mm: shift VM_GROWS* check from mmap_region() to do_mmap_pgoff()
[linux-2.6-block.git] / mm / mmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
046c6884 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
1da177e4
LT
7 */
8
e8420a8e 9#include <linux/kernel.h>
1da177e4 10#include <linux/slab.h>
4af3c9cc 11#include <linux/backing-dev.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/shm.h>
14#include <linux/mman.h>
15#include <linux/pagemap.h>
16#include <linux/swap.h>
17#include <linux/syscalls.h>
c59ede7b 18#include <linux/capability.h>
1da177e4
LT
19#include <linux/init.h>
20#include <linux/file.h>
21#include <linux/fs.h>
22#include <linux/personality.h>
23#include <linux/security.h>
24#include <linux/hugetlb.h>
25#include <linux/profile.h>
b95f1b31 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/mempolicy.h>
29#include <linux/rmap.h>
cddb8a5c 30#include <linux/mmu_notifier.h>
cdd6c482 31#include <linux/perf_event.h>
120a795d 32#include <linux/audit.h>
b15d00b6 33#include <linux/khugepaged.h>
2b144498 34#include <linux/uprobes.h>
d3737187 35#include <linux/rbtree_augmented.h>
cf4aebc2 36#include <linux/sched/sysctl.h>
1640879a
AS
37#include <linux/notifier.h>
38#include <linux/memory.h>
1da177e4
LT
39
40#include <asm/uaccess.h>
41#include <asm/cacheflush.h>
42#include <asm/tlb.h>
d6dd61c8 43#include <asm/mmu_context.h>
1da177e4 44
42b77728
JB
45#include "internal.h"
46
3a459756
KK
47#ifndef arch_mmap_check
48#define arch_mmap_check(addr, len, flags) (0)
49#endif
50
08e7d9b5
MS
51#ifndef arch_rebalance_pgtables
52#define arch_rebalance_pgtables(addr, len) (addr)
53#endif
54
e0da382c
HD
55static void unmap_region(struct mm_struct *mm,
56 struct vm_area_struct *vma, struct vm_area_struct *prev,
57 unsigned long start, unsigned long end);
58
1da177e4
LT
59/* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
62 *
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 */
74pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77};
78
804af2cf
HD
79pgprot_t vm_get_page_prot(unsigned long vm_flags)
80{
b845f313
DK
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
804af2cf
HD
84}
85EXPORT_SYMBOL(vm_get_page_prot);
86
34679d7e
SL
87int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
c3d8c141 89int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
c9b1d098 90unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
4eeab4f5 91unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
34679d7e
SL
92/*
93 * Make sure vm_committed_as in one cacheline and not cacheline shared with
94 * other variables. It can be updated by several CPUs frequently.
95 */
96struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
1da177e4 97
997071bc
S
98/*
99 * The global memory commitment made in the system can be a metric
100 * that can be used to drive ballooning decisions when Linux is hosted
101 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
102 * balancing memory across competing virtual machines that are hosted.
103 * Several metrics drive this policy engine including the guest reported
104 * memory commitment.
105 */
106unsigned long vm_memory_committed(void)
107{
108 return percpu_counter_read_positive(&vm_committed_as);
109}
110EXPORT_SYMBOL_GPL(vm_memory_committed);
111
1da177e4
LT
112/*
113 * Check that a process has enough memory to allocate a new virtual
114 * mapping. 0 means there is enough memory for the allocation to
115 * succeed and -ENOMEM implies there is not.
116 *
117 * We currently support three overcommit policies, which are set via the
118 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
119 *
120 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
121 * Additional code 2002 Jul 20 by Robert Love.
122 *
123 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
124 *
125 * Note this is a helper function intended to be used by LSMs which
126 * wish to use this logic.
127 */
34b4e4aa 128int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1da177e4 129{
c9b1d098 130 unsigned long free, allowed, reserve;
1da177e4
LT
131
132 vm_acct_memory(pages);
133
134 /*
135 * Sometimes we want to use more memory than we have
136 */
137 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
138 return 0;
139
140 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
c15bef30
DF
141 free = global_page_state(NR_FREE_PAGES);
142 free += global_page_state(NR_FILE_PAGES);
143
144 /*
145 * shmem pages shouldn't be counted as free in this
146 * case, they can't be purged, only swapped out, and
147 * that won't affect the overall amount of available
148 * memory in the system.
149 */
150 free -= global_page_state(NR_SHMEM);
1da177e4 151
ec8acf20 152 free += get_nr_swap_pages();
1da177e4
LT
153
154 /*
155 * Any slabs which are created with the
156 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
157 * which are reclaimable, under pressure. The dentry
158 * cache and most inode caches should fall into this
159 */
972d1a7b 160 free += global_page_state(NR_SLAB_RECLAIMABLE);
1da177e4 161
6d9f7839
HA
162 /*
163 * Leave reserved pages. The pages are not for anonymous pages.
164 */
c15bef30 165 if (free <= totalreserve_pages)
6d9f7839
HA
166 goto error;
167 else
c15bef30 168 free -= totalreserve_pages;
6d9f7839
HA
169
170 /*
4eeab4f5 171 * Reserve some for root
6d9f7839 172 */
1da177e4 173 if (!cap_sys_admin)
4eeab4f5 174 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1da177e4
LT
175
176 if (free > pages)
177 return 0;
6d9f7839
HA
178
179 goto error;
1da177e4
LT
180 }
181
182 allowed = (totalram_pages - hugetlb_total_pages())
183 * sysctl_overcommit_ratio / 100;
184 /*
4eeab4f5 185 * Reserve some for root
1da177e4
LT
186 */
187 if (!cap_sys_admin)
4eeab4f5 188 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1da177e4
LT
189 allowed += total_swap_pages;
190
c9b1d098
AS
191 /*
192 * Don't let a single process grow so big a user can't recover
193 */
194 if (mm) {
195 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196 allowed -= min(mm->total_vm / 32, reserve);
197 }
1da177e4 198
00a62ce9 199 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1da177e4 200 return 0;
6d9f7839 201error:
1da177e4
LT
202 vm_unacct_memory(pages);
203
204 return -ENOMEM;
205}
206
1da177e4 207/*
3d48ae45 208 * Requires inode->i_mapping->i_mmap_mutex
1da177e4
LT
209 */
210static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211 struct file *file, struct address_space *mapping)
212{
213 if (vma->vm_flags & VM_DENYWRITE)
496ad9aa 214 atomic_inc(&file_inode(file)->i_writecount);
1da177e4
LT
215 if (vma->vm_flags & VM_SHARED)
216 mapping->i_mmap_writable--;
217
218 flush_dcache_mmap_lock(mapping);
219 if (unlikely(vma->vm_flags & VM_NONLINEAR))
6b2dbba8 220 list_del_init(&vma->shared.nonlinear);
1da177e4 221 else
6b2dbba8 222 vma_interval_tree_remove(vma, &mapping->i_mmap);
1da177e4
LT
223 flush_dcache_mmap_unlock(mapping);
224}
225
226/*
6b2dbba8 227 * Unlink a file-based vm structure from its interval tree, to hide
a8fb5618 228 * vma from rmap and vmtruncate before freeing its page tables.
1da177e4 229 */
a8fb5618 230void unlink_file_vma(struct vm_area_struct *vma)
1da177e4
LT
231{
232 struct file *file = vma->vm_file;
233
1da177e4
LT
234 if (file) {
235 struct address_space *mapping = file->f_mapping;
3d48ae45 236 mutex_lock(&mapping->i_mmap_mutex);
1da177e4 237 __remove_shared_vm_struct(vma, file, mapping);
3d48ae45 238 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4 239 }
a8fb5618
HD
240}
241
242/*
243 * Close a vm structure and free it, returning the next.
244 */
245static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246{
247 struct vm_area_struct *next = vma->vm_next;
248
a8fb5618 249 might_sleep();
1da177e4
LT
250 if (vma->vm_ops && vma->vm_ops->close)
251 vma->vm_ops->close(vma);
e9714acf 252 if (vma->vm_file)
a8fb5618 253 fput(vma->vm_file);
f0be3d32 254 mpol_put(vma_policy(vma));
1da177e4 255 kmem_cache_free(vm_area_cachep, vma);
a8fb5618 256 return next;
1da177e4
LT
257}
258
e4eb1ff6
LT
259static unsigned long do_brk(unsigned long addr, unsigned long len);
260
6a6160a7 261SYSCALL_DEFINE1(brk, unsigned long, brk)
1da177e4
LT
262{
263 unsigned long rlim, retval;
264 unsigned long newbrk, oldbrk;
265 struct mm_struct *mm = current->mm;
a5b4592c 266 unsigned long min_brk;
128557ff 267 bool populate;
1da177e4
LT
268
269 down_write(&mm->mmap_sem);
270
a5b4592c 271#ifdef CONFIG_COMPAT_BRK
5520e894
JK
272 /*
273 * CONFIG_COMPAT_BRK can still be overridden by setting
274 * randomize_va_space to 2, which will still cause mm->start_brk
275 * to be arbitrarily shifted
276 */
4471a675 277 if (current->brk_randomized)
5520e894
JK
278 min_brk = mm->start_brk;
279 else
280 min_brk = mm->end_data;
a5b4592c
JK
281#else
282 min_brk = mm->start_brk;
283#endif
284 if (brk < min_brk)
1da177e4 285 goto out;
1e624196
RG
286
287 /*
288 * Check against rlimit here. If this check is done later after the test
289 * of oldbrk with newbrk then it can escape the test and let the data
290 * segment grow beyond its set limit the in case where the limit is
291 * not page aligned -Ram Gupta
292 */
59e99e5b 293 rlim = rlimit(RLIMIT_DATA);
c1d171a0
JK
294 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295 (mm->end_data - mm->start_data) > rlim)
1e624196
RG
296 goto out;
297
1da177e4
LT
298 newbrk = PAGE_ALIGN(brk);
299 oldbrk = PAGE_ALIGN(mm->brk);
300 if (oldbrk == newbrk)
301 goto set_brk;
302
303 /* Always allow shrinking brk. */
304 if (brk <= mm->brk) {
305 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306 goto set_brk;
307 goto out;
308 }
309
1da177e4
LT
310 /* Check against existing mmap mappings. */
311 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312 goto out;
313
314 /* Ok, looks good - let it rip. */
315 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316 goto out;
128557ff 317
1da177e4
LT
318set_brk:
319 mm->brk = brk;
128557ff
ML
320 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321 up_write(&mm->mmap_sem);
322 if (populate)
323 mm_populate(oldbrk, newbrk - oldbrk);
324 return brk;
325
1da177e4
LT
326out:
327 retval = mm->brk;
328 up_write(&mm->mmap_sem);
329 return retval;
330}
331
d3737187
ML
332static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333{
334 unsigned long max, subtree_gap;
335 max = vma->vm_start;
336 if (vma->vm_prev)
337 max -= vma->vm_prev->vm_end;
338 if (vma->vm_rb.rb_left) {
339 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341 if (subtree_gap > max)
342 max = subtree_gap;
343 }
344 if (vma->vm_rb.rb_right) {
345 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347 if (subtree_gap > max)
348 max = subtree_gap;
349 }
350 return max;
351}
352
ed8ea815 353#ifdef CONFIG_DEBUG_VM_RB
1da177e4
LT
354static int browse_rb(struct rb_root *root)
355{
5a0768f6 356 int i = 0, j, bug = 0;
1da177e4
LT
357 struct rb_node *nd, *pn = NULL;
358 unsigned long prev = 0, pend = 0;
359
360 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361 struct vm_area_struct *vma;
362 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
5a0768f6
ML
363 if (vma->vm_start < prev) {
364 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365 bug = 1;
366 }
367 if (vma->vm_start < pend) {
1da177e4 368 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
5a0768f6
ML
369 bug = 1;
370 }
371 if (vma->vm_start > vma->vm_end) {
372 printk("vm_end %lx < vm_start %lx\n",
373 vma->vm_end, vma->vm_start);
374 bug = 1;
375 }
376 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377 printk("free gap %lx, correct %lx\n",
378 vma->rb_subtree_gap,
379 vma_compute_subtree_gap(vma));
380 bug = 1;
381 }
1da177e4
LT
382 i++;
383 pn = nd;
d1af65d1
DM
384 prev = vma->vm_start;
385 pend = vma->vm_end;
1da177e4
LT
386 }
387 j = 0;
5a0768f6 388 for (nd = pn; nd; nd = rb_prev(nd))
1da177e4 389 j++;
5a0768f6
ML
390 if (i != j) {
391 printk("backwards %d, forwards %d\n", j, i);
392 bug = 1;
1da177e4 393 }
5a0768f6 394 return bug ? -1 : i;
1da177e4
LT
395}
396
d3737187
ML
397static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398{
399 struct rb_node *nd;
400
401 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402 struct vm_area_struct *vma;
403 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404 BUG_ON(vma != ignore &&
405 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
1da177e4 406 }
1da177e4
LT
407}
408
409void validate_mm(struct mm_struct *mm)
410{
411 int bug = 0;
412 int i = 0;
5a0768f6 413 unsigned long highest_address = 0;
ed8ea815
ML
414 struct vm_area_struct *vma = mm->mmap;
415 while (vma) {
416 struct anon_vma_chain *avc;
63c3b902 417 vma_lock_anon_vma(vma);
ed8ea815
ML
418 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419 anon_vma_interval_tree_verify(avc);
63c3b902 420 vma_unlock_anon_vma(vma);
5a0768f6 421 highest_address = vma->vm_end;
ed8ea815 422 vma = vma->vm_next;
1da177e4
LT
423 i++;
424 }
5a0768f6
ML
425 if (i != mm->map_count) {
426 printk("map_count %d vm_next %d\n", mm->map_count, i);
427 bug = 1;
428 }
429 if (highest_address != mm->highest_vm_end) {
430 printk("mm->highest_vm_end %lx, found %lx\n",
431 mm->highest_vm_end, highest_address);
432 bug = 1;
433 }
1da177e4 434 i = browse_rb(&mm->mm_rb);
5a0768f6
ML
435 if (i != mm->map_count) {
436 printk("map_count %d rb %d\n", mm->map_count, i);
437 bug = 1;
438 }
46a350ef 439 BUG_ON(bug);
1da177e4
LT
440}
441#else
d3737187 442#define validate_mm_rb(root, ignore) do { } while (0)
1da177e4
LT
443#define validate_mm(mm) do { } while (0)
444#endif
445
d3737187
ML
446RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449/*
450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
452 * in the rbtree.
453 */
454static void vma_gap_update(struct vm_area_struct *vma)
455{
456 /*
457 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458 * function that does exacltly what we want.
459 */
460 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461}
462
463static inline void vma_rb_insert(struct vm_area_struct *vma,
464 struct rb_root *root)
465{
466 /* All rb_subtree_gap values must be consistent prior to insertion */
467 validate_mm_rb(root, NULL);
468
469 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470}
471
472static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473{
474 /*
475 * All rb_subtree_gap values must be consistent prior to erase,
476 * with the possible exception of the vma being erased.
477 */
478 validate_mm_rb(root, vma);
479
480 /*
481 * Note rb_erase_augmented is a fairly large inline function,
482 * so make sure we instantiate it only once with our desired
483 * augmented rbtree callbacks.
484 */
485 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486}
487
bf181b9f
ML
488/*
489 * vma has some anon_vma assigned, and is already inserted on that
490 * anon_vma's interval trees.
491 *
492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493 * vma must be removed from the anon_vma's interval trees using
494 * anon_vma_interval_tree_pre_update_vma().
495 *
496 * After the update, the vma will be reinserted using
497 * anon_vma_interval_tree_post_update_vma().
498 *
499 * The entire update must be protected by exclusive mmap_sem and by
500 * the root anon_vma's mutex.
501 */
502static inline void
503anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504{
505 struct anon_vma_chain *avc;
506
507 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509}
510
511static inline void
512anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513{
514 struct anon_vma_chain *avc;
515
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518}
519
6597d783
HD
520static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521 unsigned long end, struct vm_area_struct **pprev,
522 struct rb_node ***rb_link, struct rb_node **rb_parent)
1da177e4 523{
6597d783 524 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
1da177e4
LT
525
526 __rb_link = &mm->mm_rb.rb_node;
527 rb_prev = __rb_parent = NULL;
1da177e4
LT
528
529 while (*__rb_link) {
530 struct vm_area_struct *vma_tmp;
531
532 __rb_parent = *__rb_link;
533 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535 if (vma_tmp->vm_end > addr) {
6597d783
HD
536 /* Fail if an existing vma overlaps the area */
537 if (vma_tmp->vm_start < end)
538 return -ENOMEM;
1da177e4
LT
539 __rb_link = &__rb_parent->rb_left;
540 } else {
541 rb_prev = __rb_parent;
542 __rb_link = &__rb_parent->rb_right;
543 }
544 }
545
546 *pprev = NULL;
547 if (rb_prev)
548 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549 *rb_link = __rb_link;
550 *rb_parent = __rb_parent;
6597d783 551 return 0;
1da177e4
LT
552}
553
e8420a8e
CH
554static unsigned long count_vma_pages_range(struct mm_struct *mm,
555 unsigned long addr, unsigned long end)
556{
557 unsigned long nr_pages = 0;
558 struct vm_area_struct *vma;
559
560 /* Find first overlaping mapping */
561 vma = find_vma_intersection(mm, addr, end);
562 if (!vma)
563 return 0;
564
565 nr_pages = (min(end, vma->vm_end) -
566 max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568 /* Iterate over the rest of the overlaps */
569 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570 unsigned long overlap_len;
571
572 if (vma->vm_start > end)
573 break;
574
575 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576 nr_pages += overlap_len >> PAGE_SHIFT;
577 }
578
579 return nr_pages;
580}
581
1da177e4
LT
582void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583 struct rb_node **rb_link, struct rb_node *rb_parent)
584{
d3737187
ML
585 /* Update tracking information for the gap following the new vma. */
586 if (vma->vm_next)
587 vma_gap_update(vma->vm_next);
588 else
589 mm->highest_vm_end = vma->vm_end;
590
591 /*
592 * vma->vm_prev wasn't known when we followed the rbtree to find the
593 * correct insertion point for that vma. As a result, we could not
594 * update the vma vm_rb parents rb_subtree_gap values on the way down.
595 * So, we first insert the vma with a zero rb_subtree_gap value
596 * (to be consistent with what we did on the way down), and then
597 * immediately update the gap to the correct value. Finally we
598 * rebalance the rbtree after all augmented values have been set.
599 */
1da177e4 600 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
d3737187
ML
601 vma->rb_subtree_gap = 0;
602 vma_gap_update(vma);
603 vma_rb_insert(vma, &mm->mm_rb);
1da177e4
LT
604}
605
cb8f488c 606static void __vma_link_file(struct vm_area_struct *vma)
1da177e4 607{
48aae425 608 struct file *file;
1da177e4
LT
609
610 file = vma->vm_file;
611 if (file) {
612 struct address_space *mapping = file->f_mapping;
613
614 if (vma->vm_flags & VM_DENYWRITE)
496ad9aa 615 atomic_dec(&file_inode(file)->i_writecount);
1da177e4
LT
616 if (vma->vm_flags & VM_SHARED)
617 mapping->i_mmap_writable++;
618
619 flush_dcache_mmap_lock(mapping);
620 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622 else
6b2dbba8 623 vma_interval_tree_insert(vma, &mapping->i_mmap);
1da177e4
LT
624 flush_dcache_mmap_unlock(mapping);
625 }
626}
627
628static void
629__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 struct vm_area_struct *prev, struct rb_node **rb_link,
631 struct rb_node *rb_parent)
632{
633 __vma_link_list(mm, vma, prev, rb_parent);
634 __vma_link_rb(mm, vma, rb_link, rb_parent);
1da177e4
LT
635}
636
637static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct vm_area_struct *prev, struct rb_node **rb_link,
639 struct rb_node *rb_parent)
640{
641 struct address_space *mapping = NULL;
642
643 if (vma->vm_file)
644 mapping = vma->vm_file->f_mapping;
645
97a89413 646 if (mapping)
3d48ae45 647 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
648
649 __vma_link(mm, vma, prev, rb_link, rb_parent);
650 __vma_link_file(vma);
651
1da177e4 652 if (mapping)
3d48ae45 653 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
654
655 mm->map_count++;
656 validate_mm(mm);
657}
658
659/*
88f6b4c3 660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
6b2dbba8 661 * mm's list and rbtree. It has already been inserted into the interval tree.
1da177e4 662 */
48aae425 663static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1da177e4 664{
6597d783 665 struct vm_area_struct *prev;
48aae425 666 struct rb_node **rb_link, *rb_parent;
1da177e4 667
6597d783
HD
668 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669 &prev, &rb_link, &rb_parent))
670 BUG();
1da177e4
LT
671 __vma_link(mm, vma, prev, rb_link, rb_parent);
672 mm->map_count++;
673}
674
675static inline void
676__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677 struct vm_area_struct *prev)
678{
d3737187 679 struct vm_area_struct *next;
297c5eee 680
d3737187
ML
681 vma_rb_erase(vma, &mm->mm_rb);
682 prev->vm_next = next = vma->vm_next;
297c5eee
LT
683 if (next)
684 next->vm_prev = prev;
1da177e4
LT
685 if (mm->mmap_cache == vma)
686 mm->mmap_cache = prev;
687}
688
689/*
690 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691 * is already present in an i_mmap tree without adjusting the tree.
692 * The following helper function should be used when such adjustments
693 * are necessary. The "insert" vma (if any) is to be inserted
694 * before we drop the necessary locks.
695 */
5beb4930 696int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
697 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
698{
699 struct mm_struct *mm = vma->vm_mm;
700 struct vm_area_struct *next = vma->vm_next;
701 struct vm_area_struct *importer = NULL;
702 struct address_space *mapping = NULL;
6b2dbba8 703 struct rb_root *root = NULL;
012f1800 704 struct anon_vma *anon_vma = NULL;
1da177e4 705 struct file *file = vma->vm_file;
d3737187 706 bool start_changed = false, end_changed = false;
1da177e4
LT
707 long adjust_next = 0;
708 int remove_next = 0;
709
710 if (next && !insert) {
287d97ac
LT
711 struct vm_area_struct *exporter = NULL;
712
1da177e4
LT
713 if (end >= next->vm_end) {
714 /*
715 * vma expands, overlapping all the next, and
716 * perhaps the one after too (mprotect case 6).
717 */
718again: remove_next = 1 + (end > next->vm_end);
719 end = next->vm_end;
287d97ac 720 exporter = next;
1da177e4
LT
721 importer = vma;
722 } else if (end > next->vm_start) {
723 /*
724 * vma expands, overlapping part of the next:
725 * mprotect case 5 shifting the boundary up.
726 */
727 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
287d97ac 728 exporter = next;
1da177e4
LT
729 importer = vma;
730 } else if (end < vma->vm_end) {
731 /*
732 * vma shrinks, and !insert tells it's not
733 * split_vma inserting another: so it must be
734 * mprotect case 4 shifting the boundary down.
735 */
736 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
287d97ac 737 exporter = vma;
1da177e4
LT
738 importer = next;
739 }
1da177e4 740
5beb4930
RR
741 /*
742 * Easily overlooked: when mprotect shifts the boundary,
743 * make sure the expanding vma has anon_vma set if the
744 * shrinking vma had, to cover any anon pages imported.
745 */
287d97ac
LT
746 if (exporter && exporter->anon_vma && !importer->anon_vma) {
747 if (anon_vma_clone(importer, exporter))
5beb4930 748 return -ENOMEM;
287d97ac 749 importer->anon_vma = exporter->anon_vma;
5beb4930
RR
750 }
751 }
752
1da177e4
LT
753 if (file) {
754 mapping = file->f_mapping;
682968e0 755 if (!(vma->vm_flags & VM_NONLINEAR)) {
1da177e4 756 root = &mapping->i_mmap;
cbc91f71 757 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
682968e0
SD
758
759 if (adjust_next)
cbc91f71
SD
760 uprobe_munmap(next, next->vm_start,
761 next->vm_end);
682968e0
SD
762 }
763
3d48ae45 764 mutex_lock(&mapping->i_mmap_mutex);
1da177e4 765 if (insert) {
1da177e4 766 /*
6b2dbba8 767 * Put into interval tree now, so instantiated pages
1da177e4
LT
768 * are visible to arm/parisc __flush_dcache_page
769 * throughout; but we cannot insert into address
770 * space until vma start or end is updated.
771 */
772 __vma_link_file(insert);
773 }
774 }
775
94fcc585
AA
776 vma_adjust_trans_huge(vma, start, end, adjust_next);
777
bf181b9f
ML
778 anon_vma = vma->anon_vma;
779 if (!anon_vma && adjust_next)
780 anon_vma = next->anon_vma;
781 if (anon_vma) {
ca42b26a
ML
782 VM_BUG_ON(adjust_next && next->anon_vma &&
783 anon_vma != next->anon_vma);
4fc3f1d6 784 anon_vma_lock_write(anon_vma);
bf181b9f
ML
785 anon_vma_interval_tree_pre_update_vma(vma);
786 if (adjust_next)
787 anon_vma_interval_tree_pre_update_vma(next);
788 }
012f1800 789
1da177e4
LT
790 if (root) {
791 flush_dcache_mmap_lock(mapping);
6b2dbba8 792 vma_interval_tree_remove(vma, root);
1da177e4 793 if (adjust_next)
6b2dbba8 794 vma_interval_tree_remove(next, root);
1da177e4
LT
795 }
796
d3737187
ML
797 if (start != vma->vm_start) {
798 vma->vm_start = start;
799 start_changed = true;
800 }
801 if (end != vma->vm_end) {
802 vma->vm_end = end;
803 end_changed = true;
804 }
1da177e4
LT
805 vma->vm_pgoff = pgoff;
806 if (adjust_next) {
807 next->vm_start += adjust_next << PAGE_SHIFT;
808 next->vm_pgoff += adjust_next;
809 }
810
811 if (root) {
812 if (adjust_next)
6b2dbba8
ML
813 vma_interval_tree_insert(next, root);
814 vma_interval_tree_insert(vma, root);
1da177e4
LT
815 flush_dcache_mmap_unlock(mapping);
816 }
817
818 if (remove_next) {
819 /*
820 * vma_merge has merged next into vma, and needs
821 * us to remove next before dropping the locks.
822 */
823 __vma_unlink(mm, next, vma);
824 if (file)
825 __remove_shared_vm_struct(next, file, mapping);
1da177e4
LT
826 } else if (insert) {
827 /*
828 * split_vma has split insert from vma, and needs
829 * us to insert it before dropping the locks
830 * (it may either follow vma or precede it).
831 */
832 __insert_vm_struct(mm, insert);
d3737187
ML
833 } else {
834 if (start_changed)
835 vma_gap_update(vma);
836 if (end_changed) {
837 if (!next)
838 mm->highest_vm_end = end;
839 else if (!adjust_next)
840 vma_gap_update(next);
841 }
1da177e4
LT
842 }
843
bf181b9f
ML
844 if (anon_vma) {
845 anon_vma_interval_tree_post_update_vma(vma);
846 if (adjust_next)
847 anon_vma_interval_tree_post_update_vma(next);
08b52706 848 anon_vma_unlock_write(anon_vma);
bf181b9f 849 }
1da177e4 850 if (mapping)
3d48ae45 851 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4 852
2b144498 853 if (root) {
7b2d81d4 854 uprobe_mmap(vma);
2b144498
SD
855
856 if (adjust_next)
7b2d81d4 857 uprobe_mmap(next);
2b144498
SD
858 }
859
1da177e4 860 if (remove_next) {
925d1c40 861 if (file) {
cbc91f71 862 uprobe_munmap(next, next->vm_start, next->vm_end);
1da177e4 863 fput(file);
925d1c40 864 }
5beb4930
RR
865 if (next->anon_vma)
866 anon_vma_merge(vma, next);
1da177e4 867 mm->map_count--;
3964acd0 868 mpol_put(vma_policy(next));
1da177e4
LT
869 kmem_cache_free(vm_area_cachep, next);
870 /*
871 * In mprotect's case 6 (see comments on vma_merge),
872 * we must remove another next too. It would clutter
873 * up the code too much to do both in one go.
874 */
d3737187
ML
875 next = vma->vm_next;
876 if (remove_next == 2)
1da177e4 877 goto again;
d3737187
ML
878 else if (next)
879 vma_gap_update(next);
880 else
881 mm->highest_vm_end = end;
1da177e4 882 }
2b144498 883 if (insert && file)
7b2d81d4 884 uprobe_mmap(insert);
1da177e4
LT
885
886 validate_mm(mm);
5beb4930
RR
887
888 return 0;
1da177e4
LT
889}
890
891/*
892 * If the vma has a ->close operation then the driver probably needs to release
893 * per-vma resources, so we don't attempt to merge those.
894 */
1da177e4
LT
895static inline int is_mergeable_vma(struct vm_area_struct *vma,
896 struct file *file, unsigned long vm_flags)
897{
0b173bc4 898 if (vma->vm_flags ^ vm_flags)
1da177e4
LT
899 return 0;
900 if (vma->vm_file != file)
901 return 0;
902 if (vma->vm_ops && vma->vm_ops->close)
903 return 0;
904 return 1;
905}
906
907static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
965f55de
SL
908 struct anon_vma *anon_vma2,
909 struct vm_area_struct *vma)
1da177e4 910{
965f55de
SL
911 /*
912 * The list_is_singular() test is to avoid merging VMA cloned from
913 * parents. This can improve scalability caused by anon_vma lock.
914 */
915 if ((!anon_vma1 || !anon_vma2) && (!vma ||
916 list_is_singular(&vma->anon_vma_chain)))
917 return 1;
918 return anon_vma1 == anon_vma2;
1da177e4
LT
919}
920
921/*
922 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
923 * in front of (at a lower virtual address and file offset than) the vma.
924 *
925 * We cannot merge two vmas if they have differently assigned (non-NULL)
926 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
927 *
928 * We don't check here for the merged mmap wrapping around the end of pagecache
929 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
930 * wrap, nor mmaps which cover the final page at index -1UL.
931 */
932static int
933can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
934 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
935{
936 if (is_mergeable_vma(vma, file, vm_flags) &&
965f55de 937 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1da177e4
LT
938 if (vma->vm_pgoff == vm_pgoff)
939 return 1;
940 }
941 return 0;
942}
943
944/*
945 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
946 * beyond (at a higher virtual address and file offset than) the vma.
947 *
948 * We cannot merge two vmas if they have differently assigned (non-NULL)
949 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
950 */
951static int
952can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
953 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
954{
955 if (is_mergeable_vma(vma, file, vm_flags) &&
965f55de 956 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1da177e4 957 pgoff_t vm_pglen;
d6e93217 958 vm_pglen = vma_pages(vma);
1da177e4
LT
959 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
960 return 1;
961 }
962 return 0;
963}
964
965/*
966 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
967 * whether that can be merged with its predecessor or its successor.
968 * Or both (it neatly fills a hole).
969 *
970 * In most cases - when called for mmap, brk or mremap - [addr,end) is
971 * certain not to be mapped by the time vma_merge is called; but when
972 * called for mprotect, it is certain to be already mapped (either at
973 * an offset within prev, or at the start of next), and the flags of
974 * this area are about to be changed to vm_flags - and the no-change
975 * case has already been eliminated.
976 *
977 * The following mprotect cases have to be considered, where AAAA is
978 * the area passed down from mprotect_fixup, never extending beyond one
979 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
980 *
981 * AAAA AAAA AAAA AAAA
982 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
983 * cannot merge might become might become might become
984 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
985 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
986 * mremap move: PPPPNNNNNNNN 8
987 * AAAA
988 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
989 * might become case 1 below case 2 below case 3 below
990 *
991 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
992 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
993 */
994struct vm_area_struct *vma_merge(struct mm_struct *mm,
995 struct vm_area_struct *prev, unsigned long addr,
996 unsigned long end, unsigned long vm_flags,
997 struct anon_vma *anon_vma, struct file *file,
998 pgoff_t pgoff, struct mempolicy *policy)
999{
1000 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1001 struct vm_area_struct *area, *next;
5beb4930 1002 int err;
1da177e4
LT
1003
1004 /*
1005 * We later require that vma->vm_flags == vm_flags,
1006 * so this tests vma->vm_flags & VM_SPECIAL, too.
1007 */
1008 if (vm_flags & VM_SPECIAL)
1009 return NULL;
1010
1011 if (prev)
1012 next = prev->vm_next;
1013 else
1014 next = mm->mmap;
1015 area = next;
1016 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1017 next = next->vm_next;
1018
1019 /*
1020 * Can it merge with the predecessor?
1021 */
1022 if (prev && prev->vm_end == addr &&
1023 mpol_equal(vma_policy(prev), policy) &&
1024 can_vma_merge_after(prev, vm_flags,
1025 anon_vma, file, pgoff)) {
1026 /*
1027 * OK, it can. Can we now merge in the successor as well?
1028 */
1029 if (next && end == next->vm_start &&
1030 mpol_equal(policy, vma_policy(next)) &&
1031 can_vma_merge_before(next, vm_flags,
1032 anon_vma, file, pgoff+pglen) &&
1033 is_mergeable_anon_vma(prev->anon_vma,
965f55de 1034 next->anon_vma, NULL)) {
1da177e4 1035 /* cases 1, 6 */
5beb4930 1036 err = vma_adjust(prev, prev->vm_start,
1da177e4
LT
1037 next->vm_end, prev->vm_pgoff, NULL);
1038 } else /* cases 2, 5, 7 */
5beb4930 1039 err = vma_adjust(prev, prev->vm_start,
1da177e4 1040 end, prev->vm_pgoff, NULL);
5beb4930
RR
1041 if (err)
1042 return NULL;
b15d00b6 1043 khugepaged_enter_vma_merge(prev);
1da177e4
LT
1044 return prev;
1045 }
1046
1047 /*
1048 * Can this new request be merged in front of next?
1049 */
1050 if (next && end == next->vm_start &&
1051 mpol_equal(policy, vma_policy(next)) &&
1052 can_vma_merge_before(next, vm_flags,
1053 anon_vma, file, pgoff+pglen)) {
1054 if (prev && addr < prev->vm_end) /* case 4 */
5beb4930 1055 err = vma_adjust(prev, prev->vm_start,
1da177e4
LT
1056 addr, prev->vm_pgoff, NULL);
1057 else /* cases 3, 8 */
5beb4930 1058 err = vma_adjust(area, addr, next->vm_end,
1da177e4 1059 next->vm_pgoff - pglen, NULL);
5beb4930
RR
1060 if (err)
1061 return NULL;
b15d00b6 1062 khugepaged_enter_vma_merge(area);
1da177e4
LT
1063 return area;
1064 }
1065
1066 return NULL;
1067}
1068
d0e9fe17
LT
1069/*
1070 * Rough compatbility check to quickly see if it's even worth looking
1071 * at sharing an anon_vma.
1072 *
1073 * They need to have the same vm_file, and the flags can only differ
1074 * in things that mprotect may change.
1075 *
1076 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1077 * we can merge the two vma's. For example, we refuse to merge a vma if
1078 * there is a vm_ops->close() function, because that indicates that the
1079 * driver is doing some kind of reference counting. But that doesn't
1080 * really matter for the anon_vma sharing case.
1081 */
1082static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1083{
1084 return a->vm_end == b->vm_start &&
1085 mpol_equal(vma_policy(a), vma_policy(b)) &&
1086 a->vm_file == b->vm_file &&
1087 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1088 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1089}
1090
1091/*
1092 * Do some basic sanity checking to see if we can re-use the anon_vma
1093 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1094 * the same as 'old', the other will be the new one that is trying
1095 * to share the anon_vma.
1096 *
1097 * NOTE! This runs with mm_sem held for reading, so it is possible that
1098 * the anon_vma of 'old' is concurrently in the process of being set up
1099 * by another page fault trying to merge _that_. But that's ok: if it
1100 * is being set up, that automatically means that it will be a singleton
1101 * acceptable for merging, so we can do all of this optimistically. But
1102 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1103 *
1104 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1105 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1106 * is to return an anon_vma that is "complex" due to having gone through
1107 * a fork).
1108 *
1109 * We also make sure that the two vma's are compatible (adjacent,
1110 * and with the same memory policies). That's all stable, even with just
1111 * a read lock on the mm_sem.
1112 */
1113static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1114{
1115 if (anon_vma_compatible(a, b)) {
1116 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1117
1118 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1119 return anon_vma;
1120 }
1121 return NULL;
1122}
1123
1da177e4
LT
1124/*
1125 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1126 * neighbouring vmas for a suitable anon_vma, before it goes off
1127 * to allocate a new anon_vma. It checks because a repetitive
1128 * sequence of mprotects and faults may otherwise lead to distinct
1129 * anon_vmas being allocated, preventing vma merge in subsequent
1130 * mprotect.
1131 */
1132struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1133{
d0e9fe17 1134 struct anon_vma *anon_vma;
1da177e4 1135 struct vm_area_struct *near;
1da177e4
LT
1136
1137 near = vma->vm_next;
1138 if (!near)
1139 goto try_prev;
1140
d0e9fe17
LT
1141 anon_vma = reusable_anon_vma(near, vma, near);
1142 if (anon_vma)
1143 return anon_vma;
1da177e4 1144try_prev:
9be34c9d 1145 near = vma->vm_prev;
1da177e4
LT
1146 if (!near)
1147 goto none;
1148
d0e9fe17
LT
1149 anon_vma = reusable_anon_vma(near, near, vma);
1150 if (anon_vma)
1151 return anon_vma;
1da177e4
LT
1152none:
1153 /*
1154 * There's no absolute need to look only at touching neighbours:
1155 * we could search further afield for "compatible" anon_vmas.
1156 * But it would probably just be a waste of time searching,
1157 * or lead to too many vmas hanging off the same anon_vma.
1158 * We're trying to allow mprotect remerging later on,
1159 * not trying to minimize memory used for anon_vmas.
1160 */
1161 return NULL;
1162}
1163
1164#ifdef CONFIG_PROC_FS
ab50b8ed 1165void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1da177e4
LT
1166 struct file *file, long pages)
1167{
1168 const unsigned long stack_flags
1169 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1170
44de9d0c
HS
1171 mm->total_vm += pages;
1172
1da177e4
LT
1173 if (file) {
1174 mm->shared_vm += pages;
1175 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1176 mm->exec_vm += pages;
1177 } else if (flags & stack_flags)
1178 mm->stack_vm += pages;
1da177e4
LT
1179}
1180#endif /* CONFIG_PROC_FS */
1181
40401530
AV
1182/*
1183 * If a hint addr is less than mmap_min_addr change hint to be as
1184 * low as possible but still greater than mmap_min_addr
1185 */
1186static inline unsigned long round_hint_to_min(unsigned long hint)
1187{
1188 hint &= PAGE_MASK;
1189 if (((void *)hint != NULL) &&
1190 (hint < mmap_min_addr))
1191 return PAGE_ALIGN(mmap_min_addr);
1192 return hint;
1193}
1194
1da177e4 1195/*
27f5de79 1196 * The caller must hold down_write(&current->mm->mmap_sem).
1da177e4
LT
1197 */
1198
e3fc629d 1199unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1da177e4 1200 unsigned long len, unsigned long prot,
bebeb3d6 1201 unsigned long flags, unsigned long pgoff,
41badc15 1202 unsigned long *populate)
1da177e4
LT
1203{
1204 struct mm_struct * mm = current->mm;
1da177e4 1205 struct inode *inode;
ca16d140 1206 vm_flags_t vm_flags;
1da177e4 1207
41badc15 1208 *populate = 0;
bebeb3d6 1209
1da177e4
LT
1210 /*
1211 * Does the application expect PROT_READ to imply PROT_EXEC?
1212 *
1213 * (the exception is when the underlying filesystem is noexec
1214 * mounted, in which case we dont add PROT_EXEC.)
1215 */
1216 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
d3ac7f89 1217 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1da177e4
LT
1218 prot |= PROT_EXEC;
1219
1220 if (!len)
1221 return -EINVAL;
1222
7cd94146
EP
1223 if (!(flags & MAP_FIXED))
1224 addr = round_hint_to_min(addr);
1225
1da177e4
LT
1226 /* Careful about overflows.. */
1227 len = PAGE_ALIGN(len);
9206de95 1228 if (!len)
1da177e4
LT
1229 return -ENOMEM;
1230
1231 /* offset overflow? */
1232 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1233 return -EOVERFLOW;
1234
1235 /* Too many mappings? */
1236 if (mm->map_count > sysctl_max_map_count)
1237 return -ENOMEM;
1238
1239 /* Obtain the address to map to. we verify (or select) it and ensure
1240 * that it represents a valid section of the address space.
1241 */
1242 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1243 if (addr & ~PAGE_MASK)
1244 return addr;
1245
1246 /* Do simple checking here so the lower-level routines won't have
1247 * to. we assume access permissions have been handled by the open
1248 * of the memory object, so we don't do any here.
1249 */
1250 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1251 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1252
cdf7b341 1253 if (flags & MAP_LOCKED)
1da177e4
LT
1254 if (!can_do_mlock())
1255 return -EPERM;
ba470de4 1256
1da177e4
LT
1257 /* mlock MCL_FUTURE? */
1258 if (vm_flags & VM_LOCKED) {
1259 unsigned long locked, lock_limit;
93ea1d0a
CW
1260 locked = len >> PAGE_SHIFT;
1261 locked += mm->locked_vm;
59e99e5b 1262 lock_limit = rlimit(RLIMIT_MEMLOCK);
93ea1d0a 1263 lock_limit >>= PAGE_SHIFT;
1da177e4
LT
1264 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1265 return -EAGAIN;
1266 }
1267
496ad9aa 1268 inode = file ? file_inode(file) : NULL;
1da177e4
LT
1269
1270 if (file) {
1271 switch (flags & MAP_TYPE) {
1272 case MAP_SHARED:
1273 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1274 return -EACCES;
1275
1276 /*
1277 * Make sure we don't allow writing to an append-only
1278 * file..
1279 */
1280 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1281 return -EACCES;
1282
1283 /*
1284 * Make sure there are no mandatory locks on the file.
1285 */
1286 if (locks_verify_locked(inode))
1287 return -EAGAIN;
1288
1289 vm_flags |= VM_SHARED | VM_MAYSHARE;
1290 if (!(file->f_mode & FMODE_WRITE))
1291 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1292
1293 /* fall through */
1294 case MAP_PRIVATE:
1295 if (!(file->f_mode & FMODE_READ))
1296 return -EACCES;
d3ac7f89 1297 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
80c5606c
LT
1298 if (vm_flags & VM_EXEC)
1299 return -EPERM;
1300 vm_flags &= ~VM_MAYEXEC;
1301 }
80c5606c
LT
1302
1303 if (!file->f_op || !file->f_op->mmap)
1304 return -ENODEV;
b2c56e4f
ON
1305 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1306 return -EINVAL;
1da177e4
LT
1307 break;
1308
1309 default:
1310 return -EINVAL;
1311 }
1312 } else {
1313 switch (flags & MAP_TYPE) {
1314 case MAP_SHARED:
b2c56e4f
ON
1315 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1316 return -EINVAL;
ce363942
TH
1317 /*
1318 * Ignore pgoff.
1319 */
1320 pgoff = 0;
1da177e4
LT
1321 vm_flags |= VM_SHARED | VM_MAYSHARE;
1322 break;
1323 case MAP_PRIVATE:
1324 /*
1325 * Set pgoff according to addr for anon_vma.
1326 */
1327 pgoff = addr >> PAGE_SHIFT;
1328 break;
1329 default:
1330 return -EINVAL;
1331 }
1332 }
1333
c22c0d63
ML
1334 /*
1335 * Set 'VM_NORESERVE' if we should not account for the
1336 * memory use of this mapping.
1337 */
1338 if (flags & MAP_NORESERVE) {
1339 /* We honor MAP_NORESERVE if allowed to overcommit */
1340 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1341 vm_flags |= VM_NORESERVE;
1342
1343 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1344 if (file && is_file_hugepages(file))
1345 vm_flags |= VM_NORESERVE;
1346 }
1347
1348 addr = mmap_region(file, addr, len, vm_flags, pgoff);
09a9f1d2
ML
1349 if (!IS_ERR_VALUE(addr) &&
1350 ((vm_flags & VM_LOCKED) ||
1351 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
41badc15 1352 *populate = len;
bebeb3d6 1353 return addr;
0165ab44 1354}
6be5ceb0 1355
66f0dc48
HD
1356SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1357 unsigned long, prot, unsigned long, flags,
1358 unsigned long, fd, unsigned long, pgoff)
1359{
1360 struct file *file = NULL;
1361 unsigned long retval = -EBADF;
1362
1363 if (!(flags & MAP_ANONYMOUS)) {
120a795d 1364 audit_mmap_fd(fd, flags);
66f0dc48
HD
1365 file = fget(fd);
1366 if (!file)
1367 goto out;
af73e4d9
NH
1368 if (is_file_hugepages(file))
1369 len = ALIGN(len, huge_page_size(hstate_file(file)));
493af578
JE
1370 retval = -EINVAL;
1371 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1372 goto out_fput;
66f0dc48
HD
1373 } else if (flags & MAP_HUGETLB) {
1374 struct user_struct *user = NULL;
c103a4dc 1375 struct hstate *hs;
af73e4d9 1376
c103a4dc 1377 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
091d0d55
LZ
1378 if (!hs)
1379 return -EINVAL;
1380
1381 len = ALIGN(len, huge_page_size(hs));
66f0dc48
HD
1382 /*
1383 * VM_NORESERVE is used because the reservations will be
1384 * taken when vm_ops->mmap() is called
1385 * A dummy user value is used because we are not locking
1386 * memory so no accounting is necessary
1387 */
af73e4d9 1388 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
42d7395f
AK
1389 VM_NORESERVE,
1390 &user, HUGETLB_ANONHUGE_INODE,
1391 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
66f0dc48
HD
1392 if (IS_ERR(file))
1393 return PTR_ERR(file);
1394 }
1395
1396 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1397
eb36c587 1398 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
493af578 1399out_fput:
66f0dc48
HD
1400 if (file)
1401 fput(file);
1402out:
1403 return retval;
1404}
1405
a4679373
CH
1406#ifdef __ARCH_WANT_SYS_OLD_MMAP
1407struct mmap_arg_struct {
1408 unsigned long addr;
1409 unsigned long len;
1410 unsigned long prot;
1411 unsigned long flags;
1412 unsigned long fd;
1413 unsigned long offset;
1414};
1415
1416SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1417{
1418 struct mmap_arg_struct a;
1419
1420 if (copy_from_user(&a, arg, sizeof(a)))
1421 return -EFAULT;
1422 if (a.offset & ~PAGE_MASK)
1423 return -EINVAL;
1424
1425 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1426 a.offset >> PAGE_SHIFT);
1427}
1428#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1429
4e950f6f
AD
1430/*
1431 * Some shared mappigns will want the pages marked read-only
1432 * to track write events. If so, we'll downgrade vm_page_prot
1433 * to the private version (using protection_map[] without the
1434 * VM_SHARED bit).
1435 */
1436int vma_wants_writenotify(struct vm_area_struct *vma)
1437{
ca16d140 1438 vm_flags_t vm_flags = vma->vm_flags;
4e950f6f
AD
1439
1440 /* If it was private or non-writable, the write bit is already clear */
1441 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1442 return 0;
1443
1444 /* The backer wishes to know when pages are first written to? */
1445 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1446 return 1;
1447
1448 /* The open routine did something to the protections already? */
1449 if (pgprot_val(vma->vm_page_prot) !=
3ed75eb8 1450 pgprot_val(vm_get_page_prot(vm_flags)))
4e950f6f
AD
1451 return 0;
1452
1453 /* Specialty mapping? */
4b6e1e37 1454 if (vm_flags & VM_PFNMAP)
4e950f6f
AD
1455 return 0;
1456
1457 /* Can the mapping track the dirty pages? */
1458 return vma->vm_file && vma->vm_file->f_mapping &&
1459 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1460}
1461
fc8744ad
LT
1462/*
1463 * We account for memory if it's a private writeable mapping,
5a6fe125 1464 * not hugepages and VM_NORESERVE wasn't set.
fc8744ad 1465 */
ca16d140 1466static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
fc8744ad 1467{
5a6fe125
MG
1468 /*
1469 * hugetlb has its own accounting separate from the core VM
1470 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1471 */
1472 if (file && is_file_hugepages(file))
1473 return 0;
1474
fc8744ad
LT
1475 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1476}
1477
0165ab44 1478unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1479 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
0165ab44
MS
1480{
1481 struct mm_struct *mm = current->mm;
1482 struct vm_area_struct *vma, *prev;
1483 int correct_wcount = 0;
1484 int error;
1485 struct rb_node **rb_link, *rb_parent;
1486 unsigned long charged = 0;
496ad9aa 1487 struct inode *inode = file ? file_inode(file) : NULL;
0165ab44 1488
e8420a8e
CH
1489 /* Check against address space limit. */
1490 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1491 unsigned long nr_pages;
1492
1493 /*
1494 * MAP_FIXED may remove pages of mappings that intersects with
1495 * requested mapping. Account for the pages it would unmap.
1496 */
1497 if (!(vm_flags & MAP_FIXED))
1498 return -ENOMEM;
1499
1500 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1501
1502 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1503 return -ENOMEM;
1504 }
1505
1da177e4
LT
1506 /* Clear old maps */
1507 error = -ENOMEM;
1508munmap_back:
6597d783 1509 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1da177e4
LT
1510 if (do_munmap(mm, addr, len))
1511 return -ENOMEM;
1512 goto munmap_back;
1513 }
1514
fc8744ad
LT
1515 /*
1516 * Private writable mapping: check memory availability
1517 */
5a6fe125 1518 if (accountable_mapping(file, vm_flags)) {
fc8744ad 1519 charged = len >> PAGE_SHIFT;
191c5424 1520 if (security_vm_enough_memory_mm(mm, charged))
fc8744ad
LT
1521 return -ENOMEM;
1522 vm_flags |= VM_ACCOUNT;
1da177e4
LT
1523 }
1524
1525 /*
de33c8db 1526 * Can we just expand an old mapping?
1da177e4 1527 */
de33c8db
LT
1528 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1529 if (vma)
1530 goto out;
1da177e4
LT
1531
1532 /*
1533 * Determine the object being mapped and call the appropriate
1534 * specific mapper. the address has already been validated, but
1535 * not unmapped, but the maps are removed from the list.
1536 */
c5e3b83e 1537 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1da177e4
LT
1538 if (!vma) {
1539 error = -ENOMEM;
1540 goto unacct_error;
1541 }
1da177e4
LT
1542
1543 vma->vm_mm = mm;
1544 vma->vm_start = addr;
1545 vma->vm_end = addr + len;
1546 vma->vm_flags = vm_flags;
3ed75eb8 1547 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1da177e4 1548 vma->vm_pgoff = pgoff;
5beb4930 1549 INIT_LIST_HEAD(&vma->anon_vma_chain);
1da177e4
LT
1550
1551 if (file) {
1da177e4
LT
1552 if (vm_flags & VM_DENYWRITE) {
1553 error = deny_write_access(file);
1554 if (error)
1555 goto free_vma;
1556 correct_wcount = 1;
1557 }
cb0942b8 1558 vma->vm_file = get_file(file);
1da177e4
LT
1559 error = file->f_op->mmap(file, vma);
1560 if (error)
1561 goto unmap_and_free_vma;
f8dbf0a7
HS
1562
1563 /* Can addr have changed??
1564 *
1565 * Answer: Yes, several device drivers can do it in their
1566 * f_op->mmap method. -DaveM
2897b4d2
JK
1567 * Bug: If addr is changed, prev, rb_link, rb_parent should
1568 * be updated for vma_link()
f8dbf0a7 1569 */
2897b4d2
JK
1570 WARN_ON_ONCE(addr != vma->vm_start);
1571
f8dbf0a7
HS
1572 addr = vma->vm_start;
1573 pgoff = vma->vm_pgoff;
1574 vm_flags = vma->vm_flags;
1da177e4
LT
1575 } else if (vm_flags & VM_SHARED) {
1576 error = shmem_zero_setup(vma);
1577 if (error)
1578 goto free_vma;
1579 }
1580
c9d0bf24
MD
1581 if (vma_wants_writenotify(vma)) {
1582 pgprot_t pprot = vma->vm_page_prot;
1583
1584 /* Can vma->vm_page_prot have changed??
1585 *
1586 * Answer: Yes, drivers may have changed it in their
1587 * f_op->mmap method.
1588 *
1589 * Ensures that vmas marked as uncached stay that way.
1590 */
1ddd439e 1591 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
c9d0bf24
MD
1592 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1593 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1594 }
d08b3851 1595
de33c8db
LT
1596 vma_link(mm, vma, prev, rb_link, rb_parent);
1597 file = vma->vm_file;
4d3d5b41
ON
1598
1599 /* Once vma denies write, undo our temporary denial count */
1600 if (correct_wcount)
1601 atomic_inc(&inode->i_writecount);
1602out:
cdd6c482 1603 perf_event_mmap(vma);
0a4a9391 1604
ab50b8ed 1605 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1da177e4 1606 if (vm_flags & VM_LOCKED) {
bebeb3d6
ML
1607 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1608 vma == get_gate_vma(current->mm)))
06f9d8c2 1609 mm->locked_vm += (len >> PAGE_SHIFT);
bebeb3d6
ML
1610 else
1611 vma->vm_flags &= ~VM_LOCKED;
1612 }
2b144498 1613
c7a3a88c
ON
1614 if (file)
1615 uprobe_mmap(vma);
2b144498 1616
1da177e4
LT
1617 return addr;
1618
1619unmap_and_free_vma:
1620 if (correct_wcount)
1621 atomic_inc(&inode->i_writecount);
1622 vma->vm_file = NULL;
1623 fput(file);
1624
1625 /* Undo any partial mapping done by a device driver. */
e0da382c
HD
1626 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1627 charged = 0;
1da177e4
LT
1628free_vma:
1629 kmem_cache_free(vm_area_cachep, vma);
1630unacct_error:
1631 if (charged)
1632 vm_unacct_memory(charged);
1633 return error;
1634}
1635
db4fbfb9
ML
1636unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1637{
1638 /*
1639 * We implement the search by looking for an rbtree node that
1640 * immediately follows a suitable gap. That is,
1641 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1642 * - gap_end = vma->vm_start >= info->low_limit + length;
1643 * - gap_end - gap_start >= length
1644 */
1645
1646 struct mm_struct *mm = current->mm;
1647 struct vm_area_struct *vma;
1648 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1649
1650 /* Adjust search length to account for worst case alignment overhead */
1651 length = info->length + info->align_mask;
1652 if (length < info->length)
1653 return -ENOMEM;
1654
1655 /* Adjust search limits by the desired length */
1656 if (info->high_limit < length)
1657 return -ENOMEM;
1658 high_limit = info->high_limit - length;
1659
1660 if (info->low_limit > high_limit)
1661 return -ENOMEM;
1662 low_limit = info->low_limit + length;
1663
1664 /* Check if rbtree root looks promising */
1665 if (RB_EMPTY_ROOT(&mm->mm_rb))
1666 goto check_highest;
1667 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1668 if (vma->rb_subtree_gap < length)
1669 goto check_highest;
1670
1671 while (true) {
1672 /* Visit left subtree if it looks promising */
1673 gap_end = vma->vm_start;
1674 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1675 struct vm_area_struct *left =
1676 rb_entry(vma->vm_rb.rb_left,
1677 struct vm_area_struct, vm_rb);
1678 if (left->rb_subtree_gap >= length) {
1679 vma = left;
1680 continue;
1681 }
1682 }
1683
1684 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1685check_current:
1686 /* Check if current node has a suitable gap */
1687 if (gap_start > high_limit)
1688 return -ENOMEM;
1689 if (gap_end >= low_limit && gap_end - gap_start >= length)
1690 goto found;
1691
1692 /* Visit right subtree if it looks promising */
1693 if (vma->vm_rb.rb_right) {
1694 struct vm_area_struct *right =
1695 rb_entry(vma->vm_rb.rb_right,
1696 struct vm_area_struct, vm_rb);
1697 if (right->rb_subtree_gap >= length) {
1698 vma = right;
1699 continue;
1700 }
1701 }
1702
1703 /* Go back up the rbtree to find next candidate node */
1704 while (true) {
1705 struct rb_node *prev = &vma->vm_rb;
1706 if (!rb_parent(prev))
1707 goto check_highest;
1708 vma = rb_entry(rb_parent(prev),
1709 struct vm_area_struct, vm_rb);
1710 if (prev == vma->vm_rb.rb_left) {
1711 gap_start = vma->vm_prev->vm_end;
1712 gap_end = vma->vm_start;
1713 goto check_current;
1714 }
1715 }
1716 }
1717
1718check_highest:
1719 /* Check highest gap, which does not precede any rbtree node */
1720 gap_start = mm->highest_vm_end;
1721 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1722 if (gap_start > high_limit)
1723 return -ENOMEM;
1724
1725found:
1726 /* We found a suitable gap. Clip it with the original low_limit. */
1727 if (gap_start < info->low_limit)
1728 gap_start = info->low_limit;
1729
1730 /* Adjust gap address to the desired alignment */
1731 gap_start += (info->align_offset - gap_start) & info->align_mask;
1732
1733 VM_BUG_ON(gap_start + info->length > info->high_limit);
1734 VM_BUG_ON(gap_start + info->length > gap_end);
1735 return gap_start;
1736}
1737
1738unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1739{
1740 struct mm_struct *mm = current->mm;
1741 struct vm_area_struct *vma;
1742 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1743
1744 /* Adjust search length to account for worst case alignment overhead */
1745 length = info->length + info->align_mask;
1746 if (length < info->length)
1747 return -ENOMEM;
1748
1749 /*
1750 * Adjust search limits by the desired length.
1751 * See implementation comment at top of unmapped_area().
1752 */
1753 gap_end = info->high_limit;
1754 if (gap_end < length)
1755 return -ENOMEM;
1756 high_limit = gap_end - length;
1757
1758 if (info->low_limit > high_limit)
1759 return -ENOMEM;
1760 low_limit = info->low_limit + length;
1761
1762 /* Check highest gap, which does not precede any rbtree node */
1763 gap_start = mm->highest_vm_end;
1764 if (gap_start <= high_limit)
1765 goto found_highest;
1766
1767 /* Check if rbtree root looks promising */
1768 if (RB_EMPTY_ROOT(&mm->mm_rb))
1769 return -ENOMEM;
1770 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1771 if (vma->rb_subtree_gap < length)
1772 return -ENOMEM;
1773
1774 while (true) {
1775 /* Visit right subtree if it looks promising */
1776 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1777 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1778 struct vm_area_struct *right =
1779 rb_entry(vma->vm_rb.rb_right,
1780 struct vm_area_struct, vm_rb);
1781 if (right->rb_subtree_gap >= length) {
1782 vma = right;
1783 continue;
1784 }
1785 }
1786
1787check_current:
1788 /* Check if current node has a suitable gap */
1789 gap_end = vma->vm_start;
1790 if (gap_end < low_limit)
1791 return -ENOMEM;
1792 if (gap_start <= high_limit && gap_end - gap_start >= length)
1793 goto found;
1794
1795 /* Visit left subtree if it looks promising */
1796 if (vma->vm_rb.rb_left) {
1797 struct vm_area_struct *left =
1798 rb_entry(vma->vm_rb.rb_left,
1799 struct vm_area_struct, vm_rb);
1800 if (left->rb_subtree_gap >= length) {
1801 vma = left;
1802 continue;
1803 }
1804 }
1805
1806 /* Go back up the rbtree to find next candidate node */
1807 while (true) {
1808 struct rb_node *prev = &vma->vm_rb;
1809 if (!rb_parent(prev))
1810 return -ENOMEM;
1811 vma = rb_entry(rb_parent(prev),
1812 struct vm_area_struct, vm_rb);
1813 if (prev == vma->vm_rb.rb_right) {
1814 gap_start = vma->vm_prev ?
1815 vma->vm_prev->vm_end : 0;
1816 goto check_current;
1817 }
1818 }
1819 }
1820
1821found:
1822 /* We found a suitable gap. Clip it with the original high_limit. */
1823 if (gap_end > info->high_limit)
1824 gap_end = info->high_limit;
1825
1826found_highest:
1827 /* Compute highest gap address at the desired alignment */
1828 gap_end -= info->length;
1829 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1830
1831 VM_BUG_ON(gap_end < info->low_limit);
1832 VM_BUG_ON(gap_end < gap_start);
1833 return gap_end;
1834}
1835
1da177e4
LT
1836/* Get an address range which is currently unmapped.
1837 * For shmat() with addr=0.
1838 *
1839 * Ugly calling convention alert:
1840 * Return value with the low bits set means error value,
1841 * ie
1842 * if (ret & ~PAGE_MASK)
1843 * error = ret;
1844 *
1845 * This function "knows" that -ENOMEM has the bits set.
1846 */
1847#ifndef HAVE_ARCH_UNMAPPED_AREA
1848unsigned long
1849arch_get_unmapped_area(struct file *filp, unsigned long addr,
1850 unsigned long len, unsigned long pgoff, unsigned long flags)
1851{
1852 struct mm_struct *mm = current->mm;
1853 struct vm_area_struct *vma;
db4fbfb9 1854 struct vm_unmapped_area_info info;
1da177e4
LT
1855
1856 if (len > TASK_SIZE)
1857 return -ENOMEM;
1858
06abdfb4
BH
1859 if (flags & MAP_FIXED)
1860 return addr;
1861
1da177e4
LT
1862 if (addr) {
1863 addr = PAGE_ALIGN(addr);
1864 vma = find_vma(mm, addr);
1865 if (TASK_SIZE - len >= addr &&
1866 (!vma || addr + len <= vma->vm_start))
1867 return addr;
1868 }
1da177e4 1869
db4fbfb9
ML
1870 info.flags = 0;
1871 info.length = len;
1872 info.low_limit = TASK_UNMAPPED_BASE;
1873 info.high_limit = TASK_SIZE;
1874 info.align_mask = 0;
1875 return vm_unmapped_area(&info);
1da177e4
LT
1876}
1877#endif
1878
1da177e4
LT
1879/*
1880 * This mmap-allocator allocates new areas top-down from below the
1881 * stack's low limit (the base):
1882 */
1883#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1884unsigned long
1885arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1886 const unsigned long len, const unsigned long pgoff,
1887 const unsigned long flags)
1888{
1889 struct vm_area_struct *vma;
1890 struct mm_struct *mm = current->mm;
db4fbfb9
ML
1891 unsigned long addr = addr0;
1892 struct vm_unmapped_area_info info;
1da177e4
LT
1893
1894 /* requested length too big for entire address space */
1895 if (len > TASK_SIZE)
1896 return -ENOMEM;
1897
06abdfb4
BH
1898 if (flags & MAP_FIXED)
1899 return addr;
1900
1da177e4
LT
1901 /* requesting a specific address */
1902 if (addr) {
1903 addr = PAGE_ALIGN(addr);
1904 vma = find_vma(mm, addr);
1905 if (TASK_SIZE - len >= addr &&
1906 (!vma || addr + len <= vma->vm_start))
1907 return addr;
1908 }
1909
db4fbfb9
ML
1910 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1911 info.length = len;
1912 info.low_limit = PAGE_SIZE;
1913 info.high_limit = mm->mmap_base;
1914 info.align_mask = 0;
1915 addr = vm_unmapped_area(&info);
b716ad95 1916
1da177e4
LT
1917 /*
1918 * A failed mmap() very likely causes application failure,
1919 * so fall back to the bottom-up function here. This scenario
1920 * can happen with large stack limits and large mmap()
1921 * allocations.
1922 */
db4fbfb9
ML
1923 if (addr & ~PAGE_MASK) {
1924 VM_BUG_ON(addr != -ENOMEM);
1925 info.flags = 0;
1926 info.low_limit = TASK_UNMAPPED_BASE;
1927 info.high_limit = TASK_SIZE;
1928 addr = vm_unmapped_area(&info);
1929 }
1da177e4
LT
1930
1931 return addr;
1932}
1933#endif
1934
1da177e4
LT
1935unsigned long
1936get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1937 unsigned long pgoff, unsigned long flags)
1938{
06abdfb4
BH
1939 unsigned long (*get_area)(struct file *, unsigned long,
1940 unsigned long, unsigned long, unsigned long);
1941
9206de95
AV
1942 unsigned long error = arch_mmap_check(addr, len, flags);
1943 if (error)
1944 return error;
1945
1946 /* Careful about overflows.. */
1947 if (len > TASK_SIZE)
1948 return -ENOMEM;
1949
06abdfb4
BH
1950 get_area = current->mm->get_unmapped_area;
1951 if (file && file->f_op && file->f_op->get_unmapped_area)
1952 get_area = file->f_op->get_unmapped_area;
1953 addr = get_area(file, addr, len, pgoff, flags);
1954 if (IS_ERR_VALUE(addr))
1955 return addr;
1da177e4 1956
07ab67c8
LT
1957 if (addr > TASK_SIZE - len)
1958 return -ENOMEM;
1959 if (addr & ~PAGE_MASK)
1960 return -EINVAL;
06abdfb4 1961
9ac4ed4b
AV
1962 addr = arch_rebalance_pgtables(addr, len);
1963 error = security_mmap_addr(addr);
1964 return error ? error : addr;
1da177e4
LT
1965}
1966
1967EXPORT_SYMBOL(get_unmapped_area);
1968
1969/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
48aae425 1970struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1da177e4
LT
1971{
1972 struct vm_area_struct *vma = NULL;
1973
841e31e5
RM
1974 /* Check the cache first. */
1975 /* (Cache hit rate is typically around 35%.) */
b6a9b7f6 1976 vma = ACCESS_ONCE(mm->mmap_cache);
841e31e5
RM
1977 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1978 struct rb_node *rb_node;
1979
1980 rb_node = mm->mm_rb.rb_node;
1981 vma = NULL;
1982
1983 while (rb_node) {
1984 struct vm_area_struct *vma_tmp;
1985
1986 vma_tmp = rb_entry(rb_node,
1987 struct vm_area_struct, vm_rb);
1988
1989 if (vma_tmp->vm_end > addr) {
1990 vma = vma_tmp;
1991 if (vma_tmp->vm_start <= addr)
1992 break;
1993 rb_node = rb_node->rb_left;
1994 } else
1995 rb_node = rb_node->rb_right;
1da177e4 1996 }
841e31e5
RM
1997 if (vma)
1998 mm->mmap_cache = vma;
1da177e4
LT
1999 }
2000 return vma;
2001}
2002
2003EXPORT_SYMBOL(find_vma);
2004
6bd4837d
KM
2005/*
2006 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
6bd4837d 2007 */
1da177e4
LT
2008struct vm_area_struct *
2009find_vma_prev(struct mm_struct *mm, unsigned long addr,
2010 struct vm_area_struct **pprev)
2011{
6bd4837d 2012 struct vm_area_struct *vma;
1da177e4 2013
6bd4837d 2014 vma = find_vma(mm, addr);
83cd904d
MP
2015 if (vma) {
2016 *pprev = vma->vm_prev;
2017 } else {
2018 struct rb_node *rb_node = mm->mm_rb.rb_node;
2019 *pprev = NULL;
2020 while (rb_node) {
2021 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2022 rb_node = rb_node->rb_right;
2023 }
2024 }
6bd4837d 2025 return vma;
1da177e4
LT
2026}
2027
2028/*
2029 * Verify that the stack growth is acceptable and
2030 * update accounting. This is shared with both the
2031 * grow-up and grow-down cases.
2032 */
48aae425 2033static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1da177e4
LT
2034{
2035 struct mm_struct *mm = vma->vm_mm;
2036 struct rlimit *rlim = current->signal->rlim;
0d59a01b 2037 unsigned long new_start;
1da177e4
LT
2038
2039 /* address space limit tests */
119f657c 2040 if (!may_expand_vm(mm, grow))
1da177e4
LT
2041 return -ENOMEM;
2042
2043 /* Stack limit test */
59e99e5b 2044 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1da177e4
LT
2045 return -ENOMEM;
2046
2047 /* mlock limit tests */
2048 if (vma->vm_flags & VM_LOCKED) {
2049 unsigned long locked;
2050 unsigned long limit;
2051 locked = mm->locked_vm + grow;
59e99e5b
JS
2052 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2053 limit >>= PAGE_SHIFT;
1da177e4
LT
2054 if (locked > limit && !capable(CAP_IPC_LOCK))
2055 return -ENOMEM;
2056 }
2057
0d59a01b
AL
2058 /* Check to ensure the stack will not grow into a hugetlb-only region */
2059 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2060 vma->vm_end - size;
2061 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2062 return -EFAULT;
2063
1da177e4
LT
2064 /*
2065 * Overcommit.. This must be the final test, as it will
2066 * update security statistics.
2067 */
05fa199d 2068 if (security_vm_enough_memory_mm(mm, grow))
1da177e4
LT
2069 return -ENOMEM;
2070
2071 /* Ok, everything looks good - let it rip */
1da177e4
LT
2072 if (vma->vm_flags & VM_LOCKED)
2073 mm->locked_vm += grow;
ab50b8ed 2074 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1da177e4
LT
2075 return 0;
2076}
2077
46dea3d0 2078#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 2079/*
46dea3d0
HD
2080 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2081 * vma is the last one with address > vma->vm_end. Have to extend vma.
1da177e4 2082 */
46dea3d0 2083int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1da177e4
LT
2084{
2085 int error;
2086
2087 if (!(vma->vm_flags & VM_GROWSUP))
2088 return -EFAULT;
2089
2090 /*
2091 * We must make sure the anon_vma is allocated
2092 * so that the anon_vma locking is not a noop.
2093 */
2094 if (unlikely(anon_vma_prepare(vma)))
2095 return -ENOMEM;
bb4a340e 2096 vma_lock_anon_vma(vma);
1da177e4
LT
2097
2098 /*
2099 * vma->vm_start/vm_end cannot change under us because the caller
2100 * is required to hold the mmap_sem in read mode. We need the
2101 * anon_vma lock to serialize against concurrent expand_stacks.
06b32f3a 2102 * Also guard against wrapping around to address 0.
1da177e4 2103 */
06b32f3a
HD
2104 if (address < PAGE_ALIGN(address+4))
2105 address = PAGE_ALIGN(address+4);
2106 else {
bb4a340e 2107 vma_unlock_anon_vma(vma);
06b32f3a
HD
2108 return -ENOMEM;
2109 }
1da177e4
LT
2110 error = 0;
2111
2112 /* Somebody else might have raced and expanded it already */
2113 if (address > vma->vm_end) {
2114 unsigned long size, grow;
2115
2116 size = address - vma->vm_start;
2117 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2118
42c36f63
HD
2119 error = -ENOMEM;
2120 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2121 error = acct_stack_growth(vma, size, grow);
2122 if (!error) {
4128997b
ML
2123 /*
2124 * vma_gap_update() doesn't support concurrent
2125 * updates, but we only hold a shared mmap_sem
2126 * lock here, so we need to protect against
2127 * concurrent vma expansions.
2128 * vma_lock_anon_vma() doesn't help here, as
2129 * we don't guarantee that all growable vmas
2130 * in a mm share the same root anon vma.
2131 * So, we reuse mm->page_table_lock to guard
2132 * against concurrent vma expansions.
2133 */
2134 spin_lock(&vma->vm_mm->page_table_lock);
bf181b9f 2135 anon_vma_interval_tree_pre_update_vma(vma);
42c36f63 2136 vma->vm_end = address;
bf181b9f 2137 anon_vma_interval_tree_post_update_vma(vma);
d3737187
ML
2138 if (vma->vm_next)
2139 vma_gap_update(vma->vm_next);
2140 else
2141 vma->vm_mm->highest_vm_end = address;
4128997b
ML
2142 spin_unlock(&vma->vm_mm->page_table_lock);
2143
42c36f63
HD
2144 perf_event_mmap(vma);
2145 }
3af9e859 2146 }
1da177e4 2147 }
bb4a340e 2148 vma_unlock_anon_vma(vma);
b15d00b6 2149 khugepaged_enter_vma_merge(vma);
ed8ea815 2150 validate_mm(vma->vm_mm);
1da177e4
LT
2151 return error;
2152}
46dea3d0
HD
2153#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2154
1da177e4
LT
2155/*
2156 * vma is the first one with address < vma->vm_start. Have to extend vma.
2157 */
d05f3169 2158int expand_downwards(struct vm_area_struct *vma,
b6a2fea3 2159 unsigned long address)
1da177e4
LT
2160{
2161 int error;
2162
2163 /*
2164 * We must make sure the anon_vma is allocated
2165 * so that the anon_vma locking is not a noop.
2166 */
2167 if (unlikely(anon_vma_prepare(vma)))
2168 return -ENOMEM;
8869477a
EP
2169
2170 address &= PAGE_MASK;
e5467859 2171 error = security_mmap_addr(address);
8869477a
EP
2172 if (error)
2173 return error;
2174
bb4a340e 2175 vma_lock_anon_vma(vma);
1da177e4
LT
2176
2177 /*
2178 * vma->vm_start/vm_end cannot change under us because the caller
2179 * is required to hold the mmap_sem in read mode. We need the
2180 * anon_vma lock to serialize against concurrent expand_stacks.
2181 */
1da177e4
LT
2182
2183 /* Somebody else might have raced and expanded it already */
2184 if (address < vma->vm_start) {
2185 unsigned long size, grow;
2186
2187 size = vma->vm_end - address;
2188 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2189
a626ca6a
LT
2190 error = -ENOMEM;
2191 if (grow <= vma->vm_pgoff) {
2192 error = acct_stack_growth(vma, size, grow);
2193 if (!error) {
4128997b
ML
2194 /*
2195 * vma_gap_update() doesn't support concurrent
2196 * updates, but we only hold a shared mmap_sem
2197 * lock here, so we need to protect against
2198 * concurrent vma expansions.
2199 * vma_lock_anon_vma() doesn't help here, as
2200 * we don't guarantee that all growable vmas
2201 * in a mm share the same root anon vma.
2202 * So, we reuse mm->page_table_lock to guard
2203 * against concurrent vma expansions.
2204 */
2205 spin_lock(&vma->vm_mm->page_table_lock);
bf181b9f 2206 anon_vma_interval_tree_pre_update_vma(vma);
a626ca6a
LT
2207 vma->vm_start = address;
2208 vma->vm_pgoff -= grow;
bf181b9f 2209 anon_vma_interval_tree_post_update_vma(vma);
d3737187 2210 vma_gap_update(vma);
4128997b
ML
2211 spin_unlock(&vma->vm_mm->page_table_lock);
2212
a626ca6a
LT
2213 perf_event_mmap(vma);
2214 }
1da177e4
LT
2215 }
2216 }
bb4a340e 2217 vma_unlock_anon_vma(vma);
b15d00b6 2218 khugepaged_enter_vma_merge(vma);
ed8ea815 2219 validate_mm(vma->vm_mm);
1da177e4
LT
2220 return error;
2221}
2222
09884964
LT
2223/*
2224 * Note how expand_stack() refuses to expand the stack all the way to
2225 * abut the next virtual mapping, *unless* that mapping itself is also
2226 * a stack mapping. We want to leave room for a guard page, after all
2227 * (the guard page itself is not added here, that is done by the
2228 * actual page faulting logic)
2229 *
2230 * This matches the behavior of the guard page logic (see mm/memory.c:
2231 * check_stack_guard_page()), which only allows the guard page to be
2232 * removed under these circumstances.
2233 */
b6a2fea3
OW
2234#ifdef CONFIG_STACK_GROWSUP
2235int expand_stack(struct vm_area_struct *vma, unsigned long address)
2236{
09884964
LT
2237 struct vm_area_struct *next;
2238
2239 address &= PAGE_MASK;
2240 next = vma->vm_next;
2241 if (next && next->vm_start == address + PAGE_SIZE) {
2242 if (!(next->vm_flags & VM_GROWSUP))
2243 return -ENOMEM;
2244 }
b6a2fea3
OW
2245 return expand_upwards(vma, address);
2246}
2247
2248struct vm_area_struct *
2249find_extend_vma(struct mm_struct *mm, unsigned long addr)
2250{
2251 struct vm_area_struct *vma, *prev;
2252
2253 addr &= PAGE_MASK;
2254 vma = find_vma_prev(mm, addr, &prev);
2255 if (vma && (vma->vm_start <= addr))
2256 return vma;
1c127185 2257 if (!prev || expand_stack(prev, addr))
b6a2fea3 2258 return NULL;
cea10a19
ML
2259 if (prev->vm_flags & VM_LOCKED)
2260 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
b6a2fea3
OW
2261 return prev;
2262}
2263#else
2264int expand_stack(struct vm_area_struct *vma, unsigned long address)
2265{
09884964
LT
2266 struct vm_area_struct *prev;
2267
2268 address &= PAGE_MASK;
2269 prev = vma->vm_prev;
2270 if (prev && prev->vm_end == address) {
2271 if (!(prev->vm_flags & VM_GROWSDOWN))
2272 return -ENOMEM;
2273 }
b6a2fea3
OW
2274 return expand_downwards(vma, address);
2275}
2276
1da177e4
LT
2277struct vm_area_struct *
2278find_extend_vma(struct mm_struct * mm, unsigned long addr)
2279{
2280 struct vm_area_struct * vma;
2281 unsigned long start;
2282
2283 addr &= PAGE_MASK;
2284 vma = find_vma(mm,addr);
2285 if (!vma)
2286 return NULL;
2287 if (vma->vm_start <= addr)
2288 return vma;
2289 if (!(vma->vm_flags & VM_GROWSDOWN))
2290 return NULL;
2291 start = vma->vm_start;
2292 if (expand_stack(vma, addr))
2293 return NULL;
cea10a19
ML
2294 if (vma->vm_flags & VM_LOCKED)
2295 __mlock_vma_pages_range(vma, addr, start, NULL);
1da177e4
LT
2296 return vma;
2297}
2298#endif
2299
1da177e4 2300/*
2c0b3814 2301 * Ok - we have the memory areas we should free on the vma list,
1da177e4 2302 * so release them, and do the vma updates.
2c0b3814
HD
2303 *
2304 * Called with the mm semaphore held.
1da177e4 2305 */
2c0b3814 2306static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1da177e4 2307{
4f74d2c8
LT
2308 unsigned long nr_accounted = 0;
2309
365e9c87
HD
2310 /* Update high watermark before we lower total_vm */
2311 update_hiwater_vm(mm);
1da177e4 2312 do {
2c0b3814
HD
2313 long nrpages = vma_pages(vma);
2314
4f74d2c8
LT
2315 if (vma->vm_flags & VM_ACCOUNT)
2316 nr_accounted += nrpages;
2c0b3814 2317 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
a8fb5618 2318 vma = remove_vma(vma);
146425a3 2319 } while (vma);
4f74d2c8 2320 vm_unacct_memory(nr_accounted);
1da177e4
LT
2321 validate_mm(mm);
2322}
2323
2324/*
2325 * Get rid of page table information in the indicated region.
2326 *
f10df686 2327 * Called with the mm semaphore held.
1da177e4
LT
2328 */
2329static void unmap_region(struct mm_struct *mm,
e0da382c
HD
2330 struct vm_area_struct *vma, struct vm_area_struct *prev,
2331 unsigned long start, unsigned long end)
1da177e4 2332{
e0da382c 2333 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
d16dfc55 2334 struct mmu_gather tlb;
1da177e4
LT
2335
2336 lru_add_drain();
2b047252 2337 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 2338 update_hiwater_rss(mm);
4f74d2c8 2339 unmap_vmas(&tlb, vma, start, end);
d16dfc55 2340 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
6ee8630e 2341 next ? next->vm_start : USER_PGTABLES_CEILING);
d16dfc55 2342 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
2343}
2344
2345/*
2346 * Create a list of vma's touched by the unmap, removing them from the mm's
2347 * vma list as we go..
2348 */
2349static void
2350detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2351 struct vm_area_struct *prev, unsigned long end)
2352{
2353 struct vm_area_struct **insertion_point;
2354 struct vm_area_struct *tail_vma = NULL;
2355
2356 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
297c5eee 2357 vma->vm_prev = NULL;
1da177e4 2358 do {
d3737187 2359 vma_rb_erase(vma, &mm->mm_rb);
1da177e4
LT
2360 mm->map_count--;
2361 tail_vma = vma;
2362 vma = vma->vm_next;
2363 } while (vma && vma->vm_start < end);
2364 *insertion_point = vma;
d3737187 2365 if (vma) {
297c5eee 2366 vma->vm_prev = prev;
d3737187
ML
2367 vma_gap_update(vma);
2368 } else
2369 mm->highest_vm_end = prev ? prev->vm_end : 0;
1da177e4
LT
2370 tail_vma->vm_next = NULL;
2371 mm->mmap_cache = NULL; /* Kill the cache. */
2372}
2373
2374/*
659ace58
KM
2375 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2376 * munmap path where it doesn't make sense to fail.
1da177e4 2377 */
659ace58 2378static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1da177e4
LT
2379 unsigned long addr, int new_below)
2380{
1da177e4 2381 struct vm_area_struct *new;
5beb4930 2382 int err = -ENOMEM;
1da177e4 2383
a5516438
AK
2384 if (is_vm_hugetlb_page(vma) && (addr &
2385 ~(huge_page_mask(hstate_vma(vma)))))
1da177e4
LT
2386 return -EINVAL;
2387
e94b1766 2388 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1da177e4 2389 if (!new)
5beb4930 2390 goto out_err;
1da177e4
LT
2391
2392 /* most fields are the same, copy all, and then fixup */
2393 *new = *vma;
2394
5beb4930
RR
2395 INIT_LIST_HEAD(&new->anon_vma_chain);
2396
1da177e4
LT
2397 if (new_below)
2398 new->vm_end = addr;
2399 else {
2400 new->vm_start = addr;
2401 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2402 }
2403
ef0855d3
ON
2404 err = vma_dup_policy(vma, new);
2405 if (err)
5beb4930 2406 goto out_free_vma;
1da177e4 2407
5beb4930
RR
2408 if (anon_vma_clone(new, vma))
2409 goto out_free_mpol;
2410
e9714acf 2411 if (new->vm_file)
1da177e4
LT
2412 get_file(new->vm_file);
2413
2414 if (new->vm_ops && new->vm_ops->open)
2415 new->vm_ops->open(new);
2416
2417 if (new_below)
5beb4930 2418 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1da177e4
LT
2419 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2420 else
5beb4930 2421 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1da177e4 2422
5beb4930
RR
2423 /* Success. */
2424 if (!err)
2425 return 0;
2426
2427 /* Clean everything up if vma_adjust failed. */
58927533
RR
2428 if (new->vm_ops && new->vm_ops->close)
2429 new->vm_ops->close(new);
e9714acf 2430 if (new->vm_file)
5beb4930 2431 fput(new->vm_file);
2aeadc30 2432 unlink_anon_vmas(new);
5beb4930 2433 out_free_mpol:
ef0855d3 2434 mpol_put(vma_policy(new));
5beb4930
RR
2435 out_free_vma:
2436 kmem_cache_free(vm_area_cachep, new);
2437 out_err:
2438 return err;
1da177e4
LT
2439}
2440
659ace58
KM
2441/*
2442 * Split a vma into two pieces at address 'addr', a new vma is allocated
2443 * either for the first part or the tail.
2444 */
2445int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2446 unsigned long addr, int new_below)
2447{
2448 if (mm->map_count >= sysctl_max_map_count)
2449 return -ENOMEM;
2450
2451 return __split_vma(mm, vma, addr, new_below);
2452}
2453
1da177e4
LT
2454/* Munmap is split into 2 main parts -- this part which finds
2455 * what needs doing, and the areas themselves, which do the
2456 * work. This now handles partial unmappings.
2457 * Jeremy Fitzhardinge <jeremy@goop.org>
2458 */
2459int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2460{
2461 unsigned long end;
146425a3 2462 struct vm_area_struct *vma, *prev, *last;
1da177e4
LT
2463
2464 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2465 return -EINVAL;
2466
2467 if ((len = PAGE_ALIGN(len)) == 0)
2468 return -EINVAL;
2469
2470 /* Find the first overlapping VMA */
9be34c9d 2471 vma = find_vma(mm, start);
146425a3 2472 if (!vma)
1da177e4 2473 return 0;
9be34c9d 2474 prev = vma->vm_prev;
146425a3 2475 /* we have start < vma->vm_end */
1da177e4
LT
2476
2477 /* if it doesn't overlap, we have nothing.. */
2478 end = start + len;
146425a3 2479 if (vma->vm_start >= end)
1da177e4
LT
2480 return 0;
2481
2482 /*
2483 * If we need to split any vma, do it now to save pain later.
2484 *
2485 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2486 * unmapped vm_area_struct will remain in use: so lower split_vma
2487 * places tmp vma above, and higher split_vma places tmp vma below.
2488 */
146425a3 2489 if (start > vma->vm_start) {
659ace58
KM
2490 int error;
2491
2492 /*
2493 * Make sure that map_count on return from munmap() will
2494 * not exceed its limit; but let map_count go just above
2495 * its limit temporarily, to help free resources as expected.
2496 */
2497 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2498 return -ENOMEM;
2499
2500 error = __split_vma(mm, vma, start, 0);
1da177e4
LT
2501 if (error)
2502 return error;
146425a3 2503 prev = vma;
1da177e4
LT
2504 }
2505
2506 /* Does it split the last one? */
2507 last = find_vma(mm, end);
2508 if (last && end > last->vm_start) {
659ace58 2509 int error = __split_vma(mm, last, end, 1);
1da177e4
LT
2510 if (error)
2511 return error;
2512 }
146425a3 2513 vma = prev? prev->vm_next: mm->mmap;
1da177e4 2514
ba470de4
RR
2515 /*
2516 * unlock any mlock()ed ranges before detaching vmas
2517 */
2518 if (mm->locked_vm) {
2519 struct vm_area_struct *tmp = vma;
2520 while (tmp && tmp->vm_start < end) {
2521 if (tmp->vm_flags & VM_LOCKED) {
2522 mm->locked_vm -= vma_pages(tmp);
2523 munlock_vma_pages_all(tmp);
2524 }
2525 tmp = tmp->vm_next;
2526 }
2527 }
2528
1da177e4
LT
2529 /*
2530 * Remove the vma's, and unmap the actual pages
2531 */
146425a3
HD
2532 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2533 unmap_region(mm, vma, prev, start, end);
1da177e4
LT
2534
2535 /* Fix up all other VM information */
2c0b3814 2536 remove_vma_list(mm, vma);
1da177e4
LT
2537
2538 return 0;
2539}
1da177e4 2540
bfce281c 2541int vm_munmap(unsigned long start, size_t len)
1da177e4
LT
2542{
2543 int ret;
bfce281c 2544 struct mm_struct *mm = current->mm;
1da177e4
LT
2545
2546 down_write(&mm->mmap_sem);
a46ef99d 2547 ret = do_munmap(mm, start, len);
1da177e4
LT
2548 up_write(&mm->mmap_sem);
2549 return ret;
2550}
a46ef99d
LT
2551EXPORT_SYMBOL(vm_munmap);
2552
2553SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2554{
2555 profile_munmap(addr);
bfce281c 2556 return vm_munmap(addr, len);
a46ef99d 2557}
1da177e4
LT
2558
2559static inline void verify_mm_writelocked(struct mm_struct *mm)
2560{
a241ec65 2561#ifdef CONFIG_DEBUG_VM
1da177e4
LT
2562 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2563 WARN_ON(1);
2564 up_read(&mm->mmap_sem);
2565 }
2566#endif
2567}
2568
2569/*
2570 * this is really a simplified "do_mmap". it only handles
2571 * anonymous maps. eventually we may be able to do some
2572 * brk-specific accounting here.
2573 */
e4eb1ff6 2574static unsigned long do_brk(unsigned long addr, unsigned long len)
1da177e4
LT
2575{
2576 struct mm_struct * mm = current->mm;
2577 struct vm_area_struct * vma, * prev;
2578 unsigned long flags;
2579 struct rb_node ** rb_link, * rb_parent;
2580 pgoff_t pgoff = addr >> PAGE_SHIFT;
3a459756 2581 int error;
1da177e4
LT
2582
2583 len = PAGE_ALIGN(len);
2584 if (!len)
2585 return addr;
2586
3a459756
KK
2587 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2588
2c6a1016
AV
2589 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2590 if (error & ~PAGE_MASK)
3a459756
KK
2591 return error;
2592
1da177e4
LT
2593 /*
2594 * mlock MCL_FUTURE?
2595 */
2596 if (mm->def_flags & VM_LOCKED) {
2597 unsigned long locked, lock_limit;
93ea1d0a
CW
2598 locked = len >> PAGE_SHIFT;
2599 locked += mm->locked_vm;
59e99e5b 2600 lock_limit = rlimit(RLIMIT_MEMLOCK);
93ea1d0a 2601 lock_limit >>= PAGE_SHIFT;
1da177e4
LT
2602 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2603 return -EAGAIN;
2604 }
2605
2606 /*
2607 * mm->mmap_sem is required to protect against another thread
2608 * changing the mappings in case we sleep.
2609 */
2610 verify_mm_writelocked(mm);
2611
2612 /*
2613 * Clear old maps. this also does some error checking for us
2614 */
2615 munmap_back:
6597d783 2616 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1da177e4
LT
2617 if (do_munmap(mm, addr, len))
2618 return -ENOMEM;
2619 goto munmap_back;
2620 }
2621
2622 /* Check against address space limits *after* clearing old maps... */
119f657c 2623 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1da177e4
LT
2624 return -ENOMEM;
2625
2626 if (mm->map_count > sysctl_max_map_count)
2627 return -ENOMEM;
2628
191c5424 2629 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
1da177e4
LT
2630 return -ENOMEM;
2631
1da177e4 2632 /* Can we just expand an old private anonymous mapping? */
ba470de4
RR
2633 vma = vma_merge(mm, prev, addr, addr + len, flags,
2634 NULL, NULL, pgoff, NULL);
2635 if (vma)
1da177e4
LT
2636 goto out;
2637
2638 /*
2639 * create a vma struct for an anonymous mapping
2640 */
c5e3b83e 2641 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1da177e4
LT
2642 if (!vma) {
2643 vm_unacct_memory(len >> PAGE_SHIFT);
2644 return -ENOMEM;
2645 }
1da177e4 2646
5beb4930 2647 INIT_LIST_HEAD(&vma->anon_vma_chain);
1da177e4
LT
2648 vma->vm_mm = mm;
2649 vma->vm_start = addr;
2650 vma->vm_end = addr + len;
2651 vma->vm_pgoff = pgoff;
2652 vma->vm_flags = flags;
3ed75eb8 2653 vma->vm_page_prot = vm_get_page_prot(flags);
1da177e4
LT
2654 vma_link(mm, vma, prev, rb_link, rb_parent);
2655out:
3af9e859 2656 perf_event_mmap(vma);
1da177e4 2657 mm->total_vm += len >> PAGE_SHIFT;
128557ff
ML
2658 if (flags & VM_LOCKED)
2659 mm->locked_vm += (len >> PAGE_SHIFT);
1da177e4
LT
2660 return addr;
2661}
2662
e4eb1ff6
LT
2663unsigned long vm_brk(unsigned long addr, unsigned long len)
2664{
2665 struct mm_struct *mm = current->mm;
2666 unsigned long ret;
128557ff 2667 bool populate;
e4eb1ff6
LT
2668
2669 down_write(&mm->mmap_sem);
2670 ret = do_brk(addr, len);
128557ff 2671 populate = ((mm->def_flags & VM_LOCKED) != 0);
e4eb1ff6 2672 up_write(&mm->mmap_sem);
128557ff
ML
2673 if (populate)
2674 mm_populate(addr, len);
e4eb1ff6
LT
2675 return ret;
2676}
2677EXPORT_SYMBOL(vm_brk);
1da177e4
LT
2678
2679/* Release all mmaps. */
2680void exit_mmap(struct mm_struct *mm)
2681{
d16dfc55 2682 struct mmu_gather tlb;
ba470de4 2683 struct vm_area_struct *vma;
1da177e4
LT
2684 unsigned long nr_accounted = 0;
2685
d6dd61c8 2686 /* mm's last user has gone, and its about to be pulled down */
cddb8a5c 2687 mmu_notifier_release(mm);
d6dd61c8 2688
ba470de4
RR
2689 if (mm->locked_vm) {
2690 vma = mm->mmap;
2691 while (vma) {
2692 if (vma->vm_flags & VM_LOCKED)
2693 munlock_vma_pages_all(vma);
2694 vma = vma->vm_next;
2695 }
2696 }
9480c53e
JF
2697
2698 arch_exit_mmap(mm);
2699
ba470de4 2700 vma = mm->mmap;
9480c53e
JF
2701 if (!vma) /* Can happen if dup_mmap() received an OOM */
2702 return;
2703
1da177e4 2704 lru_add_drain();
1da177e4 2705 flush_cache_mm(mm);
2b047252 2706 tlb_gather_mmu(&tlb, mm, 0, -1);
901608d9 2707 /* update_hiwater_rss(mm) here? but nobody should be looking */
e0da382c 2708 /* Use -1 here to ensure all VMAs in the mm are unmapped */
4f74d2c8 2709 unmap_vmas(&tlb, vma, 0, -1);
9ba69294 2710
6ee8630e 2711 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
853f5e26 2712 tlb_finish_mmu(&tlb, 0, -1);
1da177e4 2713
1da177e4 2714 /*
8f4f8c16
HD
2715 * Walk the list again, actually closing and freeing it,
2716 * with preemption enabled, without holding any MM locks.
1da177e4 2717 */
4f74d2c8
LT
2718 while (vma) {
2719 if (vma->vm_flags & VM_ACCOUNT)
2720 nr_accounted += vma_pages(vma);
a8fb5618 2721 vma = remove_vma(vma);
4f74d2c8
LT
2722 }
2723 vm_unacct_memory(nr_accounted);
e0da382c 2724
f9aed62a 2725 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
1da177e4
LT
2726}
2727
2728/* Insert vm structure into process list sorted by address
2729 * and into the inode's i_mmap tree. If vm_file is non-NULL
3d48ae45 2730 * then i_mmap_mutex is taken here.
1da177e4 2731 */
6597d783 2732int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1da177e4 2733{
6597d783
HD
2734 struct vm_area_struct *prev;
2735 struct rb_node **rb_link, *rb_parent;
1da177e4
LT
2736
2737 /*
2738 * The vm_pgoff of a purely anonymous vma should be irrelevant
2739 * until its first write fault, when page's anon_vma and index
2740 * are set. But now set the vm_pgoff it will almost certainly
2741 * end up with (unless mremap moves it elsewhere before that
2742 * first wfault), so /proc/pid/maps tells a consistent story.
2743 *
2744 * By setting it to reflect the virtual start address of the
2745 * vma, merges and splits can happen in a seamless way, just
2746 * using the existing file pgoff checks and manipulations.
2747 * Similarly in do_mmap_pgoff and in do_brk.
2748 */
2749 if (!vma->vm_file) {
2750 BUG_ON(vma->anon_vma);
2751 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2752 }
6597d783
HD
2753 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2754 &prev, &rb_link, &rb_parent))
1da177e4 2755 return -ENOMEM;
2fd4ef85 2756 if ((vma->vm_flags & VM_ACCOUNT) &&
34b4e4aa 2757 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2fd4ef85 2758 return -ENOMEM;
2b144498 2759
1da177e4
LT
2760 vma_link(mm, vma, prev, rb_link, rb_parent);
2761 return 0;
2762}
2763
2764/*
2765 * Copy the vma structure to a new location in the same mm,
2766 * prior to moving page table entries, to effect an mremap move.
2767 */
2768struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
38a76013
ML
2769 unsigned long addr, unsigned long len, pgoff_t pgoff,
2770 bool *need_rmap_locks)
1da177e4
LT
2771{
2772 struct vm_area_struct *vma = *vmap;
2773 unsigned long vma_start = vma->vm_start;
2774 struct mm_struct *mm = vma->vm_mm;
2775 struct vm_area_struct *new_vma, *prev;
2776 struct rb_node **rb_link, *rb_parent;
948f017b 2777 bool faulted_in_anon_vma = true;
1da177e4
LT
2778
2779 /*
2780 * If anonymous vma has not yet been faulted, update new pgoff
2781 * to match new location, to increase its chance of merging.
2782 */
948f017b 2783 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
1da177e4 2784 pgoff = addr >> PAGE_SHIFT;
948f017b
AA
2785 faulted_in_anon_vma = false;
2786 }
1da177e4 2787
6597d783
HD
2788 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2789 return NULL; /* should never get here */
1da177e4
LT
2790 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2791 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2792 if (new_vma) {
2793 /*
2794 * Source vma may have been merged into new_vma
2795 */
948f017b
AA
2796 if (unlikely(vma_start >= new_vma->vm_start &&
2797 vma_start < new_vma->vm_end)) {
2798 /*
2799 * The only way we can get a vma_merge with
2800 * self during an mremap is if the vma hasn't
2801 * been faulted in yet and we were allowed to
2802 * reset the dst vma->vm_pgoff to the
2803 * destination address of the mremap to allow
2804 * the merge to happen. mremap must change the
2805 * vm_pgoff linearity between src and dst vmas
2806 * (in turn preventing a vma_merge) to be
2807 * safe. It is only safe to keep the vm_pgoff
2808 * linear if there are no pages mapped yet.
2809 */
2810 VM_BUG_ON(faulted_in_anon_vma);
38a76013 2811 *vmap = vma = new_vma;
108d6642 2812 }
38a76013 2813 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1da177e4 2814 } else {
e94b1766 2815 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1da177e4
LT
2816 if (new_vma) {
2817 *new_vma = *vma;
523d4e20
ML
2818 new_vma->vm_start = addr;
2819 new_vma->vm_end = addr + len;
2820 new_vma->vm_pgoff = pgoff;
ef0855d3 2821 if (vma_dup_policy(vma, new_vma))
5beb4930
RR
2822 goto out_free_vma;
2823 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2824 if (anon_vma_clone(new_vma, vma))
2825 goto out_free_mempol;
e9714acf 2826 if (new_vma->vm_file)
1da177e4
LT
2827 get_file(new_vma->vm_file);
2828 if (new_vma->vm_ops && new_vma->vm_ops->open)
2829 new_vma->vm_ops->open(new_vma);
2830 vma_link(mm, new_vma, prev, rb_link, rb_parent);
38a76013 2831 *need_rmap_locks = false;
1da177e4
LT
2832 }
2833 }
2834 return new_vma;
5beb4930
RR
2835
2836 out_free_mempol:
ef0855d3 2837 mpol_put(vma_policy(new_vma));
5beb4930
RR
2838 out_free_vma:
2839 kmem_cache_free(vm_area_cachep, new_vma);
2840 return NULL;
1da177e4 2841}
119f657c 2842
2843/*
2844 * Return true if the calling process may expand its vm space by the passed
2845 * number of pages
2846 */
2847int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2848{
2849 unsigned long cur = mm->total_vm; /* pages */
2850 unsigned long lim;
2851
59e99e5b 2852 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
119f657c 2853
2854 if (cur + npages > lim)
2855 return 0;
2856 return 1;
2857}
fa5dc22f
RM
2858
2859
b1d0e4f5
NP
2860static int special_mapping_fault(struct vm_area_struct *vma,
2861 struct vm_fault *vmf)
fa5dc22f 2862{
b1d0e4f5 2863 pgoff_t pgoff;
fa5dc22f
RM
2864 struct page **pages;
2865
b1d0e4f5
NP
2866 /*
2867 * special mappings have no vm_file, and in that case, the mm
2868 * uses vm_pgoff internally. So we have to subtract it from here.
2869 * We are allowed to do this because we are the mm; do not copy
2870 * this code into drivers!
2871 */
2872 pgoff = vmf->pgoff - vma->vm_pgoff;
fa5dc22f 2873
b1d0e4f5
NP
2874 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2875 pgoff--;
fa5dc22f
RM
2876
2877 if (*pages) {
2878 struct page *page = *pages;
2879 get_page(page);
b1d0e4f5
NP
2880 vmf->page = page;
2881 return 0;
fa5dc22f
RM
2882 }
2883
b1d0e4f5 2884 return VM_FAULT_SIGBUS;
fa5dc22f
RM
2885}
2886
2887/*
2888 * Having a close hook prevents vma merging regardless of flags.
2889 */
2890static void special_mapping_close(struct vm_area_struct *vma)
2891{
2892}
2893
f0f37e2f 2894static const struct vm_operations_struct special_mapping_vmops = {
fa5dc22f 2895 .close = special_mapping_close,
b1d0e4f5 2896 .fault = special_mapping_fault,
fa5dc22f
RM
2897};
2898
2899/*
2900 * Called with mm->mmap_sem held for writing.
2901 * Insert a new vma covering the given region, with the given flags.
2902 * Its pages are supplied by the given array of struct page *.
2903 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2904 * The region past the last page supplied will always produce SIGBUS.
2905 * The array pointer and the pages it points to are assumed to stay alive
2906 * for as long as this mapping might exist.
2907 */
2908int install_special_mapping(struct mm_struct *mm,
2909 unsigned long addr, unsigned long len,
2910 unsigned long vm_flags, struct page **pages)
2911{
462e635e 2912 int ret;
fa5dc22f
RM
2913 struct vm_area_struct *vma;
2914
2915 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2916 if (unlikely(vma == NULL))
2917 return -ENOMEM;
2918
5beb4930 2919 INIT_LIST_HEAD(&vma->anon_vma_chain);
fa5dc22f
RM
2920 vma->vm_mm = mm;
2921 vma->vm_start = addr;
2922 vma->vm_end = addr + len;
2923
2f98735c 2924 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
3ed75eb8 2925 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
fa5dc22f
RM
2926
2927 vma->vm_ops = &special_mapping_vmops;
2928 vma->vm_private_data = pages;
2929
462e635e
TO
2930 ret = insert_vm_struct(mm, vma);
2931 if (ret)
2932 goto out;
fa5dc22f
RM
2933
2934 mm->total_vm += len >> PAGE_SHIFT;
2935
cdd6c482 2936 perf_event_mmap(vma);
089dd79d 2937
fa5dc22f 2938 return 0;
462e635e
TO
2939
2940out:
2941 kmem_cache_free(vm_area_cachep, vma);
2942 return ret;
fa5dc22f 2943}
7906d00c
AA
2944
2945static DEFINE_MUTEX(mm_all_locks_mutex);
2946
454ed842 2947static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
7906d00c 2948{
bf181b9f 2949 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
7906d00c
AA
2950 /*
2951 * The LSB of head.next can't change from under us
2952 * because we hold the mm_all_locks_mutex.
2953 */
572043c9 2954 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
7906d00c
AA
2955 /*
2956 * We can safely modify head.next after taking the
5a505085 2957 * anon_vma->root->rwsem. If some other vma in this mm shares
7906d00c
AA
2958 * the same anon_vma we won't take it again.
2959 *
2960 * No need of atomic instructions here, head.next
2961 * can't change from under us thanks to the
5a505085 2962 * anon_vma->root->rwsem.
7906d00c
AA
2963 */
2964 if (__test_and_set_bit(0, (unsigned long *)
bf181b9f 2965 &anon_vma->root->rb_root.rb_node))
7906d00c
AA
2966 BUG();
2967 }
2968}
2969
454ed842 2970static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
7906d00c
AA
2971{
2972 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2973 /*
2974 * AS_MM_ALL_LOCKS can't change from under us because
2975 * we hold the mm_all_locks_mutex.
2976 *
2977 * Operations on ->flags have to be atomic because
2978 * even if AS_MM_ALL_LOCKS is stable thanks to the
2979 * mm_all_locks_mutex, there may be other cpus
2980 * changing other bitflags in parallel to us.
2981 */
2982 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2983 BUG();
3d48ae45 2984 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
7906d00c
AA
2985 }
2986}
2987
2988/*
2989 * This operation locks against the VM for all pte/vma/mm related
2990 * operations that could ever happen on a certain mm. This includes
2991 * vmtruncate, try_to_unmap, and all page faults.
2992 *
2993 * The caller must take the mmap_sem in write mode before calling
2994 * mm_take_all_locks(). The caller isn't allowed to release the
2995 * mmap_sem until mm_drop_all_locks() returns.
2996 *
2997 * mmap_sem in write mode is required in order to block all operations
2998 * that could modify pagetables and free pages without need of
2999 * altering the vma layout (for example populate_range() with
3000 * nonlinear vmas). It's also needed in write mode to avoid new
3001 * anon_vmas to be associated with existing vmas.
3002 *
3003 * A single task can't take more than one mm_take_all_locks() in a row
3004 * or it would deadlock.
3005 *
bf181b9f 3006 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
7906d00c
AA
3007 * mapping->flags avoid to take the same lock twice, if more than one
3008 * vma in this mm is backed by the same anon_vma or address_space.
3009 *
3010 * We can take all the locks in random order because the VM code
631b0cfd 3011 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
7906d00c
AA
3012 * takes more than one of them in a row. Secondly we're protected
3013 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3014 *
3015 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3016 * that may have to take thousand of locks.
3017 *
3018 * mm_take_all_locks() can fail if it's interrupted by signals.
3019 */
3020int mm_take_all_locks(struct mm_struct *mm)
3021{
3022 struct vm_area_struct *vma;
5beb4930 3023 struct anon_vma_chain *avc;
7906d00c
AA
3024
3025 BUG_ON(down_read_trylock(&mm->mmap_sem));
3026
3027 mutex_lock(&mm_all_locks_mutex);
3028
3029 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3030 if (signal_pending(current))
3031 goto out_unlock;
7906d00c 3032 if (vma->vm_file && vma->vm_file->f_mapping)
454ed842 3033 vm_lock_mapping(mm, vma->vm_file->f_mapping);
7906d00c 3034 }
7cd5a02f
PZ
3035
3036 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3037 if (signal_pending(current))
3038 goto out_unlock;
3039 if (vma->anon_vma)
5beb4930
RR
3040 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3041 vm_lock_anon_vma(mm, avc->anon_vma);
7906d00c 3042 }
7cd5a02f 3043
584cff54 3044 return 0;
7906d00c
AA
3045
3046out_unlock:
584cff54
KC
3047 mm_drop_all_locks(mm);
3048 return -EINTR;
7906d00c
AA
3049}
3050
3051static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3052{
bf181b9f 3053 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
7906d00c
AA
3054 /*
3055 * The LSB of head.next can't change to 0 from under
3056 * us because we hold the mm_all_locks_mutex.
3057 *
3058 * We must however clear the bitflag before unlocking
bf181b9f 3059 * the vma so the users using the anon_vma->rb_root will
7906d00c
AA
3060 * never see our bitflag.
3061 *
3062 * No need of atomic instructions here, head.next
3063 * can't change from under us until we release the
5a505085 3064 * anon_vma->root->rwsem.
7906d00c
AA
3065 */
3066 if (!__test_and_clear_bit(0, (unsigned long *)
bf181b9f 3067 &anon_vma->root->rb_root.rb_node))
7906d00c 3068 BUG();
08b52706 3069 anon_vma_unlock_write(anon_vma);
7906d00c
AA
3070 }
3071}
3072
3073static void vm_unlock_mapping(struct address_space *mapping)
3074{
3075 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3076 /*
3077 * AS_MM_ALL_LOCKS can't change to 0 from under us
3078 * because we hold the mm_all_locks_mutex.
3079 */
3d48ae45 3080 mutex_unlock(&mapping->i_mmap_mutex);
7906d00c
AA
3081 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3082 &mapping->flags))
3083 BUG();
3084 }
3085}
3086
3087/*
3088 * The mmap_sem cannot be released by the caller until
3089 * mm_drop_all_locks() returns.
3090 */
3091void mm_drop_all_locks(struct mm_struct *mm)
3092{
3093 struct vm_area_struct *vma;
5beb4930 3094 struct anon_vma_chain *avc;
7906d00c
AA
3095
3096 BUG_ON(down_read_trylock(&mm->mmap_sem));
3097 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3098
3099 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3100 if (vma->anon_vma)
5beb4930
RR
3101 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3102 vm_unlock_anon_vma(avc->anon_vma);
7906d00c
AA
3103 if (vma->vm_file && vma->vm_file->f_mapping)
3104 vm_unlock_mapping(vma->vm_file->f_mapping);
3105 }
3106
3107 mutex_unlock(&mm_all_locks_mutex);
3108}
8feae131
DH
3109
3110/*
3111 * initialise the VMA slab
3112 */
3113void __init mmap_init(void)
3114{
00a62ce9
KM
3115 int ret;
3116
3117 ret = percpu_counter_init(&vm_committed_as, 0);
3118 VM_BUG_ON(ret);
8feae131 3119}
c9b1d098
AS
3120
3121/*
3122 * Initialise sysctl_user_reserve_kbytes.
3123 *
3124 * This is intended to prevent a user from starting a single memory hogging
3125 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3126 * mode.
3127 *
3128 * The default value is min(3% of free memory, 128MB)
3129 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3130 */
1640879a 3131static int init_user_reserve(void)
c9b1d098
AS
3132{
3133 unsigned long free_kbytes;
3134
3135 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3136
3137 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3138 return 0;
3139}
3140module_init(init_user_reserve)
4eeab4f5
AS
3141
3142/*
3143 * Initialise sysctl_admin_reserve_kbytes.
3144 *
3145 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3146 * to log in and kill a memory hogging process.
3147 *
3148 * Systems with more than 256MB will reserve 8MB, enough to recover
3149 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3150 * only reserve 3% of free pages by default.
3151 */
1640879a 3152static int init_admin_reserve(void)
4eeab4f5
AS
3153{
3154 unsigned long free_kbytes;
3155
3156 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3157
3158 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3159 return 0;
3160}
3161module_init(init_admin_reserve)
1640879a
AS
3162
3163/*
3164 * Reinititalise user and admin reserves if memory is added or removed.
3165 *
3166 * The default user reserve max is 128MB, and the default max for the
3167 * admin reserve is 8MB. These are usually, but not always, enough to
3168 * enable recovery from a memory hogging process using login/sshd, a shell,
3169 * and tools like top. It may make sense to increase or even disable the
3170 * reserve depending on the existence of swap or variations in the recovery
3171 * tools. So, the admin may have changed them.
3172 *
3173 * If memory is added and the reserves have been eliminated or increased above
3174 * the default max, then we'll trust the admin.
3175 *
3176 * If memory is removed and there isn't enough free memory, then we
3177 * need to reset the reserves.
3178 *
3179 * Otherwise keep the reserve set by the admin.
3180 */
3181static int reserve_mem_notifier(struct notifier_block *nb,
3182 unsigned long action, void *data)
3183{
3184 unsigned long tmp, free_kbytes;
3185
3186 switch (action) {
3187 case MEM_ONLINE:
3188 /* Default max is 128MB. Leave alone if modified by operator. */
3189 tmp = sysctl_user_reserve_kbytes;
3190 if (0 < tmp && tmp < (1UL << 17))
3191 init_user_reserve();
3192
3193 /* Default max is 8MB. Leave alone if modified by operator. */
3194 tmp = sysctl_admin_reserve_kbytes;
3195 if (0 < tmp && tmp < (1UL << 13))
3196 init_admin_reserve();
3197
3198 break;
3199 case MEM_OFFLINE:
3200 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3201
3202 if (sysctl_user_reserve_kbytes > free_kbytes) {
3203 init_user_reserve();
3204 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3205 sysctl_user_reserve_kbytes);
3206 }
3207
3208 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3209 init_admin_reserve();
3210 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3211 sysctl_admin_reserve_kbytes);
3212 }
3213 break;
3214 default:
3215 break;
3216 }
3217 return NOTIFY_OK;
3218}
3219
3220static struct notifier_block reserve_mem_nb = {
3221 .notifier_call = reserve_mem_notifier,
3222};
3223
3224static int __meminit init_reserve_notifier(void)
3225{
3226 if (register_hotmemory_notifier(&reserve_mem_nb))
3227 printk("Failed registering memory add/remove notifier for admin reserve");
3228
3229 return 0;
3230}
3231module_init(init_reserve_notifier)