Merge tag 'cris-for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/jesper...
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
f1e61557
KS
226compound_page_dtor * const compound_page_dtors[] = {
227 NULL,
228 free_compound_page,
229#ifdef CONFIG_HUGETLB_PAGE
230 free_huge_page,
231#endif
9a982250
KS
232#ifdef CONFIG_TRANSPARENT_HUGEPAGE
233 free_transhuge_page,
234#endif
f1e61557
KS
235};
236
1da177e4 237int min_free_kbytes = 1024;
42aa83cb 238int user_min_free_kbytes = -1;
1da177e4 239
2c85f51d
JB
240static unsigned long __meminitdata nr_kernel_pages;
241static unsigned long __meminitdata nr_all_pages;
a3142c8e 242static unsigned long __meminitdata dma_reserve;
1da177e4 243
0ee332c1
TH
244#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
245static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
246static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
247static unsigned long __initdata required_kernelcore;
248static unsigned long __initdata required_movablecore;
249static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
250
251/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
252int movable_zone;
253EXPORT_SYMBOL(movable_zone);
254#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 255
418508c1
MS
256#if MAX_NUMNODES > 1
257int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 258int nr_online_nodes __read_mostly = 1;
418508c1 259EXPORT_SYMBOL(nr_node_ids);
62bc62a8 260EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
261#endif
262
9ef9acb0
MG
263int page_group_by_mobility_disabled __read_mostly;
264
3a80a7fa
MG
265#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
266static inline void reset_deferred_meminit(pg_data_t *pgdat)
267{
268 pgdat->first_deferred_pfn = ULONG_MAX;
269}
270
271/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 272static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 273{
ae026b2a 274 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
275 return true;
276
277 return false;
278}
279
7e18adb4
MG
280static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
281{
282 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
283 return true;
284
285 return false;
286}
287
3a80a7fa
MG
288/*
289 * Returns false when the remaining initialisation should be deferred until
290 * later in the boot cycle when it can be parallelised.
291 */
292static inline bool update_defer_init(pg_data_t *pgdat,
293 unsigned long pfn, unsigned long zone_end,
294 unsigned long *nr_initialised)
295{
296 /* Always populate low zones for address-contrained allocations */
297 if (zone_end < pgdat_end_pfn(pgdat))
298 return true;
299
300 /* Initialise at least 2G of the highest zone */
301 (*nr_initialised)++;
302 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
303 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
304 pgdat->first_deferred_pfn = pfn;
305 return false;
306 }
307
308 return true;
309}
310#else
311static inline void reset_deferred_meminit(pg_data_t *pgdat)
312{
313}
314
315static inline bool early_page_uninitialised(unsigned long pfn)
316{
317 return false;
318}
319
7e18adb4
MG
320static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
321{
322 return false;
323}
324
3a80a7fa
MG
325static inline bool update_defer_init(pg_data_t *pgdat,
326 unsigned long pfn, unsigned long zone_end,
327 unsigned long *nr_initialised)
328{
329 return true;
330}
331#endif
332
333
ee6f509c 334void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 335{
5d0f3f72
KM
336 if (unlikely(page_group_by_mobility_disabled &&
337 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
338 migratetype = MIGRATE_UNMOVABLE;
339
b2a0ac88
MG
340 set_pageblock_flags_group(page, (unsigned long)migratetype,
341 PB_migrate, PB_migrate_end);
342}
343
13e7444b 344#ifdef CONFIG_DEBUG_VM
c6a57e19 345static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 346{
bdc8cb98
DH
347 int ret = 0;
348 unsigned seq;
349 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 350 unsigned long sp, start_pfn;
c6a57e19 351
bdc8cb98
DH
352 do {
353 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
354 start_pfn = zone->zone_start_pfn;
355 sp = zone->spanned_pages;
108bcc96 356 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
357 ret = 1;
358 } while (zone_span_seqretry(zone, seq));
359
b5e6a5a2 360 if (ret)
613813e8
DH
361 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
362 pfn, zone_to_nid(zone), zone->name,
363 start_pfn, start_pfn + sp);
b5e6a5a2 364
bdc8cb98 365 return ret;
c6a57e19
DH
366}
367
368static int page_is_consistent(struct zone *zone, struct page *page)
369{
14e07298 370 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 371 return 0;
1da177e4 372 if (zone != page_zone(page))
c6a57e19
DH
373 return 0;
374
375 return 1;
376}
377/*
378 * Temporary debugging check for pages not lying within a given zone.
379 */
380static int bad_range(struct zone *zone, struct page *page)
381{
382 if (page_outside_zone_boundaries(zone, page))
1da177e4 383 return 1;
c6a57e19
DH
384 if (!page_is_consistent(zone, page))
385 return 1;
386
1da177e4
LT
387 return 0;
388}
13e7444b
NP
389#else
390static inline int bad_range(struct zone *zone, struct page *page)
391{
392 return 0;
393}
394#endif
395
d230dec1
KS
396static void bad_page(struct page *page, const char *reason,
397 unsigned long bad_flags)
1da177e4 398{
d936cf9b
HD
399 static unsigned long resume;
400 static unsigned long nr_shown;
401 static unsigned long nr_unshown;
402
2a7684a2
WF
403 /* Don't complain about poisoned pages */
404 if (PageHWPoison(page)) {
22b751c3 405 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
406 return;
407 }
408
d936cf9b
HD
409 /*
410 * Allow a burst of 60 reports, then keep quiet for that minute;
411 * or allow a steady drip of one report per second.
412 */
413 if (nr_shown == 60) {
414 if (time_before(jiffies, resume)) {
415 nr_unshown++;
416 goto out;
417 }
418 if (nr_unshown) {
1e9e6365
HD
419 printk(KERN_ALERT
420 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
421 nr_unshown);
422 nr_unshown = 0;
423 }
424 nr_shown = 0;
425 }
426 if (nr_shown++ == 0)
427 resume = jiffies + 60 * HZ;
428
1e9e6365 429 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 430 current->comm, page_to_pfn(page));
f0b791a3 431 dump_page_badflags(page, reason, bad_flags);
3dc14741 432
4f31888c 433 print_modules();
1da177e4 434 dump_stack();
d936cf9b 435out:
8cc3b392 436 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 437 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 438 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
439}
440
1da177e4
LT
441/*
442 * Higher-order pages are called "compound pages". They are structured thusly:
443 *
1d798ca3 444 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 445 *
1d798ca3
KS
446 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
447 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 448 *
1d798ca3
KS
449 * The first tail page's ->compound_dtor holds the offset in array of compound
450 * page destructors. See compound_page_dtors.
1da177e4 451 *
1d798ca3 452 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 453 * This usage means that zero-order pages may not be compound.
1da177e4 454 */
d98c7a09 455
9a982250 456void free_compound_page(struct page *page)
d98c7a09 457{
d85f3385 458 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
459}
460
d00181b9 461void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
462{
463 int i;
464 int nr_pages = 1 << order;
465
f1e61557 466 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
467 set_compound_order(page, order);
468 __SetPageHead(page);
469 for (i = 1; i < nr_pages; i++) {
470 struct page *p = page + i;
58a84aa9 471 set_page_count(p, 0);
1c290f64 472 p->mapping = TAIL_MAPPING;
1d798ca3 473 set_compound_head(p, page);
18229df5 474 }
53f9263b 475 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
476}
477
c0a32fc5
SG
478#ifdef CONFIG_DEBUG_PAGEALLOC
479unsigned int _debug_guardpage_minorder;
031bc574 480bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
481bool _debug_guardpage_enabled __read_mostly;
482
031bc574
JK
483static int __init early_debug_pagealloc(char *buf)
484{
485 if (!buf)
486 return -EINVAL;
487
488 if (strcmp(buf, "on") == 0)
489 _debug_pagealloc_enabled = true;
490
491 return 0;
492}
493early_param("debug_pagealloc", early_debug_pagealloc);
494
e30825f1
JK
495static bool need_debug_guardpage(void)
496{
031bc574
JK
497 /* If we don't use debug_pagealloc, we don't need guard page */
498 if (!debug_pagealloc_enabled())
499 return false;
500
e30825f1
JK
501 return true;
502}
503
504static void init_debug_guardpage(void)
505{
031bc574
JK
506 if (!debug_pagealloc_enabled())
507 return;
508
e30825f1
JK
509 _debug_guardpage_enabled = true;
510}
511
512struct page_ext_operations debug_guardpage_ops = {
513 .need = need_debug_guardpage,
514 .init = init_debug_guardpage,
515};
c0a32fc5
SG
516
517static int __init debug_guardpage_minorder_setup(char *buf)
518{
519 unsigned long res;
520
521 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
522 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
523 return 0;
524 }
525 _debug_guardpage_minorder = res;
526 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
527 return 0;
528}
529__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
530
2847cf95
JK
531static inline void set_page_guard(struct zone *zone, struct page *page,
532 unsigned int order, int migratetype)
c0a32fc5 533{
e30825f1
JK
534 struct page_ext *page_ext;
535
536 if (!debug_guardpage_enabled())
537 return;
538
539 page_ext = lookup_page_ext(page);
540 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
541
2847cf95
JK
542 INIT_LIST_HEAD(&page->lru);
543 set_page_private(page, order);
544 /* Guard pages are not available for any usage */
545 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
546}
547
2847cf95
JK
548static inline void clear_page_guard(struct zone *zone, struct page *page,
549 unsigned int order, int migratetype)
c0a32fc5 550{
e30825f1
JK
551 struct page_ext *page_ext;
552
553 if (!debug_guardpage_enabled())
554 return;
555
556 page_ext = lookup_page_ext(page);
557 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
558
2847cf95
JK
559 set_page_private(page, 0);
560 if (!is_migrate_isolate(migratetype))
561 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
562}
563#else
e30825f1 564struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
565static inline void set_page_guard(struct zone *zone, struct page *page,
566 unsigned int order, int migratetype) {}
567static inline void clear_page_guard(struct zone *zone, struct page *page,
568 unsigned int order, int migratetype) {}
c0a32fc5
SG
569#endif
570
7aeb09f9 571static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 572{
4c21e2f2 573 set_page_private(page, order);
676165a8 574 __SetPageBuddy(page);
1da177e4
LT
575}
576
577static inline void rmv_page_order(struct page *page)
578{
676165a8 579 __ClearPageBuddy(page);
4c21e2f2 580 set_page_private(page, 0);
1da177e4
LT
581}
582
1da177e4
LT
583/*
584 * This function checks whether a page is free && is the buddy
585 * we can do coalesce a page and its buddy if
13e7444b 586 * (a) the buddy is not in a hole &&
676165a8 587 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
588 * (c) a page and its buddy have the same order &&
589 * (d) a page and its buddy are in the same zone.
676165a8 590 *
cf6fe945
WSH
591 * For recording whether a page is in the buddy system, we set ->_mapcount
592 * PAGE_BUDDY_MAPCOUNT_VALUE.
593 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
594 * serialized by zone->lock.
1da177e4 595 *
676165a8 596 * For recording page's order, we use page_private(page).
1da177e4 597 */
cb2b95e1 598static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 599 unsigned int order)
1da177e4 600{
14e07298 601 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 602 return 0;
13e7444b 603
c0a32fc5 604 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
605 if (page_zone_id(page) != page_zone_id(buddy))
606 return 0;
607
4c5018ce
WY
608 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
609
c0a32fc5
SG
610 return 1;
611 }
612
cb2b95e1 613 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
614 /*
615 * zone check is done late to avoid uselessly
616 * calculating zone/node ids for pages that could
617 * never merge.
618 */
619 if (page_zone_id(page) != page_zone_id(buddy))
620 return 0;
621
4c5018ce
WY
622 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
623
6aa3001b 624 return 1;
676165a8 625 }
6aa3001b 626 return 0;
1da177e4
LT
627}
628
629/*
630 * Freeing function for a buddy system allocator.
631 *
632 * The concept of a buddy system is to maintain direct-mapped table
633 * (containing bit values) for memory blocks of various "orders".
634 * The bottom level table contains the map for the smallest allocatable
635 * units of memory (here, pages), and each level above it describes
636 * pairs of units from the levels below, hence, "buddies".
637 * At a high level, all that happens here is marking the table entry
638 * at the bottom level available, and propagating the changes upward
639 * as necessary, plus some accounting needed to play nicely with other
640 * parts of the VM system.
641 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
642 * free pages of length of (1 << order) and marked with _mapcount
643 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
644 * field.
1da177e4 645 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
646 * other. That is, if we allocate a small block, and both were
647 * free, the remainder of the region must be split into blocks.
1da177e4 648 * If a block is freed, and its buddy is also free, then this
5f63b720 649 * triggers coalescing into a block of larger size.
1da177e4 650 *
6d49e352 651 * -- nyc
1da177e4
LT
652 */
653
48db57f8 654static inline void __free_one_page(struct page *page,
dc4b0caf 655 unsigned long pfn,
ed0ae21d
MG
656 struct zone *zone, unsigned int order,
657 int migratetype)
1da177e4
LT
658{
659 unsigned long page_idx;
6dda9d55 660 unsigned long combined_idx;
43506fad 661 unsigned long uninitialized_var(buddy_idx);
6dda9d55 662 struct page *buddy;
d00181b9 663 unsigned int max_order = MAX_ORDER;
1da177e4 664
d29bb978 665 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 666 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 667
ed0ae21d 668 VM_BUG_ON(migratetype == -1);
3c605096
JK
669 if (is_migrate_isolate(migratetype)) {
670 /*
671 * We restrict max order of merging to prevent merge
672 * between freepages on isolate pageblock and normal
673 * pageblock. Without this, pageblock isolation
674 * could cause incorrect freepage accounting.
675 */
d00181b9 676 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
3c605096 677 } else {
8f82b55d 678 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 679 }
ed0ae21d 680
3c605096 681 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 682
309381fe
SL
683 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
684 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 685
3c605096 686 while (order < max_order - 1) {
43506fad
KC
687 buddy_idx = __find_buddy_index(page_idx, order);
688 buddy = page + (buddy_idx - page_idx);
cb2b95e1 689 if (!page_is_buddy(page, buddy, order))
3c82d0ce 690 break;
c0a32fc5
SG
691 /*
692 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
693 * merge with it and move up one order.
694 */
695 if (page_is_guard(buddy)) {
2847cf95 696 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
697 } else {
698 list_del(&buddy->lru);
699 zone->free_area[order].nr_free--;
700 rmv_page_order(buddy);
701 }
43506fad 702 combined_idx = buddy_idx & page_idx;
1da177e4
LT
703 page = page + (combined_idx - page_idx);
704 page_idx = combined_idx;
705 order++;
706 }
707 set_page_order(page, order);
6dda9d55
CZ
708
709 /*
710 * If this is not the largest possible page, check if the buddy
711 * of the next-highest order is free. If it is, it's possible
712 * that pages are being freed that will coalesce soon. In case,
713 * that is happening, add the free page to the tail of the list
714 * so it's less likely to be used soon and more likely to be merged
715 * as a higher order page
716 */
b7f50cfa 717 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 718 struct page *higher_page, *higher_buddy;
43506fad
KC
719 combined_idx = buddy_idx & page_idx;
720 higher_page = page + (combined_idx - page_idx);
721 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 722 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
723 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
724 list_add_tail(&page->lru,
725 &zone->free_area[order].free_list[migratetype]);
726 goto out;
727 }
728 }
729
730 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
731out:
1da177e4
LT
732 zone->free_area[order].nr_free++;
733}
734
224abf92 735static inline int free_pages_check(struct page *page)
1da177e4 736{
d230dec1 737 const char *bad_reason = NULL;
f0b791a3
DH
738 unsigned long bad_flags = 0;
739
53f9263b 740 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
741 bad_reason = "nonzero mapcount";
742 if (unlikely(page->mapping != NULL))
743 bad_reason = "non-NULL mapping";
744 if (unlikely(atomic_read(&page->_count) != 0))
745 bad_reason = "nonzero _count";
746 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
747 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
748 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
749 }
9edad6ea
JW
750#ifdef CONFIG_MEMCG
751 if (unlikely(page->mem_cgroup))
752 bad_reason = "page still charged to cgroup";
753#endif
f0b791a3
DH
754 if (unlikely(bad_reason)) {
755 bad_page(page, bad_reason, bad_flags);
79f4b7bf 756 return 1;
8cc3b392 757 }
90572890 758 page_cpupid_reset_last(page);
79f4b7bf
HD
759 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
760 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
761 return 0;
1da177e4
LT
762}
763
764/*
5f8dcc21 765 * Frees a number of pages from the PCP lists
1da177e4 766 * Assumes all pages on list are in same zone, and of same order.
207f36ee 767 * count is the number of pages to free.
1da177e4
LT
768 *
769 * If the zone was previously in an "all pages pinned" state then look to
770 * see if this freeing clears that state.
771 *
772 * And clear the zone's pages_scanned counter, to hold off the "all pages are
773 * pinned" detection logic.
774 */
5f8dcc21
MG
775static void free_pcppages_bulk(struct zone *zone, int count,
776 struct per_cpu_pages *pcp)
1da177e4 777{
5f8dcc21 778 int migratetype = 0;
a6f9edd6 779 int batch_free = 0;
72853e29 780 int to_free = count;
0d5d823a 781 unsigned long nr_scanned;
5f8dcc21 782
c54ad30c 783 spin_lock(&zone->lock);
0d5d823a
MG
784 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
785 if (nr_scanned)
786 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 787
72853e29 788 while (to_free) {
48db57f8 789 struct page *page;
5f8dcc21
MG
790 struct list_head *list;
791
792 /*
a6f9edd6
MG
793 * Remove pages from lists in a round-robin fashion. A
794 * batch_free count is maintained that is incremented when an
795 * empty list is encountered. This is so more pages are freed
796 * off fuller lists instead of spinning excessively around empty
797 * lists
5f8dcc21
MG
798 */
799 do {
a6f9edd6 800 batch_free++;
5f8dcc21
MG
801 if (++migratetype == MIGRATE_PCPTYPES)
802 migratetype = 0;
803 list = &pcp->lists[migratetype];
804 } while (list_empty(list));
48db57f8 805
1d16871d
NK
806 /* This is the only non-empty list. Free them all. */
807 if (batch_free == MIGRATE_PCPTYPES)
808 batch_free = to_free;
809
a6f9edd6 810 do {
770c8aaa
BZ
811 int mt; /* migratetype of the to-be-freed page */
812
a16601c5 813 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
814 /* must delete as __free_one_page list manipulates */
815 list_del(&page->lru);
aa016d14 816
bb14c2c7 817 mt = get_pcppage_migratetype(page);
aa016d14
VB
818 /* MIGRATE_ISOLATE page should not go to pcplists */
819 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
820 /* Pageblock could have been isolated meanwhile */
8f82b55d 821 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 822 mt = get_pageblock_migratetype(page);
51bb1a40 823
dc4b0caf 824 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 825 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 826 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 827 }
c54ad30c 828 spin_unlock(&zone->lock);
1da177e4
LT
829}
830
dc4b0caf
MG
831static void free_one_page(struct zone *zone,
832 struct page *page, unsigned long pfn,
7aeb09f9 833 unsigned int order,
ed0ae21d 834 int migratetype)
1da177e4 835{
0d5d823a 836 unsigned long nr_scanned;
006d22d9 837 spin_lock(&zone->lock);
0d5d823a
MG
838 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
839 if (nr_scanned)
840 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 841
ad53f92e
JK
842 if (unlikely(has_isolate_pageblock(zone) ||
843 is_migrate_isolate(migratetype))) {
844 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 845 }
dc4b0caf 846 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 847 spin_unlock(&zone->lock);
48db57f8
NP
848}
849
81422f29
KS
850static int free_tail_pages_check(struct page *head_page, struct page *page)
851{
1d798ca3
KS
852 int ret = 1;
853
854 /*
855 * We rely page->lru.next never has bit 0 set, unless the page
856 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
857 */
858 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
859
860 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
861 ret = 0;
862 goto out;
863 }
9a982250
KS
864 switch (page - head_page) {
865 case 1:
866 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
867 if (unlikely(compound_mapcount(page))) {
868 bad_page(page, "nonzero compound_mapcount", 0);
869 goto out;
870 }
9a982250
KS
871 break;
872 case 2:
873 /*
874 * the second tail page: ->mapping is
875 * page_deferred_list().next -- ignore value.
876 */
877 break;
878 default:
879 if (page->mapping != TAIL_MAPPING) {
880 bad_page(page, "corrupted mapping in tail page", 0);
881 goto out;
882 }
883 break;
1c290f64 884 }
81422f29
KS
885 if (unlikely(!PageTail(page))) {
886 bad_page(page, "PageTail not set", 0);
1d798ca3 887 goto out;
81422f29 888 }
1d798ca3
KS
889 if (unlikely(compound_head(page) != head_page)) {
890 bad_page(page, "compound_head not consistent", 0);
891 goto out;
81422f29 892 }
1d798ca3
KS
893 ret = 0;
894out:
1c290f64 895 page->mapping = NULL;
1d798ca3
KS
896 clear_compound_head(page);
897 return ret;
81422f29
KS
898}
899
1e8ce83c
RH
900static void __meminit __init_single_page(struct page *page, unsigned long pfn,
901 unsigned long zone, int nid)
902{
1e8ce83c 903 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
904 init_page_count(page);
905 page_mapcount_reset(page);
906 page_cpupid_reset_last(page);
1e8ce83c 907
1e8ce83c
RH
908 INIT_LIST_HEAD(&page->lru);
909#ifdef WANT_PAGE_VIRTUAL
910 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
911 if (!is_highmem_idx(zone))
912 set_page_address(page, __va(pfn << PAGE_SHIFT));
913#endif
914}
915
916static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
917 int nid)
918{
919 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
920}
921
7e18adb4
MG
922#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
923static void init_reserved_page(unsigned long pfn)
924{
925 pg_data_t *pgdat;
926 int nid, zid;
927
928 if (!early_page_uninitialised(pfn))
929 return;
930
931 nid = early_pfn_to_nid(pfn);
932 pgdat = NODE_DATA(nid);
933
934 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
935 struct zone *zone = &pgdat->node_zones[zid];
936
937 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
938 break;
939 }
940 __init_single_pfn(pfn, zid, nid);
941}
942#else
943static inline void init_reserved_page(unsigned long pfn)
944{
945}
946#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
947
92923ca3
NZ
948/*
949 * Initialised pages do not have PageReserved set. This function is
950 * called for each range allocated by the bootmem allocator and
951 * marks the pages PageReserved. The remaining valid pages are later
952 * sent to the buddy page allocator.
953 */
7e18adb4 954void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
955{
956 unsigned long start_pfn = PFN_DOWN(start);
957 unsigned long end_pfn = PFN_UP(end);
958
7e18adb4
MG
959 for (; start_pfn < end_pfn; start_pfn++) {
960 if (pfn_valid(start_pfn)) {
961 struct page *page = pfn_to_page(start_pfn);
962
963 init_reserved_page(start_pfn);
1d798ca3
KS
964
965 /* Avoid false-positive PageTail() */
966 INIT_LIST_HEAD(&page->lru);
967
7e18adb4
MG
968 SetPageReserved(page);
969 }
970 }
92923ca3
NZ
971}
972
ec95f53a 973static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 974{
81422f29
KS
975 bool compound = PageCompound(page);
976 int i, bad = 0;
1da177e4 977
ab1f306f 978 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 979 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 980
b413d48a 981 trace_mm_page_free(page, order);
b1eeab67 982 kmemcheck_free_shadow(page, order);
b8c73fc2 983 kasan_free_pages(page, order);
b1eeab67 984
8dd60a3a
AA
985 if (PageAnon(page))
986 page->mapping = NULL;
81422f29
KS
987 bad += free_pages_check(page);
988 for (i = 1; i < (1 << order); i++) {
989 if (compound)
990 bad += free_tail_pages_check(page, page + i);
8dd60a3a 991 bad += free_pages_check(page + i);
81422f29 992 }
8cc3b392 993 if (bad)
ec95f53a 994 return false;
689bcebf 995
48c96a36
JK
996 reset_page_owner(page, order);
997
3ac7fe5a 998 if (!PageHighMem(page)) {
b8af2941
PK
999 debug_check_no_locks_freed(page_address(page),
1000 PAGE_SIZE << order);
3ac7fe5a
TG
1001 debug_check_no_obj_freed(page_address(page),
1002 PAGE_SIZE << order);
1003 }
dafb1367 1004 arch_free_page(page, order);
48db57f8 1005 kernel_map_pages(page, 1 << order, 0);
dafb1367 1006
ec95f53a
KM
1007 return true;
1008}
1009
1010static void __free_pages_ok(struct page *page, unsigned int order)
1011{
1012 unsigned long flags;
95e34412 1013 int migratetype;
dc4b0caf 1014 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1015
1016 if (!free_pages_prepare(page, order))
1017 return;
1018
cfc47a28 1019 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1020 local_irq_save(flags);
f8891e5e 1021 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1022 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1023 local_irq_restore(flags);
1da177e4
LT
1024}
1025
0e1cc95b 1026static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 1027 unsigned long pfn, unsigned int order)
a226f6c8 1028{
c3993076 1029 unsigned int nr_pages = 1 << order;
e2d0bd2b 1030 struct page *p = page;
c3993076 1031 unsigned int loop;
a226f6c8 1032
e2d0bd2b
YL
1033 prefetchw(p);
1034 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1035 prefetchw(p + 1);
c3993076
JW
1036 __ClearPageReserved(p);
1037 set_page_count(p, 0);
a226f6c8 1038 }
e2d0bd2b
YL
1039 __ClearPageReserved(p);
1040 set_page_count(p, 0);
c3993076 1041
e2d0bd2b 1042 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1043 set_page_refcounted(page);
1044 __free_pages(page, order);
a226f6c8
DH
1045}
1046
75a592a4
MG
1047#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1048 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1049
75a592a4
MG
1050static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1051
1052int __meminit early_pfn_to_nid(unsigned long pfn)
1053{
7ace9917 1054 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1055 int nid;
1056
7ace9917 1057 spin_lock(&early_pfn_lock);
75a592a4 1058 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1059 if (nid < 0)
1060 nid = 0;
1061 spin_unlock(&early_pfn_lock);
1062
1063 return nid;
75a592a4
MG
1064}
1065#endif
1066
1067#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1068static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1069 struct mminit_pfnnid_cache *state)
1070{
1071 int nid;
1072
1073 nid = __early_pfn_to_nid(pfn, state);
1074 if (nid >= 0 && nid != node)
1075 return false;
1076 return true;
1077}
1078
1079/* Only safe to use early in boot when initialisation is single-threaded */
1080static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1081{
1082 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1083}
1084
1085#else
1086
1087static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1088{
1089 return true;
1090}
1091static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1092 struct mminit_pfnnid_cache *state)
1093{
1094 return true;
1095}
1096#endif
1097
1098
0e1cc95b 1099void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1100 unsigned int order)
1101{
1102 if (early_page_uninitialised(pfn))
1103 return;
1104 return __free_pages_boot_core(page, pfn, order);
1105}
1106
7e18adb4 1107#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1108static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1109 unsigned long pfn, int nr_pages)
1110{
1111 int i;
1112
1113 if (!page)
1114 return;
1115
1116 /* Free a large naturally-aligned chunk if possible */
1117 if (nr_pages == MAX_ORDER_NR_PAGES &&
1118 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1119 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1120 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1121 return;
1122 }
1123
1124 for (i = 0; i < nr_pages; i++, page++, pfn++)
1125 __free_pages_boot_core(page, pfn, 0);
1126}
1127
d3cd131d
NS
1128/* Completion tracking for deferred_init_memmap() threads */
1129static atomic_t pgdat_init_n_undone __initdata;
1130static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1131
1132static inline void __init pgdat_init_report_one_done(void)
1133{
1134 if (atomic_dec_and_test(&pgdat_init_n_undone))
1135 complete(&pgdat_init_all_done_comp);
1136}
0e1cc95b 1137
7e18adb4 1138/* Initialise remaining memory on a node */
0e1cc95b 1139static int __init deferred_init_memmap(void *data)
7e18adb4 1140{
0e1cc95b
MG
1141 pg_data_t *pgdat = data;
1142 int nid = pgdat->node_id;
7e18adb4
MG
1143 struct mminit_pfnnid_cache nid_init_state = { };
1144 unsigned long start = jiffies;
1145 unsigned long nr_pages = 0;
1146 unsigned long walk_start, walk_end;
1147 int i, zid;
1148 struct zone *zone;
7e18adb4 1149 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1150 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1151
0e1cc95b 1152 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1153 pgdat_init_report_one_done();
0e1cc95b
MG
1154 return 0;
1155 }
1156
1157 /* Bind memory initialisation thread to a local node if possible */
1158 if (!cpumask_empty(cpumask))
1159 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1160
1161 /* Sanity check boundaries */
1162 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1163 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1164 pgdat->first_deferred_pfn = ULONG_MAX;
1165
1166 /* Only the highest zone is deferred so find it */
1167 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1168 zone = pgdat->node_zones + zid;
1169 if (first_init_pfn < zone_end_pfn(zone))
1170 break;
1171 }
1172
1173 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1174 unsigned long pfn, end_pfn;
54608c3f 1175 struct page *page = NULL;
a4de83dd
MG
1176 struct page *free_base_page = NULL;
1177 unsigned long free_base_pfn = 0;
1178 int nr_to_free = 0;
7e18adb4
MG
1179
1180 end_pfn = min(walk_end, zone_end_pfn(zone));
1181 pfn = first_init_pfn;
1182 if (pfn < walk_start)
1183 pfn = walk_start;
1184 if (pfn < zone->zone_start_pfn)
1185 pfn = zone->zone_start_pfn;
1186
1187 for (; pfn < end_pfn; pfn++) {
54608c3f 1188 if (!pfn_valid_within(pfn))
a4de83dd 1189 goto free_range;
7e18adb4 1190
54608c3f
MG
1191 /*
1192 * Ensure pfn_valid is checked every
1193 * MAX_ORDER_NR_PAGES for memory holes
1194 */
1195 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1196 if (!pfn_valid(pfn)) {
1197 page = NULL;
a4de83dd 1198 goto free_range;
54608c3f
MG
1199 }
1200 }
1201
1202 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1203 page = NULL;
a4de83dd 1204 goto free_range;
54608c3f
MG
1205 }
1206
1207 /* Minimise pfn page lookups and scheduler checks */
1208 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1209 page++;
1210 } else {
a4de83dd
MG
1211 nr_pages += nr_to_free;
1212 deferred_free_range(free_base_page,
1213 free_base_pfn, nr_to_free);
1214 free_base_page = NULL;
1215 free_base_pfn = nr_to_free = 0;
1216
54608c3f
MG
1217 page = pfn_to_page(pfn);
1218 cond_resched();
1219 }
7e18adb4
MG
1220
1221 if (page->flags) {
1222 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1223 goto free_range;
7e18adb4
MG
1224 }
1225
1226 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1227 if (!free_base_page) {
1228 free_base_page = page;
1229 free_base_pfn = pfn;
1230 nr_to_free = 0;
1231 }
1232 nr_to_free++;
1233
1234 /* Where possible, batch up pages for a single free */
1235 continue;
1236free_range:
1237 /* Free the current block of pages to allocator */
1238 nr_pages += nr_to_free;
1239 deferred_free_range(free_base_page, free_base_pfn,
1240 nr_to_free);
1241 free_base_page = NULL;
1242 free_base_pfn = nr_to_free = 0;
7e18adb4 1243 }
a4de83dd 1244
7e18adb4
MG
1245 first_init_pfn = max(end_pfn, first_init_pfn);
1246 }
1247
1248 /* Sanity check that the next zone really is unpopulated */
1249 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1250
0e1cc95b 1251 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1252 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1253
1254 pgdat_init_report_one_done();
0e1cc95b
MG
1255 return 0;
1256}
1257
1258void __init page_alloc_init_late(void)
1259{
1260 int nid;
1261
d3cd131d
NS
1262 /* There will be num_node_state(N_MEMORY) threads */
1263 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1264 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1265 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1266 }
1267
1268 /* Block until all are initialised */
d3cd131d 1269 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1270
1271 /* Reinit limits that are based on free pages after the kernel is up */
1272 files_maxfiles_init();
7e18adb4
MG
1273}
1274#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1275
47118af0 1276#ifdef CONFIG_CMA
9cf510a5 1277/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1278void __init init_cma_reserved_pageblock(struct page *page)
1279{
1280 unsigned i = pageblock_nr_pages;
1281 struct page *p = page;
1282
1283 do {
1284 __ClearPageReserved(p);
1285 set_page_count(p, 0);
1286 } while (++p, --i);
1287
47118af0 1288 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1289
1290 if (pageblock_order >= MAX_ORDER) {
1291 i = pageblock_nr_pages;
1292 p = page;
1293 do {
1294 set_page_refcounted(p);
1295 __free_pages(p, MAX_ORDER - 1);
1296 p += MAX_ORDER_NR_PAGES;
1297 } while (i -= MAX_ORDER_NR_PAGES);
1298 } else {
1299 set_page_refcounted(page);
1300 __free_pages(page, pageblock_order);
1301 }
1302
3dcc0571 1303 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1304}
1305#endif
1da177e4
LT
1306
1307/*
1308 * The order of subdivision here is critical for the IO subsystem.
1309 * Please do not alter this order without good reasons and regression
1310 * testing. Specifically, as large blocks of memory are subdivided,
1311 * the order in which smaller blocks are delivered depends on the order
1312 * they're subdivided in this function. This is the primary factor
1313 * influencing the order in which pages are delivered to the IO
1314 * subsystem according to empirical testing, and this is also justified
1315 * by considering the behavior of a buddy system containing a single
1316 * large block of memory acted on by a series of small allocations.
1317 * This behavior is a critical factor in sglist merging's success.
1318 *
6d49e352 1319 * -- nyc
1da177e4 1320 */
085cc7d5 1321static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1322 int low, int high, struct free_area *area,
1323 int migratetype)
1da177e4
LT
1324{
1325 unsigned long size = 1 << high;
1326
1327 while (high > low) {
1328 area--;
1329 high--;
1330 size >>= 1;
309381fe 1331 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1332
2847cf95 1333 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1334 debug_guardpage_enabled() &&
2847cf95 1335 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1336 /*
1337 * Mark as guard pages (or page), that will allow to
1338 * merge back to allocator when buddy will be freed.
1339 * Corresponding page table entries will not be touched,
1340 * pages will stay not present in virtual address space
1341 */
2847cf95 1342 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1343 continue;
1344 }
b2a0ac88 1345 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1346 area->nr_free++;
1347 set_page_order(&page[size], high);
1348 }
1da177e4
LT
1349}
1350
1da177e4
LT
1351/*
1352 * This page is about to be returned from the page allocator
1353 */
2a7684a2 1354static inline int check_new_page(struct page *page)
1da177e4 1355{
d230dec1 1356 const char *bad_reason = NULL;
f0b791a3
DH
1357 unsigned long bad_flags = 0;
1358
53f9263b 1359 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1360 bad_reason = "nonzero mapcount";
1361 if (unlikely(page->mapping != NULL))
1362 bad_reason = "non-NULL mapping";
1363 if (unlikely(atomic_read(&page->_count) != 0))
1364 bad_reason = "nonzero _count";
f4c18e6f
NH
1365 if (unlikely(page->flags & __PG_HWPOISON)) {
1366 bad_reason = "HWPoisoned (hardware-corrupted)";
1367 bad_flags = __PG_HWPOISON;
1368 }
f0b791a3
DH
1369 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1370 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1371 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1372 }
9edad6ea
JW
1373#ifdef CONFIG_MEMCG
1374 if (unlikely(page->mem_cgroup))
1375 bad_reason = "page still charged to cgroup";
1376#endif
f0b791a3
DH
1377 if (unlikely(bad_reason)) {
1378 bad_page(page, bad_reason, bad_flags);
689bcebf 1379 return 1;
8cc3b392 1380 }
2a7684a2
WF
1381 return 0;
1382}
1383
75379191
VB
1384static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1385 int alloc_flags)
2a7684a2
WF
1386{
1387 int i;
1388
1389 for (i = 0; i < (1 << order); i++) {
1390 struct page *p = page + i;
1391 if (unlikely(check_new_page(p)))
1392 return 1;
1393 }
689bcebf 1394
4c21e2f2 1395 set_page_private(page, 0);
7835e98b 1396 set_page_refcounted(page);
cc102509
NP
1397
1398 arch_alloc_page(page, order);
1da177e4 1399 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1400 kasan_alloc_pages(page, order);
17cf4406
NP
1401
1402 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1403 for (i = 0; i < (1 << order); i++)
1404 clear_highpage(page + i);
17cf4406
NP
1405
1406 if (order && (gfp_flags & __GFP_COMP))
1407 prep_compound_page(page, order);
1408
48c96a36
JK
1409 set_page_owner(page, order, gfp_flags);
1410
75379191 1411 /*
2f064f34 1412 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1413 * allocate the page. The expectation is that the caller is taking
1414 * steps that will free more memory. The caller should avoid the page
1415 * being used for !PFMEMALLOC purposes.
1416 */
2f064f34
MH
1417 if (alloc_flags & ALLOC_NO_WATERMARKS)
1418 set_page_pfmemalloc(page);
1419 else
1420 clear_page_pfmemalloc(page);
75379191 1421
689bcebf 1422 return 0;
1da177e4
LT
1423}
1424
56fd56b8
MG
1425/*
1426 * Go through the free lists for the given migratetype and remove
1427 * the smallest available page from the freelists
1428 */
728ec980
MG
1429static inline
1430struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1431 int migratetype)
1432{
1433 unsigned int current_order;
b8af2941 1434 struct free_area *area;
56fd56b8
MG
1435 struct page *page;
1436
1437 /* Find a page of the appropriate size in the preferred list */
1438 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1439 area = &(zone->free_area[current_order]);
a16601c5 1440 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1441 struct page, lru);
a16601c5
GT
1442 if (!page)
1443 continue;
56fd56b8
MG
1444 list_del(&page->lru);
1445 rmv_page_order(page);
1446 area->nr_free--;
56fd56b8 1447 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1448 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1449 return page;
1450 }
1451
1452 return NULL;
1453}
1454
1455
b2a0ac88
MG
1456/*
1457 * This array describes the order lists are fallen back to when
1458 * the free lists for the desirable migrate type are depleted
1459 */
47118af0 1460static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1461 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1462 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1463 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1464#ifdef CONFIG_CMA
974a786e 1465 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1466#endif
194159fb 1467#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1468 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1469#endif
b2a0ac88
MG
1470};
1471
dc67647b
JK
1472#ifdef CONFIG_CMA
1473static struct page *__rmqueue_cma_fallback(struct zone *zone,
1474 unsigned int order)
1475{
1476 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1477}
1478#else
1479static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1480 unsigned int order) { return NULL; }
1481#endif
1482
c361be55
MG
1483/*
1484 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1485 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1486 * boundary. If alignment is required, use move_freepages_block()
1487 */
435b405c 1488int move_freepages(struct zone *zone,
b69a7288
AB
1489 struct page *start_page, struct page *end_page,
1490 int migratetype)
c361be55
MG
1491{
1492 struct page *page;
d00181b9 1493 unsigned int order;
d100313f 1494 int pages_moved = 0;
c361be55
MG
1495
1496#ifndef CONFIG_HOLES_IN_ZONE
1497 /*
1498 * page_zone is not safe to call in this context when
1499 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1500 * anyway as we check zone boundaries in move_freepages_block().
1501 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1502 * grouping pages by mobility
c361be55 1503 */
97ee4ba7 1504 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1505#endif
1506
1507 for (page = start_page; page <= end_page;) {
344c790e 1508 /* Make sure we are not inadvertently changing nodes */
309381fe 1509 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1510
c361be55
MG
1511 if (!pfn_valid_within(page_to_pfn(page))) {
1512 page++;
1513 continue;
1514 }
1515
1516 if (!PageBuddy(page)) {
1517 page++;
1518 continue;
1519 }
1520
1521 order = page_order(page);
84be48d8
KS
1522 list_move(&page->lru,
1523 &zone->free_area[order].free_list[migratetype]);
c361be55 1524 page += 1 << order;
d100313f 1525 pages_moved += 1 << order;
c361be55
MG
1526 }
1527
d100313f 1528 return pages_moved;
c361be55
MG
1529}
1530
ee6f509c 1531int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1532 int migratetype)
c361be55
MG
1533{
1534 unsigned long start_pfn, end_pfn;
1535 struct page *start_page, *end_page;
1536
1537 start_pfn = page_to_pfn(page);
d9c23400 1538 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1539 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1540 end_page = start_page + pageblock_nr_pages - 1;
1541 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1542
1543 /* Do not cross zone boundaries */
108bcc96 1544 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1545 start_page = page;
108bcc96 1546 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1547 return 0;
1548
1549 return move_freepages(zone, start_page, end_page, migratetype);
1550}
1551
2f66a68f
MG
1552static void change_pageblock_range(struct page *pageblock_page,
1553 int start_order, int migratetype)
1554{
1555 int nr_pageblocks = 1 << (start_order - pageblock_order);
1556
1557 while (nr_pageblocks--) {
1558 set_pageblock_migratetype(pageblock_page, migratetype);
1559 pageblock_page += pageblock_nr_pages;
1560 }
1561}
1562
fef903ef 1563/*
9c0415eb
VB
1564 * When we are falling back to another migratetype during allocation, try to
1565 * steal extra free pages from the same pageblocks to satisfy further
1566 * allocations, instead of polluting multiple pageblocks.
1567 *
1568 * If we are stealing a relatively large buddy page, it is likely there will
1569 * be more free pages in the pageblock, so try to steal them all. For
1570 * reclaimable and unmovable allocations, we steal regardless of page size,
1571 * as fragmentation caused by those allocations polluting movable pageblocks
1572 * is worse than movable allocations stealing from unmovable and reclaimable
1573 * pageblocks.
fef903ef 1574 */
4eb7dce6
JK
1575static bool can_steal_fallback(unsigned int order, int start_mt)
1576{
1577 /*
1578 * Leaving this order check is intended, although there is
1579 * relaxed order check in next check. The reason is that
1580 * we can actually steal whole pageblock if this condition met,
1581 * but, below check doesn't guarantee it and that is just heuristic
1582 * so could be changed anytime.
1583 */
1584 if (order >= pageblock_order)
1585 return true;
1586
1587 if (order >= pageblock_order / 2 ||
1588 start_mt == MIGRATE_RECLAIMABLE ||
1589 start_mt == MIGRATE_UNMOVABLE ||
1590 page_group_by_mobility_disabled)
1591 return true;
1592
1593 return false;
1594}
1595
1596/*
1597 * This function implements actual steal behaviour. If order is large enough,
1598 * we can steal whole pageblock. If not, we first move freepages in this
1599 * pageblock and check whether half of pages are moved or not. If half of
1600 * pages are moved, we can change migratetype of pageblock and permanently
1601 * use it's pages as requested migratetype in the future.
1602 */
1603static void steal_suitable_fallback(struct zone *zone, struct page *page,
1604 int start_type)
fef903ef 1605{
d00181b9 1606 unsigned int current_order = page_order(page);
4eb7dce6 1607 int pages;
fef903ef 1608
fef903ef
SB
1609 /* Take ownership for orders >= pageblock_order */
1610 if (current_order >= pageblock_order) {
1611 change_pageblock_range(page, current_order, start_type);
3a1086fb 1612 return;
fef903ef
SB
1613 }
1614
4eb7dce6 1615 pages = move_freepages_block(zone, page, start_type);
fef903ef 1616
4eb7dce6
JK
1617 /* Claim the whole block if over half of it is free */
1618 if (pages >= (1 << (pageblock_order-1)) ||
1619 page_group_by_mobility_disabled)
1620 set_pageblock_migratetype(page, start_type);
1621}
1622
2149cdae
JK
1623/*
1624 * Check whether there is a suitable fallback freepage with requested order.
1625 * If only_stealable is true, this function returns fallback_mt only if
1626 * we can steal other freepages all together. This would help to reduce
1627 * fragmentation due to mixed migratetype pages in one pageblock.
1628 */
1629int find_suitable_fallback(struct free_area *area, unsigned int order,
1630 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1631{
1632 int i;
1633 int fallback_mt;
1634
1635 if (area->nr_free == 0)
1636 return -1;
1637
1638 *can_steal = false;
1639 for (i = 0;; i++) {
1640 fallback_mt = fallbacks[migratetype][i];
974a786e 1641 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1642 break;
1643
1644 if (list_empty(&area->free_list[fallback_mt]))
1645 continue;
fef903ef 1646
4eb7dce6
JK
1647 if (can_steal_fallback(order, migratetype))
1648 *can_steal = true;
1649
2149cdae
JK
1650 if (!only_stealable)
1651 return fallback_mt;
1652
1653 if (*can_steal)
1654 return fallback_mt;
fef903ef 1655 }
4eb7dce6
JK
1656
1657 return -1;
fef903ef
SB
1658}
1659
0aaa29a5
MG
1660/*
1661 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1662 * there are no empty page blocks that contain a page with a suitable order
1663 */
1664static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1665 unsigned int alloc_order)
1666{
1667 int mt;
1668 unsigned long max_managed, flags;
1669
1670 /*
1671 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1672 * Check is race-prone but harmless.
1673 */
1674 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1675 if (zone->nr_reserved_highatomic >= max_managed)
1676 return;
1677
1678 spin_lock_irqsave(&zone->lock, flags);
1679
1680 /* Recheck the nr_reserved_highatomic limit under the lock */
1681 if (zone->nr_reserved_highatomic >= max_managed)
1682 goto out_unlock;
1683
1684 /* Yoink! */
1685 mt = get_pageblock_migratetype(page);
1686 if (mt != MIGRATE_HIGHATOMIC &&
1687 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1688 zone->nr_reserved_highatomic += pageblock_nr_pages;
1689 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1690 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1691 }
1692
1693out_unlock:
1694 spin_unlock_irqrestore(&zone->lock, flags);
1695}
1696
1697/*
1698 * Used when an allocation is about to fail under memory pressure. This
1699 * potentially hurts the reliability of high-order allocations when under
1700 * intense memory pressure but failed atomic allocations should be easier
1701 * to recover from than an OOM.
1702 */
1703static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1704{
1705 struct zonelist *zonelist = ac->zonelist;
1706 unsigned long flags;
1707 struct zoneref *z;
1708 struct zone *zone;
1709 struct page *page;
1710 int order;
1711
1712 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1713 ac->nodemask) {
1714 /* Preserve at least one pageblock */
1715 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1716 continue;
1717
1718 spin_lock_irqsave(&zone->lock, flags);
1719 for (order = 0; order < MAX_ORDER; order++) {
1720 struct free_area *area = &(zone->free_area[order]);
1721
a16601c5
GT
1722 page = list_first_entry_or_null(
1723 &area->free_list[MIGRATE_HIGHATOMIC],
1724 struct page, lru);
1725 if (!page)
0aaa29a5
MG
1726 continue;
1727
0aaa29a5
MG
1728 /*
1729 * It should never happen but changes to locking could
1730 * inadvertently allow a per-cpu drain to add pages
1731 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1732 * and watch for underflows.
1733 */
1734 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1735 zone->nr_reserved_highatomic);
1736
1737 /*
1738 * Convert to ac->migratetype and avoid the normal
1739 * pageblock stealing heuristics. Minimally, the caller
1740 * is doing the work and needs the pages. More
1741 * importantly, if the block was always converted to
1742 * MIGRATE_UNMOVABLE or another type then the number
1743 * of pageblocks that cannot be completely freed
1744 * may increase.
1745 */
1746 set_pageblock_migratetype(page, ac->migratetype);
1747 move_freepages_block(zone, page, ac->migratetype);
1748 spin_unlock_irqrestore(&zone->lock, flags);
1749 return;
1750 }
1751 spin_unlock_irqrestore(&zone->lock, flags);
1752 }
1753}
1754
b2a0ac88 1755/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1756static inline struct page *
7aeb09f9 1757__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1758{
b8af2941 1759 struct free_area *area;
7aeb09f9 1760 unsigned int current_order;
b2a0ac88 1761 struct page *page;
4eb7dce6
JK
1762 int fallback_mt;
1763 bool can_steal;
b2a0ac88
MG
1764
1765 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1766 for (current_order = MAX_ORDER-1;
1767 current_order >= order && current_order <= MAX_ORDER-1;
1768 --current_order) {
4eb7dce6
JK
1769 area = &(zone->free_area[current_order]);
1770 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1771 start_migratetype, false, &can_steal);
4eb7dce6
JK
1772 if (fallback_mt == -1)
1773 continue;
b2a0ac88 1774
a16601c5 1775 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1776 struct page, lru);
1777 if (can_steal)
1778 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1779
4eb7dce6
JK
1780 /* Remove the page from the freelists */
1781 area->nr_free--;
1782 list_del(&page->lru);
1783 rmv_page_order(page);
3a1086fb 1784
4eb7dce6
JK
1785 expand(zone, page, order, current_order, area,
1786 start_migratetype);
1787 /*
bb14c2c7 1788 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1789 * migratetype depending on the decisions in
bb14c2c7
VB
1790 * find_suitable_fallback(). This is OK as long as it does not
1791 * differ for MIGRATE_CMA pageblocks. Those can be used as
1792 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1793 */
bb14c2c7 1794 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1795
4eb7dce6
JK
1796 trace_mm_page_alloc_extfrag(page, order, current_order,
1797 start_migratetype, fallback_mt);
e0fff1bd 1798
4eb7dce6 1799 return page;
b2a0ac88
MG
1800 }
1801
728ec980 1802 return NULL;
b2a0ac88
MG
1803}
1804
56fd56b8 1805/*
1da177e4
LT
1806 * Do the hard work of removing an element from the buddy allocator.
1807 * Call me with the zone->lock already held.
1808 */
b2a0ac88 1809static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1810 int migratetype)
1da177e4 1811{
1da177e4
LT
1812 struct page *page;
1813
56fd56b8 1814 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1815 if (unlikely(!page)) {
dc67647b
JK
1816 if (migratetype == MIGRATE_MOVABLE)
1817 page = __rmqueue_cma_fallback(zone, order);
1818
1819 if (!page)
1820 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1821 }
1822
0d3d062a 1823 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1824 return page;
1da177e4
LT
1825}
1826
5f63b720 1827/*
1da177e4
LT
1828 * Obtain a specified number of elements from the buddy allocator, all under
1829 * a single hold of the lock, for efficiency. Add them to the supplied list.
1830 * Returns the number of new pages which were placed at *list.
1831 */
5f63b720 1832static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1833 unsigned long count, struct list_head *list,
b745bc85 1834 int migratetype, bool cold)
1da177e4 1835{
5bcc9f86 1836 int i;
5f63b720 1837
c54ad30c 1838 spin_lock(&zone->lock);
1da177e4 1839 for (i = 0; i < count; ++i) {
6ac0206b 1840 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1841 if (unlikely(page == NULL))
1da177e4 1842 break;
81eabcbe
MG
1843
1844 /*
1845 * Split buddy pages returned by expand() are received here
1846 * in physical page order. The page is added to the callers and
1847 * list and the list head then moves forward. From the callers
1848 * perspective, the linked list is ordered by page number in
1849 * some conditions. This is useful for IO devices that can
1850 * merge IO requests if the physical pages are ordered
1851 * properly.
1852 */
b745bc85 1853 if (likely(!cold))
e084b2d9
MG
1854 list_add(&page->lru, list);
1855 else
1856 list_add_tail(&page->lru, list);
81eabcbe 1857 list = &page->lru;
bb14c2c7 1858 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1859 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1860 -(1 << order));
1da177e4 1861 }
f2260e6b 1862 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1863 spin_unlock(&zone->lock);
085cc7d5 1864 return i;
1da177e4
LT
1865}
1866
4ae7c039 1867#ifdef CONFIG_NUMA
8fce4d8e 1868/*
4037d452
CL
1869 * Called from the vmstat counter updater to drain pagesets of this
1870 * currently executing processor on remote nodes after they have
1871 * expired.
1872 *
879336c3
CL
1873 * Note that this function must be called with the thread pinned to
1874 * a single processor.
8fce4d8e 1875 */
4037d452 1876void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1877{
4ae7c039 1878 unsigned long flags;
7be12fc9 1879 int to_drain, batch;
4ae7c039 1880
4037d452 1881 local_irq_save(flags);
4db0c3c2 1882 batch = READ_ONCE(pcp->batch);
7be12fc9 1883 to_drain = min(pcp->count, batch);
2a13515c
KM
1884 if (to_drain > 0) {
1885 free_pcppages_bulk(zone, to_drain, pcp);
1886 pcp->count -= to_drain;
1887 }
4037d452 1888 local_irq_restore(flags);
4ae7c039
CL
1889}
1890#endif
1891
9f8f2172 1892/*
93481ff0 1893 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1894 *
1895 * The processor must either be the current processor and the
1896 * thread pinned to the current processor or a processor that
1897 * is not online.
1898 */
93481ff0 1899static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1900{
c54ad30c 1901 unsigned long flags;
93481ff0
VB
1902 struct per_cpu_pageset *pset;
1903 struct per_cpu_pages *pcp;
1da177e4 1904
93481ff0
VB
1905 local_irq_save(flags);
1906 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1907
93481ff0
VB
1908 pcp = &pset->pcp;
1909 if (pcp->count) {
1910 free_pcppages_bulk(zone, pcp->count, pcp);
1911 pcp->count = 0;
1912 }
1913 local_irq_restore(flags);
1914}
3dfa5721 1915
93481ff0
VB
1916/*
1917 * Drain pcplists of all zones on the indicated processor.
1918 *
1919 * The processor must either be the current processor and the
1920 * thread pinned to the current processor or a processor that
1921 * is not online.
1922 */
1923static void drain_pages(unsigned int cpu)
1924{
1925 struct zone *zone;
1926
1927 for_each_populated_zone(zone) {
1928 drain_pages_zone(cpu, zone);
1da177e4
LT
1929 }
1930}
1da177e4 1931
9f8f2172
CL
1932/*
1933 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1934 *
1935 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1936 * the single zone's pages.
9f8f2172 1937 */
93481ff0 1938void drain_local_pages(struct zone *zone)
9f8f2172 1939{
93481ff0
VB
1940 int cpu = smp_processor_id();
1941
1942 if (zone)
1943 drain_pages_zone(cpu, zone);
1944 else
1945 drain_pages(cpu);
9f8f2172
CL
1946}
1947
1948/*
74046494
GBY
1949 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1950 *
93481ff0
VB
1951 * When zone parameter is non-NULL, spill just the single zone's pages.
1952 *
74046494
GBY
1953 * Note that this code is protected against sending an IPI to an offline
1954 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1955 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1956 * nothing keeps CPUs from showing up after we populated the cpumask and
1957 * before the call to on_each_cpu_mask().
9f8f2172 1958 */
93481ff0 1959void drain_all_pages(struct zone *zone)
9f8f2172 1960{
74046494 1961 int cpu;
74046494
GBY
1962
1963 /*
1964 * Allocate in the BSS so we wont require allocation in
1965 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1966 */
1967 static cpumask_t cpus_with_pcps;
1968
1969 /*
1970 * We don't care about racing with CPU hotplug event
1971 * as offline notification will cause the notified
1972 * cpu to drain that CPU pcps and on_each_cpu_mask
1973 * disables preemption as part of its processing
1974 */
1975 for_each_online_cpu(cpu) {
93481ff0
VB
1976 struct per_cpu_pageset *pcp;
1977 struct zone *z;
74046494 1978 bool has_pcps = false;
93481ff0
VB
1979
1980 if (zone) {
74046494 1981 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1982 if (pcp->pcp.count)
74046494 1983 has_pcps = true;
93481ff0
VB
1984 } else {
1985 for_each_populated_zone(z) {
1986 pcp = per_cpu_ptr(z->pageset, cpu);
1987 if (pcp->pcp.count) {
1988 has_pcps = true;
1989 break;
1990 }
74046494
GBY
1991 }
1992 }
93481ff0 1993
74046494
GBY
1994 if (has_pcps)
1995 cpumask_set_cpu(cpu, &cpus_with_pcps);
1996 else
1997 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1998 }
93481ff0
VB
1999 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2000 zone, 1);
9f8f2172
CL
2001}
2002
296699de 2003#ifdef CONFIG_HIBERNATION
1da177e4
LT
2004
2005void mark_free_pages(struct zone *zone)
2006{
f623f0db
RW
2007 unsigned long pfn, max_zone_pfn;
2008 unsigned long flags;
7aeb09f9 2009 unsigned int order, t;
86760a2c 2010 struct page *page;
1da177e4 2011
8080fc03 2012 if (zone_is_empty(zone))
1da177e4
LT
2013 return;
2014
2015 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2016
108bcc96 2017 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2018 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2019 if (pfn_valid(pfn)) {
86760a2c 2020 page = pfn_to_page(pfn);
7be98234
RW
2021 if (!swsusp_page_is_forbidden(page))
2022 swsusp_unset_page_free(page);
f623f0db 2023 }
1da177e4 2024
b2a0ac88 2025 for_each_migratetype_order(order, t) {
86760a2c
GT
2026 list_for_each_entry(page,
2027 &zone->free_area[order].free_list[t], lru) {
f623f0db 2028 unsigned long i;
1da177e4 2029
86760a2c 2030 pfn = page_to_pfn(page);
f623f0db 2031 for (i = 0; i < (1UL << order); i++)
7be98234 2032 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2033 }
b2a0ac88 2034 }
1da177e4
LT
2035 spin_unlock_irqrestore(&zone->lock, flags);
2036}
e2c55dc8 2037#endif /* CONFIG_PM */
1da177e4 2038
1da177e4
LT
2039/*
2040 * Free a 0-order page
b745bc85 2041 * cold == true ? free a cold page : free a hot page
1da177e4 2042 */
b745bc85 2043void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2044{
2045 struct zone *zone = page_zone(page);
2046 struct per_cpu_pages *pcp;
2047 unsigned long flags;
dc4b0caf 2048 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2049 int migratetype;
1da177e4 2050
ec95f53a 2051 if (!free_pages_prepare(page, 0))
689bcebf
HD
2052 return;
2053
dc4b0caf 2054 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2055 set_pcppage_migratetype(page, migratetype);
1da177e4 2056 local_irq_save(flags);
f8891e5e 2057 __count_vm_event(PGFREE);
da456f14 2058
5f8dcc21
MG
2059 /*
2060 * We only track unmovable, reclaimable and movable on pcp lists.
2061 * Free ISOLATE pages back to the allocator because they are being
2062 * offlined but treat RESERVE as movable pages so we can get those
2063 * areas back if necessary. Otherwise, we may have to free
2064 * excessively into the page allocator
2065 */
2066 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2067 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2068 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2069 goto out;
2070 }
2071 migratetype = MIGRATE_MOVABLE;
2072 }
2073
99dcc3e5 2074 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2075 if (!cold)
5f8dcc21 2076 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2077 else
2078 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2079 pcp->count++;
48db57f8 2080 if (pcp->count >= pcp->high) {
4db0c3c2 2081 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2082 free_pcppages_bulk(zone, batch, pcp);
2083 pcp->count -= batch;
48db57f8 2084 }
5f8dcc21
MG
2085
2086out:
1da177e4 2087 local_irq_restore(flags);
1da177e4
LT
2088}
2089
cc59850e
KK
2090/*
2091 * Free a list of 0-order pages
2092 */
b745bc85 2093void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2094{
2095 struct page *page, *next;
2096
2097 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2098 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2099 free_hot_cold_page(page, cold);
2100 }
2101}
2102
8dfcc9ba
NP
2103/*
2104 * split_page takes a non-compound higher-order page, and splits it into
2105 * n (1<<order) sub-pages: page[0..n]
2106 * Each sub-page must be freed individually.
2107 *
2108 * Note: this is probably too low level an operation for use in drivers.
2109 * Please consult with lkml before using this in your driver.
2110 */
2111void split_page(struct page *page, unsigned int order)
2112{
2113 int i;
e2cfc911 2114 gfp_t gfp_mask;
8dfcc9ba 2115
309381fe
SL
2116 VM_BUG_ON_PAGE(PageCompound(page), page);
2117 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2118
2119#ifdef CONFIG_KMEMCHECK
2120 /*
2121 * Split shadow pages too, because free(page[0]) would
2122 * otherwise free the whole shadow.
2123 */
2124 if (kmemcheck_page_is_tracked(page))
2125 split_page(virt_to_page(page[0].shadow), order);
2126#endif
2127
e2cfc911
JK
2128 gfp_mask = get_page_owner_gfp(page);
2129 set_page_owner(page, 0, gfp_mask);
48c96a36 2130 for (i = 1; i < (1 << order); i++) {
7835e98b 2131 set_page_refcounted(page + i);
e2cfc911 2132 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2133 }
8dfcc9ba 2134}
5853ff23 2135EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2136
3c605096 2137int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2138{
748446bb
MG
2139 unsigned long watermark;
2140 struct zone *zone;
2139cbe6 2141 int mt;
748446bb
MG
2142
2143 BUG_ON(!PageBuddy(page));
2144
2145 zone = page_zone(page);
2e30abd1 2146 mt = get_pageblock_migratetype(page);
748446bb 2147
194159fb 2148 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2149 /* Obey watermarks as if the page was being allocated */
2150 watermark = low_wmark_pages(zone) + (1 << order);
2151 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2152 return 0;
2153
8fb74b9f 2154 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2155 }
748446bb
MG
2156
2157 /* Remove page from free list */
2158 list_del(&page->lru);
2159 zone->free_area[order].nr_free--;
2160 rmv_page_order(page);
2139cbe6 2161
e2cfc911 2162 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2163
8fb74b9f 2164 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2165 if (order >= pageblock_order - 1) {
2166 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2167 for (; page < endpage; page += pageblock_nr_pages) {
2168 int mt = get_pageblock_migratetype(page);
194159fb 2169 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2170 set_pageblock_migratetype(page,
2171 MIGRATE_MOVABLE);
2172 }
748446bb
MG
2173 }
2174
f3a14ced 2175
8fb74b9f 2176 return 1UL << order;
1fb3f8ca
MG
2177}
2178
2179/*
2180 * Similar to split_page except the page is already free. As this is only
2181 * being used for migration, the migratetype of the block also changes.
2182 * As this is called with interrupts disabled, the caller is responsible
2183 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2184 * are enabled.
2185 *
2186 * Note: this is probably too low level an operation for use in drivers.
2187 * Please consult with lkml before using this in your driver.
2188 */
2189int split_free_page(struct page *page)
2190{
2191 unsigned int order;
2192 int nr_pages;
2193
1fb3f8ca
MG
2194 order = page_order(page);
2195
8fb74b9f 2196 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2197 if (!nr_pages)
2198 return 0;
2199
2200 /* Split into individual pages */
2201 set_page_refcounted(page);
2202 split_page(page, order);
2203 return nr_pages;
748446bb
MG
2204}
2205
1da177e4 2206/*
75379191 2207 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2208 */
0a15c3e9
MG
2209static inline
2210struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2211 struct zone *zone, unsigned int order,
0aaa29a5 2212 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2213{
2214 unsigned long flags;
689bcebf 2215 struct page *page;
b745bc85 2216 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2217
48db57f8 2218 if (likely(order == 0)) {
1da177e4 2219 struct per_cpu_pages *pcp;
5f8dcc21 2220 struct list_head *list;
1da177e4 2221
1da177e4 2222 local_irq_save(flags);
99dcc3e5
CL
2223 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2224 list = &pcp->lists[migratetype];
5f8dcc21 2225 if (list_empty(list)) {
535131e6 2226 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2227 pcp->batch, list,
e084b2d9 2228 migratetype, cold);
5f8dcc21 2229 if (unlikely(list_empty(list)))
6fb332fa 2230 goto failed;
535131e6 2231 }
b92a6edd 2232
5f8dcc21 2233 if (cold)
a16601c5 2234 page = list_last_entry(list, struct page, lru);
5f8dcc21 2235 else
a16601c5 2236 page = list_first_entry(list, struct page, lru);
5f8dcc21 2237
b92a6edd
MG
2238 list_del(&page->lru);
2239 pcp->count--;
7fb1d9fc 2240 } else {
dab48dab
AM
2241 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2242 /*
2243 * __GFP_NOFAIL is not to be used in new code.
2244 *
2245 * All __GFP_NOFAIL callers should be fixed so that they
2246 * properly detect and handle allocation failures.
2247 *
2248 * We most definitely don't want callers attempting to
4923abf9 2249 * allocate greater than order-1 page units with
dab48dab
AM
2250 * __GFP_NOFAIL.
2251 */
4923abf9 2252 WARN_ON_ONCE(order > 1);
dab48dab 2253 }
1da177e4 2254 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2255
2256 page = NULL;
2257 if (alloc_flags & ALLOC_HARDER) {
2258 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2259 if (page)
2260 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2261 }
2262 if (!page)
6ac0206b 2263 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2264 spin_unlock(&zone->lock);
2265 if (!page)
2266 goto failed;
d1ce749a 2267 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2268 get_pcppage_migratetype(page));
1da177e4
LT
2269 }
2270
3a025760 2271 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2272 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2273 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2274 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2275
f8891e5e 2276 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2277 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2278 local_irq_restore(flags);
1da177e4 2279
309381fe 2280 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2281 return page;
a74609fa
NP
2282
2283failed:
2284 local_irq_restore(flags);
a74609fa 2285 return NULL;
1da177e4
LT
2286}
2287
933e312e
AM
2288#ifdef CONFIG_FAIL_PAGE_ALLOC
2289
b2588c4b 2290static struct {
933e312e
AM
2291 struct fault_attr attr;
2292
621a5f7a 2293 bool ignore_gfp_highmem;
71baba4b 2294 bool ignore_gfp_reclaim;
54114994 2295 u32 min_order;
933e312e
AM
2296} fail_page_alloc = {
2297 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2298 .ignore_gfp_reclaim = true,
621a5f7a 2299 .ignore_gfp_highmem = true,
54114994 2300 .min_order = 1,
933e312e
AM
2301};
2302
2303static int __init setup_fail_page_alloc(char *str)
2304{
2305 return setup_fault_attr(&fail_page_alloc.attr, str);
2306}
2307__setup("fail_page_alloc=", setup_fail_page_alloc);
2308
deaf386e 2309static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2310{
54114994 2311 if (order < fail_page_alloc.min_order)
deaf386e 2312 return false;
933e312e 2313 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2314 return false;
933e312e 2315 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2316 return false;
71baba4b
MG
2317 if (fail_page_alloc.ignore_gfp_reclaim &&
2318 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2319 return false;
933e312e
AM
2320
2321 return should_fail(&fail_page_alloc.attr, 1 << order);
2322}
2323
2324#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2325
2326static int __init fail_page_alloc_debugfs(void)
2327{
f4ae40a6 2328 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2329 struct dentry *dir;
933e312e 2330
dd48c085
AM
2331 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2332 &fail_page_alloc.attr);
2333 if (IS_ERR(dir))
2334 return PTR_ERR(dir);
933e312e 2335
b2588c4b 2336 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2337 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2338 goto fail;
2339 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2340 &fail_page_alloc.ignore_gfp_highmem))
2341 goto fail;
2342 if (!debugfs_create_u32("min-order", mode, dir,
2343 &fail_page_alloc.min_order))
2344 goto fail;
2345
2346 return 0;
2347fail:
dd48c085 2348 debugfs_remove_recursive(dir);
933e312e 2349
b2588c4b 2350 return -ENOMEM;
933e312e
AM
2351}
2352
2353late_initcall(fail_page_alloc_debugfs);
2354
2355#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2356
2357#else /* CONFIG_FAIL_PAGE_ALLOC */
2358
deaf386e 2359static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2360{
deaf386e 2361 return false;
933e312e
AM
2362}
2363
2364#endif /* CONFIG_FAIL_PAGE_ALLOC */
2365
1da177e4 2366/*
97a16fc8
MG
2367 * Return true if free base pages are above 'mark'. For high-order checks it
2368 * will return true of the order-0 watermark is reached and there is at least
2369 * one free page of a suitable size. Checking now avoids taking the zone lock
2370 * to check in the allocation paths if no pages are free.
1da177e4 2371 */
7aeb09f9
MG
2372static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2373 unsigned long mark, int classzone_idx, int alloc_flags,
2374 long free_pages)
1da177e4 2375{
d23ad423 2376 long min = mark;
1da177e4 2377 int o;
97a16fc8 2378 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2379
0aaa29a5 2380 /* free_pages may go negative - that's OK */
df0a6daa 2381 free_pages -= (1 << order) - 1;
0aaa29a5 2382
7fb1d9fc 2383 if (alloc_flags & ALLOC_HIGH)
1da177e4 2384 min -= min / 2;
0aaa29a5
MG
2385
2386 /*
2387 * If the caller does not have rights to ALLOC_HARDER then subtract
2388 * the high-atomic reserves. This will over-estimate the size of the
2389 * atomic reserve but it avoids a search.
2390 */
97a16fc8 2391 if (likely(!alloc_harder))
0aaa29a5
MG
2392 free_pages -= z->nr_reserved_highatomic;
2393 else
1da177e4 2394 min -= min / 4;
e2b19197 2395
d95ea5d1
BZ
2396#ifdef CONFIG_CMA
2397 /* If allocation can't use CMA areas don't use free CMA pages */
2398 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2399 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2400#endif
026b0814 2401
97a16fc8
MG
2402 /*
2403 * Check watermarks for an order-0 allocation request. If these
2404 * are not met, then a high-order request also cannot go ahead
2405 * even if a suitable page happened to be free.
2406 */
2407 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2408 return false;
1da177e4 2409
97a16fc8
MG
2410 /* If this is an order-0 request then the watermark is fine */
2411 if (!order)
2412 return true;
2413
2414 /* For a high-order request, check at least one suitable page is free */
2415 for (o = order; o < MAX_ORDER; o++) {
2416 struct free_area *area = &z->free_area[o];
2417 int mt;
2418
2419 if (!area->nr_free)
2420 continue;
2421
2422 if (alloc_harder)
2423 return true;
1da177e4 2424
97a16fc8
MG
2425 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2426 if (!list_empty(&area->free_list[mt]))
2427 return true;
2428 }
2429
2430#ifdef CONFIG_CMA
2431 if ((alloc_flags & ALLOC_CMA) &&
2432 !list_empty(&area->free_list[MIGRATE_CMA])) {
2433 return true;
2434 }
2435#endif
1da177e4 2436 }
97a16fc8 2437 return false;
88f5acf8
MG
2438}
2439
7aeb09f9 2440bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2441 int classzone_idx, int alloc_flags)
2442{
2443 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2444 zone_page_state(z, NR_FREE_PAGES));
2445}
2446
7aeb09f9 2447bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2448 unsigned long mark, int classzone_idx)
88f5acf8
MG
2449{
2450 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2451
2452 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2453 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2454
e2b19197 2455 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2456 free_pages);
1da177e4
LT
2457}
2458
9276b1bc 2459#ifdef CONFIG_NUMA
81c0a2bb
JW
2460static bool zone_local(struct zone *local_zone, struct zone *zone)
2461{
fff4068c 2462 return local_zone->node == zone->node;
81c0a2bb
JW
2463}
2464
957f822a
DR
2465static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2466{
5f7a75ac
MG
2467 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2468 RECLAIM_DISTANCE;
957f822a 2469}
9276b1bc 2470#else /* CONFIG_NUMA */
81c0a2bb
JW
2471static bool zone_local(struct zone *local_zone, struct zone *zone)
2472{
2473 return true;
2474}
2475
957f822a
DR
2476static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2477{
2478 return true;
2479}
9276b1bc
PJ
2480#endif /* CONFIG_NUMA */
2481
4ffeaf35
MG
2482static void reset_alloc_batches(struct zone *preferred_zone)
2483{
2484 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2485
2486 do {
2487 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2488 high_wmark_pages(zone) - low_wmark_pages(zone) -
2489 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2490 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2491 } while (zone++ != preferred_zone);
2492}
2493
7fb1d9fc 2494/*
0798e519 2495 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2496 * a page.
2497 */
2498static struct page *
a9263751
VB
2499get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2500 const struct alloc_context *ac)
753ee728 2501{
a9263751 2502 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2503 struct zoneref *z;
7fb1d9fc 2504 struct page *page = NULL;
5117f45d 2505 struct zone *zone;
4ffeaf35
MG
2506 int nr_fair_skipped = 0;
2507 bool zonelist_rescan;
54a6eb5c 2508
9276b1bc 2509zonelist_scan:
4ffeaf35
MG
2510 zonelist_rescan = false;
2511
7fb1d9fc 2512 /*
9276b1bc 2513 * Scan zonelist, looking for a zone with enough free.
344736f2 2514 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2515 */
a9263751
VB
2516 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2517 ac->nodemask) {
e085dbc5
JW
2518 unsigned long mark;
2519
664eedde
MG
2520 if (cpusets_enabled() &&
2521 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2522 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2523 continue;
81c0a2bb
JW
2524 /*
2525 * Distribute pages in proportion to the individual
2526 * zone size to ensure fair page aging. The zone a
2527 * page was allocated in should have no effect on the
2528 * time the page has in memory before being reclaimed.
81c0a2bb 2529 */
3a025760 2530 if (alloc_flags & ALLOC_FAIR) {
a9263751 2531 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2532 break;
57054651 2533 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2534 nr_fair_skipped++;
3a025760 2535 continue;
4ffeaf35 2536 }
81c0a2bb 2537 }
a756cf59
JW
2538 /*
2539 * When allocating a page cache page for writing, we
2540 * want to get it from a zone that is within its dirty
2541 * limit, such that no single zone holds more than its
2542 * proportional share of globally allowed dirty pages.
2543 * The dirty limits take into account the zone's
2544 * lowmem reserves and high watermark so that kswapd
2545 * should be able to balance it without having to
2546 * write pages from its LRU list.
2547 *
2548 * This may look like it could increase pressure on
2549 * lower zones by failing allocations in higher zones
2550 * before they are full. But the pages that do spill
2551 * over are limited as the lower zones are protected
2552 * by this very same mechanism. It should not become
2553 * a practical burden to them.
2554 *
2555 * XXX: For now, allow allocations to potentially
2556 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2557 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2558 * which is important when on a NUMA setup the allowed
2559 * zones are together not big enough to reach the
2560 * global limit. The proper fix for these situations
2561 * will require awareness of zones in the
2562 * dirty-throttling and the flusher threads.
2563 */
c9ab0c4f 2564 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2565 continue;
7fb1d9fc 2566
e085dbc5
JW
2567 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2568 if (!zone_watermark_ok(zone, order, mark,
a9263751 2569 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2570 int ret;
2571
5dab2911
MG
2572 /* Checked here to keep the fast path fast */
2573 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2574 if (alloc_flags & ALLOC_NO_WATERMARKS)
2575 goto try_this_zone;
2576
957f822a 2577 if (zone_reclaim_mode == 0 ||
a9263751 2578 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2579 continue;
2580
fa5e084e
MG
2581 ret = zone_reclaim(zone, gfp_mask, order);
2582 switch (ret) {
2583 case ZONE_RECLAIM_NOSCAN:
2584 /* did not scan */
cd38b115 2585 continue;
fa5e084e
MG
2586 case ZONE_RECLAIM_FULL:
2587 /* scanned but unreclaimable */
cd38b115 2588 continue;
fa5e084e
MG
2589 default:
2590 /* did we reclaim enough */
fed2719e 2591 if (zone_watermark_ok(zone, order, mark,
a9263751 2592 ac->classzone_idx, alloc_flags))
fed2719e
MG
2593 goto try_this_zone;
2594
fed2719e 2595 continue;
0798e519 2596 }
7fb1d9fc
RS
2597 }
2598
fa5e084e 2599try_this_zone:
a9263751 2600 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2601 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2602 if (page) {
2603 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2604 goto try_this_zone;
0aaa29a5
MG
2605
2606 /*
2607 * If this is a high-order atomic allocation then check
2608 * if the pageblock should be reserved for the future
2609 */
2610 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2611 reserve_highatomic_pageblock(page, zone, order);
2612
75379191
VB
2613 return page;
2614 }
54a6eb5c 2615 }
9276b1bc 2616
4ffeaf35
MG
2617 /*
2618 * The first pass makes sure allocations are spread fairly within the
2619 * local node. However, the local node might have free pages left
2620 * after the fairness batches are exhausted, and remote zones haven't
2621 * even been considered yet. Try once more without fairness, and
2622 * include remote zones now, before entering the slowpath and waking
2623 * kswapd: prefer spilling to a remote zone over swapping locally.
2624 */
2625 if (alloc_flags & ALLOC_FAIR) {
2626 alloc_flags &= ~ALLOC_FAIR;
2627 if (nr_fair_skipped) {
2628 zonelist_rescan = true;
a9263751 2629 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2630 }
2631 if (nr_online_nodes > 1)
2632 zonelist_rescan = true;
2633 }
2634
4ffeaf35
MG
2635 if (zonelist_rescan)
2636 goto zonelist_scan;
2637
2638 return NULL;
753ee728
MH
2639}
2640
29423e77
DR
2641/*
2642 * Large machines with many possible nodes should not always dump per-node
2643 * meminfo in irq context.
2644 */
2645static inline bool should_suppress_show_mem(void)
2646{
2647 bool ret = false;
2648
2649#if NODES_SHIFT > 8
2650 ret = in_interrupt();
2651#endif
2652 return ret;
2653}
2654
a238ab5b
DH
2655static DEFINE_RATELIMIT_STATE(nopage_rs,
2656 DEFAULT_RATELIMIT_INTERVAL,
2657 DEFAULT_RATELIMIT_BURST);
2658
d00181b9 2659void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2660{
a238ab5b
DH
2661 unsigned int filter = SHOW_MEM_FILTER_NODES;
2662
c0a32fc5
SG
2663 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2664 debug_guardpage_minorder() > 0)
a238ab5b
DH
2665 return;
2666
2667 /*
2668 * This documents exceptions given to allocations in certain
2669 * contexts that are allowed to allocate outside current's set
2670 * of allowed nodes.
2671 */
2672 if (!(gfp_mask & __GFP_NOMEMALLOC))
2673 if (test_thread_flag(TIF_MEMDIE) ||
2674 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2675 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2676 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2677 filter &= ~SHOW_MEM_FILTER_NODES;
2678
2679 if (fmt) {
3ee9a4f0
JP
2680 struct va_format vaf;
2681 va_list args;
2682
a238ab5b 2683 va_start(args, fmt);
3ee9a4f0
JP
2684
2685 vaf.fmt = fmt;
2686 vaf.va = &args;
2687
2688 pr_warn("%pV", &vaf);
2689
a238ab5b
DH
2690 va_end(args);
2691 }
2692
d00181b9 2693 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
3ee9a4f0 2694 current->comm, order, gfp_mask);
a238ab5b
DH
2695
2696 dump_stack();
2697 if (!should_suppress_show_mem())
2698 show_mem(filter);
2699}
2700
11e33f6a
MG
2701static inline struct page *
2702__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2703 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2704{
6e0fc46d
DR
2705 struct oom_control oc = {
2706 .zonelist = ac->zonelist,
2707 .nodemask = ac->nodemask,
2708 .gfp_mask = gfp_mask,
2709 .order = order,
6e0fc46d 2710 };
11e33f6a
MG
2711 struct page *page;
2712
9879de73
JW
2713 *did_some_progress = 0;
2714
9879de73 2715 /*
dc56401f
JW
2716 * Acquire the oom lock. If that fails, somebody else is
2717 * making progress for us.
9879de73 2718 */
dc56401f 2719 if (!mutex_trylock(&oom_lock)) {
9879de73 2720 *did_some_progress = 1;
11e33f6a 2721 schedule_timeout_uninterruptible(1);
1da177e4
LT
2722 return NULL;
2723 }
6b1de916 2724
11e33f6a
MG
2725 /*
2726 * Go through the zonelist yet one more time, keep very high watermark
2727 * here, this is only to catch a parallel oom killing, we must fail if
2728 * we're still under heavy pressure.
2729 */
a9263751
VB
2730 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2731 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2732 if (page)
11e33f6a
MG
2733 goto out;
2734
4365a567 2735 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2736 /* Coredumps can quickly deplete all memory reserves */
2737 if (current->flags & PF_DUMPCORE)
2738 goto out;
4365a567
KH
2739 /* The OOM killer will not help higher order allocs */
2740 if (order > PAGE_ALLOC_COSTLY_ORDER)
2741 goto out;
03668b3c 2742 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2743 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2744 goto out;
9083905a 2745 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2746 if (!(gfp_mask & __GFP_FS)) {
2747 /*
2748 * XXX: Page reclaim didn't yield anything,
2749 * and the OOM killer can't be invoked, but
9083905a 2750 * keep looping as per tradition.
cc873177
JW
2751 */
2752 *did_some_progress = 1;
9879de73 2753 goto out;
cc873177 2754 }
9083905a
JW
2755 if (pm_suspended_storage())
2756 goto out;
4167e9b2 2757 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2758 if (gfp_mask & __GFP_THISNODE)
2759 goto out;
2760 }
11e33f6a 2761 /* Exhausted what can be done so it's blamo time */
5020e285 2762 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2763 *did_some_progress = 1;
5020e285
MH
2764
2765 if (gfp_mask & __GFP_NOFAIL) {
2766 page = get_page_from_freelist(gfp_mask, order,
2767 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2768 /*
2769 * fallback to ignore cpuset restriction if our nodes
2770 * are depleted
2771 */
2772 if (!page)
2773 page = get_page_from_freelist(gfp_mask, order,
2774 ALLOC_NO_WATERMARKS, ac);
2775 }
2776 }
11e33f6a 2777out:
dc56401f 2778 mutex_unlock(&oom_lock);
11e33f6a
MG
2779 return page;
2780}
2781
56de7263
MG
2782#ifdef CONFIG_COMPACTION
2783/* Try memory compaction for high-order allocations before reclaim */
2784static struct page *
2785__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2786 int alloc_flags, const struct alloc_context *ac,
2787 enum migrate_mode mode, int *contended_compaction,
2788 bool *deferred_compaction)
56de7263 2789{
53853e2d 2790 unsigned long compact_result;
98dd3b48 2791 struct page *page;
53853e2d
VB
2792
2793 if (!order)
66199712 2794 return NULL;
66199712 2795
c06b1fca 2796 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2797 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2798 mode, contended_compaction);
c06b1fca 2799 current->flags &= ~PF_MEMALLOC;
56de7263 2800
98dd3b48
VB
2801 switch (compact_result) {
2802 case COMPACT_DEFERRED:
53853e2d 2803 *deferred_compaction = true;
98dd3b48
VB
2804 /* fall-through */
2805 case COMPACT_SKIPPED:
2806 return NULL;
2807 default:
2808 break;
2809 }
53853e2d 2810
98dd3b48
VB
2811 /*
2812 * At least in one zone compaction wasn't deferred or skipped, so let's
2813 * count a compaction stall
2814 */
2815 count_vm_event(COMPACTSTALL);
8fb74b9f 2816
a9263751
VB
2817 page = get_page_from_freelist(gfp_mask, order,
2818 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2819
98dd3b48
VB
2820 if (page) {
2821 struct zone *zone = page_zone(page);
53853e2d 2822
98dd3b48
VB
2823 zone->compact_blockskip_flush = false;
2824 compaction_defer_reset(zone, order, true);
2825 count_vm_event(COMPACTSUCCESS);
2826 return page;
2827 }
56de7263 2828
98dd3b48
VB
2829 /*
2830 * It's bad if compaction run occurs and fails. The most likely reason
2831 * is that pages exist, but not enough to satisfy watermarks.
2832 */
2833 count_vm_event(COMPACTFAIL);
66199712 2834
98dd3b48 2835 cond_resched();
56de7263
MG
2836
2837 return NULL;
2838}
2839#else
2840static inline struct page *
2841__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2842 int alloc_flags, const struct alloc_context *ac,
2843 enum migrate_mode mode, int *contended_compaction,
2844 bool *deferred_compaction)
56de7263
MG
2845{
2846 return NULL;
2847}
2848#endif /* CONFIG_COMPACTION */
2849
bba90710
MS
2850/* Perform direct synchronous page reclaim */
2851static int
a9263751
VB
2852__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2853 const struct alloc_context *ac)
11e33f6a 2854{
11e33f6a 2855 struct reclaim_state reclaim_state;
bba90710 2856 int progress;
11e33f6a
MG
2857
2858 cond_resched();
2859
2860 /* We now go into synchronous reclaim */
2861 cpuset_memory_pressure_bump();
c06b1fca 2862 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2863 lockdep_set_current_reclaim_state(gfp_mask);
2864 reclaim_state.reclaimed_slab = 0;
c06b1fca 2865 current->reclaim_state = &reclaim_state;
11e33f6a 2866
a9263751
VB
2867 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2868 ac->nodemask);
11e33f6a 2869
c06b1fca 2870 current->reclaim_state = NULL;
11e33f6a 2871 lockdep_clear_current_reclaim_state();
c06b1fca 2872 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2873
2874 cond_resched();
2875
bba90710
MS
2876 return progress;
2877}
2878
2879/* The really slow allocator path where we enter direct reclaim */
2880static inline struct page *
2881__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2882 int alloc_flags, const struct alloc_context *ac,
2883 unsigned long *did_some_progress)
bba90710
MS
2884{
2885 struct page *page = NULL;
2886 bool drained = false;
2887
a9263751 2888 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2889 if (unlikely(!(*did_some_progress)))
2890 return NULL;
11e33f6a 2891
9ee493ce 2892retry:
a9263751
VB
2893 page = get_page_from_freelist(gfp_mask, order,
2894 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2895
2896 /*
2897 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
2898 * pages are pinned on the per-cpu lists or in high alloc reserves.
2899 * Shrink them them and try again
9ee493ce
MG
2900 */
2901 if (!page && !drained) {
0aaa29a5 2902 unreserve_highatomic_pageblock(ac);
93481ff0 2903 drain_all_pages(NULL);
9ee493ce
MG
2904 drained = true;
2905 goto retry;
2906 }
2907
11e33f6a
MG
2908 return page;
2909}
2910
a9263751 2911static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2912{
2913 struct zoneref *z;
2914 struct zone *zone;
2915
a9263751
VB
2916 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2917 ac->high_zoneidx, ac->nodemask)
2918 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2919}
2920
341ce06f
PZ
2921static inline int
2922gfp_to_alloc_flags(gfp_t gfp_mask)
2923{
341ce06f 2924 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 2925
a56f57ff 2926 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2927 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2928
341ce06f
PZ
2929 /*
2930 * The caller may dip into page reserves a bit more if the caller
2931 * cannot run direct reclaim, or if the caller has realtime scheduling
2932 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 2933 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2934 */
e6223a3b 2935 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2936
d0164adc 2937 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 2938 /*
b104a35d
DR
2939 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2940 * if it can't schedule.
5c3240d9 2941 */
b104a35d 2942 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2943 alloc_flags |= ALLOC_HARDER;
523b9458 2944 /*
b104a35d 2945 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2946 * comment for __cpuset_node_allowed().
523b9458 2947 */
341ce06f 2948 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2949 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2950 alloc_flags |= ALLOC_HARDER;
2951
b37f1dd0
MG
2952 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2953 if (gfp_mask & __GFP_MEMALLOC)
2954 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2955 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2956 alloc_flags |= ALLOC_NO_WATERMARKS;
2957 else if (!in_interrupt() &&
2958 ((current->flags & PF_MEMALLOC) ||
2959 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2960 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2961 }
d95ea5d1 2962#ifdef CONFIG_CMA
43e7a34d 2963 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2964 alloc_flags |= ALLOC_CMA;
2965#endif
341ce06f
PZ
2966 return alloc_flags;
2967}
2968
072bb0aa
MG
2969bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2970{
b37f1dd0 2971 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2972}
2973
d0164adc
MG
2974static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2975{
2976 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2977}
2978
11e33f6a
MG
2979static inline struct page *
2980__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2981 struct alloc_context *ac)
11e33f6a 2982{
d0164adc 2983 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
2984 struct page *page = NULL;
2985 int alloc_flags;
2986 unsigned long pages_reclaimed = 0;
2987 unsigned long did_some_progress;
e0b9daeb 2988 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2989 bool deferred_compaction = false;
1f9efdef 2990 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2991
72807a74
MG
2992 /*
2993 * In the slowpath, we sanity check order to avoid ever trying to
2994 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2995 * be using allocators in order of preference for an area that is
2996 * too large.
2997 */
1fc28b70
MG
2998 if (order >= MAX_ORDER) {
2999 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3000 return NULL;
1fc28b70 3001 }
1da177e4 3002
d0164adc
MG
3003 /*
3004 * We also sanity check to catch abuse of atomic reserves being used by
3005 * callers that are not in atomic context.
3006 */
3007 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3008 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3009 gfp_mask &= ~__GFP_ATOMIC;
3010
952f3b51 3011 /*
4167e9b2
DR
3012 * If this allocation cannot block and it is for a specific node, then
3013 * fail early. There's no need to wakeup kswapd or retry for a
3014 * speculative node-specific allocation.
952f3b51 3015 */
d0164adc 3016 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
952f3b51
CL
3017 goto nopage;
3018
9879de73 3019retry:
d0164adc 3020 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3021 wake_all_kswapds(order, ac);
1da177e4 3022
9bf2229f 3023 /*
7fb1d9fc
RS
3024 * OK, we're below the kswapd watermark and have kicked background
3025 * reclaim. Now things get more complex, so set up alloc_flags according
3026 * to how we want to proceed.
9bf2229f 3027 */
341ce06f 3028 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3029
f33261d7
DR
3030 /*
3031 * Find the true preferred zone if the allocation is unconstrained by
3032 * cpusets.
3033 */
a9263751 3034 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3035 struct zoneref *preferred_zoneref;
a9263751
VB
3036 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3037 ac->high_zoneidx, NULL, &ac->preferred_zone);
3038 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3039 }
f33261d7 3040
341ce06f 3041 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3042 page = get_page_from_freelist(gfp_mask, order,
3043 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3044 if (page)
3045 goto got_pg;
1da177e4 3046
11e33f6a 3047 /* Allocate without watermarks if the context allows */
341ce06f 3048 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3049 /*
3050 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3051 * the allocation is high priority and these type of
3052 * allocations are system rather than user orientated
3053 */
a9263751 3054 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3055 page = get_page_from_freelist(gfp_mask, order,
3056 ALLOC_NO_WATERMARKS, ac);
3057 if (page)
3058 goto got_pg;
1da177e4
LT
3059 }
3060
d0164adc
MG
3061 /* Caller is not willing to reclaim, we can't balance anything */
3062 if (!can_direct_reclaim) {
aed0a0e3 3063 /*
33d53103
MH
3064 * All existing users of the __GFP_NOFAIL are blockable, so warn
3065 * of any new users that actually allow this type of allocation
3066 * to fail.
aed0a0e3
DR
3067 */
3068 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3069 goto nopage;
aed0a0e3 3070 }
1da177e4 3071
341ce06f 3072 /* Avoid recursion of direct reclaim */
33d53103
MH
3073 if (current->flags & PF_MEMALLOC) {
3074 /*
3075 * __GFP_NOFAIL request from this context is rather bizarre
3076 * because we cannot reclaim anything and only can loop waiting
3077 * for somebody to do a work for us.
3078 */
3079 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3080 cond_resched();
3081 goto retry;
3082 }
341ce06f 3083 goto nopage;
33d53103 3084 }
341ce06f 3085
6583bb64
DR
3086 /* Avoid allocations with no watermarks from looping endlessly */
3087 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3088 goto nopage;
3089
77f1fe6b
MG
3090 /*
3091 * Try direct compaction. The first pass is asynchronous. Subsequent
3092 * attempts after direct reclaim are synchronous
3093 */
a9263751
VB
3094 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3095 migration_mode,
3096 &contended_compaction,
53853e2d 3097 &deferred_compaction);
56de7263
MG
3098 if (page)
3099 goto got_pg;
75f30861 3100
1f9efdef 3101 /* Checks for THP-specific high-order allocations */
d0164adc 3102 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3103 /*
3104 * If compaction is deferred for high-order allocations, it is
3105 * because sync compaction recently failed. If this is the case
3106 * and the caller requested a THP allocation, we do not want
3107 * to heavily disrupt the system, so we fail the allocation
3108 * instead of entering direct reclaim.
3109 */
3110 if (deferred_compaction)
3111 goto nopage;
3112
3113 /*
3114 * In all zones where compaction was attempted (and not
3115 * deferred or skipped), lock contention has been detected.
3116 * For THP allocation we do not want to disrupt the others
3117 * so we fallback to base pages instead.
3118 */
3119 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3120 goto nopage;
3121
3122 /*
3123 * If compaction was aborted due to need_resched(), we do not
3124 * want to further increase allocation latency, unless it is
3125 * khugepaged trying to collapse.
3126 */
3127 if (contended_compaction == COMPACT_CONTENDED_SCHED
3128 && !(current->flags & PF_KTHREAD))
3129 goto nopage;
3130 }
66199712 3131
8fe78048
DR
3132 /*
3133 * It can become very expensive to allocate transparent hugepages at
3134 * fault, so use asynchronous memory compaction for THP unless it is
3135 * khugepaged trying to collapse.
3136 */
d0164adc 3137 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3138 migration_mode = MIGRATE_SYNC_LIGHT;
3139
11e33f6a 3140 /* Try direct reclaim and then allocating */
a9263751
VB
3141 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3142 &did_some_progress);
11e33f6a
MG
3143 if (page)
3144 goto got_pg;
1da177e4 3145
9083905a
JW
3146 /* Do not loop if specifically requested */
3147 if (gfp_mask & __GFP_NORETRY)
3148 goto noretry;
3149
3150 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3151 pages_reclaimed += did_some_progress;
9083905a
JW
3152 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3153 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3154 /* Wait for some write requests to complete then retry */
a9263751 3155 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3156 goto retry;
1da177e4
LT
3157 }
3158
9083905a
JW
3159 /* Reclaim has failed us, start killing things */
3160 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3161 if (page)
3162 goto got_pg;
3163
3164 /* Retry as long as the OOM killer is making progress */
3165 if (did_some_progress)
3166 goto retry;
3167
3168noretry:
3169 /*
3170 * High-order allocations do not necessarily loop after
3171 * direct reclaim and reclaim/compaction depends on compaction
3172 * being called after reclaim so call directly if necessary
3173 */
3174 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3175 ac, migration_mode,
3176 &contended_compaction,
3177 &deferred_compaction);
3178 if (page)
3179 goto got_pg;
1da177e4 3180nopage:
a238ab5b 3181 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3182got_pg:
072bb0aa 3183 return page;
1da177e4 3184}
11e33f6a
MG
3185
3186/*
3187 * This is the 'heart' of the zoned buddy allocator.
3188 */
3189struct page *
3190__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3191 struct zonelist *zonelist, nodemask_t *nodemask)
3192{
d8846374 3193 struct zoneref *preferred_zoneref;
cc9a6c87 3194 struct page *page = NULL;
cc9a6c87 3195 unsigned int cpuset_mems_cookie;
3a025760 3196 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3197 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3198 struct alloc_context ac = {
3199 .high_zoneidx = gfp_zone(gfp_mask),
3200 .nodemask = nodemask,
3201 .migratetype = gfpflags_to_migratetype(gfp_mask),
3202 };
11e33f6a 3203
dcce284a
BH
3204 gfp_mask &= gfp_allowed_mask;
3205
11e33f6a
MG
3206 lockdep_trace_alloc(gfp_mask);
3207
d0164adc 3208 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3209
3210 if (should_fail_alloc_page(gfp_mask, order))
3211 return NULL;
3212
3213 /*
3214 * Check the zones suitable for the gfp_mask contain at least one
3215 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3216 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3217 */
3218 if (unlikely(!zonelist->_zonerefs->zone))
3219 return NULL;
3220
a9263751 3221 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3222 alloc_flags |= ALLOC_CMA;
3223
cc9a6c87 3224retry_cpuset:
d26914d1 3225 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3226
a9263751
VB
3227 /* We set it here, as __alloc_pages_slowpath might have changed it */
3228 ac.zonelist = zonelist;
c9ab0c4f
MG
3229
3230 /* Dirty zone balancing only done in the fast path */
3231 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3232
5117f45d 3233 /* The preferred zone is used for statistics later */
a9263751
VB
3234 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3235 ac.nodemask ? : &cpuset_current_mems_allowed,
3236 &ac.preferred_zone);
3237 if (!ac.preferred_zone)
cc9a6c87 3238 goto out;
a9263751 3239 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3240
3241 /* First allocation attempt */
91fbdc0f 3242 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3243 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3244 if (unlikely(!page)) {
3245 /*
3246 * Runtime PM, block IO and its error handling path
3247 * can deadlock because I/O on the device might not
3248 * complete.
3249 */
91fbdc0f 3250 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3251 ac.spread_dirty_pages = false;
91fbdc0f 3252
a9263751 3253 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3254 }
11e33f6a 3255
23f086f9
XQ
3256 if (kmemcheck_enabled && page)
3257 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3258
a9263751 3259 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3260
3261out:
3262 /*
3263 * When updating a task's mems_allowed, it is possible to race with
3264 * parallel threads in such a way that an allocation can fail while
3265 * the mask is being updated. If a page allocation is about to fail,
3266 * check if the cpuset changed during allocation and if so, retry.
3267 */
d26914d1 3268 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3269 goto retry_cpuset;
3270
11e33f6a 3271 return page;
1da177e4 3272}
d239171e 3273EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3274
3275/*
3276 * Common helper functions.
3277 */
920c7a5d 3278unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3279{
945a1113
AM
3280 struct page *page;
3281
3282 /*
3283 * __get_free_pages() returns a 32-bit address, which cannot represent
3284 * a highmem page
3285 */
3286 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3287
1da177e4
LT
3288 page = alloc_pages(gfp_mask, order);
3289 if (!page)
3290 return 0;
3291 return (unsigned long) page_address(page);
3292}
1da177e4
LT
3293EXPORT_SYMBOL(__get_free_pages);
3294
920c7a5d 3295unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3296{
945a1113 3297 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3298}
1da177e4
LT
3299EXPORT_SYMBOL(get_zeroed_page);
3300
920c7a5d 3301void __free_pages(struct page *page, unsigned int order)
1da177e4 3302{
b5810039 3303 if (put_page_testzero(page)) {
1da177e4 3304 if (order == 0)
b745bc85 3305 free_hot_cold_page(page, false);
1da177e4
LT
3306 else
3307 __free_pages_ok(page, order);
3308 }
3309}
3310
3311EXPORT_SYMBOL(__free_pages);
3312
920c7a5d 3313void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3314{
3315 if (addr != 0) {
725d704e 3316 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3317 __free_pages(virt_to_page((void *)addr), order);
3318 }
3319}
3320
3321EXPORT_SYMBOL(free_pages);
3322
b63ae8ca
AD
3323/*
3324 * Page Fragment:
3325 * An arbitrary-length arbitrary-offset area of memory which resides
3326 * within a 0 or higher order page. Multiple fragments within that page
3327 * are individually refcounted, in the page's reference counter.
3328 *
3329 * The page_frag functions below provide a simple allocation framework for
3330 * page fragments. This is used by the network stack and network device
3331 * drivers to provide a backing region of memory for use as either an
3332 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3333 */
3334static struct page *__page_frag_refill(struct page_frag_cache *nc,
3335 gfp_t gfp_mask)
3336{
3337 struct page *page = NULL;
3338 gfp_t gfp = gfp_mask;
3339
3340#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3341 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3342 __GFP_NOMEMALLOC;
3343 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3344 PAGE_FRAG_CACHE_MAX_ORDER);
3345 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3346#endif
3347 if (unlikely(!page))
3348 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3349
3350 nc->va = page ? page_address(page) : NULL;
3351
3352 return page;
3353}
3354
3355void *__alloc_page_frag(struct page_frag_cache *nc,
3356 unsigned int fragsz, gfp_t gfp_mask)
3357{
3358 unsigned int size = PAGE_SIZE;
3359 struct page *page;
3360 int offset;
3361
3362 if (unlikely(!nc->va)) {
3363refill:
3364 page = __page_frag_refill(nc, gfp_mask);
3365 if (!page)
3366 return NULL;
3367
3368#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3369 /* if size can vary use size else just use PAGE_SIZE */
3370 size = nc->size;
3371#endif
3372 /* Even if we own the page, we do not use atomic_set().
3373 * This would break get_page_unless_zero() users.
3374 */
3375 atomic_add(size - 1, &page->_count);
3376
3377 /* reset page count bias and offset to start of new frag */
2f064f34 3378 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3379 nc->pagecnt_bias = size;
3380 nc->offset = size;
3381 }
3382
3383 offset = nc->offset - fragsz;
3384 if (unlikely(offset < 0)) {
3385 page = virt_to_page(nc->va);
3386
3387 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3388 goto refill;
3389
3390#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3391 /* if size can vary use size else just use PAGE_SIZE */
3392 size = nc->size;
3393#endif
3394 /* OK, page count is 0, we can safely set it */
3395 atomic_set(&page->_count, size);
3396
3397 /* reset page count bias and offset to start of new frag */
3398 nc->pagecnt_bias = size;
3399 offset = size - fragsz;
3400 }
3401
3402 nc->pagecnt_bias--;
3403 nc->offset = offset;
3404
3405 return nc->va + offset;
3406}
3407EXPORT_SYMBOL(__alloc_page_frag);
3408
3409/*
3410 * Frees a page fragment allocated out of either a compound or order 0 page.
3411 */
3412void __free_page_frag(void *addr)
3413{
3414 struct page *page = virt_to_head_page(addr);
3415
3416 if (unlikely(put_page_testzero(page)))
3417 __free_pages_ok(page, compound_order(page));
3418}
3419EXPORT_SYMBOL(__free_page_frag);
3420
6a1a0d3b 3421/*
52383431 3422 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3423 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3424 * equivalent to alloc_pages.
6a1a0d3b 3425 *
52383431
VD
3426 * It should be used when the caller would like to use kmalloc, but since the
3427 * allocation is large, it has to fall back to the page allocator.
3428 */
3429struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3430{
3431 struct page *page;
52383431 3432
52383431 3433 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3434 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3435 __free_pages(page, order);
3436 page = NULL;
3437 }
52383431
VD
3438 return page;
3439}
3440
3441struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3442{
3443 struct page *page;
52383431 3444
52383431 3445 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3446 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3447 __free_pages(page, order);
3448 page = NULL;
3449 }
52383431
VD
3450 return page;
3451}
3452
3453/*
3454 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3455 * alloc_kmem_pages.
6a1a0d3b 3456 */
52383431 3457void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3458{
d05e83a6 3459 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3460 __free_pages(page, order);
3461}
3462
52383431 3463void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3464{
3465 if (addr != 0) {
3466 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3467 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3468 }
3469}
3470
d00181b9
KS
3471static void *make_alloc_exact(unsigned long addr, unsigned int order,
3472 size_t size)
ee85c2e1
AK
3473{
3474 if (addr) {
3475 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3476 unsigned long used = addr + PAGE_ALIGN(size);
3477
3478 split_page(virt_to_page((void *)addr), order);
3479 while (used < alloc_end) {
3480 free_page(used);
3481 used += PAGE_SIZE;
3482 }
3483 }
3484 return (void *)addr;
3485}
3486
2be0ffe2
TT
3487/**
3488 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3489 * @size: the number of bytes to allocate
3490 * @gfp_mask: GFP flags for the allocation
3491 *
3492 * This function is similar to alloc_pages(), except that it allocates the
3493 * minimum number of pages to satisfy the request. alloc_pages() can only
3494 * allocate memory in power-of-two pages.
3495 *
3496 * This function is also limited by MAX_ORDER.
3497 *
3498 * Memory allocated by this function must be released by free_pages_exact().
3499 */
3500void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3501{
3502 unsigned int order = get_order(size);
3503 unsigned long addr;
3504
3505 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3506 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3507}
3508EXPORT_SYMBOL(alloc_pages_exact);
3509
ee85c2e1
AK
3510/**
3511 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3512 * pages on a node.
b5e6ab58 3513 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3514 * @size: the number of bytes to allocate
3515 * @gfp_mask: GFP flags for the allocation
3516 *
3517 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3518 * back.
ee85c2e1 3519 */
e1931811 3520void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3521{
d00181b9 3522 unsigned int order = get_order(size);
ee85c2e1
AK
3523 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3524 if (!p)
3525 return NULL;
3526 return make_alloc_exact((unsigned long)page_address(p), order, size);
3527}
ee85c2e1 3528
2be0ffe2
TT
3529/**
3530 * free_pages_exact - release memory allocated via alloc_pages_exact()
3531 * @virt: the value returned by alloc_pages_exact.
3532 * @size: size of allocation, same value as passed to alloc_pages_exact().
3533 *
3534 * Release the memory allocated by a previous call to alloc_pages_exact.
3535 */
3536void free_pages_exact(void *virt, size_t size)
3537{
3538 unsigned long addr = (unsigned long)virt;
3539 unsigned long end = addr + PAGE_ALIGN(size);
3540
3541 while (addr < end) {
3542 free_page(addr);
3543 addr += PAGE_SIZE;
3544 }
3545}
3546EXPORT_SYMBOL(free_pages_exact);
3547
e0fb5815
ZY
3548/**
3549 * nr_free_zone_pages - count number of pages beyond high watermark
3550 * @offset: The zone index of the highest zone
3551 *
3552 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3553 * high watermark within all zones at or below a given zone index. For each
3554 * zone, the number of pages is calculated as:
834405c3 3555 * managed_pages - high_pages
e0fb5815 3556 */
ebec3862 3557static unsigned long nr_free_zone_pages(int offset)
1da177e4 3558{
dd1a239f 3559 struct zoneref *z;
54a6eb5c
MG
3560 struct zone *zone;
3561
e310fd43 3562 /* Just pick one node, since fallback list is circular */
ebec3862 3563 unsigned long sum = 0;
1da177e4 3564
0e88460d 3565 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3566
54a6eb5c 3567 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3568 unsigned long size = zone->managed_pages;
41858966 3569 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3570 if (size > high)
3571 sum += size - high;
1da177e4
LT
3572 }
3573
3574 return sum;
3575}
3576
e0fb5815
ZY
3577/**
3578 * nr_free_buffer_pages - count number of pages beyond high watermark
3579 *
3580 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3581 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3582 */
ebec3862 3583unsigned long nr_free_buffer_pages(void)
1da177e4 3584{
af4ca457 3585 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3586}
c2f1a551 3587EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3588
e0fb5815
ZY
3589/**
3590 * nr_free_pagecache_pages - count number of pages beyond high watermark
3591 *
3592 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3593 * high watermark within all zones.
1da177e4 3594 */
ebec3862 3595unsigned long nr_free_pagecache_pages(void)
1da177e4 3596{
2a1e274a 3597 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3598}
08e0f6a9
CL
3599
3600static inline void show_node(struct zone *zone)
1da177e4 3601{
e5adfffc 3602 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3603 printk("Node %d ", zone_to_nid(zone));
1da177e4 3604}
1da177e4 3605
1da177e4
LT
3606void si_meminfo(struct sysinfo *val)
3607{
3608 val->totalram = totalram_pages;
cc7452b6 3609 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3610 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3611 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3612 val->totalhigh = totalhigh_pages;
3613 val->freehigh = nr_free_highpages();
1da177e4
LT
3614 val->mem_unit = PAGE_SIZE;
3615}
3616
3617EXPORT_SYMBOL(si_meminfo);
3618
3619#ifdef CONFIG_NUMA
3620void si_meminfo_node(struct sysinfo *val, int nid)
3621{
cdd91a77
JL
3622 int zone_type; /* needs to be signed */
3623 unsigned long managed_pages = 0;
1da177e4
LT
3624 pg_data_t *pgdat = NODE_DATA(nid);
3625
cdd91a77
JL
3626 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3627 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3628 val->totalram = managed_pages;
cc7452b6 3629 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3630 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3631#ifdef CONFIG_HIGHMEM
b40da049 3632 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3633 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3634 NR_FREE_PAGES);
98d2b0eb
CL
3635#else
3636 val->totalhigh = 0;
3637 val->freehigh = 0;
3638#endif
1da177e4
LT
3639 val->mem_unit = PAGE_SIZE;
3640}
3641#endif
3642
ddd588b5 3643/*
7bf02ea2
DR
3644 * Determine whether the node should be displayed or not, depending on whether
3645 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3646 */
7bf02ea2 3647bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3648{
3649 bool ret = false;
cc9a6c87 3650 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3651
3652 if (!(flags & SHOW_MEM_FILTER_NODES))
3653 goto out;
3654
cc9a6c87 3655 do {
d26914d1 3656 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3657 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3658 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3659out:
3660 return ret;
3661}
3662
1da177e4
LT
3663#define K(x) ((x) << (PAGE_SHIFT-10))
3664
377e4f16
RV
3665static void show_migration_types(unsigned char type)
3666{
3667 static const char types[MIGRATE_TYPES] = {
3668 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3669 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3670 [MIGRATE_RECLAIMABLE] = 'E',
3671 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3672#ifdef CONFIG_CMA
3673 [MIGRATE_CMA] = 'C',
3674#endif
194159fb 3675#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3676 [MIGRATE_ISOLATE] = 'I',
194159fb 3677#endif
377e4f16
RV
3678 };
3679 char tmp[MIGRATE_TYPES + 1];
3680 char *p = tmp;
3681 int i;
3682
3683 for (i = 0; i < MIGRATE_TYPES; i++) {
3684 if (type & (1 << i))
3685 *p++ = types[i];
3686 }
3687
3688 *p = '\0';
3689 printk("(%s) ", tmp);
3690}
3691
1da177e4
LT
3692/*
3693 * Show free area list (used inside shift_scroll-lock stuff)
3694 * We also calculate the percentage fragmentation. We do this by counting the
3695 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3696 *
3697 * Bits in @filter:
3698 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3699 * cpuset.
1da177e4 3700 */
7bf02ea2 3701void show_free_areas(unsigned int filter)
1da177e4 3702{
d1bfcdb8 3703 unsigned long free_pcp = 0;
c7241913 3704 int cpu;
1da177e4
LT
3705 struct zone *zone;
3706
ee99c71c 3707 for_each_populated_zone(zone) {
7bf02ea2 3708 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3709 continue;
d1bfcdb8 3710
761b0677
KK
3711 for_each_online_cpu(cpu)
3712 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3713 }
3714
a731286d
KM
3715 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3716 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3717 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3718 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3719 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3720 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3721 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3722 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3723 global_page_state(NR_ISOLATED_ANON),
3724 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3725 global_page_state(NR_INACTIVE_FILE),
a731286d 3726 global_page_state(NR_ISOLATED_FILE),
7b854121 3727 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3728 global_page_state(NR_FILE_DIRTY),
ce866b34 3729 global_page_state(NR_WRITEBACK),
fd39fc85 3730 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3731 global_page_state(NR_SLAB_RECLAIMABLE),
3732 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3733 global_page_state(NR_FILE_MAPPED),
4b02108a 3734 global_page_state(NR_SHMEM),
a25700a5 3735 global_page_state(NR_PAGETABLE),
d1ce749a 3736 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3737 global_page_state(NR_FREE_PAGES),
3738 free_pcp,
d1ce749a 3739 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3740
ee99c71c 3741 for_each_populated_zone(zone) {
1da177e4
LT
3742 int i;
3743
7bf02ea2 3744 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3745 continue;
d1bfcdb8
KK
3746
3747 free_pcp = 0;
3748 for_each_online_cpu(cpu)
3749 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3750
1da177e4
LT
3751 show_node(zone);
3752 printk("%s"
3753 " free:%lukB"
3754 " min:%lukB"
3755 " low:%lukB"
3756 " high:%lukB"
4f98a2fe
RR
3757 " active_anon:%lukB"
3758 " inactive_anon:%lukB"
3759 " active_file:%lukB"
3760 " inactive_file:%lukB"
7b854121 3761 " unevictable:%lukB"
a731286d
KM
3762 " isolated(anon):%lukB"
3763 " isolated(file):%lukB"
1da177e4 3764 " present:%lukB"
9feedc9d 3765 " managed:%lukB"
4a0aa73f
KM
3766 " mlocked:%lukB"
3767 " dirty:%lukB"
3768 " writeback:%lukB"
3769 " mapped:%lukB"
4b02108a 3770 " shmem:%lukB"
4a0aa73f
KM
3771 " slab_reclaimable:%lukB"
3772 " slab_unreclaimable:%lukB"
c6a7f572 3773 " kernel_stack:%lukB"
4a0aa73f
KM
3774 " pagetables:%lukB"
3775 " unstable:%lukB"
3776 " bounce:%lukB"
d1bfcdb8
KK
3777 " free_pcp:%lukB"
3778 " local_pcp:%ukB"
d1ce749a 3779 " free_cma:%lukB"
4a0aa73f 3780 " writeback_tmp:%lukB"
1da177e4
LT
3781 " pages_scanned:%lu"
3782 " all_unreclaimable? %s"
3783 "\n",
3784 zone->name,
88f5acf8 3785 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3786 K(min_wmark_pages(zone)),
3787 K(low_wmark_pages(zone)),
3788 K(high_wmark_pages(zone)),
4f98a2fe
RR
3789 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3790 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3791 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3792 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3793 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3794 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3795 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3796 K(zone->present_pages),
9feedc9d 3797 K(zone->managed_pages),
4a0aa73f
KM
3798 K(zone_page_state(zone, NR_MLOCK)),
3799 K(zone_page_state(zone, NR_FILE_DIRTY)),
3800 K(zone_page_state(zone, NR_WRITEBACK)),
3801 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3802 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3803 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3804 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3805 zone_page_state(zone, NR_KERNEL_STACK) *
3806 THREAD_SIZE / 1024,
4a0aa73f
KM
3807 K(zone_page_state(zone, NR_PAGETABLE)),
3808 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3809 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3810 K(free_pcp),
3811 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3812 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3813 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3814 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3815 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3816 );
3817 printk("lowmem_reserve[]:");
3818 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3819 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3820 printk("\n");
3821 }
3822
ee99c71c 3823 for_each_populated_zone(zone) {
d00181b9
KS
3824 unsigned int order;
3825 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3826 unsigned char types[MAX_ORDER];
1da177e4 3827
7bf02ea2 3828 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3829 continue;
1da177e4
LT
3830 show_node(zone);
3831 printk("%s: ", zone->name);
1da177e4
LT
3832
3833 spin_lock_irqsave(&zone->lock, flags);
3834 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3835 struct free_area *area = &zone->free_area[order];
3836 int type;
3837
3838 nr[order] = area->nr_free;
8f9de51a 3839 total += nr[order] << order;
377e4f16
RV
3840
3841 types[order] = 0;
3842 for (type = 0; type < MIGRATE_TYPES; type++) {
3843 if (!list_empty(&area->free_list[type]))
3844 types[order] |= 1 << type;
3845 }
1da177e4
LT
3846 }
3847 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3848 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3849 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3850 if (nr[order])
3851 show_migration_types(types[order]);
3852 }
1da177e4
LT
3853 printk("= %lukB\n", K(total));
3854 }
3855
949f7ec5
DR
3856 hugetlb_show_meminfo();
3857
e6f3602d
LW
3858 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3859
1da177e4
LT
3860 show_swap_cache_info();
3861}
3862
19770b32
MG
3863static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3864{
3865 zoneref->zone = zone;
3866 zoneref->zone_idx = zone_idx(zone);
3867}
3868
1da177e4
LT
3869/*
3870 * Builds allocation fallback zone lists.
1a93205b
CL
3871 *
3872 * Add all populated zones of a node to the zonelist.
1da177e4 3873 */
f0c0b2b8 3874static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3875 int nr_zones)
1da177e4 3876{
1a93205b 3877 struct zone *zone;
bc732f1d 3878 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3879
3880 do {
2f6726e5 3881 zone_type--;
070f8032 3882 zone = pgdat->node_zones + zone_type;
1a93205b 3883 if (populated_zone(zone)) {
dd1a239f
MG
3884 zoneref_set_zone(zone,
3885 &zonelist->_zonerefs[nr_zones++]);
070f8032 3886 check_highest_zone(zone_type);
1da177e4 3887 }
2f6726e5 3888 } while (zone_type);
bc732f1d 3889
070f8032 3890 return nr_zones;
1da177e4
LT
3891}
3892
f0c0b2b8
KH
3893
3894/*
3895 * zonelist_order:
3896 * 0 = automatic detection of better ordering.
3897 * 1 = order by ([node] distance, -zonetype)
3898 * 2 = order by (-zonetype, [node] distance)
3899 *
3900 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3901 * the same zonelist. So only NUMA can configure this param.
3902 */
3903#define ZONELIST_ORDER_DEFAULT 0
3904#define ZONELIST_ORDER_NODE 1
3905#define ZONELIST_ORDER_ZONE 2
3906
3907/* zonelist order in the kernel.
3908 * set_zonelist_order() will set this to NODE or ZONE.
3909 */
3910static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3911static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3912
3913
1da177e4 3914#ifdef CONFIG_NUMA
f0c0b2b8
KH
3915/* The value user specified ....changed by config */
3916static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3917/* string for sysctl */
3918#define NUMA_ZONELIST_ORDER_LEN 16
3919char numa_zonelist_order[16] = "default";
3920
3921/*
3922 * interface for configure zonelist ordering.
3923 * command line option "numa_zonelist_order"
3924 * = "[dD]efault - default, automatic configuration.
3925 * = "[nN]ode - order by node locality, then by zone within node
3926 * = "[zZ]one - order by zone, then by locality within zone
3927 */
3928
3929static int __parse_numa_zonelist_order(char *s)
3930{
3931 if (*s == 'd' || *s == 'D') {
3932 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3933 } else if (*s == 'n' || *s == 'N') {
3934 user_zonelist_order = ZONELIST_ORDER_NODE;
3935 } else if (*s == 'z' || *s == 'Z') {
3936 user_zonelist_order = ZONELIST_ORDER_ZONE;
3937 } else {
3938 printk(KERN_WARNING
3939 "Ignoring invalid numa_zonelist_order value: "
3940 "%s\n", s);
3941 return -EINVAL;
3942 }
3943 return 0;
3944}
3945
3946static __init int setup_numa_zonelist_order(char *s)
3947{
ecb256f8
VL
3948 int ret;
3949
3950 if (!s)
3951 return 0;
3952
3953 ret = __parse_numa_zonelist_order(s);
3954 if (ret == 0)
3955 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3956
3957 return ret;
f0c0b2b8
KH
3958}
3959early_param("numa_zonelist_order", setup_numa_zonelist_order);
3960
3961/*
3962 * sysctl handler for numa_zonelist_order
3963 */
cccad5b9 3964int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3965 void __user *buffer, size_t *length,
f0c0b2b8
KH
3966 loff_t *ppos)
3967{
3968 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3969 int ret;
443c6f14 3970 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3971
443c6f14 3972 mutex_lock(&zl_order_mutex);
dacbde09
CG
3973 if (write) {
3974 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3975 ret = -EINVAL;
3976 goto out;
3977 }
3978 strcpy(saved_string, (char *)table->data);
3979 }
8d65af78 3980 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3981 if (ret)
443c6f14 3982 goto out;
f0c0b2b8
KH
3983 if (write) {
3984 int oldval = user_zonelist_order;
dacbde09
CG
3985
3986 ret = __parse_numa_zonelist_order((char *)table->data);
3987 if (ret) {
f0c0b2b8
KH
3988 /*
3989 * bogus value. restore saved string
3990 */
dacbde09 3991 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3992 NUMA_ZONELIST_ORDER_LEN);
3993 user_zonelist_order = oldval;
4eaf3f64
HL
3994 } else if (oldval != user_zonelist_order) {
3995 mutex_lock(&zonelists_mutex);
9adb62a5 3996 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3997 mutex_unlock(&zonelists_mutex);
3998 }
f0c0b2b8 3999 }
443c6f14
AK
4000out:
4001 mutex_unlock(&zl_order_mutex);
4002 return ret;
f0c0b2b8
KH
4003}
4004
4005
62bc62a8 4006#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4007static int node_load[MAX_NUMNODES];
4008
1da177e4 4009/**
4dc3b16b 4010 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4011 * @node: node whose fallback list we're appending
4012 * @used_node_mask: nodemask_t of already used nodes
4013 *
4014 * We use a number of factors to determine which is the next node that should
4015 * appear on a given node's fallback list. The node should not have appeared
4016 * already in @node's fallback list, and it should be the next closest node
4017 * according to the distance array (which contains arbitrary distance values
4018 * from each node to each node in the system), and should also prefer nodes
4019 * with no CPUs, since presumably they'll have very little allocation pressure
4020 * on them otherwise.
4021 * It returns -1 if no node is found.
4022 */
f0c0b2b8 4023static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4024{
4cf808eb 4025 int n, val;
1da177e4 4026 int min_val = INT_MAX;
00ef2d2f 4027 int best_node = NUMA_NO_NODE;
a70f7302 4028 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4029
4cf808eb
LT
4030 /* Use the local node if we haven't already */
4031 if (!node_isset(node, *used_node_mask)) {
4032 node_set(node, *used_node_mask);
4033 return node;
4034 }
1da177e4 4035
4b0ef1fe 4036 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4037
4038 /* Don't want a node to appear more than once */
4039 if (node_isset(n, *used_node_mask))
4040 continue;
4041
1da177e4
LT
4042 /* Use the distance array to find the distance */
4043 val = node_distance(node, n);
4044
4cf808eb
LT
4045 /* Penalize nodes under us ("prefer the next node") */
4046 val += (n < node);
4047
1da177e4 4048 /* Give preference to headless and unused nodes */
a70f7302
RR
4049 tmp = cpumask_of_node(n);
4050 if (!cpumask_empty(tmp))
1da177e4
LT
4051 val += PENALTY_FOR_NODE_WITH_CPUS;
4052
4053 /* Slight preference for less loaded node */
4054 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4055 val += node_load[n];
4056
4057 if (val < min_val) {
4058 min_val = val;
4059 best_node = n;
4060 }
4061 }
4062
4063 if (best_node >= 0)
4064 node_set(best_node, *used_node_mask);
4065
4066 return best_node;
4067}
4068
f0c0b2b8
KH
4069
4070/*
4071 * Build zonelists ordered by node and zones within node.
4072 * This results in maximum locality--normal zone overflows into local
4073 * DMA zone, if any--but risks exhausting DMA zone.
4074 */
4075static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4076{
f0c0b2b8 4077 int j;
1da177e4 4078 struct zonelist *zonelist;
f0c0b2b8 4079
54a6eb5c 4080 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4081 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4082 ;
bc732f1d 4083 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4084 zonelist->_zonerefs[j].zone = NULL;
4085 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4086}
4087
523b9458
CL
4088/*
4089 * Build gfp_thisnode zonelists
4090 */
4091static void build_thisnode_zonelists(pg_data_t *pgdat)
4092{
523b9458
CL
4093 int j;
4094 struct zonelist *zonelist;
4095
54a6eb5c 4096 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4097 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4098 zonelist->_zonerefs[j].zone = NULL;
4099 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4100}
4101
f0c0b2b8
KH
4102/*
4103 * Build zonelists ordered by zone and nodes within zones.
4104 * This results in conserving DMA zone[s] until all Normal memory is
4105 * exhausted, but results in overflowing to remote node while memory
4106 * may still exist in local DMA zone.
4107 */
4108static int node_order[MAX_NUMNODES];
4109
4110static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4111{
f0c0b2b8
KH
4112 int pos, j, node;
4113 int zone_type; /* needs to be signed */
4114 struct zone *z;
4115 struct zonelist *zonelist;
4116
54a6eb5c
MG
4117 zonelist = &pgdat->node_zonelists[0];
4118 pos = 0;
4119 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4120 for (j = 0; j < nr_nodes; j++) {
4121 node = node_order[j];
4122 z = &NODE_DATA(node)->node_zones[zone_type];
4123 if (populated_zone(z)) {
dd1a239f
MG
4124 zoneref_set_zone(z,
4125 &zonelist->_zonerefs[pos++]);
54a6eb5c 4126 check_highest_zone(zone_type);
f0c0b2b8
KH
4127 }
4128 }
f0c0b2b8 4129 }
dd1a239f
MG
4130 zonelist->_zonerefs[pos].zone = NULL;
4131 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4132}
4133
3193913c
MG
4134#if defined(CONFIG_64BIT)
4135/*
4136 * Devices that require DMA32/DMA are relatively rare and do not justify a
4137 * penalty to every machine in case the specialised case applies. Default
4138 * to Node-ordering on 64-bit NUMA machines
4139 */
4140static int default_zonelist_order(void)
4141{
4142 return ZONELIST_ORDER_NODE;
4143}
4144#else
4145/*
4146 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4147 * by the kernel. If processes running on node 0 deplete the low memory zone
4148 * then reclaim will occur more frequency increasing stalls and potentially
4149 * be easier to OOM if a large percentage of the zone is under writeback or
4150 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4151 * Hence, default to zone ordering on 32-bit.
4152 */
f0c0b2b8
KH
4153static int default_zonelist_order(void)
4154{
f0c0b2b8
KH
4155 return ZONELIST_ORDER_ZONE;
4156}
3193913c 4157#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4158
4159static void set_zonelist_order(void)
4160{
4161 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4162 current_zonelist_order = default_zonelist_order();
4163 else
4164 current_zonelist_order = user_zonelist_order;
4165}
4166
4167static void build_zonelists(pg_data_t *pgdat)
4168{
c00eb15a 4169 int i, node, load;
1da177e4 4170 nodemask_t used_mask;
f0c0b2b8
KH
4171 int local_node, prev_node;
4172 struct zonelist *zonelist;
d00181b9 4173 unsigned int order = current_zonelist_order;
1da177e4
LT
4174
4175 /* initialize zonelists */
523b9458 4176 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4177 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4178 zonelist->_zonerefs[0].zone = NULL;
4179 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4180 }
4181
4182 /* NUMA-aware ordering of nodes */
4183 local_node = pgdat->node_id;
62bc62a8 4184 load = nr_online_nodes;
1da177e4
LT
4185 prev_node = local_node;
4186 nodes_clear(used_mask);
f0c0b2b8 4187
f0c0b2b8 4188 memset(node_order, 0, sizeof(node_order));
c00eb15a 4189 i = 0;
f0c0b2b8 4190
1da177e4
LT
4191 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4192 /*
4193 * We don't want to pressure a particular node.
4194 * So adding penalty to the first node in same
4195 * distance group to make it round-robin.
4196 */
957f822a
DR
4197 if (node_distance(local_node, node) !=
4198 node_distance(local_node, prev_node))
f0c0b2b8
KH
4199 node_load[node] = load;
4200
1da177e4
LT
4201 prev_node = node;
4202 load--;
f0c0b2b8
KH
4203 if (order == ZONELIST_ORDER_NODE)
4204 build_zonelists_in_node_order(pgdat, node);
4205 else
c00eb15a 4206 node_order[i++] = node; /* remember order */
f0c0b2b8 4207 }
1da177e4 4208
f0c0b2b8
KH
4209 if (order == ZONELIST_ORDER_ZONE) {
4210 /* calculate node order -- i.e., DMA last! */
c00eb15a 4211 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4212 }
523b9458
CL
4213
4214 build_thisnode_zonelists(pgdat);
1da177e4
LT
4215}
4216
7aac7898
LS
4217#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4218/*
4219 * Return node id of node used for "local" allocations.
4220 * I.e., first node id of first zone in arg node's generic zonelist.
4221 * Used for initializing percpu 'numa_mem', which is used primarily
4222 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4223 */
4224int local_memory_node(int node)
4225{
4226 struct zone *zone;
4227
4228 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4229 gfp_zone(GFP_KERNEL),
4230 NULL,
4231 &zone);
4232 return zone->node;
4233}
4234#endif
f0c0b2b8 4235
1da177e4
LT
4236#else /* CONFIG_NUMA */
4237
f0c0b2b8
KH
4238static void set_zonelist_order(void)
4239{
4240 current_zonelist_order = ZONELIST_ORDER_ZONE;
4241}
4242
4243static void build_zonelists(pg_data_t *pgdat)
1da177e4 4244{
19655d34 4245 int node, local_node;
54a6eb5c
MG
4246 enum zone_type j;
4247 struct zonelist *zonelist;
1da177e4
LT
4248
4249 local_node = pgdat->node_id;
1da177e4 4250
54a6eb5c 4251 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4252 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4253
54a6eb5c
MG
4254 /*
4255 * Now we build the zonelist so that it contains the zones
4256 * of all the other nodes.
4257 * We don't want to pressure a particular node, so when
4258 * building the zones for node N, we make sure that the
4259 * zones coming right after the local ones are those from
4260 * node N+1 (modulo N)
4261 */
4262 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4263 if (!node_online(node))
4264 continue;
bc732f1d 4265 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4266 }
54a6eb5c
MG
4267 for (node = 0; node < local_node; node++) {
4268 if (!node_online(node))
4269 continue;
bc732f1d 4270 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4271 }
4272
dd1a239f
MG
4273 zonelist->_zonerefs[j].zone = NULL;
4274 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4275}
4276
4277#endif /* CONFIG_NUMA */
4278
99dcc3e5
CL
4279/*
4280 * Boot pageset table. One per cpu which is going to be used for all
4281 * zones and all nodes. The parameters will be set in such a way
4282 * that an item put on a list will immediately be handed over to
4283 * the buddy list. This is safe since pageset manipulation is done
4284 * with interrupts disabled.
4285 *
4286 * The boot_pagesets must be kept even after bootup is complete for
4287 * unused processors and/or zones. They do play a role for bootstrapping
4288 * hotplugged processors.
4289 *
4290 * zoneinfo_show() and maybe other functions do
4291 * not check if the processor is online before following the pageset pointer.
4292 * Other parts of the kernel may not check if the zone is available.
4293 */
4294static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4295static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4296static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4297
4eaf3f64
HL
4298/*
4299 * Global mutex to protect against size modification of zonelists
4300 * as well as to serialize pageset setup for the new populated zone.
4301 */
4302DEFINE_MUTEX(zonelists_mutex);
4303
9b1a4d38 4304/* return values int ....just for stop_machine() */
4ed7e022 4305static int __build_all_zonelists(void *data)
1da177e4 4306{
6811378e 4307 int nid;
99dcc3e5 4308 int cpu;
9adb62a5 4309 pg_data_t *self = data;
9276b1bc 4310
7f9cfb31
BL
4311#ifdef CONFIG_NUMA
4312 memset(node_load, 0, sizeof(node_load));
4313#endif
9adb62a5
JL
4314
4315 if (self && !node_online(self->node_id)) {
4316 build_zonelists(self);
9adb62a5
JL
4317 }
4318
9276b1bc 4319 for_each_online_node(nid) {
7ea1530a
CL
4320 pg_data_t *pgdat = NODE_DATA(nid);
4321
4322 build_zonelists(pgdat);
9276b1bc 4323 }
99dcc3e5
CL
4324
4325 /*
4326 * Initialize the boot_pagesets that are going to be used
4327 * for bootstrapping processors. The real pagesets for
4328 * each zone will be allocated later when the per cpu
4329 * allocator is available.
4330 *
4331 * boot_pagesets are used also for bootstrapping offline
4332 * cpus if the system is already booted because the pagesets
4333 * are needed to initialize allocators on a specific cpu too.
4334 * F.e. the percpu allocator needs the page allocator which
4335 * needs the percpu allocator in order to allocate its pagesets
4336 * (a chicken-egg dilemma).
4337 */
7aac7898 4338 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4339 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4340
7aac7898
LS
4341#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4342 /*
4343 * We now know the "local memory node" for each node--
4344 * i.e., the node of the first zone in the generic zonelist.
4345 * Set up numa_mem percpu variable for on-line cpus. During
4346 * boot, only the boot cpu should be on-line; we'll init the
4347 * secondary cpus' numa_mem as they come on-line. During
4348 * node/memory hotplug, we'll fixup all on-line cpus.
4349 */
4350 if (cpu_online(cpu))
4351 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4352#endif
4353 }
4354
6811378e
YG
4355 return 0;
4356}
4357
061f67bc
RV
4358static noinline void __init
4359build_all_zonelists_init(void)
4360{
4361 __build_all_zonelists(NULL);
4362 mminit_verify_zonelist();
4363 cpuset_init_current_mems_allowed();
4364}
4365
4eaf3f64
HL
4366/*
4367 * Called with zonelists_mutex held always
4368 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4369 *
4370 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4371 * [we're only called with non-NULL zone through __meminit paths] and
4372 * (2) call of __init annotated helper build_all_zonelists_init
4373 * [protected by SYSTEM_BOOTING].
4eaf3f64 4374 */
9adb62a5 4375void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4376{
f0c0b2b8
KH
4377 set_zonelist_order();
4378
6811378e 4379 if (system_state == SYSTEM_BOOTING) {
061f67bc 4380 build_all_zonelists_init();
6811378e 4381 } else {
e9959f0f 4382#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4383 if (zone)
4384 setup_zone_pageset(zone);
e9959f0f 4385#endif
dd1895e2
CS
4386 /* we have to stop all cpus to guarantee there is no user
4387 of zonelist */
9adb62a5 4388 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4389 /* cpuset refresh routine should be here */
4390 }
bd1e22b8 4391 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4392 /*
4393 * Disable grouping by mobility if the number of pages in the
4394 * system is too low to allow the mechanism to work. It would be
4395 * more accurate, but expensive to check per-zone. This check is
4396 * made on memory-hotadd so a system can start with mobility
4397 * disabled and enable it later
4398 */
d9c23400 4399 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4400 page_group_by_mobility_disabled = 1;
4401 else
4402 page_group_by_mobility_disabled = 0;
4403
f88dfff5 4404 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4405 "Total pages: %ld\n",
62bc62a8 4406 nr_online_nodes,
f0c0b2b8 4407 zonelist_order_name[current_zonelist_order],
9ef9acb0 4408 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4409 vm_total_pages);
4410#ifdef CONFIG_NUMA
f88dfff5 4411 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4412#endif
1da177e4
LT
4413}
4414
4415/*
4416 * Helper functions to size the waitqueue hash table.
4417 * Essentially these want to choose hash table sizes sufficiently
4418 * large so that collisions trying to wait on pages are rare.
4419 * But in fact, the number of active page waitqueues on typical
4420 * systems is ridiculously low, less than 200. So this is even
4421 * conservative, even though it seems large.
4422 *
4423 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4424 * waitqueues, i.e. the size of the waitq table given the number of pages.
4425 */
4426#define PAGES_PER_WAITQUEUE 256
4427
cca448fe 4428#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4429static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4430{
4431 unsigned long size = 1;
4432
4433 pages /= PAGES_PER_WAITQUEUE;
4434
4435 while (size < pages)
4436 size <<= 1;
4437
4438 /*
4439 * Once we have dozens or even hundreds of threads sleeping
4440 * on IO we've got bigger problems than wait queue collision.
4441 * Limit the size of the wait table to a reasonable size.
4442 */
4443 size = min(size, 4096UL);
4444
4445 return max(size, 4UL);
4446}
cca448fe
YG
4447#else
4448/*
4449 * A zone's size might be changed by hot-add, so it is not possible to determine
4450 * a suitable size for its wait_table. So we use the maximum size now.
4451 *
4452 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4453 *
4454 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4455 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4456 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4457 *
4458 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4459 * or more by the traditional way. (See above). It equals:
4460 *
4461 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4462 * ia64(16K page size) : = ( 8G + 4M)byte.
4463 * powerpc (64K page size) : = (32G +16M)byte.
4464 */
4465static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4466{
4467 return 4096UL;
4468}
4469#endif
1da177e4
LT
4470
4471/*
4472 * This is an integer logarithm so that shifts can be used later
4473 * to extract the more random high bits from the multiplicative
4474 * hash function before the remainder is taken.
4475 */
4476static inline unsigned long wait_table_bits(unsigned long size)
4477{
4478 return ffz(~size);
4479}
4480
1da177e4
LT
4481/*
4482 * Initially all pages are reserved - free ones are freed
4483 * up by free_all_bootmem() once the early boot process is
4484 * done. Non-atomic initialization, single-pass.
4485 */
c09b4240 4486void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4487 unsigned long start_pfn, enum memmap_context context)
1da177e4 4488{
4b94ffdc 4489 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4490 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4491 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4492 unsigned long pfn;
3a80a7fa 4493 unsigned long nr_initialised = 0;
1da177e4 4494
22b31eec
HD
4495 if (highest_memmap_pfn < end_pfn - 1)
4496 highest_memmap_pfn = end_pfn - 1;
4497
4b94ffdc
DW
4498 /*
4499 * Honor reservation requested by the driver for this ZONE_DEVICE
4500 * memory
4501 */
4502 if (altmap && start_pfn == altmap->base_pfn)
4503 start_pfn += altmap->reserve;
4504
cbe8dd4a 4505 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4506 /*
4507 * There can be holes in boot-time mem_map[]s
4508 * handed to this function. They do not
4509 * exist on hotplugged memory.
4510 */
4511 if (context == MEMMAP_EARLY) {
4512 if (!early_pfn_valid(pfn))
4513 continue;
4514 if (!early_pfn_in_nid(pfn, nid))
4515 continue;
3a80a7fa
MG
4516 if (!update_defer_init(pgdat, pfn, end_pfn,
4517 &nr_initialised))
4518 break;
a2f3aa02 4519 }
ac5d2539
MG
4520
4521 /*
4522 * Mark the block movable so that blocks are reserved for
4523 * movable at startup. This will force kernel allocations
4524 * to reserve their blocks rather than leaking throughout
4525 * the address space during boot when many long-lived
974a786e 4526 * kernel allocations are made.
ac5d2539
MG
4527 *
4528 * bitmap is created for zone's valid pfn range. but memmap
4529 * can be created for invalid pages (for alignment)
4530 * check here not to call set_pageblock_migratetype() against
4531 * pfn out of zone.
4532 */
4533 if (!(pfn & (pageblock_nr_pages - 1))) {
4534 struct page *page = pfn_to_page(pfn);
4535
4536 __init_single_page(page, pfn, zone, nid);
4537 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4538 } else {
4539 __init_single_pfn(pfn, zone, nid);
4540 }
1da177e4
LT
4541 }
4542}
4543
1e548deb 4544static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4545{
7aeb09f9 4546 unsigned int order, t;
b2a0ac88
MG
4547 for_each_migratetype_order(order, t) {
4548 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4549 zone->free_area[order].nr_free = 0;
4550 }
4551}
4552
4553#ifndef __HAVE_ARCH_MEMMAP_INIT
4554#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4555 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4556#endif
4557
7cd2b0a3 4558static int zone_batchsize(struct zone *zone)
e7c8d5c9 4559{
3a6be87f 4560#ifdef CONFIG_MMU
e7c8d5c9
CL
4561 int batch;
4562
4563 /*
4564 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4565 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4566 *
4567 * OK, so we don't know how big the cache is. So guess.
4568 */
b40da049 4569 batch = zone->managed_pages / 1024;
ba56e91c
SR
4570 if (batch * PAGE_SIZE > 512 * 1024)
4571 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4572 batch /= 4; /* We effectively *= 4 below */
4573 if (batch < 1)
4574 batch = 1;
4575
4576 /*
0ceaacc9
NP
4577 * Clamp the batch to a 2^n - 1 value. Having a power
4578 * of 2 value was found to be more likely to have
4579 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4580 *
0ceaacc9
NP
4581 * For example if 2 tasks are alternately allocating
4582 * batches of pages, one task can end up with a lot
4583 * of pages of one half of the possible page colors
4584 * and the other with pages of the other colors.
e7c8d5c9 4585 */
9155203a 4586 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4587
e7c8d5c9 4588 return batch;
3a6be87f
DH
4589
4590#else
4591 /* The deferral and batching of frees should be suppressed under NOMMU
4592 * conditions.
4593 *
4594 * The problem is that NOMMU needs to be able to allocate large chunks
4595 * of contiguous memory as there's no hardware page translation to
4596 * assemble apparent contiguous memory from discontiguous pages.
4597 *
4598 * Queueing large contiguous runs of pages for batching, however,
4599 * causes the pages to actually be freed in smaller chunks. As there
4600 * can be a significant delay between the individual batches being
4601 * recycled, this leads to the once large chunks of space being
4602 * fragmented and becoming unavailable for high-order allocations.
4603 */
4604 return 0;
4605#endif
e7c8d5c9
CL
4606}
4607
8d7a8fa9
CS
4608/*
4609 * pcp->high and pcp->batch values are related and dependent on one another:
4610 * ->batch must never be higher then ->high.
4611 * The following function updates them in a safe manner without read side
4612 * locking.
4613 *
4614 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4615 * those fields changing asynchronously (acording the the above rule).
4616 *
4617 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4618 * outside of boot time (or some other assurance that no concurrent updaters
4619 * exist).
4620 */
4621static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4622 unsigned long batch)
4623{
4624 /* start with a fail safe value for batch */
4625 pcp->batch = 1;
4626 smp_wmb();
4627
4628 /* Update high, then batch, in order */
4629 pcp->high = high;
4630 smp_wmb();
4631
4632 pcp->batch = batch;
4633}
4634
3664033c 4635/* a companion to pageset_set_high() */
4008bab7
CS
4636static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4637{
8d7a8fa9 4638 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4639}
4640
88c90dbc 4641static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4642{
4643 struct per_cpu_pages *pcp;
5f8dcc21 4644 int migratetype;
2caaad41 4645
1c6fe946
MD
4646 memset(p, 0, sizeof(*p));
4647
3dfa5721 4648 pcp = &p->pcp;
2caaad41 4649 pcp->count = 0;
5f8dcc21
MG
4650 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4651 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4652}
4653
88c90dbc
CS
4654static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4655{
4656 pageset_init(p);
4657 pageset_set_batch(p, batch);
4658}
4659
8ad4b1fb 4660/*
3664033c 4661 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4662 * to the value high for the pageset p.
4663 */
3664033c 4664static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4665 unsigned long high)
4666{
8d7a8fa9
CS
4667 unsigned long batch = max(1UL, high / 4);
4668 if ((high / 4) > (PAGE_SHIFT * 8))
4669 batch = PAGE_SHIFT * 8;
8ad4b1fb 4670
8d7a8fa9 4671 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4672}
4673
7cd2b0a3
DR
4674static void pageset_set_high_and_batch(struct zone *zone,
4675 struct per_cpu_pageset *pcp)
56cef2b8 4676{
56cef2b8 4677 if (percpu_pagelist_fraction)
3664033c 4678 pageset_set_high(pcp,
56cef2b8
CS
4679 (zone->managed_pages /
4680 percpu_pagelist_fraction));
4681 else
4682 pageset_set_batch(pcp, zone_batchsize(zone));
4683}
4684
169f6c19
CS
4685static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4686{
4687 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4688
4689 pageset_init(pcp);
4690 pageset_set_high_and_batch(zone, pcp);
4691}
4692
4ed7e022 4693static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4694{
4695 int cpu;
319774e2 4696 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4697 for_each_possible_cpu(cpu)
4698 zone_pageset_init(zone, cpu);
319774e2
WF
4699}
4700
2caaad41 4701/*
99dcc3e5
CL
4702 * Allocate per cpu pagesets and initialize them.
4703 * Before this call only boot pagesets were available.
e7c8d5c9 4704 */
99dcc3e5 4705void __init setup_per_cpu_pageset(void)
e7c8d5c9 4706{
99dcc3e5 4707 struct zone *zone;
e7c8d5c9 4708
319774e2
WF
4709 for_each_populated_zone(zone)
4710 setup_zone_pageset(zone);
e7c8d5c9
CL
4711}
4712
577a32f6 4713static noinline __init_refok
cca448fe 4714int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4715{
4716 int i;
cca448fe 4717 size_t alloc_size;
ed8ece2e
DH
4718
4719 /*
4720 * The per-page waitqueue mechanism uses hashed waitqueues
4721 * per zone.
4722 */
02b694de
YG
4723 zone->wait_table_hash_nr_entries =
4724 wait_table_hash_nr_entries(zone_size_pages);
4725 zone->wait_table_bits =
4726 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4727 alloc_size = zone->wait_table_hash_nr_entries
4728 * sizeof(wait_queue_head_t);
4729
cd94b9db 4730 if (!slab_is_available()) {
cca448fe 4731 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4732 memblock_virt_alloc_node_nopanic(
4733 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4734 } else {
4735 /*
4736 * This case means that a zone whose size was 0 gets new memory
4737 * via memory hot-add.
4738 * But it may be the case that a new node was hot-added. In
4739 * this case vmalloc() will not be able to use this new node's
4740 * memory - this wait_table must be initialized to use this new
4741 * node itself as well.
4742 * To use this new node's memory, further consideration will be
4743 * necessary.
4744 */
8691f3a7 4745 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4746 }
4747 if (!zone->wait_table)
4748 return -ENOMEM;
ed8ece2e 4749
b8af2941 4750 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4751 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4752
4753 return 0;
ed8ece2e
DH
4754}
4755
c09b4240 4756static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4757{
99dcc3e5
CL
4758 /*
4759 * per cpu subsystem is not up at this point. The following code
4760 * relies on the ability of the linker to provide the
4761 * offset of a (static) per cpu variable into the per cpu area.
4762 */
4763 zone->pageset = &boot_pageset;
ed8ece2e 4764
b38a8725 4765 if (populated_zone(zone))
99dcc3e5
CL
4766 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4767 zone->name, zone->present_pages,
4768 zone_batchsize(zone));
ed8ece2e
DH
4769}
4770
4ed7e022 4771int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4772 unsigned long zone_start_pfn,
b171e409 4773 unsigned long size)
ed8ece2e
DH
4774{
4775 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4776 int ret;
4777 ret = zone_wait_table_init(zone, size);
4778 if (ret)
4779 return ret;
ed8ece2e
DH
4780 pgdat->nr_zones = zone_idx(zone) + 1;
4781
ed8ece2e
DH
4782 zone->zone_start_pfn = zone_start_pfn;
4783
708614e6
MG
4784 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4785 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4786 pgdat->node_id,
4787 (unsigned long)zone_idx(zone),
4788 zone_start_pfn, (zone_start_pfn + size));
4789
1e548deb 4790 zone_init_free_lists(zone);
718127cc
YG
4791
4792 return 0;
ed8ece2e
DH
4793}
4794
0ee332c1 4795#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4796#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4797
c713216d
MG
4798/*
4799 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4800 */
8a942fde
MG
4801int __meminit __early_pfn_to_nid(unsigned long pfn,
4802 struct mminit_pfnnid_cache *state)
c713216d 4803{
c13291a5 4804 unsigned long start_pfn, end_pfn;
e76b63f8 4805 int nid;
7c243c71 4806
8a942fde
MG
4807 if (state->last_start <= pfn && pfn < state->last_end)
4808 return state->last_nid;
c713216d 4809
e76b63f8
YL
4810 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4811 if (nid != -1) {
8a942fde
MG
4812 state->last_start = start_pfn;
4813 state->last_end = end_pfn;
4814 state->last_nid = nid;
e76b63f8
YL
4815 }
4816
4817 return nid;
c713216d
MG
4818}
4819#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4820
c713216d 4821/**
6782832e 4822 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4823 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4824 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4825 *
7d018176
ZZ
4826 * If an architecture guarantees that all ranges registered contain no holes
4827 * and may be freed, this this function may be used instead of calling
4828 * memblock_free_early_nid() manually.
c713216d 4829 */
c13291a5 4830void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4831{
c13291a5
TH
4832 unsigned long start_pfn, end_pfn;
4833 int i, this_nid;
edbe7d23 4834
c13291a5
TH
4835 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4836 start_pfn = min(start_pfn, max_low_pfn);
4837 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4838
c13291a5 4839 if (start_pfn < end_pfn)
6782832e
SS
4840 memblock_free_early_nid(PFN_PHYS(start_pfn),
4841 (end_pfn - start_pfn) << PAGE_SHIFT,
4842 this_nid);
edbe7d23 4843 }
edbe7d23 4844}
edbe7d23 4845
c713216d
MG
4846/**
4847 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4848 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4849 *
7d018176
ZZ
4850 * If an architecture guarantees that all ranges registered contain no holes and may
4851 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4852 */
4853void __init sparse_memory_present_with_active_regions(int nid)
4854{
c13291a5
TH
4855 unsigned long start_pfn, end_pfn;
4856 int i, this_nid;
c713216d 4857
c13291a5
TH
4858 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4859 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4860}
4861
4862/**
4863 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4864 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4865 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4866 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4867 *
4868 * It returns the start and end page frame of a node based on information
7d018176 4869 * provided by memblock_set_node(). If called for a node
c713216d 4870 * with no available memory, a warning is printed and the start and end
88ca3b94 4871 * PFNs will be 0.
c713216d 4872 */
a3142c8e 4873void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4874 unsigned long *start_pfn, unsigned long *end_pfn)
4875{
c13291a5 4876 unsigned long this_start_pfn, this_end_pfn;
c713216d 4877 int i;
c13291a5 4878
c713216d
MG
4879 *start_pfn = -1UL;
4880 *end_pfn = 0;
4881
c13291a5
TH
4882 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4883 *start_pfn = min(*start_pfn, this_start_pfn);
4884 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4885 }
4886
633c0666 4887 if (*start_pfn == -1UL)
c713216d 4888 *start_pfn = 0;
c713216d
MG
4889}
4890
2a1e274a
MG
4891/*
4892 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4893 * assumption is made that zones within a node are ordered in monotonic
4894 * increasing memory addresses so that the "highest" populated zone is used
4895 */
b69a7288 4896static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4897{
4898 int zone_index;
4899 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4900 if (zone_index == ZONE_MOVABLE)
4901 continue;
4902
4903 if (arch_zone_highest_possible_pfn[zone_index] >
4904 arch_zone_lowest_possible_pfn[zone_index])
4905 break;
4906 }
4907
4908 VM_BUG_ON(zone_index == -1);
4909 movable_zone = zone_index;
4910}
4911
4912/*
4913 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4914 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4915 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4916 * in each node depending on the size of each node and how evenly kernelcore
4917 * is distributed. This helper function adjusts the zone ranges
4918 * provided by the architecture for a given node by using the end of the
4919 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4920 * zones within a node are in order of monotonic increases memory addresses
4921 */
b69a7288 4922static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4923 unsigned long zone_type,
4924 unsigned long node_start_pfn,
4925 unsigned long node_end_pfn,
4926 unsigned long *zone_start_pfn,
4927 unsigned long *zone_end_pfn)
4928{
4929 /* Only adjust if ZONE_MOVABLE is on this node */
4930 if (zone_movable_pfn[nid]) {
4931 /* Size ZONE_MOVABLE */
4932 if (zone_type == ZONE_MOVABLE) {
4933 *zone_start_pfn = zone_movable_pfn[nid];
4934 *zone_end_pfn = min(node_end_pfn,
4935 arch_zone_highest_possible_pfn[movable_zone]);
4936
4937 /* Adjust for ZONE_MOVABLE starting within this range */
4938 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4939 *zone_end_pfn > zone_movable_pfn[nid]) {
4940 *zone_end_pfn = zone_movable_pfn[nid];
4941
4942 /* Check if this whole range is within ZONE_MOVABLE */
4943 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4944 *zone_start_pfn = *zone_end_pfn;
4945 }
4946}
4947
c713216d
MG
4948/*
4949 * Return the number of pages a zone spans in a node, including holes
4950 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4951 */
6ea6e688 4952static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4953 unsigned long zone_type,
7960aedd
ZY
4954 unsigned long node_start_pfn,
4955 unsigned long node_end_pfn,
c713216d
MG
4956 unsigned long *ignored)
4957{
c713216d
MG
4958 unsigned long zone_start_pfn, zone_end_pfn;
4959
b5685e92 4960 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
4961 if (!node_start_pfn && !node_end_pfn)
4962 return 0;
4963
7960aedd 4964 /* Get the start and end of the zone */
c713216d
MG
4965 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4966 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4967 adjust_zone_range_for_zone_movable(nid, zone_type,
4968 node_start_pfn, node_end_pfn,
4969 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4970
4971 /* Check that this node has pages within the zone's required range */
4972 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4973 return 0;
4974
4975 /* Move the zone boundaries inside the node if necessary */
4976 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4977 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4978
4979 /* Return the spanned pages */
4980 return zone_end_pfn - zone_start_pfn;
4981}
4982
4983/*
4984 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4985 * then all holes in the requested range will be accounted for.
c713216d 4986 */
32996250 4987unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4988 unsigned long range_start_pfn,
4989 unsigned long range_end_pfn)
4990{
96e907d1
TH
4991 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4992 unsigned long start_pfn, end_pfn;
4993 int i;
c713216d 4994
96e907d1
TH
4995 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4996 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4997 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4998 nr_absent -= end_pfn - start_pfn;
c713216d 4999 }
96e907d1 5000 return nr_absent;
c713216d
MG
5001}
5002
5003/**
5004 * absent_pages_in_range - Return number of page frames in holes within a range
5005 * @start_pfn: The start PFN to start searching for holes
5006 * @end_pfn: The end PFN to stop searching for holes
5007 *
88ca3b94 5008 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5009 */
5010unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5011 unsigned long end_pfn)
5012{
5013 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5014}
5015
5016/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5017static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5018 unsigned long zone_type,
7960aedd
ZY
5019 unsigned long node_start_pfn,
5020 unsigned long node_end_pfn,
c713216d
MG
5021 unsigned long *ignored)
5022{
96e907d1
TH
5023 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5024 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
5025 unsigned long zone_start_pfn, zone_end_pfn;
5026
b5685e92 5027 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5028 if (!node_start_pfn && !node_end_pfn)
5029 return 0;
5030
96e907d1
TH
5031 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5032 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5033
2a1e274a
MG
5034 adjust_zone_range_for_zone_movable(nid, zone_type,
5035 node_start_pfn, node_end_pfn,
5036 &zone_start_pfn, &zone_end_pfn);
9c7cd687 5037 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 5038}
0e0b864e 5039
0ee332c1 5040#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5041static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5042 unsigned long zone_type,
7960aedd
ZY
5043 unsigned long node_start_pfn,
5044 unsigned long node_end_pfn,
c713216d
MG
5045 unsigned long *zones_size)
5046{
5047 return zones_size[zone_type];
5048}
5049
6ea6e688 5050static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5051 unsigned long zone_type,
7960aedd
ZY
5052 unsigned long node_start_pfn,
5053 unsigned long node_end_pfn,
c713216d
MG
5054 unsigned long *zholes_size)
5055{
5056 if (!zholes_size)
5057 return 0;
5058
5059 return zholes_size[zone_type];
5060}
20e6926d 5061
0ee332c1 5062#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5063
a3142c8e 5064static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5065 unsigned long node_start_pfn,
5066 unsigned long node_end_pfn,
5067 unsigned long *zones_size,
5068 unsigned long *zholes_size)
c713216d 5069{
febd5949 5070 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5071 enum zone_type i;
5072
febd5949
GZ
5073 for (i = 0; i < MAX_NR_ZONES; i++) {
5074 struct zone *zone = pgdat->node_zones + i;
5075 unsigned long size, real_size;
c713216d 5076
febd5949
GZ
5077 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5078 node_start_pfn,
5079 node_end_pfn,
5080 zones_size);
5081 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5082 node_start_pfn, node_end_pfn,
5083 zholes_size);
febd5949
GZ
5084 zone->spanned_pages = size;
5085 zone->present_pages = real_size;
5086
5087 totalpages += size;
5088 realtotalpages += real_size;
5089 }
5090
5091 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5092 pgdat->node_present_pages = realtotalpages;
5093 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5094 realtotalpages);
5095}
5096
835c134e
MG
5097#ifndef CONFIG_SPARSEMEM
5098/*
5099 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5100 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5101 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5102 * round what is now in bits to nearest long in bits, then return it in
5103 * bytes.
5104 */
7c45512d 5105static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5106{
5107 unsigned long usemapsize;
5108
7c45512d 5109 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5110 usemapsize = roundup(zonesize, pageblock_nr_pages);
5111 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5112 usemapsize *= NR_PAGEBLOCK_BITS;
5113 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5114
5115 return usemapsize / 8;
5116}
5117
5118static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5119 struct zone *zone,
5120 unsigned long zone_start_pfn,
5121 unsigned long zonesize)
835c134e 5122{
7c45512d 5123 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5124 zone->pageblock_flags = NULL;
58a01a45 5125 if (usemapsize)
6782832e
SS
5126 zone->pageblock_flags =
5127 memblock_virt_alloc_node_nopanic(usemapsize,
5128 pgdat->node_id);
835c134e
MG
5129}
5130#else
7c45512d
LT
5131static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5132 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5133#endif /* CONFIG_SPARSEMEM */
5134
d9c23400 5135#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5136
d9c23400 5137/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5138void __paginginit set_pageblock_order(void)
d9c23400 5139{
955c1cd7
AM
5140 unsigned int order;
5141
d9c23400
MG
5142 /* Check that pageblock_nr_pages has not already been setup */
5143 if (pageblock_order)
5144 return;
5145
955c1cd7
AM
5146 if (HPAGE_SHIFT > PAGE_SHIFT)
5147 order = HUGETLB_PAGE_ORDER;
5148 else
5149 order = MAX_ORDER - 1;
5150
d9c23400
MG
5151 /*
5152 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5153 * This value may be variable depending on boot parameters on IA64 and
5154 * powerpc.
d9c23400
MG
5155 */
5156 pageblock_order = order;
5157}
5158#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5159
ba72cb8c
MG
5160/*
5161 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5162 * is unused as pageblock_order is set at compile-time. See
5163 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5164 * the kernel config
ba72cb8c 5165 */
15ca220e 5166void __paginginit set_pageblock_order(void)
ba72cb8c 5167{
ba72cb8c 5168}
d9c23400
MG
5169
5170#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5171
01cefaef
JL
5172static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5173 unsigned long present_pages)
5174{
5175 unsigned long pages = spanned_pages;
5176
5177 /*
5178 * Provide a more accurate estimation if there are holes within
5179 * the zone and SPARSEMEM is in use. If there are holes within the
5180 * zone, each populated memory region may cost us one or two extra
5181 * memmap pages due to alignment because memmap pages for each
5182 * populated regions may not naturally algined on page boundary.
5183 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5184 */
5185 if (spanned_pages > present_pages + (present_pages >> 4) &&
5186 IS_ENABLED(CONFIG_SPARSEMEM))
5187 pages = present_pages;
5188
5189 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5190}
5191
1da177e4
LT
5192/*
5193 * Set up the zone data structures:
5194 * - mark all pages reserved
5195 * - mark all memory queues empty
5196 * - clear the memory bitmaps
6527af5d
MK
5197 *
5198 * NOTE: pgdat should get zeroed by caller.
1da177e4 5199 */
7f3eb55b 5200static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5201{
2f1b6248 5202 enum zone_type j;
ed8ece2e 5203 int nid = pgdat->node_id;
1da177e4 5204 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 5205 int ret;
1da177e4 5206
208d54e5 5207 pgdat_resize_init(pgdat);
8177a420
AA
5208#ifdef CONFIG_NUMA_BALANCING
5209 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5210 pgdat->numabalancing_migrate_nr_pages = 0;
5211 pgdat->numabalancing_migrate_next_window = jiffies;
5212#endif
1da177e4 5213 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5214 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5215 pgdat_page_ext_init(pgdat);
5f63b720 5216
1da177e4
LT
5217 for (j = 0; j < MAX_NR_ZONES; j++) {
5218 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5219 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5220
febd5949
GZ
5221 size = zone->spanned_pages;
5222 realsize = freesize = zone->present_pages;
1da177e4 5223
0e0b864e 5224 /*
9feedc9d 5225 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5226 * is used by this zone for memmap. This affects the watermark
5227 * and per-cpu initialisations
5228 */
01cefaef 5229 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5230 if (!is_highmem_idx(j)) {
5231 if (freesize >= memmap_pages) {
5232 freesize -= memmap_pages;
5233 if (memmap_pages)
5234 printk(KERN_DEBUG
5235 " %s zone: %lu pages used for memmap\n",
5236 zone_names[j], memmap_pages);
5237 } else
5238 printk(KERN_WARNING
5239 " %s zone: %lu pages exceeds freesize %lu\n",
5240 zone_names[j], memmap_pages, freesize);
5241 }
0e0b864e 5242
6267276f 5243 /* Account for reserved pages */
9feedc9d
JL
5244 if (j == 0 && freesize > dma_reserve) {
5245 freesize -= dma_reserve;
d903ef9f 5246 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5247 zone_names[0], dma_reserve);
0e0b864e
MG
5248 }
5249
98d2b0eb 5250 if (!is_highmem_idx(j))
9feedc9d 5251 nr_kernel_pages += freesize;
01cefaef
JL
5252 /* Charge for highmem memmap if there are enough kernel pages */
5253 else if (nr_kernel_pages > memmap_pages * 2)
5254 nr_kernel_pages -= memmap_pages;
9feedc9d 5255 nr_all_pages += freesize;
1da177e4 5256
9feedc9d
JL
5257 /*
5258 * Set an approximate value for lowmem here, it will be adjusted
5259 * when the bootmem allocator frees pages into the buddy system.
5260 * And all highmem pages will be managed by the buddy system.
5261 */
5262 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5263#ifdef CONFIG_NUMA
d5f541ed 5264 zone->node = nid;
9feedc9d 5265 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5266 / 100;
9feedc9d 5267 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5268#endif
1da177e4
LT
5269 zone->name = zone_names[j];
5270 spin_lock_init(&zone->lock);
5271 spin_lock_init(&zone->lru_lock);
bdc8cb98 5272 zone_seqlock_init(zone);
1da177e4 5273 zone->zone_pgdat = pgdat;
ed8ece2e 5274 zone_pcp_init(zone);
81c0a2bb
JW
5275
5276 /* For bootup, initialized properly in watermark setup */
5277 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5278
bea8c150 5279 lruvec_init(&zone->lruvec);
1da177e4
LT
5280 if (!size)
5281 continue;
5282
955c1cd7 5283 set_pageblock_order();
7c45512d 5284 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5285 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5286 BUG_ON(ret);
76cdd58e 5287 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5288 zone_start_pfn += size;
1da177e4
LT
5289 }
5290}
5291
577a32f6 5292static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5293{
b0aeba74 5294 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5295 unsigned long __maybe_unused offset = 0;
5296
1da177e4
LT
5297 /* Skip empty nodes */
5298 if (!pgdat->node_spanned_pages)
5299 return;
5300
d41dee36 5301#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5302 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5303 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5304 /* ia64 gets its own node_mem_map, before this, without bootmem */
5305 if (!pgdat->node_mem_map) {
b0aeba74 5306 unsigned long size, end;
d41dee36
AW
5307 struct page *map;
5308
e984bb43
BP
5309 /*
5310 * The zone's endpoints aren't required to be MAX_ORDER
5311 * aligned but the node_mem_map endpoints must be in order
5312 * for the buddy allocator to function correctly.
5313 */
108bcc96 5314 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5315 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5316 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5317 map = alloc_remap(pgdat->node_id, size);
5318 if (!map)
6782832e
SS
5319 map = memblock_virt_alloc_node_nopanic(size,
5320 pgdat->node_id);
a1c34a3b 5321 pgdat->node_mem_map = map + offset;
1da177e4 5322 }
12d810c1 5323#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5324 /*
5325 * With no DISCONTIG, the global mem_map is just set as node 0's
5326 */
c713216d 5327 if (pgdat == NODE_DATA(0)) {
1da177e4 5328 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5329#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5330 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5331 mem_map -= offset;
0ee332c1 5332#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5333 }
1da177e4 5334#endif
d41dee36 5335#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5336}
5337
9109fb7b
JW
5338void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5339 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5340{
9109fb7b 5341 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5342 unsigned long start_pfn = 0;
5343 unsigned long end_pfn = 0;
9109fb7b 5344
88fdf75d 5345 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5346 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5347
3a80a7fa 5348 reset_deferred_meminit(pgdat);
1da177e4
LT
5349 pgdat->node_id = nid;
5350 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5351#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5352 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5353 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5354 (u64)start_pfn << PAGE_SHIFT,
5355 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7960aedd
ZY
5356#endif
5357 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5358 zones_size, zholes_size);
1da177e4
LT
5359
5360 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5361#ifdef CONFIG_FLAT_NODE_MEM_MAP
5362 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5363 nid, (unsigned long)pgdat,
5364 (unsigned long)pgdat->node_mem_map);
5365#endif
1da177e4 5366
7f3eb55b 5367 free_area_init_core(pgdat);
1da177e4
LT
5368}
5369
0ee332c1 5370#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5371
5372#if MAX_NUMNODES > 1
5373/*
5374 * Figure out the number of possible node ids.
5375 */
f9872caf 5376void __init setup_nr_node_ids(void)
418508c1 5377{
904a9553 5378 unsigned int highest;
418508c1 5379
904a9553 5380 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5381 nr_node_ids = highest + 1;
5382}
418508c1
MS
5383#endif
5384
1e01979c
TH
5385/**
5386 * node_map_pfn_alignment - determine the maximum internode alignment
5387 *
5388 * This function should be called after node map is populated and sorted.
5389 * It calculates the maximum power of two alignment which can distinguish
5390 * all the nodes.
5391 *
5392 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5393 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5394 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5395 * shifted, 1GiB is enough and this function will indicate so.
5396 *
5397 * This is used to test whether pfn -> nid mapping of the chosen memory
5398 * model has fine enough granularity to avoid incorrect mapping for the
5399 * populated node map.
5400 *
5401 * Returns the determined alignment in pfn's. 0 if there is no alignment
5402 * requirement (single node).
5403 */
5404unsigned long __init node_map_pfn_alignment(void)
5405{
5406 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5407 unsigned long start, end, mask;
1e01979c 5408 int last_nid = -1;
c13291a5 5409 int i, nid;
1e01979c 5410
c13291a5 5411 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5412 if (!start || last_nid < 0 || last_nid == nid) {
5413 last_nid = nid;
5414 last_end = end;
5415 continue;
5416 }
5417
5418 /*
5419 * Start with a mask granular enough to pin-point to the
5420 * start pfn and tick off bits one-by-one until it becomes
5421 * too coarse to separate the current node from the last.
5422 */
5423 mask = ~((1 << __ffs(start)) - 1);
5424 while (mask && last_end <= (start & (mask << 1)))
5425 mask <<= 1;
5426
5427 /* accumulate all internode masks */
5428 accl_mask |= mask;
5429 }
5430
5431 /* convert mask to number of pages */
5432 return ~accl_mask + 1;
5433}
5434
a6af2bc3 5435/* Find the lowest pfn for a node */
b69a7288 5436static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5437{
a6af2bc3 5438 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5439 unsigned long start_pfn;
5440 int i;
1abbfb41 5441
c13291a5
TH
5442 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5443 min_pfn = min(min_pfn, start_pfn);
c713216d 5444
a6af2bc3
MG
5445 if (min_pfn == ULONG_MAX) {
5446 printk(KERN_WARNING
2bc0d261 5447 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5448 return 0;
5449 }
5450
5451 return min_pfn;
c713216d
MG
5452}
5453
5454/**
5455 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5456 *
5457 * It returns the minimum PFN based on information provided via
7d018176 5458 * memblock_set_node().
c713216d
MG
5459 */
5460unsigned long __init find_min_pfn_with_active_regions(void)
5461{
5462 return find_min_pfn_for_node(MAX_NUMNODES);
5463}
5464
37b07e41
LS
5465/*
5466 * early_calculate_totalpages()
5467 * Sum pages in active regions for movable zone.
4b0ef1fe 5468 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5469 */
484f51f8 5470static unsigned long __init early_calculate_totalpages(void)
7e63efef 5471{
7e63efef 5472 unsigned long totalpages = 0;
c13291a5
TH
5473 unsigned long start_pfn, end_pfn;
5474 int i, nid;
5475
5476 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5477 unsigned long pages = end_pfn - start_pfn;
7e63efef 5478
37b07e41
LS
5479 totalpages += pages;
5480 if (pages)
4b0ef1fe 5481 node_set_state(nid, N_MEMORY);
37b07e41 5482 }
b8af2941 5483 return totalpages;
7e63efef
MG
5484}
5485
2a1e274a
MG
5486/*
5487 * Find the PFN the Movable zone begins in each node. Kernel memory
5488 * is spread evenly between nodes as long as the nodes have enough
5489 * memory. When they don't, some nodes will have more kernelcore than
5490 * others
5491 */
b224ef85 5492static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5493{
5494 int i, nid;
5495 unsigned long usable_startpfn;
5496 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5497 /* save the state before borrow the nodemask */
4b0ef1fe 5498 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5499 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5500 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5501 struct memblock_region *r;
b2f3eebe
TC
5502
5503 /* Need to find movable_zone earlier when movable_node is specified. */
5504 find_usable_zone_for_movable();
5505
5506 /*
5507 * If movable_node is specified, ignore kernelcore and movablecore
5508 * options.
5509 */
5510 if (movable_node_is_enabled()) {
136199f0
EM
5511 for_each_memblock(memory, r) {
5512 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5513 continue;
5514
136199f0 5515 nid = r->nid;
b2f3eebe 5516
136199f0 5517 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5518 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5519 min(usable_startpfn, zone_movable_pfn[nid]) :
5520 usable_startpfn;
5521 }
5522
5523 goto out2;
5524 }
2a1e274a 5525
7e63efef 5526 /*
b2f3eebe 5527 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5528 * kernelcore that corresponds so that memory usable for
5529 * any allocation type is evenly spread. If both kernelcore
5530 * and movablecore are specified, then the value of kernelcore
5531 * will be used for required_kernelcore if it's greater than
5532 * what movablecore would have allowed.
5533 */
5534 if (required_movablecore) {
7e63efef
MG
5535 unsigned long corepages;
5536
5537 /*
5538 * Round-up so that ZONE_MOVABLE is at least as large as what
5539 * was requested by the user
5540 */
5541 required_movablecore =
5542 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5543 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5544 corepages = totalpages - required_movablecore;
5545
5546 required_kernelcore = max(required_kernelcore, corepages);
5547 }
5548
bde304bd
XQ
5549 /*
5550 * If kernelcore was not specified or kernelcore size is larger
5551 * than totalpages, there is no ZONE_MOVABLE.
5552 */
5553 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5554 goto out;
2a1e274a
MG
5555
5556 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5557 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5558
5559restart:
5560 /* Spread kernelcore memory as evenly as possible throughout nodes */
5561 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5562 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5563 unsigned long start_pfn, end_pfn;
5564
2a1e274a
MG
5565 /*
5566 * Recalculate kernelcore_node if the division per node
5567 * now exceeds what is necessary to satisfy the requested
5568 * amount of memory for the kernel
5569 */
5570 if (required_kernelcore < kernelcore_node)
5571 kernelcore_node = required_kernelcore / usable_nodes;
5572
5573 /*
5574 * As the map is walked, we track how much memory is usable
5575 * by the kernel using kernelcore_remaining. When it is
5576 * 0, the rest of the node is usable by ZONE_MOVABLE
5577 */
5578 kernelcore_remaining = kernelcore_node;
5579
5580 /* Go through each range of PFNs within this node */
c13291a5 5581 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5582 unsigned long size_pages;
5583
c13291a5 5584 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5585 if (start_pfn >= end_pfn)
5586 continue;
5587
5588 /* Account for what is only usable for kernelcore */
5589 if (start_pfn < usable_startpfn) {
5590 unsigned long kernel_pages;
5591 kernel_pages = min(end_pfn, usable_startpfn)
5592 - start_pfn;
5593
5594 kernelcore_remaining -= min(kernel_pages,
5595 kernelcore_remaining);
5596 required_kernelcore -= min(kernel_pages,
5597 required_kernelcore);
5598
5599 /* Continue if range is now fully accounted */
5600 if (end_pfn <= usable_startpfn) {
5601
5602 /*
5603 * Push zone_movable_pfn to the end so
5604 * that if we have to rebalance
5605 * kernelcore across nodes, we will
5606 * not double account here
5607 */
5608 zone_movable_pfn[nid] = end_pfn;
5609 continue;
5610 }
5611 start_pfn = usable_startpfn;
5612 }
5613
5614 /*
5615 * The usable PFN range for ZONE_MOVABLE is from
5616 * start_pfn->end_pfn. Calculate size_pages as the
5617 * number of pages used as kernelcore
5618 */
5619 size_pages = end_pfn - start_pfn;
5620 if (size_pages > kernelcore_remaining)
5621 size_pages = kernelcore_remaining;
5622 zone_movable_pfn[nid] = start_pfn + size_pages;
5623
5624 /*
5625 * Some kernelcore has been met, update counts and
5626 * break if the kernelcore for this node has been
b8af2941 5627 * satisfied
2a1e274a
MG
5628 */
5629 required_kernelcore -= min(required_kernelcore,
5630 size_pages);
5631 kernelcore_remaining -= size_pages;
5632 if (!kernelcore_remaining)
5633 break;
5634 }
5635 }
5636
5637 /*
5638 * If there is still required_kernelcore, we do another pass with one
5639 * less node in the count. This will push zone_movable_pfn[nid] further
5640 * along on the nodes that still have memory until kernelcore is
b8af2941 5641 * satisfied
2a1e274a
MG
5642 */
5643 usable_nodes--;
5644 if (usable_nodes && required_kernelcore > usable_nodes)
5645 goto restart;
5646
b2f3eebe 5647out2:
2a1e274a
MG
5648 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5649 for (nid = 0; nid < MAX_NUMNODES; nid++)
5650 zone_movable_pfn[nid] =
5651 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5652
20e6926d 5653out:
66918dcd 5654 /* restore the node_state */
4b0ef1fe 5655 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5656}
5657
4b0ef1fe
LJ
5658/* Any regular or high memory on that node ? */
5659static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5660{
37b07e41
LS
5661 enum zone_type zone_type;
5662
4b0ef1fe
LJ
5663 if (N_MEMORY == N_NORMAL_MEMORY)
5664 return;
5665
5666 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5667 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5668 if (populated_zone(zone)) {
4b0ef1fe
LJ
5669 node_set_state(nid, N_HIGH_MEMORY);
5670 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5671 zone_type <= ZONE_NORMAL)
5672 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5673 break;
5674 }
37b07e41 5675 }
37b07e41
LS
5676}
5677
c713216d
MG
5678/**
5679 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5680 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5681 *
5682 * This will call free_area_init_node() for each active node in the system.
7d018176 5683 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5684 * zone in each node and their holes is calculated. If the maximum PFN
5685 * between two adjacent zones match, it is assumed that the zone is empty.
5686 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5687 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5688 * starts where the previous one ended. For example, ZONE_DMA32 starts
5689 * at arch_max_dma_pfn.
5690 */
5691void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5692{
c13291a5
TH
5693 unsigned long start_pfn, end_pfn;
5694 int i, nid;
a6af2bc3 5695
c713216d
MG
5696 /* Record where the zone boundaries are */
5697 memset(arch_zone_lowest_possible_pfn, 0,
5698 sizeof(arch_zone_lowest_possible_pfn));
5699 memset(arch_zone_highest_possible_pfn, 0,
5700 sizeof(arch_zone_highest_possible_pfn));
5701 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5702 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5703 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5704 if (i == ZONE_MOVABLE)
5705 continue;
c713216d
MG
5706 arch_zone_lowest_possible_pfn[i] =
5707 arch_zone_highest_possible_pfn[i-1];
5708 arch_zone_highest_possible_pfn[i] =
5709 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5710 }
2a1e274a
MG
5711 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5712 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5713
5714 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5715 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5716 find_zone_movable_pfns_for_nodes();
c713216d 5717
c713216d 5718 /* Print out the zone ranges */
f88dfff5 5719 pr_info("Zone ranges:\n");
2a1e274a
MG
5720 for (i = 0; i < MAX_NR_ZONES; i++) {
5721 if (i == ZONE_MOVABLE)
5722 continue;
f88dfff5 5723 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5724 if (arch_zone_lowest_possible_pfn[i] ==
5725 arch_zone_highest_possible_pfn[i])
f88dfff5 5726 pr_cont("empty\n");
72f0ba02 5727 else
8d29e18a
JG
5728 pr_cont("[mem %#018Lx-%#018Lx]\n",
5729 (u64)arch_zone_lowest_possible_pfn[i]
5730 << PAGE_SHIFT,
5731 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5732 << PAGE_SHIFT) - 1);
2a1e274a
MG
5733 }
5734
5735 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5736 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5737 for (i = 0; i < MAX_NUMNODES; i++) {
5738 if (zone_movable_pfn[i])
8d29e18a
JG
5739 pr_info(" Node %d: %#018Lx\n", i,
5740 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5741 }
c713216d 5742
f2d52fe5 5743 /* Print out the early node map */
f88dfff5 5744 pr_info("Early memory node ranges\n");
c13291a5 5745 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5746 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5747 (u64)start_pfn << PAGE_SHIFT,
5748 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5749
5750 /* Initialise every node */
708614e6 5751 mminit_verify_pageflags_layout();
8ef82866 5752 setup_nr_node_ids();
c713216d
MG
5753 for_each_online_node(nid) {
5754 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5755 free_area_init_node(nid, NULL,
c713216d 5756 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5757
5758 /* Any memory on that node */
5759 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5760 node_set_state(nid, N_MEMORY);
5761 check_for_memory(pgdat, nid);
c713216d
MG
5762 }
5763}
2a1e274a 5764
7e63efef 5765static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5766{
5767 unsigned long long coremem;
5768 if (!p)
5769 return -EINVAL;
5770
5771 coremem = memparse(p, &p);
7e63efef 5772 *core = coremem >> PAGE_SHIFT;
2a1e274a 5773
7e63efef 5774 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5775 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5776
5777 return 0;
5778}
ed7ed365 5779
7e63efef
MG
5780/*
5781 * kernelcore=size sets the amount of memory for use for allocations that
5782 * cannot be reclaimed or migrated.
5783 */
5784static int __init cmdline_parse_kernelcore(char *p)
5785{
5786 return cmdline_parse_core(p, &required_kernelcore);
5787}
5788
5789/*
5790 * movablecore=size sets the amount of memory for use for allocations that
5791 * can be reclaimed or migrated.
5792 */
5793static int __init cmdline_parse_movablecore(char *p)
5794{
5795 return cmdline_parse_core(p, &required_movablecore);
5796}
5797
ed7ed365 5798early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5799early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5800
0ee332c1 5801#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5802
c3d5f5f0
JL
5803void adjust_managed_page_count(struct page *page, long count)
5804{
5805 spin_lock(&managed_page_count_lock);
5806 page_zone(page)->managed_pages += count;
5807 totalram_pages += count;
3dcc0571
JL
5808#ifdef CONFIG_HIGHMEM
5809 if (PageHighMem(page))
5810 totalhigh_pages += count;
5811#endif
c3d5f5f0
JL
5812 spin_unlock(&managed_page_count_lock);
5813}
3dcc0571 5814EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5815
11199692 5816unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5817{
11199692
JL
5818 void *pos;
5819 unsigned long pages = 0;
69afade7 5820
11199692
JL
5821 start = (void *)PAGE_ALIGN((unsigned long)start);
5822 end = (void *)((unsigned long)end & PAGE_MASK);
5823 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5824 if ((unsigned int)poison <= 0xFF)
11199692
JL
5825 memset(pos, poison, PAGE_SIZE);
5826 free_reserved_page(virt_to_page(pos));
69afade7
JL
5827 }
5828
5829 if (pages && s)
11199692 5830 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5831 s, pages << (PAGE_SHIFT - 10), start, end);
5832
5833 return pages;
5834}
11199692 5835EXPORT_SYMBOL(free_reserved_area);
69afade7 5836
cfa11e08
JL
5837#ifdef CONFIG_HIGHMEM
5838void free_highmem_page(struct page *page)
5839{
5840 __free_reserved_page(page);
5841 totalram_pages++;
7b4b2a0d 5842 page_zone(page)->managed_pages++;
cfa11e08
JL
5843 totalhigh_pages++;
5844}
5845#endif
5846
7ee3d4e8
JL
5847
5848void __init mem_init_print_info(const char *str)
5849{
5850 unsigned long physpages, codesize, datasize, rosize, bss_size;
5851 unsigned long init_code_size, init_data_size;
5852
5853 physpages = get_num_physpages();
5854 codesize = _etext - _stext;
5855 datasize = _edata - _sdata;
5856 rosize = __end_rodata - __start_rodata;
5857 bss_size = __bss_stop - __bss_start;
5858 init_data_size = __init_end - __init_begin;
5859 init_code_size = _einittext - _sinittext;
5860
5861 /*
5862 * Detect special cases and adjust section sizes accordingly:
5863 * 1) .init.* may be embedded into .data sections
5864 * 2) .init.text.* may be out of [__init_begin, __init_end],
5865 * please refer to arch/tile/kernel/vmlinux.lds.S.
5866 * 3) .rodata.* may be embedded into .text or .data sections.
5867 */
5868#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5869 do { \
5870 if (start <= pos && pos < end && size > adj) \
5871 size -= adj; \
5872 } while (0)
7ee3d4e8
JL
5873
5874 adj_init_size(__init_begin, __init_end, init_data_size,
5875 _sinittext, init_code_size);
5876 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5877 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5878 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5879 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5880
5881#undef adj_init_size
5882
f88dfff5 5883 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5884 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5885 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5886#ifdef CONFIG_HIGHMEM
5887 ", %luK highmem"
5888#endif
5889 "%s%s)\n",
5890 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5891 codesize >> 10, datasize >> 10, rosize >> 10,
5892 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5893 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5894 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5895#ifdef CONFIG_HIGHMEM
5896 totalhigh_pages << (PAGE_SHIFT-10),
5897#endif
5898 str ? ", " : "", str ? str : "");
5899}
5900
0e0b864e 5901/**
88ca3b94
RD
5902 * set_dma_reserve - set the specified number of pages reserved in the first zone
5903 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 5904 *
013110a7 5905 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
5906 * In the DMA zone, a significant percentage may be consumed by kernel image
5907 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5908 * function may optionally be used to account for unfreeable pages in the
5909 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5910 * smaller per-cpu batchsize.
0e0b864e
MG
5911 */
5912void __init set_dma_reserve(unsigned long new_dma_reserve)
5913{
5914 dma_reserve = new_dma_reserve;
5915}
5916
1da177e4
LT
5917void __init free_area_init(unsigned long *zones_size)
5918{
9109fb7b 5919 free_area_init_node(0, zones_size,
1da177e4
LT
5920 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5921}
1da177e4 5922
1da177e4
LT
5923static int page_alloc_cpu_notify(struct notifier_block *self,
5924 unsigned long action, void *hcpu)
5925{
5926 int cpu = (unsigned long)hcpu;
1da177e4 5927
8bb78442 5928 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5929 lru_add_drain_cpu(cpu);
9f8f2172
CL
5930 drain_pages(cpu);
5931
5932 /*
5933 * Spill the event counters of the dead processor
5934 * into the current processors event counters.
5935 * This artificially elevates the count of the current
5936 * processor.
5937 */
f8891e5e 5938 vm_events_fold_cpu(cpu);
9f8f2172
CL
5939
5940 /*
5941 * Zero the differential counters of the dead processor
5942 * so that the vm statistics are consistent.
5943 *
5944 * This is only okay since the processor is dead and cannot
5945 * race with what we are doing.
5946 */
2bb921e5 5947 cpu_vm_stats_fold(cpu);
1da177e4
LT
5948 }
5949 return NOTIFY_OK;
5950}
1da177e4
LT
5951
5952void __init page_alloc_init(void)
5953{
5954 hotcpu_notifier(page_alloc_cpu_notify, 0);
5955}
5956
cb45b0e9 5957/*
34b10060 5958 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
5959 * or min_free_kbytes changes.
5960 */
5961static void calculate_totalreserve_pages(void)
5962{
5963 struct pglist_data *pgdat;
5964 unsigned long reserve_pages = 0;
2f6726e5 5965 enum zone_type i, j;
cb45b0e9
HA
5966
5967 for_each_online_pgdat(pgdat) {
5968 for (i = 0; i < MAX_NR_ZONES; i++) {
5969 struct zone *zone = pgdat->node_zones + i;
3484b2de 5970 long max = 0;
cb45b0e9
HA
5971
5972 /* Find valid and maximum lowmem_reserve in the zone */
5973 for (j = i; j < MAX_NR_ZONES; j++) {
5974 if (zone->lowmem_reserve[j] > max)
5975 max = zone->lowmem_reserve[j];
5976 }
5977
41858966
MG
5978 /* we treat the high watermark as reserved pages. */
5979 max += high_wmark_pages(zone);
cb45b0e9 5980
b40da049
JL
5981 if (max > zone->managed_pages)
5982 max = zone->managed_pages;
a8d01437
JW
5983
5984 zone->totalreserve_pages = max;
5985
cb45b0e9
HA
5986 reserve_pages += max;
5987 }
5988 }
5989 totalreserve_pages = reserve_pages;
5990}
5991
1da177e4
LT
5992/*
5993 * setup_per_zone_lowmem_reserve - called whenever
34b10060 5994 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
5995 * has a correct pages reserved value, so an adequate number of
5996 * pages are left in the zone after a successful __alloc_pages().
5997 */
5998static void setup_per_zone_lowmem_reserve(void)
5999{
6000 struct pglist_data *pgdat;
2f6726e5 6001 enum zone_type j, idx;
1da177e4 6002
ec936fc5 6003 for_each_online_pgdat(pgdat) {
1da177e4
LT
6004 for (j = 0; j < MAX_NR_ZONES; j++) {
6005 struct zone *zone = pgdat->node_zones + j;
b40da049 6006 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6007
6008 zone->lowmem_reserve[j] = 0;
6009
2f6726e5
CL
6010 idx = j;
6011 while (idx) {
1da177e4
LT
6012 struct zone *lower_zone;
6013
2f6726e5
CL
6014 idx--;
6015
1da177e4
LT
6016 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6017 sysctl_lowmem_reserve_ratio[idx] = 1;
6018
6019 lower_zone = pgdat->node_zones + idx;
b40da049 6020 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6021 sysctl_lowmem_reserve_ratio[idx];
b40da049 6022 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6023 }
6024 }
6025 }
cb45b0e9
HA
6026
6027 /* update totalreserve_pages */
6028 calculate_totalreserve_pages();
1da177e4
LT
6029}
6030
cfd3da1e 6031static void __setup_per_zone_wmarks(void)
1da177e4
LT
6032{
6033 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6034 unsigned long lowmem_pages = 0;
6035 struct zone *zone;
6036 unsigned long flags;
6037
6038 /* Calculate total number of !ZONE_HIGHMEM pages */
6039 for_each_zone(zone) {
6040 if (!is_highmem(zone))
b40da049 6041 lowmem_pages += zone->managed_pages;
1da177e4
LT
6042 }
6043
6044 for_each_zone(zone) {
ac924c60
AM
6045 u64 tmp;
6046
1125b4e3 6047 spin_lock_irqsave(&zone->lock, flags);
b40da049 6048 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6049 do_div(tmp, lowmem_pages);
1da177e4
LT
6050 if (is_highmem(zone)) {
6051 /*
669ed175
NP
6052 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6053 * need highmem pages, so cap pages_min to a small
6054 * value here.
6055 *
41858966 6056 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6057 * deltas control asynch page reclaim, and so should
669ed175 6058 * not be capped for highmem.
1da177e4 6059 */
90ae8d67 6060 unsigned long min_pages;
1da177e4 6061
b40da049 6062 min_pages = zone->managed_pages / 1024;
90ae8d67 6063 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6064 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6065 } else {
669ed175
NP
6066 /*
6067 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6068 * proportionate to the zone's size.
6069 */
41858966 6070 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6071 }
6072
41858966
MG
6073 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6074 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6075
81c0a2bb 6076 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6077 high_wmark_pages(zone) - low_wmark_pages(zone) -
6078 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6079
1125b4e3 6080 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6081 }
cb45b0e9
HA
6082
6083 /* update totalreserve_pages */
6084 calculate_totalreserve_pages();
1da177e4
LT
6085}
6086
cfd3da1e
MG
6087/**
6088 * setup_per_zone_wmarks - called when min_free_kbytes changes
6089 * or when memory is hot-{added|removed}
6090 *
6091 * Ensures that the watermark[min,low,high] values for each zone are set
6092 * correctly with respect to min_free_kbytes.
6093 */
6094void setup_per_zone_wmarks(void)
6095{
6096 mutex_lock(&zonelists_mutex);
6097 __setup_per_zone_wmarks();
6098 mutex_unlock(&zonelists_mutex);
6099}
6100
55a4462a 6101/*
556adecb
RR
6102 * The inactive anon list should be small enough that the VM never has to
6103 * do too much work, but large enough that each inactive page has a chance
6104 * to be referenced again before it is swapped out.
6105 *
6106 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6107 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6108 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6109 * the anonymous pages are kept on the inactive list.
6110 *
6111 * total target max
6112 * memory ratio inactive anon
6113 * -------------------------------------
6114 * 10MB 1 5MB
6115 * 100MB 1 50MB
6116 * 1GB 3 250MB
6117 * 10GB 10 0.9GB
6118 * 100GB 31 3GB
6119 * 1TB 101 10GB
6120 * 10TB 320 32GB
6121 */
1b79acc9 6122static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6123{
96cb4df5 6124 unsigned int gb, ratio;
556adecb 6125
96cb4df5 6126 /* Zone size in gigabytes */
b40da049 6127 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6128 if (gb)
556adecb 6129 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6130 else
6131 ratio = 1;
556adecb 6132
96cb4df5
MK
6133 zone->inactive_ratio = ratio;
6134}
556adecb 6135
839a4fcc 6136static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6137{
6138 struct zone *zone;
6139
6140 for_each_zone(zone)
6141 calculate_zone_inactive_ratio(zone);
556adecb
RR
6142}
6143
1da177e4
LT
6144/*
6145 * Initialise min_free_kbytes.
6146 *
6147 * For small machines we want it small (128k min). For large machines
6148 * we want it large (64MB max). But it is not linear, because network
6149 * bandwidth does not increase linearly with machine size. We use
6150 *
b8af2941 6151 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6152 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6153 *
6154 * which yields
6155 *
6156 * 16MB: 512k
6157 * 32MB: 724k
6158 * 64MB: 1024k
6159 * 128MB: 1448k
6160 * 256MB: 2048k
6161 * 512MB: 2896k
6162 * 1024MB: 4096k
6163 * 2048MB: 5792k
6164 * 4096MB: 8192k
6165 * 8192MB: 11584k
6166 * 16384MB: 16384k
6167 */
1b79acc9 6168int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6169{
6170 unsigned long lowmem_kbytes;
5f12733e 6171 int new_min_free_kbytes;
1da177e4
LT
6172
6173 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6174 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6175
6176 if (new_min_free_kbytes > user_min_free_kbytes) {
6177 min_free_kbytes = new_min_free_kbytes;
6178 if (min_free_kbytes < 128)
6179 min_free_kbytes = 128;
6180 if (min_free_kbytes > 65536)
6181 min_free_kbytes = 65536;
6182 } else {
6183 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6184 new_min_free_kbytes, user_min_free_kbytes);
6185 }
bc75d33f 6186 setup_per_zone_wmarks();
a6cccdc3 6187 refresh_zone_stat_thresholds();
1da177e4 6188 setup_per_zone_lowmem_reserve();
556adecb 6189 setup_per_zone_inactive_ratio();
1da177e4
LT
6190 return 0;
6191}
bc75d33f 6192module_init(init_per_zone_wmark_min)
1da177e4
LT
6193
6194/*
b8af2941 6195 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6196 * that we can call two helper functions whenever min_free_kbytes
6197 * changes.
6198 */
cccad5b9 6199int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6200 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6201{
da8c757b
HP
6202 int rc;
6203
6204 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6205 if (rc)
6206 return rc;
6207
5f12733e
MH
6208 if (write) {
6209 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6210 setup_per_zone_wmarks();
5f12733e 6211 }
1da177e4
LT
6212 return 0;
6213}
6214
9614634f 6215#ifdef CONFIG_NUMA
cccad5b9 6216int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6217 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6218{
6219 struct zone *zone;
6220 int rc;
6221
8d65af78 6222 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6223 if (rc)
6224 return rc;
6225
6226 for_each_zone(zone)
b40da049 6227 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6228 sysctl_min_unmapped_ratio) / 100;
6229 return 0;
6230}
0ff38490 6231
cccad5b9 6232int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6233 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6234{
6235 struct zone *zone;
6236 int rc;
6237
8d65af78 6238 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6239 if (rc)
6240 return rc;
6241
6242 for_each_zone(zone)
b40da049 6243 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6244 sysctl_min_slab_ratio) / 100;
6245 return 0;
6246}
9614634f
CL
6247#endif
6248
1da177e4
LT
6249/*
6250 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6251 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6252 * whenever sysctl_lowmem_reserve_ratio changes.
6253 *
6254 * The reserve ratio obviously has absolutely no relation with the
41858966 6255 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6256 * if in function of the boot time zone sizes.
6257 */
cccad5b9 6258int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6259 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6260{
8d65af78 6261 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6262 setup_per_zone_lowmem_reserve();
6263 return 0;
6264}
6265
8ad4b1fb
RS
6266/*
6267 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6268 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6269 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6270 */
cccad5b9 6271int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6272 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6273{
6274 struct zone *zone;
7cd2b0a3 6275 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6276 int ret;
6277
7cd2b0a3
DR
6278 mutex_lock(&pcp_batch_high_lock);
6279 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6280
8d65af78 6281 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6282 if (!write || ret < 0)
6283 goto out;
6284
6285 /* Sanity checking to avoid pcp imbalance */
6286 if (percpu_pagelist_fraction &&
6287 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6288 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6289 ret = -EINVAL;
6290 goto out;
6291 }
6292
6293 /* No change? */
6294 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6295 goto out;
c8e251fa 6296
364df0eb 6297 for_each_populated_zone(zone) {
7cd2b0a3
DR
6298 unsigned int cpu;
6299
22a7f12b 6300 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6301 pageset_set_high_and_batch(zone,
6302 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6303 }
7cd2b0a3 6304out:
c8e251fa 6305 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6306 return ret;
8ad4b1fb
RS
6307}
6308
a9919c79 6309#ifdef CONFIG_NUMA
f034b5d4 6310int hashdist = HASHDIST_DEFAULT;
1da177e4 6311
1da177e4
LT
6312static int __init set_hashdist(char *str)
6313{
6314 if (!str)
6315 return 0;
6316 hashdist = simple_strtoul(str, &str, 0);
6317 return 1;
6318}
6319__setup("hashdist=", set_hashdist);
6320#endif
6321
6322/*
6323 * allocate a large system hash table from bootmem
6324 * - it is assumed that the hash table must contain an exact power-of-2
6325 * quantity of entries
6326 * - limit is the number of hash buckets, not the total allocation size
6327 */
6328void *__init alloc_large_system_hash(const char *tablename,
6329 unsigned long bucketsize,
6330 unsigned long numentries,
6331 int scale,
6332 int flags,
6333 unsigned int *_hash_shift,
6334 unsigned int *_hash_mask,
31fe62b9
TB
6335 unsigned long low_limit,
6336 unsigned long high_limit)
1da177e4 6337{
31fe62b9 6338 unsigned long long max = high_limit;
1da177e4
LT
6339 unsigned long log2qty, size;
6340 void *table = NULL;
6341
6342 /* allow the kernel cmdline to have a say */
6343 if (!numentries) {
6344 /* round applicable memory size up to nearest megabyte */
04903664 6345 numentries = nr_kernel_pages;
a7e83318
JZ
6346
6347 /* It isn't necessary when PAGE_SIZE >= 1MB */
6348 if (PAGE_SHIFT < 20)
6349 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6350
6351 /* limit to 1 bucket per 2^scale bytes of low memory */
6352 if (scale > PAGE_SHIFT)
6353 numentries >>= (scale - PAGE_SHIFT);
6354 else
6355 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6356
6357 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6358 if (unlikely(flags & HASH_SMALL)) {
6359 /* Makes no sense without HASH_EARLY */
6360 WARN_ON(!(flags & HASH_EARLY));
6361 if (!(numentries >> *_hash_shift)) {
6362 numentries = 1UL << *_hash_shift;
6363 BUG_ON(!numentries);
6364 }
6365 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6366 numentries = PAGE_SIZE / bucketsize;
1da177e4 6367 }
6e692ed3 6368 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6369
6370 /* limit allocation size to 1/16 total memory by default */
6371 if (max == 0) {
6372 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6373 do_div(max, bucketsize);
6374 }
074b8517 6375 max = min(max, 0x80000000ULL);
1da177e4 6376
31fe62b9
TB
6377 if (numentries < low_limit)
6378 numentries = low_limit;
1da177e4
LT
6379 if (numentries > max)
6380 numentries = max;
6381
f0d1b0b3 6382 log2qty = ilog2(numentries);
1da177e4
LT
6383
6384 do {
6385 size = bucketsize << log2qty;
6386 if (flags & HASH_EARLY)
6782832e 6387 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6388 else if (hashdist)
6389 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6390 else {
1037b83b
ED
6391 /*
6392 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6393 * some pages at the end of hash table which
6394 * alloc_pages_exact() automatically does
1037b83b 6395 */
264ef8a9 6396 if (get_order(size) < MAX_ORDER) {
a1dd268c 6397 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6398 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6399 }
1da177e4
LT
6400 }
6401 } while (!table && size > PAGE_SIZE && --log2qty);
6402
6403 if (!table)
6404 panic("Failed to allocate %s hash table\n", tablename);
6405
f241e660 6406 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6407 tablename,
f241e660 6408 (1UL << log2qty),
f0d1b0b3 6409 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6410 size);
6411
6412 if (_hash_shift)
6413 *_hash_shift = log2qty;
6414 if (_hash_mask)
6415 *_hash_mask = (1 << log2qty) - 1;
6416
6417 return table;
6418}
a117e66e 6419
835c134e
MG
6420/* Return a pointer to the bitmap storing bits affecting a block of pages */
6421static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6422 unsigned long pfn)
6423{
6424#ifdef CONFIG_SPARSEMEM
6425 return __pfn_to_section(pfn)->pageblock_flags;
6426#else
6427 return zone->pageblock_flags;
6428#endif /* CONFIG_SPARSEMEM */
6429}
6430
6431static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6432{
6433#ifdef CONFIG_SPARSEMEM
6434 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6435 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6436#else
c060f943 6437 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6438 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6439#endif /* CONFIG_SPARSEMEM */
6440}
6441
6442/**
1aab4d77 6443 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6444 * @page: The page within the block of interest
1aab4d77
RD
6445 * @pfn: The target page frame number
6446 * @end_bitidx: The last bit of interest to retrieve
6447 * @mask: mask of bits that the caller is interested in
6448 *
6449 * Return: pageblock_bits flags
835c134e 6450 */
dc4b0caf 6451unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6452 unsigned long end_bitidx,
6453 unsigned long mask)
835c134e
MG
6454{
6455 struct zone *zone;
6456 unsigned long *bitmap;
dc4b0caf 6457 unsigned long bitidx, word_bitidx;
e58469ba 6458 unsigned long word;
835c134e
MG
6459
6460 zone = page_zone(page);
835c134e
MG
6461 bitmap = get_pageblock_bitmap(zone, pfn);
6462 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6463 word_bitidx = bitidx / BITS_PER_LONG;
6464 bitidx &= (BITS_PER_LONG-1);
835c134e 6465
e58469ba
MG
6466 word = bitmap[word_bitidx];
6467 bitidx += end_bitidx;
6468 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6469}
6470
6471/**
dc4b0caf 6472 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6473 * @page: The page within the block of interest
835c134e 6474 * @flags: The flags to set
1aab4d77
RD
6475 * @pfn: The target page frame number
6476 * @end_bitidx: The last bit of interest
6477 * @mask: mask of bits that the caller is interested in
835c134e 6478 */
dc4b0caf
MG
6479void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6480 unsigned long pfn,
e58469ba
MG
6481 unsigned long end_bitidx,
6482 unsigned long mask)
835c134e
MG
6483{
6484 struct zone *zone;
6485 unsigned long *bitmap;
dc4b0caf 6486 unsigned long bitidx, word_bitidx;
e58469ba
MG
6487 unsigned long old_word, word;
6488
6489 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6490
6491 zone = page_zone(page);
835c134e
MG
6492 bitmap = get_pageblock_bitmap(zone, pfn);
6493 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6494 word_bitidx = bitidx / BITS_PER_LONG;
6495 bitidx &= (BITS_PER_LONG-1);
6496
309381fe 6497 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6498
e58469ba
MG
6499 bitidx += end_bitidx;
6500 mask <<= (BITS_PER_LONG - bitidx - 1);
6501 flags <<= (BITS_PER_LONG - bitidx - 1);
6502
4db0c3c2 6503 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6504 for (;;) {
6505 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6506 if (word == old_word)
6507 break;
6508 word = old_word;
6509 }
835c134e 6510}
a5d76b54
KH
6511
6512/*
80934513
MK
6513 * This function checks whether pageblock includes unmovable pages or not.
6514 * If @count is not zero, it is okay to include less @count unmovable pages
6515 *
b8af2941 6516 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6517 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6518 * expect this function should be exact.
a5d76b54 6519 */
b023f468
WC
6520bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6521 bool skip_hwpoisoned_pages)
49ac8255
KH
6522{
6523 unsigned long pfn, iter, found;
47118af0
MN
6524 int mt;
6525
49ac8255
KH
6526 /*
6527 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6528 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6529 */
6530 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6531 return false;
47118af0
MN
6532 mt = get_pageblock_migratetype(page);
6533 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6534 return false;
49ac8255
KH
6535
6536 pfn = page_to_pfn(page);
6537 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6538 unsigned long check = pfn + iter;
6539
29723fcc 6540 if (!pfn_valid_within(check))
49ac8255 6541 continue;
29723fcc 6542
49ac8255 6543 page = pfn_to_page(check);
c8721bbb
NH
6544
6545 /*
6546 * Hugepages are not in LRU lists, but they're movable.
6547 * We need not scan over tail pages bacause we don't
6548 * handle each tail page individually in migration.
6549 */
6550 if (PageHuge(page)) {
6551 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6552 continue;
6553 }
6554
97d255c8
MK
6555 /*
6556 * We can't use page_count without pin a page
6557 * because another CPU can free compound page.
6558 * This check already skips compound tails of THP
6559 * because their page->_count is zero at all time.
6560 */
6561 if (!atomic_read(&page->_count)) {
49ac8255
KH
6562 if (PageBuddy(page))
6563 iter += (1 << page_order(page)) - 1;
6564 continue;
6565 }
97d255c8 6566
b023f468
WC
6567 /*
6568 * The HWPoisoned page may be not in buddy system, and
6569 * page_count() is not 0.
6570 */
6571 if (skip_hwpoisoned_pages && PageHWPoison(page))
6572 continue;
6573
49ac8255
KH
6574 if (!PageLRU(page))
6575 found++;
6576 /*
6b4f7799
JW
6577 * If there are RECLAIMABLE pages, we need to check
6578 * it. But now, memory offline itself doesn't call
6579 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6580 */
6581 /*
6582 * If the page is not RAM, page_count()should be 0.
6583 * we don't need more check. This is an _used_ not-movable page.
6584 *
6585 * The problematic thing here is PG_reserved pages. PG_reserved
6586 * is set to both of a memory hole page and a _used_ kernel
6587 * page at boot.
6588 */
6589 if (found > count)
80934513 6590 return true;
49ac8255 6591 }
80934513 6592 return false;
49ac8255
KH
6593}
6594
6595bool is_pageblock_removable_nolock(struct page *page)
6596{
656a0706
MH
6597 struct zone *zone;
6598 unsigned long pfn;
687875fb
MH
6599
6600 /*
6601 * We have to be careful here because we are iterating over memory
6602 * sections which are not zone aware so we might end up outside of
6603 * the zone but still within the section.
656a0706
MH
6604 * We have to take care about the node as well. If the node is offline
6605 * its NODE_DATA will be NULL - see page_zone.
687875fb 6606 */
656a0706
MH
6607 if (!node_online(page_to_nid(page)))
6608 return false;
6609
6610 zone = page_zone(page);
6611 pfn = page_to_pfn(page);
108bcc96 6612 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6613 return false;
6614
b023f468 6615 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6616}
0c0e6195 6617
041d3a8c
MN
6618#ifdef CONFIG_CMA
6619
6620static unsigned long pfn_max_align_down(unsigned long pfn)
6621{
6622 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6623 pageblock_nr_pages) - 1);
6624}
6625
6626static unsigned long pfn_max_align_up(unsigned long pfn)
6627{
6628 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6629 pageblock_nr_pages));
6630}
6631
041d3a8c 6632/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6633static int __alloc_contig_migrate_range(struct compact_control *cc,
6634 unsigned long start, unsigned long end)
041d3a8c
MN
6635{
6636 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6637 unsigned long nr_reclaimed;
041d3a8c
MN
6638 unsigned long pfn = start;
6639 unsigned int tries = 0;
6640 int ret = 0;
6641
be49a6e1 6642 migrate_prep();
041d3a8c 6643
bb13ffeb 6644 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6645 if (fatal_signal_pending(current)) {
6646 ret = -EINTR;
6647 break;
6648 }
6649
bb13ffeb
MG
6650 if (list_empty(&cc->migratepages)) {
6651 cc->nr_migratepages = 0;
edc2ca61 6652 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6653 if (!pfn) {
6654 ret = -EINTR;
6655 break;
6656 }
6657 tries = 0;
6658 } else if (++tries == 5) {
6659 ret = ret < 0 ? ret : -EBUSY;
6660 break;
6661 }
6662
beb51eaa
MK
6663 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6664 &cc->migratepages);
6665 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6666
9c620e2b 6667 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6668 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6669 }
2a6f5124
SP
6670 if (ret < 0) {
6671 putback_movable_pages(&cc->migratepages);
6672 return ret;
6673 }
6674 return 0;
041d3a8c
MN
6675}
6676
6677/**
6678 * alloc_contig_range() -- tries to allocate given range of pages
6679 * @start: start PFN to allocate
6680 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6681 * @migratetype: migratetype of the underlaying pageblocks (either
6682 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6683 * in range must have the same migratetype and it must
6684 * be either of the two.
041d3a8c
MN
6685 *
6686 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6687 * aligned, however it's the caller's responsibility to guarantee that
6688 * we are the only thread that changes migrate type of pageblocks the
6689 * pages fall in.
6690 *
6691 * The PFN range must belong to a single zone.
6692 *
6693 * Returns zero on success or negative error code. On success all
6694 * pages which PFN is in [start, end) are allocated for the caller and
6695 * need to be freed with free_contig_range().
6696 */
0815f3d8
MN
6697int alloc_contig_range(unsigned long start, unsigned long end,
6698 unsigned migratetype)
041d3a8c 6699{
041d3a8c 6700 unsigned long outer_start, outer_end;
d00181b9
KS
6701 unsigned int order;
6702 int ret = 0;
041d3a8c 6703
bb13ffeb
MG
6704 struct compact_control cc = {
6705 .nr_migratepages = 0,
6706 .order = -1,
6707 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6708 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6709 .ignore_skip_hint = true,
6710 };
6711 INIT_LIST_HEAD(&cc.migratepages);
6712
041d3a8c
MN
6713 /*
6714 * What we do here is we mark all pageblocks in range as
6715 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6716 * have different sizes, and due to the way page allocator
6717 * work, we align the range to biggest of the two pages so
6718 * that page allocator won't try to merge buddies from
6719 * different pageblocks and change MIGRATE_ISOLATE to some
6720 * other migration type.
6721 *
6722 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6723 * migrate the pages from an unaligned range (ie. pages that
6724 * we are interested in). This will put all the pages in
6725 * range back to page allocator as MIGRATE_ISOLATE.
6726 *
6727 * When this is done, we take the pages in range from page
6728 * allocator removing them from the buddy system. This way
6729 * page allocator will never consider using them.
6730 *
6731 * This lets us mark the pageblocks back as
6732 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6733 * aligned range but not in the unaligned, original range are
6734 * put back to page allocator so that buddy can use them.
6735 */
6736
6737 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6738 pfn_max_align_up(end), migratetype,
6739 false);
041d3a8c 6740 if (ret)
86a595f9 6741 return ret;
041d3a8c 6742
8ef5849f
JK
6743 /*
6744 * In case of -EBUSY, we'd like to know which page causes problem.
6745 * So, just fall through. We will check it in test_pages_isolated().
6746 */
bb13ffeb 6747 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 6748 if (ret && ret != -EBUSY)
041d3a8c
MN
6749 goto done;
6750
6751 /*
6752 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6753 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6754 * more, all pages in [start, end) are free in page allocator.
6755 * What we are going to do is to allocate all pages from
6756 * [start, end) (that is remove them from page allocator).
6757 *
6758 * The only problem is that pages at the beginning and at the
6759 * end of interesting range may be not aligned with pages that
6760 * page allocator holds, ie. they can be part of higher order
6761 * pages. Because of this, we reserve the bigger range and
6762 * once this is done free the pages we are not interested in.
6763 *
6764 * We don't have to hold zone->lock here because the pages are
6765 * isolated thus they won't get removed from buddy.
6766 */
6767
6768 lru_add_drain_all();
510f5507 6769 drain_all_pages(cc.zone);
041d3a8c
MN
6770
6771 order = 0;
6772 outer_start = start;
6773 while (!PageBuddy(pfn_to_page(outer_start))) {
6774 if (++order >= MAX_ORDER) {
8ef5849f
JK
6775 outer_start = start;
6776 break;
041d3a8c
MN
6777 }
6778 outer_start &= ~0UL << order;
6779 }
6780
8ef5849f
JK
6781 if (outer_start != start) {
6782 order = page_order(pfn_to_page(outer_start));
6783
6784 /*
6785 * outer_start page could be small order buddy page and
6786 * it doesn't include start page. Adjust outer_start
6787 * in this case to report failed page properly
6788 * on tracepoint in test_pages_isolated()
6789 */
6790 if (outer_start + (1UL << order) <= start)
6791 outer_start = start;
6792 }
6793
041d3a8c 6794 /* Make sure the range is really isolated. */
b023f468 6795 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6796 pr_info("%s: [%lx, %lx) PFNs busy\n",
6797 __func__, outer_start, end);
041d3a8c
MN
6798 ret = -EBUSY;
6799 goto done;
6800 }
6801
49f223a9 6802 /* Grab isolated pages from freelists. */
bb13ffeb 6803 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6804 if (!outer_end) {
6805 ret = -EBUSY;
6806 goto done;
6807 }
6808
6809 /* Free head and tail (if any) */
6810 if (start != outer_start)
6811 free_contig_range(outer_start, start - outer_start);
6812 if (end != outer_end)
6813 free_contig_range(end, outer_end - end);
6814
6815done:
6816 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6817 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6818 return ret;
6819}
6820
6821void free_contig_range(unsigned long pfn, unsigned nr_pages)
6822{
bcc2b02f
MS
6823 unsigned int count = 0;
6824
6825 for (; nr_pages--; pfn++) {
6826 struct page *page = pfn_to_page(pfn);
6827
6828 count += page_count(page) != 1;
6829 __free_page(page);
6830 }
6831 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6832}
6833#endif
6834
4ed7e022 6835#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6836/*
6837 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6838 * page high values need to be recalulated.
6839 */
4ed7e022
JL
6840void __meminit zone_pcp_update(struct zone *zone)
6841{
0a647f38 6842 unsigned cpu;
c8e251fa 6843 mutex_lock(&pcp_batch_high_lock);
0a647f38 6844 for_each_possible_cpu(cpu)
169f6c19
CS
6845 pageset_set_high_and_batch(zone,
6846 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6847 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6848}
6849#endif
6850
340175b7
JL
6851void zone_pcp_reset(struct zone *zone)
6852{
6853 unsigned long flags;
5a883813
MK
6854 int cpu;
6855 struct per_cpu_pageset *pset;
340175b7
JL
6856
6857 /* avoid races with drain_pages() */
6858 local_irq_save(flags);
6859 if (zone->pageset != &boot_pageset) {
5a883813
MK
6860 for_each_online_cpu(cpu) {
6861 pset = per_cpu_ptr(zone->pageset, cpu);
6862 drain_zonestat(zone, pset);
6863 }
340175b7
JL
6864 free_percpu(zone->pageset);
6865 zone->pageset = &boot_pageset;
6866 }
6867 local_irq_restore(flags);
6868}
6869
6dcd73d7 6870#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6871/*
6872 * All pages in the range must be isolated before calling this.
6873 */
6874void
6875__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6876{
6877 struct page *page;
6878 struct zone *zone;
7aeb09f9 6879 unsigned int order, i;
0c0e6195
KH
6880 unsigned long pfn;
6881 unsigned long flags;
6882 /* find the first valid pfn */
6883 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6884 if (pfn_valid(pfn))
6885 break;
6886 if (pfn == end_pfn)
6887 return;
6888 zone = page_zone(pfn_to_page(pfn));
6889 spin_lock_irqsave(&zone->lock, flags);
6890 pfn = start_pfn;
6891 while (pfn < end_pfn) {
6892 if (!pfn_valid(pfn)) {
6893 pfn++;
6894 continue;
6895 }
6896 page = pfn_to_page(pfn);
b023f468
WC
6897 /*
6898 * The HWPoisoned page may be not in buddy system, and
6899 * page_count() is not 0.
6900 */
6901 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6902 pfn++;
6903 SetPageReserved(page);
6904 continue;
6905 }
6906
0c0e6195
KH
6907 BUG_ON(page_count(page));
6908 BUG_ON(!PageBuddy(page));
6909 order = page_order(page);
6910#ifdef CONFIG_DEBUG_VM
6911 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6912 pfn, 1 << order, end_pfn);
6913#endif
6914 list_del(&page->lru);
6915 rmv_page_order(page);
6916 zone->free_area[order].nr_free--;
0c0e6195
KH
6917 for (i = 0; i < (1 << order); i++)
6918 SetPageReserved((page+i));
6919 pfn += (1 << order);
6920 }
6921 spin_unlock_irqrestore(&zone->lock, flags);
6922}
6923#endif
8d22ba1b
WF
6924
6925#ifdef CONFIG_MEMORY_FAILURE
6926bool is_free_buddy_page(struct page *page)
6927{
6928 struct zone *zone = page_zone(page);
6929 unsigned long pfn = page_to_pfn(page);
6930 unsigned long flags;
7aeb09f9 6931 unsigned int order;
8d22ba1b
WF
6932
6933 spin_lock_irqsave(&zone->lock, flags);
6934 for (order = 0; order < MAX_ORDER; order++) {
6935 struct page *page_head = page - (pfn & ((1 << order) - 1));
6936
6937 if (PageBuddy(page_head) && page_order(page_head) >= order)
6938 break;
6939 }
6940 spin_unlock_irqrestore(&zone->lock, flags);
6941
6942 return order < MAX_ORDER;
6943}
6944#endif