writeback: consolidate dirty throttle parameters into dirty_throttle_control
[linux-2.6-block.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
dcc25ae7 125struct wb_domain global_wb_domain;
eb608e3a 126
2bc00aef
TH
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
129 struct bdi_writeback *wb;
130
131 unsigned long dirty; /* file_dirty + write + nfs */
132 unsigned long thresh; /* dirty threshold */
133 unsigned long bg_thresh; /* dirty background threshold */
134
135 unsigned long wb_dirty; /* per-wb counterparts */
136 unsigned long wb_thresh;
137};
138
139#define GDTC_INIT(__wb) .wb = (__wb)
140
eb608e3a
JK
141/*
142 * Length of period for aging writeout fractions of bdis. This is an
143 * arbitrarily chosen number. The longer the period, the slower fractions will
144 * reflect changes in current writeout rate.
145 */
146#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 147
693108a8
TH
148#ifdef CONFIG_CGROUP_WRITEBACK
149
150static void wb_min_max_ratio(struct bdi_writeback *wb,
151 unsigned long *minp, unsigned long *maxp)
152{
153 unsigned long this_bw = wb->avg_write_bandwidth;
154 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
155 unsigned long long min = wb->bdi->min_ratio;
156 unsigned long long max = wb->bdi->max_ratio;
157
158 /*
159 * @wb may already be clean by the time control reaches here and
160 * the total may not include its bw.
161 */
162 if (this_bw < tot_bw) {
163 if (min) {
164 min *= this_bw;
165 do_div(min, tot_bw);
166 }
167 if (max < 100) {
168 max *= this_bw;
169 do_div(max, tot_bw);
170 }
171 }
172
173 *minp = min;
174 *maxp = max;
175}
176
177#else /* CONFIG_CGROUP_WRITEBACK */
178
179static void wb_min_max_ratio(struct bdi_writeback *wb,
180 unsigned long *minp, unsigned long *maxp)
181{
182 *minp = wb->bdi->min_ratio;
183 *maxp = wb->bdi->max_ratio;
184}
185
186#endif /* CONFIG_CGROUP_WRITEBACK */
187
a756cf59
JW
188/*
189 * In a memory zone, there is a certain amount of pages we consider
190 * available for the page cache, which is essentially the number of
191 * free and reclaimable pages, minus some zone reserves to protect
192 * lowmem and the ability to uphold the zone's watermarks without
193 * requiring writeback.
194 *
195 * This number of dirtyable pages is the base value of which the
196 * user-configurable dirty ratio is the effictive number of pages that
197 * are allowed to be actually dirtied. Per individual zone, or
198 * globally by using the sum of dirtyable pages over all zones.
199 *
200 * Because the user is allowed to specify the dirty limit globally as
201 * absolute number of bytes, calculating the per-zone dirty limit can
202 * require translating the configured limit into a percentage of
203 * global dirtyable memory first.
204 */
205
a804552b
JW
206/**
207 * zone_dirtyable_memory - number of dirtyable pages in a zone
208 * @zone: the zone
209 *
210 * Returns the zone's number of pages potentially available for dirty
211 * page cache. This is the base value for the per-zone dirty limits.
212 */
213static unsigned long zone_dirtyable_memory(struct zone *zone)
214{
215 unsigned long nr_pages;
216
217 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
218 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
219
a1c3bfb2
JW
220 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
221 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
222
223 return nr_pages;
224}
225
1edf2234
JW
226static unsigned long highmem_dirtyable_memory(unsigned long total)
227{
228#ifdef CONFIG_HIGHMEM
229 int node;
230 unsigned long x = 0;
231
232 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 233 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 234
a804552b 235 x += zone_dirtyable_memory(z);
1edf2234 236 }
c8b74c2f
SR
237 /*
238 * Unreclaimable memory (kernel memory or anonymous memory
239 * without swap) can bring down the dirtyable pages below
240 * the zone's dirty balance reserve and the above calculation
241 * will underflow. However we still want to add in nodes
242 * which are below threshold (negative values) to get a more
243 * accurate calculation but make sure that the total never
244 * underflows.
245 */
246 if ((long)x < 0)
247 x = 0;
248
1edf2234
JW
249 /*
250 * Make sure that the number of highmem pages is never larger
251 * than the number of the total dirtyable memory. This can only
252 * occur in very strange VM situations but we want to make sure
253 * that this does not occur.
254 */
255 return min(x, total);
256#else
257 return 0;
258#endif
259}
260
261/**
ccafa287 262 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 263 *
ccafa287
JW
264 * Returns the global number of pages potentially available for dirty
265 * page cache. This is the base value for the global dirty limits.
1edf2234 266 */
18cf8cf8 267static unsigned long global_dirtyable_memory(void)
1edf2234
JW
268{
269 unsigned long x;
270
a804552b 271 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 272 x -= min(x, dirty_balance_reserve);
1edf2234 273
a1c3bfb2
JW
274 x += global_page_state(NR_INACTIVE_FILE);
275 x += global_page_state(NR_ACTIVE_FILE);
a804552b 276
1edf2234
JW
277 if (!vm_highmem_is_dirtyable)
278 x -= highmem_dirtyable_memory(x);
279
280 return x + 1; /* Ensure that we never return 0 */
281}
282
ccafa287
JW
283/*
284 * global_dirty_limits - background-writeback and dirty-throttling thresholds
285 *
286 * Calculate the dirty thresholds based on sysctl parameters
287 * - vm.dirty_background_ratio or vm.dirty_background_bytes
288 * - vm.dirty_ratio or vm.dirty_bytes
289 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
290 * real-time tasks.
291 */
292void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
293{
9ef0a0ff 294 const unsigned long available_memory = global_dirtyable_memory();
ccafa287
JW
295 unsigned long background;
296 unsigned long dirty;
ccafa287
JW
297 struct task_struct *tsk;
298
ccafa287
JW
299 if (vm_dirty_bytes)
300 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
301 else
302 dirty = (vm_dirty_ratio * available_memory) / 100;
303
304 if (dirty_background_bytes)
305 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
306 else
307 background = (dirty_background_ratio * available_memory) / 100;
308
309 if (background >= dirty)
310 background = dirty / 2;
311 tsk = current;
312 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
313 background += background / 4;
314 dirty += dirty / 4;
315 }
316 *pbackground = background;
317 *pdirty = dirty;
318 trace_global_dirty_state(background, dirty);
319}
320
a756cf59
JW
321/**
322 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
323 * @zone: the zone
324 *
325 * Returns the maximum number of dirty pages allowed in a zone, based
326 * on the zone's dirtyable memory.
327 */
328static unsigned long zone_dirty_limit(struct zone *zone)
329{
330 unsigned long zone_memory = zone_dirtyable_memory(zone);
331 struct task_struct *tsk = current;
332 unsigned long dirty;
333
334 if (vm_dirty_bytes)
335 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
336 zone_memory / global_dirtyable_memory();
337 else
338 dirty = vm_dirty_ratio * zone_memory / 100;
339
340 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
341 dirty += dirty / 4;
342
343 return dirty;
344}
345
346/**
347 * zone_dirty_ok - tells whether a zone is within its dirty limits
348 * @zone: the zone to check
349 *
350 * Returns %true when the dirty pages in @zone are within the zone's
351 * dirty limit, %false if the limit is exceeded.
352 */
353bool zone_dirty_ok(struct zone *zone)
354{
355 unsigned long limit = zone_dirty_limit(zone);
356
357 return zone_page_state(zone, NR_FILE_DIRTY) +
358 zone_page_state(zone, NR_UNSTABLE_NFS) +
359 zone_page_state(zone, NR_WRITEBACK) <= limit;
360}
361
2da02997 362int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 363 void __user *buffer, size_t *lenp,
2da02997
DR
364 loff_t *ppos)
365{
366 int ret;
367
8d65af78 368 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
369 if (ret == 0 && write)
370 dirty_background_bytes = 0;
371 return ret;
372}
373
374int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 375 void __user *buffer, size_t *lenp,
2da02997
DR
376 loff_t *ppos)
377{
378 int ret;
379
8d65af78 380 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
381 if (ret == 0 && write)
382 dirty_background_ratio = 0;
383 return ret;
384}
385
04fbfdc1 386int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 387 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
388 loff_t *ppos)
389{
390 int old_ratio = vm_dirty_ratio;
2da02997
DR
391 int ret;
392
8d65af78 393 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 394 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 395 writeback_set_ratelimit();
2da02997
DR
396 vm_dirty_bytes = 0;
397 }
398 return ret;
399}
400
2da02997 401int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 402 void __user *buffer, size_t *lenp,
2da02997
DR
403 loff_t *ppos)
404{
fc3501d4 405 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
406 int ret;
407
8d65af78 408 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 409 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 410 writeback_set_ratelimit();
2da02997 411 vm_dirty_ratio = 0;
04fbfdc1
PZ
412 }
413 return ret;
414}
415
eb608e3a
JK
416static unsigned long wp_next_time(unsigned long cur_time)
417{
418 cur_time += VM_COMPLETIONS_PERIOD_LEN;
419 /* 0 has a special meaning... */
420 if (!cur_time)
421 return 1;
422 return cur_time;
423}
424
04fbfdc1 425/*
380c27ca 426 * Increment the wb's writeout completion count and the global writeout
04fbfdc1
PZ
427 * completion count. Called from test_clear_page_writeback().
428 */
93f78d88 429static inline void __wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 430{
380c27ca
TH
431 struct wb_domain *dom = &global_wb_domain;
432
93f78d88 433 __inc_wb_stat(wb, WB_WRITTEN);
380c27ca 434 __fprop_inc_percpu_max(&dom->completions, &wb->completions,
93f78d88 435 wb->bdi->max_prop_frac);
eb608e3a 436 /* First event after period switching was turned off? */
380c27ca 437 if (!unlikely(dom->period_time)) {
eb608e3a
JK
438 /*
439 * We can race with other __bdi_writeout_inc calls here but
440 * it does not cause any harm since the resulting time when
441 * timer will fire and what is in writeout_period_time will be
442 * roughly the same.
443 */
380c27ca
TH
444 dom->period_time = wp_next_time(jiffies);
445 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 446 }
04fbfdc1
PZ
447}
448
93f78d88 449void wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5
MS
450{
451 unsigned long flags;
452
453 local_irq_save(flags);
93f78d88 454 __wb_writeout_inc(wb);
dd5656e5
MS
455 local_irq_restore(flags);
456}
93f78d88 457EXPORT_SYMBOL_GPL(wb_writeout_inc);
dd5656e5 458
eb608e3a
JK
459/*
460 * On idle system, we can be called long after we scheduled because we use
461 * deferred timers so count with missed periods.
462 */
463static void writeout_period(unsigned long t)
464{
380c27ca
TH
465 struct wb_domain *dom = (void *)t;
466 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
467 VM_COMPLETIONS_PERIOD_LEN;
468
380c27ca
TH
469 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
470 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 471 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 472 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
473 } else {
474 /*
475 * Aging has zeroed all fractions. Stop wasting CPU on period
476 * updates.
477 */
380c27ca 478 dom->period_time = 0;
eb608e3a
JK
479 }
480}
481
380c27ca
TH
482int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
483{
484 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
485
486 spin_lock_init(&dom->lock);
487
380c27ca
TH
488 init_timer_deferrable(&dom->period_timer);
489 dom->period_timer.function = writeout_period;
490 dom->period_timer.data = (unsigned long)dom;
dcc25ae7
TH
491
492 dom->dirty_limit_tstamp = jiffies;
493
380c27ca
TH
494 return fprop_global_init(&dom->completions, gfp);
495}
496
189d3c4a 497/*
d08c429b
JW
498 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
499 * registered backing devices, which, for obvious reasons, can not
500 * exceed 100%.
189d3c4a 501 */
189d3c4a
PZ
502static unsigned int bdi_min_ratio;
503
504int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
505{
506 int ret = 0;
189d3c4a 507
cfc4ba53 508 spin_lock_bh(&bdi_lock);
a42dde04 509 if (min_ratio > bdi->max_ratio) {
189d3c4a 510 ret = -EINVAL;
a42dde04
PZ
511 } else {
512 min_ratio -= bdi->min_ratio;
513 if (bdi_min_ratio + min_ratio < 100) {
514 bdi_min_ratio += min_ratio;
515 bdi->min_ratio += min_ratio;
516 } else {
517 ret = -EINVAL;
518 }
519 }
cfc4ba53 520 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
521
522 return ret;
523}
524
525int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
526{
a42dde04
PZ
527 int ret = 0;
528
529 if (max_ratio > 100)
530 return -EINVAL;
531
cfc4ba53 532 spin_lock_bh(&bdi_lock);
a42dde04
PZ
533 if (bdi->min_ratio > max_ratio) {
534 ret = -EINVAL;
535 } else {
536 bdi->max_ratio = max_ratio;
eb608e3a 537 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 538 }
cfc4ba53 539 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
540
541 return ret;
542}
a42dde04 543EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 544
6c14ae1e
WF
545static unsigned long dirty_freerun_ceiling(unsigned long thresh,
546 unsigned long bg_thresh)
547{
548 return (thresh + bg_thresh) / 2;
549}
550
ffd1f609
WF
551static unsigned long hard_dirty_limit(unsigned long thresh)
552{
dcc25ae7
TH
553 struct wb_domain *dom = &global_wb_domain;
554
555 return max(thresh, dom->dirty_limit);
ffd1f609
WF
556}
557
6f718656 558/**
0d960a38 559 * wb_calc_thresh - @wb's share of dirty throttling threshold
a88a341a 560 * @wb: bdi_writeback to query
6f718656 561 * @dirty: global dirty limit in pages
1babe183 562 *
a88a341a 563 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 564 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
565 *
566 * Note that balance_dirty_pages() will only seriously take it as a hard limit
567 * when sleeping max_pause per page is not enough to keep the dirty pages under
568 * control. For example, when the device is completely stalled due to some error
569 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
570 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 571 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 572 *
6f718656 573 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
574 * - starving fast devices
575 * - piling up dirty pages (that will take long time to sync) on slow devices
576 *
a88a341a 577 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
578 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
579 */
0d960a38 580unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
16c4042f 581{
380c27ca 582 struct wb_domain *dom = &global_wb_domain;
0d960a38 583 u64 wb_thresh;
16c4042f 584 long numerator, denominator;
693108a8 585 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 586
16c4042f 587 /*
0d960a38 588 * Calculate this BDI's share of the thresh ratio.
16c4042f 589 */
380c27ca
TH
590 fprop_fraction_percpu(&dom->completions, &wb->completions,
591 &numerator, &denominator);
04fbfdc1 592
0d960a38
TH
593 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
594 wb_thresh *= numerator;
595 do_div(wb_thresh, denominator);
04fbfdc1 596
693108a8
TH
597 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
598
0d960a38
TH
599 wb_thresh += (thresh * wb_min_ratio) / 100;
600 if (wb_thresh > (thresh * wb_max_ratio) / 100)
601 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 602
0d960a38 603 return wb_thresh;
1da177e4
LT
604}
605
5a537485
MP
606/*
607 * setpoint - dirty 3
608 * f(dirty) := 1.0 + (----------------)
609 * limit - setpoint
610 *
611 * it's a 3rd order polynomial that subjects to
612 *
613 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
614 * (2) f(setpoint) = 1.0 => the balance point
615 * (3) f(limit) = 0 => the hard limit
616 * (4) df/dx <= 0 => negative feedback control
617 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
618 * => fast response on large errors; small oscillation near setpoint
619 */
d5c9fde3 620static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
621 unsigned long dirty,
622 unsigned long limit)
623{
624 long long pos_ratio;
625 long x;
626
d5c9fde3 627 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
5a537485
MP
628 limit - setpoint + 1);
629 pos_ratio = x;
630 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
631 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
632 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
633
634 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
635}
636
6c14ae1e
WF
637/*
638 * Dirty position control.
639 *
640 * (o) global/bdi setpoints
641 *
de1fff37 642 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
643 * When the number of dirty pages is higher/lower than the setpoint, the
644 * dirty position control ratio (and hence task dirty ratelimit) will be
645 * decreased/increased to bring the dirty pages back to the setpoint.
646 *
647 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
648 *
649 * if (dirty < setpoint) scale up pos_ratio
650 * if (dirty > setpoint) scale down pos_ratio
651 *
de1fff37
TH
652 * if (wb_dirty < wb_setpoint) scale up pos_ratio
653 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
654 *
655 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
656 *
657 * (o) global control line
658 *
659 * ^ pos_ratio
660 * |
661 * | |<===== global dirty control scope ======>|
662 * 2.0 .............*
663 * | .*
664 * | . *
665 * | . *
666 * | . *
667 * | . *
668 * | . *
669 * 1.0 ................................*
670 * | . . *
671 * | . . *
672 * | . . *
673 * | . . *
674 * | . . *
675 * 0 +------------.------------------.----------------------*------------->
676 * freerun^ setpoint^ limit^ dirty pages
677 *
de1fff37 678 * (o) wb control line
6c14ae1e
WF
679 *
680 * ^ pos_ratio
681 * |
682 * | *
683 * | *
684 * | *
685 * | *
686 * | * |<=========== span ============>|
687 * 1.0 .......................*
688 * | . *
689 * | . *
690 * | . *
691 * | . *
692 * | . *
693 * | . *
694 * | . *
695 * | . *
696 * | . *
697 * | . *
698 * | . *
699 * 1/4 ...............................................* * * * * * * * * * * *
700 * | . .
701 * | . .
702 * | . .
703 * 0 +----------------------.-------------------------------.------------->
de1fff37 704 * wb_setpoint^ x_intercept^
6c14ae1e 705 *
de1fff37 706 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
707 * be smoothly throttled down to normal if it starts high in situations like
708 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
709 * card's wb_dirty may rush to many times higher than wb_setpoint.
710 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 711 */
2bc00aef 712static unsigned long wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 713{
2bc00aef 714 struct bdi_writeback *wb = dtc->wb;
a88a341a 715 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef
TH
716 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
717 unsigned long limit = hard_dirty_limit(dtc->thresh);
718 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
719 unsigned long x_intercept;
720 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 721 unsigned long wb_setpoint;
6c14ae1e
WF
722 unsigned long span;
723 long long pos_ratio; /* for scaling up/down the rate limit */
724 long x;
725
2bc00aef 726 if (unlikely(dtc->dirty >= limit))
6c14ae1e
WF
727 return 0;
728
729 /*
730 * global setpoint
731 *
5a537485
MP
732 * See comment for pos_ratio_polynom().
733 */
734 setpoint = (freerun + limit) / 2;
2bc00aef 735 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
736
737 /*
738 * The strictlimit feature is a tool preventing mistrusted filesystems
739 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
740 * such filesystems balance_dirty_pages always checks wb counters
741 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
742 * This is especially important for fuse which sets bdi->max_ratio to
743 * 1% by default. Without strictlimit feature, fuse writeback may
744 * consume arbitrary amount of RAM because it is accounted in
745 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 746 *
a88a341a 747 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 748 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
749 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
750 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 751 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 752 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 753 * about ~6K pages (as the average of background and throttle wb
5a537485 754 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 755 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 756 *
5a537485 757 * Note, that we cannot use global counters in these calculations
de1fff37 758 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
759 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
760 * in the example above).
6c14ae1e 761 */
a88a341a 762 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37
TH
763 long long wb_pos_ratio;
764 unsigned long wb_bg_thresh;
5a537485 765
2bc00aef 766 if (dtc->wb_dirty < 8)
5a537485
MP
767 return min_t(long long, pos_ratio * 2,
768 2 << RATELIMIT_CALC_SHIFT);
769
2bc00aef 770 if (dtc->wb_dirty >= wb_thresh)
5a537485
MP
771 return 0;
772
2bc00aef
TH
773 wb_bg_thresh = div_u64((u64)wb_thresh * dtc->bg_thresh,
774 dtc->thresh);
de1fff37 775 wb_setpoint = dirty_freerun_ceiling(wb_thresh, wb_bg_thresh);
5a537485 776
de1fff37 777 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
5a537485
MP
778 return 0;
779
2bc00aef 780 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 781 wb_thresh);
5a537485
MP
782
783 /*
de1fff37
TH
784 * Typically, for strictlimit case, wb_setpoint << setpoint
785 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 786 * state ("dirty") is not limiting factor and we have to
de1fff37 787 * make decision based on wb counters. But there is an
5a537485
MP
788 * important case when global pos_ratio should get precedence:
789 * global limits are exceeded (e.g. due to activities on other
de1fff37 790 * wb's) while given strictlimit wb is below limit.
5a537485 791 *
de1fff37 792 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 793 * but it would look too non-natural for the case of all
de1fff37 794 * activity in the system coming from a single strictlimit wb
5a537485
MP
795 * with bdi->max_ratio == 100%.
796 *
797 * Note that min() below somewhat changes the dynamics of the
798 * control system. Normally, pos_ratio value can be well over 3
de1fff37 799 * (when globally we are at freerun and wb is well below wb
5a537485
MP
800 * setpoint). Now the maximum pos_ratio in the same situation
801 * is 2. We might want to tweak this if we observe the control
802 * system is too slow to adapt.
803 */
de1fff37 804 return min(pos_ratio, wb_pos_ratio);
5a537485 805 }
6c14ae1e
WF
806
807 /*
808 * We have computed basic pos_ratio above based on global situation. If
de1fff37 809 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
810 * pos_ratio further down/up. That is done by the following mechanism.
811 */
812
813 /*
de1fff37 814 * wb setpoint
6c14ae1e 815 *
de1fff37 816 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 817 *
de1fff37 818 * x_intercept - wb_dirty
6c14ae1e 819 * := --------------------------
de1fff37 820 * x_intercept - wb_setpoint
6c14ae1e 821 *
de1fff37 822 * The main wb control line is a linear function that subjects to
6c14ae1e 823 *
de1fff37
TH
824 * (1) f(wb_setpoint) = 1.0
825 * (2) k = - 1 / (8 * write_bw) (in single wb case)
826 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 827 *
de1fff37 828 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 829 * regularly within range
de1fff37 830 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
831 * for various filesystems, where (2) can yield in a reasonable 12.5%
832 * fluctuation range for pos_ratio.
833 *
de1fff37 834 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 835 * own size, so move the slope over accordingly and choose a slope that
de1fff37 836 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 837 */
2bc00aef
TH
838 if (unlikely(wb_thresh > dtc->thresh))
839 wb_thresh = dtc->thresh;
aed21ad2 840 /*
de1fff37 841 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
842 * device is slow, but that it has remained inactive for long time.
843 * Honour such devices a reasonable good (hopefully IO efficient)
844 * threshold, so that the occasional writes won't be blocked and active
845 * writes can rampup the threshold quickly.
846 */
2bc00aef 847 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 848 /*
de1fff37
TH
849 * scale global setpoint to wb's:
850 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 851 */
2bc00aef 852 x = div_u64((u64)wb_thresh << 16, dtc->thresh + 1);
de1fff37 853 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 854 /*
de1fff37
TH
855 * Use span=(8*write_bw) in single wb case as indicated by
856 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 857 *
de1fff37
TH
858 * wb_thresh thresh - wb_thresh
859 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
860 * thresh thresh
6c14ae1e 861 */
2bc00aef 862 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 863 x_intercept = wb_setpoint + span;
6c14ae1e 864
2bc00aef
TH
865 if (dtc->wb_dirty < x_intercept - span / 4) {
866 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
867 x_intercept - wb_setpoint + 1);
6c14ae1e
WF
868 } else
869 pos_ratio /= 4;
870
8927f66c 871 /*
de1fff37 872 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
873 * It may push the desired control point of global dirty pages higher
874 * than setpoint.
875 */
de1fff37 876 x_intercept = wb_thresh / 2;
2bc00aef
TH
877 if (dtc->wb_dirty < x_intercept) {
878 if (dtc->wb_dirty > x_intercept / 8)
879 pos_ratio = div_u64(pos_ratio * x_intercept,
880 dtc->wb_dirty);
50657fc4 881 else
8927f66c
WF
882 pos_ratio *= 8;
883 }
884
6c14ae1e
WF
885 return pos_ratio;
886}
887
a88a341a
TH
888static void wb_update_write_bandwidth(struct bdi_writeback *wb,
889 unsigned long elapsed,
890 unsigned long written)
e98be2d5
WF
891{
892 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
893 unsigned long avg = wb->avg_write_bandwidth;
894 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
895 u64 bw;
896
897 /*
898 * bw = written * HZ / elapsed
899 *
900 * bw * elapsed + write_bandwidth * (period - elapsed)
901 * write_bandwidth = ---------------------------------------------------
902 * period
c72efb65
TH
903 *
904 * @written may have decreased due to account_page_redirty().
905 * Avoid underflowing @bw calculation.
e98be2d5 906 */
a88a341a 907 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
908 bw *= HZ;
909 if (unlikely(elapsed > period)) {
910 do_div(bw, elapsed);
911 avg = bw;
912 goto out;
913 }
a88a341a 914 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
915 bw >>= ilog2(period);
916
917 /*
918 * one more level of smoothing, for filtering out sudden spikes
919 */
920 if (avg > old && old >= (unsigned long)bw)
921 avg -= (avg - old) >> 3;
922
923 if (avg < old && old <= (unsigned long)bw)
924 avg += (old - avg) >> 3;
925
926out:
95a46c65
TH
927 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
928 avg = max(avg, 1LU);
929 if (wb_has_dirty_io(wb)) {
930 long delta = avg - wb->avg_write_bandwidth;
931 WARN_ON_ONCE(atomic_long_add_return(delta,
932 &wb->bdi->tot_write_bandwidth) <= 0);
933 }
a88a341a
TH
934 wb->write_bandwidth = bw;
935 wb->avg_write_bandwidth = avg;
e98be2d5
WF
936}
937
2bc00aef 938static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 939{
dcc25ae7 940 struct wb_domain *dom = &global_wb_domain;
2bc00aef 941 unsigned long thresh = dtc->thresh;
dcc25ae7 942 unsigned long limit = dom->dirty_limit;
c42843f2
WF
943
944 /*
945 * Follow up in one step.
946 */
947 if (limit < thresh) {
948 limit = thresh;
949 goto update;
950 }
951
952 /*
953 * Follow down slowly. Use the higher one as the target, because thresh
954 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 955 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 956 */
2bc00aef 957 thresh = max(thresh, dtc->dirty);
c42843f2
WF
958 if (limit > thresh) {
959 limit -= (limit - thresh) >> 5;
960 goto update;
961 }
962 return;
963update:
dcc25ae7 964 dom->dirty_limit = limit;
c42843f2
WF
965}
966
2bc00aef 967static void global_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
968 unsigned long now)
969{
dcc25ae7 970 struct wb_domain *dom = &global_wb_domain;
c42843f2
WF
971
972 /*
973 * check locklessly first to optimize away locking for the most time
974 */
dcc25ae7 975 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
976 return;
977
dcc25ae7
TH
978 spin_lock(&dom->lock);
979 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 980 update_dirty_limit(dtc);
dcc25ae7 981 dom->dirty_limit_tstamp = now;
c42843f2 982 }
dcc25ae7 983 spin_unlock(&dom->lock);
c42843f2
WF
984}
985
be3ffa27 986/*
de1fff37 987 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 988 *
de1fff37 989 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
990 * Obviously it should be around (write_bw / N) when there are N dd tasks.
991 */
2bc00aef 992static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
993 unsigned long dirtied,
994 unsigned long elapsed)
be3ffa27 995{
2bc00aef
TH
996 struct bdi_writeback *wb = dtc->wb;
997 unsigned long dirty = dtc->dirty;
998 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
999 unsigned long limit = hard_dirty_limit(dtc->thresh);
7381131c 1000 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1001 unsigned long write_bw = wb->avg_write_bandwidth;
1002 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1003 unsigned long dirty_rate;
1004 unsigned long task_ratelimit;
1005 unsigned long balanced_dirty_ratelimit;
1006 unsigned long pos_ratio;
7381131c
WF
1007 unsigned long step;
1008 unsigned long x;
be3ffa27
WF
1009
1010 /*
1011 * The dirty rate will match the writeout rate in long term, except
1012 * when dirty pages are truncated by userspace or re-dirtied by FS.
1013 */
a88a341a 1014 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1015
2bc00aef 1016 pos_ratio = wb_position_ratio(dtc);
be3ffa27
WF
1017 /*
1018 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1019 */
1020 task_ratelimit = (u64)dirty_ratelimit *
1021 pos_ratio >> RATELIMIT_CALC_SHIFT;
1022 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1023
1024 /*
1025 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1026 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1027 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1028 * formula will yield the balanced rate limit (write_bw / N).
1029 *
1030 * Note that the expanded form is not a pure rate feedback:
1031 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1032 * but also takes pos_ratio into account:
1033 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1034 *
1035 * (1) is not realistic because pos_ratio also takes part in balancing
1036 * the dirty rate. Consider the state
1037 * pos_ratio = 0.5 (3)
1038 * rate = 2 * (write_bw / N) (4)
1039 * If (1) is used, it will stuck in that state! Because each dd will
1040 * be throttled at
1041 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1042 * yielding
1043 * dirty_rate = N * task_ratelimit = write_bw (6)
1044 * put (6) into (1) we get
1045 * rate_(i+1) = rate_(i) (7)
1046 *
1047 * So we end up using (2) to always keep
1048 * rate_(i+1) ~= (write_bw / N) (8)
1049 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1050 * pos_ratio is able to drive itself to 1.0, which is not only where
1051 * the dirty count meet the setpoint, but also where the slope of
1052 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1053 */
1054 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1055 dirty_rate | 1);
bdaac490
WF
1056 /*
1057 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1058 */
1059 if (unlikely(balanced_dirty_ratelimit > write_bw))
1060 balanced_dirty_ratelimit = write_bw;
be3ffa27 1061
7381131c
WF
1062 /*
1063 * We could safely do this and return immediately:
1064 *
de1fff37 1065 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1066 *
1067 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1068 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1069 * limit the step size.
1070 *
1071 * The below code essentially only uses the relative value of
1072 *
1073 * task_ratelimit - dirty_ratelimit
1074 * = (pos_ratio - 1) * dirty_ratelimit
1075 *
1076 * which reflects the direction and size of dirty position error.
1077 */
1078
1079 /*
1080 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1081 * task_ratelimit is on the same side of dirty_ratelimit, too.
1082 * For example, when
1083 * - dirty_ratelimit > balanced_dirty_ratelimit
1084 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1085 * lowering dirty_ratelimit will help meet both the position and rate
1086 * control targets. Otherwise, don't update dirty_ratelimit if it will
1087 * only help meet the rate target. After all, what the users ultimately
1088 * feel and care are stable dirty rate and small position error.
1089 *
1090 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1091 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1092 * keeps jumping around randomly and can even leap far away at times
1093 * due to the small 200ms estimation period of dirty_rate (we want to
1094 * keep that period small to reduce time lags).
1095 */
1096 step = 0;
5a537485
MP
1097
1098 /*
de1fff37 1099 * For strictlimit case, calculations above were based on wb counters
a88a341a 1100 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1101 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1102 * Hence, to calculate "step" properly, we have to use wb_dirty as
1103 * "dirty" and wb_setpoint as "setpoint".
5a537485 1104 *
de1fff37
TH
1105 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1106 * it's possible that wb_thresh is close to zero due to inactivity
0d960a38 1107 * of backing device (see the implementation of wb_calc_thresh()).
5a537485 1108 */
a88a341a 1109 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1110 dirty = dtc->wb_dirty;
1111 if (dtc->wb_dirty < 8)
1112 setpoint = dtc->wb_dirty + 1;
5a537485 1113 else
2bc00aef
TH
1114 setpoint = (dtc->wb_thresh +
1115 wb_calc_thresh(wb, dtc->bg_thresh)) / 2;
5a537485
MP
1116 }
1117
7381131c 1118 if (dirty < setpoint) {
a88a341a 1119 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1120 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1121 if (dirty_ratelimit < x)
1122 step = x - dirty_ratelimit;
1123 } else {
a88a341a 1124 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1125 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1126 if (dirty_ratelimit > x)
1127 step = dirty_ratelimit - x;
1128 }
1129
1130 /*
1131 * Don't pursue 100% rate matching. It's impossible since the balanced
1132 * rate itself is constantly fluctuating. So decrease the track speed
1133 * when it gets close to the target. Helps eliminate pointless tremors.
1134 */
1135 step >>= dirty_ratelimit / (2 * step + 1);
1136 /*
1137 * Limit the tracking speed to avoid overshooting.
1138 */
1139 step = (step + 7) / 8;
1140
1141 if (dirty_ratelimit < balanced_dirty_ratelimit)
1142 dirty_ratelimit += step;
1143 else
1144 dirty_ratelimit -= step;
1145
a88a341a
TH
1146 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1147 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1148
a88a341a 1149 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
1150}
1151
2bc00aef 1152static void __wb_update_bandwidth(struct dirty_throttle_control *dtc,
8a731799
TH
1153 unsigned long start_time,
1154 bool update_ratelimit)
e98be2d5 1155{
2bc00aef 1156 struct bdi_writeback *wb = dtc->wb;
e98be2d5 1157 unsigned long now = jiffies;
a88a341a 1158 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1159 unsigned long dirtied;
e98be2d5
WF
1160 unsigned long written;
1161
8a731799
TH
1162 lockdep_assert_held(&wb->list_lock);
1163
e98be2d5
WF
1164 /*
1165 * rate-limit, only update once every 200ms.
1166 */
1167 if (elapsed < BANDWIDTH_INTERVAL)
1168 return;
1169
a88a341a
TH
1170 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1171 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1172
1173 /*
1174 * Skip quiet periods when disk bandwidth is under-utilized.
1175 * (at least 1s idle time between two flusher runs)
1176 */
a88a341a 1177 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1178 goto snapshot;
1179
8a731799 1180 if (update_ratelimit) {
2bc00aef
TH
1181 global_update_bandwidth(dtc, now);
1182 wb_update_dirty_ratelimit(dtc, dirtied, elapsed);
be3ffa27 1183 }
a88a341a 1184 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1185
1186snapshot:
a88a341a
TH
1187 wb->dirtied_stamp = dirtied;
1188 wb->written_stamp = written;
1189 wb->bw_time_stamp = now;
e98be2d5
WF
1190}
1191
8a731799 1192void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1193{
2bc00aef
TH
1194 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1195
1196 __wb_update_bandwidth(&gdtc, start_time, false);
e98be2d5
WF
1197}
1198
9d823e8f 1199/*
d0e1d66b 1200 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1201 * will look to see if it needs to start dirty throttling.
1202 *
1203 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1204 * global_page_state() too often. So scale it near-sqrt to the safety margin
1205 * (the number of pages we may dirty without exceeding the dirty limits).
1206 */
1207static unsigned long dirty_poll_interval(unsigned long dirty,
1208 unsigned long thresh)
1209{
1210 if (thresh > dirty)
1211 return 1UL << (ilog2(thresh - dirty) >> 1);
1212
1213 return 1;
1214}
1215
a88a341a 1216static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1217 unsigned long wb_dirty)
c8462cc9 1218{
a88a341a 1219 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1220 unsigned long t;
c8462cc9 1221
7ccb9ad5
WF
1222 /*
1223 * Limit pause time for small memory systems. If sleeping for too long
1224 * time, a small pool of dirty/writeback pages may go empty and disk go
1225 * idle.
1226 *
1227 * 8 serves as the safety ratio.
1228 */
de1fff37 1229 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1230 t++;
1231
e3b6c655 1232 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1233}
1234
a88a341a
TH
1235static long wb_min_pause(struct bdi_writeback *wb,
1236 long max_pause,
1237 unsigned long task_ratelimit,
1238 unsigned long dirty_ratelimit,
1239 int *nr_dirtied_pause)
c8462cc9 1240{
a88a341a
TH
1241 long hi = ilog2(wb->avg_write_bandwidth);
1242 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1243 long t; /* target pause */
1244 long pause; /* estimated next pause */
1245 int pages; /* target nr_dirtied_pause */
c8462cc9 1246
7ccb9ad5
WF
1247 /* target for 10ms pause on 1-dd case */
1248 t = max(1, HZ / 100);
c8462cc9
WF
1249
1250 /*
1251 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1252 * overheads.
1253 *
7ccb9ad5 1254 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1255 */
1256 if (hi > lo)
7ccb9ad5 1257 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1258
1259 /*
7ccb9ad5
WF
1260 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1261 * on the much more stable dirty_ratelimit. However the next pause time
1262 * will be computed based on task_ratelimit and the two rate limits may
1263 * depart considerably at some time. Especially if task_ratelimit goes
1264 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1265 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1266 * result task_ratelimit won't be executed faithfully, which could
1267 * eventually bring down dirty_ratelimit.
c8462cc9 1268 *
7ccb9ad5
WF
1269 * We apply two rules to fix it up:
1270 * 1) try to estimate the next pause time and if necessary, use a lower
1271 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1272 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1273 * 2) limit the target pause time to max_pause/2, so that the normal
1274 * small fluctuations of task_ratelimit won't trigger rule (1) and
1275 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1276 */
7ccb9ad5
WF
1277 t = min(t, 1 + max_pause / 2);
1278 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1279
1280 /*
5b9b3574
WF
1281 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1282 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1283 * When the 16 consecutive reads are often interrupted by some dirty
1284 * throttling pause during the async writes, cfq will go into idles
1285 * (deadline is fine). So push nr_dirtied_pause as high as possible
1286 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1287 */
5b9b3574
WF
1288 if (pages < DIRTY_POLL_THRESH) {
1289 t = max_pause;
1290 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1291 if (pages > DIRTY_POLL_THRESH) {
1292 pages = DIRTY_POLL_THRESH;
1293 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1294 }
1295 }
1296
7ccb9ad5
WF
1297 pause = HZ * pages / (task_ratelimit + 1);
1298 if (pause > max_pause) {
1299 t = max_pause;
1300 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1301 }
c8462cc9 1302
7ccb9ad5 1303 *nr_dirtied_pause = pages;
c8462cc9 1304 /*
7ccb9ad5 1305 * The minimal pause time will normally be half the target pause time.
c8462cc9 1306 */
5b9b3574 1307 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1308}
1309
2bc00aef 1310static inline void wb_dirty_limits(struct dirty_throttle_control *dtc,
de1fff37 1311 unsigned long *wb_bg_thresh)
5a537485 1312{
2bc00aef 1313 struct bdi_writeback *wb = dtc->wb;
93f78d88 1314 unsigned long wb_reclaimable;
5a537485
MP
1315
1316 /*
de1fff37 1317 * wb_thresh is not treated as some limiting factor as
5a537485 1318 * dirty_thresh, due to reasons
de1fff37 1319 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1320 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1321 * go into state (wb_dirty >> wb_thresh) either because
1322 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1323 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1324 * dirtiers for 100 seconds until wb_dirty drops under
1325 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1326 * wb_position_ratio() will let the dirtier task progress
de1fff37 1327 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1328 */
2bc00aef 1329 dtc->wb_thresh = wb_calc_thresh(dtc->wb, dtc->thresh);
5a537485 1330
de1fff37 1331 if (wb_bg_thresh)
2bc00aef
TH
1332 *wb_bg_thresh = dtc->thresh ? div_u64((u64)dtc->wb_thresh *
1333 dtc->bg_thresh,
1334 dtc->thresh) : 0;
5a537485
MP
1335
1336 /*
1337 * In order to avoid the stacked BDI deadlock we need
1338 * to ensure we accurately count the 'dirty' pages when
1339 * the threshold is low.
1340 *
1341 * Otherwise it would be possible to get thresh+n pages
1342 * reported dirty, even though there are thresh-m pages
1343 * actually dirty; with m+n sitting in the percpu
1344 * deltas.
1345 */
2bc00aef 1346 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1347 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1348 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1349 } else {
93f78d88 1350 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1351 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1352 }
1353}
1354
1da177e4
LT
1355/*
1356 * balance_dirty_pages() must be called by processes which are generating dirty
1357 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1358 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1359 * If we're over `background_thresh' then the writeback threads are woken to
1360 * perform some writeout.
1da177e4 1361 */
3a2e9a5a 1362static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1363 struct bdi_writeback *wb,
143dfe86 1364 unsigned long pages_dirtied)
1da177e4 1365{
2bc00aef
TH
1366 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1367 struct dirty_throttle_control * const gdtc = &gdtc_stor;
143dfe86 1368 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1369 long period;
7ccb9ad5
WF
1370 long pause;
1371 long max_pause;
1372 long min_pause;
1373 int nr_dirtied_pause;
e50e3720 1374 bool dirty_exceeded = false;
143dfe86 1375 unsigned long task_ratelimit;
7ccb9ad5 1376 unsigned long dirty_ratelimit;
143dfe86 1377 unsigned long pos_ratio;
dfb8ae56 1378 struct backing_dev_info *bdi = wb->bdi;
5a537485 1379 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1380 unsigned long start_time = jiffies;
1da177e4
LT
1381
1382 for (;;) {
83712358 1383 unsigned long now = jiffies;
2bc00aef 1384 unsigned long dirty, thresh, bg_thresh;
83712358 1385
143dfe86
WF
1386 /*
1387 * Unstable writes are a feature of certain networked
1388 * filesystems (i.e. NFS) in which data may have been
1389 * written to the server's write cache, but has not yet
1390 * been flushed to permanent storage.
1391 */
5fce25a9
PZ
1392 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1393 global_page_state(NR_UNSTABLE_NFS);
2bc00aef 1394 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1395
2bc00aef 1396 global_dirty_limits(&gdtc->bg_thresh, &gdtc->thresh);
16c4042f 1397
5a537485 1398 if (unlikely(strictlimit)) {
2bc00aef 1399 wb_dirty_limits(gdtc, &bg_thresh);
5a537485 1400
2bc00aef
TH
1401 dirty = gdtc->wb_dirty;
1402 thresh = gdtc->wb_thresh;
5a537485 1403 } else {
2bc00aef
TH
1404 dirty = gdtc->dirty;
1405 thresh = gdtc->thresh;
1406 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1407 }
1408
16c4042f
WF
1409 /*
1410 * Throttle it only when the background writeback cannot
1411 * catch-up. This avoids (excessively) small writeouts
de1fff37 1412 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1413 *
de1fff37
TH
1414 * In strictlimit case make decision based on the wb counters
1415 * and limits. Small writeouts when the wb limits are ramping
5a537485 1416 * up are the price we consciously pay for strictlimit-ing.
16c4042f 1417 */
5a537485 1418 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
83712358
WF
1419 current->dirty_paused_when = now;
1420 current->nr_dirtied = 0;
7ccb9ad5 1421 current->nr_dirtied_pause =
5a537485 1422 dirty_poll_interval(dirty, thresh);
16c4042f 1423 break;
83712358 1424 }
16c4042f 1425
bc05873d 1426 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1427 wb_start_background_writeback(wb);
143dfe86 1428
5a537485 1429 if (!strictlimit)
2bc00aef 1430 wb_dirty_limits(gdtc, NULL);
5fce25a9 1431
2bc00aef
TH
1432 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1433 ((gdtc->dirty > gdtc->thresh) || strictlimit);
a88a341a
TH
1434 if (dirty_exceeded && !wb->dirty_exceeded)
1435 wb->dirty_exceeded = 1;
1da177e4 1436
8a731799
TH
1437 if (time_is_before_jiffies(wb->bw_time_stamp +
1438 BANDWIDTH_INTERVAL)) {
1439 spin_lock(&wb->list_lock);
2bc00aef 1440 __wb_update_bandwidth(gdtc, start_time, true);
8a731799
TH
1441 spin_unlock(&wb->list_lock);
1442 }
e98be2d5 1443
a88a341a 1444 dirty_ratelimit = wb->dirty_ratelimit;
2bc00aef 1445 pos_ratio = wb_position_ratio(gdtc);
3a73dbbc
WF
1446 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1447 RATELIMIT_CALC_SHIFT;
2bc00aef 1448 max_pause = wb_max_pause(wb, gdtc->wb_dirty);
a88a341a
TH
1449 min_pause = wb_min_pause(wb, max_pause,
1450 task_ratelimit, dirty_ratelimit,
1451 &nr_dirtied_pause);
7ccb9ad5 1452
3a73dbbc 1453 if (unlikely(task_ratelimit == 0)) {
83712358 1454 period = max_pause;
c8462cc9 1455 pause = max_pause;
143dfe86 1456 goto pause;
04fbfdc1 1457 }
83712358
WF
1458 period = HZ * pages_dirtied / task_ratelimit;
1459 pause = period;
1460 if (current->dirty_paused_when)
1461 pause -= now - current->dirty_paused_when;
1462 /*
1463 * For less than 1s think time (ext3/4 may block the dirtier
1464 * for up to 800ms from time to time on 1-HDD; so does xfs,
1465 * however at much less frequency), try to compensate it in
1466 * future periods by updating the virtual time; otherwise just
1467 * do a reset, as it may be a light dirtier.
1468 */
7ccb9ad5 1469 if (pause < min_pause) {
ece13ac3 1470 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1471 gdtc->thresh,
1472 gdtc->bg_thresh,
1473 gdtc->dirty,
1474 gdtc->wb_thresh,
1475 gdtc->wb_dirty,
ece13ac3
WF
1476 dirty_ratelimit,
1477 task_ratelimit,
1478 pages_dirtied,
83712358 1479 period,
7ccb9ad5 1480 min(pause, 0L),
ece13ac3 1481 start_time);
83712358
WF
1482 if (pause < -HZ) {
1483 current->dirty_paused_when = now;
1484 current->nr_dirtied = 0;
1485 } else if (period) {
1486 current->dirty_paused_when += period;
1487 current->nr_dirtied = 0;
7ccb9ad5
WF
1488 } else if (current->nr_dirtied_pause <= pages_dirtied)
1489 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1490 break;
04fbfdc1 1491 }
7ccb9ad5
WF
1492 if (unlikely(pause > max_pause)) {
1493 /* for occasional dropped task_ratelimit */
1494 now += min(pause - max_pause, max_pause);
1495 pause = max_pause;
1496 }
143dfe86
WF
1497
1498pause:
ece13ac3 1499 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1500 gdtc->thresh,
1501 gdtc->bg_thresh,
1502 gdtc->dirty,
1503 gdtc->wb_thresh,
1504 gdtc->wb_dirty,
ece13ac3
WF
1505 dirty_ratelimit,
1506 task_ratelimit,
1507 pages_dirtied,
83712358 1508 period,
ece13ac3
WF
1509 pause,
1510 start_time);
499d05ec 1511 __set_current_state(TASK_KILLABLE);
d25105e8 1512 io_schedule_timeout(pause);
87c6a9b2 1513
83712358
WF
1514 current->dirty_paused_when = now + pause;
1515 current->nr_dirtied = 0;
7ccb9ad5 1516 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1517
ffd1f609 1518 /*
2bc00aef
TH
1519 * This is typically equal to (dirty < thresh) and can also
1520 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1521 */
1df64719 1522 if (task_ratelimit)
ffd1f609 1523 break;
499d05ec 1524
c5c6343c
WF
1525 /*
1526 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1527 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1528 * to go through, so that tasks on them still remain responsive.
1529 *
1530 * In theory 1 page is enough to keep the comsumer-producer
1531 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1532 * more page. However wb_dirty has accounting errors. So use
93f78d88 1533 * the larger and more IO friendly wb_stat_error.
c5c6343c 1534 */
2bc00aef 1535 if (gdtc->wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1536 break;
1537
499d05ec
JK
1538 if (fatal_signal_pending(current))
1539 break;
1da177e4
LT
1540 }
1541
a88a341a
TH
1542 if (!dirty_exceeded && wb->dirty_exceeded)
1543 wb->dirty_exceeded = 0;
1da177e4 1544
bc05873d 1545 if (writeback_in_progress(wb))
5b0830cb 1546 return;
1da177e4
LT
1547
1548 /*
1549 * In laptop mode, we wait until hitting the higher threshold before
1550 * starting background writeout, and then write out all the way down
1551 * to the lower threshold. So slow writers cause minimal disk activity.
1552 *
1553 * In normal mode, we start background writeout at the lower
1554 * background_thresh, to keep the amount of dirty memory low.
1555 */
143dfe86
WF
1556 if (laptop_mode)
1557 return;
1558
2bc00aef 1559 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1560 wb_start_background_writeback(wb);
1da177e4
LT
1561}
1562
9d823e8f 1563static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1564
54848d73
WF
1565/*
1566 * Normal tasks are throttled by
1567 * loop {
1568 * dirty tsk->nr_dirtied_pause pages;
1569 * take a snap in balance_dirty_pages();
1570 * }
1571 * However there is a worst case. If every task exit immediately when dirtied
1572 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1573 * called to throttle the page dirties. The solution is to save the not yet
1574 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1575 * randomly into the running tasks. This works well for the above worst case,
1576 * as the new task will pick up and accumulate the old task's leaked dirty
1577 * count and eventually get throttled.
1578 */
1579DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1580
1da177e4 1581/**
d0e1d66b 1582 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1583 * @mapping: address_space which was dirtied
1da177e4
LT
1584 *
1585 * Processes which are dirtying memory should call in here once for each page
1586 * which was newly dirtied. The function will periodically check the system's
1587 * dirty state and will initiate writeback if needed.
1588 *
1589 * On really big machines, get_writeback_state is expensive, so try to avoid
1590 * calling it too often (ratelimiting). But once we're over the dirty memory
1591 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1592 * from overshooting the limit by (ratelimit_pages) each.
1593 */
d0e1d66b 1594void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1595{
dfb8ae56
TH
1596 struct inode *inode = mapping->host;
1597 struct backing_dev_info *bdi = inode_to_bdi(inode);
1598 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1599 int ratelimit;
1600 int *p;
1da177e4 1601
36715cef
WF
1602 if (!bdi_cap_account_dirty(bdi))
1603 return;
1604
dfb8ae56
TH
1605 if (inode_cgwb_enabled(inode))
1606 wb = wb_get_create_current(bdi, GFP_KERNEL);
1607 if (!wb)
1608 wb = &bdi->wb;
1609
9d823e8f 1610 ratelimit = current->nr_dirtied_pause;
a88a341a 1611 if (wb->dirty_exceeded)
9d823e8f
WF
1612 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1613
9d823e8f 1614 preempt_disable();
1da177e4 1615 /*
9d823e8f
WF
1616 * This prevents one CPU to accumulate too many dirtied pages without
1617 * calling into balance_dirty_pages(), which can happen when there are
1618 * 1000+ tasks, all of them start dirtying pages at exactly the same
1619 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1620 */
7c8e0181 1621 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1622 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1623 *p = 0;
d3bc1fef
WF
1624 else if (unlikely(*p >= ratelimit_pages)) {
1625 *p = 0;
1626 ratelimit = 0;
1da177e4 1627 }
54848d73
WF
1628 /*
1629 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1630 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1631 * the dirty throttling and livelock other long-run dirtiers.
1632 */
7c8e0181 1633 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1634 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1635 unsigned long nr_pages_dirtied;
54848d73
WF
1636 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1637 *p -= nr_pages_dirtied;
1638 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1639 }
fa5a734e 1640 preempt_enable();
9d823e8f
WF
1641
1642 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1643 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1644
1645 wb_put(wb);
1da177e4 1646}
d0e1d66b 1647EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1648
232ea4d6 1649void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1650{
364aeb28
DR
1651 unsigned long background_thresh;
1652 unsigned long dirty_thresh;
1da177e4
LT
1653
1654 for ( ; ; ) {
16c4042f 1655 global_dirty_limits(&background_thresh, &dirty_thresh);
47a13333 1656 dirty_thresh = hard_dirty_limit(dirty_thresh);
1da177e4
LT
1657
1658 /*
1659 * Boost the allowable dirty threshold a bit for page
1660 * allocators so they don't get DoS'ed by heavy writers
1661 */
1662 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1663
c24f21bd
CL
1664 if (global_page_state(NR_UNSTABLE_NFS) +
1665 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1666 break;
8aa7e847 1667 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1668
1669 /*
1670 * The caller might hold locks which can prevent IO completion
1671 * or progress in the filesystem. So we cannot just sit here
1672 * waiting for IO to complete.
1673 */
1674 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1675 break;
1da177e4
LT
1676 }
1677}
1678
1da177e4
LT
1679/*
1680 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1681 */
cccad5b9 1682int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1683 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1684{
8d65af78 1685 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1686 return 0;
1687}
1688
c2c4986e 1689#ifdef CONFIG_BLOCK
31373d09 1690void laptop_mode_timer_fn(unsigned long data)
1da177e4 1691{
31373d09
MG
1692 struct request_queue *q = (struct request_queue *)data;
1693 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1694 global_page_state(NR_UNSTABLE_NFS);
a06fd6b1
TH
1695 struct bdi_writeback *wb;
1696 struct wb_iter iter;
1da177e4 1697
31373d09
MG
1698 /*
1699 * We want to write everything out, not just down to the dirty
1700 * threshold
1701 */
a06fd6b1
TH
1702 if (!bdi_has_dirty_io(&q->backing_dev_info))
1703 return;
1704
1705 bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1706 if (wb_has_dirty_io(wb))
1707 wb_start_writeback(wb, nr_pages, true,
1708 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1709}
1710
1711/*
1712 * We've spun up the disk and we're in laptop mode: schedule writeback
1713 * of all dirty data a few seconds from now. If the flush is already scheduled
1714 * then push it back - the user is still using the disk.
1715 */
31373d09 1716void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1717{
31373d09 1718 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1719}
1720
1721/*
1722 * We're in laptop mode and we've just synced. The sync's writes will have
1723 * caused another writeback to be scheduled by laptop_io_completion.
1724 * Nothing needs to be written back anymore, so we unschedule the writeback.
1725 */
1726void laptop_sync_completion(void)
1727{
31373d09
MG
1728 struct backing_dev_info *bdi;
1729
1730 rcu_read_lock();
1731
1732 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1733 del_timer(&bdi->laptop_mode_wb_timer);
1734
1735 rcu_read_unlock();
1da177e4 1736}
c2c4986e 1737#endif
1da177e4
LT
1738
1739/*
1740 * If ratelimit_pages is too high then we can get into dirty-data overload
1741 * if a large number of processes all perform writes at the same time.
1742 * If it is too low then SMP machines will call the (expensive)
1743 * get_writeback_state too often.
1744 *
1745 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1746 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1747 * thresholds.
1da177e4
LT
1748 */
1749
2d1d43f6 1750void writeback_set_ratelimit(void)
1da177e4 1751{
dcc25ae7 1752 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
1753 unsigned long background_thresh;
1754 unsigned long dirty_thresh;
dcc25ae7 1755
9d823e8f 1756 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 1757 dom->dirty_limit = dirty_thresh;
9d823e8f 1758 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1759 if (ratelimit_pages < 16)
1760 ratelimit_pages = 16;
1da177e4
LT
1761}
1762
0db0628d 1763static int
2f60d628
SB
1764ratelimit_handler(struct notifier_block *self, unsigned long action,
1765 void *hcpu)
1da177e4 1766{
2f60d628
SB
1767
1768 switch (action & ~CPU_TASKS_FROZEN) {
1769 case CPU_ONLINE:
1770 case CPU_DEAD:
1771 writeback_set_ratelimit();
1772 return NOTIFY_OK;
1773 default:
1774 return NOTIFY_DONE;
1775 }
1da177e4
LT
1776}
1777
0db0628d 1778static struct notifier_block ratelimit_nb = {
1da177e4
LT
1779 .notifier_call = ratelimit_handler,
1780 .next = NULL,
1781};
1782
1783/*
dc6e29da
LT
1784 * Called early on to tune the page writeback dirty limits.
1785 *
1786 * We used to scale dirty pages according to how total memory
1787 * related to pages that could be allocated for buffers (by
1788 * comparing nr_free_buffer_pages() to vm_total_pages.
1789 *
1790 * However, that was when we used "dirty_ratio" to scale with
1791 * all memory, and we don't do that any more. "dirty_ratio"
1792 * is now applied to total non-HIGHPAGE memory (by subtracting
1793 * totalhigh_pages from vm_total_pages), and as such we can't
1794 * get into the old insane situation any more where we had
1795 * large amounts of dirty pages compared to a small amount of
1796 * non-HIGHMEM memory.
1797 *
1798 * But we might still want to scale the dirty_ratio by how
1799 * much memory the box has..
1da177e4
LT
1800 */
1801void __init page_writeback_init(void)
1802{
2d1d43f6 1803 writeback_set_ratelimit();
1da177e4 1804 register_cpu_notifier(&ratelimit_nb);
04fbfdc1 1805
380c27ca 1806 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
1da177e4
LT
1807}
1808
f446daae
JK
1809/**
1810 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1811 * @mapping: address space structure to write
1812 * @start: starting page index
1813 * @end: ending page index (inclusive)
1814 *
1815 * This function scans the page range from @start to @end (inclusive) and tags
1816 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1817 * that write_cache_pages (or whoever calls this function) will then use
1818 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1819 * used to avoid livelocking of writeback by a process steadily creating new
1820 * dirty pages in the file (thus it is important for this function to be quick
1821 * so that it can tag pages faster than a dirtying process can create them).
1822 */
1823/*
1824 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1825 */
f446daae
JK
1826void tag_pages_for_writeback(struct address_space *mapping,
1827 pgoff_t start, pgoff_t end)
1828{
3c111a07 1829#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1830 unsigned long tagged;
1831
1832 do {
1833 spin_lock_irq(&mapping->tree_lock);
1834 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1835 &start, end, WRITEBACK_TAG_BATCH,
1836 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1837 spin_unlock_irq(&mapping->tree_lock);
1838 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1839 cond_resched();
d5ed3a4a
JK
1840 /* We check 'start' to handle wrapping when end == ~0UL */
1841 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1842}
1843EXPORT_SYMBOL(tag_pages_for_writeback);
1844
811d736f 1845/**
0ea97180 1846 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1847 * @mapping: address space structure to write
1848 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1849 * @writepage: function called for each page
1850 * @data: data passed to writepage function
811d736f 1851 *
0ea97180 1852 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1853 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1854 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1855 * and msync() need to guarantee that all the data which was dirty at the time
1856 * the call was made get new I/O started against them. If wbc->sync_mode is
1857 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1858 * existing IO to complete.
f446daae
JK
1859 *
1860 * To avoid livelocks (when other process dirties new pages), we first tag
1861 * pages which should be written back with TOWRITE tag and only then start
1862 * writing them. For data-integrity sync we have to be careful so that we do
1863 * not miss some pages (e.g., because some other process has cleared TOWRITE
1864 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1865 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1866 */
0ea97180
MS
1867int write_cache_pages(struct address_space *mapping,
1868 struct writeback_control *wbc, writepage_t writepage,
1869 void *data)
811d736f 1870{
811d736f
DH
1871 int ret = 0;
1872 int done = 0;
811d736f
DH
1873 struct pagevec pvec;
1874 int nr_pages;
31a12666 1875 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1876 pgoff_t index;
1877 pgoff_t end; /* Inclusive */
bd19e012 1878 pgoff_t done_index;
31a12666 1879 int cycled;
811d736f 1880 int range_whole = 0;
f446daae 1881 int tag;
811d736f 1882
811d736f
DH
1883 pagevec_init(&pvec, 0);
1884 if (wbc->range_cyclic) {
31a12666
NP
1885 writeback_index = mapping->writeback_index; /* prev offset */
1886 index = writeback_index;
1887 if (index == 0)
1888 cycled = 1;
1889 else
1890 cycled = 0;
811d736f
DH
1891 end = -1;
1892 } else {
1893 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1894 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1895 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1896 range_whole = 1;
31a12666 1897 cycled = 1; /* ignore range_cyclic tests */
811d736f 1898 }
6e6938b6 1899 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1900 tag = PAGECACHE_TAG_TOWRITE;
1901 else
1902 tag = PAGECACHE_TAG_DIRTY;
811d736f 1903retry:
6e6938b6 1904 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1905 tag_pages_for_writeback(mapping, index, end);
bd19e012 1906 done_index = index;
5a3d5c98
NP
1907 while (!done && (index <= end)) {
1908 int i;
1909
f446daae 1910 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1911 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1912 if (nr_pages == 0)
1913 break;
811d736f 1914
811d736f
DH
1915 for (i = 0; i < nr_pages; i++) {
1916 struct page *page = pvec.pages[i];
1917
1918 /*
d5482cdf
NP
1919 * At this point, the page may be truncated or
1920 * invalidated (changing page->mapping to NULL), or
1921 * even swizzled back from swapper_space to tmpfs file
1922 * mapping. However, page->index will not change
1923 * because we have a reference on the page.
811d736f 1924 */
d5482cdf
NP
1925 if (page->index > end) {
1926 /*
1927 * can't be range_cyclic (1st pass) because
1928 * end == -1 in that case.
1929 */
1930 done = 1;
1931 break;
1932 }
1933
cf15b07c 1934 done_index = page->index;
d5482cdf 1935
811d736f
DH
1936 lock_page(page);
1937
5a3d5c98
NP
1938 /*
1939 * Page truncated or invalidated. We can freely skip it
1940 * then, even for data integrity operations: the page
1941 * has disappeared concurrently, so there could be no
1942 * real expectation of this data interity operation
1943 * even if there is now a new, dirty page at the same
1944 * pagecache address.
1945 */
811d736f 1946 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1947continue_unlock:
811d736f
DH
1948 unlock_page(page);
1949 continue;
1950 }
1951
515f4a03
NP
1952 if (!PageDirty(page)) {
1953 /* someone wrote it for us */
1954 goto continue_unlock;
1955 }
1956
1957 if (PageWriteback(page)) {
1958 if (wbc->sync_mode != WB_SYNC_NONE)
1959 wait_on_page_writeback(page);
1960 else
1961 goto continue_unlock;
1962 }
811d736f 1963
515f4a03
NP
1964 BUG_ON(PageWriteback(page));
1965 if (!clear_page_dirty_for_io(page))
5a3d5c98 1966 goto continue_unlock;
811d736f 1967
de1414a6 1968 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 1969 ret = (*writepage)(page, wbc, data);
00266770
NP
1970 if (unlikely(ret)) {
1971 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1972 unlock_page(page);
1973 ret = 0;
1974 } else {
1975 /*
1976 * done_index is set past this page,
1977 * so media errors will not choke
1978 * background writeout for the entire
1979 * file. This has consequences for
1980 * range_cyclic semantics (ie. it may
1981 * not be suitable for data integrity
1982 * writeout).
1983 */
cf15b07c 1984 done_index = page->index + 1;
00266770
NP
1985 done = 1;
1986 break;
1987 }
0b564927 1988 }
00266770 1989
546a1924
DC
1990 /*
1991 * We stop writing back only if we are not doing
1992 * integrity sync. In case of integrity sync we have to
1993 * keep going until we have written all the pages
1994 * we tagged for writeback prior to entering this loop.
1995 */
1996 if (--wbc->nr_to_write <= 0 &&
1997 wbc->sync_mode == WB_SYNC_NONE) {
1998 done = 1;
1999 break;
05fe478d 2000 }
811d736f
DH
2001 }
2002 pagevec_release(&pvec);
2003 cond_resched();
2004 }
3a4c6800 2005 if (!cycled && !done) {
811d736f 2006 /*
31a12666 2007 * range_cyclic:
811d736f
DH
2008 * We hit the last page and there is more work to be done: wrap
2009 * back to the start of the file
2010 */
31a12666 2011 cycled = 1;
811d736f 2012 index = 0;
31a12666 2013 end = writeback_index - 1;
811d736f
DH
2014 goto retry;
2015 }
0b564927
DC
2016 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2017 mapping->writeback_index = done_index;
06d6cf69 2018
811d736f
DH
2019 return ret;
2020}
0ea97180
MS
2021EXPORT_SYMBOL(write_cache_pages);
2022
2023/*
2024 * Function used by generic_writepages to call the real writepage
2025 * function and set the mapping flags on error
2026 */
2027static int __writepage(struct page *page, struct writeback_control *wbc,
2028 void *data)
2029{
2030 struct address_space *mapping = data;
2031 int ret = mapping->a_ops->writepage(page, wbc);
2032 mapping_set_error(mapping, ret);
2033 return ret;
2034}
2035
2036/**
2037 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2038 * @mapping: address space structure to write
2039 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2040 *
2041 * This is a library function, which implements the writepages()
2042 * address_space_operation.
2043 */
2044int generic_writepages(struct address_space *mapping,
2045 struct writeback_control *wbc)
2046{
9b6096a6
SL
2047 struct blk_plug plug;
2048 int ret;
2049
0ea97180
MS
2050 /* deal with chardevs and other special file */
2051 if (!mapping->a_ops->writepage)
2052 return 0;
2053
9b6096a6
SL
2054 blk_start_plug(&plug);
2055 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2056 blk_finish_plug(&plug);
2057 return ret;
0ea97180 2058}
811d736f
DH
2059
2060EXPORT_SYMBOL(generic_writepages);
2061
1da177e4
LT
2062int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2063{
22905f77
AM
2064 int ret;
2065
1da177e4
LT
2066 if (wbc->nr_to_write <= 0)
2067 return 0;
2068 if (mapping->a_ops->writepages)
d08b3851 2069 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2070 else
2071 ret = generic_writepages(mapping, wbc);
22905f77 2072 return ret;
1da177e4
LT
2073}
2074
2075/**
2076 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2077 * @page: the page to write
2078 * @wait: if true, wait on writeout
1da177e4
LT
2079 *
2080 * The page must be locked by the caller and will be unlocked upon return.
2081 *
2082 * write_one_page() returns a negative error code if I/O failed.
2083 */
2084int write_one_page(struct page *page, int wait)
2085{
2086 struct address_space *mapping = page->mapping;
2087 int ret = 0;
2088 struct writeback_control wbc = {
2089 .sync_mode = WB_SYNC_ALL,
2090 .nr_to_write = 1,
2091 };
2092
2093 BUG_ON(!PageLocked(page));
2094
2095 if (wait)
2096 wait_on_page_writeback(page);
2097
2098 if (clear_page_dirty_for_io(page)) {
2099 page_cache_get(page);
2100 ret = mapping->a_ops->writepage(page, &wbc);
2101 if (ret == 0 && wait) {
2102 wait_on_page_writeback(page);
2103 if (PageError(page))
2104 ret = -EIO;
2105 }
2106 page_cache_release(page);
2107 } else {
2108 unlock_page(page);
2109 }
2110 return ret;
2111}
2112EXPORT_SYMBOL(write_one_page);
2113
76719325
KC
2114/*
2115 * For address_spaces which do not use buffers nor write back.
2116 */
2117int __set_page_dirty_no_writeback(struct page *page)
2118{
2119 if (!PageDirty(page))
c3f0da63 2120 return !TestSetPageDirty(page);
76719325
KC
2121 return 0;
2122}
2123
e3a7cca1
ES
2124/*
2125 * Helper function for set_page_dirty family.
c4843a75
GT
2126 *
2127 * Caller must hold mem_cgroup_begin_page_stat().
2128 *
e3a7cca1
ES
2129 * NOTE: This relies on being atomic wrt interrupts.
2130 */
c4843a75
GT
2131void account_page_dirtied(struct page *page, struct address_space *mapping,
2132 struct mem_cgroup *memcg)
e3a7cca1 2133{
52ebea74
TH
2134 struct inode *inode = mapping->host;
2135
9fb0a7da
TH
2136 trace_writeback_dirty_page(page, mapping);
2137
e3a7cca1 2138 if (mapping_cap_account_dirty(mapping)) {
52ebea74
TH
2139 struct bdi_writeback *wb;
2140
2141 inode_attach_wb(inode, page);
2142 wb = inode_to_wb(inode);
de1414a6 2143
c4843a75 2144 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2145 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2146 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2147 __inc_wb_stat(wb, WB_RECLAIMABLE);
2148 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2149 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2150 current->nr_dirtied++;
2151 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2152 }
2153}
679ceace 2154EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2155
b9ea2515
KK
2156/*
2157 * Helper function for deaccounting dirty page without writeback.
c4843a75
GT
2158 *
2159 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2160 */
c4843a75
GT
2161void account_page_cleaned(struct page *page, struct address_space *mapping,
2162 struct mem_cgroup *memcg)
b9ea2515
KK
2163{
2164 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2165 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2166 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2167 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
b9ea2515
KK
2168 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2169 }
2170}
b9ea2515 2171
1da177e4
LT
2172/*
2173 * For address_spaces which do not use buffers. Just tag the page as dirty in
2174 * its radix tree.
2175 *
2176 * This is also used when a single buffer is being dirtied: we want to set the
2177 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2178 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2179 *
2d6d7f98
JW
2180 * The caller must ensure this doesn't race with truncation. Most will simply
2181 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2182 * the pte lock held, which also locks out truncation.
1da177e4
LT
2183 */
2184int __set_page_dirty_nobuffers(struct page *page)
2185{
c4843a75
GT
2186 struct mem_cgroup *memcg;
2187
2188 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2189 if (!TestSetPageDirty(page)) {
2190 struct address_space *mapping = page_mapping(page);
a85d9df1 2191 unsigned long flags;
1da177e4 2192
c4843a75
GT
2193 if (!mapping) {
2194 mem_cgroup_end_page_stat(memcg);
8c08540f 2195 return 1;
c4843a75 2196 }
8c08540f 2197
a85d9df1 2198 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2199 BUG_ON(page_mapping(page) != mapping);
2200 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2201 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2202 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2203 PAGECACHE_TAG_DIRTY);
a85d9df1 2204 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2205 mem_cgroup_end_page_stat(memcg);
2206
8c08540f
AM
2207 if (mapping->host) {
2208 /* !PageAnon && !swapper_space */
2209 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2210 }
4741c9fd 2211 return 1;
1da177e4 2212 }
c4843a75 2213 mem_cgroup_end_page_stat(memcg);
4741c9fd 2214 return 0;
1da177e4
LT
2215}
2216EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2217
2f800fbd
WF
2218/*
2219 * Call this whenever redirtying a page, to de-account the dirty counters
2220 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2221 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2222 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2223 * control.
2224 */
2225void account_page_redirty(struct page *page)
2226{
2227 struct address_space *mapping = page->mapping;
91018134 2228
2f800fbd 2229 if (mapping && mapping_cap_account_dirty(mapping)) {
91018134
TH
2230 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2231
2f800fbd
WF
2232 current->nr_dirtied--;
2233 dec_zone_page_state(page, NR_DIRTIED);
91018134 2234 dec_wb_stat(wb, WB_DIRTIED);
2f800fbd
WF
2235 }
2236}
2237EXPORT_SYMBOL(account_page_redirty);
2238
1da177e4
LT
2239/*
2240 * When a writepage implementation decides that it doesn't want to write this
2241 * page for some reason, it should redirty the locked page via
2242 * redirty_page_for_writepage() and it should then unlock the page and return 0
2243 */
2244int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2245{
8d38633c
KK
2246 int ret;
2247
1da177e4 2248 wbc->pages_skipped++;
8d38633c 2249 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2250 account_page_redirty(page);
8d38633c 2251 return ret;
1da177e4
LT
2252}
2253EXPORT_SYMBOL(redirty_page_for_writepage);
2254
2255/*
6746aff7
WF
2256 * Dirty a page.
2257 *
2258 * For pages with a mapping this should be done under the page lock
2259 * for the benefit of asynchronous memory errors who prefer a consistent
2260 * dirty state. This rule can be broken in some special cases,
2261 * but should be better not to.
2262 *
1da177e4
LT
2263 * If the mapping doesn't provide a set_page_dirty a_op, then
2264 * just fall through and assume that it wants buffer_heads.
2265 */
1cf6e7d8 2266int set_page_dirty(struct page *page)
1da177e4
LT
2267{
2268 struct address_space *mapping = page_mapping(page);
2269
2270 if (likely(mapping)) {
2271 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2272 /*
2273 * readahead/lru_deactivate_page could remain
2274 * PG_readahead/PG_reclaim due to race with end_page_writeback
2275 * About readahead, if the page is written, the flags would be
2276 * reset. So no problem.
2277 * About lru_deactivate_page, if the page is redirty, the flag
2278 * will be reset. So no problem. but if the page is used by readahead
2279 * it will confuse readahead and make it restart the size rampup
2280 * process. But it's a trivial problem.
2281 */
a4bb3ecd
NH
2282 if (PageReclaim(page))
2283 ClearPageReclaim(page);
9361401e
DH
2284#ifdef CONFIG_BLOCK
2285 if (!spd)
2286 spd = __set_page_dirty_buffers;
2287#endif
2288 return (*spd)(page);
1da177e4 2289 }
4741c9fd
AM
2290 if (!PageDirty(page)) {
2291 if (!TestSetPageDirty(page))
2292 return 1;
2293 }
1da177e4
LT
2294 return 0;
2295}
2296EXPORT_SYMBOL(set_page_dirty);
2297
2298/*
2299 * set_page_dirty() is racy if the caller has no reference against
2300 * page->mapping->host, and if the page is unlocked. This is because another
2301 * CPU could truncate the page off the mapping and then free the mapping.
2302 *
2303 * Usually, the page _is_ locked, or the caller is a user-space process which
2304 * holds a reference on the inode by having an open file.
2305 *
2306 * In other cases, the page should be locked before running set_page_dirty().
2307 */
2308int set_page_dirty_lock(struct page *page)
2309{
2310 int ret;
2311
7eaceacc 2312 lock_page(page);
1da177e4
LT
2313 ret = set_page_dirty(page);
2314 unlock_page(page);
2315 return ret;
2316}
2317EXPORT_SYMBOL(set_page_dirty_lock);
2318
11f81bec
TH
2319/*
2320 * This cancels just the dirty bit on the kernel page itself, it does NOT
2321 * actually remove dirty bits on any mmap's that may be around. It also
2322 * leaves the page tagged dirty, so any sync activity will still find it on
2323 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2324 * look at the dirty bits in the VM.
2325 *
2326 * Doing this should *normally* only ever be done when a page is truncated,
2327 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2328 * this when it notices that somebody has cleaned out all the buffers on a
2329 * page without actually doing it through the VM. Can you say "ext3 is
2330 * horribly ugly"? Thought you could.
2331 */
2332void cancel_dirty_page(struct page *page)
2333{
c4843a75
GT
2334 struct address_space *mapping = page_mapping(page);
2335
2336 if (mapping_cap_account_dirty(mapping)) {
2337 struct mem_cgroup *memcg;
2338
2339 memcg = mem_cgroup_begin_page_stat(page);
2340
2341 if (TestClearPageDirty(page))
2342 account_page_cleaned(page, mapping, memcg);
2343
2344 mem_cgroup_end_page_stat(memcg);
2345 } else {
2346 ClearPageDirty(page);
2347 }
11f81bec
TH
2348}
2349EXPORT_SYMBOL(cancel_dirty_page);
2350
1da177e4
LT
2351/*
2352 * Clear a page's dirty flag, while caring for dirty memory accounting.
2353 * Returns true if the page was previously dirty.
2354 *
2355 * This is for preparing to put the page under writeout. We leave the page
2356 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2357 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2358 * implementation will run either set_page_writeback() or set_page_dirty(),
2359 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2360 * back into sync.
2361 *
2362 * This incoherency between the page's dirty flag and radix-tree tag is
2363 * unfortunate, but it only exists while the page is locked.
2364 */
2365int clear_page_dirty_for_io(struct page *page)
2366{
2367 struct address_space *mapping = page_mapping(page);
c4843a75
GT
2368 struct mem_cgroup *memcg;
2369 int ret = 0;
1da177e4 2370
79352894
NP
2371 BUG_ON(!PageLocked(page));
2372
7658cc28
LT
2373 if (mapping && mapping_cap_account_dirty(mapping)) {
2374 /*
2375 * Yes, Virginia, this is indeed insane.
2376 *
2377 * We use this sequence to make sure that
2378 * (a) we account for dirty stats properly
2379 * (b) we tell the low-level filesystem to
2380 * mark the whole page dirty if it was
2381 * dirty in a pagetable. Only to then
2382 * (c) clean the page again and return 1 to
2383 * cause the writeback.
2384 *
2385 * This way we avoid all nasty races with the
2386 * dirty bit in multiple places and clearing
2387 * them concurrently from different threads.
2388 *
2389 * Note! Normally the "set_page_dirty(page)"
2390 * has no effect on the actual dirty bit - since
2391 * that will already usually be set. But we
2392 * need the side effects, and it can help us
2393 * avoid races.
2394 *
2395 * We basically use the page "master dirty bit"
2396 * as a serialization point for all the different
2397 * threads doing their things.
7658cc28
LT
2398 */
2399 if (page_mkclean(page))
2400 set_page_dirty(page);
79352894
NP
2401 /*
2402 * We carefully synchronise fault handlers against
2403 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2404 * at this point. We do this by having them hold the
2405 * page lock while dirtying the page, and pages are
2406 * always locked coming in here, so we get the desired
2407 * exclusion.
79352894 2408 */
c4843a75 2409 memcg = mem_cgroup_begin_page_stat(page);
7658cc28 2410 if (TestClearPageDirty(page)) {
c4843a75 2411 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2412 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2413 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
c4843a75 2414 ret = 1;
1da177e4 2415 }
c4843a75
GT
2416 mem_cgroup_end_page_stat(memcg);
2417 return ret;
1da177e4 2418 }
7658cc28 2419 return TestClearPageDirty(page);
1da177e4 2420}
58bb01a9 2421EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2422
2423int test_clear_page_writeback(struct page *page)
2424{
2425 struct address_space *mapping = page_mapping(page);
d7365e78 2426 struct mem_cgroup *memcg;
d7365e78 2427 int ret;
1da177e4 2428
6de22619 2429 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2430 if (mapping) {
91018134
TH
2431 struct inode *inode = mapping->host;
2432 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2433 unsigned long flags;
2434
19fd6231 2435 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2436 ret = TestClearPageWriteback(page);
69cb51d1 2437 if (ret) {
1da177e4
LT
2438 radix_tree_tag_clear(&mapping->page_tree,
2439 page_index(page),
2440 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2441 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2442 struct bdi_writeback *wb = inode_to_wb(inode);
2443
2444 __dec_wb_stat(wb, WB_WRITEBACK);
2445 __wb_writeout_inc(wb);
04fbfdc1 2446 }
69cb51d1 2447 }
19fd6231 2448 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2449 } else {
2450 ret = TestClearPageWriteback(page);
2451 }
99b12e3d 2452 if (ret) {
d7365e78 2453 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2454 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2455 inc_zone_page_state(page, NR_WRITTEN);
2456 }
6de22619 2457 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2458 return ret;
2459}
2460
1c8349a1 2461int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2462{
2463 struct address_space *mapping = page_mapping(page);
d7365e78 2464 struct mem_cgroup *memcg;
d7365e78 2465 int ret;
1da177e4 2466
6de22619 2467 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2468 if (mapping) {
91018134
TH
2469 struct inode *inode = mapping->host;
2470 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2471 unsigned long flags;
2472
19fd6231 2473 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2474 ret = TestSetPageWriteback(page);
69cb51d1 2475 if (!ret) {
1da177e4
LT
2476 radix_tree_tag_set(&mapping->page_tree,
2477 page_index(page),
2478 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2479 if (bdi_cap_account_writeback(bdi))
91018134 2480 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2481 }
1da177e4
LT
2482 if (!PageDirty(page))
2483 radix_tree_tag_clear(&mapping->page_tree,
2484 page_index(page),
2485 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2486 if (!keep_write)
2487 radix_tree_tag_clear(&mapping->page_tree,
2488 page_index(page),
2489 PAGECACHE_TAG_TOWRITE);
19fd6231 2490 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2491 } else {
2492 ret = TestSetPageWriteback(page);
2493 }
3a3c02ec 2494 if (!ret) {
d7365e78 2495 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2496 inc_zone_page_state(page, NR_WRITEBACK);
2497 }
6de22619 2498 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2499 return ret;
2500
2501}
1c8349a1 2502EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2503
2504/*
00128188 2505 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2506 * passed tag.
2507 */
2508int mapping_tagged(struct address_space *mapping, int tag)
2509{
72c47832 2510 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2511}
2512EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2513
2514/**
2515 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2516 * @page: The page to wait on.
2517 *
2518 * This function determines if the given page is related to a backing device
2519 * that requires page contents to be held stable during writeback. If so, then
2520 * it will wait for any pending writeback to complete.
2521 */
2522void wait_for_stable_page(struct page *page)
2523{
de1414a6
CH
2524 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2525 wait_on_page_writeback(page);
1d1d1a76
DW
2526}
2527EXPORT_SYMBOL_GPL(wait_for_stable_page);