326 * 2) Check that the zones node (obtained from the zonelist_cache
1327 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1328 * Return true (non-zero) if zone is worth looking at further, or
1329 * else return false (zero) if it is not.
1330 *
1331 * This check -ignores- the distinction between various watermarks,
1332 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1333 * found to be full for any variation of these watermarks, it will
1334 * be considered full for up to one second by all requests, unless
1335 * we are so low on memory on all allowed nodes that we are forced
1336 * into the second scan of the zonelist.
1337 *
1338 * In the second scan we ignore this zonelist cache and exactly
1339 * apply the watermarks to all zones, even it is slower to do so.
1340 * We are low on memory in the second scan, and should leave no stone
1341 * unturned looking for a free page.
1342 */
dd1a239f 1343static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1344 nodemask_t *allowednodes)
1345{
1346 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1347 int i; /* index of *z in zonelist zones */
1348 int n; /* node that zone *z is on */
1349
1350 zlc = zonelist->zlcache_ptr;
1351 if (!zlc)
1352 return 1;
1353
dd1a239f 1354 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1355 n = zlc->z_to_n[i];
1356
1357 /* This zone is worth trying if it is allowed but not full */
1358 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1359}
1360
1361/*
1362 * Given 'z' scanning a zonelist, set the corresponding bit in
1363 * zlc->fullzones, so that subsequent attempts to allocate a page
1364 * from that zone don't waste time re-examining it.
1365 */
dd1a239f 1366static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1367{
1368 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1369 int i; /* index of *z in zonelist zones */
1370
1371 zlc = zonelist->zlcache_ptr;
1372 if (!zlc)
1373 return;
1374
dd1a239f 1375 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1376
1377 set_bit(i, zlc->fullzones);
1378}
1379
1380#else /* CONFIG_NUMA */
1381
1382static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1383{
1384 return NULL;
1385}
1386
dd1a239f 1387static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1388 nodemask_t *allowednodes)
1389{
1390 return 1;
1391}
1392
dd1a239f 1393static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1394{
1395}
1396#endif /* CONFIG_NUMA */
1397
7fb1d9fc 1398/*
0798e519 1399 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1400 * a page.
1401 */
1402static struct page *
19770b32 1403get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1404 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1405 struct zone *preferred_zone, int migratetype)
753ee728 1406{
dd1a239f 1407 struct zoneref *z;
7fb1d9fc 1408 struct page *page = NULL;
54a6eb5c 1409 int classzone_idx;
5117f45d 1410 struct zone *zone;
9276b1bc
PJ
1411 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1412 int zlc_active = 0; /* set if using zonelist_cache */
1413 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1414
b3c466ce
MG
1415 if (WARN_ON_ONCE(order >= MAX_ORDER))
1416 return NULL;
1417
5117f45d 1418 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1419zonelist_scan:
7fb1d9fc 1420 /*
9276b1bc 1421 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1422 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1423 */
19770b32
MG
1424 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1425 high_zoneidx, nodemask) {
9276b1bc
PJ
1426 if (NUMA_BUILD && zlc_active &&
1427 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1428 continue;
7fb1d9fc 1429 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1430 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1431 goto try_next_zone;
7fb1d9fc
RS
1432
1433 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1434 unsigned long mark;
1435 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1436 mark = zone->pages_min;
3148890b 1437 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1438 mark = zone->pages_low;
3148890b 1439 else
1192d526 1440 mark = zone->pages_high;
0798e519
PJ
1441 if (!zone_watermark_ok(zone, order, mark,
1442 classzone_idx, alloc_flags)) {
9eeff239 1443 if (!zone_reclaim_mode ||
1192d526 1444 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1445 goto this_zone_full;
0798e519 1446 }
7fb1d9fc
RS
1447 }
1448
3dd28266
MG
1449 page = buffered_rmqueue(preferred_zone, zone, order,
1450 gfp_mask, migratetype);
0798e519 1451 if (page)
7fb1d9fc 1452 break;
9276b1bc
PJ
1453this_zone_full:
1454 if (NUMA_BUILD)
1455 zlc_mark_zone_full(zonelist, z);
1456try_next_zone:
1457 if (NUMA_BUILD && !did_zlc_setup) {
1458 /* we do zlc_setup after the first zone is tried */
1459 allowednodes = zlc_setup(zonelist, alloc_flags);
1460 zlc_active = 1;
1461 did_zlc_setup = 1;
1462 }
54a6eb5c 1463 }
9276b1bc
PJ
1464
1465 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1466 /* Disable zlc cache for second zonelist scan */
1467 zlc_active = 0;
1468 goto zonelist_scan;
1469 }
7fb1d9fc 1470 return page;
753ee728
MH
1471}
1472
11e33f6a
MG
1473static inline int
1474should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1475 unsigned long pages_reclaimed)
1da177e4 1476{
11e33f6a
MG
1477 /* Do not loop if specifically requested */
1478 if (gfp_mask & __GFP_NORETRY)
1479 return 0;
1da177e4 1480
11e33f6a
MG
1481 /*
1482 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1483 * means __GFP_NOFAIL, but that may not be true in other
1484 * implementations.
1485 */
1486 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1487 return 1;
1488
1489 /*
1490 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1491 * specified, then we retry until we no longer reclaim any pages
1492 * (above), or we've reclaimed an order of pages at least as
1493 * large as the allocation's order. In both cases, if the
1494 * allocation still fails, we stop retrying.
1495 */
1496 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1497 return 1;
cf40bd16 1498
11e33f6a
MG
1499 /*
1500 * Don't let big-order allocations loop unless the caller
1501 * explicitly requests that.
1502 */
1503 if (gfp_mask & __GFP_NOFAIL)
1504 return 1;
1da177e4 1505
11e33f6a
MG
1506 return 0;
1507}
933e312e 1508
11e33f6a
MG
1509static inline struct page *
1510__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1511 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1512 nodemask_t *nodemask, struct zone *preferred_zone,
1513 int migratetype)
11e33f6a
MG
1514{
1515 struct page *page;
1516
1517 /* Acquire the OOM killer lock for the zones in zonelist */
1518 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1519 schedule_timeout_uninterruptible(1);
1da177e4
LT
1520 return NULL;
1521 }
6b1de916 1522
11e33f6a
MG
1523 /*
1524 * Go through the zonelist yet one more time, keep very high watermark
1525 * here, this is only to catch a parallel oom killing, we must fail if
1526 * we're still under heavy pressure.
1527 */
1528 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1529 order, zonelist, high_zoneidx,
5117f45d 1530 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1531 preferred_zone, migratetype);
7fb1d9fc 1532 if (page)
11e33f6a
MG
1533 goto out;
1534
1535 /* The OOM killer will not help higher order allocs */
1536 if (order > PAGE_ALLOC_COSTLY_ORDER)
1537 goto out;
1538
1539 /* Exhausted what can be done so it's blamo time */
1540 out_of_memory(zonelist, gfp_mask, order);
1541
1542out:
1543 clear_zonelist_oom(zonelist, gfp_mask);
1544 return page;
1545}
1546
1547/* The really slow allocator path where we enter direct reclaim */
1548static inline struct page *
1549__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1550 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1551 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1552 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1553{
1554 struct page *page = NULL;
1555 struct reclaim_state reclaim_state;
1556 struct task_struct *p = current;
1557
1558 cond_resched();
1559
1560 /* We now go into synchronous reclaim */
1561 cpuset_memory_pressure_bump();
1562
1563 /*
1564 * The task's cpuset might have expanded its set of allowable nodes
1565 */
1566 p->flags |= PF_MEMALLOC;
1567 lockdep_set_current_reclaim_state(gfp_mask);
1568 reclaim_state.reclaimed_slab = 0;
1569 p->reclaim_state = &reclaim_state;
1570
1571 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1572
1573 p->reclaim_state = NULL;
1574 lockdep_clear_current_reclaim_state();
1575 p->flags &= ~PF_MEMALLOC;
1576
1577 cond_resched();
1578
1579 if (order != 0)
1580 drain_all_pages();
1581
1582 if (likely(*did_some_progress))
1583 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1584 zonelist, high_zoneidx,
3dd28266
MG
1585 alloc_flags, preferred_zone,
1586 migratetype);
11e33f6a
MG
1587 return page;
1588}
1589
11e33f6a
MG
1590/*
1591 * This is called in the allocator slow-path if the allocation request is of
1592 * sufficient urgency to ignore watermarks and take other desperate measures
1593 */
1594static inline struct page *
1595__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1596 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1597 nodemask_t *nodemask, struct zone *preferred_zone,
1598 int migratetype)
11e33f6a
MG
1599{
1600 struct page *page;
1601
1602 do {
1603 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1604 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1605 preferred_zone, migratetype);
11e33f6a
MG
1606
1607 if (!page && gfp_mask & __GFP_NOFAIL)
1608 congestion_wait(WRITE, HZ/50);
1609 } while (!page && (gfp_mask & __GFP_NOFAIL));
1610
1611 return page;
1612}
1613
1614static inline
1615void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1616 enum zone_type high_zoneidx)
1617{
1618 struct zoneref *z;
1619 struct zone *zone;
1620
1621 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1622 wakeup_kswapd(zone, order);
1623}
1624
341ce06f
PZ
1625static inline int
1626gfp_to_alloc_flags(gfp_t gfp_mask)
1627{
1628 struct task_struct *p = current;
1629 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1630 const gfp_t wait = gfp_mask & __GFP_WAIT;
1631
a56f57ff
MG
1632 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1633 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1634
341ce06f
PZ
1635 /*
1636 * The caller may dip into page reserves a bit more if the caller
1637 * cannot run direct reclaim, or if the caller has realtime scheduling
1638 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1639 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1640 */
a56f57ff 1641 alloc_flags |= (gfp_mask & __GFP_HIGH);
341ce06f
PZ
1642
1643 if (!wait) {
1644 alloc_flags |= ALLOC_HARDER;
1645 /*
1646 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1647 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1648 */
1649 alloc_flags &= ~ALLOC_CPUSET;
1650 } else if (unlikely(rt_task(p)))
1651 alloc_flags |= ALLOC_HARDER;
1652
1653 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1654 if (!in_interrupt() &&
1655 ((p->flags & PF_MEMALLOC) ||
1656 unlikely(test_thread_flag(TIF_MEMDIE))))
1657 alloc_flags |= ALLOC_NO_WATERMARKS;
1658 }
1659
1660 return alloc_flags;
1661}
1662
11e33f6a
MG
1663static inline struct page *
1664__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1665 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1666 nodemask_t *nodemask, struct zone *preferred_zone,
1667 int migratetype)
11e33f6a
MG
1668{
1669 const gfp_t wait = gfp_mask & __GFP_WAIT;
1670 struct page *page = NULL;
1671 int alloc_flags;
1672 unsigned long pages_reclaimed = 0;
1673 unsigned long did_some_progress;
1674 struct task_struct *p = current;
1da177e4 1675
952f3b51
CL
1676 /*
1677 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1678 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1679 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1680 * using a larger set of nodes after it has established that the
1681 * allowed per node queues are empty and that nodes are
1682 * over allocated.
1683 */
1684 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1685 goto nopage;
1686
11e33f6a 1687 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1688
9bf2229f 1689 /*
7fb1d9fc
RS
1690 * OK, we're below the kswapd watermark and have kicked background
1691 * reclaim. Now things get more complex, so set up alloc_flags according
1692 * to how we want to proceed.
9bf2229f 1693 */
341ce06f 1694 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1695
11e33f6a 1696restart:
341ce06f 1697 /* This is the last chance, in general, before the goto nopage. */
19770b32 1698 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1699 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1700 preferred_zone, migratetype);
7fb1d9fc
RS
1701 if (page)
1702 goto got_pg;
1da177e4 1703
b43a57bb 1704rebalance:
11e33f6a 1705 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1706 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1707 page = __alloc_pages_high_priority(gfp_mask, order,
1708 zonelist, high_zoneidx, nodemask,
1709 preferred_zone, migratetype);
1710 if (page)
1711 goto got_pg;
1da177e4
LT
1712 }
1713
1714 /* Atomic allocations - we can't balance anything */
1715 if (!wait)
1716 goto nopage;
1717
341ce06f
PZ
1718 /* Avoid recursion of direct reclaim */
1719 if (p->flags & PF_MEMALLOC)
1720 goto nopage;
1721
11e33f6a
MG
1722 /* Try direct reclaim and then allocating */
1723 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1724 zonelist, high_zoneidx,
1725 nodemask,
5117f45d 1726 alloc_flags, preferred_zone,
3dd28266 1727 migratetype, &did_some_progress);
11e33f6a
MG
1728 if (page)
1729 goto got_pg;
1da177e4 1730
11e33f6a
MG
1731 /*
1732 * If we failed to make any progress reclaiming, then we are
1733 * running out of options and have to consider going OOM
1734 */
1735 if (!did_some_progress) {
1736 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1737 page = __alloc_pages_may_oom(gfp_mask, order,
1738 zonelist, high_zoneidx,
3dd28266
MG
1739 nodemask, preferred_zone,
1740 migratetype);
11e33f6a
MG
1741 if (page)
1742 goto got_pg;
1da177e4 1743
11e33f6a
MG
1744 /*
1745 * The OOM killer does not trigger for high-order allocations
1746 * but if no progress is being made, there are no other
1747 * options and retrying is unlikely to help
1748 */
1749 if (order > PAGE_ALLOC_COSTLY_ORDER)
1750 goto nopage;
e2c55dc8 1751
ff0ceb9d
DR
1752 goto restart;
1753 }
1da177e4
LT
1754 }
1755
11e33f6a 1756 /* Check if we should retry the allocation */
a41f24ea 1757 pages_reclaimed += did_some_progress;
11e33f6a
MG
1758 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1759 /* Wait for some write requests to complete then retry */
3fcfab16 1760 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1761 goto rebalance;
1762 }
1763
1764nopage:
1765 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1766 printk(KERN_WARNING "%s: page allocation failure."
1767 " order:%d, mode:0x%x\n",
1768 p->comm, order, gfp_mask);
1769 dump_stack();
578c2fd6 1770 show_mem();
1da177e4 1771 }
1da177e4 1772got_pg:
1da177e4 1773 return page;
11e33f6a
MG
1774
1775}
1776
1777/*
1778 * This is the 'heart' of the zoned buddy allocator.
1779 */
1780struct page *
1781__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1782 struct zonelist *zonelist, nodemask_t *nodemask)
1783{
1784 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1785 struct zone *preferred_zone;
11e33f6a 1786 struct page *page;
3dd28266 1787 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a
MG
1788
1789 lockdep_trace_alloc(gfp_mask);
1790
1791 might_sleep_if(gfp_mask & __GFP_WAIT);
1792
1793 if (should_fail_alloc_page(gfp_mask, order))
1794 return NULL;
1795
1796 /*
1797 * Check the zones suitable for the gfp_mask contain at least one
1798 * valid zone. It's possible to have an empty zonelist as a result
1799 * of GFP_THISNODE and a memoryless node
1800 */
1801 if (unlikely(!zonelist->_zonerefs->zone))
1802 return NULL;
1803
5117f45d
MG
1804 /* The preferred zone is used for statistics later */
1805 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1806 if (!preferred_zone)
1807 return NULL;
1808
1809 /* First allocation attempt */
11e33f6a 1810 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1811 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1812 preferred_zone, migratetype);
11e33f6a
MG
1813 if (unlikely(!page))
1814 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1815 zonelist, high_zoneidx, nodemask,
3dd28266 1816 preferred_zone, migratetype);
11e33f6a
MG
1817
1818 return page;
1da177e4 1819}
d239171e 1820EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1821
1822/*
1823 * Common helper functions.
1824 */
920c7a5d 1825unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1826{
1827 struct page * page;
1828 page = alloc_pages(gfp_mask, order);
1829 if (!page)
1830 return 0;
1831 return (unsigned long) page_address(page);
1832}
1833
1834EXPORT_SYMBOL(__get_free_pages);
1835
920c7a5d 1836unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1837{
1838 struct page * page;
1839
1840 /*
1841 * get_zeroed_page() returns a 32-bit address, which cannot represent
1842 * a highmem page
1843 */
725d704e 1844 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1845
1846 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1847 if (page)
1848 return (unsigned long) page_address(page);
1849 return 0;
1850}
1851
1852EXPORT_SYMBOL(get_zeroed_page);
1853
1854void __pagevec_free(struct pagevec *pvec)
1855{
1856 int i = pagevec_count(pvec);
1857
1858 while (--i >= 0)
1859 free_hot_cold_page(pvec->pages[i], pvec->cold);
1860}
1861
920c7a5d 1862void __free_pages(struct page *page, unsigned int order)
1da177e4 1863{
b5810039 1864 if (put_page_testzero(page)) {
1da177e4
LT
1865 if (order == 0)
1866 free_hot_page(page);
1867 else
1868 __free_pages_ok(page, order);
1869 }
1870}
1871
1872EXPORT_SYMBOL(__free_pages);
1873
920c7a5d 1874void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1875{
1876 if (addr != 0) {
725d704e 1877 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1878 __free_pages(virt_to_page((void *)addr), order);
1879 }
1880}
1881
1882EXPORT_SYMBOL(free_pages);
1883
2be0ffe2
TT
1884/**
1885 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1886 * @size: the number of bytes to allocate
1887 * @gfp_mask: GFP flags for the allocation
1888 *
1889 * This function is similar to alloc_pages(), except that it allocates the
1890 * minimum number of pages to satisfy the request. alloc_pages() can only
1891 * allocate memory in power-of-two pages.
1892 *
1893 * This function is also limited by MAX_ORDER.
1894 *
1895 * Memory allocated by this function must be released by free_pages_exact().
1896 */
1897void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1898{
1899 unsigned int order = get_order(size);
1900 unsigned long addr;
1901
1902 addr = __get_free_pages(gfp_mask, order);
1903 if (addr) {
1904 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1905 unsigned long used = addr + PAGE_ALIGN(size);
1906
1907 split_page(virt_to_page(addr), order);
1908 while (used < alloc_end) {
1909 free_page(used);
1910 used += PAGE_SIZE;
1911 }
1912 }
1913
1914 return (void *)addr;
1915}
1916EXPORT_SYMBOL(alloc_pages_exact);
1917
1918/**
1919 * free_pages_exact - release memory allocated via alloc_pages_exact()
1920 * @virt: the value returned by alloc_pages_exact.
1921 * @size: size of allocation, same value as passed to alloc_pages_exact().
1922 *
1923 * Release the memory allocated by a previous call to alloc_pages_exact.
1924 */
1925void free_pages_exact(void *virt, size_t size)
1926{
1927 unsigned long addr = (unsigned long)virt;
1928 unsigned long end = addr + PAGE_ALIGN(size);
1929
1930 while (addr < end) {
1931 free_page(addr);
1932 addr += PAGE_SIZE;
1933 }
1934}
1935EXPORT_SYMBOL(free_pages_exact);
1936
1da177e4
LT
1937static unsigned int nr_free_zone_pages(int offset)
1938{
dd1a239f 1939 struct zoneref *z;
54a6eb5c
MG
1940 struct zone *zone;
1941
e310fd43 1942 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1943 unsigned int sum = 0;
1944
0e88460d 1945 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1946
54a6eb5c 1947 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43
MB
1948 unsigned long size = zone->present_pages;
1949 unsigned long high = zone->pages_high;
1950 if (size > high)
1951 sum += size - high;
1da177e4
LT
1952 }
1953
1954 return sum;
1955}
1956
1957/*
1958 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1959 */
1960unsigned int nr_free_buffer_pages(void)
1961{
af4ca457 1962 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1963}
c2f1a551 1964EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1965
1966/*
1967 * Amount of free RAM allocatable within all zones
1968 */
1969unsigned int nr_free_pagecache_pages(void)
1970{
2a1e274a 1971 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1972}
08e0f6a9
CL
1973
1974static inline void show_node(struct zone *zone)
1da177e4 1975{
08e0f6a9 1976 if (NUMA_BUILD)
25ba77c1 1977 printk("Node %d ", zone_to_nid(zone));
1da177e4 1978}
1da177e4 1979
1da177e4
LT
1980void si_meminfo(struct sysinfo *val)
1981{
1982 val->totalram = totalram_pages;
1983 val->sharedram = 0;
d23ad423 1984 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1985 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1986 val->totalhigh = totalhigh_pages;
1987 val->freehigh = nr_free_highpages();
1da177e4
LT
1988 val->mem_unit = PAGE_SIZE;
1989}
1990
1991EXPORT_SYMBOL(si_meminfo);
1992
1993#ifdef CONFIG_NUMA
1994void si_meminfo_node(struct sysinfo *val, int nid)
1995{
1996 pg_data_t *pgdat = NODE_DATA(nid);
1997
1998 val->totalram = pgdat->node_present_pages;
d23ad423 1999 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2000#ifdef CONFIG_HIGHMEM
1da177e4 2001 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2002 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2003 NR_FREE_PAGES);
98d2b0eb
CL
2004#else
2005 val->totalhigh = 0;
2006 val->freehigh = 0;
2007#endif
1da177e4
LT
2008 val->mem_unit = PAGE_SIZE;
2009}
2010#endif
2011
2012#define K(x) ((x) << (PAGE_SHIFT-10))
2013
2014/*
2015 * Show free area list (used inside shift_scroll-lock stuff)
2016 * We also calculate the percentage fragmentation. We do this by counting the
2017 * memory on each free list with the exception of the first item on the list.
2018 */
2019void show_free_areas(void)
2020{
c7241913 2021 int cpu;
1da177e4
LT
2022 struct zone *zone;
2023
ee99c71c 2024 for_each_populated_zone(zone) {
c7241913
JS
2025 show_node(zone);
2026 printk("%s per-cpu:\n", zone->name);
1da177e4 2027
6b482c67 2028 for_each_online_cpu(cpu) {
1da177e4
LT
2029 struct per_cpu_pageset *pageset;
2030
e7c8d5c9 2031 pageset = zone_pcp(zone, cpu);
1da177e4 2032
3dfa5721
CL
2033 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2034 cpu, pageset->pcp.high,
2035 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2036 }
2037 }
2038
7b854121
LS
2039 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2040 " inactive_file:%lu"
2041//TODO: check/adjust line lengths
2042#ifdef CONFIG_UNEVICTABLE_LRU
2043 " unevictable:%lu"
2044#endif
2045 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 2046 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
2047 global_page_state(NR_ACTIVE_ANON),
2048 global_page_state(NR_ACTIVE_FILE),
2049 global_page_state(NR_INACTIVE_ANON),
2050 global_page_state(NR_INACTIVE_FILE),
7b854121
LS
2051#ifdef CONFIG_UNEVICTABLE_LRU
2052 global_page_state(NR_UNEVICTABLE),
2053#endif
b1e7a8fd 2054 global_page_state(NR_FILE_DIRTY),
ce866b34 2055 global_page_state(NR_WRITEBACK),
fd39fc85 2056 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2057 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
2058 global_page_state(NR_SLAB_RECLAIMABLE) +
2059 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2060 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
2061 global_page_state(NR_PAGETABLE),
2062 global_page_state(NR_BOUNCE));
1da177e4 2063
ee99c71c 2064 for_each_populated_zone(zone) {
1da177e4
LT
2065 int i;
2066
2067 show_node(zone);
2068 printk("%s"
2069 " free:%lukB"
2070 " min:%lukB"
2071 " low:%lukB"
2072 " high:%lukB"
4f98a2fe
RR
2073 " active_anon:%lukB"
2074 " inactive_anon:%lukB"
2075 " active_file:%lukB"
2076 " inactive_file:%lukB"
7b854121
LS
2077#ifdef CONFIG_UNEVICTABLE_LRU
2078 " unevictable:%lukB"
2079#endif
1da177e4
LT
2080 " present:%lukB"
2081 " pages_scanned:%lu"
2082 " all_unreclaimable? %s"
2083 "\n",
2084 zone->name,
d23ad423 2085 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
2086 K(zone->pages_min),
2087 K(zone->pages_low),
2088 K(zone->pages_high),
4f98a2fe
RR
2089 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2090 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2091 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2092 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121
LS
2093#ifdef CONFIG_UNEVICTABLE_LRU
2094 K(zone_page_state(zone, NR_UNEVICTABLE)),
2095#endif
1da177e4
LT
2096 K(zone->present_pages),
2097 zone->pages_scanned,
e815af95 2098 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2099 );
2100 printk("lowmem_reserve[]:");
2101 for (i = 0; i < MAX_NR_ZONES; i++)
2102 printk(" %lu", zone->lowmem_reserve[i]);
2103 printk("\n");
2104 }
2105
ee99c71c 2106 for_each_populated_zone(zone) {
8f9de51a 2107 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2108
2109 show_node(zone);
2110 printk("%s: ", zone->name);
1da177e4
LT
2111
2112 spin_lock_irqsave(&zone->lock, flags);
2113 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2114 nr[order] = zone->free_area[order].nr_free;
2115 total += nr[order] << order;
1da177e4
LT
2116 }
2117 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2118 for (order = 0; order < MAX_ORDER; order++)
2119 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2120 printk("= %lukB\n", K(total));
2121 }
2122
e6f3602d
LW
2123 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2124
1da177e4
LT
2125 show_swap_cache_info();
2126}
2127
19770b32
MG
2128static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2129{
2130 zoneref->zone = zone;
2131 zoneref->zone_idx = zone_idx(zone);
2132}
2133
1da177e4
LT
2134/*
2135 * Builds allocation fallback zone lists.
1a93205b
CL
2136 *
2137 * Add all populated zones of a node to the zonelist.
1da177e4 2138 */
f0c0b2b8
KH
2139static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2140 int nr_zones, enum zone_type zone_type)
1da177e4 2141{
1a93205b
CL
2142 struct zone *zone;
2143
98d2b0eb 2144 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2145 zone_type++;
02a68a5e
CL
2146
2147 do {
2f6726e5 2148 zone_type--;
070f8032 2149 zone = pgdat->node_zones + zone_type;
1a93205b 2150 if (populated_zone(zone)) {
dd1a239f
MG
2151 zoneref_set_zone(zone,
2152 &zonelist->_zonerefs[nr_zones++]);
070f8032 2153 check_highest_zone(zone_type);
1da177e4 2154 }
02a68a5e 2155
2f6726e5 2156 } while (zone_type);
070f8032 2157 return nr_zones;
1da177e4
LT
2158}
2159
f0c0b2b8
KH
2160
2161/*
2162 * zonelist_order:
2163 * 0 = automatic detection of better ordering.
2164 * 1 = order by ([node] distance, -zonetype)
2165 * 2 = order by (-zonetype, [node] distance)
2166 *
2167 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2168 * the same zonelist. So only NUMA can configure this param.
2169 */
2170#define ZONELIST_ORDER_DEFAULT 0
2171#define ZONELIST_ORDER_NODE 1
2172#define ZONELIST_ORDER_ZONE 2
2173
2174/* zonelist order in the kernel.
2175 * set_zonelist_order() will set this to NODE or ZONE.
2176 */
2177static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2178static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2179
2180
1da177e4 2181#ifdef CONFIG_NUMA
f0c0b2b8
KH
2182/* The value user specified ....changed by config */
2183static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2184/* string for sysctl */
2185#define NUMA_ZONELIST_ORDER_LEN 16
2186char numa_zonelist_order[16] = "default";
2187
2188/*
2189 * interface for configure zonelist ordering.
2190 * command line option "numa_zonelist_order"
2191 * = "[dD]efault - default, automatic configuration.
2192 * = "[nN]ode - order by node locality, then by zone within node
2193 * = "[zZ]one - order by zone, then by locality within zone
2194 */
2195
2196static int __parse_numa_zonelist_order(char *s)
2197{
2198 if (*s == 'd' || *s == 'D') {
2199 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2200 } else if (*s == 'n' || *s == 'N') {
2201 user_zonelist_order = ZONELIST_ORDER_NODE;
2202 } else if (*s == 'z' || *s == 'Z') {
2203 user_zonelist_order = ZONELIST_ORDER_ZONE;
2204 } else {
2205 printk(KERN_WARNING
2206 "Ignoring invalid numa_zonelist_order value: "
2207 "%s\n", s);
2208 return -EINVAL;
2209 }
2210 return 0;
2211}
2212
2213static __init int setup_numa_zonelist_order(char *s)
2214{
2215 if (s)
2216 return __parse_numa_zonelist_order(s);
2217 return 0;
2218}
2219early_param("numa_zonelist_order", setup_numa_zonelist_order);
2220
2221/*
2222 * sysctl handler for numa_zonelist_order
2223 */
2224int numa_zonelist_order_handler(ctl_table *table, int write,
2225 struct file *file, void __user *buffer, size_t *length,
2226 loff_t *ppos)
2227{
2228 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2229 int ret;
2230
2231 if (write)
2232 strncpy(saved_string, (char*)table->data,
2233 NUMA_ZONELIST_ORDER_LEN);
2234 ret = proc_dostring(table, write, file, buffer, length, ppos);
2235 if (ret)
2236 return ret;
2237 if (write) {
2238 int oldval = user_zonelist_order;
2239 if (__parse_numa_zonelist_order((char*)table->data)) {
2240 /*
2241 * bogus value. restore saved string
2242 */
2243 strncpy((char*)table->data, saved_string,
2244 NUMA_ZONELIST_ORDER_LEN);
2245 user_zonelist_order = oldval;
2246 } else if (oldval != user_zonelist_order)
2247 build_all_zonelists();
2248 }
2249 return 0;
2250}
2251
2252
1da177e4 2253#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2254static int node_load[MAX_NUMNODES];
2255
1da177e4 2256/**
4dc3b16b 2257 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2258 * @node: node whose fallback list we're appending
2259 * @used_node_mask: nodemask_t of already used nodes
2260 *
2261 * We use a number of factors to determine which is the next node that should
2262 * appear on a given node's fallback list. The node should not have appeared
2263 * already in @node's fallback list, and it should be the next closest node
2264 * according to the distance array (which contains arbitrary distance values
2265 * from each node to each node in the system), and should also prefer nodes
2266 * with no CPUs, since presumably they'll have very little allocation pressure
2267 * on them otherwise.
2268 * It returns -1 if no node is found.
2269 */
f0c0b2b8 2270static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2271{
4cf808eb 2272 int n, val;
1da177e4
LT
2273 int min_val = INT_MAX;
2274 int best_node = -1;
a70f7302 2275 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2276
4cf808eb
LT
2277 /* Use the local node if we haven't already */
2278 if (!node_isset(node, *used_node_mask)) {
2279 node_set(node, *used_node_mask);
2280 return node;
2281 }
1da177e4 2282
37b07e41 2283 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2284
2285 /* Don't want a node to appear more than once */
2286 if (node_isset(n, *used_node_mask))
2287 continue;
2288
1da177e4
LT
2289 /* Use the distance array to find the distance */
2290 val = node_distance(node, n);
2291
4cf808eb
LT
2292 /* Penalize nodes under us ("prefer the next node") */
2293 val += (n < node);
2294
1da177e4 2295 /* Give preference to headless and unused nodes */
a70f7302
RR
2296 tmp = cpumask_of_node(n);
2297 if (!cpumask_empty(tmp))
1da177e4
LT
2298 val += PENALTY_FOR_NODE_WITH_CPUS;
2299
2300 /* Slight preference for less loaded node */
2301 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2302 val += node_load[n];
2303
2304 if (val < min_val) {
2305 min_val = val;
2306 best_node = n;
2307 }
2308 }
2309
2310 if (best_node >= 0)
2311 node_set(best_node, *used_node_mask);
2312
2313 return best_node;
2314}
2315
f0c0b2b8
KH
2316
2317/*
2318 * Build zonelists ordered by node and zones within node.
2319 * This results in maximum locality--normal zone overflows into local
2320 * DMA zone, if any--but risks exhausting DMA zone.
2321 */
2322static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2323{
f0c0b2b8 2324 int j;
1da177e4 2325 struct zonelist *zonelist;
f0c0b2b8 2326
54a6eb5c 2327 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2328 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2329 ;
2330 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2331 MAX_NR_ZONES - 1);
dd1a239f
MG
2332 zonelist->_zonerefs[j].zone = NULL;
2333 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2334}
2335
523b9458
CL
2336/*
2337 * Build gfp_thisnode zonelists
2338 */
2339static void build_thisnode_zonelists(pg_data_t *pgdat)
2340{
523b9458
CL
2341 int j;
2342 struct zonelist *zonelist;
2343
54a6eb5c
MG
2344 zonelist = &pgdat->node_zonelists[1];
2345 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2346 zonelist->_zonerefs[j].zone = NULL;
2347 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2348}
2349
f0c0b2b8
KH
2350/*
2351 * Build zonelists ordered by zone and nodes within zones.
2352 * This results in conserving DMA zone[s] until all Normal memory is
2353 * exhausted, but results in overflowing to remote node while memory
2354 * may still exist in local DMA zone.
2355 */
2356static int node_order[MAX_NUMNODES];
2357
2358static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2359{
f0c0b2b8
KH
2360 int pos, j, node;
2361 int zone_type; /* needs to be signed */
2362 struct zone *z;
2363 struct zonelist *zonelist;
2364
54a6eb5c
MG
2365 zonelist = &pgdat->node_zonelists[0];
2366 pos = 0;
2367 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2368 for (j = 0; j < nr_nodes; j++) {
2369 node = node_order[j];
2370 z = &NODE_DATA(node)->node_zones[zone_type];
2371 if (populated_zone(z)) {
dd1a239f
MG
2372 zoneref_set_zone(z,
2373 &zonelist->_zonerefs[pos++]);
54a6eb5c 2374 check_highest_zone(zone_type);
f0c0b2b8
KH
2375 }
2376 }
f0c0b2b8 2377 }
dd1a239f
MG
2378 zonelist->_zonerefs[pos].zone = NULL;
2379 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2380}
2381
2382static int default_zonelist_order(void)
2383{
2384 int nid, zone_type;
2385 unsigned long low_kmem_size,total_size;
2386 struct zone *z;
2387 int average_size;
2388 /*
2389 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2390 * If they are really small and used heavily, the system can fall
2391 * into OOM very easily.
2392 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2393 */
2394 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2395 low_kmem_size = 0;
2396 total_size = 0;
2397 for_each_online_node(nid) {
2398 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2399 z = &NODE_DATA(nid)->node_zones[zone_type];
2400 if (populated_zone(z)) {
2401 if (zone_type < ZONE_NORMAL)
2402 low_kmem_size += z->present_pages;
2403 total_size += z->present_pages;
2404 }
2405 }
2406 }
2407 if (!low_kmem_size || /* there are no DMA area. */
2408 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2409 return ZONELIST_ORDER_NODE;
2410 /*
2411 * look into each node's config.
2412 * If there is a node whose DMA/DMA32 memory is very big area on
2413 * local memory, NODE_ORDER may be suitable.
2414 */
37b07e41
LS
2415 average_size = total_size /
2416 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2417 for_each_online_node(nid) {
2418 low_kmem_size = 0;
2419 total_size = 0;
2420 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2421 z = &NODE_DATA(nid)->node_zones[zone_type];
2422 if (populated_zone(z)) {
2423 if (zone_type < ZONE_NORMAL)
2424 low_kmem_size += z->present_pages;
2425 total_size += z->present_pages;
2426 }
2427 }
2428 if (low_kmem_size &&
2429 total_size > average_size && /* ignore small node */
2430 low_kmem_size > total_size * 70/100)
2431 return ZONELIST_ORDER_NODE;
2432 }
2433 return ZONELIST_ORDER_ZONE;
2434}
2435
2436static void set_zonelist_order(void)
2437{
2438 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2439 current_zonelist_order = default_zonelist_order();
2440 else
2441 current_zonelist_order = user_zonelist_order;
2442}
2443
2444static void build_zonelists(pg_data_t *pgdat)
2445{
2446 int j, node, load;
2447 enum zone_type i;
1da177e4 2448 nodemask_t used_mask;
f0c0b2b8
KH
2449 int local_node, prev_node;
2450 struct zonelist *zonelist;
2451 int order = current_zonelist_order;
1da177e4
LT
2452
2453 /* initialize zonelists */
523b9458 2454 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2455 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2456 zonelist->_zonerefs[0].zone = NULL;
2457 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2458 }
2459
2460 /* NUMA-aware ordering of nodes */
2461 local_node = pgdat->node_id;
2462 load = num_online_nodes();
2463 prev_node = local_node;
2464 nodes_clear(used_mask);
f0c0b2b8
KH
2465
2466 memset(node_load, 0, sizeof(node_load));
2467 memset(node_order, 0, sizeof(node_order));
2468 j = 0;
2469
1da177e4 2470 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2471 int distance = node_distance(local_node, node);
2472
2473 /*
2474 * If another node is sufficiently far away then it is better
2475 * to reclaim pages in a zone before going off node.
2476 */
2477 if (distance > RECLAIM_DISTANCE)
2478 zone_reclaim_mode = 1;
2479
1da177e4
LT
2480 /*
2481 * We don't want to pressure a particular node.
2482 * So adding penalty to the first node in same
2483 * distance group to make it round-robin.
2484 */
9eeff239 2485 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2486 node_load[node] = load;
2487
1da177e4
LT
2488 prev_node = node;
2489 load--;
f0c0b2b8
KH
2490 if (order == ZONELIST_ORDER_NODE)
2491 build_zonelists_in_node_order(pgdat, node);
2492 else
2493 node_order[j++] = node; /* remember order */
2494 }
1da177e4 2495
f0c0b2b8
KH
2496 if (order == ZONELIST_ORDER_ZONE) {
2497 /* calculate node order -- i.e., DMA last! */
2498 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2499 }
523b9458
CL
2500
2501 build_thisnode_zonelists(pgdat);
1da177e4
LT
2502}
2503
9276b1bc 2504/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2505static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2506{
54a6eb5c
MG
2507 struct zonelist *zonelist;
2508 struct zonelist_cache *zlc;
dd1a239f 2509 struct zoneref *z;
9276b1bc 2510
54a6eb5c
MG
2511 zonelist = &pgdat->node_zonelists[0];
2512 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2513 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2514 for (z = zonelist->_zonerefs; z->zone; z++)
2515 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2516}
2517
f0c0b2b8 2518
1da177e4
LT
2519#else /* CONFIG_NUMA */
2520
f0c0b2b8
KH
2521static void set_zonelist_order(void)
2522{
2523 current_zonelist_order = ZONELIST_ORDER_ZONE;
2524}
2525
2526static void build_zonelists(pg_data_t *pgdat)
1da177e4 2527{
19655d34 2528 int node, local_node;
54a6eb5c
MG
2529 enum zone_type j;
2530 struct zonelist *zonelist;
1da177e4
LT
2531
2532 local_node = pgdat->node_id;
1da177e4 2533
54a6eb5c
MG
2534 zonelist = &pgdat->node_zonelists[0];
2535 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2536
54a6eb5c
MG
2537 /*
2538 * Now we build the zonelist so that it contains the zones
2539 * of all the other nodes.
2540 * We don't want to pressure a particular node, so when
2541 * building the zones for node N, we make sure that the
2542 * zones coming right after the local ones are those from
2543 * node N+1 (modulo N)
2544 */
2545 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2546 if (!node_online(node))
2547 continue;
2548 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2549 MAX_NR_ZONES - 1);
1da177e4 2550 }
54a6eb5c
MG
2551 for (node = 0; node < local_node; node++) {
2552 if (!node_online(node))
2553 continue;
2554 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2555 MAX_NR_ZONES - 1);
2556 }
2557
dd1a239f
MG
2558 zonelist->_zonerefs[j].zone = NULL;
2559 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2560}
2561
9276b1bc 2562/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2563static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2564{
54a6eb5c 2565 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2566}
2567
1da177e4
LT
2568#endif /* CONFIG_NUMA */
2569
9b1a4d38 2570/* return values int ....just for stop_machine() */
f0c0b2b8 2571static int __build_all_zonelists(void *dummy)
1da177e4 2572{
6811378e 2573 int nid;
9276b1bc
PJ
2574
2575 for_each_online_node(nid) {
7ea1530a
CL
2576 pg_data_t *pgdat = NODE_DATA(nid);
2577
2578 build_zonelists(pgdat);
2579 build_zonelist_cache(pgdat);
9276b1bc 2580 }
6811378e
YG
2581 return 0;
2582}
2583
f0c0b2b8 2584void build_all_zonelists(void)
6811378e 2585{
f0c0b2b8
KH
2586 set_zonelist_order();
2587
6811378e 2588 if (system_state == SYSTEM_BOOTING) {
423b41d7 2589 __build_all_zonelists(NULL);
68ad8df4 2590 mminit_verify_zonelist();
6811378e
YG
2591 cpuset_init_current_mems_allowed();
2592 } else {
183ff22b 2593 /* we have to stop all cpus to guarantee there is no user
6811378e 2594 of zonelist */
9b1a4d38 2595 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2596 /* cpuset refresh routine should be here */
2597 }
bd1e22b8 2598 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2599 /*
2600 * Disable grouping by mobility if the number of pages in the
2601 * system is too low to allow the mechanism to work. It would be
2602 * more accurate, but expensive to check per-zone. This check is
2603 * made on memory-hotadd so a system can start with mobility
2604 * disabled and enable it later
2605 */
d9c23400 2606 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2607 page_group_by_mobility_disabled = 1;
2608 else
2609 page_group_by_mobility_disabled = 0;
2610
2611 printk("Built %i zonelists in %s order, mobility grouping %s. "
2612 "Total pages: %ld\n",
f0c0b2b8
KH
2613 num_online_nodes(),
2614 zonelist_order_name[current_zonelist_order],
9ef9acb0 2615 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2616 vm_total_pages);
2617#ifdef CONFIG_NUMA
2618 printk("Policy zone: %s\n", zone_names[policy_zone]);
2619#endif
1da177e4
LT
2620}
2621
2622/*
2623 * Helper functions to size the waitqueue hash table.
2624 * Essentially these want to choose hash table sizes sufficiently
2625 * large so that collisions trying to wait on pages are rare.
2626 * But in fact, the number of active page waitqueues on typical
2627 * systems is ridiculously low, less than 200. So this is even
2628 * conservative, even though it seems large.
2629 *
2630 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2631 * waitqueues, i.e. the size of the waitq table given the number of pages.
2632 */
2633#define PAGES_PER_WAITQUEUE 256
2634
cca448fe 2635#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2636static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2637{
2638 unsigned long size = 1;
2639
2640 pages /= PAGES_PER_WAITQUEUE;
2641
2642 while (size < pages)
2643 size <<= 1;
2644
2645 /*
2646 * Once we have dozens or even hundreds of threads sleeping
2647 * on IO we've got bigger problems than wait queue collision.
2648 * Limit the size of the wait table to a reasonable size.
2649 */
2650 size = min(size, 4096UL);
2651
2652 return max(size, 4UL);
2653}
cca448fe
YG
2654#else
2655/*
2656 * A zone's size might be changed by hot-add, so it is not possible to determine
2657 * a suitable size for its wait_table. So we use the maximum size now.
2658 *
2659 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2660 *
2661 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2662 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2663 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2664 *
2665 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2666 * or more by the traditional way. (See above). It equals:
2667 *
2668 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2669 * ia64(16K page size) : = ( 8G + 4M)byte.
2670 * powerpc (64K page size) : = (32G +16M)byte.
2671 */
2672static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2673{
2674 return 4096UL;
2675}
2676#endif
1da177e4
LT
2677
2678/*
2679 * This is an integer logarithm so that shifts can be used later
2680 * to extract the more random high bits from the multiplicative
2681 * hash function before the remainder is taken.
2682 */
2683static inline unsigned long wait_table_bits(unsigned long size)
2684{
2685 return ffz(~size);
2686}
2687
2688#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2689
56fd56b8 2690/*
d9c23400 2691 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2692 * of blocks reserved is based on zone->pages_min. The memory within the
2693 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2694 * higher will lead to a bigger reserve which will get freed as contiguous
2695 * blocks as reclaim kicks in
2696 */
2697static void setup_zone_migrate_reserve(struct zone *zone)
2698{
2699 unsigned long start_pfn, pfn, end_pfn;
2700 struct page *page;
2701 unsigned long reserve, block_migratetype;
2702
2703 /* Get the start pfn, end pfn and the number of blocks to reserve */
2704 start_pfn = zone->zone_start_pfn;
2705 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2706 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2707 pageblock_order;
56fd56b8 2708
d9c23400 2709 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2710 if (!pfn_valid(pfn))
2711 continue;
2712 page = pfn_to_page(pfn);
2713
344c790e
AL
2714 /* Watch out for overlapping nodes */
2715 if (page_to_nid(page) != zone_to_nid(zone))
2716 continue;
2717
56fd56b8
MG
2718 /* Blocks with reserved pages will never free, skip them. */
2719 if (PageReserved(page))
2720 continue;
2721
2722 block_migratetype = get_pageblock_migratetype(page);
2723
2724 /* If this block is reserved, account for it */
2725 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2726 reserve--;
2727 continue;
2728 }
2729
2730 /* Suitable for reserving if this block is movable */
2731 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2732 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2733 move_freepages_block(zone, page, MIGRATE_RESERVE);
2734 reserve--;
2735 continue;
2736 }
2737
2738 /*
2739 * If the reserve is met and this is a previous reserved block,
2740 * take it back
2741 */
2742 if (block_migratetype == MIGRATE_RESERVE) {
2743 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2744 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2745 }
2746 }
2747}
ac0e5b7a 2748
1da177e4
LT
2749/*
2750 * Initially all pages are reserved - free ones are freed
2751 * up by free_all_bootmem() once the early boot process is
2752 * done. Non-atomic initialization, single-pass.
2753 */
c09b4240 2754void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2755 unsigned long start_pfn, enum memmap_context context)
1da177e4 2756{
1da177e4 2757 struct page *page;
29751f69
AW
2758 unsigned long end_pfn = start_pfn + size;
2759 unsigned long pfn;
86051ca5 2760 struct zone *z;
1da177e4 2761
22b31eec
HD
2762 if (highest_memmap_pfn < end_pfn - 1)
2763 highest_memmap_pfn = end_pfn - 1;
2764
86051ca5 2765 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2766 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2767 /*
2768 * There can be holes in boot-time mem_map[]s
2769 * handed to this function. They do not
2770 * exist on hotplugged memory.
2771 */
2772 if (context == MEMMAP_EARLY) {
2773 if (!early_pfn_valid(pfn))
2774 continue;
2775 if (!early_pfn_in_nid(pfn, nid))
2776 continue;
2777 }
d41dee36
AW
2778 page = pfn_to_page(pfn);
2779 set_page_links(page, zone, nid, pfn);
708614e6 2780 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2781 init_page_count(page);
1da177e4
LT
2782 reset_page_mapcount(page);
2783 SetPageReserved(page);
b2a0ac88
MG
2784 /*
2785 * Mark the block movable so that blocks are reserved for
2786 * movable at startup. This will force kernel allocations
2787 * to reserve their blocks rather than leaking throughout
2788 * the address space during boot when many long-lived
56fd56b8
MG
2789 * kernel allocations are made. Later some blocks near
2790 * the start are marked MIGRATE_RESERVE by
2791 * setup_zone_migrate_reserve()
86051ca5
KH
2792 *
2793 * bitmap is created for zone's valid pfn range. but memmap
2794 * can be created for invalid pages (for alignment)
2795 * check here not to call set_pageblock_migratetype() against
2796 * pfn out of zone.
b2a0ac88 2797 */
86051ca5
KH
2798 if ((z->zone_start_pfn <= pfn)
2799 && (pfn < z->zone_start_pfn + z->spanned_pages)
2800 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2801 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2802
1da177e4
LT
2803 INIT_LIST_HEAD(&page->lru);
2804#ifdef WANT_PAGE_VIRTUAL
2805 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2806 if (!is_highmem_idx(zone))
3212c6be 2807 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2808#endif
1da177e4
LT
2809 }
2810}
2811
1e548deb 2812static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2813{
b2a0ac88
MG
2814 int order, t;
2815 for_each_migratetype_order(order, t) {
2816 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2817 zone->free_area[order].nr_free = 0;
2818 }
2819}
2820
2821#ifndef __HAVE_ARCH_MEMMAP_INIT
2822#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2823 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2824#endif
2825
1d6f4e60 2826static int zone_batchsize(struct zone *zone)
e7c8d5c9 2827{
3a6be87f 2828#ifdef CONFIG_MMU
e7c8d5c9
CL
2829 int batch;
2830
2831 /*
2832 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2833 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2834 *
2835 * OK, so we don't know how big the cache is. So guess.
2836 */
2837 batch = zone->present_pages / 1024;
ba56e91c
SR
2838 if (batch * PAGE_SIZE > 512 * 1024)
2839 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2840 batch /= 4; /* We effectively *= 4 below */
2841 if (batch < 1)
2842 batch = 1;
2843
2844 /*
0ceaacc9
NP
2845 * Clamp the batch to a 2^n - 1 value. Having a power
2846 * of 2 value was found to be more likely to have
2847 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2848 *
0ceaacc9
NP
2849 * For example if 2 tasks are alternately allocating
2850 * batches of pages, one task can end up with a lot
2851 * of pages of one half of the possible page colors
2852 * and the other with pages of the other colors.
e7c8d5c9 2853 */
9155203a 2854 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2855
e7c8d5c9 2856 return batch;
3a6be87f
DH
2857
2858#else
2859 /* The deferral and batching of frees should be suppressed under NOMMU
2860 * conditions.
2861 *
2862 * The problem is that NOMMU needs to be able to allocate large chunks
2863 * of contiguous memory as there's no hardware page translation to
2864 * assemble apparent contiguous memory from discontiguous pages.
2865 *
2866 * Queueing large contiguous runs of pages for batching, however,
2867 * causes the pages to actually be freed in smaller chunks. As there
2868 * can be a significant delay between the individual batches being
2869 * recycled, this leads to the once large chunks of space being
2870 * fragmented and becoming unavailable for high-order allocations.
2871 */
2872 return 0;
2873#endif
e7c8d5c9
CL
2874}
2875
b69a7288 2876static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2877{
2878 struct per_cpu_pages *pcp;
2879
1c6fe946
MD
2880 memset(p, 0, sizeof(*p));
2881
3dfa5721 2882 pcp = &p->pcp;
2caaad41 2883 pcp->count = 0;
2caaad41
CL
2884 pcp->high = 6 * batch;
2885 pcp->batch = max(1UL, 1 * batch);
2886 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2887}
2888
8ad4b1fb
RS
2889/*
2890 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2891 * to the value high for the pageset p.
2892 */
2893
2894static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2895 unsigned long high)
2896{
2897 struct per_cpu_pages *pcp;
2898
3dfa5721 2899 pcp = &p->pcp;
8ad4b1fb
RS
2900 pcp->high = high;
2901 pcp->batch = max(1UL, high/4);
2902 if ((high/4) > (PAGE_SHIFT * 8))
2903 pcp->batch = PAGE_SHIFT * 8;
2904}
2905
2906
e7c8d5c9
CL
2907#ifdef CONFIG_NUMA
2908/*
2caaad41
CL
2909 * Boot pageset table. One per cpu which is going to be used for all
2910 * zones and all nodes. The parameters will be set in such a way
2911 * that an item put on a list will immediately be handed over to
2912 * the buddy list. This is safe since pageset manipulation is done
2913 * with interrupts disabled.
2914 *
2915 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2916 *
2917 * The boot_pagesets must be kept even after bootup is complete for
2918 * unused processors and/or zones. They do play a role for bootstrapping
2919 * hotplugged processors.
2920 *
2921 * zoneinfo_show() and maybe other functions do
2922 * not check if the processor is online before following the pageset pointer.
2923 * Other parts of the kernel may not check if the zone is available.
2caaad41 2924 */
88a2a4ac 2925static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2926
2927/*
2928 * Dynamically allocate memory for the
e7c8d5c9
CL
2929 * per cpu pageset array in struct zone.
2930 */
6292d9aa 2931static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2932{
2933 struct zone *zone, *dzone;
37c0708d
CL
2934 int node = cpu_to_node(cpu);
2935
2936 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 2937
ee99c71c 2938 for_each_populated_zone(zone) {
23316bc8 2939 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2940 GFP_KERNEL, node);
23316bc8 2941 if (!zone_pcp(zone, cpu))
e7c8d5c9 2942 goto bad;
e7c8d5c9 2943
23316bc8 2944 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2945
2946 if (percpu_pagelist_fraction)
2947 setup_pagelist_highmark(zone_pcp(zone, cpu),
2948 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2949 }
2950
2951 return 0;
2952bad:
2953 for_each_zone(dzone) {
64191688
AM
2954 if (!populated_zone(dzone))
2955 continue;
e7c8d5c9
CL
2956 if (dzone == zone)
2957 break;
23316bc8
NP
2958 kfree(zone_pcp(dzone, cpu));
2959 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2960 }
2961 return -ENOMEM;
2962}
2963
2964static inline void free_zone_pagesets(int cpu)
2965{
e7c8d5c9
CL
2966 struct zone *zone;
2967
2968 for_each_zone(zone) {
2969 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2970
f3ef9ead
DR
2971 /* Free per_cpu_pageset if it is slab allocated */
2972 if (pset != &boot_pageset[cpu])
2973 kfree(pset);
e7c8d5c9 2974 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2975 }
e7c8d5c9
CL
2976}
2977
9c7b216d 2978static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2979 unsigned long action,
2980 void *hcpu)
2981{
2982 int cpu = (long)hcpu;
2983 int ret = NOTIFY_OK;
2984
2985 switch (action) {
ce421c79 2986 case CPU_UP_PREPARE:
8bb78442 2987 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2988 if (process_zones(cpu))
2989 ret = NOTIFY_BAD;
2990 break;
2991 case CPU_UP_CANCELED:
8bb78442 2992 case CPU_UP_CANCELED_FROZEN:
ce421c79 2993 case CPU_DEAD:
8bb78442 2994 case CPU_DEAD_FROZEN:
ce421c79
AW
2995 free_zone_pagesets(cpu);
2996 break;
2997 default:
2998 break;
e7c8d5c9
CL
2999 }
3000 return ret;
3001}
3002
74b85f37 3003static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3004 { &pageset_cpuup_callback, NULL, 0 };
3005
78d9955b 3006void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3007{
3008 int err;
3009
3010 /* Initialize per_cpu_pageset for cpu 0.
3011 * A cpuup callback will do this for every cpu
3012 * as it comes online
3013 */
3014 err = process_zones(smp_processor_id());
3015 BUG_ON(err);
3016 register_cpu_notifier(&pageset_notifier);
3017}
3018
3019#endif
3020
577a32f6 3021static noinline __init_refok
cca448fe 3022int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3023{
3024 int i;
3025 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3026 size_t alloc_size;
ed8ece2e
DH
3027
3028 /*
3029 * The per-page waitqueue mechanism uses hashed waitqueues
3030 * per zone.
3031 */
02b694de
YG
3032 zone->wait_table_hash_nr_entries =
3033 wait_table_hash_nr_entries(zone_size_pages);
3034 zone->wait_table_bits =
3035 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3036 alloc_size = zone->wait_table_hash_nr_entries
3037 * sizeof(wait_queue_head_t);
3038
cd94b9db 3039 if (!slab_is_available()) {
cca448fe
YG
3040 zone->wait_table = (wait_queue_head_t *)
3041 alloc_bootmem_node(pgdat, alloc_size);
3042 } else {
3043 /*
3044 * This case means that a zone whose size was 0 gets new memory
3045 * via memory hot-add.
3046 * But it may be the case that a new node was hot-added. In
3047 * this case vmalloc() will not be able to use this new node's
3048 * memory - this wait_table must be initialized to use this new
3049 * node itself as well.
3050 * To use this new node's memory, further consideration will be
3051 * necessary.
3052 */
8691f3a7 3053 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3054 }
3055 if (!zone->wait_table)
3056 return -ENOMEM;
ed8ece2e 3057
02b694de 3058 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3059 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3060
3061 return 0;
ed8ece2e
DH
3062}
3063
c09b4240 3064static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3065{
3066 int cpu;
3067 unsigned long batch = zone_batchsize(zone);
3068
3069 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3070#ifdef CONFIG_NUMA
3071 /* Early boot. Slab allocator not functional yet */
23316bc8 3072 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3073 setup_pageset(&boot_pageset[cpu],0);
3074#else
3075 setup_pageset(zone_pcp(zone,cpu), batch);
3076#endif
3077 }
f5335c0f
AB
3078 if (zone->present_pages)
3079 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3080 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3081}
3082
718127cc
YG
3083__meminit int init_currently_empty_zone(struct zone *zone,
3084 unsigned long zone_start_pfn,
a2f3aa02
DH
3085 unsigned long size,
3086 enum memmap_context context)
ed8ece2e
DH
3087{
3088 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3089 int ret;
3090 ret = zone_wait_table_init(zone, size);
3091 if (ret)
3092 return ret;
ed8ece2e
DH
3093 pgdat->nr_zones = zone_idx(zone) + 1;
3094
ed8ece2e
DH
3095 zone->zone_start_pfn = zone_start_pfn;
3096
708614e6
MG
3097 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3098 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3099 pgdat->node_id,
3100 (unsigned long)zone_idx(zone),
3101 zone_start_pfn, (zone_start_pfn + size));
3102
1e548deb 3103 zone_init_free_lists(zone);
718127cc
YG
3104
3105 return 0;
ed8ece2e
DH
3106}
3107
c713216d
MG
3108#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3109/*
3110 * Basic iterator support. Return the first range of PFNs for a node
3111 * Note: nid == MAX_NUMNODES returns first region regardless of node
3112 */
a3142c8e 3113static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3114{
3115 int i;
3116
3117 for (i = 0; i < nr_nodemap_entries; i++)
3118 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3119 return i;
3120
3121 return -1;
3122}
3123
3124/*
3125 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3126 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3127 */
a3142c8e 3128static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3129{
3130 for (index = index + 1; index < nr_nodemap_entries; index++)
3131 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3132 return index;
3133
3134 return -1;
3135}
3136
3137#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3138/*
3139 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3140 * Architectures may implement their own version but if add_active_range()
3141 * was used and there are no special requirements, this is a convenient
3142 * alternative
3143 */
f2dbcfa7 3144int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3145{
3146 int i;
3147
3148 for (i = 0; i < nr_nodemap_entries; i++) {
3149 unsigned long start_pfn = early_node_map[i].start_pfn;
3150 unsigned long end_pfn = early_node_map[i].end_pfn;
3151
3152 if (start_pfn <= pfn && pfn < end_pfn)
3153 return early_node_map[i].nid;
3154 }
cc2559bc
KH
3155 /* This is a memory hole */
3156 return -1;
c713216d
MG
3157}
3158#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3159
f2dbcfa7
KH
3160int __meminit early_pfn_to_nid(unsigned long pfn)
3161{
cc2559bc
KH
3162 int nid;
3163
3164 nid = __early_pfn_to_nid(pfn);
3165 if (nid >= 0)
3166 return nid;
3167 /* just returns 0 */
3168 return 0;
f2dbcfa7
KH
3169}
3170
cc2559bc
KH
3171#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3172bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3173{
3174 int nid;
3175
3176 nid = __early_pfn_to_nid(pfn);
3177 if (nid >= 0 && nid != node)
3178 return false;
3179 return true;
3180}
3181#endif
f2dbcfa7 3182
c713216d
MG
3183/* Basic iterator support to walk early_node_map[] */
3184#define for_each_active_range_index_in_nid(i, nid) \
3185 for (i = first_active_region_index_in_nid(nid); i != -1; \
3186 i = next_active_region_index_in_nid(i, nid))
3187
3188/**
3189 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3190 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3191 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3192 *
3193 * If an architecture guarantees that all ranges registered with
3194 * add_active_ranges() contain no holes and may be freed, this
3195 * this function may be used instead of calling free_bootmem() manually.
3196 */
3197void __init free_bootmem_with_active_regions(int nid,
3198 unsigned long max_low_pfn)
3199{
3200 int i;
3201
3202 for_each_active_range_index_in_nid(i, nid) {
3203 unsigned long size_pages = 0;
3204 unsigned long end_pfn = early_node_map[i].end_pfn;
3205
3206 if (early_node_map[i].start_pfn >= max_low_pfn)
3207 continue;
3208
3209 if (end_pfn > max_low_pfn)
3210 end_pfn = max_low_pfn;
3211
3212 size_pages = end_pfn - early_node_map[i].start_pfn;
3213 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3214 PFN_PHYS(early_node_map[i].start_pfn),
3215 size_pages << PAGE_SHIFT);
3216 }
3217}
3218
b5bc6c0e
YL
3219void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3220{
3221 int i;
d52d53b8 3222 int ret;
b5bc6c0e 3223
d52d53b8
YL
3224 for_each_active_range_index_in_nid(i, nid) {
3225 ret = work_fn(early_node_map[i].start_pfn,
3226 early_node_map[i].end_pfn, data);
3227 if (ret)
3228 break;
3229 }
b5bc6c0e 3230}
c713216d
MG
3231/**
3232 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3233 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3234 *
3235 * If an architecture guarantees that all ranges registered with
3236 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3237 * function may be used instead of calling memory_present() manually.
c713216d
MG
3238 */
3239void __init sparse_memory_present_with_active_regions(int nid)
3240{
3241 int i;
3242
3243 for_each_active_range_index_in_nid(i, nid)
3244 memory_present(early_node_map[i].nid,
3245 early_node_map[i].start_pfn,
3246 early_node_map[i].end_pfn);
3247}
3248
3249/**
3250 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3251 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3252 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3253 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3254 *
3255 * It returns the start and end page frame of a node based on information
3256 * provided by an arch calling add_active_range(). If called for a node
3257 * with no available memory, a warning is printed and the start and end
88ca3b94 3258 * PFNs will be 0.
c713216d 3259 */
a3142c8e 3260void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3261 unsigned long *start_pfn, unsigned long *end_pfn)
3262{
3263 int i;
3264 *start_pfn = -1UL;
3265 *end_pfn = 0;
3266
3267 for_each_active_range_index_in_nid(i, nid) {
3268 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3269 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3270 }
3271
633c0666 3272 if (*start_pfn == -1UL)
c713216d 3273 *start_pfn = 0;
c713216d
MG
3274}
3275
2a1e274a
MG
3276/*
3277 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3278 * assumption is made that zones within a node are ordered in monotonic
3279 * increasing memory addresses so that the "highest" populated zone is used
3280 */
b69a7288 3281static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3282{
3283 int zone_index;
3284 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3285 if (zone_index == ZONE_MOVABLE)
3286 continue;
3287
3288 if (arch_zone_highest_possible_pfn[zone_index] >
3289 arch_zone_lowest_possible_pfn[zone_index])
3290 break;
3291 }
3292
3293 VM_BUG_ON(zone_index == -1);
3294 movable_zone = zone_index;
3295}
3296
3297/*
3298 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3299 * because it is sized independant of architecture. Unlike the other zones,
3300 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3301 * in each node depending on the size of each node and how evenly kernelcore
3302 * is distributed. This helper function adjusts the zone ranges
3303 * provided by the architecture for a given node by using the end of the
3304 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3305 * zones within a node are in order of monotonic increases memory addresses
3306 */
b69a7288 3307static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3308 unsigned long zone_type,
3309 unsigned long node_start_pfn,
3310 unsigned long node_end_pfn,
3311 unsigned long *zone_start_pfn,
3312 unsigned long *zone_end_pfn)
3313{
3314 /* Only adjust if ZONE_MOVABLE is on this node */
3315 if (zone_movable_pfn[nid]) {
3316 /* Size ZONE_MOVABLE */
3317 if (zone_type == ZONE_MOVABLE) {
3318 *zone_start_pfn = zone_movable_pfn[nid];
3319 *zone_end_pfn = min(node_end_pfn,
3320 arch_zone_highest_possible_pfn[movable_zone]);
3321
3322 /* Adjust for ZONE_MOVABLE starting within this range */
3323 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3324 *zone_end_pfn > zone_movable_pfn[nid]) {
3325 *zone_end_pfn = zone_movable_pfn[nid];
3326
3327 /* Check if this whole range is within ZONE_MOVABLE */
3328 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3329 *zone_start_pfn = *zone_end_pfn;
3330 }
3331}
3332
c713216d
MG
3333/*
3334 * Return the number of pages a zone spans in a node, including holes
3335 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3336 */
6ea6e688 3337static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3338 unsigned long zone_type,
3339 unsigned long *ignored)
3340{
3341 unsigned long node_start_pfn, node_end_pfn;
3342 unsigned long zone_start_pfn, zone_end_pfn;
3343
3344 /* Get the start and end of the node and zone */
3345 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3346 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3347 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3348 adjust_zone_range_for_zone_movable(nid, zone_type,
3349 node_start_pfn, node_end_pfn,
3350 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3351
3352 /* Check that this node has pages within the zone's required range */
3353 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3354 return 0;
3355
3356 /* Move the zone boundaries inside the node if necessary */
3357 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3358 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3359
3360 /* Return the spanned pages */
3361 return zone_end_pfn - zone_start_pfn;
3362}
3363
3364/*
3365 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3366 * then all holes in the requested range will be accounted for.
c713216d 3367 */
b69a7288 3368static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3369 unsigned long range_start_pfn,
3370 unsigned long range_end_pfn)
3371{
3372 int i = 0;
3373 unsigned long prev_end_pfn = 0, hole_pages = 0;
3374 unsigned long start_pfn;
3375
3376 /* Find the end_pfn of the first active range of pfns in the node */
3377 i = first_active_region_index_in_nid(nid);
3378 if (i == -1)
3379 return 0;
3380
b5445f95
MG
3381 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3382
9c7cd687
MG
3383 /* Account for ranges before physical memory on this node */
3384 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3385 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3386
3387 /* Find all holes for the zone within the node */
3388 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3389
3390 /* No need to continue if prev_end_pfn is outside the zone */
3391 if (prev_end_pfn >= range_end_pfn)
3392 break;
3393
3394 /* Make sure the end of the zone is not within the hole */
3395 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3396 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3397
3398 /* Update the hole size cound and move on */
3399 if (start_pfn > range_start_pfn) {
3400 BUG_ON(prev_end_pfn > start_pfn);
3401 hole_pages += start_pfn - prev_end_pfn;
3402 }
3403 prev_end_pfn = early_node_map[i].end_pfn;
3404 }
3405
9c7cd687
MG
3406 /* Account for ranges past physical memory on this node */
3407 if (range_end_pfn > prev_end_pfn)
0c6cb974 3408 hole_pages += range_end_pfn -
9c7cd687
MG
3409 max(range_start_pfn, prev_end_pfn);
3410
c713216d
MG
3411 return hole_pages;
3412}
3413
3414/**
3415 * absent_pages_in_range - Return number of page frames in holes within a range
3416 * @start_pfn: The start PFN to start searching for holes
3417 * @end_pfn: The end PFN to stop searching for holes
3418 *
88ca3b94 3419 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3420 */
3421unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3422 unsigned long end_pfn)
3423{
3424 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3425}
3426
3427/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3428static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3429 unsigned long zone_type,
3430 unsigned long *ignored)
3431{
9c7cd687
MG
3432 unsigned long node_start_pfn, node_end_pfn;
3433 unsigned long zone_start_pfn, zone_end_pfn;
3434
3435 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3436 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3437 node_start_pfn);
3438 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3439 node_end_pfn);
3440
2a1e274a
MG
3441 adjust_zone_range_for_zone_movable(nid, zone_type,
3442 node_start_pfn, node_end_pfn,
3443 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3444 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3445}
0e0b864e 3446
c713216d 3447#else
6ea6e688 3448static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3449 unsigned long zone_type,
3450 unsigned long *zones_size)
3451{
3452 return zones_size[zone_type];
3453}
3454
6ea6e688 3455static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3456 unsigned long zone_type,
3457 unsigned long *zholes_size)
3458{
3459 if (!zholes_size)
3460 return 0;
3461
3462 return zholes_size[zone_type];
3463}
0e0b864e 3464
c713216d
MG
3465#endif
3466
a3142c8e 3467static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3468 unsigned long *zones_size, unsigned long *zholes_size)
3469{
3470 unsigned long realtotalpages, totalpages = 0;
3471 enum zone_type i;
3472
3473 for (i = 0; i < MAX_NR_ZONES; i++)
3474 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3475 zones_size);
3476 pgdat->node_spanned_pages = totalpages;
3477
3478 realtotalpages = totalpages;
3479 for (i = 0; i < MAX_NR_ZONES; i++)
3480 realtotalpages -=
3481 zone_absent_pages_in_node(pgdat->node_id, i,
3482 zholes_size);
3483 pgdat->node_present_pages = realtotalpages;
3484 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3485 realtotalpages);
3486}
3487
835c134e
MG
3488#ifndef CONFIG_SPARSEMEM
3489/*
3490 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3491 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3492 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3493 * round what is now in bits to nearest long in bits, then return it in
3494 * bytes.
3495 */
3496static unsigned long __init usemap_size(unsigned long zonesize)
3497{
3498 unsigned long usemapsize;
3499
d9c23400
MG
3500 usemapsize = roundup(zonesize, pageblock_nr_pages);
3501 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3502 usemapsize *= NR_PAGEBLOCK_BITS;
3503 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3504
3505 return usemapsize / 8;
3506}
3507
3508static void __init setup_usemap(struct pglist_data *pgdat,
3509 struct zone *zone, unsigned long zonesize)
3510{
3511 unsigned long usemapsize = usemap_size(zonesize);
3512 zone->pageblock_flags = NULL;
58a01a45 3513 if (usemapsize)
835c134e 3514 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3515}
3516#else
3517static void inline setup_usemap(struct pglist_data *pgdat,
3518 struct zone *zone, unsigned long zonesize) {}
3519#endif /* CONFIG_SPARSEMEM */
3520
d9c23400 3521#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3522
3523/* Return a sensible default order for the pageblock size. */
3524static inline int pageblock_default_order(void)
3525{
3526 if (HPAGE_SHIFT > PAGE_SHIFT)
3527 return HUGETLB_PAGE_ORDER;
3528
3529 return MAX_ORDER-1;
3530}
3531
d9c23400
MG
3532/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3533static inline void __init set_pageblock_order(unsigned int order)
3534{
3535 /* Check that pageblock_nr_pages has not already been setup */
3536 if (pageblock_order)
3537 return;
3538
3539 /*
3540 * Assume the largest contiguous order of interest is a huge page.
3541 * This value may be variable depending on boot parameters on IA64
3542 */
3543 pageblock_order = order;
3544}
3545#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3546
ba72cb8c
MG
3547/*
3548 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3549 * and pageblock_default_order() are unused as pageblock_order is set
3550 * at compile-time. See include/linux/pageblock-flags.h for the values of
3551 * pageblock_order based on the kernel config
3552 */
3553static inline int pageblock_default_order(unsigned int order)
3554{
3555 return MAX_ORDER-1;
3556}
d9c23400
MG
3557#define set_pageblock_order(x) do {} while (0)
3558
3559#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3560
1da177e4
LT
3561/*
3562 * Set up the zone data structures:
3563 * - mark all pages reserved
3564 * - mark all memory queues empty
3565 * - clear the memory bitmaps
3566 */
b5a0e011 3567static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3568 unsigned long *zones_size, unsigned long *zholes_size)
3569{
2f1b6248 3570 enum zone_type j;
ed8ece2e 3571 int nid = pgdat->node_id;
1da177e4 3572 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3573 int ret;
1da177e4 3574
208d54e5 3575 pgdat_resize_init(pgdat);
1da177e4
LT
3576 pgdat->nr_zones = 0;
3577 init_waitqueue_head(&pgdat->kswapd_wait);
3578 pgdat->kswapd_max_order = 0;
52d4b9ac 3579 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3580
3581 for (j = 0; j < MAX_NR_ZONES; j++) {
3582 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3583 unsigned long size, realsize, memmap_pages;
b69408e8 3584 enum lru_list l;
1da177e4 3585
c713216d
MG
3586 size = zone_spanned_pages_in_node(nid, j, zones_size);
3587 realsize = size - zone_absent_pages_in_node(nid, j,
3588 zholes_size);
1da177e4 3589
0e0b864e
MG
3590 /*
3591 * Adjust realsize so that it accounts for how much memory
3592 * is used by this zone for memmap. This affects the watermark
3593 * and per-cpu initialisations
3594 */
f7232154
JW
3595 memmap_pages =
3596 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3597 if (realsize >= memmap_pages) {
3598 realsize -= memmap_pages;
5594c8c8
YL
3599 if (memmap_pages)
3600 printk(KERN_DEBUG
3601 " %s zone: %lu pages used for memmap\n",
3602 zone_names[j], memmap_pages);
0e0b864e
MG
3603 } else
3604 printk(KERN_WARNING
3605 " %s zone: %lu pages exceeds realsize %lu\n",
3606 zone_names[j], memmap_pages, realsize);
3607
6267276f
CL
3608 /* Account for reserved pages */
3609 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3610 realsize -= dma_reserve;
d903ef9f 3611 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3612 zone_names[0], dma_reserve);
0e0b864e
MG
3613 }
3614
98d2b0eb 3615 if (!is_highmem_idx(j))
1da177e4
LT
3616 nr_kernel_pages += realsize;
3617 nr_all_pages += realsize;
3618
3619 zone->spanned_pages = size;
3620 zone->present_pages = realsize;
9614634f 3621#ifdef CONFIG_NUMA
d5f541ed 3622 zone->node = nid;
8417bba4 3623 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3624 / 100;
0ff38490 3625 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3626#endif
1da177e4
LT
3627 zone->name = zone_names[j];
3628 spin_lock_init(&zone->lock);
3629 spin_lock_init(&zone->lru_lock);
bdc8cb98 3630 zone_seqlock_init(zone);
1da177e4 3631 zone->zone_pgdat = pgdat;
1da177e4 3632
3bb1a852 3633 zone->prev_priority = DEF_PRIORITY;
1da177e4 3634
ed8ece2e 3635 zone_pcp_init(zone);
b69408e8
CL
3636 for_each_lru(l) {
3637 INIT_LIST_HEAD(&zone->lru[l].list);
3638 zone->lru[l].nr_scan = 0;
3639 }
6e901571
KM
3640 zone->reclaim_stat.recent_rotated[0] = 0;
3641 zone->reclaim_stat.recent_rotated[1] = 0;
3642 zone->reclaim_stat.recent_scanned[0] = 0;
3643 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3644 zap_zone_vm_stats(zone);
e815af95 3645 zone->flags = 0;
1da177e4
LT
3646 if (!size)
3647 continue;
3648
ba72cb8c 3649 set_pageblock_order(pageblock_default_order());
835c134e 3650 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3651 ret = init_currently_empty_zone(zone, zone_start_pfn,
3652 size, MEMMAP_EARLY);
718127cc 3653 BUG_ON(ret);
76cdd58e 3654 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3655 zone_start_pfn += size;
1da177e4
LT
3656 }
3657}
3658
577a32f6 3659static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3660{
1da177e4
LT
3661 /* Skip empty nodes */
3662 if (!pgdat->node_spanned_pages)
3663 return;
3664
d41dee36 3665#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3666 /* ia64 gets its own node_mem_map, before this, without bootmem */
3667 if (!pgdat->node_mem_map) {
e984bb43 3668 unsigned long size, start, end;
d41dee36
AW
3669 struct page *map;
3670
e984bb43
BP
3671 /*
3672 * The zone's endpoints aren't required to be MAX_ORDER
3673 * aligned but the node_mem_map endpoints must be in order
3674 * for the buddy allocator to function correctly.
3675 */
3676 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3677 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3678 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3679 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3680 map = alloc_remap(pgdat->node_id, size);
3681 if (!map)
3682 map = alloc_bootmem_node(pgdat, size);
e984bb43 3683 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3684 }
12d810c1 3685#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3686 /*
3687 * With no DISCONTIG, the global mem_map is just set as node 0's
3688 */
c713216d 3689 if (pgdat == NODE_DATA(0)) {
1da177e4 3690 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3691#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3692 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3693 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3694#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3695 }
1da177e4 3696#endif
d41dee36 3697#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3698}
3699
9109fb7b
JW
3700void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3701 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3702{
9109fb7b
JW
3703 pg_data_t *pgdat = NODE_DATA(nid);
3704
1da177e4
LT
3705 pgdat->node_id = nid;
3706 pgdat->node_start_pfn = node_start_pfn;
c713216d 3707 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3708
3709 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3710#ifdef CONFIG_FLAT_NODE_MEM_MAP
3711 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3712 nid, (unsigned long)pgdat,
3713 (unsigned long)pgdat->node_mem_map);
3714#endif
1da177e4
LT
3715
3716 free_area_init_core(pgdat, zones_size, zholes_size);
3717}
3718
c713216d 3719#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3720
3721#if MAX_NUMNODES > 1
3722/*
3723 * Figure out the number of possible node ids.
3724 */
3725static void __init setup_nr_node_ids(void)
3726{
3727 unsigned int node;
3728 unsigned int highest = 0;
3729
3730 for_each_node_mask(node, node_possible_map)
3731 highest = node;
3732 nr_node_ids = highest + 1;
3733}
3734#else
3735static inline void setup_nr_node_ids(void)
3736{
3737}
3738#endif
3739
c713216d
MG
3740/**
3741 * add_active_range - Register a range of PFNs backed by physical memory
3742 * @nid: The node ID the range resides on
3743 * @start_pfn: The start PFN of the available physical memory
3744 * @end_pfn: The end PFN of the available physical memory
3745 *
3746 * These ranges are stored in an early_node_map[] and later used by
3747 * free_area_init_nodes() to calculate zone sizes and holes. If the
3748 * range spans a memory hole, it is up to the architecture to ensure
3749 * the memory is not freed by the bootmem allocator. If possible
3750 * the range being registered will be merged with existing ranges.
3751 */
3752void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3753 unsigned long end_pfn)
3754{
3755 int i;
3756
6b74ab97
MG
3757 mminit_dprintk(MMINIT_TRACE, "memory_register",
3758 "Entering add_active_range(%d, %#lx, %#lx) "
3759 "%d entries of %d used\n",
3760 nid, start_pfn, end_pfn,
3761 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3762
2dbb51c4
MG
3763 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3764
c713216d
MG
3765 /* Merge with existing active regions if possible */
3766 for (i = 0; i < nr_nodemap_entries; i++) {
3767 if (early_node_map[i].nid != nid)
3768 continue;
3769
3770 /* Skip if an existing region covers this new one */
3771 if (start_pfn >= early_node_map[i].start_pfn &&
3772 end_pfn <= early_node_map[i].end_pfn)
3773 return;
3774
3775 /* Merge forward if suitable */
3776 if (start_pfn <= early_node_map[i].end_pfn &&
3777 end_pfn > early_node_map[i].end_pfn) {
3778 early_node_map[i].end_pfn = end_pfn;
3779 return;
3780 }
3781
3782 /* Merge backward if suitable */
3783 if (start_pfn < early_node_map[i].end_pfn &&
3784 end_pfn >= early_node_map[i].start_pfn) {
3785 early_node_map[i].start_pfn = start_pfn;
3786 return;
3787 }
3788 }
3789
3790 /* Check that early_node_map is large enough */
3791 if (i >= MAX_ACTIVE_REGIONS) {
3792 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3793 MAX_ACTIVE_REGIONS);
3794 return;
3795 }
3796
3797 early_node_map[i].nid = nid;
3798 early_node_map[i].start_pfn = start_pfn;
3799 early_node_map[i].end_pfn = end_pfn;
3800 nr_nodemap_entries = i + 1;
3801}
3802
3803/**
cc1050ba 3804 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3805 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3806 * @start_pfn: The new PFN of the range
3807 * @end_pfn: The new PFN of the range
c713216d
MG
3808 *
3809 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3810 * The map is kept near the end physical page range that has already been
3811 * registered. This function allows an arch to shrink an existing registered
3812 * range.
c713216d 3813 */
cc1050ba
YL
3814void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3815 unsigned long end_pfn)
c713216d 3816{
cc1a9d86
YL
3817 int i, j;
3818 int removed = 0;
c713216d 3819
cc1050ba
YL
3820 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3821 nid, start_pfn, end_pfn);
3822
c713216d 3823 /* Find the old active region end and shrink */
cc1a9d86 3824 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3825 if (early_node_map[i].start_pfn >= start_pfn &&
3826 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3827 /* clear it */
cc1050ba 3828 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3829 early_node_map[i].end_pfn = 0;
3830 removed = 1;
3831 continue;
3832 }
cc1050ba
YL
3833 if (early_node_map[i].start_pfn < start_pfn &&
3834 early_node_map[i].end_pfn > start_pfn) {
3835 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3836 early_node_map[i].end_pfn = start_pfn;
3837 if (temp_end_pfn > end_pfn)
3838 add_active_range(nid, end_pfn, temp_end_pfn);
3839 continue;
3840 }
3841 if (early_node_map[i].start_pfn >= start_pfn &&
3842 early_node_map[i].end_pfn > end_pfn &&
3843 early_node_map[i].start_pfn < end_pfn) {
3844 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3845 continue;
c713216d 3846 }
cc1a9d86
YL
3847 }
3848
3849 if (!removed)
3850 return;
3851
3852 /* remove the blank ones */
3853 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3854 if (early_node_map[i].nid != nid)
3855 continue;
3856 if (early_node_map[i].end_pfn)
3857 continue;
3858 /* we found it, get rid of it */
3859 for (j = i; j < nr_nodemap_entries - 1; j++)
3860 memcpy(&early_node_map[j], &early_node_map[j+1],
3861 sizeof(early_node_map[j]));
3862 j = nr_nodemap_entries - 1;
3863 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3864 nr_nodemap_entries--;
3865 }
c713216d
MG
3866}
3867
3868/**
3869 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3870 *
c713216d
MG
3871 * During discovery, it may be found that a table like SRAT is invalid
3872 * and an alternative discovery method must be used. This function removes
3873 * all currently registered regions.
3874 */
88ca3b94 3875void __init remove_all_active_ranges(void)
c713216d
MG
3876{
3877 memset(early_node_map, 0, sizeof(early_node_map));
3878 nr_nodemap_entries = 0;
3879}
3880
3881/* Compare two active node_active_regions */
3882static int __init cmp_node_active_region(const void *a, const void *b)
3883{
3884 struct node_active_region *arange = (struct node_active_region *)a;
3885 struct node_active_region *brange = (struct node_active_region *)b;
3886
3887 /* Done this way to avoid overflows */
3888 if (arange->start_pfn > brange->start_pfn)
3889 return 1;
3890 if (arange->start_pfn < brange->start_pfn)
3891 return -1;
3892
3893 return 0;
3894}
3895
3896/* sort the node_map by start_pfn */
3897static void __init sort_node_map(void)
3898{
3899 sort(early_node_map, (size_t)nr_nodemap_entries,
3900 sizeof(struct node_active_region),
3901 cmp_node_active_region, NULL);
3902}
3903
a6af2bc3 3904/* Find the lowest pfn for a node */
b69a7288 3905static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3906{
3907 int i;
a6af2bc3 3908 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3909
c713216d
MG
3910 /* Assuming a sorted map, the first range found has the starting pfn */
3911 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3912 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3913
a6af2bc3
MG
3914 if (min_pfn == ULONG_MAX) {
3915 printk(KERN_WARNING
2bc0d261 3916 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3917 return 0;
3918 }
3919
3920 return min_pfn;
c713216d
MG
3921}
3922
3923/**
3924 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3925 *
3926 * It returns the minimum PFN based on information provided via
88ca3b94 3927 * add_active_range().
c713216d
MG
3928 */
3929unsigned long __init find_min_pfn_with_active_regions(void)
3930{
3931 return find_min_pfn_for_node(MAX_NUMNODES);
3932}
3933
37b07e41
LS
3934/*
3935 * early_calculate_totalpages()
3936 * Sum pages in active regions for movable zone.
3937 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3938 */
484f51f8 3939static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3940{
3941 int i;
3942 unsigned long totalpages = 0;
3943
37b07e41
LS
3944 for (i = 0; i < nr_nodemap_entries; i++) {
3945 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3946 early_node_map[i].start_pfn;
37b07e41
LS
3947 totalpages += pages;
3948 if (pages)
3949 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3950 }
3951 return totalpages;
7e63efef
MG
3952}
3953
2a1e274a
MG
3954/*
3955 * Find the PFN the Movable zone begins in each node. Kernel memory
3956 * is spread evenly between nodes as long as the nodes have enough
3957 * memory. When they don't, some nodes will have more kernelcore than
3958 * others
3959 */
b69a7288 3960static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
3961{
3962 int i, nid;
3963 unsigned long usable_startpfn;
3964 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3965 unsigned long totalpages = early_calculate_totalpages();
3966 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3967
7e63efef
MG
3968 /*
3969 * If movablecore was specified, calculate what size of
3970 * kernelcore that corresponds so that memory usable for
3971 * any allocation type is evenly spread. If both kernelcore
3972 * and movablecore are specified, then the value of kernelcore
3973 * will be used for required_kernelcore if it's greater than
3974 * what movablecore would have allowed.
3975 */
3976 if (required_movablecore) {
7e63efef
MG
3977 unsigned long corepages;
3978
3979 /*
3980 * Round-up so that ZONE_MOVABLE is at least as large as what
3981 * was requested by the user
3982 */
3983 required_movablecore =
3984 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3985 corepages = totalpages - required_movablecore;
3986
3987 required_kernelcore = max(required_kernelcore, corepages);
3988 }
3989
2a1e274a
MG
3990 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3991 if (!required_kernelcore)
3992 return;
3993
3994 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3995 find_usable_zone_for_movable();
3996 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3997
3998restart:
3999 /* Spread kernelcore memory as evenly as possible throughout nodes */
4000 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4001 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4002 /*
4003 * Recalculate kernelcore_node if the division per node
4004 * now exceeds what is necessary to satisfy the requested
4005 * amount of memory for the kernel
4006 */
4007 if (required_kernelcore < kernelcore_node)
4008 kernelcore_node = required_kernelcore / usable_nodes;
4009
4010 /*
4011 * As the map is walked, we track how much memory is usable
4012 * by the kernel using kernelcore_remaining. When it is
4013 * 0, the rest of the node is usable by ZONE_MOVABLE
4014 */
4015 kernelcore_remaining = kernelcore_node;
4016
4017 /* Go through each range of PFNs within this node */
4018 for_each_active_range_index_in_nid(i, nid) {
4019 unsigned long start_pfn, end_pfn;
4020 unsigned long size_pages;
4021
4022 start_pfn = max(early_node_map[i].start_pfn,
4023 zone_movable_pfn[nid]);
4024 end_pfn = early_node_map[i].end_pfn;
4025 if (start_pfn >= end_pfn)
4026 continue;
4027
4028 /* Account for what is only usable for kernelcore */
4029 if (start_pfn < usable_startpfn) {
4030 unsigned long kernel_pages;
4031 kernel_pages = min(end_pfn, usable_startpfn)
4032 - start_pfn;
4033
4034 kernelcore_remaining -= min(kernel_pages,
4035 kernelcore_remaining);
4036 required_kernelcore -= min(kernel_pages,
4037 required_kernelcore);
4038
4039 /* Continue if range is now fully accounted */
4040 if (end_pfn <= usable_startpfn) {
4041
4042 /*
4043 * Push zone_movable_pfn to the end so
4044 * that if we have to rebalance
4045 * kernelcore across nodes, we will
4046 * not double account here
4047 */
4048 zone_movable_pfn[nid] = end_pfn;
4049 continue;
4050 }
4051 start_pfn = usable_startpfn;
4052 }
4053
4054 /*
4055 * The usable PFN range for ZONE_MOVABLE is from
4056 * start_pfn->end_pfn. Calculate size_pages as the
4057 * number of pages used as kernelcore
4058 */
4059 size_pages = end_pfn - start_pfn;
4060 if (size_pages > kernelcore_remaining)
4061 size_pages = kernelcore_remaining;
4062 zone_movable_pfn[nid] = start_pfn + size_pages;
4063
4064 /*
4065 * Some kernelcore has been met, update counts and
4066 * break if the kernelcore for this node has been
4067 * satisified
4068 */
4069 required_kernelcore -= min(required_kernelcore,
4070 size_pages);
4071 kernelcore_remaining -= size_pages;
4072 if (!kernelcore_remaining)
4073 break;
4074 }
4075 }
4076
4077 /*
4078 * If there is still required_kernelcore, we do another pass with one
4079 * less node in the count. This will push zone_movable_pfn[nid] further
4080 * along on the nodes that still have memory until kernelcore is
4081 * satisified
4082 */
4083 usable_nodes--;
4084 if (usable_nodes && required_kernelcore > usable_nodes)
4085 goto restart;
4086
4087 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4088 for (nid = 0; nid < MAX_NUMNODES; nid++)
4089 zone_movable_pfn[nid] =
4090 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4091}
4092
37b07e41
LS
4093/* Any regular memory on that node ? */
4094static void check_for_regular_memory(pg_data_t *pgdat)
4095{
4096#ifdef CONFIG_HIGHMEM
4097 enum zone_type zone_type;
4098
4099 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4100 struct zone *zone = &pgdat->node_zones[zone_type];
4101 if (zone->present_pages)
4102 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4103 }
4104#endif
4105}
4106
c713216d
MG
4107/**
4108 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4109 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4110 *
4111 * This will call free_area_init_node() for each active node in the system.
4112 * Using the page ranges provided by add_active_range(), the size of each
4113 * zone in each node and their holes is calculated. If the maximum PFN
4114 * between two adjacent zones match, it is assumed that the zone is empty.
4115 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4116 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4117 * starts where the previous one ended. For example, ZONE_DMA32 starts
4118 * at arch_max_dma_pfn.
4119 */
4120void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4121{
4122 unsigned long nid;
db99100d 4123 int i;
c713216d 4124
a6af2bc3
MG
4125 /* Sort early_node_map as initialisation assumes it is sorted */
4126 sort_node_map();
4127
c713216d
MG
4128 /* Record where the zone boundaries are */
4129 memset(arch_zone_lowest_possible_pfn, 0,
4130 sizeof(arch_zone_lowest_possible_pfn));
4131 memset(arch_zone_highest_possible_pfn, 0,
4132 sizeof(arch_zone_highest_possible_pfn));
4133 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4134 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4135 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4136 if (i == ZONE_MOVABLE)
4137 continue;
c713216d
MG
4138 arch_zone_lowest_possible_pfn[i] =
4139 arch_zone_highest_possible_pfn[i-1];
4140 arch_zone_highest_possible_pfn[i] =
4141 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4142 }
2a1e274a
MG
4143 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4144 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4145
4146 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4147 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4148 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4149
c713216d
MG
4150 /* Print out the zone ranges */
4151 printk("Zone PFN ranges:\n");
2a1e274a
MG
4152 for (i = 0; i < MAX_NR_ZONES; i++) {
4153 if (i == ZONE_MOVABLE)
4154 continue;
5dab8ec1 4155 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4156 zone_names[i],
4157 arch_zone_lowest_possible_pfn[i],
4158 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4159 }
4160
4161 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4162 printk("Movable zone start PFN for each node\n");
4163 for (i = 0; i < MAX_NUMNODES; i++) {
4164 if (zone_movable_pfn[i])
4165 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4166 }
c713216d
MG
4167
4168 /* Print out the early_node_map[] */
4169 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4170 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4171 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4172 early_node_map[i].start_pfn,
4173 early_node_map[i].end_pfn);
4174
4175 /* Initialise every node */
708614e6 4176 mminit_verify_pageflags_layout();
8ef82866 4177 setup_nr_node_ids();
c713216d
MG
4178 for_each_online_node(nid) {
4179 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4180 free_area_init_node(nid, NULL,
c713216d 4181 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4182
4183 /* Any memory on that node */
4184 if (pgdat->node_present_pages)
4185 node_set_state(nid, N_HIGH_MEMORY);
4186 check_for_regular_memory(pgdat);
c713216d
MG
4187 }
4188}
2a1e274a 4189
7e63efef 4190static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4191{
4192 unsigned long long coremem;
4193 if (!p)
4194 return -EINVAL;
4195
4196 coremem = memparse(p, &p);
7e63efef 4197 *core = coremem >> PAGE_SHIFT;
2a1e274a 4198
7e63efef 4199 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4200 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4201
4202 return 0;
4203}
ed7ed365 4204
7e63efef
MG
4205/*
4206 * kernelcore=size sets the amount of memory for use for allocations that
4207 * cannot be reclaimed or migrated.
4208 */
4209static int __init cmdline_parse_kernelcore(char *p)
4210{
4211 return cmdline_parse_core(p, &required_kernelcore);
4212}
4213
4214/*
4215 * movablecore=size sets the amount of memory for use for allocations that
4216 * can be reclaimed or migrated.
4217 */
4218static int __init cmdline_parse_movablecore(char *p)
4219{
4220 return cmdline_parse_core(p, &required_movablecore);
4221}
4222
ed7ed365 4223early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4224early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4225
c713216d
MG
4226#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4227
0e0b864e 4228/**
88ca3b94
RD
4229 * set_dma_reserve - set the specified number of pages reserved in the first zone
4230 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4231 *
4232 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4233 * In the DMA zone, a significant percentage may be consumed by kernel image
4234 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4235 * function may optionally be used to account for unfreeable pages in the
4236 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4237 * smaller per-cpu batchsize.
0e0b864e
MG
4238 */
4239void __init set_dma_reserve(unsigned long new_dma_reserve)
4240{
4241 dma_reserve = new_dma_reserve;
4242}
4243
93b7504e 4244#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4245struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4246EXPORT_SYMBOL(contig_page_data);
93b7504e 4247#endif
1da177e4
LT
4248
4249void __init free_area_init(unsigned long *zones_size)
4250{
9109fb7b 4251 free_area_init_node(0, zones_size,
1da177e4
LT
4252 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4253}
1da177e4 4254
1da177e4
LT
4255static int page_alloc_cpu_notify(struct notifier_block *self,
4256 unsigned long action, void *hcpu)
4257{
4258 int cpu = (unsigned long)hcpu;
1da177e4 4259
8bb78442 4260 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4261 drain_pages(cpu);
4262
4263 /*
4264 * Spill the event counters of the dead processor
4265 * into the current processors event counters.
4266 * This artificially elevates the count of the current
4267 * processor.
4268 */
f8891e5e 4269 vm_events_fold_cpu(cpu);
9f8f2172
CL
4270
4271 /*
4272 * Zero the differential counters of the dead processor
4273 * so that the vm statistics are consistent.
4274 *
4275 * This is only okay since the processor is dead and cannot
4276 * race with what we are doing.
4277 */
2244b95a 4278 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4279 }
4280 return NOTIFY_OK;
4281}
1da177e4
LT
4282
4283void __init page_alloc_init(void)
4284{
4285 hotcpu_notifier(page_alloc_cpu_notify, 0);
4286}
4287
cb45b0e9
HA
4288/*
4289 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4290 * or min_free_kbytes changes.
4291 */
4292static void calculate_totalreserve_pages(void)
4293{
4294 struct pglist_data *pgdat;
4295 unsigned long reserve_pages = 0;
2f6726e5 4296 enum zone_type i, j;
cb45b0e9
HA
4297
4298 for_each_online_pgdat(pgdat) {
4299 for (i = 0; i < MAX_NR_ZONES; i++) {
4300 struct zone *zone = pgdat->node_zones + i;
4301 unsigned long max = 0;
4302
4303 /* Find valid and maximum lowmem_reserve in the zone */
4304 for (j = i; j < MAX_NR_ZONES; j++) {
4305 if (zone->lowmem_reserve[j] > max)
4306 max = zone->lowmem_reserve[j];
4307 }
4308
4309 /* we treat pages_high as reserved pages. */
4310 max += zone->pages_high;
4311
4312 if (max > zone->present_pages)
4313 max = zone->present_pages;
4314 reserve_pages += max;
4315 }
4316 }
4317 totalreserve_pages = reserve_pages;
4318}
4319
1da177e4
LT
4320/*
4321 * setup_per_zone_lowmem_reserve - called whenever
4322 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4323 * has a correct pages reserved value, so an adequate number of
4324 * pages are left in the zone after a successful __alloc_pages().
4325 */
4326static void setup_per_zone_lowmem_reserve(void)
4327{
4328 struct pglist_data *pgdat;
2f6726e5 4329 enum zone_type j, idx;
1da177e4 4330
ec936fc5 4331 for_each_online_pgdat(pgdat) {
1da177e4
LT
4332 for (j = 0; j < MAX_NR_ZONES; j++) {
4333 struct zone *zone = pgdat->node_zones + j;
4334 unsigned long present_pages = zone->present_pages;
4335
4336 zone->lowmem_reserve[j] = 0;
4337
2f6726e5
CL
4338 idx = j;
4339 while (idx) {
1da177e4
LT
4340 struct zone *lower_zone;
4341
2f6726e5
CL
4342 idx--;
4343
1da177e4
LT
4344 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4345 sysctl_lowmem_reserve_ratio[idx] = 1;
4346
4347 lower_zone = pgdat->node_zones + idx;
4348 lower_zone->lowmem_reserve[j] = present_pages /
4349 sysctl_lowmem_reserve_ratio[idx];
4350 present_pages += lower_zone->present_pages;
4351 }
4352 }
4353 }
cb45b0e9
HA
4354
4355 /* update totalreserve_pages */
4356 calculate_totalreserve_pages();
1da177e4
LT
4357}
4358
88ca3b94
RD
4359/**
4360 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4361 *
4362 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4363 * with respect to min_free_kbytes.
1da177e4 4364 */
3947be19 4365void setup_per_zone_pages_min(void)
1da177e4
LT
4366{
4367 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4368 unsigned long lowmem_pages = 0;
4369 struct zone *zone;
4370 unsigned long flags;
4371
4372 /* Calculate total number of !ZONE_HIGHMEM pages */
4373 for_each_zone(zone) {
4374 if (!is_highmem(zone))
4375 lowmem_pages += zone->present_pages;
4376 }
4377
4378 for_each_zone(zone) {
ac924c60
AM
4379 u64 tmp;
4380
1125b4e3 4381 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4382 tmp = (u64)pages_min * zone->present_pages;
4383 do_div(tmp, lowmem_pages);
1da177e4
LT
4384 if (is_highmem(zone)) {
4385 /*
669ed175
NP
4386 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4387 * need highmem pages, so cap pages_min to a small
4388 * value here.
4389 *
4390 * The (pages_high-pages_low) and (pages_low-pages_min)
4391 * deltas controls asynch page reclaim, and so should
4392 * not be capped for highmem.
1da177e4
LT
4393 */
4394 int min_pages;
4395
4396 min_pages = zone->present_pages / 1024;
4397 if (min_pages < SWAP_CLUSTER_MAX)
4398 min_pages = SWAP_CLUSTER_MAX;
4399 if (min_pages > 128)
4400 min_pages = 128;
4401 zone->pages_min = min_pages;
4402 } else {
669ed175
NP
4403 /*
4404 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4405 * proportionate to the zone's size.
4406 */
669ed175 4407 zone->pages_min = tmp;
1da177e4
LT
4408 }
4409
ac924c60
AM
4410 zone->pages_low = zone->pages_min + (tmp >> 2);
4411 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4412 setup_zone_migrate_reserve(zone);
1125b4e3 4413 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4414 }
cb45b0e9
HA
4415
4416 /* update totalreserve_pages */
4417 calculate_totalreserve_pages();
1da177e4
LT
4418}
4419
556adecb
RR
4420/**
4421 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4422 *
4423 * The inactive anon list should be small enough that the VM never has to
4424 * do too much work, but large enough that each inactive page has a chance
4425 * to be referenced again before it is swapped out.
4426 *
4427 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4428 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4429 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4430 * the anonymous pages are kept on the inactive list.
4431 *
4432 * total target max
4433 * memory ratio inactive anon
4434 * -------------------------------------
4435 * 10MB 1 5MB
4436 * 100MB 1 50MB
4437 * 1GB 3 250MB
4438 * 10GB 10 0.9GB
4439 * 100GB 31 3GB
4440 * 1TB 101 10GB
4441 * 10TB 320 32GB
4442 */
efab8186 4443static void setup_per_zone_inactive_ratio(void)
556adecb
RR
4444{
4445 struct zone *zone;
4446
4447 for_each_zone(zone) {
4448 unsigned int gb, ratio;
4449
4450 /* Zone size in gigabytes */
4451 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4452 ratio = int_sqrt(10 * gb);
4453 if (!ratio)
4454 ratio = 1;
4455
4456 zone->inactive_ratio = ratio;
4457 }
4458}
4459
1da177e4
LT
4460/*
4461 * Initialise min_free_kbytes.
4462 *
4463 * For small machines we want it small (128k min). For large machines
4464 * we want it large (64MB max). But it is not linear, because network
4465 * bandwidth does not increase linearly with machine size. We use
4466 *
4467 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4468 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4469 *
4470 * which yields
4471 *
4472 * 16MB: 512k
4473 * 32MB: 724k
4474 * 64MB: 1024k
4475 * 128MB: 1448k
4476 * 256MB: 2048k
4477 * 512MB: 2896k
4478 * 1024MB: 4096k
4479 * 2048MB: 5792k
4480 * 4096MB: 8192k
4481 * 8192MB: 11584k
4482 * 16384MB: 16384k
4483 */
4484static int __init init_per_zone_pages_min(void)
4485{
4486 unsigned long lowmem_kbytes;
4487
4488 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4489
4490 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4491 if (min_free_kbytes < 128)
4492 min_free_kbytes = 128;
4493 if (min_free_kbytes > 65536)
4494 min_free_kbytes = 65536;
4495 setup_per_zone_pages_min();
4496 setup_per_zone_lowmem_reserve();
556adecb 4497 setup_per_zone_inactive_ratio();
1da177e4
LT
4498 return 0;
4499}
4500module_init(init_per_zone_pages_min)
4501
4502/*
4503 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4504 * that we can call two helper functions whenever min_free_kbytes
4505 * changes.
4506 */
4507int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4508 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4509{
4510 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4511 if (write)
4512 setup_per_zone_pages_min();
1da177e4
LT
4513 return 0;
4514}
4515
9614634f
CL
4516#ifdef CONFIG_NUMA
4517int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4518 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4519{
4520 struct zone *zone;
4521 int rc;
4522
4523 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4524 if (rc)
4525 return rc;
4526
4527 for_each_zone(zone)
8417bba4 4528 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4529 sysctl_min_unmapped_ratio) / 100;
4530 return 0;
4531}
0ff38490
CL
4532
4533int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4534 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4535{
4536 struct zone *zone;
4537 int rc;
4538
4539 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4540 if (rc)
4541 return rc;
4542
4543 for_each_zone(zone)
4544 zone->min_slab_pages = (zone->present_pages *
4545 sysctl_min_slab_ratio) / 100;
4546 return 0;
4547}
9614634f
CL
4548#endif
4549
1da177e4
LT
4550/*
4551 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4552 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4553 * whenever sysctl_lowmem_reserve_ratio changes.
4554 *
4555 * The reserve ratio obviously has absolutely no relation with the
4556 * pages_min watermarks. The lowmem reserve ratio can only make sense
4557 * if in function of the boot time zone sizes.
4558 */
4559int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4560 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4561{
4562 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4563 setup_per_zone_lowmem_reserve();
4564 return 0;
4565}
4566
8ad4b1fb
RS
4567/*
4568 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4569 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4570 * can have before it gets flushed back to buddy allocator.
4571 */
4572
4573int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4574 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4575{
4576 struct zone *zone;
4577 unsigned int cpu;
4578 int ret;
4579
4580 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4581 if (!write || (ret == -EINVAL))
4582 return ret;
4583 for_each_zone(zone) {
4584 for_each_online_cpu(cpu) {
4585 unsigned long high;
4586 high = zone->present_pages / percpu_pagelist_fraction;
4587 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4588 }
4589 }
4590 return 0;
4591}
4592
f034b5d4 4593int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4594
4595#ifdef CONFIG_NUMA
4596static int __init set_hashdist(char *str)
4597{
4598 if (!str)
4599 return 0;
4600 hashdist = simple_strtoul(str, &str, 0);
4601 return 1;
4602}
4603__setup("hashdist=", set_hashdist);
4604#endif
4605
4606/*
4607 * allocate a large system hash table from bootmem
4608 * - it is assumed that the hash table must contain an exact power-of-2
4609 * quantity of entries
4610 * - limit is the number of hash buckets, not the total allocation size
4611 */
4612void *__init alloc_large_system_hash(const char *tablename,
4613 unsigned long bucketsize,
4614 unsigned long numentries,
4615 int scale,
4616 int flags,
4617 unsigned int *_hash_shift,
4618 unsigned int *_hash_mask,
4619 unsigned long limit)
4620{
4621 unsigned long long max = limit;
4622 unsigned long log2qty, size;
4623 void *table = NULL;
4624
4625 /* allow the kernel cmdline to have a say */
4626 if (!numentries) {
4627 /* round applicable memory size up to nearest megabyte */
04903664 4628 numentries = nr_kernel_pages;
1da177e4
LT
4629 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4630 numentries >>= 20 - PAGE_SHIFT;
4631 numentries <<= 20 - PAGE_SHIFT;
4632
4633 /* limit to 1 bucket per 2^scale bytes of low memory */
4634 if (scale > PAGE_SHIFT)
4635 numentries >>= (scale - PAGE_SHIFT);
4636 else
4637 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4638
4639 /* Make sure we've got at least a 0-order allocation.. */
4640 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4641 numentries = PAGE_SIZE / bucketsize;
1da177e4 4642 }
6e692ed3 4643 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4644
4645 /* limit allocation size to 1/16 total memory by default */
4646 if (max == 0) {
4647 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4648 do_div(max, bucketsize);
4649 }
4650
4651 if (numentries > max)
4652 numentries = max;
4653
f0d1b0b3 4654 log2qty = ilog2(numentries);
1da177e4
LT
4655
4656 do {
4657 size = bucketsize << log2qty;
4658 if (flags & HASH_EARLY)
74768ed8 4659 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4660 else if (hashdist)
4661 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4662 else {
2309f9e6 4663 unsigned long order = get_order(size);
6c0db466
HD
4664
4665 if (order < MAX_ORDER)
4666 table = (void *)__get_free_pages(GFP_ATOMIC,
4667 order);
1037b83b
ED
4668 /*
4669 * If bucketsize is not a power-of-two, we may free
4670 * some pages at the end of hash table.
4671 */
4672 if (table) {
4673 unsigned long alloc_end = (unsigned long)table +
4674 (PAGE_SIZE << order);
4675 unsigned long used = (unsigned long)table +
4676 PAGE_ALIGN(size);
4677 split_page(virt_to_page(table), order);
4678 while (used < alloc_end) {
4679 free_page(used);
4680 used += PAGE_SIZE;
4681 }
4682 }
1da177e4
LT
4683 }
4684 } while (!table && size > PAGE_SIZE && --log2qty);
4685
4686 if (!table)
4687 panic("Failed to allocate %s hash table\n", tablename);
4688
b49ad484 4689 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4690 tablename,
4691 (1U << log2qty),
f0d1b0b3 4692 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4693 size);
4694
4695 if (_hash_shift)
4696 *_hash_shift = log2qty;
4697 if (_hash_mask)
4698 *_hash_mask = (1 << log2qty) - 1;
4699
dbb1f81c
CM
4700 /*
4701 * If hashdist is set, the table allocation is done with __vmalloc()
4702 * which invokes the kmemleak_alloc() callback. This function may also
4703 * be called before the slab and kmemleak are initialised when
4704 * kmemleak simply buffers the request to be executed later
4705 * (GFP_ATOMIC flag ignored in this case).
4706 */
4707 if (!hashdist)
4708 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4709
1da177e4
LT
4710 return table;
4711}
a117e66e 4712
835c134e
MG
4713/* Return a pointer to the bitmap storing bits affecting a block of pages */
4714static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4715 unsigned long pfn)
4716{
4717#ifdef CONFIG_SPARSEMEM
4718 return __pfn_to_section(pfn)->pageblock_flags;
4719#else
4720 return zone->pageblock_flags;
4721#endif /* CONFIG_SPARSEMEM */
4722}
4723
4724static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4725{
4726#ifdef CONFIG_SPARSEMEM
4727 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4728 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4729#else
4730 pfn = pfn - zone->zone_start_pfn;
d9c23400 4731 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4732#endif /* CONFIG_SPARSEMEM */
4733}
4734
4735/**
d9c23400 4736 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4737 * @page: The page within the block of interest
4738 * @start_bitidx: The first bit of interest to retrieve
4739 * @end_bitidx: The last bit of interest
4740 * returns pageblock_bits flags
4741 */
4742unsigned long get_pageblock_flags_group(struct page *page,
4743 int start_bitidx, int end_bitidx)
4744{
4745 struct zone *zone;
4746 unsigned long *bitmap;
4747 unsigned long pfn, bitidx;
4748 unsigned long flags = 0;
4749 unsigned long value = 1;
4750
4751 zone = page_zone(page);
4752 pfn = page_to_pfn(page);
4753 bitmap = get_pageblock_bitmap(zone, pfn);
4754 bitidx = pfn_to_bitidx(zone, pfn);
4755
4756 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4757 if (test_bit(bitidx + start_bitidx, bitmap))
4758 flags |= value;
6220ec78 4759
835c134e
MG
4760 return flags;
4761}
4762
4763/**
d9c23400 4764 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4765 * @page: The page within the block of interest
4766 * @start_bitidx: The first bit of interest
4767 * @end_bitidx: The last bit of interest
4768 * @flags: The flags to set
4769 */
4770void set_pageblock_flags_group(struct page *page, unsigned long flags,
4771 int start_bitidx, int end_bitidx)
4772{
4773 struct zone *zone;
4774 unsigned long *bitmap;
4775 unsigned long pfn, bitidx;
4776 unsigned long value = 1;
4777
4778 zone = page_zone(page);
4779 pfn = page_to_pfn(page);
4780 bitmap = get_pageblock_bitmap(zone, pfn);
4781 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4782 VM_BUG_ON(pfn < zone->zone_start_pfn);
4783 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4784
4785 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4786 if (flags & value)
4787 __set_bit(bitidx + start_bitidx, bitmap);
4788 else
4789 __clear_bit(bitidx + start_bitidx, bitmap);
4790}
a5d76b54
KH
4791
4792/*
4793 * This is designed as sub function...plz see page_isolation.c also.
4794 * set/clear page block's type to be ISOLATE.
4795 * page allocater never alloc memory from ISOLATE block.
4796 */
4797
4798int set_migratetype_isolate(struct page *page)
4799{
4800 struct zone *zone;
4801 unsigned long flags;
4802 int ret = -EBUSY;
4803
4804 zone = page_zone(page);
4805 spin_lock_irqsave(&zone->lock, flags);
4806 /*
4807 * In future, more migrate types will be able to be isolation target.
4808 */
4809 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4810 goto out;
4811 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4812 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4813 ret = 0;
4814out:
4815 spin_unlock_irqrestore(&zone->lock, flags);
4816 if (!ret)
9f8f2172 4817 drain_all_pages();
a5d76b54
KH
4818 return ret;
4819}
4820
4821void unset_migratetype_isolate(struct page *page)
4822{
4823 struct zone *zone;
4824 unsigned long flags;
4825 zone = page_zone(page);
4826 spin_lock_irqsave(&zone->lock, flags);
4827 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4828 goto out;
4829 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4830 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4831out:
4832 spin_unlock_irqrestore(&zone->lock, flags);
4833}
0c0e6195
KH
4834
4835#ifdef CONFIG_MEMORY_HOTREMOVE
4836/*
4837 * All pages in the range must be isolated before calling this.
4838 */
4839void
4840__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4841{
4842 struct page *page;
4843 struct zone *zone;
4844 int order, i;
4845 unsigned long pfn;
4846 unsigned long flags;
4847 /* find the first valid pfn */
4848 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4849 if (pfn_valid(pfn))
4850 break;
4851 if (pfn == end_pfn)
4852 return;
4853 zone = page_zone(pfn_to_page(pfn));
4854 spin_lock_irqsave(&zone->lock, flags);
4855 pfn = start_pfn;
4856 while (pfn < end_pfn) {
4857 if (!pfn_valid(pfn)) {
4858 pfn++;
4859 continue;
4860 }
4861 page = pfn_to_page(pfn);
4862 BUG_ON(page_count(page));
4863 BUG_ON(!PageBuddy(page));
4864 order = page_order(page);
4865#ifdef CONFIG_DEBUG_VM
4866 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4867 pfn, 1 << order, end_pfn);
4868#endif
4869 list_del(&page->lru);
4870 rmv_page_order(page);
4871 zone->free_area[order].nr_free--;
4872 __mod_zone_page_state(zone, NR_FREE_PAGES,
4873 - (1UL << order));
4874 for (i = 0; i < (1 << order); i++)
4875 SetPageReserved((page+i));
4876 pfn += (1 << order);
4877 }
4878 spin_unlock_irqrestore(&zone->lock, flags);
4879}
4880#endif