Merge branch 'tracing-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
52d4b9ac 47#include <linux/page_cgroup.h>
3ac7fe5a 48#include <linux/debugobjects.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
ac924c60 51#include <asm/div64.h>
1da177e4
LT
52#include "internal.h"
53
54/*
13808910 55 * Array of node states.
1da177e4 56 */
13808910
CL
57nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60#ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62#ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64#endif
65 [N_CPU] = { { [0] = 1UL } },
66#endif /* NUMA */
67};
68EXPORT_SYMBOL(node_states);
69
6c231b7b 70unsigned long totalram_pages __read_mostly;
cb45b0e9 71unsigned long totalreserve_pages __read_mostly;
22b31eec 72unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 73int percpu_pagelist_fraction;
1da177e4 74
d9c23400
MG
75#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76int pageblock_order __read_mostly;
77#endif
78
d98c7a09 79static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 80
1da177e4
LT
81/*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
1da177e4 91 */
2f1b6248 92int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 93#ifdef CONFIG_ZONE_DMA
2f1b6248 94 256,
4b51d669 95#endif
fb0e7942 96#ifdef CONFIG_ZONE_DMA32
2f1b6248 97 256,
fb0e7942 98#endif
e53ef38d 99#ifdef CONFIG_HIGHMEM
2a1e274a 100 32,
e53ef38d 101#endif
2a1e274a 102 32,
2f1b6248 103};
1da177e4
LT
104
105EXPORT_SYMBOL(totalram_pages);
1da177e4 106
15ad7cdc 107static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 108#ifdef CONFIG_ZONE_DMA
2f1b6248 109 "DMA",
4b51d669 110#endif
fb0e7942 111#ifdef CONFIG_ZONE_DMA32
2f1b6248 112 "DMA32",
fb0e7942 113#endif
2f1b6248 114 "Normal",
e53ef38d 115#ifdef CONFIG_HIGHMEM
2a1e274a 116 "HighMem",
e53ef38d 117#endif
2a1e274a 118 "Movable",
2f1b6248
CL
119};
120
1da177e4
LT
121int min_free_kbytes = 1024;
122
86356ab1
YG
123unsigned long __meminitdata nr_kernel_pages;
124unsigned long __meminitdata nr_all_pages;
a3142c8e 125static unsigned long __meminitdata dma_reserve;
1da177e4 126
c713216d
MG
127#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
183ff22b 129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
98011f56
JB
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c 152#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
98011f56
JB
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
fb01439c 155#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
b69a7288 156 static unsigned long __initdata required_kernelcore;
484f51f8 157 static unsigned long __initdata required_movablecore;
b69a7288 158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
c713216d
MG
163#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
418508c1
MS
165#if MAX_NUMNODES > 1
166int nr_node_ids __read_mostly = MAX_NUMNODES;
167EXPORT_SYMBOL(nr_node_ids);
168#endif
169
9ef9acb0
MG
170int page_group_by_mobility_disabled __read_mostly;
171
b2a0ac88
MG
172static void set_pageblock_migratetype(struct page *page, int migratetype)
173{
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176}
177
13e7444b 178#ifdef CONFIG_DEBUG_VM
c6a57e19 179static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 180{
bdc8cb98
DH
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
c6a57e19 184
bdc8cb98
DH
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
c6a57e19
DH
194}
195
196static int page_is_consistent(struct zone *zone, struct page *page)
197{
14e07298 198 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 199 return 0;
1da177e4 200 if (zone != page_zone(page))
c6a57e19
DH
201 return 0;
202
203 return 1;
204}
205/*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208static int bad_range(struct zone *zone, struct page *page)
209{
210 if (page_outside_zone_boundaries(zone, page))
1da177e4 211 return 1;
c6a57e19
DH
212 if (!page_is_consistent(zone, page))
213 return 1;
214
1da177e4
LT
215 return 0;
216}
13e7444b
NP
217#else
218static inline int bad_range(struct zone *zone, struct page *page)
219{
220 return 0;
221}
222#endif
223
224abf92 224static void bad_page(struct page *page)
1da177e4 225{
d936cf9b
HD
226 static unsigned long resume;
227 static unsigned long nr_shown;
228 static unsigned long nr_unshown;
229
230 /*
231 * Allow a burst of 60 reports, then keep quiet for that minute;
232 * or allow a steady drip of one report per second.
233 */
234 if (nr_shown == 60) {
235 if (time_before(jiffies, resume)) {
236 nr_unshown++;
237 goto out;
238 }
239 if (nr_unshown) {
1e9e6365
HD
240 printk(KERN_ALERT
241 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
242 nr_unshown);
243 nr_unshown = 0;
244 }
245 nr_shown = 0;
246 }
247 if (nr_shown++ == 0)
248 resume = jiffies + 60 * HZ;
249
1e9e6365 250 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 251 current->comm, page_to_pfn(page));
1e9e6365 252 printk(KERN_ALERT
3dc14741
HD
253 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
254 page, (void *)page->flags, page_count(page),
255 page_mapcount(page), page->mapping, page->index);
3dc14741 256
1da177e4 257 dump_stack();
d936cf9b 258out:
8cc3b392
HD
259 /* Leave bad fields for debug, except PageBuddy could make trouble */
260 __ClearPageBuddy(page);
9f158333 261 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
262}
263
1da177e4
LT
264/*
265 * Higher-order pages are called "compound pages". They are structured thusly:
266 *
267 * The first PAGE_SIZE page is called the "head page".
268 *
269 * The remaining PAGE_SIZE pages are called "tail pages".
270 *
271 * All pages have PG_compound set. All pages have their ->private pointing at
272 * the head page (even the head page has this).
273 *
41d78ba5
HD
274 * The first tail page's ->lru.next holds the address of the compound page's
275 * put_page() function. Its ->lru.prev holds the order of allocation.
276 * This usage means that zero-order pages may not be compound.
1da177e4 277 */
d98c7a09
HD
278
279static void free_compound_page(struct page *page)
280{
d85f3385 281 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
282}
283
01ad1c08 284void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
285{
286 int i;
287 int nr_pages = 1 << order;
288
289 set_compound_page_dtor(page, free_compound_page);
290 set_compound_order(page, order);
291 __SetPageHead(page);
292 for (i = 1; i < nr_pages; i++) {
293 struct page *p = page + i;
294
295 __SetPageTail(p);
296 p->first_page = page;
297 }
298}
299
300#ifdef CONFIG_HUGETLBFS
301void prep_compound_gigantic_page(struct page *page, unsigned long order)
1da177e4
LT
302{
303 int i;
304 int nr_pages = 1 << order;
6babc32c 305 struct page *p = page + 1;
1da177e4 306
33f2ef89 307 set_compound_page_dtor(page, free_compound_page);
d85f3385 308 set_compound_order(page, order);
6d777953 309 __SetPageHead(page);
18229df5 310 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
d85f3385 311 __SetPageTail(p);
d85f3385 312 p->first_page = page;
1da177e4
LT
313 }
314}
18229df5 315#endif
1da177e4 316
8cc3b392 317static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
318{
319 int i;
320 int nr_pages = 1 << order;
8cc3b392 321 int bad = 0;
1da177e4 322
8cc3b392
HD
323 if (unlikely(compound_order(page) != order) ||
324 unlikely(!PageHead(page))) {
224abf92 325 bad_page(page);
8cc3b392
HD
326 bad++;
327 }
1da177e4 328
6d777953 329 __ClearPageHead(page);
8cc3b392 330
18229df5
AW
331 for (i = 1; i < nr_pages; i++) {
332 struct page *p = page + i;
1da177e4 333
8cc3b392 334 if (unlikely(!PageTail(p) | (p->first_page != page))) {
224abf92 335 bad_page(page);
8cc3b392
HD
336 bad++;
337 }
d85f3385 338 __ClearPageTail(p);
1da177e4 339 }
8cc3b392
HD
340
341 return bad;
1da177e4 342}
1da177e4 343
17cf4406
NP
344static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
345{
346 int i;
347
6626c5d5
AM
348 /*
349 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
350 * and __GFP_HIGHMEM from hard or soft interrupt context.
351 */
725d704e 352 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
353 for (i = 0; i < (1 << order); i++)
354 clear_highpage(page + i);
355}
356
6aa3001b
AM
357static inline void set_page_order(struct page *page, int order)
358{
4c21e2f2 359 set_page_private(page, order);
676165a8 360 __SetPageBuddy(page);
1da177e4
LT
361}
362
363static inline void rmv_page_order(struct page *page)
364{
676165a8 365 __ClearPageBuddy(page);
4c21e2f2 366 set_page_private(page, 0);
1da177e4
LT
367}
368
369/*
370 * Locate the struct page for both the matching buddy in our
371 * pair (buddy1) and the combined O(n+1) page they form (page).
372 *
373 * 1) Any buddy B1 will have an order O twin B2 which satisfies
374 * the following equation:
375 * B2 = B1 ^ (1 << O)
376 * For example, if the starting buddy (buddy2) is #8 its order
377 * 1 buddy is #10:
378 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
379 *
380 * 2) Any buddy B will have an order O+1 parent P which
381 * satisfies the following equation:
382 * P = B & ~(1 << O)
383 *
d6e05edc 384 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
385 */
386static inline struct page *
387__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
388{
389 unsigned long buddy_idx = page_idx ^ (1 << order);
390
391 return page + (buddy_idx - page_idx);
392}
393
394static inline unsigned long
395__find_combined_index(unsigned long page_idx, unsigned int order)
396{
397 return (page_idx & ~(1 << order));
398}
399
400/*
401 * This function checks whether a page is free && is the buddy
402 * we can do coalesce a page and its buddy if
13e7444b 403 * (a) the buddy is not in a hole &&
676165a8 404 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
405 * (c) a page and its buddy have the same order &&
406 * (d) a page and its buddy are in the same zone.
676165a8
NP
407 *
408 * For recording whether a page is in the buddy system, we use PG_buddy.
409 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 410 *
676165a8 411 * For recording page's order, we use page_private(page).
1da177e4 412 */
cb2b95e1
AW
413static inline int page_is_buddy(struct page *page, struct page *buddy,
414 int order)
1da177e4 415{
14e07298 416 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 417 return 0;
13e7444b 418
cb2b95e1
AW
419 if (page_zone_id(page) != page_zone_id(buddy))
420 return 0;
421
422 if (PageBuddy(buddy) && page_order(buddy) == order) {
423 BUG_ON(page_count(buddy) != 0);
6aa3001b 424 return 1;
676165a8 425 }
6aa3001b 426 return 0;
1da177e4
LT
427}
428
429/*
430 * Freeing function for a buddy system allocator.
431 *
432 * The concept of a buddy system is to maintain direct-mapped table
433 * (containing bit values) for memory blocks of various "orders".
434 * The bottom level table contains the map for the smallest allocatable
435 * units of memory (here, pages), and each level above it describes
436 * pairs of units from the levels below, hence, "buddies".
437 * At a high level, all that happens here is marking the table entry
438 * at the bottom level available, and propagating the changes upward
439 * as necessary, plus some accounting needed to play nicely with other
440 * parts of the VM system.
441 * At each level, we keep a list of pages, which are heads of continuous
676165a8 442 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 443 * order is recorded in page_private(page) field.
1da177e4
LT
444 * So when we are allocating or freeing one, we can derive the state of the
445 * other. That is, if we allocate a small block, and both were
446 * free, the remainder of the region must be split into blocks.
447 * If a block is freed, and its buddy is also free, then this
448 * triggers coalescing into a block of larger size.
449 *
450 * -- wli
451 */
452
48db57f8 453static inline void __free_one_page(struct page *page,
1da177e4
LT
454 struct zone *zone, unsigned int order)
455{
456 unsigned long page_idx;
457 int order_size = 1 << order;
b2a0ac88 458 int migratetype = get_pageblock_migratetype(page);
1da177e4 459
224abf92 460 if (unlikely(PageCompound(page)))
8cc3b392
HD
461 if (unlikely(destroy_compound_page(page, order)))
462 return;
1da177e4
LT
463
464 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
465
725d704e
NP
466 VM_BUG_ON(page_idx & (order_size - 1));
467 VM_BUG_ON(bad_range(zone, page));
1da177e4 468
d23ad423 469 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
470 while (order < MAX_ORDER-1) {
471 unsigned long combined_idx;
1da177e4
LT
472 struct page *buddy;
473
1da177e4 474 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 475 if (!page_is_buddy(page, buddy, order))
3c82d0ce 476 break;
13e7444b 477
3c82d0ce 478 /* Our buddy is free, merge with it and move up one order. */
1da177e4 479 list_del(&buddy->lru);
b2a0ac88 480 zone->free_area[order].nr_free--;
1da177e4 481 rmv_page_order(buddy);
13e7444b 482 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
483 page = page + (combined_idx - page_idx);
484 page_idx = combined_idx;
485 order++;
486 }
487 set_page_order(page, order);
b2a0ac88
MG
488 list_add(&page->lru,
489 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
490 zone->free_area[order].nr_free++;
491}
492
224abf92 493static inline int free_pages_check(struct page *page)
1da177e4 494{
985737cf 495 free_page_mlock(page);
92be2e33
NP
496 if (unlikely(page_mapcount(page) |
497 (page->mapping != NULL) |
498 (page_count(page) != 0) |
8cc3b392 499 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 500 bad_page(page);
79f4b7bf 501 return 1;
8cc3b392 502 }
79f4b7bf
HD
503 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
504 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
505 return 0;
1da177e4
LT
506}
507
508/*
509 * Frees a list of pages.
510 * Assumes all pages on list are in same zone, and of same order.
207f36ee 511 * count is the number of pages to free.
1da177e4
LT
512 *
513 * If the zone was previously in an "all pages pinned" state then look to
514 * see if this freeing clears that state.
515 *
516 * And clear the zone's pages_scanned counter, to hold off the "all pages are
517 * pinned" detection logic.
518 */
48db57f8
NP
519static void free_pages_bulk(struct zone *zone, int count,
520 struct list_head *list, int order)
1da177e4 521{
c54ad30c 522 spin_lock(&zone->lock);
e815af95 523 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 524 zone->pages_scanned = 0;
48db57f8
NP
525 while (count--) {
526 struct page *page;
527
725d704e 528 VM_BUG_ON(list_empty(list));
1da177e4 529 page = list_entry(list->prev, struct page, lru);
48db57f8 530 /* have to delete it as __free_one_page list manipulates */
1da177e4 531 list_del(&page->lru);
48db57f8 532 __free_one_page(page, zone, order);
1da177e4 533 }
c54ad30c 534 spin_unlock(&zone->lock);
1da177e4
LT
535}
536
48db57f8 537static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 538{
006d22d9 539 spin_lock(&zone->lock);
e815af95 540 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 541 zone->pages_scanned = 0;
0798e519 542 __free_one_page(page, zone, order);
006d22d9 543 spin_unlock(&zone->lock);
48db57f8
NP
544}
545
546static void __free_pages_ok(struct page *page, unsigned int order)
547{
548 unsigned long flags;
1da177e4 549 int i;
8cc3b392 550 int bad = 0;
1da177e4 551
1da177e4 552 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
553 bad += free_pages_check(page + i);
554 if (bad)
689bcebf
HD
555 return;
556
3ac7fe5a 557 if (!PageHighMem(page)) {
9858db50 558 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
559 debug_check_no_obj_freed(page_address(page),
560 PAGE_SIZE << order);
561 }
dafb1367 562 arch_free_page(page, order);
48db57f8 563 kernel_map_pages(page, 1 << order, 0);
dafb1367 564
c54ad30c 565 local_irq_save(flags);
f8891e5e 566 __count_vm_events(PGFREE, 1 << order);
48db57f8 567 free_one_page(page_zone(page), page, order);
c54ad30c 568 local_irq_restore(flags);
1da177e4
LT
569}
570
a226f6c8
DH
571/*
572 * permit the bootmem allocator to evade page validation on high-order frees
573 */
af370fb8 574void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
575{
576 if (order == 0) {
577 __ClearPageReserved(page);
578 set_page_count(page, 0);
7835e98b 579 set_page_refcounted(page);
545b1ea9 580 __free_page(page);
a226f6c8 581 } else {
a226f6c8
DH
582 int loop;
583
545b1ea9 584 prefetchw(page);
a226f6c8
DH
585 for (loop = 0; loop < BITS_PER_LONG; loop++) {
586 struct page *p = &page[loop];
587
545b1ea9
NP
588 if (loop + 1 < BITS_PER_LONG)
589 prefetchw(p + 1);
a226f6c8
DH
590 __ClearPageReserved(p);
591 set_page_count(p, 0);
592 }
593
7835e98b 594 set_page_refcounted(page);
545b1ea9 595 __free_pages(page, order);
a226f6c8
DH
596 }
597}
598
1da177e4
LT
599
600/*
601 * The order of subdivision here is critical for the IO subsystem.
602 * Please do not alter this order without good reasons and regression
603 * testing. Specifically, as large blocks of memory are subdivided,
604 * the order in which smaller blocks are delivered depends on the order
605 * they're subdivided in this function. This is the primary factor
606 * influencing the order in which pages are delivered to the IO
607 * subsystem according to empirical testing, and this is also justified
608 * by considering the behavior of a buddy system containing a single
609 * large block of memory acted on by a series of small allocations.
610 * This behavior is a critical factor in sglist merging's success.
611 *
612 * -- wli
613 */
085cc7d5 614static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
615 int low, int high, struct free_area *area,
616 int migratetype)
1da177e4
LT
617{
618 unsigned long size = 1 << high;
619
620 while (high > low) {
621 area--;
622 high--;
623 size >>= 1;
725d704e 624 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 625 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
626 area->nr_free++;
627 set_page_order(&page[size], high);
628 }
1da177e4
LT
629}
630
1da177e4
LT
631/*
632 * This page is about to be returned from the page allocator
633 */
17cf4406 634static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 635{
92be2e33
NP
636 if (unlikely(page_mapcount(page) |
637 (page->mapping != NULL) |
638 (page_count(page) != 0) |
8cc3b392 639 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 640 bad_page(page);
689bcebf 641 return 1;
8cc3b392 642 }
689bcebf 643
4c21e2f2 644 set_page_private(page, 0);
7835e98b 645 set_page_refcounted(page);
cc102509
NP
646
647 arch_alloc_page(page, order);
1da177e4 648 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
649
650 if (gfp_flags & __GFP_ZERO)
651 prep_zero_page(page, order, gfp_flags);
652
653 if (order && (gfp_flags & __GFP_COMP))
654 prep_compound_page(page, order);
655
689bcebf 656 return 0;
1da177e4
LT
657}
658
56fd56b8
MG
659/*
660 * Go through the free lists for the given migratetype and remove
661 * the smallest available page from the freelists
662 */
663static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
664 int migratetype)
665{
666 unsigned int current_order;
667 struct free_area * area;
668 struct page *page;
669
670 /* Find a page of the appropriate size in the preferred list */
671 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
672 area = &(zone->free_area[current_order]);
673 if (list_empty(&area->free_list[migratetype]))
674 continue;
675
676 page = list_entry(area->free_list[migratetype].next,
677 struct page, lru);
678 list_del(&page->lru);
679 rmv_page_order(page);
680 area->nr_free--;
681 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
682 expand(zone, page, order, current_order, area, migratetype);
683 return page;
684 }
685
686 return NULL;
687}
688
689
b2a0ac88
MG
690/*
691 * This array describes the order lists are fallen back to when
692 * the free lists for the desirable migrate type are depleted
693 */
694static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
695 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
696 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
697 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
699};
700
c361be55
MG
701/*
702 * Move the free pages in a range to the free lists of the requested type.
d9c23400 703 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
704 * boundary. If alignment is required, use move_freepages_block()
705 */
b69a7288
AB
706static int move_freepages(struct zone *zone,
707 struct page *start_page, struct page *end_page,
708 int migratetype)
c361be55
MG
709{
710 struct page *page;
711 unsigned long order;
d100313f 712 int pages_moved = 0;
c361be55
MG
713
714#ifndef CONFIG_HOLES_IN_ZONE
715 /*
716 * page_zone is not safe to call in this context when
717 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
718 * anyway as we check zone boundaries in move_freepages_block().
719 * Remove at a later date when no bug reports exist related to
ac0e5b7a 720 * grouping pages by mobility
c361be55
MG
721 */
722 BUG_ON(page_zone(start_page) != page_zone(end_page));
723#endif
724
725 for (page = start_page; page <= end_page;) {
344c790e
AL
726 /* Make sure we are not inadvertently changing nodes */
727 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
728
c361be55
MG
729 if (!pfn_valid_within(page_to_pfn(page))) {
730 page++;
731 continue;
732 }
733
734 if (!PageBuddy(page)) {
735 page++;
736 continue;
737 }
738
739 order = page_order(page);
740 list_del(&page->lru);
741 list_add(&page->lru,
742 &zone->free_area[order].free_list[migratetype]);
743 page += 1 << order;
d100313f 744 pages_moved += 1 << order;
c361be55
MG
745 }
746
d100313f 747 return pages_moved;
c361be55
MG
748}
749
b69a7288
AB
750static int move_freepages_block(struct zone *zone, struct page *page,
751 int migratetype)
c361be55
MG
752{
753 unsigned long start_pfn, end_pfn;
754 struct page *start_page, *end_page;
755
756 start_pfn = page_to_pfn(page);
d9c23400 757 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 758 start_page = pfn_to_page(start_pfn);
d9c23400
MG
759 end_page = start_page + pageblock_nr_pages - 1;
760 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
761
762 /* Do not cross zone boundaries */
763 if (start_pfn < zone->zone_start_pfn)
764 start_page = page;
765 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
766 return 0;
767
768 return move_freepages(zone, start_page, end_page, migratetype);
769}
770
b2a0ac88
MG
771/* Remove an element from the buddy allocator from the fallback list */
772static struct page *__rmqueue_fallback(struct zone *zone, int order,
773 int start_migratetype)
774{
775 struct free_area * area;
776 int current_order;
777 struct page *page;
778 int migratetype, i;
779
780 /* Find the largest possible block of pages in the other list */
781 for (current_order = MAX_ORDER-1; current_order >= order;
782 --current_order) {
783 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
784 migratetype = fallbacks[start_migratetype][i];
785
56fd56b8
MG
786 /* MIGRATE_RESERVE handled later if necessary */
787 if (migratetype == MIGRATE_RESERVE)
788 continue;
e010487d 789
b2a0ac88
MG
790 area = &(zone->free_area[current_order]);
791 if (list_empty(&area->free_list[migratetype]))
792 continue;
793
794 page = list_entry(area->free_list[migratetype].next,
795 struct page, lru);
796 area->nr_free--;
797
798 /*
c361be55 799 * If breaking a large block of pages, move all free
46dafbca
MG
800 * pages to the preferred allocation list. If falling
801 * back for a reclaimable kernel allocation, be more
802 * agressive about taking ownership of free pages
b2a0ac88 803 */
d9c23400 804 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
805 start_migratetype == MIGRATE_RECLAIMABLE) {
806 unsigned long pages;
807 pages = move_freepages_block(zone, page,
808 start_migratetype);
809
810 /* Claim the whole block if over half of it is free */
d9c23400 811 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
812 set_pageblock_migratetype(page,
813 start_migratetype);
814
b2a0ac88 815 migratetype = start_migratetype;
c361be55 816 }
b2a0ac88
MG
817
818 /* Remove the page from the freelists */
819 list_del(&page->lru);
820 rmv_page_order(page);
821 __mod_zone_page_state(zone, NR_FREE_PAGES,
822 -(1UL << order));
823
d9c23400 824 if (current_order == pageblock_order)
b2a0ac88
MG
825 set_pageblock_migratetype(page,
826 start_migratetype);
827
828 expand(zone, page, order, current_order, area, migratetype);
829 return page;
830 }
831 }
832
56fd56b8
MG
833 /* Use MIGRATE_RESERVE rather than fail an allocation */
834 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
b2a0ac88
MG
835}
836
56fd56b8 837/*
1da177e4
LT
838 * Do the hard work of removing an element from the buddy allocator.
839 * Call me with the zone->lock already held.
840 */
b2a0ac88
MG
841static struct page *__rmqueue(struct zone *zone, unsigned int order,
842 int migratetype)
1da177e4 843{
1da177e4
LT
844 struct page *page;
845
56fd56b8 846 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 847
56fd56b8
MG
848 if (unlikely(!page))
849 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88
MG
850
851 return page;
1da177e4
LT
852}
853
854/*
855 * Obtain a specified number of elements from the buddy allocator, all under
856 * a single hold of the lock, for efficiency. Add them to the supplied list.
857 * Returns the number of new pages which were placed at *list.
858 */
859static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
860 unsigned long count, struct list_head *list,
861 int migratetype)
1da177e4 862{
1da177e4 863 int i;
1da177e4 864
c54ad30c 865 spin_lock(&zone->lock);
1da177e4 866 for (i = 0; i < count; ++i) {
b2a0ac88 867 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 868 if (unlikely(page == NULL))
1da177e4 869 break;
81eabcbe
MG
870
871 /*
872 * Split buddy pages returned by expand() are received here
873 * in physical page order. The page is added to the callers and
874 * list and the list head then moves forward. From the callers
875 * perspective, the linked list is ordered by page number in
876 * some conditions. This is useful for IO devices that can
877 * merge IO requests if the physical pages are ordered
878 * properly.
879 */
535131e6
MG
880 list_add(&page->lru, list);
881 set_page_private(page, migratetype);
81eabcbe 882 list = &page->lru;
1da177e4 883 }
c54ad30c 884 spin_unlock(&zone->lock);
085cc7d5 885 return i;
1da177e4
LT
886}
887
4ae7c039 888#ifdef CONFIG_NUMA
8fce4d8e 889/*
4037d452
CL
890 * Called from the vmstat counter updater to drain pagesets of this
891 * currently executing processor on remote nodes after they have
892 * expired.
893 *
879336c3
CL
894 * Note that this function must be called with the thread pinned to
895 * a single processor.
8fce4d8e 896 */
4037d452 897void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 898{
4ae7c039 899 unsigned long flags;
4037d452 900 int to_drain;
4ae7c039 901
4037d452
CL
902 local_irq_save(flags);
903 if (pcp->count >= pcp->batch)
904 to_drain = pcp->batch;
905 else
906 to_drain = pcp->count;
907 free_pages_bulk(zone, to_drain, &pcp->list, 0);
908 pcp->count -= to_drain;
909 local_irq_restore(flags);
4ae7c039
CL
910}
911#endif
912
9f8f2172
CL
913/*
914 * Drain pages of the indicated processor.
915 *
916 * The processor must either be the current processor and the
917 * thread pinned to the current processor or a processor that
918 * is not online.
919 */
920static void drain_pages(unsigned int cpu)
1da177e4 921{
c54ad30c 922 unsigned long flags;
1da177e4 923 struct zone *zone;
1da177e4
LT
924
925 for_each_zone(zone) {
926 struct per_cpu_pageset *pset;
3dfa5721 927 struct per_cpu_pages *pcp;
1da177e4 928
f2e12bb2
CL
929 if (!populated_zone(zone))
930 continue;
931
e7c8d5c9 932 pset = zone_pcp(zone, cpu);
3dfa5721
CL
933
934 pcp = &pset->pcp;
935 local_irq_save(flags);
936 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
937 pcp->count = 0;
938 local_irq_restore(flags);
1da177e4
LT
939 }
940}
1da177e4 941
9f8f2172
CL
942/*
943 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
944 */
945void drain_local_pages(void *arg)
946{
947 drain_pages(smp_processor_id());
948}
949
950/*
951 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
952 */
953void drain_all_pages(void)
954{
15c8b6c1 955 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
956}
957
296699de 958#ifdef CONFIG_HIBERNATION
1da177e4
LT
959
960void mark_free_pages(struct zone *zone)
961{
f623f0db
RW
962 unsigned long pfn, max_zone_pfn;
963 unsigned long flags;
b2a0ac88 964 int order, t;
1da177e4
LT
965 struct list_head *curr;
966
967 if (!zone->spanned_pages)
968 return;
969
970 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
971
972 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
973 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
974 if (pfn_valid(pfn)) {
975 struct page *page = pfn_to_page(pfn);
976
7be98234
RW
977 if (!swsusp_page_is_forbidden(page))
978 swsusp_unset_page_free(page);
f623f0db 979 }
1da177e4 980
b2a0ac88
MG
981 for_each_migratetype_order(order, t) {
982 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 983 unsigned long i;
1da177e4 984
f623f0db
RW
985 pfn = page_to_pfn(list_entry(curr, struct page, lru));
986 for (i = 0; i < (1UL << order); i++)
7be98234 987 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 988 }
b2a0ac88 989 }
1da177e4
LT
990 spin_unlock_irqrestore(&zone->lock, flags);
991}
e2c55dc8 992#endif /* CONFIG_PM */
1da177e4 993
1da177e4
LT
994/*
995 * Free a 0-order page
996 */
920c7a5d 997static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
998{
999 struct zone *zone = page_zone(page);
1000 struct per_cpu_pages *pcp;
1001 unsigned long flags;
1002
1da177e4
LT
1003 if (PageAnon(page))
1004 page->mapping = NULL;
224abf92 1005 if (free_pages_check(page))
689bcebf
HD
1006 return;
1007
3ac7fe5a 1008 if (!PageHighMem(page)) {
9858db50 1009 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1010 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1011 }
dafb1367 1012 arch_free_page(page, 0);
689bcebf
HD
1013 kernel_map_pages(page, 1, 0);
1014
3dfa5721 1015 pcp = &zone_pcp(zone, get_cpu())->pcp;
1da177e4 1016 local_irq_save(flags);
f8891e5e 1017 __count_vm_event(PGFREE);
3dfa5721
CL
1018 if (cold)
1019 list_add_tail(&page->lru, &pcp->list);
1020 else
1021 list_add(&page->lru, &pcp->list);
535131e6 1022 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1023 pcp->count++;
48db57f8
NP
1024 if (pcp->count >= pcp->high) {
1025 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1026 pcp->count -= pcp->batch;
1027 }
1da177e4
LT
1028 local_irq_restore(flags);
1029 put_cpu();
1030}
1031
920c7a5d 1032void free_hot_page(struct page *page)
1da177e4
LT
1033{
1034 free_hot_cold_page(page, 0);
1035}
1036
920c7a5d 1037void free_cold_page(struct page *page)
1da177e4
LT
1038{
1039 free_hot_cold_page(page, 1);
1040}
1041
8dfcc9ba
NP
1042/*
1043 * split_page takes a non-compound higher-order page, and splits it into
1044 * n (1<<order) sub-pages: page[0..n]
1045 * Each sub-page must be freed individually.
1046 *
1047 * Note: this is probably too low level an operation for use in drivers.
1048 * Please consult with lkml before using this in your driver.
1049 */
1050void split_page(struct page *page, unsigned int order)
1051{
1052 int i;
1053
725d704e
NP
1054 VM_BUG_ON(PageCompound(page));
1055 VM_BUG_ON(!page_count(page));
7835e98b
NP
1056 for (i = 1; i < (1 << order); i++)
1057 set_page_refcounted(page + i);
8dfcc9ba 1058}
8dfcc9ba 1059
1da177e4
LT
1060/*
1061 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1062 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1063 * or two.
1064 */
18ea7e71 1065static struct page *buffered_rmqueue(struct zone *preferred_zone,
a74609fa 1066 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
1067{
1068 unsigned long flags;
689bcebf 1069 struct page *page;
1da177e4 1070 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1071 int cpu;
64c5e135 1072 int migratetype = allocflags_to_migratetype(gfp_flags);
1da177e4 1073
689bcebf 1074again:
a74609fa 1075 cpu = get_cpu();
48db57f8 1076 if (likely(order == 0)) {
1da177e4
LT
1077 struct per_cpu_pages *pcp;
1078
3dfa5721 1079 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1080 local_irq_save(flags);
a74609fa 1081 if (!pcp->count) {
941c7105 1082 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1083 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1084 if (unlikely(!pcp->count))
1085 goto failed;
1da177e4 1086 }
b92a6edd 1087
535131e6 1088 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1089 if (cold) {
1090 list_for_each_entry_reverse(page, &pcp->list, lru)
1091 if (page_private(page) == migratetype)
1092 break;
1093 } else {
1094 list_for_each_entry(page, &pcp->list, lru)
1095 if (page_private(page) == migratetype)
1096 break;
1097 }
535131e6 1098
b92a6edd
MG
1099 /* Allocate more to the pcp list if necessary */
1100 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1101 pcp->count += rmqueue_bulk(zone, 0,
1102 pcp->batch, &pcp->list, migratetype);
1103 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1104 }
b92a6edd
MG
1105
1106 list_del(&page->lru);
1107 pcp->count--;
7fb1d9fc 1108 } else {
1da177e4 1109 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1110 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1111 spin_unlock(&zone->lock);
1112 if (!page)
1113 goto failed;
1da177e4
LT
1114 }
1115
f8891e5e 1116 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1117 zone_statistics(preferred_zone, zone);
a74609fa
NP
1118 local_irq_restore(flags);
1119 put_cpu();
1da177e4 1120
725d704e 1121 VM_BUG_ON(bad_range(zone, page));
17cf4406 1122 if (prep_new_page(page, order, gfp_flags))
a74609fa 1123 goto again;
1da177e4 1124 return page;
a74609fa
NP
1125
1126failed:
1127 local_irq_restore(flags);
1128 put_cpu();
1129 return NULL;
1da177e4
LT
1130}
1131
7fb1d9fc 1132#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1133#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1134#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1135#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1136#define ALLOC_HARDER 0x10 /* try to alloc harder */
1137#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1138#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1139
933e312e
AM
1140#ifdef CONFIG_FAIL_PAGE_ALLOC
1141
1142static struct fail_page_alloc_attr {
1143 struct fault_attr attr;
1144
1145 u32 ignore_gfp_highmem;
1146 u32 ignore_gfp_wait;
54114994 1147 u32 min_order;
933e312e
AM
1148
1149#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1150
1151 struct dentry *ignore_gfp_highmem_file;
1152 struct dentry *ignore_gfp_wait_file;
54114994 1153 struct dentry *min_order_file;
933e312e
AM
1154
1155#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1156
1157} fail_page_alloc = {
1158 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1159 .ignore_gfp_wait = 1,
1160 .ignore_gfp_highmem = 1,
54114994 1161 .min_order = 1,
933e312e
AM
1162};
1163
1164static int __init setup_fail_page_alloc(char *str)
1165{
1166 return setup_fault_attr(&fail_page_alloc.attr, str);
1167}
1168__setup("fail_page_alloc=", setup_fail_page_alloc);
1169
1170static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1171{
54114994
AM
1172 if (order < fail_page_alloc.min_order)
1173 return 0;
933e312e
AM
1174 if (gfp_mask & __GFP_NOFAIL)
1175 return 0;
1176 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1177 return 0;
1178 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1179 return 0;
1180
1181 return should_fail(&fail_page_alloc.attr, 1 << order);
1182}
1183
1184#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1185
1186static int __init fail_page_alloc_debugfs(void)
1187{
1188 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1189 struct dentry *dir;
1190 int err;
1191
1192 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1193 "fail_page_alloc");
1194 if (err)
1195 return err;
1196 dir = fail_page_alloc.attr.dentries.dir;
1197
1198 fail_page_alloc.ignore_gfp_wait_file =
1199 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1200 &fail_page_alloc.ignore_gfp_wait);
1201
1202 fail_page_alloc.ignore_gfp_highmem_file =
1203 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1204 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1205 fail_page_alloc.min_order_file =
1206 debugfs_create_u32("min-order", mode, dir,
1207 &fail_page_alloc.min_order);
933e312e
AM
1208
1209 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1210 !fail_page_alloc.ignore_gfp_highmem_file ||
1211 !fail_page_alloc.min_order_file) {
933e312e
AM
1212 err = -ENOMEM;
1213 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1214 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1215 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1216 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1217 }
1218
1219 return err;
1220}
1221
1222late_initcall(fail_page_alloc_debugfs);
1223
1224#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1225
1226#else /* CONFIG_FAIL_PAGE_ALLOC */
1227
1228static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1229{
1230 return 0;
1231}
1232
1233#endif /* CONFIG_FAIL_PAGE_ALLOC */
1234
1da177e4
LT
1235/*
1236 * Return 1 if free pages are above 'mark'. This takes into account the order
1237 * of the allocation.
1238 */
1239int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1240 int classzone_idx, int alloc_flags)
1da177e4
LT
1241{
1242 /* free_pages my go negative - that's OK */
d23ad423
CL
1243 long min = mark;
1244 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1245 int o;
1246
7fb1d9fc 1247 if (alloc_flags & ALLOC_HIGH)
1da177e4 1248 min -= min / 2;
7fb1d9fc 1249 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1250 min -= min / 4;
1251
1252 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1253 return 0;
1254 for (o = 0; o < order; o++) {
1255 /* At the next order, this order's pages become unavailable */
1256 free_pages -= z->free_area[o].nr_free << o;
1257
1258 /* Require fewer higher order pages to be free */
1259 min >>= 1;
1260
1261 if (free_pages <= min)
1262 return 0;
1263 }
1264 return 1;
1265}
1266
9276b1bc
PJ
1267#ifdef CONFIG_NUMA
1268/*
1269 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1270 * skip over zones that are not allowed by the cpuset, or that have
1271 * been recently (in last second) found to be nearly full. See further
1272 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1273 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1274 *
1275 * If the zonelist cache is present in the passed in zonelist, then
1276 * returns a pointer to the allowed node mask (either the current
37b07e41 1277 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1278 *
1279 * If the zonelist cache is not available for this zonelist, does
1280 * nothing and returns NULL.
1281 *
1282 * If the fullzones BITMAP in the zonelist cache is stale (more than
1283 * a second since last zap'd) then we zap it out (clear its bits.)
1284 *
1285 * We hold off even calling zlc_setup, until after we've checked the
1286 * first zone in the zonelist, on the theory that most allocations will
1287 * be satisfied from that first zone, so best to examine that zone as
1288 * quickly as we can.
1289 */
1290static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1291{
1292 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1293 nodemask_t *allowednodes; /* zonelist_cache approximation */
1294
1295 zlc = zonelist->zlcache_ptr;
1296 if (!zlc)
1297 return NULL;
1298
f05111f5 1299 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1300 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1301 zlc->last_full_zap = jiffies;
1302 }
1303
1304 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1305 &cpuset_current_mems_allowed :
37b07e41 1306 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1307 return allowednodes;
1308}
1309
1310/*
1311 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1312 * if it is worth looking at further for free memory:
1313 * 1) Check that the zone isn't thought to be full (doesn't have its
1314 * bit set in the zonelist_cache fullzones BITMAP).
1315 * 2) Check that the zones node (obtained from the zonelist_cache
1316 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1317 * Return true (non-zero) if zone is worth looking at further, or
1318 * else return false (zero) if it is not.
1319 *
1320 * This check -ignores- the distinction between various watermarks,
1321 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1322 * found to be full for any variation of these watermarks, it will
1323 * be considered full for up to one second by all requests, unless
1324 * we are so low on memory on all allowed nodes that we are forced
1325 * into the second scan of the zonelist.
1326 *
1327 * In the second scan we ignore this zonelist cache and exactly
1328 * apply the watermarks to all zones, even it is slower to do so.
1329 * We are low on memory in the second scan, and should leave no stone
1330 * unturned looking for a free page.
1331 */
dd1a239f 1332static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1333 nodemask_t *allowednodes)
1334{
1335 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1336 int i; /* index of *z in zonelist zones */
1337 int n; /* node that zone *z is on */
1338
1339 zlc = zonelist->zlcache_ptr;
1340 if (!zlc)
1341 return 1;
1342
dd1a239f 1343 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1344 n = zlc->z_to_n[i];
1345
1346 /* This zone is worth trying if it is allowed but not full */
1347 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1348}
1349
1350/*
1351 * Given 'z' scanning a zonelist, set the corresponding bit in
1352 * zlc->fullzones, so that subsequent attempts to allocate a page
1353 * from that zone don't waste time re-examining it.
1354 */
dd1a239f 1355static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1356{
1357 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1358 int i; /* index of *z in zonelist zones */
1359
1360 zlc = zonelist->zlcache_ptr;
1361 if (!zlc)
1362 return;
1363
dd1a239f 1364 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1365
1366 set_bit(i, zlc->fullzones);
1367}
1368
1369#else /* CONFIG_NUMA */
1370
1371static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1372{
1373 return NULL;
1374}
1375
dd1a239f 1376static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1377 nodemask_t *allowednodes)
1378{
1379 return 1;
1380}
1381
dd1a239f 1382static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1383{
1384}
1385#endif /* CONFIG_NUMA */
1386
7fb1d9fc 1387/*
0798e519 1388 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1389 * a page.
1390 */
1391static struct page *
19770b32 1392get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
54a6eb5c 1393 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
753ee728 1394{
dd1a239f 1395 struct zoneref *z;
7fb1d9fc 1396 struct page *page = NULL;
54a6eb5c 1397 int classzone_idx;
18ea7e71 1398 struct zone *zone, *preferred_zone;
9276b1bc
PJ
1399 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1400 int zlc_active = 0; /* set if using zonelist_cache */
1401 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1402
19770b32
MG
1403 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1404 &preferred_zone);
7eb54824
AW
1405 if (!preferred_zone)
1406 return NULL;
1407
19770b32 1408 classzone_idx = zone_idx(preferred_zone);
7fb1d9fc 1409
9276b1bc 1410zonelist_scan:
7fb1d9fc 1411 /*
9276b1bc 1412 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1413 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1414 */
19770b32
MG
1415 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1416 high_zoneidx, nodemask) {
9276b1bc
PJ
1417 if (NUMA_BUILD && zlc_active &&
1418 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1419 continue;
7fb1d9fc 1420 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1421 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1422 goto try_next_zone;
7fb1d9fc
RS
1423
1424 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1425 unsigned long mark;
1426 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1427 mark = zone->pages_min;
3148890b 1428 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1429 mark = zone->pages_low;
3148890b 1430 else
1192d526 1431 mark = zone->pages_high;
0798e519
PJ
1432 if (!zone_watermark_ok(zone, order, mark,
1433 classzone_idx, alloc_flags)) {
9eeff239 1434 if (!zone_reclaim_mode ||
1192d526 1435 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1436 goto this_zone_full;
0798e519 1437 }
7fb1d9fc
RS
1438 }
1439
18ea7e71 1440 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
0798e519 1441 if (page)
7fb1d9fc 1442 break;
9276b1bc
PJ
1443this_zone_full:
1444 if (NUMA_BUILD)
1445 zlc_mark_zone_full(zonelist, z);
1446try_next_zone:
1447 if (NUMA_BUILD && !did_zlc_setup) {
1448 /* we do zlc_setup after the first zone is tried */
1449 allowednodes = zlc_setup(zonelist, alloc_flags);
1450 zlc_active = 1;
1451 did_zlc_setup = 1;
1452 }
54a6eb5c 1453 }
9276b1bc
PJ
1454
1455 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1456 /* Disable zlc cache for second zonelist scan */
1457 zlc_active = 0;
1458 goto zonelist_scan;
1459 }
7fb1d9fc 1460 return page;
753ee728
MH
1461}
1462
1da177e4
LT
1463/*
1464 * This is the 'heart' of the zoned buddy allocator.
1465 */
e4048e5d 1466struct page *
19770b32
MG
1467__alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1468 struct zonelist *zonelist, nodemask_t *nodemask)
1da177e4 1469{
260b2367 1470 const gfp_t wait = gfp_mask & __GFP_WAIT;
54a6eb5c 1471 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
dd1a239f
MG
1472 struct zoneref *z;
1473 struct zone *zone;
1da177e4
LT
1474 struct page *page;
1475 struct reclaim_state reclaim_state;
1476 struct task_struct *p = current;
1da177e4 1477 int do_retry;
7fb1d9fc 1478 int alloc_flags;
a41f24ea
NA
1479 unsigned long did_some_progress;
1480 unsigned long pages_reclaimed = 0;
1da177e4
LT
1481
1482 might_sleep_if(wait);
1483
933e312e
AM
1484 if (should_fail_alloc_page(gfp_mask, order))
1485 return NULL;
1486
6b1de916 1487restart:
dd1a239f 1488 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1da177e4 1489
dd1a239f 1490 if (unlikely(!z->zone)) {
523b9458
CL
1491 /*
1492 * Happens if we have an empty zonelist as a result of
1493 * GFP_THISNODE being used on a memoryless node
1494 */
1da177e4
LT
1495 return NULL;
1496 }
6b1de916 1497
19770b32 1498 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
54a6eb5c 1499 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1500 if (page)
1501 goto got_pg;
1da177e4 1502
952f3b51
CL
1503 /*
1504 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1505 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1506 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1507 * using a larger set of nodes after it has established that the
1508 * allowed per node queues are empty and that nodes are
1509 * over allocated.
1510 */
1511 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1512 goto nopage;
1513
dd1a239f
MG
1514 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1515 wakeup_kswapd(zone, order);
1da177e4 1516
9bf2229f 1517 /*
7fb1d9fc
RS
1518 * OK, we're below the kswapd watermark and have kicked background
1519 * reclaim. Now things get more complex, so set up alloc_flags according
1520 * to how we want to proceed.
1521 *
1522 * The caller may dip into page reserves a bit more if the caller
1523 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1524 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1525 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1526 */
3148890b 1527 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1528 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1529 alloc_flags |= ALLOC_HARDER;
1530 if (gfp_mask & __GFP_HIGH)
1531 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1532 if (wait)
1533 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1534
1535 /*
1536 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1537 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1538 *
1539 * This is the last chance, in general, before the goto nopage.
1540 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1541 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1542 */
19770b32 1543 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
54a6eb5c 1544 high_zoneidx, alloc_flags);
7fb1d9fc
RS
1545 if (page)
1546 goto got_pg;
1da177e4
LT
1547
1548 /* This allocation should allow future memory freeing. */
b84a35be 1549
b43a57bb 1550rebalance:
b84a35be
NP
1551 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1552 && !in_interrupt()) {
1553 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1554nofail_alloc:
b84a35be 1555 /* go through the zonelist yet again, ignoring mins */
19770b32 1556 page = get_page_from_freelist(gfp_mask, nodemask, order,
54a6eb5c 1557 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1558 if (page)
1559 goto got_pg;
885036d3 1560 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1561 congestion_wait(WRITE, HZ/50);
885036d3
KK
1562 goto nofail_alloc;
1563 }
1da177e4
LT
1564 }
1565 goto nopage;
1566 }
1567
1568 /* Atomic allocations - we can't balance anything */
1569 if (!wait)
1570 goto nopage;
1571
1da177e4
LT
1572 cond_resched();
1573
1574 /* We now go into synchronous reclaim */
3e0d98b9 1575 cpuset_memory_pressure_bump();
e33c3b5e
DR
1576 /*
1577 * The task's cpuset might have expanded its set of allowable nodes
1578 */
1579 cpuset_update_task_memory_state();
1da177e4
LT
1580 p->flags |= PF_MEMALLOC;
1581 reclaim_state.reclaimed_slab = 0;
1582 p->reclaim_state = &reclaim_state;
1583
dac1d27b 1584 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1da177e4
LT
1585
1586 p->reclaim_state = NULL;
1587 p->flags &= ~PF_MEMALLOC;
1588
1589 cond_resched();
1590
e2c55dc8 1591 if (order != 0)
9f8f2172 1592 drain_all_pages();
e2c55dc8 1593
1da177e4 1594 if (likely(did_some_progress)) {
19770b32 1595 page = get_page_from_freelist(gfp_mask, nodemask, order,
54a6eb5c 1596 zonelist, high_zoneidx, alloc_flags);
7fb1d9fc
RS
1597 if (page)
1598 goto got_pg;
1da177e4 1599 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
dd1a239f 1600 if (!try_set_zone_oom(zonelist, gfp_mask)) {
ff0ceb9d
DR
1601 schedule_timeout_uninterruptible(1);
1602 goto restart;
1603 }
1604
1da177e4
LT
1605 /*
1606 * Go through the zonelist yet one more time, keep
1607 * very high watermark here, this is only to catch
1608 * a parallel oom killing, we must fail if we're still
1609 * under heavy pressure.
1610 */
19770b32
MG
1611 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1612 order, zonelist, high_zoneidx,
1613 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
ff0ceb9d 1614 if (page) {
dd1a239f 1615 clear_zonelist_oom(zonelist, gfp_mask);
7fb1d9fc 1616 goto got_pg;
ff0ceb9d 1617 }
1da177e4 1618
a8bbf72a 1619 /* The OOM killer will not help higher order allocs so fail */
ff0ceb9d 1620 if (order > PAGE_ALLOC_COSTLY_ORDER) {
dd1a239f 1621 clear_zonelist_oom(zonelist, gfp_mask);
a8bbf72a 1622 goto nopage;
ff0ceb9d 1623 }
a8bbf72a 1624
9b0f8b04 1625 out_of_memory(zonelist, gfp_mask, order);
dd1a239f 1626 clear_zonelist_oom(zonelist, gfp_mask);
1da177e4
LT
1627 goto restart;
1628 }
1629
1630 /*
1631 * Don't let big-order allocations loop unless the caller explicitly
1632 * requests that. Wait for some write requests to complete then retry.
1633 *
a41f24ea
NA
1634 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1635 * means __GFP_NOFAIL, but that may not be true in other
ab857d09 1636 * implementations.
a41f24ea
NA
1637 *
1638 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1639 * specified, then we retry until we no longer reclaim any pages
1640 * (above), or we've reclaimed an order of pages at least as
1641 * large as the allocation's order. In both cases, if the
1642 * allocation still fails, we stop retrying.
1da177e4 1643 */
a41f24ea 1644 pages_reclaimed += did_some_progress;
1da177e4
LT
1645 do_retry = 0;
1646 if (!(gfp_mask & __GFP_NORETRY)) {
a41f24ea 1647 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1da177e4 1648 do_retry = 1;
a41f24ea
NA
1649 } else {
1650 if (gfp_mask & __GFP_REPEAT &&
1651 pages_reclaimed < (1 << order))
1652 do_retry = 1;
1653 }
1da177e4
LT
1654 if (gfp_mask & __GFP_NOFAIL)
1655 do_retry = 1;
1656 }
1657 if (do_retry) {
3fcfab16 1658 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1659 goto rebalance;
1660 }
1661
1662nopage:
1663 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1664 printk(KERN_WARNING "%s: page allocation failure."
1665 " order:%d, mode:0x%x\n",
1666 p->comm, order, gfp_mask);
1667 dump_stack();
578c2fd6 1668 show_mem();
1da177e4 1669 }
1da177e4 1670got_pg:
1da177e4
LT
1671 return page;
1672}
e4048e5d 1673EXPORT_SYMBOL(__alloc_pages_internal);
1da177e4
LT
1674
1675/*
1676 * Common helper functions.
1677 */
920c7a5d 1678unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1679{
1680 struct page * page;
1681 page = alloc_pages(gfp_mask, order);
1682 if (!page)
1683 return 0;
1684 return (unsigned long) page_address(page);
1685}
1686
1687EXPORT_SYMBOL(__get_free_pages);
1688
920c7a5d 1689unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1690{
1691 struct page * page;
1692
1693 /*
1694 * get_zeroed_page() returns a 32-bit address, which cannot represent
1695 * a highmem page
1696 */
725d704e 1697 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1698
1699 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1700 if (page)
1701 return (unsigned long) page_address(page);
1702 return 0;
1703}
1704
1705EXPORT_SYMBOL(get_zeroed_page);
1706
1707void __pagevec_free(struct pagevec *pvec)
1708{
1709 int i = pagevec_count(pvec);
1710
1711 while (--i >= 0)
1712 free_hot_cold_page(pvec->pages[i], pvec->cold);
1713}
1714
920c7a5d 1715void __free_pages(struct page *page, unsigned int order)
1da177e4 1716{
b5810039 1717 if (put_page_testzero(page)) {
1da177e4
LT
1718 if (order == 0)
1719 free_hot_page(page);
1720 else
1721 __free_pages_ok(page, order);
1722 }
1723}
1724
1725EXPORT_SYMBOL(__free_pages);
1726
920c7a5d 1727void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1728{
1729 if (addr != 0) {
725d704e 1730 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1731 __free_pages(virt_to_page((void *)addr), order);
1732 }
1733}
1734
1735EXPORT_SYMBOL(free_pages);
1736
2be0ffe2
TT
1737/**
1738 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1739 * @size: the number of bytes to allocate
1740 * @gfp_mask: GFP flags for the allocation
1741 *
1742 * This function is similar to alloc_pages(), except that it allocates the
1743 * minimum number of pages to satisfy the request. alloc_pages() can only
1744 * allocate memory in power-of-two pages.
1745 *
1746 * This function is also limited by MAX_ORDER.
1747 *
1748 * Memory allocated by this function must be released by free_pages_exact().
1749 */
1750void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1751{
1752 unsigned int order = get_order(size);
1753 unsigned long addr;
1754
1755 addr = __get_free_pages(gfp_mask, order);
1756 if (addr) {
1757 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1758 unsigned long used = addr + PAGE_ALIGN(size);
1759
1760 split_page(virt_to_page(addr), order);
1761 while (used < alloc_end) {
1762 free_page(used);
1763 used += PAGE_SIZE;
1764 }
1765 }
1766
1767 return (void *)addr;
1768}
1769EXPORT_SYMBOL(alloc_pages_exact);
1770
1771/**
1772 * free_pages_exact - release memory allocated via alloc_pages_exact()
1773 * @virt: the value returned by alloc_pages_exact.
1774 * @size: size of allocation, same value as passed to alloc_pages_exact().
1775 *
1776 * Release the memory allocated by a previous call to alloc_pages_exact.
1777 */
1778void free_pages_exact(void *virt, size_t size)
1779{
1780 unsigned long addr = (unsigned long)virt;
1781 unsigned long end = addr + PAGE_ALIGN(size);
1782
1783 while (addr < end) {
1784 free_page(addr);
1785 addr += PAGE_SIZE;
1786 }
1787}
1788EXPORT_SYMBOL(free_pages_exact);
1789
1da177e4
LT
1790static unsigned int nr_free_zone_pages(int offset)
1791{
dd1a239f 1792 struct zoneref *z;
54a6eb5c
MG
1793 struct zone *zone;
1794
e310fd43 1795 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1796 unsigned int sum = 0;
1797
0e88460d 1798 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1799
54a6eb5c 1800 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43
MB
1801 unsigned long size = zone->present_pages;
1802 unsigned long high = zone->pages_high;
1803 if (size > high)
1804 sum += size - high;
1da177e4
LT
1805 }
1806
1807 return sum;
1808}
1809
1810/*
1811 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1812 */
1813unsigned int nr_free_buffer_pages(void)
1814{
af4ca457 1815 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1816}
c2f1a551 1817EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1818
1819/*
1820 * Amount of free RAM allocatable within all zones
1821 */
1822unsigned int nr_free_pagecache_pages(void)
1823{
2a1e274a 1824 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1825}
08e0f6a9
CL
1826
1827static inline void show_node(struct zone *zone)
1da177e4 1828{
08e0f6a9 1829 if (NUMA_BUILD)
25ba77c1 1830 printk("Node %d ", zone_to_nid(zone));
1da177e4 1831}
1da177e4 1832
1da177e4
LT
1833void si_meminfo(struct sysinfo *val)
1834{
1835 val->totalram = totalram_pages;
1836 val->sharedram = 0;
d23ad423 1837 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1838 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1839 val->totalhigh = totalhigh_pages;
1840 val->freehigh = nr_free_highpages();
1da177e4
LT
1841 val->mem_unit = PAGE_SIZE;
1842}
1843
1844EXPORT_SYMBOL(si_meminfo);
1845
1846#ifdef CONFIG_NUMA
1847void si_meminfo_node(struct sysinfo *val, int nid)
1848{
1849 pg_data_t *pgdat = NODE_DATA(nid);
1850
1851 val->totalram = pgdat->node_present_pages;
d23ad423 1852 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1853#ifdef CONFIG_HIGHMEM
1da177e4 1854 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1855 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1856 NR_FREE_PAGES);
98d2b0eb
CL
1857#else
1858 val->totalhigh = 0;
1859 val->freehigh = 0;
1860#endif
1da177e4
LT
1861 val->mem_unit = PAGE_SIZE;
1862}
1863#endif
1864
1865#define K(x) ((x) << (PAGE_SHIFT-10))
1866
1867/*
1868 * Show free area list (used inside shift_scroll-lock stuff)
1869 * We also calculate the percentage fragmentation. We do this by counting the
1870 * memory on each free list with the exception of the first item on the list.
1871 */
1872void show_free_areas(void)
1873{
c7241913 1874 int cpu;
1da177e4
LT
1875 struct zone *zone;
1876
1877 for_each_zone(zone) {
c7241913 1878 if (!populated_zone(zone))
1da177e4 1879 continue;
c7241913
JS
1880
1881 show_node(zone);
1882 printk("%s per-cpu:\n", zone->name);
1da177e4 1883
6b482c67 1884 for_each_online_cpu(cpu) {
1da177e4
LT
1885 struct per_cpu_pageset *pageset;
1886
e7c8d5c9 1887 pageset = zone_pcp(zone, cpu);
1da177e4 1888
3dfa5721
CL
1889 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1890 cpu, pageset->pcp.high,
1891 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
1892 }
1893 }
1894
7b854121
LS
1895 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1896 " inactive_file:%lu"
1897//TODO: check/adjust line lengths
1898#ifdef CONFIG_UNEVICTABLE_LRU
1899 " unevictable:%lu"
1900#endif
1901 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1902 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
1903 global_page_state(NR_ACTIVE_ANON),
1904 global_page_state(NR_ACTIVE_FILE),
1905 global_page_state(NR_INACTIVE_ANON),
1906 global_page_state(NR_INACTIVE_FILE),
7b854121
LS
1907#ifdef CONFIG_UNEVICTABLE_LRU
1908 global_page_state(NR_UNEVICTABLE),
1909#endif
b1e7a8fd 1910 global_page_state(NR_FILE_DIRTY),
ce866b34 1911 global_page_state(NR_WRITEBACK),
fd39fc85 1912 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1913 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1914 global_page_state(NR_SLAB_RECLAIMABLE) +
1915 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1916 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1917 global_page_state(NR_PAGETABLE),
1918 global_page_state(NR_BOUNCE));
1da177e4
LT
1919
1920 for_each_zone(zone) {
1921 int i;
1922
c7241913
JS
1923 if (!populated_zone(zone))
1924 continue;
1925
1da177e4
LT
1926 show_node(zone);
1927 printk("%s"
1928 " free:%lukB"
1929 " min:%lukB"
1930 " low:%lukB"
1931 " high:%lukB"
4f98a2fe
RR
1932 " active_anon:%lukB"
1933 " inactive_anon:%lukB"
1934 " active_file:%lukB"
1935 " inactive_file:%lukB"
7b854121
LS
1936#ifdef CONFIG_UNEVICTABLE_LRU
1937 " unevictable:%lukB"
1938#endif
1da177e4
LT
1939 " present:%lukB"
1940 " pages_scanned:%lu"
1941 " all_unreclaimable? %s"
1942 "\n",
1943 zone->name,
d23ad423 1944 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1945 K(zone->pages_min),
1946 K(zone->pages_low),
1947 K(zone->pages_high),
4f98a2fe
RR
1948 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1949 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1950 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1951 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121
LS
1952#ifdef CONFIG_UNEVICTABLE_LRU
1953 K(zone_page_state(zone, NR_UNEVICTABLE)),
1954#endif
1da177e4
LT
1955 K(zone->present_pages),
1956 zone->pages_scanned,
e815af95 1957 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
1958 );
1959 printk("lowmem_reserve[]:");
1960 for (i = 0; i < MAX_NR_ZONES; i++)
1961 printk(" %lu", zone->lowmem_reserve[i]);
1962 printk("\n");
1963 }
1964
1965 for_each_zone(zone) {
8f9de51a 1966 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1967
c7241913
JS
1968 if (!populated_zone(zone))
1969 continue;
1970
1da177e4
LT
1971 show_node(zone);
1972 printk("%s: ", zone->name);
1da177e4
LT
1973
1974 spin_lock_irqsave(&zone->lock, flags);
1975 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1976 nr[order] = zone->free_area[order].nr_free;
1977 total += nr[order] << order;
1da177e4
LT
1978 }
1979 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1980 for (order = 0; order < MAX_ORDER; order++)
1981 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1982 printk("= %lukB\n", K(total));
1983 }
1984
e6f3602d
LW
1985 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1986
1da177e4
LT
1987 show_swap_cache_info();
1988}
1989
19770b32
MG
1990static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1991{
1992 zoneref->zone = zone;
1993 zoneref->zone_idx = zone_idx(zone);
1994}
1995
1da177e4
LT
1996/*
1997 * Builds allocation fallback zone lists.
1a93205b
CL
1998 *
1999 * Add all populated zones of a node to the zonelist.
1da177e4 2000 */
f0c0b2b8
KH
2001static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2002 int nr_zones, enum zone_type zone_type)
1da177e4 2003{
1a93205b
CL
2004 struct zone *zone;
2005
98d2b0eb 2006 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2007 zone_type++;
02a68a5e
CL
2008
2009 do {
2f6726e5 2010 zone_type--;
070f8032 2011 zone = pgdat->node_zones + zone_type;
1a93205b 2012 if (populated_zone(zone)) {
dd1a239f
MG
2013 zoneref_set_zone(zone,
2014 &zonelist->_zonerefs[nr_zones++]);
070f8032 2015 check_highest_zone(zone_type);
1da177e4 2016 }
02a68a5e 2017
2f6726e5 2018 } while (zone_type);
070f8032 2019 return nr_zones;
1da177e4
LT
2020}
2021
f0c0b2b8
KH
2022
2023/*
2024 * zonelist_order:
2025 * 0 = automatic detection of better ordering.
2026 * 1 = order by ([node] distance, -zonetype)
2027 * 2 = order by (-zonetype, [node] distance)
2028 *
2029 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2030 * the same zonelist. So only NUMA can configure this param.
2031 */
2032#define ZONELIST_ORDER_DEFAULT 0
2033#define ZONELIST_ORDER_NODE 1
2034#define ZONELIST_ORDER_ZONE 2
2035
2036/* zonelist order in the kernel.
2037 * set_zonelist_order() will set this to NODE or ZONE.
2038 */
2039static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2040static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2041
2042
1da177e4 2043#ifdef CONFIG_NUMA
f0c0b2b8
KH
2044/* The value user specified ....changed by config */
2045static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2046/* string for sysctl */
2047#define NUMA_ZONELIST_ORDER_LEN 16
2048char numa_zonelist_order[16] = "default";
2049
2050/*
2051 * interface for configure zonelist ordering.
2052 * command line option "numa_zonelist_order"
2053 * = "[dD]efault - default, automatic configuration.
2054 * = "[nN]ode - order by node locality, then by zone within node
2055 * = "[zZ]one - order by zone, then by locality within zone
2056 */
2057
2058static int __parse_numa_zonelist_order(char *s)
2059{
2060 if (*s == 'd' || *s == 'D') {
2061 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2062 } else if (*s == 'n' || *s == 'N') {
2063 user_zonelist_order = ZONELIST_ORDER_NODE;
2064 } else if (*s == 'z' || *s == 'Z') {
2065 user_zonelist_order = ZONELIST_ORDER_ZONE;
2066 } else {
2067 printk(KERN_WARNING
2068 "Ignoring invalid numa_zonelist_order value: "
2069 "%s\n", s);
2070 return -EINVAL;
2071 }
2072 return 0;
2073}
2074
2075static __init int setup_numa_zonelist_order(char *s)
2076{
2077 if (s)
2078 return __parse_numa_zonelist_order(s);
2079 return 0;
2080}
2081early_param("numa_zonelist_order", setup_numa_zonelist_order);
2082
2083/*
2084 * sysctl handler for numa_zonelist_order
2085 */
2086int numa_zonelist_order_handler(ctl_table *table, int write,
2087 struct file *file, void __user *buffer, size_t *length,
2088 loff_t *ppos)
2089{
2090 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2091 int ret;
2092
2093 if (write)
2094 strncpy(saved_string, (char*)table->data,
2095 NUMA_ZONELIST_ORDER_LEN);
2096 ret = proc_dostring(table, write, file, buffer, length, ppos);
2097 if (ret)
2098 return ret;
2099 if (write) {
2100 int oldval = user_zonelist_order;
2101 if (__parse_numa_zonelist_order((char*)table->data)) {
2102 /*
2103 * bogus value. restore saved string
2104 */
2105 strncpy((char*)table->data, saved_string,
2106 NUMA_ZONELIST_ORDER_LEN);
2107 user_zonelist_order = oldval;
2108 } else if (oldval != user_zonelist_order)
2109 build_all_zonelists();
2110 }
2111 return 0;
2112}
2113
2114
1da177e4 2115#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2116static int node_load[MAX_NUMNODES];
2117
1da177e4 2118/**
4dc3b16b 2119 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2120 * @node: node whose fallback list we're appending
2121 * @used_node_mask: nodemask_t of already used nodes
2122 *
2123 * We use a number of factors to determine which is the next node that should
2124 * appear on a given node's fallback list. The node should not have appeared
2125 * already in @node's fallback list, and it should be the next closest node
2126 * according to the distance array (which contains arbitrary distance values
2127 * from each node to each node in the system), and should also prefer nodes
2128 * with no CPUs, since presumably they'll have very little allocation pressure
2129 * on them otherwise.
2130 * It returns -1 if no node is found.
2131 */
f0c0b2b8 2132static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2133{
4cf808eb 2134 int n, val;
1da177e4
LT
2135 int min_val = INT_MAX;
2136 int best_node = -1;
c5f59f08 2137 node_to_cpumask_ptr(tmp, 0);
1da177e4 2138
4cf808eb
LT
2139 /* Use the local node if we haven't already */
2140 if (!node_isset(node, *used_node_mask)) {
2141 node_set(node, *used_node_mask);
2142 return node;
2143 }
1da177e4 2144
37b07e41 2145 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2146
2147 /* Don't want a node to appear more than once */
2148 if (node_isset(n, *used_node_mask))
2149 continue;
2150
1da177e4
LT
2151 /* Use the distance array to find the distance */
2152 val = node_distance(node, n);
2153
4cf808eb
LT
2154 /* Penalize nodes under us ("prefer the next node") */
2155 val += (n < node);
2156
1da177e4 2157 /* Give preference to headless and unused nodes */
c5f59f08
MT
2158 node_to_cpumask_ptr_next(tmp, n);
2159 if (!cpus_empty(*tmp))
1da177e4
LT
2160 val += PENALTY_FOR_NODE_WITH_CPUS;
2161
2162 /* Slight preference for less loaded node */
2163 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2164 val += node_load[n];
2165
2166 if (val < min_val) {
2167 min_val = val;
2168 best_node = n;
2169 }
2170 }
2171
2172 if (best_node >= 0)
2173 node_set(best_node, *used_node_mask);
2174
2175 return best_node;
2176}
2177
f0c0b2b8
KH
2178
2179/*
2180 * Build zonelists ordered by node and zones within node.
2181 * This results in maximum locality--normal zone overflows into local
2182 * DMA zone, if any--but risks exhausting DMA zone.
2183 */
2184static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2185{
f0c0b2b8 2186 int j;
1da177e4 2187 struct zonelist *zonelist;
f0c0b2b8 2188
54a6eb5c 2189 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2190 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2191 ;
2192 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2193 MAX_NR_ZONES - 1);
dd1a239f
MG
2194 zonelist->_zonerefs[j].zone = NULL;
2195 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2196}
2197
523b9458
CL
2198/*
2199 * Build gfp_thisnode zonelists
2200 */
2201static void build_thisnode_zonelists(pg_data_t *pgdat)
2202{
523b9458
CL
2203 int j;
2204 struct zonelist *zonelist;
2205
54a6eb5c
MG
2206 zonelist = &pgdat->node_zonelists[1];
2207 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2208 zonelist->_zonerefs[j].zone = NULL;
2209 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2210}
2211
f0c0b2b8
KH
2212/*
2213 * Build zonelists ordered by zone and nodes within zones.
2214 * This results in conserving DMA zone[s] until all Normal memory is
2215 * exhausted, but results in overflowing to remote node while memory
2216 * may still exist in local DMA zone.
2217 */
2218static int node_order[MAX_NUMNODES];
2219
2220static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2221{
f0c0b2b8
KH
2222 int pos, j, node;
2223 int zone_type; /* needs to be signed */
2224 struct zone *z;
2225 struct zonelist *zonelist;
2226
54a6eb5c
MG
2227 zonelist = &pgdat->node_zonelists[0];
2228 pos = 0;
2229 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2230 for (j = 0; j < nr_nodes; j++) {
2231 node = node_order[j];
2232 z = &NODE_DATA(node)->node_zones[zone_type];
2233 if (populated_zone(z)) {
dd1a239f
MG
2234 zoneref_set_zone(z,
2235 &zonelist->_zonerefs[pos++]);
54a6eb5c 2236 check_highest_zone(zone_type);
f0c0b2b8
KH
2237 }
2238 }
f0c0b2b8 2239 }
dd1a239f
MG
2240 zonelist->_zonerefs[pos].zone = NULL;
2241 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2242}
2243
2244static int default_zonelist_order(void)
2245{
2246 int nid, zone_type;
2247 unsigned long low_kmem_size,total_size;
2248 struct zone *z;
2249 int average_size;
2250 /*
2251 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2252 * If they are really small and used heavily, the system can fall
2253 * into OOM very easily.
2254 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2255 */
2256 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2257 low_kmem_size = 0;
2258 total_size = 0;
2259 for_each_online_node(nid) {
2260 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2261 z = &NODE_DATA(nid)->node_zones[zone_type];
2262 if (populated_zone(z)) {
2263 if (zone_type < ZONE_NORMAL)
2264 low_kmem_size += z->present_pages;
2265 total_size += z->present_pages;
2266 }
2267 }
2268 }
2269 if (!low_kmem_size || /* there are no DMA area. */
2270 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2271 return ZONELIST_ORDER_NODE;
2272 /*
2273 * look into each node's config.
2274 * If there is a node whose DMA/DMA32 memory is very big area on
2275 * local memory, NODE_ORDER may be suitable.
2276 */
37b07e41
LS
2277 average_size = total_size /
2278 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2279 for_each_online_node(nid) {
2280 low_kmem_size = 0;
2281 total_size = 0;
2282 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2283 z = &NODE_DATA(nid)->node_zones[zone_type];
2284 if (populated_zone(z)) {
2285 if (zone_type < ZONE_NORMAL)
2286 low_kmem_size += z->present_pages;
2287 total_size += z->present_pages;
2288 }
2289 }
2290 if (low_kmem_size &&
2291 total_size > average_size && /* ignore small node */
2292 low_kmem_size > total_size * 70/100)
2293 return ZONELIST_ORDER_NODE;
2294 }
2295 return ZONELIST_ORDER_ZONE;
2296}
2297
2298static void set_zonelist_order(void)
2299{
2300 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2301 current_zonelist_order = default_zonelist_order();
2302 else
2303 current_zonelist_order = user_zonelist_order;
2304}
2305
2306static void build_zonelists(pg_data_t *pgdat)
2307{
2308 int j, node, load;
2309 enum zone_type i;
1da177e4 2310 nodemask_t used_mask;
f0c0b2b8
KH
2311 int local_node, prev_node;
2312 struct zonelist *zonelist;
2313 int order = current_zonelist_order;
1da177e4
LT
2314
2315 /* initialize zonelists */
523b9458 2316 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2317 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2318 zonelist->_zonerefs[0].zone = NULL;
2319 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2320 }
2321
2322 /* NUMA-aware ordering of nodes */
2323 local_node = pgdat->node_id;
2324 load = num_online_nodes();
2325 prev_node = local_node;
2326 nodes_clear(used_mask);
f0c0b2b8
KH
2327
2328 memset(node_load, 0, sizeof(node_load));
2329 memset(node_order, 0, sizeof(node_order));
2330 j = 0;
2331
1da177e4 2332 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2333 int distance = node_distance(local_node, node);
2334
2335 /*
2336 * If another node is sufficiently far away then it is better
2337 * to reclaim pages in a zone before going off node.
2338 */
2339 if (distance > RECLAIM_DISTANCE)
2340 zone_reclaim_mode = 1;
2341
1da177e4
LT
2342 /*
2343 * We don't want to pressure a particular node.
2344 * So adding penalty to the first node in same
2345 * distance group to make it round-robin.
2346 */
9eeff239 2347 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2348 node_load[node] = load;
2349
1da177e4
LT
2350 prev_node = node;
2351 load--;
f0c0b2b8
KH
2352 if (order == ZONELIST_ORDER_NODE)
2353 build_zonelists_in_node_order(pgdat, node);
2354 else
2355 node_order[j++] = node; /* remember order */
2356 }
1da177e4 2357
f0c0b2b8
KH
2358 if (order == ZONELIST_ORDER_ZONE) {
2359 /* calculate node order -- i.e., DMA last! */
2360 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2361 }
523b9458
CL
2362
2363 build_thisnode_zonelists(pgdat);
1da177e4
LT
2364}
2365
9276b1bc 2366/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2367static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2368{
54a6eb5c
MG
2369 struct zonelist *zonelist;
2370 struct zonelist_cache *zlc;
dd1a239f 2371 struct zoneref *z;
9276b1bc 2372
54a6eb5c
MG
2373 zonelist = &pgdat->node_zonelists[0];
2374 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2375 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2376 for (z = zonelist->_zonerefs; z->zone; z++)
2377 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2378}
2379
f0c0b2b8 2380
1da177e4
LT
2381#else /* CONFIG_NUMA */
2382
f0c0b2b8
KH
2383static void set_zonelist_order(void)
2384{
2385 current_zonelist_order = ZONELIST_ORDER_ZONE;
2386}
2387
2388static void build_zonelists(pg_data_t *pgdat)
1da177e4 2389{
19655d34 2390 int node, local_node;
54a6eb5c
MG
2391 enum zone_type j;
2392 struct zonelist *zonelist;
1da177e4
LT
2393
2394 local_node = pgdat->node_id;
1da177e4 2395
54a6eb5c
MG
2396 zonelist = &pgdat->node_zonelists[0];
2397 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2398
54a6eb5c
MG
2399 /*
2400 * Now we build the zonelist so that it contains the zones
2401 * of all the other nodes.
2402 * We don't want to pressure a particular node, so when
2403 * building the zones for node N, we make sure that the
2404 * zones coming right after the local ones are those from
2405 * node N+1 (modulo N)
2406 */
2407 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2408 if (!node_online(node))
2409 continue;
2410 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2411 MAX_NR_ZONES - 1);
1da177e4 2412 }
54a6eb5c
MG
2413 for (node = 0; node < local_node; node++) {
2414 if (!node_online(node))
2415 continue;
2416 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2417 MAX_NR_ZONES - 1);
2418 }
2419
dd1a239f
MG
2420 zonelist->_zonerefs[j].zone = NULL;
2421 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2422}
2423
9276b1bc 2424/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2425static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2426{
54a6eb5c 2427 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2428}
2429
1da177e4
LT
2430#endif /* CONFIG_NUMA */
2431
9b1a4d38 2432/* return values int ....just for stop_machine() */
f0c0b2b8 2433static int __build_all_zonelists(void *dummy)
1da177e4 2434{
6811378e 2435 int nid;
9276b1bc
PJ
2436
2437 for_each_online_node(nid) {
7ea1530a
CL
2438 pg_data_t *pgdat = NODE_DATA(nid);
2439
2440 build_zonelists(pgdat);
2441 build_zonelist_cache(pgdat);
9276b1bc 2442 }
6811378e
YG
2443 return 0;
2444}
2445
f0c0b2b8 2446void build_all_zonelists(void)
6811378e 2447{
f0c0b2b8
KH
2448 set_zonelist_order();
2449
6811378e 2450 if (system_state == SYSTEM_BOOTING) {
423b41d7 2451 __build_all_zonelists(NULL);
68ad8df4 2452 mminit_verify_zonelist();
6811378e
YG
2453 cpuset_init_current_mems_allowed();
2454 } else {
183ff22b 2455 /* we have to stop all cpus to guarantee there is no user
6811378e 2456 of zonelist */
9b1a4d38 2457 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2458 /* cpuset refresh routine should be here */
2459 }
bd1e22b8 2460 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2461 /*
2462 * Disable grouping by mobility if the number of pages in the
2463 * system is too low to allow the mechanism to work. It would be
2464 * more accurate, but expensive to check per-zone. This check is
2465 * made on memory-hotadd so a system can start with mobility
2466 * disabled and enable it later
2467 */
d9c23400 2468 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2469 page_group_by_mobility_disabled = 1;
2470 else
2471 page_group_by_mobility_disabled = 0;
2472
2473 printk("Built %i zonelists in %s order, mobility grouping %s. "
2474 "Total pages: %ld\n",
f0c0b2b8
KH
2475 num_online_nodes(),
2476 zonelist_order_name[current_zonelist_order],
9ef9acb0 2477 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2478 vm_total_pages);
2479#ifdef CONFIG_NUMA
2480 printk("Policy zone: %s\n", zone_names[policy_zone]);
2481#endif
1da177e4
LT
2482}
2483
2484/*
2485 * Helper functions to size the waitqueue hash table.
2486 * Essentially these want to choose hash table sizes sufficiently
2487 * large so that collisions trying to wait on pages are rare.
2488 * But in fact, the number of active page waitqueues on typical
2489 * systems is ridiculously low, less than 200. So this is even
2490 * conservative, even though it seems large.
2491 *
2492 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2493 * waitqueues, i.e. the size of the waitq table given the number of pages.
2494 */
2495#define PAGES_PER_WAITQUEUE 256
2496
cca448fe 2497#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2498static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2499{
2500 unsigned long size = 1;
2501
2502 pages /= PAGES_PER_WAITQUEUE;
2503
2504 while (size < pages)
2505 size <<= 1;
2506
2507 /*
2508 * Once we have dozens or even hundreds of threads sleeping
2509 * on IO we've got bigger problems than wait queue collision.
2510 * Limit the size of the wait table to a reasonable size.
2511 */
2512 size = min(size, 4096UL);
2513
2514 return max(size, 4UL);
2515}
cca448fe
YG
2516#else
2517/*
2518 * A zone's size might be changed by hot-add, so it is not possible to determine
2519 * a suitable size for its wait_table. So we use the maximum size now.
2520 *
2521 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2522 *
2523 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2524 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2525 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2526 *
2527 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2528 * or more by the traditional way. (See above). It equals:
2529 *
2530 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2531 * ia64(16K page size) : = ( 8G + 4M)byte.
2532 * powerpc (64K page size) : = (32G +16M)byte.
2533 */
2534static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2535{
2536 return 4096UL;
2537}
2538#endif
1da177e4
LT
2539
2540/*
2541 * This is an integer logarithm so that shifts can be used later
2542 * to extract the more random high bits from the multiplicative
2543 * hash function before the remainder is taken.
2544 */
2545static inline unsigned long wait_table_bits(unsigned long size)
2546{
2547 return ffz(~size);
2548}
2549
2550#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2551
56fd56b8 2552/*
d9c23400 2553 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2554 * of blocks reserved is based on zone->pages_min. The memory within the
2555 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2556 * higher will lead to a bigger reserve which will get freed as contiguous
2557 * blocks as reclaim kicks in
2558 */
2559static void setup_zone_migrate_reserve(struct zone *zone)
2560{
2561 unsigned long start_pfn, pfn, end_pfn;
2562 struct page *page;
2563 unsigned long reserve, block_migratetype;
2564
2565 /* Get the start pfn, end pfn and the number of blocks to reserve */
2566 start_pfn = zone->zone_start_pfn;
2567 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2568 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2569 pageblock_order;
56fd56b8 2570
d9c23400 2571 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2572 if (!pfn_valid(pfn))
2573 continue;
2574 page = pfn_to_page(pfn);
2575
344c790e
AL
2576 /* Watch out for overlapping nodes */
2577 if (page_to_nid(page) != zone_to_nid(zone))
2578 continue;
2579
56fd56b8
MG
2580 /* Blocks with reserved pages will never free, skip them. */
2581 if (PageReserved(page))
2582 continue;
2583
2584 block_migratetype = get_pageblock_migratetype(page);
2585
2586 /* If this block is reserved, account for it */
2587 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2588 reserve--;
2589 continue;
2590 }
2591
2592 /* Suitable for reserving if this block is movable */
2593 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2594 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2595 move_freepages_block(zone, page, MIGRATE_RESERVE);
2596 reserve--;
2597 continue;
2598 }
2599
2600 /*
2601 * If the reserve is met and this is a previous reserved block,
2602 * take it back
2603 */
2604 if (block_migratetype == MIGRATE_RESERVE) {
2605 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2606 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2607 }
2608 }
2609}
ac0e5b7a 2610
1da177e4
LT
2611/*
2612 * Initially all pages are reserved - free ones are freed
2613 * up by free_all_bootmem() once the early boot process is
2614 * done. Non-atomic initialization, single-pass.
2615 */
c09b4240 2616void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2617 unsigned long start_pfn, enum memmap_context context)
1da177e4 2618{
1da177e4 2619 struct page *page;
29751f69
AW
2620 unsigned long end_pfn = start_pfn + size;
2621 unsigned long pfn;
86051ca5 2622 struct zone *z;
1da177e4 2623
22b31eec
HD
2624 if (highest_memmap_pfn < end_pfn - 1)
2625 highest_memmap_pfn = end_pfn - 1;
2626
86051ca5 2627 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2628 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2629 /*
2630 * There can be holes in boot-time mem_map[]s
2631 * handed to this function. They do not
2632 * exist on hotplugged memory.
2633 */
2634 if (context == MEMMAP_EARLY) {
2635 if (!early_pfn_valid(pfn))
2636 continue;
2637 if (!early_pfn_in_nid(pfn, nid))
2638 continue;
2639 }
d41dee36
AW
2640 page = pfn_to_page(pfn);
2641 set_page_links(page, zone, nid, pfn);
708614e6 2642 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2643 init_page_count(page);
1da177e4
LT
2644 reset_page_mapcount(page);
2645 SetPageReserved(page);
b2a0ac88
MG
2646 /*
2647 * Mark the block movable so that blocks are reserved for
2648 * movable at startup. This will force kernel allocations
2649 * to reserve their blocks rather than leaking throughout
2650 * the address space during boot when many long-lived
56fd56b8
MG
2651 * kernel allocations are made. Later some blocks near
2652 * the start are marked MIGRATE_RESERVE by
2653 * setup_zone_migrate_reserve()
86051ca5
KH
2654 *
2655 * bitmap is created for zone's valid pfn range. but memmap
2656 * can be created for invalid pages (for alignment)
2657 * check here not to call set_pageblock_migratetype() against
2658 * pfn out of zone.
b2a0ac88 2659 */
86051ca5
KH
2660 if ((z->zone_start_pfn <= pfn)
2661 && (pfn < z->zone_start_pfn + z->spanned_pages)
2662 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2663 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2664
1da177e4
LT
2665 INIT_LIST_HEAD(&page->lru);
2666#ifdef WANT_PAGE_VIRTUAL
2667 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2668 if (!is_highmem_idx(zone))
3212c6be 2669 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2670#endif
1da177e4
LT
2671 }
2672}
2673
1e548deb 2674static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2675{
b2a0ac88
MG
2676 int order, t;
2677 for_each_migratetype_order(order, t) {
2678 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2679 zone->free_area[order].nr_free = 0;
2680 }
2681}
2682
2683#ifndef __HAVE_ARCH_MEMMAP_INIT
2684#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2685 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2686#endif
2687
1d6f4e60 2688static int zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2689{
2690 int batch;
2691
2692 /*
2693 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2694 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2695 *
2696 * OK, so we don't know how big the cache is. So guess.
2697 */
2698 batch = zone->present_pages / 1024;
ba56e91c
SR
2699 if (batch * PAGE_SIZE > 512 * 1024)
2700 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2701 batch /= 4; /* We effectively *= 4 below */
2702 if (batch < 1)
2703 batch = 1;
2704
2705 /*
0ceaacc9
NP
2706 * Clamp the batch to a 2^n - 1 value. Having a power
2707 * of 2 value was found to be more likely to have
2708 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2709 *
0ceaacc9
NP
2710 * For example if 2 tasks are alternately allocating
2711 * batches of pages, one task can end up with a lot
2712 * of pages of one half of the possible page colors
2713 * and the other with pages of the other colors.
e7c8d5c9 2714 */
0ceaacc9 2715 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2716
e7c8d5c9
CL
2717 return batch;
2718}
2719
b69a7288 2720static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2721{
2722 struct per_cpu_pages *pcp;
2723
1c6fe946
MD
2724 memset(p, 0, sizeof(*p));
2725
3dfa5721 2726 pcp = &p->pcp;
2caaad41 2727 pcp->count = 0;
2caaad41
CL
2728 pcp->high = 6 * batch;
2729 pcp->batch = max(1UL, 1 * batch);
2730 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2731}
2732
8ad4b1fb
RS
2733/*
2734 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2735 * to the value high for the pageset p.
2736 */
2737
2738static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2739 unsigned long high)
2740{
2741 struct per_cpu_pages *pcp;
2742
3dfa5721 2743 pcp = &p->pcp;
8ad4b1fb
RS
2744 pcp->high = high;
2745 pcp->batch = max(1UL, high/4);
2746 if ((high/4) > (PAGE_SHIFT * 8))
2747 pcp->batch = PAGE_SHIFT * 8;
2748}
2749
2750
e7c8d5c9
CL
2751#ifdef CONFIG_NUMA
2752/*
2caaad41
CL
2753 * Boot pageset table. One per cpu which is going to be used for all
2754 * zones and all nodes. The parameters will be set in such a way
2755 * that an item put on a list will immediately be handed over to
2756 * the buddy list. This is safe since pageset manipulation is done
2757 * with interrupts disabled.
2758 *
2759 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2760 *
2761 * The boot_pagesets must be kept even after bootup is complete for
2762 * unused processors and/or zones. They do play a role for bootstrapping
2763 * hotplugged processors.
2764 *
2765 * zoneinfo_show() and maybe other functions do
2766 * not check if the processor is online before following the pageset pointer.
2767 * Other parts of the kernel may not check if the zone is available.
2caaad41 2768 */
88a2a4ac 2769static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2770
2771/*
2772 * Dynamically allocate memory for the
e7c8d5c9
CL
2773 * per cpu pageset array in struct zone.
2774 */
6292d9aa 2775static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2776{
2777 struct zone *zone, *dzone;
37c0708d
CL
2778 int node = cpu_to_node(cpu);
2779
2780 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9
CL
2781
2782 for_each_zone(zone) {
e7c8d5c9 2783
66a55030
CL
2784 if (!populated_zone(zone))
2785 continue;
2786
23316bc8 2787 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2788 GFP_KERNEL, node);
23316bc8 2789 if (!zone_pcp(zone, cpu))
e7c8d5c9 2790 goto bad;
e7c8d5c9 2791
23316bc8 2792 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2793
2794 if (percpu_pagelist_fraction)
2795 setup_pagelist_highmark(zone_pcp(zone, cpu),
2796 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2797 }
2798
2799 return 0;
2800bad:
2801 for_each_zone(dzone) {
64191688
AM
2802 if (!populated_zone(dzone))
2803 continue;
e7c8d5c9
CL
2804 if (dzone == zone)
2805 break;
23316bc8
NP
2806 kfree(zone_pcp(dzone, cpu));
2807 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2808 }
2809 return -ENOMEM;
2810}
2811
2812static inline void free_zone_pagesets(int cpu)
2813{
e7c8d5c9
CL
2814 struct zone *zone;
2815
2816 for_each_zone(zone) {
2817 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2818
f3ef9ead
DR
2819 /* Free per_cpu_pageset if it is slab allocated */
2820 if (pset != &boot_pageset[cpu])
2821 kfree(pset);
e7c8d5c9 2822 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2823 }
e7c8d5c9
CL
2824}
2825
9c7b216d 2826static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2827 unsigned long action,
2828 void *hcpu)
2829{
2830 int cpu = (long)hcpu;
2831 int ret = NOTIFY_OK;
2832
2833 switch (action) {
ce421c79 2834 case CPU_UP_PREPARE:
8bb78442 2835 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2836 if (process_zones(cpu))
2837 ret = NOTIFY_BAD;
2838 break;
2839 case CPU_UP_CANCELED:
8bb78442 2840 case CPU_UP_CANCELED_FROZEN:
ce421c79 2841 case CPU_DEAD:
8bb78442 2842 case CPU_DEAD_FROZEN:
ce421c79
AW
2843 free_zone_pagesets(cpu);
2844 break;
2845 default:
2846 break;
e7c8d5c9
CL
2847 }
2848 return ret;
2849}
2850
74b85f37 2851static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2852 { &pageset_cpuup_callback, NULL, 0 };
2853
78d9955b 2854void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2855{
2856 int err;
2857
2858 /* Initialize per_cpu_pageset for cpu 0.
2859 * A cpuup callback will do this for every cpu
2860 * as it comes online
2861 */
2862 err = process_zones(smp_processor_id());
2863 BUG_ON(err);
2864 register_cpu_notifier(&pageset_notifier);
2865}
2866
2867#endif
2868
577a32f6 2869static noinline __init_refok
cca448fe 2870int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2871{
2872 int i;
2873 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2874 size_t alloc_size;
ed8ece2e
DH
2875
2876 /*
2877 * The per-page waitqueue mechanism uses hashed waitqueues
2878 * per zone.
2879 */
02b694de
YG
2880 zone->wait_table_hash_nr_entries =
2881 wait_table_hash_nr_entries(zone_size_pages);
2882 zone->wait_table_bits =
2883 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2884 alloc_size = zone->wait_table_hash_nr_entries
2885 * sizeof(wait_queue_head_t);
2886
cd94b9db 2887 if (!slab_is_available()) {
cca448fe
YG
2888 zone->wait_table = (wait_queue_head_t *)
2889 alloc_bootmem_node(pgdat, alloc_size);
2890 } else {
2891 /*
2892 * This case means that a zone whose size was 0 gets new memory
2893 * via memory hot-add.
2894 * But it may be the case that a new node was hot-added. In
2895 * this case vmalloc() will not be able to use this new node's
2896 * memory - this wait_table must be initialized to use this new
2897 * node itself as well.
2898 * To use this new node's memory, further consideration will be
2899 * necessary.
2900 */
8691f3a7 2901 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
2902 }
2903 if (!zone->wait_table)
2904 return -ENOMEM;
ed8ece2e 2905
02b694de 2906 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2907 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2908
2909 return 0;
ed8ece2e
DH
2910}
2911
c09b4240 2912static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2913{
2914 int cpu;
2915 unsigned long batch = zone_batchsize(zone);
2916
2917 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2918#ifdef CONFIG_NUMA
2919 /* Early boot. Slab allocator not functional yet */
23316bc8 2920 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2921 setup_pageset(&boot_pageset[cpu],0);
2922#else
2923 setup_pageset(zone_pcp(zone,cpu), batch);
2924#endif
2925 }
f5335c0f
AB
2926 if (zone->present_pages)
2927 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2928 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2929}
2930
718127cc
YG
2931__meminit int init_currently_empty_zone(struct zone *zone,
2932 unsigned long zone_start_pfn,
a2f3aa02
DH
2933 unsigned long size,
2934 enum memmap_context context)
ed8ece2e
DH
2935{
2936 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2937 int ret;
2938 ret = zone_wait_table_init(zone, size);
2939 if (ret)
2940 return ret;
ed8ece2e
DH
2941 pgdat->nr_zones = zone_idx(zone) + 1;
2942
ed8ece2e
DH
2943 zone->zone_start_pfn = zone_start_pfn;
2944
708614e6
MG
2945 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2946 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2947 pgdat->node_id,
2948 (unsigned long)zone_idx(zone),
2949 zone_start_pfn, (zone_start_pfn + size));
2950
1e548deb 2951 zone_init_free_lists(zone);
718127cc
YG
2952
2953 return 0;
ed8ece2e
DH
2954}
2955
c713216d
MG
2956#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2957/*
2958 * Basic iterator support. Return the first range of PFNs for a node
2959 * Note: nid == MAX_NUMNODES returns first region regardless of node
2960 */
a3142c8e 2961static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2962{
2963 int i;
2964
2965 for (i = 0; i < nr_nodemap_entries; i++)
2966 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2967 return i;
2968
2969 return -1;
2970}
2971
2972/*
2973 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 2974 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 2975 */
a3142c8e 2976static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2977{
2978 for (index = index + 1; index < nr_nodemap_entries; index++)
2979 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2980 return index;
2981
2982 return -1;
2983}
2984
2985#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2986/*
2987 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2988 * Architectures may implement their own version but if add_active_range()
2989 * was used and there are no special requirements, this is a convenient
2990 * alternative
2991 */
6f076f5d 2992int __meminit early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2993{
2994 int i;
2995
2996 for (i = 0; i < nr_nodemap_entries; i++) {
2997 unsigned long start_pfn = early_node_map[i].start_pfn;
2998 unsigned long end_pfn = early_node_map[i].end_pfn;
2999
3000 if (start_pfn <= pfn && pfn < end_pfn)
3001 return early_node_map[i].nid;
3002 }
3003
3004 return 0;
3005}
3006#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3007
3008/* Basic iterator support to walk early_node_map[] */
3009#define for_each_active_range_index_in_nid(i, nid) \
3010 for (i = first_active_region_index_in_nid(nid); i != -1; \
3011 i = next_active_region_index_in_nid(i, nid))
3012
3013/**
3014 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3015 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3016 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3017 *
3018 * If an architecture guarantees that all ranges registered with
3019 * add_active_ranges() contain no holes and may be freed, this
3020 * this function may be used instead of calling free_bootmem() manually.
3021 */
3022void __init free_bootmem_with_active_regions(int nid,
3023 unsigned long max_low_pfn)
3024{
3025 int i;
3026
3027 for_each_active_range_index_in_nid(i, nid) {
3028 unsigned long size_pages = 0;
3029 unsigned long end_pfn = early_node_map[i].end_pfn;
3030
3031 if (early_node_map[i].start_pfn >= max_low_pfn)
3032 continue;
3033
3034 if (end_pfn > max_low_pfn)
3035 end_pfn = max_low_pfn;
3036
3037 size_pages = end_pfn - early_node_map[i].start_pfn;
3038 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3039 PFN_PHYS(early_node_map[i].start_pfn),
3040 size_pages << PAGE_SHIFT);
3041 }
3042}
3043
b5bc6c0e
YL
3044void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3045{
3046 int i;
d52d53b8 3047 int ret;
b5bc6c0e 3048
d52d53b8
YL
3049 for_each_active_range_index_in_nid(i, nid) {
3050 ret = work_fn(early_node_map[i].start_pfn,
3051 early_node_map[i].end_pfn, data);
3052 if (ret)
3053 break;
3054 }
b5bc6c0e 3055}
c713216d
MG
3056/**
3057 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3058 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3059 *
3060 * If an architecture guarantees that all ranges registered with
3061 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3062 * function may be used instead of calling memory_present() manually.
c713216d
MG
3063 */
3064void __init sparse_memory_present_with_active_regions(int nid)
3065{
3066 int i;
3067
3068 for_each_active_range_index_in_nid(i, nid)
3069 memory_present(early_node_map[i].nid,
3070 early_node_map[i].start_pfn,
3071 early_node_map[i].end_pfn);
3072}
3073
fb01439c
MG
3074/**
3075 * push_node_boundaries - Push node boundaries to at least the requested boundary
3076 * @nid: The nid of the node to push the boundary for
3077 * @start_pfn: The start pfn of the node
3078 * @end_pfn: The end pfn of the node
3079 *
3080 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3081 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3082 * be hotplugged even though no physical memory exists. This function allows
3083 * an arch to push out the node boundaries so mem_map is allocated that can
3084 * be used later.
3085 */
3086#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3087void __init push_node_boundaries(unsigned int nid,
3088 unsigned long start_pfn, unsigned long end_pfn)
3089{
6b74ab97
MG
3090 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3091 "Entering push_node_boundaries(%u, %lu, %lu)\n",
fb01439c
MG
3092 nid, start_pfn, end_pfn);
3093
3094 /* Initialise the boundary for this node if necessary */
3095 if (node_boundary_end_pfn[nid] == 0)
3096 node_boundary_start_pfn[nid] = -1UL;
3097
3098 /* Update the boundaries */
3099 if (node_boundary_start_pfn[nid] > start_pfn)
3100 node_boundary_start_pfn[nid] = start_pfn;
3101 if (node_boundary_end_pfn[nid] < end_pfn)
3102 node_boundary_end_pfn[nid] = end_pfn;
3103}
3104
3105/* If necessary, push the node boundary out for reserve hotadd */
98011f56 3106static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
3107 unsigned long *start_pfn, unsigned long *end_pfn)
3108{
6b74ab97
MG
3109 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3110 "Entering account_node_boundary(%u, %lu, %lu)\n",
fb01439c
MG
3111 nid, *start_pfn, *end_pfn);
3112
3113 /* Return if boundary information has not been provided */
3114 if (node_boundary_end_pfn[nid] == 0)
3115 return;
3116
3117 /* Check the boundaries and update if necessary */
3118 if (node_boundary_start_pfn[nid] < *start_pfn)
3119 *start_pfn = node_boundary_start_pfn[nid];
3120 if (node_boundary_end_pfn[nid] > *end_pfn)
3121 *end_pfn = node_boundary_end_pfn[nid];
3122}
3123#else
3124void __init push_node_boundaries(unsigned int nid,
3125 unsigned long start_pfn, unsigned long end_pfn) {}
3126
98011f56 3127static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
3128 unsigned long *start_pfn, unsigned long *end_pfn) {}
3129#endif
3130
3131
c713216d
MG
3132/**
3133 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3134 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3135 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3136 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3137 *
3138 * It returns the start and end page frame of a node based on information
3139 * provided by an arch calling add_active_range(). If called for a node
3140 * with no available memory, a warning is printed and the start and end
88ca3b94 3141 * PFNs will be 0.
c713216d 3142 */
a3142c8e 3143void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3144 unsigned long *start_pfn, unsigned long *end_pfn)
3145{
3146 int i;
3147 *start_pfn = -1UL;
3148 *end_pfn = 0;
3149
3150 for_each_active_range_index_in_nid(i, nid) {
3151 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3152 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3153 }
3154
633c0666 3155 if (*start_pfn == -1UL)
c713216d 3156 *start_pfn = 0;
fb01439c
MG
3157
3158 /* Push the node boundaries out if requested */
3159 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
3160}
3161
2a1e274a
MG
3162/*
3163 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3164 * assumption is made that zones within a node are ordered in monotonic
3165 * increasing memory addresses so that the "highest" populated zone is used
3166 */
b69a7288 3167static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3168{
3169 int zone_index;
3170 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3171 if (zone_index == ZONE_MOVABLE)
3172 continue;
3173
3174 if (arch_zone_highest_possible_pfn[zone_index] >
3175 arch_zone_lowest_possible_pfn[zone_index])
3176 break;
3177 }
3178
3179 VM_BUG_ON(zone_index == -1);
3180 movable_zone = zone_index;
3181}
3182
3183/*
3184 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3185 * because it is sized independant of architecture. Unlike the other zones,
3186 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3187 * in each node depending on the size of each node and how evenly kernelcore
3188 * is distributed. This helper function adjusts the zone ranges
3189 * provided by the architecture for a given node by using the end of the
3190 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3191 * zones within a node are in order of monotonic increases memory addresses
3192 */
b69a7288 3193static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3194 unsigned long zone_type,
3195 unsigned long node_start_pfn,
3196 unsigned long node_end_pfn,
3197 unsigned long *zone_start_pfn,
3198 unsigned long *zone_end_pfn)
3199{
3200 /* Only adjust if ZONE_MOVABLE is on this node */
3201 if (zone_movable_pfn[nid]) {
3202 /* Size ZONE_MOVABLE */
3203 if (zone_type == ZONE_MOVABLE) {
3204 *zone_start_pfn = zone_movable_pfn[nid];
3205 *zone_end_pfn = min(node_end_pfn,
3206 arch_zone_highest_possible_pfn[movable_zone]);
3207
3208 /* Adjust for ZONE_MOVABLE starting within this range */
3209 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3210 *zone_end_pfn > zone_movable_pfn[nid]) {
3211 *zone_end_pfn = zone_movable_pfn[nid];
3212
3213 /* Check if this whole range is within ZONE_MOVABLE */
3214 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3215 *zone_start_pfn = *zone_end_pfn;
3216 }
3217}
3218
c713216d
MG
3219/*
3220 * Return the number of pages a zone spans in a node, including holes
3221 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3222 */
6ea6e688 3223static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3224 unsigned long zone_type,
3225 unsigned long *ignored)
3226{
3227 unsigned long node_start_pfn, node_end_pfn;
3228 unsigned long zone_start_pfn, zone_end_pfn;
3229
3230 /* Get the start and end of the node and zone */
3231 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3232 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3233 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3234 adjust_zone_range_for_zone_movable(nid, zone_type,
3235 node_start_pfn, node_end_pfn,
3236 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3237
3238 /* Check that this node has pages within the zone's required range */
3239 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3240 return 0;
3241
3242 /* Move the zone boundaries inside the node if necessary */
3243 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3244 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3245
3246 /* Return the spanned pages */
3247 return zone_end_pfn - zone_start_pfn;
3248}
3249
3250/*
3251 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3252 * then all holes in the requested range will be accounted for.
c713216d 3253 */
b69a7288 3254static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3255 unsigned long range_start_pfn,
3256 unsigned long range_end_pfn)
3257{
3258 int i = 0;
3259 unsigned long prev_end_pfn = 0, hole_pages = 0;
3260 unsigned long start_pfn;
3261
3262 /* Find the end_pfn of the first active range of pfns in the node */
3263 i = first_active_region_index_in_nid(nid);
3264 if (i == -1)
3265 return 0;
3266
b5445f95
MG
3267 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3268
9c7cd687
MG
3269 /* Account for ranges before physical memory on this node */
3270 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3271 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3272
3273 /* Find all holes for the zone within the node */
3274 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3275
3276 /* No need to continue if prev_end_pfn is outside the zone */
3277 if (prev_end_pfn >= range_end_pfn)
3278 break;
3279
3280 /* Make sure the end of the zone is not within the hole */
3281 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3282 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3283
3284 /* Update the hole size cound and move on */
3285 if (start_pfn > range_start_pfn) {
3286 BUG_ON(prev_end_pfn > start_pfn);
3287 hole_pages += start_pfn - prev_end_pfn;
3288 }
3289 prev_end_pfn = early_node_map[i].end_pfn;
3290 }
3291
9c7cd687
MG
3292 /* Account for ranges past physical memory on this node */
3293 if (range_end_pfn > prev_end_pfn)
0c6cb974 3294 hole_pages += range_end_pfn -
9c7cd687
MG
3295 max(range_start_pfn, prev_end_pfn);
3296
c713216d
MG
3297 return hole_pages;
3298}
3299
3300/**
3301 * absent_pages_in_range - Return number of page frames in holes within a range
3302 * @start_pfn: The start PFN to start searching for holes
3303 * @end_pfn: The end PFN to stop searching for holes
3304 *
88ca3b94 3305 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3306 */
3307unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3308 unsigned long end_pfn)
3309{
3310 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3311}
3312
3313/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3314static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3315 unsigned long zone_type,
3316 unsigned long *ignored)
3317{
9c7cd687
MG
3318 unsigned long node_start_pfn, node_end_pfn;
3319 unsigned long zone_start_pfn, zone_end_pfn;
3320
3321 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3322 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3323 node_start_pfn);
3324 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3325 node_end_pfn);
3326
2a1e274a
MG
3327 adjust_zone_range_for_zone_movable(nid, zone_type,
3328 node_start_pfn, node_end_pfn,
3329 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3330 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3331}
0e0b864e 3332
c713216d 3333#else
6ea6e688 3334static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3335 unsigned long zone_type,
3336 unsigned long *zones_size)
3337{
3338 return zones_size[zone_type];
3339}
3340
6ea6e688 3341static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3342 unsigned long zone_type,
3343 unsigned long *zholes_size)
3344{
3345 if (!zholes_size)
3346 return 0;
3347
3348 return zholes_size[zone_type];
3349}
0e0b864e 3350
c713216d
MG
3351#endif
3352
a3142c8e 3353static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3354 unsigned long *zones_size, unsigned long *zholes_size)
3355{
3356 unsigned long realtotalpages, totalpages = 0;
3357 enum zone_type i;
3358
3359 for (i = 0; i < MAX_NR_ZONES; i++)
3360 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3361 zones_size);
3362 pgdat->node_spanned_pages = totalpages;
3363
3364 realtotalpages = totalpages;
3365 for (i = 0; i < MAX_NR_ZONES; i++)
3366 realtotalpages -=
3367 zone_absent_pages_in_node(pgdat->node_id, i,
3368 zholes_size);
3369 pgdat->node_present_pages = realtotalpages;
3370 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3371 realtotalpages);
3372}
3373
835c134e
MG
3374#ifndef CONFIG_SPARSEMEM
3375/*
3376 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3377 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3378 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3379 * round what is now in bits to nearest long in bits, then return it in
3380 * bytes.
3381 */
3382static unsigned long __init usemap_size(unsigned long zonesize)
3383{
3384 unsigned long usemapsize;
3385
d9c23400
MG
3386 usemapsize = roundup(zonesize, pageblock_nr_pages);
3387 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3388 usemapsize *= NR_PAGEBLOCK_BITS;
3389 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3390
3391 return usemapsize / 8;
3392}
3393
3394static void __init setup_usemap(struct pglist_data *pgdat,
3395 struct zone *zone, unsigned long zonesize)
3396{
3397 unsigned long usemapsize = usemap_size(zonesize);
3398 zone->pageblock_flags = NULL;
58a01a45 3399 if (usemapsize)
835c134e 3400 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3401}
3402#else
3403static void inline setup_usemap(struct pglist_data *pgdat,
3404 struct zone *zone, unsigned long zonesize) {}
3405#endif /* CONFIG_SPARSEMEM */
3406
d9c23400 3407#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3408
3409/* Return a sensible default order for the pageblock size. */
3410static inline int pageblock_default_order(void)
3411{
3412 if (HPAGE_SHIFT > PAGE_SHIFT)
3413 return HUGETLB_PAGE_ORDER;
3414
3415 return MAX_ORDER-1;
3416}
3417
d9c23400
MG
3418/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3419static inline void __init set_pageblock_order(unsigned int order)
3420{
3421 /* Check that pageblock_nr_pages has not already been setup */
3422 if (pageblock_order)
3423 return;
3424
3425 /*
3426 * Assume the largest contiguous order of interest is a huge page.
3427 * This value may be variable depending on boot parameters on IA64
3428 */
3429 pageblock_order = order;
3430}
3431#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3432
ba72cb8c
MG
3433/*
3434 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3435 * and pageblock_default_order() are unused as pageblock_order is set
3436 * at compile-time. See include/linux/pageblock-flags.h for the values of
3437 * pageblock_order based on the kernel config
3438 */
3439static inline int pageblock_default_order(unsigned int order)
3440{
3441 return MAX_ORDER-1;
3442}
d9c23400
MG
3443#define set_pageblock_order(x) do {} while (0)
3444
3445#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3446
1da177e4
LT
3447/*
3448 * Set up the zone data structures:
3449 * - mark all pages reserved
3450 * - mark all memory queues empty
3451 * - clear the memory bitmaps
3452 */
b5a0e011 3453static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3454 unsigned long *zones_size, unsigned long *zholes_size)
3455{
2f1b6248 3456 enum zone_type j;
ed8ece2e 3457 int nid = pgdat->node_id;
1da177e4 3458 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3459 int ret;
1da177e4 3460
208d54e5 3461 pgdat_resize_init(pgdat);
1da177e4
LT
3462 pgdat->nr_zones = 0;
3463 init_waitqueue_head(&pgdat->kswapd_wait);
3464 pgdat->kswapd_max_order = 0;
52d4b9ac 3465 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3466
3467 for (j = 0; j < MAX_NR_ZONES; j++) {
3468 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3469 unsigned long size, realsize, memmap_pages;
b69408e8 3470 enum lru_list l;
1da177e4 3471
c713216d
MG
3472 size = zone_spanned_pages_in_node(nid, j, zones_size);
3473 realsize = size - zone_absent_pages_in_node(nid, j,
3474 zholes_size);
1da177e4 3475
0e0b864e
MG
3476 /*
3477 * Adjust realsize so that it accounts for how much memory
3478 * is used by this zone for memmap. This affects the watermark
3479 * and per-cpu initialisations
3480 */
f7232154
JW
3481 memmap_pages =
3482 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3483 if (realsize >= memmap_pages) {
3484 realsize -= memmap_pages;
5594c8c8
YL
3485 if (memmap_pages)
3486 printk(KERN_DEBUG
3487 " %s zone: %lu pages used for memmap\n",
3488 zone_names[j], memmap_pages);
0e0b864e
MG
3489 } else
3490 printk(KERN_WARNING
3491 " %s zone: %lu pages exceeds realsize %lu\n",
3492 zone_names[j], memmap_pages, realsize);
3493
6267276f
CL
3494 /* Account for reserved pages */
3495 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3496 realsize -= dma_reserve;
d903ef9f 3497 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3498 zone_names[0], dma_reserve);
0e0b864e
MG
3499 }
3500
98d2b0eb 3501 if (!is_highmem_idx(j))
1da177e4
LT
3502 nr_kernel_pages += realsize;
3503 nr_all_pages += realsize;
3504
3505 zone->spanned_pages = size;
3506 zone->present_pages = realsize;
9614634f 3507#ifdef CONFIG_NUMA
d5f541ed 3508 zone->node = nid;
8417bba4 3509 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3510 / 100;
0ff38490 3511 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3512#endif
1da177e4
LT
3513 zone->name = zone_names[j];
3514 spin_lock_init(&zone->lock);
3515 spin_lock_init(&zone->lru_lock);
bdc8cb98 3516 zone_seqlock_init(zone);
1da177e4 3517 zone->zone_pgdat = pgdat;
1da177e4 3518
3bb1a852 3519 zone->prev_priority = DEF_PRIORITY;
1da177e4 3520
ed8ece2e 3521 zone_pcp_init(zone);
b69408e8
CL
3522 for_each_lru(l) {
3523 INIT_LIST_HEAD(&zone->lru[l].list);
3524 zone->lru[l].nr_scan = 0;
3525 }
6e901571
KM
3526 zone->reclaim_stat.recent_rotated[0] = 0;
3527 zone->reclaim_stat.recent_rotated[1] = 0;
3528 zone->reclaim_stat.recent_scanned[0] = 0;
3529 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3530 zap_zone_vm_stats(zone);
e815af95 3531 zone->flags = 0;
1da177e4
LT
3532 if (!size)
3533 continue;
3534
ba72cb8c 3535 set_pageblock_order(pageblock_default_order());
835c134e 3536 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3537 ret = init_currently_empty_zone(zone, zone_start_pfn,
3538 size, MEMMAP_EARLY);
718127cc 3539 BUG_ON(ret);
76cdd58e 3540 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3541 zone_start_pfn += size;
1da177e4
LT
3542 }
3543}
3544
577a32f6 3545static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3546{
1da177e4
LT
3547 /* Skip empty nodes */
3548 if (!pgdat->node_spanned_pages)
3549 return;
3550
d41dee36 3551#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3552 /* ia64 gets its own node_mem_map, before this, without bootmem */
3553 if (!pgdat->node_mem_map) {
e984bb43 3554 unsigned long size, start, end;
d41dee36
AW
3555 struct page *map;
3556
e984bb43
BP
3557 /*
3558 * The zone's endpoints aren't required to be MAX_ORDER
3559 * aligned but the node_mem_map endpoints must be in order
3560 * for the buddy allocator to function correctly.
3561 */
3562 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3563 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3564 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3565 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3566 map = alloc_remap(pgdat->node_id, size);
3567 if (!map)
3568 map = alloc_bootmem_node(pgdat, size);
e984bb43 3569 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3570 }
12d810c1 3571#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3572 /*
3573 * With no DISCONTIG, the global mem_map is just set as node 0's
3574 */
c713216d 3575 if (pgdat == NODE_DATA(0)) {
1da177e4 3576 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3577#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3578 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3579 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3580#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3581 }
1da177e4 3582#endif
d41dee36 3583#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3584}
3585
9109fb7b
JW
3586void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3587 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3588{
9109fb7b
JW
3589 pg_data_t *pgdat = NODE_DATA(nid);
3590
1da177e4
LT
3591 pgdat->node_id = nid;
3592 pgdat->node_start_pfn = node_start_pfn;
c713216d 3593 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3594
3595 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3596#ifdef CONFIG_FLAT_NODE_MEM_MAP
3597 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3598 nid, (unsigned long)pgdat,
3599 (unsigned long)pgdat->node_mem_map);
3600#endif
1da177e4
LT
3601
3602 free_area_init_core(pgdat, zones_size, zholes_size);
3603}
3604
c713216d 3605#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3606
3607#if MAX_NUMNODES > 1
3608/*
3609 * Figure out the number of possible node ids.
3610 */
3611static void __init setup_nr_node_ids(void)
3612{
3613 unsigned int node;
3614 unsigned int highest = 0;
3615
3616 for_each_node_mask(node, node_possible_map)
3617 highest = node;
3618 nr_node_ids = highest + 1;
3619}
3620#else
3621static inline void setup_nr_node_ids(void)
3622{
3623}
3624#endif
3625
c713216d
MG
3626/**
3627 * add_active_range - Register a range of PFNs backed by physical memory
3628 * @nid: The node ID the range resides on
3629 * @start_pfn: The start PFN of the available physical memory
3630 * @end_pfn: The end PFN of the available physical memory
3631 *
3632 * These ranges are stored in an early_node_map[] and later used by
3633 * free_area_init_nodes() to calculate zone sizes and holes. If the
3634 * range spans a memory hole, it is up to the architecture to ensure
3635 * the memory is not freed by the bootmem allocator. If possible
3636 * the range being registered will be merged with existing ranges.
3637 */
3638void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3639 unsigned long end_pfn)
3640{
3641 int i;
3642
6b74ab97
MG
3643 mminit_dprintk(MMINIT_TRACE, "memory_register",
3644 "Entering add_active_range(%d, %#lx, %#lx) "
3645 "%d entries of %d used\n",
3646 nid, start_pfn, end_pfn,
3647 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3648
2dbb51c4
MG
3649 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3650
c713216d
MG
3651 /* Merge with existing active regions if possible */
3652 for (i = 0; i < nr_nodemap_entries; i++) {
3653 if (early_node_map[i].nid != nid)
3654 continue;
3655
3656 /* Skip if an existing region covers this new one */
3657 if (start_pfn >= early_node_map[i].start_pfn &&
3658 end_pfn <= early_node_map[i].end_pfn)
3659 return;
3660
3661 /* Merge forward if suitable */
3662 if (start_pfn <= early_node_map[i].end_pfn &&
3663 end_pfn > early_node_map[i].end_pfn) {
3664 early_node_map[i].end_pfn = end_pfn;
3665 return;
3666 }
3667
3668 /* Merge backward if suitable */
3669 if (start_pfn < early_node_map[i].end_pfn &&
3670 end_pfn >= early_node_map[i].start_pfn) {
3671 early_node_map[i].start_pfn = start_pfn;
3672 return;
3673 }
3674 }
3675
3676 /* Check that early_node_map is large enough */
3677 if (i >= MAX_ACTIVE_REGIONS) {
3678 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3679 MAX_ACTIVE_REGIONS);
3680 return;
3681 }
3682
3683 early_node_map[i].nid = nid;
3684 early_node_map[i].start_pfn = start_pfn;
3685 early_node_map[i].end_pfn = end_pfn;
3686 nr_nodemap_entries = i + 1;
3687}
3688
3689/**
cc1050ba 3690 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3691 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3692 * @start_pfn: The new PFN of the range
3693 * @end_pfn: The new PFN of the range
c713216d
MG
3694 *
3695 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3696 * The map is kept near the end physical page range that has already been
3697 * registered. This function allows an arch to shrink an existing registered
3698 * range.
c713216d 3699 */
cc1050ba
YL
3700void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3701 unsigned long end_pfn)
c713216d 3702{
cc1a9d86
YL
3703 int i, j;
3704 int removed = 0;
c713216d 3705
cc1050ba
YL
3706 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3707 nid, start_pfn, end_pfn);
3708
c713216d 3709 /* Find the old active region end and shrink */
cc1a9d86 3710 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3711 if (early_node_map[i].start_pfn >= start_pfn &&
3712 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3713 /* clear it */
cc1050ba 3714 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3715 early_node_map[i].end_pfn = 0;
3716 removed = 1;
3717 continue;
3718 }
cc1050ba
YL
3719 if (early_node_map[i].start_pfn < start_pfn &&
3720 early_node_map[i].end_pfn > start_pfn) {
3721 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3722 early_node_map[i].end_pfn = start_pfn;
3723 if (temp_end_pfn > end_pfn)
3724 add_active_range(nid, end_pfn, temp_end_pfn);
3725 continue;
3726 }
3727 if (early_node_map[i].start_pfn >= start_pfn &&
3728 early_node_map[i].end_pfn > end_pfn &&
3729 early_node_map[i].start_pfn < end_pfn) {
3730 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3731 continue;
c713216d 3732 }
cc1a9d86
YL
3733 }
3734
3735 if (!removed)
3736 return;
3737
3738 /* remove the blank ones */
3739 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3740 if (early_node_map[i].nid != nid)
3741 continue;
3742 if (early_node_map[i].end_pfn)
3743 continue;
3744 /* we found it, get rid of it */
3745 for (j = i; j < nr_nodemap_entries - 1; j++)
3746 memcpy(&early_node_map[j], &early_node_map[j+1],
3747 sizeof(early_node_map[j]));
3748 j = nr_nodemap_entries - 1;
3749 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3750 nr_nodemap_entries--;
3751 }
c713216d
MG
3752}
3753
3754/**
3755 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3756 *
c713216d
MG
3757 * During discovery, it may be found that a table like SRAT is invalid
3758 * and an alternative discovery method must be used. This function removes
3759 * all currently registered regions.
3760 */
88ca3b94 3761void __init remove_all_active_ranges(void)
c713216d
MG
3762{
3763 memset(early_node_map, 0, sizeof(early_node_map));
3764 nr_nodemap_entries = 0;
fb01439c
MG
3765#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3766 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3767 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3768#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
3769}
3770
3771/* Compare two active node_active_regions */
3772static int __init cmp_node_active_region(const void *a, const void *b)
3773{
3774 struct node_active_region *arange = (struct node_active_region *)a;
3775 struct node_active_region *brange = (struct node_active_region *)b;
3776
3777 /* Done this way to avoid overflows */
3778 if (arange->start_pfn > brange->start_pfn)
3779 return 1;
3780 if (arange->start_pfn < brange->start_pfn)
3781 return -1;
3782
3783 return 0;
3784}
3785
3786/* sort the node_map by start_pfn */
3787static void __init sort_node_map(void)
3788{
3789 sort(early_node_map, (size_t)nr_nodemap_entries,
3790 sizeof(struct node_active_region),
3791 cmp_node_active_region, NULL);
3792}
3793
a6af2bc3 3794/* Find the lowest pfn for a node */
b69a7288 3795static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3796{
3797 int i;
a6af2bc3 3798 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3799
c713216d
MG
3800 /* Assuming a sorted map, the first range found has the starting pfn */
3801 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3802 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3803
a6af2bc3
MG
3804 if (min_pfn == ULONG_MAX) {
3805 printk(KERN_WARNING
2bc0d261 3806 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3807 return 0;
3808 }
3809
3810 return min_pfn;
c713216d
MG
3811}
3812
3813/**
3814 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3815 *
3816 * It returns the minimum PFN based on information provided via
88ca3b94 3817 * add_active_range().
c713216d
MG
3818 */
3819unsigned long __init find_min_pfn_with_active_regions(void)
3820{
3821 return find_min_pfn_for_node(MAX_NUMNODES);
3822}
3823
37b07e41
LS
3824/*
3825 * early_calculate_totalpages()
3826 * Sum pages in active regions for movable zone.
3827 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3828 */
484f51f8 3829static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3830{
3831 int i;
3832 unsigned long totalpages = 0;
3833
37b07e41
LS
3834 for (i = 0; i < nr_nodemap_entries; i++) {
3835 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3836 early_node_map[i].start_pfn;
37b07e41
LS
3837 totalpages += pages;
3838 if (pages)
3839 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3840 }
3841 return totalpages;
7e63efef
MG
3842}
3843
2a1e274a
MG
3844/*
3845 * Find the PFN the Movable zone begins in each node. Kernel memory
3846 * is spread evenly between nodes as long as the nodes have enough
3847 * memory. When they don't, some nodes will have more kernelcore than
3848 * others
3849 */
b69a7288 3850static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
3851{
3852 int i, nid;
3853 unsigned long usable_startpfn;
3854 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3855 unsigned long totalpages = early_calculate_totalpages();
3856 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3857
7e63efef
MG
3858 /*
3859 * If movablecore was specified, calculate what size of
3860 * kernelcore that corresponds so that memory usable for
3861 * any allocation type is evenly spread. If both kernelcore
3862 * and movablecore are specified, then the value of kernelcore
3863 * will be used for required_kernelcore if it's greater than
3864 * what movablecore would have allowed.
3865 */
3866 if (required_movablecore) {
7e63efef
MG
3867 unsigned long corepages;
3868
3869 /*
3870 * Round-up so that ZONE_MOVABLE is at least as large as what
3871 * was requested by the user
3872 */
3873 required_movablecore =
3874 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3875 corepages = totalpages - required_movablecore;
3876
3877 required_kernelcore = max(required_kernelcore, corepages);
3878 }
3879
2a1e274a
MG
3880 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3881 if (!required_kernelcore)
3882 return;
3883
3884 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3885 find_usable_zone_for_movable();
3886 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3887
3888restart:
3889 /* Spread kernelcore memory as evenly as possible throughout nodes */
3890 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3891 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3892 /*
3893 * Recalculate kernelcore_node if the division per node
3894 * now exceeds what is necessary to satisfy the requested
3895 * amount of memory for the kernel
3896 */
3897 if (required_kernelcore < kernelcore_node)
3898 kernelcore_node = required_kernelcore / usable_nodes;
3899
3900 /*
3901 * As the map is walked, we track how much memory is usable
3902 * by the kernel using kernelcore_remaining. When it is
3903 * 0, the rest of the node is usable by ZONE_MOVABLE
3904 */
3905 kernelcore_remaining = kernelcore_node;
3906
3907 /* Go through each range of PFNs within this node */
3908 for_each_active_range_index_in_nid(i, nid) {
3909 unsigned long start_pfn, end_pfn;
3910 unsigned long size_pages;
3911
3912 start_pfn = max(early_node_map[i].start_pfn,
3913 zone_movable_pfn[nid]);
3914 end_pfn = early_node_map[i].end_pfn;
3915 if (start_pfn >= end_pfn)
3916 continue;
3917
3918 /* Account for what is only usable for kernelcore */
3919 if (start_pfn < usable_startpfn) {
3920 unsigned long kernel_pages;
3921 kernel_pages = min(end_pfn, usable_startpfn)
3922 - start_pfn;
3923
3924 kernelcore_remaining -= min(kernel_pages,
3925 kernelcore_remaining);
3926 required_kernelcore -= min(kernel_pages,
3927 required_kernelcore);
3928
3929 /* Continue if range is now fully accounted */
3930 if (end_pfn <= usable_startpfn) {
3931
3932 /*
3933 * Push zone_movable_pfn to the end so
3934 * that if we have to rebalance
3935 * kernelcore across nodes, we will
3936 * not double account here
3937 */
3938 zone_movable_pfn[nid] = end_pfn;
3939 continue;
3940 }
3941 start_pfn = usable_startpfn;
3942 }
3943
3944 /*
3945 * The usable PFN range for ZONE_MOVABLE is from
3946 * start_pfn->end_pfn. Calculate size_pages as the
3947 * number of pages used as kernelcore
3948 */
3949 size_pages = end_pfn - start_pfn;
3950 if (size_pages > kernelcore_remaining)
3951 size_pages = kernelcore_remaining;
3952 zone_movable_pfn[nid] = start_pfn + size_pages;
3953
3954 /*
3955 * Some kernelcore has been met, update counts and
3956 * break if the kernelcore for this node has been
3957 * satisified
3958 */
3959 required_kernelcore -= min(required_kernelcore,
3960 size_pages);
3961 kernelcore_remaining -= size_pages;
3962 if (!kernelcore_remaining)
3963 break;
3964 }
3965 }
3966
3967 /*
3968 * If there is still required_kernelcore, we do another pass with one
3969 * less node in the count. This will push zone_movable_pfn[nid] further
3970 * along on the nodes that still have memory until kernelcore is
3971 * satisified
3972 */
3973 usable_nodes--;
3974 if (usable_nodes && required_kernelcore > usable_nodes)
3975 goto restart;
3976
3977 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3978 for (nid = 0; nid < MAX_NUMNODES; nid++)
3979 zone_movable_pfn[nid] =
3980 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3981}
3982
37b07e41
LS
3983/* Any regular memory on that node ? */
3984static void check_for_regular_memory(pg_data_t *pgdat)
3985{
3986#ifdef CONFIG_HIGHMEM
3987 enum zone_type zone_type;
3988
3989 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3990 struct zone *zone = &pgdat->node_zones[zone_type];
3991 if (zone->present_pages)
3992 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3993 }
3994#endif
3995}
3996
c713216d
MG
3997/**
3998 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 3999 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4000 *
4001 * This will call free_area_init_node() for each active node in the system.
4002 * Using the page ranges provided by add_active_range(), the size of each
4003 * zone in each node and their holes is calculated. If the maximum PFN
4004 * between two adjacent zones match, it is assumed that the zone is empty.
4005 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4006 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4007 * starts where the previous one ended. For example, ZONE_DMA32 starts
4008 * at arch_max_dma_pfn.
4009 */
4010void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4011{
4012 unsigned long nid;
db99100d 4013 int i;
c713216d 4014
a6af2bc3
MG
4015 /* Sort early_node_map as initialisation assumes it is sorted */
4016 sort_node_map();
4017
c713216d
MG
4018 /* Record where the zone boundaries are */
4019 memset(arch_zone_lowest_possible_pfn, 0,
4020 sizeof(arch_zone_lowest_possible_pfn));
4021 memset(arch_zone_highest_possible_pfn, 0,
4022 sizeof(arch_zone_highest_possible_pfn));
4023 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4024 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4025 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4026 if (i == ZONE_MOVABLE)
4027 continue;
c713216d
MG
4028 arch_zone_lowest_possible_pfn[i] =
4029 arch_zone_highest_possible_pfn[i-1];
4030 arch_zone_highest_possible_pfn[i] =
4031 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4032 }
2a1e274a
MG
4033 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4034 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4035
4036 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4037 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4038 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4039
c713216d
MG
4040 /* Print out the zone ranges */
4041 printk("Zone PFN ranges:\n");
2a1e274a
MG
4042 for (i = 0; i < MAX_NR_ZONES; i++) {
4043 if (i == ZONE_MOVABLE)
4044 continue;
5dab8ec1 4045 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4046 zone_names[i],
4047 arch_zone_lowest_possible_pfn[i],
4048 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4049 }
4050
4051 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4052 printk("Movable zone start PFN for each node\n");
4053 for (i = 0; i < MAX_NUMNODES; i++) {
4054 if (zone_movable_pfn[i])
4055 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4056 }
c713216d
MG
4057
4058 /* Print out the early_node_map[] */
4059 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4060 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4061 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4062 early_node_map[i].start_pfn,
4063 early_node_map[i].end_pfn);
4064
4065 /* Initialise every node */
708614e6 4066 mminit_verify_pageflags_layout();
8ef82866 4067 setup_nr_node_ids();
c713216d
MG
4068 for_each_online_node(nid) {
4069 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4070 free_area_init_node(nid, NULL,
c713216d 4071 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4072
4073 /* Any memory on that node */
4074 if (pgdat->node_present_pages)
4075 node_set_state(nid, N_HIGH_MEMORY);
4076 check_for_regular_memory(pgdat);
c713216d
MG
4077 }
4078}
2a1e274a 4079
7e63efef 4080static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4081{
4082 unsigned long long coremem;
4083 if (!p)
4084 return -EINVAL;
4085
4086 coremem = memparse(p, &p);
7e63efef 4087 *core = coremem >> PAGE_SHIFT;
2a1e274a 4088
7e63efef 4089 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4090 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4091
4092 return 0;
4093}
ed7ed365 4094
7e63efef
MG
4095/*
4096 * kernelcore=size sets the amount of memory for use for allocations that
4097 * cannot be reclaimed or migrated.
4098 */
4099static int __init cmdline_parse_kernelcore(char *p)
4100{
4101 return cmdline_parse_core(p, &required_kernelcore);
4102}
4103
4104/*
4105 * movablecore=size sets the amount of memory for use for allocations that
4106 * can be reclaimed or migrated.
4107 */
4108static int __init cmdline_parse_movablecore(char *p)
4109{
4110 return cmdline_parse_core(p, &required_movablecore);
4111}
4112
ed7ed365 4113early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4114early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4115
c713216d
MG
4116#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4117
0e0b864e 4118/**
88ca3b94
RD
4119 * set_dma_reserve - set the specified number of pages reserved in the first zone
4120 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4121 *
4122 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4123 * In the DMA zone, a significant percentage may be consumed by kernel image
4124 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4125 * function may optionally be used to account for unfreeable pages in the
4126 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4127 * smaller per-cpu batchsize.
0e0b864e
MG
4128 */
4129void __init set_dma_reserve(unsigned long new_dma_reserve)
4130{
4131 dma_reserve = new_dma_reserve;
4132}
4133
93b7504e 4134#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4135struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4136EXPORT_SYMBOL(contig_page_data);
93b7504e 4137#endif
1da177e4
LT
4138
4139void __init free_area_init(unsigned long *zones_size)
4140{
9109fb7b 4141 free_area_init_node(0, zones_size,
1da177e4
LT
4142 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4143}
1da177e4 4144
1da177e4
LT
4145static int page_alloc_cpu_notify(struct notifier_block *self,
4146 unsigned long action, void *hcpu)
4147{
4148 int cpu = (unsigned long)hcpu;
1da177e4 4149
8bb78442 4150 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4151 drain_pages(cpu);
4152
4153 /*
4154 * Spill the event counters of the dead processor
4155 * into the current processors event counters.
4156 * This artificially elevates the count of the current
4157 * processor.
4158 */
f8891e5e 4159 vm_events_fold_cpu(cpu);
9f8f2172
CL
4160
4161 /*
4162 * Zero the differential counters of the dead processor
4163 * so that the vm statistics are consistent.
4164 *
4165 * This is only okay since the processor is dead and cannot
4166 * race with what we are doing.
4167 */
2244b95a 4168 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4169 }
4170 return NOTIFY_OK;
4171}
1da177e4
LT
4172
4173void __init page_alloc_init(void)
4174{
4175 hotcpu_notifier(page_alloc_cpu_notify, 0);
4176}
4177
cb45b0e9
HA
4178/*
4179 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4180 * or min_free_kbytes changes.
4181 */
4182static void calculate_totalreserve_pages(void)
4183{
4184 struct pglist_data *pgdat;
4185 unsigned long reserve_pages = 0;
2f6726e5 4186 enum zone_type i, j;
cb45b0e9
HA
4187
4188 for_each_online_pgdat(pgdat) {
4189 for (i = 0; i < MAX_NR_ZONES; i++) {
4190 struct zone *zone = pgdat->node_zones + i;
4191 unsigned long max = 0;
4192
4193 /* Find valid and maximum lowmem_reserve in the zone */
4194 for (j = i; j < MAX_NR_ZONES; j++) {
4195 if (zone->lowmem_reserve[j] > max)
4196 max = zone->lowmem_reserve[j];
4197 }
4198
4199 /* we treat pages_high as reserved pages. */
4200 max += zone->pages_high;
4201
4202 if (max > zone->present_pages)
4203 max = zone->present_pages;
4204 reserve_pages += max;
4205 }
4206 }
4207 totalreserve_pages = reserve_pages;
4208}
4209
1da177e4
LT
4210/*
4211 * setup_per_zone_lowmem_reserve - called whenever
4212 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4213 * has a correct pages reserved value, so an adequate number of
4214 * pages are left in the zone after a successful __alloc_pages().
4215 */
4216static void setup_per_zone_lowmem_reserve(void)
4217{
4218 struct pglist_data *pgdat;
2f6726e5 4219 enum zone_type j, idx;
1da177e4 4220
ec936fc5 4221 for_each_online_pgdat(pgdat) {
1da177e4
LT
4222 for (j = 0; j < MAX_NR_ZONES; j++) {
4223 struct zone *zone = pgdat->node_zones + j;
4224 unsigned long present_pages = zone->present_pages;
4225
4226 zone->lowmem_reserve[j] = 0;
4227
2f6726e5
CL
4228 idx = j;
4229 while (idx) {
1da177e4
LT
4230 struct zone *lower_zone;
4231
2f6726e5
CL
4232 idx--;
4233
1da177e4
LT
4234 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4235 sysctl_lowmem_reserve_ratio[idx] = 1;
4236
4237 lower_zone = pgdat->node_zones + idx;
4238 lower_zone->lowmem_reserve[j] = present_pages /
4239 sysctl_lowmem_reserve_ratio[idx];
4240 present_pages += lower_zone->present_pages;
4241 }
4242 }
4243 }
cb45b0e9
HA
4244
4245 /* update totalreserve_pages */
4246 calculate_totalreserve_pages();
1da177e4
LT
4247}
4248
88ca3b94
RD
4249/**
4250 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4251 *
4252 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4253 * with respect to min_free_kbytes.
1da177e4 4254 */
3947be19 4255void setup_per_zone_pages_min(void)
1da177e4
LT
4256{
4257 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4258 unsigned long lowmem_pages = 0;
4259 struct zone *zone;
4260 unsigned long flags;
4261
4262 /* Calculate total number of !ZONE_HIGHMEM pages */
4263 for_each_zone(zone) {
4264 if (!is_highmem(zone))
4265 lowmem_pages += zone->present_pages;
4266 }
4267
4268 for_each_zone(zone) {
ac924c60
AM
4269 u64 tmp;
4270
1125b4e3 4271 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4272 tmp = (u64)pages_min * zone->present_pages;
4273 do_div(tmp, lowmem_pages);
1da177e4
LT
4274 if (is_highmem(zone)) {
4275 /*
669ed175
NP
4276 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4277 * need highmem pages, so cap pages_min to a small
4278 * value here.
4279 *
4280 * The (pages_high-pages_low) and (pages_low-pages_min)
4281 * deltas controls asynch page reclaim, and so should
4282 * not be capped for highmem.
1da177e4
LT
4283 */
4284 int min_pages;
4285
4286 min_pages = zone->present_pages / 1024;
4287 if (min_pages < SWAP_CLUSTER_MAX)
4288 min_pages = SWAP_CLUSTER_MAX;
4289 if (min_pages > 128)
4290 min_pages = 128;
4291 zone->pages_min = min_pages;
4292 } else {
669ed175
NP
4293 /*
4294 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4295 * proportionate to the zone's size.
4296 */
669ed175 4297 zone->pages_min = tmp;
1da177e4
LT
4298 }
4299
ac924c60
AM
4300 zone->pages_low = zone->pages_min + (tmp >> 2);
4301 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4302 setup_zone_migrate_reserve(zone);
1125b4e3 4303 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4304 }
cb45b0e9
HA
4305
4306 /* update totalreserve_pages */
4307 calculate_totalreserve_pages();
1da177e4
LT
4308}
4309
556adecb
RR
4310/**
4311 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4312 *
4313 * The inactive anon list should be small enough that the VM never has to
4314 * do too much work, but large enough that each inactive page has a chance
4315 * to be referenced again before it is swapped out.
4316 *
4317 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4318 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4319 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4320 * the anonymous pages are kept on the inactive list.
4321 *
4322 * total target max
4323 * memory ratio inactive anon
4324 * -------------------------------------
4325 * 10MB 1 5MB
4326 * 100MB 1 50MB
4327 * 1GB 3 250MB
4328 * 10GB 10 0.9GB
4329 * 100GB 31 3GB
4330 * 1TB 101 10GB
4331 * 10TB 320 32GB
4332 */
efab8186 4333static void setup_per_zone_inactive_ratio(void)
556adecb
RR
4334{
4335 struct zone *zone;
4336
4337 for_each_zone(zone) {
4338 unsigned int gb, ratio;
4339
4340 /* Zone size in gigabytes */
4341 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4342 ratio = int_sqrt(10 * gb);
4343 if (!ratio)
4344 ratio = 1;
4345
4346 zone->inactive_ratio = ratio;
4347 }
4348}
4349
1da177e4
LT
4350/*
4351 * Initialise min_free_kbytes.
4352 *
4353 * For small machines we want it small (128k min). For large machines
4354 * we want it large (64MB max). But it is not linear, because network
4355 * bandwidth does not increase linearly with machine size. We use
4356 *
4357 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4358 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4359 *
4360 * which yields
4361 *
4362 * 16MB: 512k
4363 * 32MB: 724k
4364 * 64MB: 1024k
4365 * 128MB: 1448k
4366 * 256MB: 2048k
4367 * 512MB: 2896k
4368 * 1024MB: 4096k
4369 * 2048MB: 5792k
4370 * 4096MB: 8192k
4371 * 8192MB: 11584k
4372 * 16384MB: 16384k
4373 */
4374static int __init init_per_zone_pages_min(void)
4375{
4376 unsigned long lowmem_kbytes;
4377
4378 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4379
4380 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4381 if (min_free_kbytes < 128)
4382 min_free_kbytes = 128;
4383 if (min_free_kbytes > 65536)
4384 min_free_kbytes = 65536;
4385 setup_per_zone_pages_min();
4386 setup_per_zone_lowmem_reserve();
556adecb 4387 setup_per_zone_inactive_ratio();
1da177e4
LT
4388 return 0;
4389}
4390module_init(init_per_zone_pages_min)
4391
4392/*
4393 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4394 * that we can call two helper functions whenever min_free_kbytes
4395 * changes.
4396 */
4397int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4398 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4399{
4400 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4401 if (write)
4402 setup_per_zone_pages_min();
1da177e4
LT
4403 return 0;
4404}
4405
9614634f
CL
4406#ifdef CONFIG_NUMA
4407int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4408 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4409{
4410 struct zone *zone;
4411 int rc;
4412
4413 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4414 if (rc)
4415 return rc;
4416
4417 for_each_zone(zone)
8417bba4 4418 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4419 sysctl_min_unmapped_ratio) / 100;
4420 return 0;
4421}
0ff38490
CL
4422
4423int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4424 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4425{
4426 struct zone *zone;
4427 int rc;
4428
4429 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4430 if (rc)
4431 return rc;
4432
4433 for_each_zone(zone)
4434 zone->min_slab_pages = (zone->present_pages *
4435 sysctl_min_slab_ratio) / 100;
4436 return 0;
4437}
9614634f
CL
4438#endif
4439
1da177e4
LT
4440/*
4441 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4442 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4443 * whenever sysctl_lowmem_reserve_ratio changes.
4444 *
4445 * The reserve ratio obviously has absolutely no relation with the
4446 * pages_min watermarks. The lowmem reserve ratio can only make sense
4447 * if in function of the boot time zone sizes.
4448 */
4449int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4450 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4451{
4452 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4453 setup_per_zone_lowmem_reserve();
4454 return 0;
4455}
4456
8ad4b1fb
RS
4457/*
4458 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4459 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4460 * can have before it gets flushed back to buddy allocator.
4461 */
4462
4463int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4464 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4465{
4466 struct zone *zone;
4467 unsigned int cpu;
4468 int ret;
4469
4470 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4471 if (!write || (ret == -EINVAL))
4472 return ret;
4473 for_each_zone(zone) {
4474 for_each_online_cpu(cpu) {
4475 unsigned long high;
4476 high = zone->present_pages / percpu_pagelist_fraction;
4477 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4478 }
4479 }
4480 return 0;
4481}
4482
f034b5d4 4483int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4484
4485#ifdef CONFIG_NUMA
4486static int __init set_hashdist(char *str)
4487{
4488 if (!str)
4489 return 0;
4490 hashdist = simple_strtoul(str, &str, 0);
4491 return 1;
4492}
4493__setup("hashdist=", set_hashdist);
4494#endif
4495
4496/*
4497 * allocate a large system hash table from bootmem
4498 * - it is assumed that the hash table must contain an exact power-of-2
4499 * quantity of entries
4500 * - limit is the number of hash buckets, not the total allocation size
4501 */
4502void *__init alloc_large_system_hash(const char *tablename,
4503 unsigned long bucketsize,
4504 unsigned long numentries,
4505 int scale,
4506 int flags,
4507 unsigned int *_hash_shift,
4508 unsigned int *_hash_mask,
4509 unsigned long limit)
4510{
4511 unsigned long long max = limit;
4512 unsigned long log2qty, size;
4513 void *table = NULL;
4514
4515 /* allow the kernel cmdline to have a say */
4516 if (!numentries) {
4517 /* round applicable memory size up to nearest megabyte */
04903664 4518 numentries = nr_kernel_pages;
1da177e4
LT
4519 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4520 numentries >>= 20 - PAGE_SHIFT;
4521 numentries <<= 20 - PAGE_SHIFT;
4522
4523 /* limit to 1 bucket per 2^scale bytes of low memory */
4524 if (scale > PAGE_SHIFT)
4525 numentries >>= (scale - PAGE_SHIFT);
4526 else
4527 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4528
4529 /* Make sure we've got at least a 0-order allocation.. */
4530 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4531 numentries = PAGE_SIZE / bucketsize;
1da177e4 4532 }
6e692ed3 4533 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4534
4535 /* limit allocation size to 1/16 total memory by default */
4536 if (max == 0) {
4537 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4538 do_div(max, bucketsize);
4539 }
4540
4541 if (numentries > max)
4542 numentries = max;
4543
f0d1b0b3 4544 log2qty = ilog2(numentries);
1da177e4
LT
4545
4546 do {
4547 size = bucketsize << log2qty;
4548 if (flags & HASH_EARLY)
74768ed8 4549 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4550 else if (hashdist)
4551 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4552 else {
2309f9e6 4553 unsigned long order = get_order(size);
1da177e4 4554 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
4555 /*
4556 * If bucketsize is not a power-of-two, we may free
4557 * some pages at the end of hash table.
4558 */
4559 if (table) {
4560 unsigned long alloc_end = (unsigned long)table +
4561 (PAGE_SIZE << order);
4562 unsigned long used = (unsigned long)table +
4563 PAGE_ALIGN(size);
4564 split_page(virt_to_page(table), order);
4565 while (used < alloc_end) {
4566 free_page(used);
4567 used += PAGE_SIZE;
4568 }
4569 }
1da177e4
LT
4570 }
4571 } while (!table && size > PAGE_SIZE && --log2qty);
4572
4573 if (!table)
4574 panic("Failed to allocate %s hash table\n", tablename);
4575
b49ad484 4576 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4577 tablename,
4578 (1U << log2qty),
f0d1b0b3 4579 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4580 size);
4581
4582 if (_hash_shift)
4583 *_hash_shift = log2qty;
4584 if (_hash_mask)
4585 *_hash_mask = (1 << log2qty) - 1;
4586
4587 return table;
4588}
a117e66e 4589
835c134e
MG
4590/* Return a pointer to the bitmap storing bits affecting a block of pages */
4591static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4592 unsigned long pfn)
4593{
4594#ifdef CONFIG_SPARSEMEM
4595 return __pfn_to_section(pfn)->pageblock_flags;
4596#else
4597 return zone->pageblock_flags;
4598#endif /* CONFIG_SPARSEMEM */
4599}
4600
4601static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4602{
4603#ifdef CONFIG_SPARSEMEM
4604 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4605 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4606#else
4607 pfn = pfn - zone->zone_start_pfn;
d9c23400 4608 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4609#endif /* CONFIG_SPARSEMEM */
4610}
4611
4612/**
d9c23400 4613 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4614 * @page: The page within the block of interest
4615 * @start_bitidx: The first bit of interest to retrieve
4616 * @end_bitidx: The last bit of interest
4617 * returns pageblock_bits flags
4618 */
4619unsigned long get_pageblock_flags_group(struct page *page,
4620 int start_bitidx, int end_bitidx)
4621{
4622 struct zone *zone;
4623 unsigned long *bitmap;
4624 unsigned long pfn, bitidx;
4625 unsigned long flags = 0;
4626 unsigned long value = 1;
4627
4628 zone = page_zone(page);
4629 pfn = page_to_pfn(page);
4630 bitmap = get_pageblock_bitmap(zone, pfn);
4631 bitidx = pfn_to_bitidx(zone, pfn);
4632
4633 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4634 if (test_bit(bitidx + start_bitidx, bitmap))
4635 flags |= value;
6220ec78 4636
835c134e
MG
4637 return flags;
4638}
4639
4640/**
d9c23400 4641 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4642 * @page: The page within the block of interest
4643 * @start_bitidx: The first bit of interest
4644 * @end_bitidx: The last bit of interest
4645 * @flags: The flags to set
4646 */
4647void set_pageblock_flags_group(struct page *page, unsigned long flags,
4648 int start_bitidx, int end_bitidx)
4649{
4650 struct zone *zone;
4651 unsigned long *bitmap;
4652 unsigned long pfn, bitidx;
4653 unsigned long value = 1;
4654
4655 zone = page_zone(page);
4656 pfn = page_to_pfn(page);
4657 bitmap = get_pageblock_bitmap(zone, pfn);
4658 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4659 VM_BUG_ON(pfn < zone->zone_start_pfn);
4660 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4661
4662 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4663 if (flags & value)
4664 __set_bit(bitidx + start_bitidx, bitmap);
4665 else
4666 __clear_bit(bitidx + start_bitidx, bitmap);
4667}
a5d76b54
KH
4668
4669/*
4670 * This is designed as sub function...plz see page_isolation.c also.
4671 * set/clear page block's type to be ISOLATE.
4672 * page allocater never alloc memory from ISOLATE block.
4673 */
4674
4675int set_migratetype_isolate(struct page *page)
4676{
4677 struct zone *zone;
4678 unsigned long flags;
4679 int ret = -EBUSY;
4680
4681 zone = page_zone(page);
4682 spin_lock_irqsave(&zone->lock, flags);
4683 /*
4684 * In future, more migrate types will be able to be isolation target.
4685 */
4686 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4687 goto out;
4688 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4689 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4690 ret = 0;
4691out:
4692 spin_unlock_irqrestore(&zone->lock, flags);
4693 if (!ret)
9f8f2172 4694 drain_all_pages();
a5d76b54
KH
4695 return ret;
4696}
4697
4698void unset_migratetype_isolate(struct page *page)
4699{
4700 struct zone *zone;
4701 unsigned long flags;
4702 zone = page_zone(page);
4703 spin_lock_irqsave(&zone->lock, flags);
4704 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4705 goto out;
4706 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4707 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4708out:
4709 spin_unlock_irqrestore(&zone->lock, flags);
4710}
0c0e6195
KH
4711
4712#ifdef CONFIG_MEMORY_HOTREMOVE
4713/*
4714 * All pages in the range must be isolated before calling this.
4715 */
4716void
4717__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4718{
4719 struct page *page;
4720 struct zone *zone;
4721 int order, i;
4722 unsigned long pfn;
4723 unsigned long flags;
4724 /* find the first valid pfn */
4725 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4726 if (pfn_valid(pfn))
4727 break;
4728 if (pfn == end_pfn)
4729 return;
4730 zone = page_zone(pfn_to_page(pfn));
4731 spin_lock_irqsave(&zone->lock, flags);
4732 pfn = start_pfn;
4733 while (pfn < end_pfn) {
4734 if (!pfn_valid(pfn)) {
4735 pfn++;
4736 continue;
4737 }
4738 page = pfn_to_page(pfn);
4739 BUG_ON(page_count(page));
4740 BUG_ON(!PageBuddy(page));
4741 order = page_order(page);
4742#ifdef CONFIG_DEBUG_VM
4743 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4744 pfn, 1 << order, end_pfn);
4745#endif
4746 list_del(&page->lru);
4747 rmv_page_order(page);
4748 zone->free_area[order].nr_free--;
4749 __mod_zone_page_state(zone, NR_FREE_PAGES,
4750 - (1UL << order));
4751 for (i = 0; i < (1 << order); i++)
4752 SetPageReserved((page+i));
4753 pfn += (1 << order);
4754 }
4755 spin_unlock_irqrestore(&zone->lock, flags);
4756}
4757#endif