Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-block.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
1da177e4
LT
37
38/*
39 * The maximum number of pages to writeout in a single bdflush/kupdate
1c0eeaf5 40 * operation. We do this so we don't hold I_SYNC against an inode for
1da177e4
LT
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode. Also, the code reevaluates
43 * the dirty each time it has written this many pages.
44 */
45#define MAX_WRITEBACK_PAGES 1024
46
47/*
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
50 */
51static long ratelimit_pages = 32;
52
1da177e4
LT
53/*
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
58 */
59static inline long sync_writeback_pages(void)
60{
61 return ratelimit_pages + ratelimit_pages / 2;
62}
63
64/* The following parameters are exported via /proc/sys/vm */
65
66/*
67 * Start background writeback (via pdflush) at this percentage
68 */
1b5e62b4 69int dirty_background_ratio = 10;
1da177e4 70
2da02997
DR
71/*
72 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
73 * dirty_background_ratio * the amount of dirtyable memory
74 */
75unsigned long dirty_background_bytes;
76
195cf453
BG
77/*
78 * free highmem will not be subtracted from the total free memory
79 * for calculating free ratios if vm_highmem_is_dirtyable is true
80 */
81int vm_highmem_is_dirtyable;
82
1da177e4
LT
83/*
84 * The generator of dirty data starts writeback at this percentage
85 */
1b5e62b4 86int vm_dirty_ratio = 20;
1da177e4 87
2da02997
DR
88/*
89 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
90 * vm_dirty_ratio * the amount of dirtyable memory
91 */
92unsigned long vm_dirty_bytes;
93
1da177e4 94/*
704503d8 95 * The interval between `kupdate'-style writebacks
1da177e4 96 */
704503d8 97unsigned int dirty_writeback_interval = 5 * 100; /* sentiseconds */
1da177e4
LT
98
99/*
704503d8 100 * The longest time for which data is allowed to remain dirty
1da177e4 101 */
704503d8 102unsigned int dirty_expire_interval = 30 * 100; /* sentiseconds */
1da177e4
LT
103
104/*
105 * Flag that makes the machine dump writes/reads and block dirtyings.
106 */
107int block_dump;
108
109/*
ed5b43f1
BS
110 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
111 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
112 */
113int laptop_mode;
114
115EXPORT_SYMBOL(laptop_mode);
116
117/* End of sysctl-exported parameters */
118
119
120static void background_writeout(unsigned long _min_pages);
121
04fbfdc1
PZ
122/*
123 * Scale the writeback cache size proportional to the relative writeout speeds.
124 *
125 * We do this by keeping a floating proportion between BDIs, based on page
126 * writeback completions [end_page_writeback()]. Those devices that write out
127 * pages fastest will get the larger share, while the slower will get a smaller
128 * share.
129 *
130 * We use page writeout completions because we are interested in getting rid of
131 * dirty pages. Having them written out is the primary goal.
132 *
133 * We introduce a concept of time, a period over which we measure these events,
134 * because demand can/will vary over time. The length of this period itself is
135 * measured in page writeback completions.
136 *
137 */
138static struct prop_descriptor vm_completions;
3e26c149 139static struct prop_descriptor vm_dirties;
04fbfdc1 140
04fbfdc1
PZ
141/*
142 * couple the period to the dirty_ratio:
143 *
144 * period/2 ~ roundup_pow_of_two(dirty limit)
145 */
146static int calc_period_shift(void)
147{
148 unsigned long dirty_total;
149
2da02997
DR
150 if (vm_dirty_bytes)
151 dirty_total = vm_dirty_bytes / PAGE_SIZE;
152 else
153 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
154 100;
04fbfdc1
PZ
155 return 2 + ilog2(dirty_total - 1);
156}
157
158/*
2da02997 159 * update the period when the dirty threshold changes.
04fbfdc1 160 */
2da02997
DR
161static void update_completion_period(void)
162{
163 int shift = calc_period_shift();
164 prop_change_shift(&vm_completions, shift);
165 prop_change_shift(&vm_dirties, shift);
166}
167
168int dirty_background_ratio_handler(struct ctl_table *table, int write,
169 struct file *filp, void __user *buffer, size_t *lenp,
170 loff_t *ppos)
171{
172 int ret;
173
174 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
175 if (ret == 0 && write)
176 dirty_background_bytes = 0;
177 return ret;
178}
179
180int dirty_background_bytes_handler(struct ctl_table *table, int write,
181 struct file *filp, void __user *buffer, size_t *lenp,
182 loff_t *ppos)
183{
184 int ret;
185
186 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
187 if (ret == 0 && write)
188 dirty_background_ratio = 0;
189 return ret;
190}
191
04fbfdc1
PZ
192int dirty_ratio_handler(struct ctl_table *table, int write,
193 struct file *filp, void __user *buffer, size_t *lenp,
194 loff_t *ppos)
195{
196 int old_ratio = vm_dirty_ratio;
2da02997
DR
197 int ret;
198
199 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
04fbfdc1 200 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
201 update_completion_period();
202 vm_dirty_bytes = 0;
203 }
204 return ret;
205}
206
207
208int dirty_bytes_handler(struct ctl_table *table, int write,
209 struct file *filp, void __user *buffer, size_t *lenp,
210 loff_t *ppos)
211{
fc3501d4 212 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
213 int ret;
214
215 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
216 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
217 update_completion_period();
218 vm_dirty_ratio = 0;
04fbfdc1
PZ
219 }
220 return ret;
221}
222
223/*
224 * Increment the BDI's writeout completion count and the global writeout
225 * completion count. Called from test_clear_page_writeback().
226 */
227static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
228{
a42dde04
PZ
229 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
230 bdi->max_prop_frac);
04fbfdc1
PZ
231}
232
dd5656e5
MS
233void bdi_writeout_inc(struct backing_dev_info *bdi)
234{
235 unsigned long flags;
236
237 local_irq_save(flags);
238 __bdi_writeout_inc(bdi);
239 local_irq_restore(flags);
240}
241EXPORT_SYMBOL_GPL(bdi_writeout_inc);
242
1cf6e7d8 243void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
244{
245 prop_inc_single(&vm_dirties, &tsk->dirties);
246}
247
04fbfdc1
PZ
248/*
249 * Obtain an accurate fraction of the BDI's portion.
250 */
251static void bdi_writeout_fraction(struct backing_dev_info *bdi,
252 long *numerator, long *denominator)
253{
254 if (bdi_cap_writeback_dirty(bdi)) {
255 prop_fraction_percpu(&vm_completions, &bdi->completions,
256 numerator, denominator);
257 } else {
258 *numerator = 0;
259 *denominator = 1;
260 }
261}
262
263/*
264 * Clip the earned share of dirty pages to that which is actually available.
265 * This avoids exceeding the total dirty_limit when the floating averages
266 * fluctuate too quickly.
267 */
268static void
269clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
270{
271 long avail_dirty;
272
273 avail_dirty = dirty -
274 (global_page_state(NR_FILE_DIRTY) +
275 global_page_state(NR_WRITEBACK) +
fc3ba692
MS
276 global_page_state(NR_UNSTABLE_NFS) +
277 global_page_state(NR_WRITEBACK_TEMP));
04fbfdc1
PZ
278
279 if (avail_dirty < 0)
280 avail_dirty = 0;
281
282 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
283 bdi_stat(bdi, BDI_WRITEBACK);
284
285 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
286}
287
3e26c149
PZ
288static inline void task_dirties_fraction(struct task_struct *tsk,
289 long *numerator, long *denominator)
290{
291 prop_fraction_single(&vm_dirties, &tsk->dirties,
292 numerator, denominator);
293}
294
295/*
296 * scale the dirty limit
297 *
298 * task specific dirty limit:
299 *
300 * dirty -= (dirty/8) * p_{t}
301 */
f61eaf9f 302static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
3e26c149
PZ
303{
304 long numerator, denominator;
305 long dirty = *pdirty;
306 u64 inv = dirty >> 3;
307
308 task_dirties_fraction(tsk, &numerator, &denominator);
309 inv *= numerator;
310 do_div(inv, denominator);
311
312 dirty -= inv;
313 if (dirty < *pdirty/2)
314 dirty = *pdirty/2;
315
316 *pdirty = dirty;
317}
318
189d3c4a
PZ
319/*
320 *
321 */
322static DEFINE_SPINLOCK(bdi_lock);
323static unsigned int bdi_min_ratio;
324
325int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
326{
327 int ret = 0;
328 unsigned long flags;
329
330 spin_lock_irqsave(&bdi_lock, flags);
a42dde04 331 if (min_ratio > bdi->max_ratio) {
189d3c4a 332 ret = -EINVAL;
a42dde04
PZ
333 } else {
334 min_ratio -= bdi->min_ratio;
335 if (bdi_min_ratio + min_ratio < 100) {
336 bdi_min_ratio += min_ratio;
337 bdi->min_ratio += min_ratio;
338 } else {
339 ret = -EINVAL;
340 }
341 }
342 spin_unlock_irqrestore(&bdi_lock, flags);
343
344 return ret;
345}
346
347int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
348{
349 unsigned long flags;
350 int ret = 0;
351
352 if (max_ratio > 100)
353 return -EINVAL;
354
355 spin_lock_irqsave(&bdi_lock, flags);
356 if (bdi->min_ratio > max_ratio) {
357 ret = -EINVAL;
358 } else {
359 bdi->max_ratio = max_ratio;
360 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
361 }
189d3c4a
PZ
362 spin_unlock_irqrestore(&bdi_lock, flags);
363
364 return ret;
365}
a42dde04 366EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 367
1da177e4
LT
368/*
369 * Work out the current dirty-memory clamping and background writeout
370 * thresholds.
371 *
372 * The main aim here is to lower them aggressively if there is a lot of mapped
373 * memory around. To avoid stressing page reclaim with lots of unreclaimable
374 * pages. It is better to clamp down on writers than to start swapping, and
375 * performing lots of scanning.
376 *
377 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
378 *
379 * We don't permit the clamping level to fall below 5% - that is getting rather
380 * excessive.
381 *
382 * We make sure that the background writeout level is below the adjusted
383 * clamping level.
384 */
1b424464
CL
385
386static unsigned long highmem_dirtyable_memory(unsigned long total)
387{
388#ifdef CONFIG_HIGHMEM
389 int node;
390 unsigned long x = 0;
391
37b07e41 392 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
393 struct zone *z =
394 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
395
4f98a2fe 396 x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
1b424464
CL
397 }
398 /*
399 * Make sure that the number of highmem pages is never larger
400 * than the number of the total dirtyable memory. This can only
401 * occur in very strange VM situations but we want to make sure
402 * that this does not occur.
403 */
404 return min(x, total);
405#else
406 return 0;
407#endif
408}
409
3eefae99
SR
410/**
411 * determine_dirtyable_memory - amount of memory that may be used
412 *
413 * Returns the numebr of pages that can currently be freed and used
414 * by the kernel for direct mappings.
415 */
416unsigned long determine_dirtyable_memory(void)
1b424464
CL
417{
418 unsigned long x;
419
4f98a2fe 420 x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
195cf453
BG
421
422 if (!vm_highmem_is_dirtyable)
423 x -= highmem_dirtyable_memory(x);
424
1b424464
CL
425 return x + 1; /* Ensure that we never return 0 */
426}
427
cf0ca9fe 428void
364aeb28
DR
429get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
430 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
1da177e4 431{
364aeb28
DR
432 unsigned long background;
433 unsigned long dirty;
1b424464 434 unsigned long available_memory = determine_dirtyable_memory();
1da177e4
LT
435 struct task_struct *tsk;
436
2da02997
DR
437 if (vm_dirty_bytes)
438 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
439 else {
440 int dirty_ratio;
441
442 dirty_ratio = vm_dirty_ratio;
443 if (dirty_ratio < 5)
444 dirty_ratio = 5;
445 dirty = (dirty_ratio * available_memory) / 100;
446 }
1da177e4 447
2da02997
DR
448 if (dirty_background_bytes)
449 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
450 else
451 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 452
2da02997
DR
453 if (background >= dirty)
454 background = dirty / 2;
1da177e4
LT
455 tsk = current;
456 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
457 background += background / 4;
458 dirty += dirty / 4;
459 }
460 *pbackground = background;
461 *pdirty = dirty;
04fbfdc1
PZ
462
463 if (bdi) {
189d3c4a 464 u64 bdi_dirty;
04fbfdc1
PZ
465 long numerator, denominator;
466
467 /*
468 * Calculate this BDI's share of the dirty ratio.
469 */
470 bdi_writeout_fraction(bdi, &numerator, &denominator);
471
189d3c4a 472 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
04fbfdc1
PZ
473 bdi_dirty *= numerator;
474 do_div(bdi_dirty, denominator);
189d3c4a 475 bdi_dirty += (dirty * bdi->min_ratio) / 100;
a42dde04
PZ
476 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
477 bdi_dirty = dirty * bdi->max_ratio / 100;
04fbfdc1
PZ
478
479 *pbdi_dirty = bdi_dirty;
480 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
3e26c149 481 task_dirty_limit(current, pbdi_dirty);
04fbfdc1 482 }
1da177e4
LT
483}
484
485/*
486 * balance_dirty_pages() must be called by processes which are generating dirty
487 * data. It looks at the number of dirty pages in the machine and will force
488 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
489 * If we're over `background_thresh' then pdflush is woken to perform some
490 * writeout.
491 */
492static void balance_dirty_pages(struct address_space *mapping)
493{
5fce25a9
PZ
494 long nr_reclaimable, bdi_nr_reclaimable;
495 long nr_writeback, bdi_nr_writeback;
364aeb28
DR
496 unsigned long background_thresh;
497 unsigned long dirty_thresh;
498 unsigned long bdi_thresh;
1da177e4
LT
499 unsigned long pages_written = 0;
500 unsigned long write_chunk = sync_writeback_pages();
501
502 struct backing_dev_info *bdi = mapping->backing_dev_info;
503
504 for (;;) {
505 struct writeback_control wbc = {
506 .bdi = bdi,
507 .sync_mode = WB_SYNC_NONE,
508 .older_than_this = NULL,
509 .nr_to_write = write_chunk,
111ebb6e 510 .range_cyclic = 1,
1da177e4
LT
511 };
512
04fbfdc1
PZ
513 get_dirty_limits(&background_thresh, &dirty_thresh,
514 &bdi_thresh, bdi);
5fce25a9
PZ
515
516 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
517 global_page_state(NR_UNSTABLE_NFS);
518 nr_writeback = global_page_state(NR_WRITEBACK);
519
04fbfdc1
PZ
520 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
521 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
5fce25a9 522
04fbfdc1
PZ
523 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
524 break;
1da177e4 525
5fce25a9
PZ
526 /*
527 * Throttle it only when the background writeback cannot
528 * catch-up. This avoids (excessively) small writeouts
529 * when the bdi limits are ramping up.
530 */
531 if (nr_reclaimable + nr_writeback <
532 (background_thresh + dirty_thresh) / 2)
533 break;
534
04fbfdc1
PZ
535 if (!bdi->dirty_exceeded)
536 bdi->dirty_exceeded = 1;
1da177e4
LT
537
538 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
539 * Unstable writes are a feature of certain networked
540 * filesystems (i.e. NFS) in which data may have been
541 * written to the server's write cache, but has not yet
542 * been flushed to permanent storage.
543 */
04fbfdc1 544 if (bdi_nr_reclaimable) {
1da177e4 545 writeback_inodes(&wbc);
1da177e4 546 pages_written += write_chunk - wbc.nr_to_write;
04fbfdc1
PZ
547 get_dirty_limits(&background_thresh, &dirty_thresh,
548 &bdi_thresh, bdi);
549 }
550
551 /*
552 * In order to avoid the stacked BDI deadlock we need
553 * to ensure we accurately count the 'dirty' pages when
554 * the threshold is low.
555 *
556 * Otherwise it would be possible to get thresh+n pages
557 * reported dirty, even though there are thresh-m pages
558 * actually dirty; with m+n sitting in the percpu
559 * deltas.
560 */
561 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
562 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
563 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
564 } else if (bdi_nr_reclaimable) {
565 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
566 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
1da177e4 567 }
04fbfdc1
PZ
568
569 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
570 break;
571 if (pages_written >= write_chunk)
572 break; /* We've done our duty */
573
3fcfab16 574 congestion_wait(WRITE, HZ/10);
1da177e4
LT
575 }
576
04fbfdc1
PZ
577 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
578 bdi->dirty_exceeded)
579 bdi->dirty_exceeded = 0;
1da177e4
LT
580
581 if (writeback_in_progress(bdi))
582 return; /* pdflush is already working this queue */
583
584 /*
585 * In laptop mode, we wait until hitting the higher threshold before
586 * starting background writeout, and then write out all the way down
587 * to the lower threshold. So slow writers cause minimal disk activity.
588 *
589 * In normal mode, we start background writeout at the lower
590 * background_thresh, to keep the amount of dirty memory low.
591 */
592 if ((laptop_mode && pages_written) ||
04fbfdc1
PZ
593 (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
594 + global_page_state(NR_UNSTABLE_NFS)
595 > background_thresh)))
1da177e4
LT
596 pdflush_operation(background_writeout, 0);
597}
598
a200ee18 599void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 600{
a200ee18 601 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
602 struct address_space *mapping = page_mapping(page);
603
604 if (mapping)
605 balance_dirty_pages_ratelimited(mapping);
606 }
607}
608
1da177e4 609/**
fa5a734e 610 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 611 * @mapping: address_space which was dirtied
a580290c 612 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
613 *
614 * Processes which are dirtying memory should call in here once for each page
615 * which was newly dirtied. The function will periodically check the system's
616 * dirty state and will initiate writeback if needed.
617 *
618 * On really big machines, get_writeback_state is expensive, so try to avoid
619 * calling it too often (ratelimiting). But once we're over the dirty memory
620 * limit we decrease the ratelimiting by a lot, to prevent individual processes
621 * from overshooting the limit by (ratelimit_pages) each.
622 */
fa5a734e
AM
623void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
624 unsigned long nr_pages_dirtied)
1da177e4 625{
fa5a734e
AM
626 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
627 unsigned long ratelimit;
628 unsigned long *p;
1da177e4
LT
629
630 ratelimit = ratelimit_pages;
04fbfdc1 631 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
632 ratelimit = 8;
633
634 /*
635 * Check the rate limiting. Also, we do not want to throttle real-time
636 * tasks in balance_dirty_pages(). Period.
637 */
fa5a734e
AM
638 preempt_disable();
639 p = &__get_cpu_var(ratelimits);
640 *p += nr_pages_dirtied;
641 if (unlikely(*p >= ratelimit)) {
642 *p = 0;
643 preempt_enable();
1da177e4
LT
644 balance_dirty_pages(mapping);
645 return;
646 }
fa5a734e 647 preempt_enable();
1da177e4 648}
fa5a734e 649EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 650
232ea4d6 651void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 652{
364aeb28
DR
653 unsigned long background_thresh;
654 unsigned long dirty_thresh;
1da177e4
LT
655
656 for ( ; ; ) {
04fbfdc1 657 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
1da177e4
LT
658
659 /*
660 * Boost the allowable dirty threshold a bit for page
661 * allocators so they don't get DoS'ed by heavy writers
662 */
663 dirty_thresh += dirty_thresh / 10; /* wheeee... */
664
c24f21bd
CL
665 if (global_page_state(NR_UNSTABLE_NFS) +
666 global_page_state(NR_WRITEBACK) <= dirty_thresh)
667 break;
3fcfab16 668 congestion_wait(WRITE, HZ/10);
369f2389
FW
669
670 /*
671 * The caller might hold locks which can prevent IO completion
672 * or progress in the filesystem. So we cannot just sit here
673 * waiting for IO to complete.
674 */
675 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
676 break;
1da177e4
LT
677 }
678}
679
1da177e4
LT
680/*
681 * writeback at least _min_pages, and keep writing until the amount of dirty
682 * memory is less than the background threshold, or until we're all clean.
683 */
684static void background_writeout(unsigned long _min_pages)
685{
686 long min_pages = _min_pages;
687 struct writeback_control wbc = {
688 .bdi = NULL,
689 .sync_mode = WB_SYNC_NONE,
690 .older_than_this = NULL,
691 .nr_to_write = 0,
692 .nonblocking = 1,
111ebb6e 693 .range_cyclic = 1,
1da177e4
LT
694 };
695
696 for ( ; ; ) {
364aeb28
DR
697 unsigned long background_thresh;
698 unsigned long dirty_thresh;
1da177e4 699
04fbfdc1 700 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
c24f21bd
CL
701 if (global_page_state(NR_FILE_DIRTY) +
702 global_page_state(NR_UNSTABLE_NFS) < background_thresh
1da177e4
LT
703 && min_pages <= 0)
704 break;
8bc3be27 705 wbc.more_io = 0;
1da177e4
LT
706 wbc.encountered_congestion = 0;
707 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
708 wbc.pages_skipped = 0;
709 writeback_inodes(&wbc);
710 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
711 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
712 /* Wrote less than expected */
8bc3be27
FW
713 if (wbc.encountered_congestion || wbc.more_io)
714 congestion_wait(WRITE, HZ/10);
715 else
1da177e4
LT
716 break;
717 }
718 }
719}
720
721/*
722 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
723 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
724 * -1 if all pdflush threads were busy.
725 */
687a21ce 726int wakeup_pdflush(long nr_pages)
1da177e4 727{
c24f21bd
CL
728 if (nr_pages == 0)
729 nr_pages = global_page_state(NR_FILE_DIRTY) +
730 global_page_state(NR_UNSTABLE_NFS);
1da177e4
LT
731 return pdflush_operation(background_writeout, nr_pages);
732}
733
734static void wb_timer_fn(unsigned long unused);
735static void laptop_timer_fn(unsigned long unused);
736
8d06afab
IM
737static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
738static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
1da177e4
LT
739
740/*
741 * Periodic writeback of "old" data.
742 *
743 * Define "old": the first time one of an inode's pages is dirtied, we mark the
744 * dirtying-time in the inode's address_space. So this periodic writeback code
745 * just walks the superblock inode list, writing back any inodes which are
746 * older than a specific point in time.
747 *
f6ef9438
BS
748 * Try to run once per dirty_writeback_interval. But if a writeback event
749 * takes longer than a dirty_writeback_interval interval, then leave a
1da177e4
LT
750 * one-second gap.
751 *
752 * older_than_this takes precedence over nr_to_write. So we'll only write back
753 * all dirty pages if they are all attached to "old" mappings.
754 */
755static void wb_kupdate(unsigned long arg)
756{
757 unsigned long oldest_jif;
758 unsigned long start_jif;
759 unsigned long next_jif;
760 long nr_to_write;
1da177e4
LT
761 struct writeback_control wbc = {
762 .bdi = NULL,
763 .sync_mode = WB_SYNC_NONE,
764 .older_than_this = &oldest_jif,
765 .nr_to_write = 0,
766 .nonblocking = 1,
767 .for_kupdate = 1,
111ebb6e 768 .range_cyclic = 1,
1da177e4
LT
769 };
770
771 sync_supers();
772
704503d8 773 oldest_jif = jiffies - msecs_to_jiffies(dirty_expire_interval);
1da177e4 774 start_jif = jiffies;
704503d8 775 next_jif = start_jif + msecs_to_jiffies(dirty_writeback_interval * 10);
c24f21bd
CL
776 nr_to_write = global_page_state(NR_FILE_DIRTY) +
777 global_page_state(NR_UNSTABLE_NFS) +
1da177e4
LT
778 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
779 while (nr_to_write > 0) {
8bc3be27 780 wbc.more_io = 0;
1da177e4
LT
781 wbc.encountered_congestion = 0;
782 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
783 writeback_inodes(&wbc);
784 if (wbc.nr_to_write > 0) {
8bc3be27 785 if (wbc.encountered_congestion || wbc.more_io)
3fcfab16 786 congestion_wait(WRITE, HZ/10);
1da177e4
LT
787 else
788 break; /* All the old data is written */
789 }
790 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
791 }
792 if (time_before(next_jif, jiffies + HZ))
793 next_jif = jiffies + HZ;
f6ef9438 794 if (dirty_writeback_interval)
1da177e4
LT
795 mod_timer(&wb_timer, next_jif);
796}
797
798/*
799 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
800 */
801int dirty_writeback_centisecs_handler(ctl_table *table, int write,
3e733f07 802 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 803{
704503d8 804 proc_dointvec(table, write, file, buffer, length, ppos);
3e733f07 805 if (dirty_writeback_interval)
704503d8
AD
806 mod_timer(&wb_timer, jiffies +
807 msecs_to_jiffies(dirty_writeback_interval * 10));
3e733f07 808 else
1da177e4 809 del_timer(&wb_timer);
1da177e4
LT
810 return 0;
811}
812
813static void wb_timer_fn(unsigned long unused)
814{
815 if (pdflush_operation(wb_kupdate, 0) < 0)
816 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
817}
818
819static void laptop_flush(unsigned long unused)
820{
821 sys_sync();
822}
823
824static void laptop_timer_fn(unsigned long unused)
825{
826 pdflush_operation(laptop_flush, 0);
827}
828
829/*
830 * We've spun up the disk and we're in laptop mode: schedule writeback
831 * of all dirty data a few seconds from now. If the flush is already scheduled
832 * then push it back - the user is still using the disk.
833 */
834void laptop_io_completion(void)
835{
ed5b43f1 836 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
837}
838
839/*
840 * We're in laptop mode and we've just synced. The sync's writes will have
841 * caused another writeback to be scheduled by laptop_io_completion.
842 * Nothing needs to be written back anymore, so we unschedule the writeback.
843 */
844void laptop_sync_completion(void)
845{
846 del_timer(&laptop_mode_wb_timer);
847}
848
849/*
850 * If ratelimit_pages is too high then we can get into dirty-data overload
851 * if a large number of processes all perform writes at the same time.
852 * If it is too low then SMP machines will call the (expensive)
853 * get_writeback_state too often.
854 *
855 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
856 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
857 * thresholds before writeback cuts in.
858 *
859 * But the limit should not be set too high. Because it also controls the
860 * amount of memory which the balance_dirty_pages() caller has to write back.
861 * If this is too large then the caller will block on the IO queue all the
862 * time. So limit it to four megabytes - the balance_dirty_pages() caller
863 * will write six megabyte chunks, max.
864 */
865
2d1d43f6 866void writeback_set_ratelimit(void)
1da177e4 867{
40c99aae 868 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
869 if (ratelimit_pages < 16)
870 ratelimit_pages = 16;
871 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
872 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
873}
874
26c2143b 875static int __cpuinit
1da177e4
LT
876ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
877{
2d1d43f6 878 writeback_set_ratelimit();
aa0f0303 879 return NOTIFY_DONE;
1da177e4
LT
880}
881
74b85f37 882static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
883 .notifier_call = ratelimit_handler,
884 .next = NULL,
885};
886
887/*
dc6e29da
LT
888 * Called early on to tune the page writeback dirty limits.
889 *
890 * We used to scale dirty pages according to how total memory
891 * related to pages that could be allocated for buffers (by
892 * comparing nr_free_buffer_pages() to vm_total_pages.
893 *
894 * However, that was when we used "dirty_ratio" to scale with
895 * all memory, and we don't do that any more. "dirty_ratio"
896 * is now applied to total non-HIGHPAGE memory (by subtracting
897 * totalhigh_pages from vm_total_pages), and as such we can't
898 * get into the old insane situation any more where we had
899 * large amounts of dirty pages compared to a small amount of
900 * non-HIGHMEM memory.
901 *
902 * But we might still want to scale the dirty_ratio by how
903 * much memory the box has..
1da177e4
LT
904 */
905void __init page_writeback_init(void)
906{
04fbfdc1
PZ
907 int shift;
908
704503d8
AD
909 mod_timer(&wb_timer,
910 jiffies + msecs_to_jiffies(dirty_writeback_interval * 10));
2d1d43f6 911 writeback_set_ratelimit();
1da177e4 912 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
913
914 shift = calc_period_shift();
915 prop_descriptor_init(&vm_completions, shift);
3e26c149 916 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
917}
918
811d736f 919/**
0ea97180 920 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
921 * @mapping: address space structure to write
922 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
923 * @writepage: function called for each page
924 * @data: data passed to writepage function
811d736f 925 *
0ea97180 926 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
927 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
928 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
929 * and msync() need to guarantee that all the data which was dirty at the time
930 * the call was made get new I/O started against them. If wbc->sync_mode is
931 * WB_SYNC_ALL then we were called for data integrity and we must wait for
932 * existing IO to complete.
811d736f 933 */
0ea97180
MS
934int write_cache_pages(struct address_space *mapping,
935 struct writeback_control *wbc, writepage_t writepage,
936 void *data)
811d736f
DH
937{
938 struct backing_dev_info *bdi = mapping->backing_dev_info;
939 int ret = 0;
940 int done = 0;
811d736f
DH
941 struct pagevec pvec;
942 int nr_pages;
31a12666 943 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
944 pgoff_t index;
945 pgoff_t end; /* Inclusive */
bd19e012 946 pgoff_t done_index;
31a12666 947 int cycled;
811d736f 948 int range_whole = 0;
17bc6c30 949 long nr_to_write = wbc->nr_to_write;
811d736f
DH
950
951 if (wbc->nonblocking && bdi_write_congested(bdi)) {
952 wbc->encountered_congestion = 1;
953 return 0;
954 }
955
811d736f
DH
956 pagevec_init(&pvec, 0);
957 if (wbc->range_cyclic) {
31a12666
NP
958 writeback_index = mapping->writeback_index; /* prev offset */
959 index = writeback_index;
960 if (index == 0)
961 cycled = 1;
962 else
963 cycled = 0;
811d736f
DH
964 end = -1;
965 } else {
966 index = wbc->range_start >> PAGE_CACHE_SHIFT;
967 end = wbc->range_end >> PAGE_CACHE_SHIFT;
968 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
969 range_whole = 1;
31a12666 970 cycled = 1; /* ignore range_cyclic tests */
811d736f
DH
971 }
972retry:
bd19e012 973 done_index = index;
5a3d5c98
NP
974 while (!done && (index <= end)) {
975 int i;
976
977 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
978 PAGECACHE_TAG_DIRTY,
979 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
980 if (nr_pages == 0)
981 break;
811d736f 982
811d736f
DH
983 for (i = 0; i < nr_pages; i++) {
984 struct page *page = pvec.pages[i];
985
986 /*
d5482cdf
NP
987 * At this point, the page may be truncated or
988 * invalidated (changing page->mapping to NULL), or
989 * even swizzled back from swapper_space to tmpfs file
990 * mapping. However, page->index will not change
991 * because we have a reference on the page.
811d736f 992 */
d5482cdf
NP
993 if (page->index > end) {
994 /*
995 * can't be range_cyclic (1st pass) because
996 * end == -1 in that case.
997 */
998 done = 1;
999 break;
1000 }
1001
1002 done_index = page->index + 1;
1003
811d736f
DH
1004 lock_page(page);
1005
5a3d5c98
NP
1006 /*
1007 * Page truncated or invalidated. We can freely skip it
1008 * then, even for data integrity operations: the page
1009 * has disappeared concurrently, so there could be no
1010 * real expectation of this data interity operation
1011 * even if there is now a new, dirty page at the same
1012 * pagecache address.
1013 */
811d736f 1014 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1015continue_unlock:
811d736f
DH
1016 unlock_page(page);
1017 continue;
1018 }
1019
515f4a03
NP
1020 if (!PageDirty(page)) {
1021 /* someone wrote it for us */
1022 goto continue_unlock;
1023 }
1024
1025 if (PageWriteback(page)) {
1026 if (wbc->sync_mode != WB_SYNC_NONE)
1027 wait_on_page_writeback(page);
1028 else
1029 goto continue_unlock;
1030 }
811d736f 1031
515f4a03
NP
1032 BUG_ON(PageWriteback(page));
1033 if (!clear_page_dirty_for_io(page))
5a3d5c98 1034 goto continue_unlock;
811d736f 1035
0ea97180 1036 ret = (*writepage)(page, wbc, data);
00266770
NP
1037 if (unlikely(ret)) {
1038 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1039 unlock_page(page);
1040 ret = 0;
1041 } else {
1042 /*
1043 * done_index is set past this page,
1044 * so media errors will not choke
1045 * background writeout for the entire
1046 * file. This has consequences for
1047 * range_cyclic semantics (ie. it may
1048 * not be suitable for data integrity
1049 * writeout).
1050 */
1051 done = 1;
1052 break;
1053 }
1054 }
1055
89e12190 1056 if (nr_to_write > 0) {
dcf6a79d 1057 nr_to_write--;
89e12190
FC
1058 if (nr_to_write == 0 &&
1059 wbc->sync_mode == WB_SYNC_NONE) {
1060 /*
1061 * We stop writing back only if we are
1062 * not doing integrity sync. In case of
1063 * integrity sync we have to keep going
1064 * because someone may be concurrently
1065 * dirtying pages, and we might have
1066 * synced a lot of newly appeared dirty
1067 * pages, but have not synced all of the
1068 * old dirty pages.
1069 */
1070 done = 1;
1071 break;
1072 }
05fe478d 1073 }
dcf6a79d 1074
811d736f
DH
1075 if (wbc->nonblocking && bdi_write_congested(bdi)) {
1076 wbc->encountered_congestion = 1;
1077 done = 1;
82fd1a9a 1078 break;
811d736f
DH
1079 }
1080 }
1081 pagevec_release(&pvec);
1082 cond_resched();
1083 }
3a4c6800 1084 if (!cycled && !done) {
811d736f 1085 /*
31a12666 1086 * range_cyclic:
811d736f
DH
1087 * We hit the last page and there is more work to be done: wrap
1088 * back to the start of the file
1089 */
31a12666 1090 cycled = 1;
811d736f 1091 index = 0;
31a12666 1092 end = writeback_index - 1;
811d736f
DH
1093 goto retry;
1094 }
17bc6c30
AK
1095 if (!wbc->no_nrwrite_index_update) {
1096 if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
bd19e012 1097 mapping->writeback_index = done_index;
17bc6c30
AK
1098 wbc->nr_to_write = nr_to_write;
1099 }
06d6cf69 1100
811d736f
DH
1101 return ret;
1102}
0ea97180
MS
1103EXPORT_SYMBOL(write_cache_pages);
1104
1105/*
1106 * Function used by generic_writepages to call the real writepage
1107 * function and set the mapping flags on error
1108 */
1109static int __writepage(struct page *page, struct writeback_control *wbc,
1110 void *data)
1111{
1112 struct address_space *mapping = data;
1113 int ret = mapping->a_ops->writepage(page, wbc);
1114 mapping_set_error(mapping, ret);
1115 return ret;
1116}
1117
1118/**
1119 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1120 * @mapping: address space structure to write
1121 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1122 *
1123 * This is a library function, which implements the writepages()
1124 * address_space_operation.
1125 */
1126int generic_writepages(struct address_space *mapping,
1127 struct writeback_control *wbc)
1128{
1129 /* deal with chardevs and other special file */
1130 if (!mapping->a_ops->writepage)
1131 return 0;
1132
1133 return write_cache_pages(mapping, wbc, __writepage, mapping);
1134}
811d736f
DH
1135
1136EXPORT_SYMBOL(generic_writepages);
1137
1da177e4
LT
1138int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1139{
22905f77
AM
1140 int ret;
1141
1da177e4
LT
1142 if (wbc->nr_to_write <= 0)
1143 return 0;
22905f77 1144 wbc->for_writepages = 1;
1da177e4 1145 if (mapping->a_ops->writepages)
d08b3851 1146 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1147 else
1148 ret = generic_writepages(mapping, wbc);
1149 wbc->for_writepages = 0;
1150 return ret;
1da177e4
LT
1151}
1152
1153/**
1154 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1155 * @page: the page to write
1156 * @wait: if true, wait on writeout
1da177e4
LT
1157 *
1158 * The page must be locked by the caller and will be unlocked upon return.
1159 *
1160 * write_one_page() returns a negative error code if I/O failed.
1161 */
1162int write_one_page(struct page *page, int wait)
1163{
1164 struct address_space *mapping = page->mapping;
1165 int ret = 0;
1166 struct writeback_control wbc = {
1167 .sync_mode = WB_SYNC_ALL,
1168 .nr_to_write = 1,
1169 };
1170
1171 BUG_ON(!PageLocked(page));
1172
1173 if (wait)
1174 wait_on_page_writeback(page);
1175
1176 if (clear_page_dirty_for_io(page)) {
1177 page_cache_get(page);
1178 ret = mapping->a_ops->writepage(page, &wbc);
1179 if (ret == 0 && wait) {
1180 wait_on_page_writeback(page);
1181 if (PageError(page))
1182 ret = -EIO;
1183 }
1184 page_cache_release(page);
1185 } else {
1186 unlock_page(page);
1187 }
1188 return ret;
1189}
1190EXPORT_SYMBOL(write_one_page);
1191
76719325
KC
1192/*
1193 * For address_spaces which do not use buffers nor write back.
1194 */
1195int __set_page_dirty_no_writeback(struct page *page)
1196{
1197 if (!PageDirty(page))
1198 SetPageDirty(page);
1199 return 0;
1200}
1201
e3a7cca1
ES
1202/*
1203 * Helper function for set_page_dirty family.
1204 * NOTE: This relies on being atomic wrt interrupts.
1205 */
1206void account_page_dirtied(struct page *page, struct address_space *mapping)
1207{
1208 if (mapping_cap_account_dirty(mapping)) {
1209 __inc_zone_page_state(page, NR_FILE_DIRTY);
1210 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1211 task_dirty_inc(current);
1212 task_io_account_write(PAGE_CACHE_SIZE);
1213 }
1214}
1215
1da177e4
LT
1216/*
1217 * For address_spaces which do not use buffers. Just tag the page as dirty in
1218 * its radix tree.
1219 *
1220 * This is also used when a single buffer is being dirtied: we want to set the
1221 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1222 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1223 *
1224 * Most callers have locked the page, which pins the address_space in memory.
1225 * But zap_pte_range() does not lock the page, however in that case the
1226 * mapping is pinned by the vma's ->vm_file reference.
1227 *
1228 * We take care to handle the case where the page was truncated from the
183ff22b 1229 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1230 */
1231int __set_page_dirty_nobuffers(struct page *page)
1232{
1da177e4
LT
1233 if (!TestSetPageDirty(page)) {
1234 struct address_space *mapping = page_mapping(page);
1235 struct address_space *mapping2;
1236
8c08540f
AM
1237 if (!mapping)
1238 return 1;
1239
19fd6231 1240 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1241 mapping2 = page_mapping(page);
1242 if (mapping2) { /* Race with truncate? */
1243 BUG_ON(mapping2 != mapping);
787d2214 1244 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1245 account_page_dirtied(page, mapping);
8c08540f
AM
1246 radix_tree_tag_set(&mapping->page_tree,
1247 page_index(page), PAGECACHE_TAG_DIRTY);
1248 }
19fd6231 1249 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1250 if (mapping->host) {
1251 /* !PageAnon && !swapper_space */
1252 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1253 }
4741c9fd 1254 return 1;
1da177e4 1255 }
4741c9fd 1256 return 0;
1da177e4
LT
1257}
1258EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1259
1260/*
1261 * When a writepage implementation decides that it doesn't want to write this
1262 * page for some reason, it should redirty the locked page via
1263 * redirty_page_for_writepage() and it should then unlock the page and return 0
1264 */
1265int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1266{
1267 wbc->pages_skipped++;
1268 return __set_page_dirty_nobuffers(page);
1269}
1270EXPORT_SYMBOL(redirty_page_for_writepage);
1271
1272/*
1273 * If the mapping doesn't provide a set_page_dirty a_op, then
1274 * just fall through and assume that it wants buffer_heads.
1275 */
1cf6e7d8 1276int set_page_dirty(struct page *page)
1da177e4
LT
1277{
1278 struct address_space *mapping = page_mapping(page);
1279
1280 if (likely(mapping)) {
1281 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
9361401e
DH
1282#ifdef CONFIG_BLOCK
1283 if (!spd)
1284 spd = __set_page_dirty_buffers;
1285#endif
1286 return (*spd)(page);
1da177e4 1287 }
4741c9fd
AM
1288 if (!PageDirty(page)) {
1289 if (!TestSetPageDirty(page))
1290 return 1;
1291 }
1da177e4
LT
1292 return 0;
1293}
1294EXPORT_SYMBOL(set_page_dirty);
1295
1296/*
1297 * set_page_dirty() is racy if the caller has no reference against
1298 * page->mapping->host, and if the page is unlocked. This is because another
1299 * CPU could truncate the page off the mapping and then free the mapping.
1300 *
1301 * Usually, the page _is_ locked, or the caller is a user-space process which
1302 * holds a reference on the inode by having an open file.
1303 *
1304 * In other cases, the page should be locked before running set_page_dirty().
1305 */
1306int set_page_dirty_lock(struct page *page)
1307{
1308 int ret;
1309
db37648c 1310 lock_page_nosync(page);
1da177e4
LT
1311 ret = set_page_dirty(page);
1312 unlock_page(page);
1313 return ret;
1314}
1315EXPORT_SYMBOL(set_page_dirty_lock);
1316
1da177e4
LT
1317/*
1318 * Clear a page's dirty flag, while caring for dirty memory accounting.
1319 * Returns true if the page was previously dirty.
1320 *
1321 * This is for preparing to put the page under writeout. We leave the page
1322 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1323 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1324 * implementation will run either set_page_writeback() or set_page_dirty(),
1325 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1326 * back into sync.
1327 *
1328 * This incoherency between the page's dirty flag and radix-tree tag is
1329 * unfortunate, but it only exists while the page is locked.
1330 */
1331int clear_page_dirty_for_io(struct page *page)
1332{
1333 struct address_space *mapping = page_mapping(page);
1334
79352894
NP
1335 BUG_ON(!PageLocked(page));
1336
fe3cba17 1337 ClearPageReclaim(page);
7658cc28
LT
1338 if (mapping && mapping_cap_account_dirty(mapping)) {
1339 /*
1340 * Yes, Virginia, this is indeed insane.
1341 *
1342 * We use this sequence to make sure that
1343 * (a) we account for dirty stats properly
1344 * (b) we tell the low-level filesystem to
1345 * mark the whole page dirty if it was
1346 * dirty in a pagetable. Only to then
1347 * (c) clean the page again and return 1 to
1348 * cause the writeback.
1349 *
1350 * This way we avoid all nasty races with the
1351 * dirty bit in multiple places and clearing
1352 * them concurrently from different threads.
1353 *
1354 * Note! Normally the "set_page_dirty(page)"
1355 * has no effect on the actual dirty bit - since
1356 * that will already usually be set. But we
1357 * need the side effects, and it can help us
1358 * avoid races.
1359 *
1360 * We basically use the page "master dirty bit"
1361 * as a serialization point for all the different
1362 * threads doing their things.
7658cc28
LT
1363 */
1364 if (page_mkclean(page))
1365 set_page_dirty(page);
79352894
NP
1366 /*
1367 * We carefully synchronise fault handlers against
1368 * installing a dirty pte and marking the page dirty
1369 * at this point. We do this by having them hold the
1370 * page lock at some point after installing their
1371 * pte, but before marking the page dirty.
1372 * Pages are always locked coming in here, so we get
1373 * the desired exclusion. See mm/memory.c:do_wp_page()
1374 * for more comments.
1375 */
7658cc28 1376 if (TestClearPageDirty(page)) {
8c08540f 1377 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1378 dec_bdi_stat(mapping->backing_dev_info,
1379 BDI_RECLAIMABLE);
7658cc28 1380 return 1;
1da177e4 1381 }
7658cc28 1382 return 0;
1da177e4 1383 }
7658cc28 1384 return TestClearPageDirty(page);
1da177e4 1385}
58bb01a9 1386EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1387
1388int test_clear_page_writeback(struct page *page)
1389{
1390 struct address_space *mapping = page_mapping(page);
1391 int ret;
1392
1393 if (mapping) {
69cb51d1 1394 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1395 unsigned long flags;
1396
19fd6231 1397 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1398 ret = TestClearPageWriteback(page);
69cb51d1 1399 if (ret) {
1da177e4
LT
1400 radix_tree_tag_clear(&mapping->page_tree,
1401 page_index(page),
1402 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1403 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1404 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1405 __bdi_writeout_inc(bdi);
1406 }
69cb51d1 1407 }
19fd6231 1408 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1409 } else {
1410 ret = TestClearPageWriteback(page);
1411 }
d688abf5
AM
1412 if (ret)
1413 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1414 return ret;
1415}
1416
1417int test_set_page_writeback(struct page *page)
1418{
1419 struct address_space *mapping = page_mapping(page);
1420 int ret;
1421
1422 if (mapping) {
69cb51d1 1423 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1424 unsigned long flags;
1425
19fd6231 1426 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1427 ret = TestSetPageWriteback(page);
69cb51d1 1428 if (!ret) {
1da177e4
LT
1429 radix_tree_tag_set(&mapping->page_tree,
1430 page_index(page),
1431 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1432 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1433 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1434 }
1da177e4
LT
1435 if (!PageDirty(page))
1436 radix_tree_tag_clear(&mapping->page_tree,
1437 page_index(page),
1438 PAGECACHE_TAG_DIRTY);
19fd6231 1439 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1440 } else {
1441 ret = TestSetPageWriteback(page);
1442 }
d688abf5
AM
1443 if (!ret)
1444 inc_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1445 return ret;
1446
1447}
1448EXPORT_SYMBOL(test_set_page_writeback);
1449
1450/*
00128188 1451 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1452 * passed tag.
1453 */
1454int mapping_tagged(struct address_space *mapping, int tag)
1455{
1da177e4 1456 int ret;
00128188 1457 rcu_read_lock();
1da177e4 1458 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1459 rcu_read_unlock();
1da177e4
LT
1460 return ret;
1461}
1462EXPORT_SYMBOL(mapping_tagged);