mm: add overcommit_kbytes sysctl variable
[linux-2.6-block.git] / mm / mmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
046c6884 6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
1da177e4
LT
7 */
8
e8420a8e 9#include <linux/kernel.h>
1da177e4 10#include <linux/slab.h>
4af3c9cc 11#include <linux/backing-dev.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/shm.h>
14#include <linux/mman.h>
15#include <linux/pagemap.h>
16#include <linux/swap.h>
17#include <linux/syscalls.h>
c59ede7b 18#include <linux/capability.h>
1da177e4
LT
19#include <linux/init.h>
20#include <linux/file.h>
21#include <linux/fs.h>
22#include <linux/personality.h>
23#include <linux/security.h>
24#include <linux/hugetlb.h>
25#include <linux/profile.h>
b95f1b31 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/mempolicy.h>
29#include <linux/rmap.h>
cddb8a5c 30#include <linux/mmu_notifier.h>
cdd6c482 31#include <linux/perf_event.h>
120a795d 32#include <linux/audit.h>
b15d00b6 33#include <linux/khugepaged.h>
2b144498 34#include <linux/uprobes.h>
d3737187 35#include <linux/rbtree_augmented.h>
cf4aebc2 36#include <linux/sched/sysctl.h>
1640879a
AS
37#include <linux/notifier.h>
38#include <linux/memory.h>
1da177e4
LT
39
40#include <asm/uaccess.h>
41#include <asm/cacheflush.h>
42#include <asm/tlb.h>
d6dd61c8 43#include <asm/mmu_context.h>
1da177e4 44
42b77728
JB
45#include "internal.h"
46
3a459756
KK
47#ifndef arch_mmap_check
48#define arch_mmap_check(addr, len, flags) (0)
49#endif
50
08e7d9b5
MS
51#ifndef arch_rebalance_pgtables
52#define arch_rebalance_pgtables(addr, len) (addr)
53#endif
54
e0da382c
HD
55static void unmap_region(struct mm_struct *mm,
56 struct vm_area_struct *vma, struct vm_area_struct *prev,
57 unsigned long start, unsigned long end);
58
1da177e4
LT
59/* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
62 *
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 */
74pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77};
78
804af2cf
HD
79pgprot_t vm_get_page_prot(unsigned long vm_flags)
80{
b845f313
DK
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
804af2cf
HD
84}
85EXPORT_SYMBOL(vm_get_page_prot);
86
34679d7e
SL
87int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
49f0ce5f 89unsigned long sysctl_overcommit_kbytes __read_mostly;
c3d8c141 90int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
c9b1d098 91unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
4eeab4f5 92unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
34679d7e
SL
93/*
94 * Make sure vm_committed_as in one cacheline and not cacheline shared with
95 * other variables. It can be updated by several CPUs frequently.
96 */
97struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
1da177e4 98
997071bc
S
99/*
100 * The global memory commitment made in the system can be a metric
101 * that can be used to drive ballooning decisions when Linux is hosted
102 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
103 * balancing memory across competing virtual machines that are hosted.
104 * Several metrics drive this policy engine including the guest reported
105 * memory commitment.
106 */
107unsigned long vm_memory_committed(void)
108{
109 return percpu_counter_read_positive(&vm_committed_as);
110}
111EXPORT_SYMBOL_GPL(vm_memory_committed);
112
1da177e4
LT
113/*
114 * Check that a process has enough memory to allocate a new virtual
115 * mapping. 0 means there is enough memory for the allocation to
116 * succeed and -ENOMEM implies there is not.
117 *
118 * We currently support three overcommit policies, which are set via the
119 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
120 *
121 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
122 * Additional code 2002 Jul 20 by Robert Love.
123 *
124 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
125 *
126 * Note this is a helper function intended to be used by LSMs which
127 * wish to use this logic.
128 */
34b4e4aa 129int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1da177e4 130{
c9b1d098 131 unsigned long free, allowed, reserve;
1da177e4
LT
132
133 vm_acct_memory(pages);
134
135 /*
136 * Sometimes we want to use more memory than we have
137 */
138 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
139 return 0;
140
141 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
c15bef30
DF
142 free = global_page_state(NR_FREE_PAGES);
143 free += global_page_state(NR_FILE_PAGES);
144
145 /*
146 * shmem pages shouldn't be counted as free in this
147 * case, they can't be purged, only swapped out, and
148 * that won't affect the overall amount of available
149 * memory in the system.
150 */
151 free -= global_page_state(NR_SHMEM);
1da177e4 152
ec8acf20 153 free += get_nr_swap_pages();
1da177e4
LT
154
155 /*
156 * Any slabs which are created with the
157 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
158 * which are reclaimable, under pressure. The dentry
159 * cache and most inode caches should fall into this
160 */
972d1a7b 161 free += global_page_state(NR_SLAB_RECLAIMABLE);
1da177e4 162
6d9f7839
HA
163 /*
164 * Leave reserved pages. The pages are not for anonymous pages.
165 */
c15bef30 166 if (free <= totalreserve_pages)
6d9f7839
HA
167 goto error;
168 else
c15bef30 169 free -= totalreserve_pages;
6d9f7839
HA
170
171 /*
4eeab4f5 172 * Reserve some for root
6d9f7839 173 */
1da177e4 174 if (!cap_sys_admin)
4eeab4f5 175 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1da177e4
LT
176
177 if (free > pages)
178 return 0;
6d9f7839
HA
179
180 goto error;
1da177e4
LT
181 }
182
00619bcc 183 allowed = vm_commit_limit();
1da177e4 184 /*
4eeab4f5 185 * Reserve some for root
1da177e4
LT
186 */
187 if (!cap_sys_admin)
4eeab4f5 188 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1da177e4 189
c9b1d098
AS
190 /*
191 * Don't let a single process grow so big a user can't recover
192 */
193 if (mm) {
194 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
195 allowed -= min(mm->total_vm / 32, reserve);
196 }
1da177e4 197
00a62ce9 198 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1da177e4 199 return 0;
6d9f7839 200error:
1da177e4
LT
201 vm_unacct_memory(pages);
202
203 return -ENOMEM;
204}
205
1da177e4 206/*
3d48ae45 207 * Requires inode->i_mapping->i_mmap_mutex
1da177e4
LT
208 */
209static void __remove_shared_vm_struct(struct vm_area_struct *vma,
210 struct file *file, struct address_space *mapping)
211{
212 if (vma->vm_flags & VM_DENYWRITE)
496ad9aa 213 atomic_inc(&file_inode(file)->i_writecount);
1da177e4
LT
214 if (vma->vm_flags & VM_SHARED)
215 mapping->i_mmap_writable--;
216
217 flush_dcache_mmap_lock(mapping);
218 if (unlikely(vma->vm_flags & VM_NONLINEAR))
6b2dbba8 219 list_del_init(&vma->shared.nonlinear);
1da177e4 220 else
6b2dbba8 221 vma_interval_tree_remove(vma, &mapping->i_mmap);
1da177e4
LT
222 flush_dcache_mmap_unlock(mapping);
223}
224
225/*
6b2dbba8 226 * Unlink a file-based vm structure from its interval tree, to hide
a8fb5618 227 * vma from rmap and vmtruncate before freeing its page tables.
1da177e4 228 */
a8fb5618 229void unlink_file_vma(struct vm_area_struct *vma)
1da177e4
LT
230{
231 struct file *file = vma->vm_file;
232
1da177e4
LT
233 if (file) {
234 struct address_space *mapping = file->f_mapping;
3d48ae45 235 mutex_lock(&mapping->i_mmap_mutex);
1da177e4 236 __remove_shared_vm_struct(vma, file, mapping);
3d48ae45 237 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4 238 }
a8fb5618
HD
239}
240
241/*
242 * Close a vm structure and free it, returning the next.
243 */
244static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
245{
246 struct vm_area_struct *next = vma->vm_next;
247
a8fb5618 248 might_sleep();
1da177e4
LT
249 if (vma->vm_ops && vma->vm_ops->close)
250 vma->vm_ops->close(vma);
e9714acf 251 if (vma->vm_file)
a8fb5618 252 fput(vma->vm_file);
f0be3d32 253 mpol_put(vma_policy(vma));
1da177e4 254 kmem_cache_free(vm_area_cachep, vma);
a8fb5618 255 return next;
1da177e4
LT
256}
257
e4eb1ff6
LT
258static unsigned long do_brk(unsigned long addr, unsigned long len);
259
6a6160a7 260SYSCALL_DEFINE1(brk, unsigned long, brk)
1da177e4
LT
261{
262 unsigned long rlim, retval;
263 unsigned long newbrk, oldbrk;
264 struct mm_struct *mm = current->mm;
a5b4592c 265 unsigned long min_brk;
128557ff 266 bool populate;
1da177e4
LT
267
268 down_write(&mm->mmap_sem);
269
a5b4592c 270#ifdef CONFIG_COMPAT_BRK
5520e894
JK
271 /*
272 * CONFIG_COMPAT_BRK can still be overridden by setting
273 * randomize_va_space to 2, which will still cause mm->start_brk
274 * to be arbitrarily shifted
275 */
4471a675 276 if (current->brk_randomized)
5520e894
JK
277 min_brk = mm->start_brk;
278 else
279 min_brk = mm->end_data;
a5b4592c
JK
280#else
281 min_brk = mm->start_brk;
282#endif
283 if (brk < min_brk)
1da177e4 284 goto out;
1e624196
RG
285
286 /*
287 * Check against rlimit here. If this check is done later after the test
288 * of oldbrk with newbrk then it can escape the test and let the data
289 * segment grow beyond its set limit the in case where the limit is
290 * not page aligned -Ram Gupta
291 */
59e99e5b 292 rlim = rlimit(RLIMIT_DATA);
c1d171a0
JK
293 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
294 (mm->end_data - mm->start_data) > rlim)
1e624196
RG
295 goto out;
296
1da177e4
LT
297 newbrk = PAGE_ALIGN(brk);
298 oldbrk = PAGE_ALIGN(mm->brk);
299 if (oldbrk == newbrk)
300 goto set_brk;
301
302 /* Always allow shrinking brk. */
303 if (brk <= mm->brk) {
304 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
305 goto set_brk;
306 goto out;
307 }
308
1da177e4
LT
309 /* Check against existing mmap mappings. */
310 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
311 goto out;
312
313 /* Ok, looks good - let it rip. */
314 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
315 goto out;
128557ff 316
1da177e4
LT
317set_brk:
318 mm->brk = brk;
128557ff
ML
319 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
320 up_write(&mm->mmap_sem);
321 if (populate)
322 mm_populate(oldbrk, newbrk - oldbrk);
323 return brk;
324
1da177e4
LT
325out:
326 retval = mm->brk;
327 up_write(&mm->mmap_sem);
328 return retval;
329}
330
d3737187
ML
331static long vma_compute_subtree_gap(struct vm_area_struct *vma)
332{
333 unsigned long max, subtree_gap;
334 max = vma->vm_start;
335 if (vma->vm_prev)
336 max -= vma->vm_prev->vm_end;
337 if (vma->vm_rb.rb_left) {
338 subtree_gap = rb_entry(vma->vm_rb.rb_left,
339 struct vm_area_struct, vm_rb)->rb_subtree_gap;
340 if (subtree_gap > max)
341 max = subtree_gap;
342 }
343 if (vma->vm_rb.rb_right) {
344 subtree_gap = rb_entry(vma->vm_rb.rb_right,
345 struct vm_area_struct, vm_rb)->rb_subtree_gap;
346 if (subtree_gap > max)
347 max = subtree_gap;
348 }
349 return max;
350}
351
ed8ea815 352#ifdef CONFIG_DEBUG_VM_RB
1da177e4
LT
353static int browse_rb(struct rb_root *root)
354{
5a0768f6 355 int i = 0, j, bug = 0;
1da177e4
LT
356 struct rb_node *nd, *pn = NULL;
357 unsigned long prev = 0, pend = 0;
358
359 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
360 struct vm_area_struct *vma;
361 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
5a0768f6
ML
362 if (vma->vm_start < prev) {
363 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
364 bug = 1;
365 }
366 if (vma->vm_start < pend) {
1da177e4 367 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
5a0768f6
ML
368 bug = 1;
369 }
370 if (vma->vm_start > vma->vm_end) {
371 printk("vm_end %lx < vm_start %lx\n",
372 vma->vm_end, vma->vm_start);
373 bug = 1;
374 }
375 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
376 printk("free gap %lx, correct %lx\n",
377 vma->rb_subtree_gap,
378 vma_compute_subtree_gap(vma));
379 bug = 1;
380 }
1da177e4
LT
381 i++;
382 pn = nd;
d1af65d1
DM
383 prev = vma->vm_start;
384 pend = vma->vm_end;
1da177e4
LT
385 }
386 j = 0;
5a0768f6 387 for (nd = pn; nd; nd = rb_prev(nd))
1da177e4 388 j++;
5a0768f6
ML
389 if (i != j) {
390 printk("backwards %d, forwards %d\n", j, i);
391 bug = 1;
1da177e4 392 }
5a0768f6 393 return bug ? -1 : i;
1da177e4
LT
394}
395
d3737187
ML
396static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
397{
398 struct rb_node *nd;
399
400 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
401 struct vm_area_struct *vma;
402 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
403 BUG_ON(vma != ignore &&
404 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
1da177e4 405 }
1da177e4
LT
406}
407
408void validate_mm(struct mm_struct *mm)
409{
410 int bug = 0;
411 int i = 0;
5a0768f6 412 unsigned long highest_address = 0;
ed8ea815
ML
413 struct vm_area_struct *vma = mm->mmap;
414 while (vma) {
415 struct anon_vma_chain *avc;
63c3b902 416 vma_lock_anon_vma(vma);
ed8ea815
ML
417 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
418 anon_vma_interval_tree_verify(avc);
63c3b902 419 vma_unlock_anon_vma(vma);
5a0768f6 420 highest_address = vma->vm_end;
ed8ea815 421 vma = vma->vm_next;
1da177e4
LT
422 i++;
423 }
5a0768f6
ML
424 if (i != mm->map_count) {
425 printk("map_count %d vm_next %d\n", mm->map_count, i);
426 bug = 1;
427 }
428 if (highest_address != mm->highest_vm_end) {
429 printk("mm->highest_vm_end %lx, found %lx\n",
430 mm->highest_vm_end, highest_address);
431 bug = 1;
432 }
1da177e4 433 i = browse_rb(&mm->mm_rb);
5a0768f6
ML
434 if (i != mm->map_count) {
435 printk("map_count %d rb %d\n", mm->map_count, i);
436 bug = 1;
437 }
46a350ef 438 BUG_ON(bug);
1da177e4
LT
439}
440#else
d3737187 441#define validate_mm_rb(root, ignore) do { } while (0)
1da177e4
LT
442#define validate_mm(mm) do { } while (0)
443#endif
444
d3737187
ML
445RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
446 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
447
448/*
449 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
450 * vma->vm_prev->vm_end values changed, without modifying the vma's position
451 * in the rbtree.
452 */
453static void vma_gap_update(struct vm_area_struct *vma)
454{
455 /*
456 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
457 * function that does exacltly what we want.
458 */
459 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
460}
461
462static inline void vma_rb_insert(struct vm_area_struct *vma,
463 struct rb_root *root)
464{
465 /* All rb_subtree_gap values must be consistent prior to insertion */
466 validate_mm_rb(root, NULL);
467
468 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469}
470
471static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
472{
473 /*
474 * All rb_subtree_gap values must be consistent prior to erase,
475 * with the possible exception of the vma being erased.
476 */
477 validate_mm_rb(root, vma);
478
479 /*
480 * Note rb_erase_augmented is a fairly large inline function,
481 * so make sure we instantiate it only once with our desired
482 * augmented rbtree callbacks.
483 */
484 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
485}
486
bf181b9f
ML
487/*
488 * vma has some anon_vma assigned, and is already inserted on that
489 * anon_vma's interval trees.
490 *
491 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
492 * vma must be removed from the anon_vma's interval trees using
493 * anon_vma_interval_tree_pre_update_vma().
494 *
495 * After the update, the vma will be reinserted using
496 * anon_vma_interval_tree_post_update_vma().
497 *
498 * The entire update must be protected by exclusive mmap_sem and by
499 * the root anon_vma's mutex.
500 */
501static inline void
502anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
503{
504 struct anon_vma_chain *avc;
505
506 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
507 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
508}
509
510static inline void
511anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
512{
513 struct anon_vma_chain *avc;
514
515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
517}
518
6597d783
HD
519static int find_vma_links(struct mm_struct *mm, unsigned long addr,
520 unsigned long end, struct vm_area_struct **pprev,
521 struct rb_node ***rb_link, struct rb_node **rb_parent)
1da177e4 522{
6597d783 523 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
1da177e4
LT
524
525 __rb_link = &mm->mm_rb.rb_node;
526 rb_prev = __rb_parent = NULL;
1da177e4
LT
527
528 while (*__rb_link) {
529 struct vm_area_struct *vma_tmp;
530
531 __rb_parent = *__rb_link;
532 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
533
534 if (vma_tmp->vm_end > addr) {
6597d783
HD
535 /* Fail if an existing vma overlaps the area */
536 if (vma_tmp->vm_start < end)
537 return -ENOMEM;
1da177e4
LT
538 __rb_link = &__rb_parent->rb_left;
539 } else {
540 rb_prev = __rb_parent;
541 __rb_link = &__rb_parent->rb_right;
542 }
543 }
544
545 *pprev = NULL;
546 if (rb_prev)
547 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
548 *rb_link = __rb_link;
549 *rb_parent = __rb_parent;
6597d783 550 return 0;
1da177e4
LT
551}
552
e8420a8e
CH
553static unsigned long count_vma_pages_range(struct mm_struct *mm,
554 unsigned long addr, unsigned long end)
555{
556 unsigned long nr_pages = 0;
557 struct vm_area_struct *vma;
558
559 /* Find first overlaping mapping */
560 vma = find_vma_intersection(mm, addr, end);
561 if (!vma)
562 return 0;
563
564 nr_pages = (min(end, vma->vm_end) -
565 max(addr, vma->vm_start)) >> PAGE_SHIFT;
566
567 /* Iterate over the rest of the overlaps */
568 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
569 unsigned long overlap_len;
570
571 if (vma->vm_start > end)
572 break;
573
574 overlap_len = min(end, vma->vm_end) - vma->vm_start;
575 nr_pages += overlap_len >> PAGE_SHIFT;
576 }
577
578 return nr_pages;
579}
580
1da177e4
LT
581void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
582 struct rb_node **rb_link, struct rb_node *rb_parent)
583{
d3737187
ML
584 /* Update tracking information for the gap following the new vma. */
585 if (vma->vm_next)
586 vma_gap_update(vma->vm_next);
587 else
588 mm->highest_vm_end = vma->vm_end;
589
590 /*
591 * vma->vm_prev wasn't known when we followed the rbtree to find the
592 * correct insertion point for that vma. As a result, we could not
593 * update the vma vm_rb parents rb_subtree_gap values on the way down.
594 * So, we first insert the vma with a zero rb_subtree_gap value
595 * (to be consistent with what we did on the way down), and then
596 * immediately update the gap to the correct value. Finally we
597 * rebalance the rbtree after all augmented values have been set.
598 */
1da177e4 599 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
d3737187
ML
600 vma->rb_subtree_gap = 0;
601 vma_gap_update(vma);
602 vma_rb_insert(vma, &mm->mm_rb);
1da177e4
LT
603}
604
cb8f488c 605static void __vma_link_file(struct vm_area_struct *vma)
1da177e4 606{
48aae425 607 struct file *file;
1da177e4
LT
608
609 file = vma->vm_file;
610 if (file) {
611 struct address_space *mapping = file->f_mapping;
612
613 if (vma->vm_flags & VM_DENYWRITE)
496ad9aa 614 atomic_dec(&file_inode(file)->i_writecount);
1da177e4
LT
615 if (vma->vm_flags & VM_SHARED)
616 mapping->i_mmap_writable++;
617
618 flush_dcache_mmap_lock(mapping);
619 if (unlikely(vma->vm_flags & VM_NONLINEAR))
620 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
621 else
6b2dbba8 622 vma_interval_tree_insert(vma, &mapping->i_mmap);
1da177e4
LT
623 flush_dcache_mmap_unlock(mapping);
624 }
625}
626
627static void
628__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
629 struct vm_area_struct *prev, struct rb_node **rb_link,
630 struct rb_node *rb_parent)
631{
632 __vma_link_list(mm, vma, prev, rb_parent);
633 __vma_link_rb(mm, vma, rb_link, rb_parent);
1da177e4
LT
634}
635
636static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
637 struct vm_area_struct *prev, struct rb_node **rb_link,
638 struct rb_node *rb_parent)
639{
640 struct address_space *mapping = NULL;
641
642 if (vma->vm_file)
643 mapping = vma->vm_file->f_mapping;
644
97a89413 645 if (mapping)
3d48ae45 646 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
647
648 __vma_link(mm, vma, prev, rb_link, rb_parent);
649 __vma_link_file(vma);
650
1da177e4 651 if (mapping)
3d48ae45 652 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
653
654 mm->map_count++;
655 validate_mm(mm);
656}
657
658/*
88f6b4c3 659 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
6b2dbba8 660 * mm's list and rbtree. It has already been inserted into the interval tree.
1da177e4 661 */
48aae425 662static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1da177e4 663{
6597d783 664 struct vm_area_struct *prev;
48aae425 665 struct rb_node **rb_link, *rb_parent;
1da177e4 666
6597d783
HD
667 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
668 &prev, &rb_link, &rb_parent))
669 BUG();
1da177e4
LT
670 __vma_link(mm, vma, prev, rb_link, rb_parent);
671 mm->map_count++;
672}
673
674static inline void
675__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
676 struct vm_area_struct *prev)
677{
d3737187 678 struct vm_area_struct *next;
297c5eee 679
d3737187
ML
680 vma_rb_erase(vma, &mm->mm_rb);
681 prev->vm_next = next = vma->vm_next;
297c5eee
LT
682 if (next)
683 next->vm_prev = prev;
1da177e4
LT
684 if (mm->mmap_cache == vma)
685 mm->mmap_cache = prev;
686}
687
688/*
689 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
690 * is already present in an i_mmap tree without adjusting the tree.
691 * The following helper function should be used when such adjustments
692 * are necessary. The "insert" vma (if any) is to be inserted
693 * before we drop the necessary locks.
694 */
5beb4930 695int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
696 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
697{
698 struct mm_struct *mm = vma->vm_mm;
699 struct vm_area_struct *next = vma->vm_next;
700 struct vm_area_struct *importer = NULL;
701 struct address_space *mapping = NULL;
6b2dbba8 702 struct rb_root *root = NULL;
012f1800 703 struct anon_vma *anon_vma = NULL;
1da177e4 704 struct file *file = vma->vm_file;
d3737187 705 bool start_changed = false, end_changed = false;
1da177e4
LT
706 long adjust_next = 0;
707 int remove_next = 0;
708
709 if (next && !insert) {
287d97ac
LT
710 struct vm_area_struct *exporter = NULL;
711
1da177e4
LT
712 if (end >= next->vm_end) {
713 /*
714 * vma expands, overlapping all the next, and
715 * perhaps the one after too (mprotect case 6).
716 */
717again: remove_next = 1 + (end > next->vm_end);
718 end = next->vm_end;
287d97ac 719 exporter = next;
1da177e4
LT
720 importer = vma;
721 } else if (end > next->vm_start) {
722 /*
723 * vma expands, overlapping part of the next:
724 * mprotect case 5 shifting the boundary up.
725 */
726 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
287d97ac 727 exporter = next;
1da177e4
LT
728 importer = vma;
729 } else if (end < vma->vm_end) {
730 /*
731 * vma shrinks, and !insert tells it's not
732 * split_vma inserting another: so it must be
733 * mprotect case 4 shifting the boundary down.
734 */
735 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
287d97ac 736 exporter = vma;
1da177e4
LT
737 importer = next;
738 }
1da177e4 739
5beb4930
RR
740 /*
741 * Easily overlooked: when mprotect shifts the boundary,
742 * make sure the expanding vma has anon_vma set if the
743 * shrinking vma had, to cover any anon pages imported.
744 */
287d97ac
LT
745 if (exporter && exporter->anon_vma && !importer->anon_vma) {
746 if (anon_vma_clone(importer, exporter))
5beb4930 747 return -ENOMEM;
287d97ac 748 importer->anon_vma = exporter->anon_vma;
5beb4930
RR
749 }
750 }
751
1da177e4
LT
752 if (file) {
753 mapping = file->f_mapping;
682968e0 754 if (!(vma->vm_flags & VM_NONLINEAR)) {
1da177e4 755 root = &mapping->i_mmap;
cbc91f71 756 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
682968e0
SD
757
758 if (adjust_next)
cbc91f71
SD
759 uprobe_munmap(next, next->vm_start,
760 next->vm_end);
682968e0
SD
761 }
762
3d48ae45 763 mutex_lock(&mapping->i_mmap_mutex);
1da177e4 764 if (insert) {
1da177e4 765 /*
6b2dbba8 766 * Put into interval tree now, so instantiated pages
1da177e4
LT
767 * are visible to arm/parisc __flush_dcache_page
768 * throughout; but we cannot insert into address
769 * space until vma start or end is updated.
770 */
771 __vma_link_file(insert);
772 }
773 }
774
94fcc585
AA
775 vma_adjust_trans_huge(vma, start, end, adjust_next);
776
bf181b9f
ML
777 anon_vma = vma->anon_vma;
778 if (!anon_vma && adjust_next)
779 anon_vma = next->anon_vma;
780 if (anon_vma) {
ca42b26a
ML
781 VM_BUG_ON(adjust_next && next->anon_vma &&
782 anon_vma != next->anon_vma);
4fc3f1d6 783 anon_vma_lock_write(anon_vma);
bf181b9f
ML
784 anon_vma_interval_tree_pre_update_vma(vma);
785 if (adjust_next)
786 anon_vma_interval_tree_pre_update_vma(next);
787 }
012f1800 788
1da177e4
LT
789 if (root) {
790 flush_dcache_mmap_lock(mapping);
6b2dbba8 791 vma_interval_tree_remove(vma, root);
1da177e4 792 if (adjust_next)
6b2dbba8 793 vma_interval_tree_remove(next, root);
1da177e4
LT
794 }
795
d3737187
ML
796 if (start != vma->vm_start) {
797 vma->vm_start = start;
798 start_changed = true;
799 }
800 if (end != vma->vm_end) {
801 vma->vm_end = end;
802 end_changed = true;
803 }
1da177e4
LT
804 vma->vm_pgoff = pgoff;
805 if (adjust_next) {
806 next->vm_start += adjust_next << PAGE_SHIFT;
807 next->vm_pgoff += adjust_next;
808 }
809
810 if (root) {
811 if (adjust_next)
6b2dbba8
ML
812 vma_interval_tree_insert(next, root);
813 vma_interval_tree_insert(vma, root);
1da177e4
LT
814 flush_dcache_mmap_unlock(mapping);
815 }
816
817 if (remove_next) {
818 /*
819 * vma_merge has merged next into vma, and needs
820 * us to remove next before dropping the locks.
821 */
822 __vma_unlink(mm, next, vma);
823 if (file)
824 __remove_shared_vm_struct(next, file, mapping);
1da177e4
LT
825 } else if (insert) {
826 /*
827 * split_vma has split insert from vma, and needs
828 * us to insert it before dropping the locks
829 * (it may either follow vma or precede it).
830 */
831 __insert_vm_struct(mm, insert);
d3737187
ML
832 } else {
833 if (start_changed)
834 vma_gap_update(vma);
835 if (end_changed) {
836 if (!next)
837 mm->highest_vm_end = end;
838 else if (!adjust_next)
839 vma_gap_update(next);
840 }
1da177e4
LT
841 }
842
bf181b9f
ML
843 if (anon_vma) {
844 anon_vma_interval_tree_post_update_vma(vma);
845 if (adjust_next)
846 anon_vma_interval_tree_post_update_vma(next);
08b52706 847 anon_vma_unlock_write(anon_vma);
bf181b9f 848 }
1da177e4 849 if (mapping)
3d48ae45 850 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4 851
2b144498 852 if (root) {
7b2d81d4 853 uprobe_mmap(vma);
2b144498
SD
854
855 if (adjust_next)
7b2d81d4 856 uprobe_mmap(next);
2b144498
SD
857 }
858
1da177e4 859 if (remove_next) {
925d1c40 860 if (file) {
cbc91f71 861 uprobe_munmap(next, next->vm_start, next->vm_end);
1da177e4 862 fput(file);
925d1c40 863 }
5beb4930
RR
864 if (next->anon_vma)
865 anon_vma_merge(vma, next);
1da177e4 866 mm->map_count--;
3964acd0 867 mpol_put(vma_policy(next));
1da177e4
LT
868 kmem_cache_free(vm_area_cachep, next);
869 /*
870 * In mprotect's case 6 (see comments on vma_merge),
871 * we must remove another next too. It would clutter
872 * up the code too much to do both in one go.
873 */
d3737187
ML
874 next = vma->vm_next;
875 if (remove_next == 2)
1da177e4 876 goto again;
d3737187
ML
877 else if (next)
878 vma_gap_update(next);
879 else
880 mm->highest_vm_end = end;
1da177e4 881 }
2b144498 882 if (insert && file)
7b2d81d4 883 uprobe_mmap(insert);
1da177e4
LT
884
885 validate_mm(mm);
5beb4930
RR
886
887 return 0;
1da177e4
LT
888}
889
890/*
891 * If the vma has a ->close operation then the driver probably needs to release
892 * per-vma resources, so we don't attempt to merge those.
893 */
1da177e4
LT
894static inline int is_mergeable_vma(struct vm_area_struct *vma,
895 struct file *file, unsigned long vm_flags)
896{
0b173bc4 897 if (vma->vm_flags ^ vm_flags)
1da177e4
LT
898 return 0;
899 if (vma->vm_file != file)
900 return 0;
901 if (vma->vm_ops && vma->vm_ops->close)
902 return 0;
903 return 1;
904}
905
906static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
965f55de
SL
907 struct anon_vma *anon_vma2,
908 struct vm_area_struct *vma)
1da177e4 909{
965f55de
SL
910 /*
911 * The list_is_singular() test is to avoid merging VMA cloned from
912 * parents. This can improve scalability caused by anon_vma lock.
913 */
914 if ((!anon_vma1 || !anon_vma2) && (!vma ||
915 list_is_singular(&vma->anon_vma_chain)))
916 return 1;
917 return anon_vma1 == anon_vma2;
1da177e4
LT
918}
919
920/*
921 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
922 * in front of (at a lower virtual address and file offset than) the vma.
923 *
924 * We cannot merge two vmas if they have differently assigned (non-NULL)
925 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
926 *
927 * We don't check here for the merged mmap wrapping around the end of pagecache
928 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
929 * wrap, nor mmaps which cover the final page at index -1UL.
930 */
931static int
932can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
933 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
934{
935 if (is_mergeable_vma(vma, file, vm_flags) &&
965f55de 936 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1da177e4
LT
937 if (vma->vm_pgoff == vm_pgoff)
938 return 1;
939 }
940 return 0;
941}
942
943/*
944 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
945 * beyond (at a higher virtual address and file offset than) the vma.
946 *
947 * We cannot merge two vmas if they have differently assigned (non-NULL)
948 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
949 */
950static int
951can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
952 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
953{
954 if (is_mergeable_vma(vma, file, vm_flags) &&
965f55de 955 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1da177e4 956 pgoff_t vm_pglen;
d6e93217 957 vm_pglen = vma_pages(vma);
1da177e4
LT
958 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
959 return 1;
960 }
961 return 0;
962}
963
964/*
965 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
966 * whether that can be merged with its predecessor or its successor.
967 * Or both (it neatly fills a hole).
968 *
969 * In most cases - when called for mmap, brk or mremap - [addr,end) is
970 * certain not to be mapped by the time vma_merge is called; but when
971 * called for mprotect, it is certain to be already mapped (either at
972 * an offset within prev, or at the start of next), and the flags of
973 * this area are about to be changed to vm_flags - and the no-change
974 * case has already been eliminated.
975 *
976 * The following mprotect cases have to be considered, where AAAA is
977 * the area passed down from mprotect_fixup, never extending beyond one
978 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
979 *
980 * AAAA AAAA AAAA AAAA
981 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
982 * cannot merge might become might become might become
983 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
984 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
985 * mremap move: PPPPNNNNNNNN 8
986 * AAAA
987 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
988 * might become case 1 below case 2 below case 3 below
989 *
990 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
991 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
992 */
993struct vm_area_struct *vma_merge(struct mm_struct *mm,
994 struct vm_area_struct *prev, unsigned long addr,
995 unsigned long end, unsigned long vm_flags,
996 struct anon_vma *anon_vma, struct file *file,
997 pgoff_t pgoff, struct mempolicy *policy)
998{
999 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1000 struct vm_area_struct *area, *next;
5beb4930 1001 int err;
1da177e4
LT
1002
1003 /*
1004 * We later require that vma->vm_flags == vm_flags,
1005 * so this tests vma->vm_flags & VM_SPECIAL, too.
1006 */
1007 if (vm_flags & VM_SPECIAL)
1008 return NULL;
1009
1010 if (prev)
1011 next = prev->vm_next;
1012 else
1013 next = mm->mmap;
1014 area = next;
1015 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1016 next = next->vm_next;
1017
1018 /*
1019 * Can it merge with the predecessor?
1020 */
1021 if (prev && prev->vm_end == addr &&
1022 mpol_equal(vma_policy(prev), policy) &&
1023 can_vma_merge_after(prev, vm_flags,
1024 anon_vma, file, pgoff)) {
1025 /*
1026 * OK, it can. Can we now merge in the successor as well?
1027 */
1028 if (next && end == next->vm_start &&
1029 mpol_equal(policy, vma_policy(next)) &&
1030 can_vma_merge_before(next, vm_flags,
1031 anon_vma, file, pgoff+pglen) &&
1032 is_mergeable_anon_vma(prev->anon_vma,
965f55de 1033 next->anon_vma, NULL)) {
1da177e4 1034 /* cases 1, 6 */
5beb4930 1035 err = vma_adjust(prev, prev->vm_start,
1da177e4
LT
1036 next->vm_end, prev->vm_pgoff, NULL);
1037 } else /* cases 2, 5, 7 */
5beb4930 1038 err = vma_adjust(prev, prev->vm_start,
1da177e4 1039 end, prev->vm_pgoff, NULL);
5beb4930
RR
1040 if (err)
1041 return NULL;
b15d00b6 1042 khugepaged_enter_vma_merge(prev);
1da177e4
LT
1043 return prev;
1044 }
1045
1046 /*
1047 * Can this new request be merged in front of next?
1048 */
1049 if (next && end == next->vm_start &&
1050 mpol_equal(policy, vma_policy(next)) &&
1051 can_vma_merge_before(next, vm_flags,
1052 anon_vma, file, pgoff+pglen)) {
1053 if (prev && addr < prev->vm_end) /* case 4 */
5beb4930 1054 err = vma_adjust(prev, prev->vm_start,
1da177e4
LT
1055 addr, prev->vm_pgoff, NULL);
1056 else /* cases 3, 8 */
5beb4930 1057 err = vma_adjust(area, addr, next->vm_end,
1da177e4 1058 next->vm_pgoff - pglen, NULL);
5beb4930
RR
1059 if (err)
1060 return NULL;
b15d00b6 1061 khugepaged_enter_vma_merge(area);
1da177e4
LT
1062 return area;
1063 }
1064
1065 return NULL;
1066}
1067
d0e9fe17
LT
1068/*
1069 * Rough compatbility check to quickly see if it's even worth looking
1070 * at sharing an anon_vma.
1071 *
1072 * They need to have the same vm_file, and the flags can only differ
1073 * in things that mprotect may change.
1074 *
1075 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1076 * we can merge the two vma's. For example, we refuse to merge a vma if
1077 * there is a vm_ops->close() function, because that indicates that the
1078 * driver is doing some kind of reference counting. But that doesn't
1079 * really matter for the anon_vma sharing case.
1080 */
1081static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1082{
1083 return a->vm_end == b->vm_start &&
1084 mpol_equal(vma_policy(a), vma_policy(b)) &&
1085 a->vm_file == b->vm_file &&
1086 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1087 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1088}
1089
1090/*
1091 * Do some basic sanity checking to see if we can re-use the anon_vma
1092 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1093 * the same as 'old', the other will be the new one that is trying
1094 * to share the anon_vma.
1095 *
1096 * NOTE! This runs with mm_sem held for reading, so it is possible that
1097 * the anon_vma of 'old' is concurrently in the process of being set up
1098 * by another page fault trying to merge _that_. But that's ok: if it
1099 * is being set up, that automatically means that it will be a singleton
1100 * acceptable for merging, so we can do all of this optimistically. But
1101 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1102 *
1103 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1104 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1105 * is to return an anon_vma that is "complex" due to having gone through
1106 * a fork).
1107 *
1108 * We also make sure that the two vma's are compatible (adjacent,
1109 * and with the same memory policies). That's all stable, even with just
1110 * a read lock on the mm_sem.
1111 */
1112static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1113{
1114 if (anon_vma_compatible(a, b)) {
1115 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1116
1117 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1118 return anon_vma;
1119 }
1120 return NULL;
1121}
1122
1da177e4
LT
1123/*
1124 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1125 * neighbouring vmas for a suitable anon_vma, before it goes off
1126 * to allocate a new anon_vma. It checks because a repetitive
1127 * sequence of mprotects and faults may otherwise lead to distinct
1128 * anon_vmas being allocated, preventing vma merge in subsequent
1129 * mprotect.
1130 */
1131struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1132{
d0e9fe17 1133 struct anon_vma *anon_vma;
1da177e4 1134 struct vm_area_struct *near;
1da177e4
LT
1135
1136 near = vma->vm_next;
1137 if (!near)
1138 goto try_prev;
1139
d0e9fe17
LT
1140 anon_vma = reusable_anon_vma(near, vma, near);
1141 if (anon_vma)
1142 return anon_vma;
1da177e4 1143try_prev:
9be34c9d 1144 near = vma->vm_prev;
1da177e4
LT
1145 if (!near)
1146 goto none;
1147
d0e9fe17
LT
1148 anon_vma = reusable_anon_vma(near, near, vma);
1149 if (anon_vma)
1150 return anon_vma;
1da177e4
LT
1151none:
1152 /*
1153 * There's no absolute need to look only at touching neighbours:
1154 * we could search further afield for "compatible" anon_vmas.
1155 * But it would probably just be a waste of time searching,
1156 * or lead to too many vmas hanging off the same anon_vma.
1157 * We're trying to allow mprotect remerging later on,
1158 * not trying to minimize memory used for anon_vmas.
1159 */
1160 return NULL;
1161}
1162
1163#ifdef CONFIG_PROC_FS
ab50b8ed 1164void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1da177e4
LT
1165 struct file *file, long pages)
1166{
1167 const unsigned long stack_flags
1168 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1169
44de9d0c
HS
1170 mm->total_vm += pages;
1171
1da177e4
LT
1172 if (file) {
1173 mm->shared_vm += pages;
1174 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1175 mm->exec_vm += pages;
1176 } else if (flags & stack_flags)
1177 mm->stack_vm += pages;
1da177e4
LT
1178}
1179#endif /* CONFIG_PROC_FS */
1180
40401530
AV
1181/*
1182 * If a hint addr is less than mmap_min_addr change hint to be as
1183 * low as possible but still greater than mmap_min_addr
1184 */
1185static inline unsigned long round_hint_to_min(unsigned long hint)
1186{
1187 hint &= PAGE_MASK;
1188 if (((void *)hint != NULL) &&
1189 (hint < mmap_min_addr))
1190 return PAGE_ALIGN(mmap_min_addr);
1191 return hint;
1192}
1193
1da177e4 1194/*
27f5de79 1195 * The caller must hold down_write(&current->mm->mmap_sem).
1da177e4
LT
1196 */
1197
e3fc629d 1198unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1da177e4 1199 unsigned long len, unsigned long prot,
bebeb3d6 1200 unsigned long flags, unsigned long pgoff,
41badc15 1201 unsigned long *populate)
1da177e4
LT
1202{
1203 struct mm_struct * mm = current->mm;
ca16d140 1204 vm_flags_t vm_flags;
1da177e4 1205
41badc15 1206 *populate = 0;
bebeb3d6 1207
1da177e4
LT
1208 /*
1209 * Does the application expect PROT_READ to imply PROT_EXEC?
1210 *
1211 * (the exception is when the underlying filesystem is noexec
1212 * mounted, in which case we dont add PROT_EXEC.)
1213 */
1214 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
d3ac7f89 1215 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1da177e4
LT
1216 prot |= PROT_EXEC;
1217
1218 if (!len)
1219 return -EINVAL;
1220
7cd94146
EP
1221 if (!(flags & MAP_FIXED))
1222 addr = round_hint_to_min(addr);
1223
1da177e4
LT
1224 /* Careful about overflows.. */
1225 len = PAGE_ALIGN(len);
9206de95 1226 if (!len)
1da177e4
LT
1227 return -ENOMEM;
1228
1229 /* offset overflow? */
1230 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1231 return -EOVERFLOW;
1232
1233 /* Too many mappings? */
1234 if (mm->map_count > sysctl_max_map_count)
1235 return -ENOMEM;
1236
1237 /* Obtain the address to map to. we verify (or select) it and ensure
1238 * that it represents a valid section of the address space.
1239 */
1240 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1241 if (addr & ~PAGE_MASK)
1242 return addr;
1243
1244 /* Do simple checking here so the lower-level routines won't have
1245 * to. we assume access permissions have been handled by the open
1246 * of the memory object, so we don't do any here.
1247 */
1248 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1249 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1250
cdf7b341 1251 if (flags & MAP_LOCKED)
1da177e4
LT
1252 if (!can_do_mlock())
1253 return -EPERM;
ba470de4 1254
1da177e4
LT
1255 /* mlock MCL_FUTURE? */
1256 if (vm_flags & VM_LOCKED) {
1257 unsigned long locked, lock_limit;
93ea1d0a
CW
1258 locked = len >> PAGE_SHIFT;
1259 locked += mm->locked_vm;
59e99e5b 1260 lock_limit = rlimit(RLIMIT_MEMLOCK);
93ea1d0a 1261 lock_limit >>= PAGE_SHIFT;
1da177e4
LT
1262 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1263 return -EAGAIN;
1264 }
1265
1da177e4 1266 if (file) {
077bf22b
ON
1267 struct inode *inode = file_inode(file);
1268
1da177e4
LT
1269 switch (flags & MAP_TYPE) {
1270 case MAP_SHARED:
1271 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1272 return -EACCES;
1273
1274 /*
1275 * Make sure we don't allow writing to an append-only
1276 * file..
1277 */
1278 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1279 return -EACCES;
1280
1281 /*
1282 * Make sure there are no mandatory locks on the file.
1283 */
1284 if (locks_verify_locked(inode))
1285 return -EAGAIN;
1286
1287 vm_flags |= VM_SHARED | VM_MAYSHARE;
1288 if (!(file->f_mode & FMODE_WRITE))
1289 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1290
1291 /* fall through */
1292 case MAP_PRIVATE:
1293 if (!(file->f_mode & FMODE_READ))
1294 return -EACCES;
d3ac7f89 1295 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
80c5606c
LT
1296 if (vm_flags & VM_EXEC)
1297 return -EPERM;
1298 vm_flags &= ~VM_MAYEXEC;
1299 }
80c5606c 1300
72c2d531 1301 if (!file->f_op->mmap)
80c5606c 1302 return -ENODEV;
b2c56e4f
ON
1303 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1304 return -EINVAL;
1da177e4
LT
1305 break;
1306
1307 default:
1308 return -EINVAL;
1309 }
1310 } else {
1311 switch (flags & MAP_TYPE) {
1312 case MAP_SHARED:
b2c56e4f
ON
1313 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1314 return -EINVAL;
ce363942
TH
1315 /*
1316 * Ignore pgoff.
1317 */
1318 pgoff = 0;
1da177e4
LT
1319 vm_flags |= VM_SHARED | VM_MAYSHARE;
1320 break;
1321 case MAP_PRIVATE:
1322 /*
1323 * Set pgoff according to addr for anon_vma.
1324 */
1325 pgoff = addr >> PAGE_SHIFT;
1326 break;
1327 default:
1328 return -EINVAL;
1329 }
1330 }
1331
c22c0d63
ML
1332 /*
1333 * Set 'VM_NORESERVE' if we should not account for the
1334 * memory use of this mapping.
1335 */
1336 if (flags & MAP_NORESERVE) {
1337 /* We honor MAP_NORESERVE if allowed to overcommit */
1338 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1339 vm_flags |= VM_NORESERVE;
1340
1341 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1342 if (file && is_file_hugepages(file))
1343 vm_flags |= VM_NORESERVE;
1344 }
1345
1346 addr = mmap_region(file, addr, len, vm_flags, pgoff);
09a9f1d2
ML
1347 if (!IS_ERR_VALUE(addr) &&
1348 ((vm_flags & VM_LOCKED) ||
1349 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
41badc15 1350 *populate = len;
bebeb3d6 1351 return addr;
0165ab44 1352}
6be5ceb0 1353
66f0dc48
HD
1354SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1355 unsigned long, prot, unsigned long, flags,
1356 unsigned long, fd, unsigned long, pgoff)
1357{
1358 struct file *file = NULL;
1359 unsigned long retval = -EBADF;
1360
1361 if (!(flags & MAP_ANONYMOUS)) {
120a795d 1362 audit_mmap_fd(fd, flags);
66f0dc48
HD
1363 file = fget(fd);
1364 if (!file)
1365 goto out;
af73e4d9
NH
1366 if (is_file_hugepages(file))
1367 len = ALIGN(len, huge_page_size(hstate_file(file)));
493af578
JE
1368 retval = -EINVAL;
1369 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1370 goto out_fput;
66f0dc48
HD
1371 } else if (flags & MAP_HUGETLB) {
1372 struct user_struct *user = NULL;
c103a4dc 1373 struct hstate *hs;
af73e4d9 1374
c103a4dc 1375 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
091d0d55
LZ
1376 if (!hs)
1377 return -EINVAL;
1378
1379 len = ALIGN(len, huge_page_size(hs));
66f0dc48
HD
1380 /*
1381 * VM_NORESERVE is used because the reservations will be
1382 * taken when vm_ops->mmap() is called
1383 * A dummy user value is used because we are not locking
1384 * memory so no accounting is necessary
1385 */
af73e4d9 1386 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
42d7395f
AK
1387 VM_NORESERVE,
1388 &user, HUGETLB_ANONHUGE_INODE,
1389 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
66f0dc48
HD
1390 if (IS_ERR(file))
1391 return PTR_ERR(file);
1392 }
1393
1394 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1395
eb36c587 1396 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
493af578 1397out_fput:
66f0dc48
HD
1398 if (file)
1399 fput(file);
1400out:
1401 return retval;
1402}
1403
a4679373
CH
1404#ifdef __ARCH_WANT_SYS_OLD_MMAP
1405struct mmap_arg_struct {
1406 unsigned long addr;
1407 unsigned long len;
1408 unsigned long prot;
1409 unsigned long flags;
1410 unsigned long fd;
1411 unsigned long offset;
1412};
1413
1414SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1415{
1416 struct mmap_arg_struct a;
1417
1418 if (copy_from_user(&a, arg, sizeof(a)))
1419 return -EFAULT;
1420 if (a.offset & ~PAGE_MASK)
1421 return -EINVAL;
1422
1423 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1424 a.offset >> PAGE_SHIFT);
1425}
1426#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1427
4e950f6f
AD
1428/*
1429 * Some shared mappigns will want the pages marked read-only
1430 * to track write events. If so, we'll downgrade vm_page_prot
1431 * to the private version (using protection_map[] without the
1432 * VM_SHARED bit).
1433 */
1434int vma_wants_writenotify(struct vm_area_struct *vma)
1435{
ca16d140 1436 vm_flags_t vm_flags = vma->vm_flags;
4e950f6f
AD
1437
1438 /* If it was private or non-writable, the write bit is already clear */
1439 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1440 return 0;
1441
1442 /* The backer wishes to know when pages are first written to? */
1443 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1444 return 1;
1445
1446 /* The open routine did something to the protections already? */
1447 if (pgprot_val(vma->vm_page_prot) !=
3ed75eb8 1448 pgprot_val(vm_get_page_prot(vm_flags)))
4e950f6f
AD
1449 return 0;
1450
1451 /* Specialty mapping? */
4b6e1e37 1452 if (vm_flags & VM_PFNMAP)
4e950f6f
AD
1453 return 0;
1454
1455 /* Can the mapping track the dirty pages? */
1456 return vma->vm_file && vma->vm_file->f_mapping &&
1457 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1458}
1459
fc8744ad
LT
1460/*
1461 * We account for memory if it's a private writeable mapping,
5a6fe125 1462 * not hugepages and VM_NORESERVE wasn't set.
fc8744ad 1463 */
ca16d140 1464static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
fc8744ad 1465{
5a6fe125
MG
1466 /*
1467 * hugetlb has its own accounting separate from the core VM
1468 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1469 */
1470 if (file && is_file_hugepages(file))
1471 return 0;
1472
fc8744ad
LT
1473 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1474}
1475
0165ab44 1476unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1477 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
0165ab44
MS
1478{
1479 struct mm_struct *mm = current->mm;
1480 struct vm_area_struct *vma, *prev;
0165ab44
MS
1481 int error;
1482 struct rb_node **rb_link, *rb_parent;
1483 unsigned long charged = 0;
0165ab44 1484
e8420a8e
CH
1485 /* Check against address space limit. */
1486 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1487 unsigned long nr_pages;
1488
1489 /*
1490 * MAP_FIXED may remove pages of mappings that intersects with
1491 * requested mapping. Account for the pages it would unmap.
1492 */
1493 if (!(vm_flags & MAP_FIXED))
1494 return -ENOMEM;
1495
1496 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1497
1498 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1499 return -ENOMEM;
1500 }
1501
1da177e4
LT
1502 /* Clear old maps */
1503 error = -ENOMEM;
1504munmap_back:
6597d783 1505 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1da177e4
LT
1506 if (do_munmap(mm, addr, len))
1507 return -ENOMEM;
1508 goto munmap_back;
1509 }
1510
fc8744ad
LT
1511 /*
1512 * Private writable mapping: check memory availability
1513 */
5a6fe125 1514 if (accountable_mapping(file, vm_flags)) {
fc8744ad 1515 charged = len >> PAGE_SHIFT;
191c5424 1516 if (security_vm_enough_memory_mm(mm, charged))
fc8744ad
LT
1517 return -ENOMEM;
1518 vm_flags |= VM_ACCOUNT;
1da177e4
LT
1519 }
1520
1521 /*
de33c8db 1522 * Can we just expand an old mapping?
1da177e4 1523 */
de33c8db
LT
1524 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1525 if (vma)
1526 goto out;
1da177e4
LT
1527
1528 /*
1529 * Determine the object being mapped and call the appropriate
1530 * specific mapper. the address has already been validated, but
1531 * not unmapped, but the maps are removed from the list.
1532 */
c5e3b83e 1533 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1da177e4
LT
1534 if (!vma) {
1535 error = -ENOMEM;
1536 goto unacct_error;
1537 }
1da177e4
LT
1538
1539 vma->vm_mm = mm;
1540 vma->vm_start = addr;
1541 vma->vm_end = addr + len;
1542 vma->vm_flags = vm_flags;
3ed75eb8 1543 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1da177e4 1544 vma->vm_pgoff = pgoff;
5beb4930 1545 INIT_LIST_HEAD(&vma->anon_vma_chain);
1da177e4
LT
1546
1547 if (file) {
1da177e4
LT
1548 if (vm_flags & VM_DENYWRITE) {
1549 error = deny_write_access(file);
1550 if (error)
1551 goto free_vma;
1da177e4 1552 }
cb0942b8 1553 vma->vm_file = get_file(file);
1da177e4
LT
1554 error = file->f_op->mmap(file, vma);
1555 if (error)
1556 goto unmap_and_free_vma;
f8dbf0a7
HS
1557
1558 /* Can addr have changed??
1559 *
1560 * Answer: Yes, several device drivers can do it in their
1561 * f_op->mmap method. -DaveM
2897b4d2
JK
1562 * Bug: If addr is changed, prev, rb_link, rb_parent should
1563 * be updated for vma_link()
f8dbf0a7 1564 */
2897b4d2
JK
1565 WARN_ON_ONCE(addr != vma->vm_start);
1566
f8dbf0a7 1567 addr = vma->vm_start;
f8dbf0a7 1568 vm_flags = vma->vm_flags;
1da177e4
LT
1569 } else if (vm_flags & VM_SHARED) {
1570 error = shmem_zero_setup(vma);
1571 if (error)
1572 goto free_vma;
1573 }
1574
c9d0bf24
MD
1575 if (vma_wants_writenotify(vma)) {
1576 pgprot_t pprot = vma->vm_page_prot;
1577
1578 /* Can vma->vm_page_prot have changed??
1579 *
1580 * Answer: Yes, drivers may have changed it in their
1581 * f_op->mmap method.
1582 *
1583 * Ensures that vmas marked as uncached stay that way.
1584 */
1ddd439e 1585 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
c9d0bf24
MD
1586 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1587 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1588 }
d08b3851 1589
de33c8db 1590 vma_link(mm, vma, prev, rb_link, rb_parent);
4d3d5b41 1591 /* Once vma denies write, undo our temporary denial count */
e8686772
ON
1592 if (vm_flags & VM_DENYWRITE)
1593 allow_write_access(file);
1594 file = vma->vm_file;
4d3d5b41 1595out:
cdd6c482 1596 perf_event_mmap(vma);
0a4a9391 1597
ab50b8ed 1598 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1da177e4 1599 if (vm_flags & VM_LOCKED) {
bebeb3d6
ML
1600 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1601 vma == get_gate_vma(current->mm)))
06f9d8c2 1602 mm->locked_vm += (len >> PAGE_SHIFT);
bebeb3d6
ML
1603 else
1604 vma->vm_flags &= ~VM_LOCKED;
1605 }
2b144498 1606
c7a3a88c
ON
1607 if (file)
1608 uprobe_mmap(vma);
2b144498 1609
d9104d1c
CG
1610 /*
1611 * New (or expanded) vma always get soft dirty status.
1612 * Otherwise user-space soft-dirty page tracker won't
1613 * be able to distinguish situation when vma area unmapped,
1614 * then new mapped in-place (which must be aimed as
1615 * a completely new data area).
1616 */
1617 vma->vm_flags |= VM_SOFTDIRTY;
1618
1da177e4
LT
1619 return addr;
1620
1621unmap_and_free_vma:
e8686772
ON
1622 if (vm_flags & VM_DENYWRITE)
1623 allow_write_access(file);
1da177e4
LT
1624 vma->vm_file = NULL;
1625 fput(file);
1626
1627 /* Undo any partial mapping done by a device driver. */
e0da382c
HD
1628 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1629 charged = 0;
1da177e4
LT
1630free_vma:
1631 kmem_cache_free(vm_area_cachep, vma);
1632unacct_error:
1633 if (charged)
1634 vm_unacct_memory(charged);
1635 return error;
1636}
1637
db4fbfb9
ML
1638unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1639{
1640 /*
1641 * We implement the search by looking for an rbtree node that
1642 * immediately follows a suitable gap. That is,
1643 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1644 * - gap_end = vma->vm_start >= info->low_limit + length;
1645 * - gap_end - gap_start >= length
1646 */
1647
1648 struct mm_struct *mm = current->mm;
1649 struct vm_area_struct *vma;
1650 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1651
1652 /* Adjust search length to account for worst case alignment overhead */
1653 length = info->length + info->align_mask;
1654 if (length < info->length)
1655 return -ENOMEM;
1656
1657 /* Adjust search limits by the desired length */
1658 if (info->high_limit < length)
1659 return -ENOMEM;
1660 high_limit = info->high_limit - length;
1661
1662 if (info->low_limit > high_limit)
1663 return -ENOMEM;
1664 low_limit = info->low_limit + length;
1665
1666 /* Check if rbtree root looks promising */
1667 if (RB_EMPTY_ROOT(&mm->mm_rb))
1668 goto check_highest;
1669 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1670 if (vma->rb_subtree_gap < length)
1671 goto check_highest;
1672
1673 while (true) {
1674 /* Visit left subtree if it looks promising */
1675 gap_end = vma->vm_start;
1676 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1677 struct vm_area_struct *left =
1678 rb_entry(vma->vm_rb.rb_left,
1679 struct vm_area_struct, vm_rb);
1680 if (left->rb_subtree_gap >= length) {
1681 vma = left;
1682 continue;
1683 }
1684 }
1685
1686 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1687check_current:
1688 /* Check if current node has a suitable gap */
1689 if (gap_start > high_limit)
1690 return -ENOMEM;
1691 if (gap_end >= low_limit && gap_end - gap_start >= length)
1692 goto found;
1693
1694 /* Visit right subtree if it looks promising */
1695 if (vma->vm_rb.rb_right) {
1696 struct vm_area_struct *right =
1697 rb_entry(vma->vm_rb.rb_right,
1698 struct vm_area_struct, vm_rb);
1699 if (right->rb_subtree_gap >= length) {
1700 vma = right;
1701 continue;
1702 }
1703 }
1704
1705 /* Go back up the rbtree to find next candidate node */
1706 while (true) {
1707 struct rb_node *prev = &vma->vm_rb;
1708 if (!rb_parent(prev))
1709 goto check_highest;
1710 vma = rb_entry(rb_parent(prev),
1711 struct vm_area_struct, vm_rb);
1712 if (prev == vma->vm_rb.rb_left) {
1713 gap_start = vma->vm_prev->vm_end;
1714 gap_end = vma->vm_start;
1715 goto check_current;
1716 }
1717 }
1718 }
1719
1720check_highest:
1721 /* Check highest gap, which does not precede any rbtree node */
1722 gap_start = mm->highest_vm_end;
1723 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1724 if (gap_start > high_limit)
1725 return -ENOMEM;
1726
1727found:
1728 /* We found a suitable gap. Clip it with the original low_limit. */
1729 if (gap_start < info->low_limit)
1730 gap_start = info->low_limit;
1731
1732 /* Adjust gap address to the desired alignment */
1733 gap_start += (info->align_offset - gap_start) & info->align_mask;
1734
1735 VM_BUG_ON(gap_start + info->length > info->high_limit);
1736 VM_BUG_ON(gap_start + info->length > gap_end);
1737 return gap_start;
1738}
1739
1740unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1741{
1742 struct mm_struct *mm = current->mm;
1743 struct vm_area_struct *vma;
1744 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1745
1746 /* Adjust search length to account for worst case alignment overhead */
1747 length = info->length + info->align_mask;
1748 if (length < info->length)
1749 return -ENOMEM;
1750
1751 /*
1752 * Adjust search limits by the desired length.
1753 * See implementation comment at top of unmapped_area().
1754 */
1755 gap_end = info->high_limit;
1756 if (gap_end < length)
1757 return -ENOMEM;
1758 high_limit = gap_end - length;
1759
1760 if (info->low_limit > high_limit)
1761 return -ENOMEM;
1762 low_limit = info->low_limit + length;
1763
1764 /* Check highest gap, which does not precede any rbtree node */
1765 gap_start = mm->highest_vm_end;
1766 if (gap_start <= high_limit)
1767 goto found_highest;
1768
1769 /* Check if rbtree root looks promising */
1770 if (RB_EMPTY_ROOT(&mm->mm_rb))
1771 return -ENOMEM;
1772 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1773 if (vma->rb_subtree_gap < length)
1774 return -ENOMEM;
1775
1776 while (true) {
1777 /* Visit right subtree if it looks promising */
1778 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1779 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1780 struct vm_area_struct *right =
1781 rb_entry(vma->vm_rb.rb_right,
1782 struct vm_area_struct, vm_rb);
1783 if (right->rb_subtree_gap >= length) {
1784 vma = right;
1785 continue;
1786 }
1787 }
1788
1789check_current:
1790 /* Check if current node has a suitable gap */
1791 gap_end = vma->vm_start;
1792 if (gap_end < low_limit)
1793 return -ENOMEM;
1794 if (gap_start <= high_limit && gap_end - gap_start >= length)
1795 goto found;
1796
1797 /* Visit left subtree if it looks promising */
1798 if (vma->vm_rb.rb_left) {
1799 struct vm_area_struct *left =
1800 rb_entry(vma->vm_rb.rb_left,
1801 struct vm_area_struct, vm_rb);
1802 if (left->rb_subtree_gap >= length) {
1803 vma = left;
1804 continue;
1805 }
1806 }
1807
1808 /* Go back up the rbtree to find next candidate node */
1809 while (true) {
1810 struct rb_node *prev = &vma->vm_rb;
1811 if (!rb_parent(prev))
1812 return -ENOMEM;
1813 vma = rb_entry(rb_parent(prev),
1814 struct vm_area_struct, vm_rb);
1815 if (prev == vma->vm_rb.rb_right) {
1816 gap_start = vma->vm_prev ?
1817 vma->vm_prev->vm_end : 0;
1818 goto check_current;
1819 }
1820 }
1821 }
1822
1823found:
1824 /* We found a suitable gap. Clip it with the original high_limit. */
1825 if (gap_end > info->high_limit)
1826 gap_end = info->high_limit;
1827
1828found_highest:
1829 /* Compute highest gap address at the desired alignment */
1830 gap_end -= info->length;
1831 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1832
1833 VM_BUG_ON(gap_end < info->low_limit);
1834 VM_BUG_ON(gap_end < gap_start);
1835 return gap_end;
1836}
1837
1da177e4
LT
1838/* Get an address range which is currently unmapped.
1839 * For shmat() with addr=0.
1840 *
1841 * Ugly calling convention alert:
1842 * Return value with the low bits set means error value,
1843 * ie
1844 * if (ret & ~PAGE_MASK)
1845 * error = ret;
1846 *
1847 * This function "knows" that -ENOMEM has the bits set.
1848 */
1849#ifndef HAVE_ARCH_UNMAPPED_AREA
1850unsigned long
1851arch_get_unmapped_area(struct file *filp, unsigned long addr,
1852 unsigned long len, unsigned long pgoff, unsigned long flags)
1853{
1854 struct mm_struct *mm = current->mm;
1855 struct vm_area_struct *vma;
db4fbfb9 1856 struct vm_unmapped_area_info info;
1da177e4 1857
2afc745f 1858 if (len > TASK_SIZE - mmap_min_addr)
1da177e4
LT
1859 return -ENOMEM;
1860
06abdfb4
BH
1861 if (flags & MAP_FIXED)
1862 return addr;
1863
1da177e4
LT
1864 if (addr) {
1865 addr = PAGE_ALIGN(addr);
1866 vma = find_vma(mm, addr);
2afc745f 1867 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1da177e4
LT
1868 (!vma || addr + len <= vma->vm_start))
1869 return addr;
1870 }
1da177e4 1871
db4fbfb9
ML
1872 info.flags = 0;
1873 info.length = len;
4e99b021 1874 info.low_limit = mm->mmap_base;
db4fbfb9
ML
1875 info.high_limit = TASK_SIZE;
1876 info.align_mask = 0;
1877 return vm_unmapped_area(&info);
1da177e4
LT
1878}
1879#endif
1880
1da177e4
LT
1881/*
1882 * This mmap-allocator allocates new areas top-down from below the
1883 * stack's low limit (the base):
1884 */
1885#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1886unsigned long
1887arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1888 const unsigned long len, const unsigned long pgoff,
1889 const unsigned long flags)
1890{
1891 struct vm_area_struct *vma;
1892 struct mm_struct *mm = current->mm;
db4fbfb9
ML
1893 unsigned long addr = addr0;
1894 struct vm_unmapped_area_info info;
1da177e4
LT
1895
1896 /* requested length too big for entire address space */
2afc745f 1897 if (len > TASK_SIZE - mmap_min_addr)
1da177e4
LT
1898 return -ENOMEM;
1899
06abdfb4
BH
1900 if (flags & MAP_FIXED)
1901 return addr;
1902
1da177e4
LT
1903 /* requesting a specific address */
1904 if (addr) {
1905 addr = PAGE_ALIGN(addr);
1906 vma = find_vma(mm, addr);
2afc745f 1907 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1da177e4
LT
1908 (!vma || addr + len <= vma->vm_start))
1909 return addr;
1910 }
1911
db4fbfb9
ML
1912 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1913 info.length = len;
2afc745f 1914 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
db4fbfb9
ML
1915 info.high_limit = mm->mmap_base;
1916 info.align_mask = 0;
1917 addr = vm_unmapped_area(&info);
b716ad95 1918
1da177e4
LT
1919 /*
1920 * A failed mmap() very likely causes application failure,
1921 * so fall back to the bottom-up function here. This scenario
1922 * can happen with large stack limits and large mmap()
1923 * allocations.
1924 */
db4fbfb9
ML
1925 if (addr & ~PAGE_MASK) {
1926 VM_BUG_ON(addr != -ENOMEM);
1927 info.flags = 0;
1928 info.low_limit = TASK_UNMAPPED_BASE;
1929 info.high_limit = TASK_SIZE;
1930 addr = vm_unmapped_area(&info);
1931 }
1da177e4
LT
1932
1933 return addr;
1934}
1935#endif
1936
1da177e4
LT
1937unsigned long
1938get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1939 unsigned long pgoff, unsigned long flags)
1940{
06abdfb4
BH
1941 unsigned long (*get_area)(struct file *, unsigned long,
1942 unsigned long, unsigned long, unsigned long);
1943
9206de95
AV
1944 unsigned long error = arch_mmap_check(addr, len, flags);
1945 if (error)
1946 return error;
1947
1948 /* Careful about overflows.. */
1949 if (len > TASK_SIZE)
1950 return -ENOMEM;
1951
06abdfb4 1952 get_area = current->mm->get_unmapped_area;
72c2d531 1953 if (file && file->f_op->get_unmapped_area)
06abdfb4
BH
1954 get_area = file->f_op->get_unmapped_area;
1955 addr = get_area(file, addr, len, pgoff, flags);
1956 if (IS_ERR_VALUE(addr))
1957 return addr;
1da177e4 1958
07ab67c8
LT
1959 if (addr > TASK_SIZE - len)
1960 return -ENOMEM;
1961 if (addr & ~PAGE_MASK)
1962 return -EINVAL;
06abdfb4 1963
9ac4ed4b
AV
1964 addr = arch_rebalance_pgtables(addr, len);
1965 error = security_mmap_addr(addr);
1966 return error ? error : addr;
1da177e4
LT
1967}
1968
1969EXPORT_SYMBOL(get_unmapped_area);
1970
1971/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
48aae425 1972struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1da177e4
LT
1973{
1974 struct vm_area_struct *vma = NULL;
1975
841e31e5
RM
1976 /* Check the cache first. */
1977 /* (Cache hit rate is typically around 35%.) */
b6a9b7f6 1978 vma = ACCESS_ONCE(mm->mmap_cache);
841e31e5
RM
1979 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1980 struct rb_node *rb_node;
1981
1982 rb_node = mm->mm_rb.rb_node;
1983 vma = NULL;
1984
1985 while (rb_node) {
1986 struct vm_area_struct *vma_tmp;
1987
1988 vma_tmp = rb_entry(rb_node,
1989 struct vm_area_struct, vm_rb);
1990
1991 if (vma_tmp->vm_end > addr) {
1992 vma = vma_tmp;
1993 if (vma_tmp->vm_start <= addr)
1994 break;
1995 rb_node = rb_node->rb_left;
1996 } else
1997 rb_node = rb_node->rb_right;
1da177e4 1998 }
841e31e5
RM
1999 if (vma)
2000 mm->mmap_cache = vma;
1da177e4
LT
2001 }
2002 return vma;
2003}
2004
2005EXPORT_SYMBOL(find_vma);
2006
6bd4837d
KM
2007/*
2008 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
6bd4837d 2009 */
1da177e4
LT
2010struct vm_area_struct *
2011find_vma_prev(struct mm_struct *mm, unsigned long addr,
2012 struct vm_area_struct **pprev)
2013{
6bd4837d 2014 struct vm_area_struct *vma;
1da177e4 2015
6bd4837d 2016 vma = find_vma(mm, addr);
83cd904d
MP
2017 if (vma) {
2018 *pprev = vma->vm_prev;
2019 } else {
2020 struct rb_node *rb_node = mm->mm_rb.rb_node;
2021 *pprev = NULL;
2022 while (rb_node) {
2023 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2024 rb_node = rb_node->rb_right;
2025 }
2026 }
6bd4837d 2027 return vma;
1da177e4
LT
2028}
2029
2030/*
2031 * Verify that the stack growth is acceptable and
2032 * update accounting. This is shared with both the
2033 * grow-up and grow-down cases.
2034 */
48aae425 2035static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1da177e4
LT
2036{
2037 struct mm_struct *mm = vma->vm_mm;
2038 struct rlimit *rlim = current->signal->rlim;
0d59a01b 2039 unsigned long new_start;
1da177e4
LT
2040
2041 /* address space limit tests */
119f657c 2042 if (!may_expand_vm(mm, grow))
1da177e4
LT
2043 return -ENOMEM;
2044
2045 /* Stack limit test */
59e99e5b 2046 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1da177e4
LT
2047 return -ENOMEM;
2048
2049 /* mlock limit tests */
2050 if (vma->vm_flags & VM_LOCKED) {
2051 unsigned long locked;
2052 unsigned long limit;
2053 locked = mm->locked_vm + grow;
59e99e5b
JS
2054 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2055 limit >>= PAGE_SHIFT;
1da177e4
LT
2056 if (locked > limit && !capable(CAP_IPC_LOCK))
2057 return -ENOMEM;
2058 }
2059
0d59a01b
AL
2060 /* Check to ensure the stack will not grow into a hugetlb-only region */
2061 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2062 vma->vm_end - size;
2063 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2064 return -EFAULT;
2065
1da177e4
LT
2066 /*
2067 * Overcommit.. This must be the final test, as it will
2068 * update security statistics.
2069 */
05fa199d 2070 if (security_vm_enough_memory_mm(mm, grow))
1da177e4
LT
2071 return -ENOMEM;
2072
2073 /* Ok, everything looks good - let it rip */
1da177e4
LT
2074 if (vma->vm_flags & VM_LOCKED)
2075 mm->locked_vm += grow;
ab50b8ed 2076 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1da177e4
LT
2077 return 0;
2078}
2079
46dea3d0 2080#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1da177e4 2081/*
46dea3d0
HD
2082 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2083 * vma is the last one with address > vma->vm_end. Have to extend vma.
1da177e4 2084 */
46dea3d0 2085int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1da177e4
LT
2086{
2087 int error;
2088
2089 if (!(vma->vm_flags & VM_GROWSUP))
2090 return -EFAULT;
2091
2092 /*
2093 * We must make sure the anon_vma is allocated
2094 * so that the anon_vma locking is not a noop.
2095 */
2096 if (unlikely(anon_vma_prepare(vma)))
2097 return -ENOMEM;
bb4a340e 2098 vma_lock_anon_vma(vma);
1da177e4
LT
2099
2100 /*
2101 * vma->vm_start/vm_end cannot change under us because the caller
2102 * is required to hold the mmap_sem in read mode. We need the
2103 * anon_vma lock to serialize against concurrent expand_stacks.
06b32f3a 2104 * Also guard against wrapping around to address 0.
1da177e4 2105 */
06b32f3a
HD
2106 if (address < PAGE_ALIGN(address+4))
2107 address = PAGE_ALIGN(address+4);
2108 else {
bb4a340e 2109 vma_unlock_anon_vma(vma);
06b32f3a
HD
2110 return -ENOMEM;
2111 }
1da177e4
LT
2112 error = 0;
2113
2114 /* Somebody else might have raced and expanded it already */
2115 if (address > vma->vm_end) {
2116 unsigned long size, grow;
2117
2118 size = address - vma->vm_start;
2119 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2120
42c36f63
HD
2121 error = -ENOMEM;
2122 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2123 error = acct_stack_growth(vma, size, grow);
2124 if (!error) {
4128997b
ML
2125 /*
2126 * vma_gap_update() doesn't support concurrent
2127 * updates, but we only hold a shared mmap_sem
2128 * lock here, so we need to protect against
2129 * concurrent vma expansions.
2130 * vma_lock_anon_vma() doesn't help here, as
2131 * we don't guarantee that all growable vmas
2132 * in a mm share the same root anon vma.
2133 * So, we reuse mm->page_table_lock to guard
2134 * against concurrent vma expansions.
2135 */
2136 spin_lock(&vma->vm_mm->page_table_lock);
bf181b9f 2137 anon_vma_interval_tree_pre_update_vma(vma);
42c36f63 2138 vma->vm_end = address;
bf181b9f 2139 anon_vma_interval_tree_post_update_vma(vma);
d3737187
ML
2140 if (vma->vm_next)
2141 vma_gap_update(vma->vm_next);
2142 else
2143 vma->vm_mm->highest_vm_end = address;
4128997b
ML
2144 spin_unlock(&vma->vm_mm->page_table_lock);
2145
42c36f63
HD
2146 perf_event_mmap(vma);
2147 }
3af9e859 2148 }
1da177e4 2149 }
bb4a340e 2150 vma_unlock_anon_vma(vma);
b15d00b6 2151 khugepaged_enter_vma_merge(vma);
ed8ea815 2152 validate_mm(vma->vm_mm);
1da177e4
LT
2153 return error;
2154}
46dea3d0
HD
2155#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2156
1da177e4
LT
2157/*
2158 * vma is the first one with address < vma->vm_start. Have to extend vma.
2159 */
d05f3169 2160int expand_downwards(struct vm_area_struct *vma,
b6a2fea3 2161 unsigned long address)
1da177e4
LT
2162{
2163 int error;
2164
2165 /*
2166 * We must make sure the anon_vma is allocated
2167 * so that the anon_vma locking is not a noop.
2168 */
2169 if (unlikely(anon_vma_prepare(vma)))
2170 return -ENOMEM;
8869477a
EP
2171
2172 address &= PAGE_MASK;
e5467859 2173 error = security_mmap_addr(address);
8869477a
EP
2174 if (error)
2175 return error;
2176
bb4a340e 2177 vma_lock_anon_vma(vma);
1da177e4
LT
2178
2179 /*
2180 * vma->vm_start/vm_end cannot change under us because the caller
2181 * is required to hold the mmap_sem in read mode. We need the
2182 * anon_vma lock to serialize against concurrent expand_stacks.
2183 */
1da177e4
LT
2184
2185 /* Somebody else might have raced and expanded it already */
2186 if (address < vma->vm_start) {
2187 unsigned long size, grow;
2188
2189 size = vma->vm_end - address;
2190 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2191
a626ca6a
LT
2192 error = -ENOMEM;
2193 if (grow <= vma->vm_pgoff) {
2194 error = acct_stack_growth(vma, size, grow);
2195 if (!error) {
4128997b
ML
2196 /*
2197 * vma_gap_update() doesn't support concurrent
2198 * updates, but we only hold a shared mmap_sem
2199 * lock here, so we need to protect against
2200 * concurrent vma expansions.
2201 * vma_lock_anon_vma() doesn't help here, as
2202 * we don't guarantee that all growable vmas
2203 * in a mm share the same root anon vma.
2204 * So, we reuse mm->page_table_lock to guard
2205 * against concurrent vma expansions.
2206 */
2207 spin_lock(&vma->vm_mm->page_table_lock);
bf181b9f 2208 anon_vma_interval_tree_pre_update_vma(vma);
a626ca6a
LT
2209 vma->vm_start = address;
2210 vma->vm_pgoff -= grow;
bf181b9f 2211 anon_vma_interval_tree_post_update_vma(vma);
d3737187 2212 vma_gap_update(vma);
4128997b
ML
2213 spin_unlock(&vma->vm_mm->page_table_lock);
2214
a626ca6a
LT
2215 perf_event_mmap(vma);
2216 }
1da177e4
LT
2217 }
2218 }
bb4a340e 2219 vma_unlock_anon_vma(vma);
b15d00b6 2220 khugepaged_enter_vma_merge(vma);
ed8ea815 2221 validate_mm(vma->vm_mm);
1da177e4
LT
2222 return error;
2223}
2224
09884964
LT
2225/*
2226 * Note how expand_stack() refuses to expand the stack all the way to
2227 * abut the next virtual mapping, *unless* that mapping itself is also
2228 * a stack mapping. We want to leave room for a guard page, after all
2229 * (the guard page itself is not added here, that is done by the
2230 * actual page faulting logic)
2231 *
2232 * This matches the behavior of the guard page logic (see mm/memory.c:
2233 * check_stack_guard_page()), which only allows the guard page to be
2234 * removed under these circumstances.
2235 */
b6a2fea3
OW
2236#ifdef CONFIG_STACK_GROWSUP
2237int expand_stack(struct vm_area_struct *vma, unsigned long address)
2238{
09884964
LT
2239 struct vm_area_struct *next;
2240
2241 address &= PAGE_MASK;
2242 next = vma->vm_next;
2243 if (next && next->vm_start == address + PAGE_SIZE) {
2244 if (!(next->vm_flags & VM_GROWSUP))
2245 return -ENOMEM;
2246 }
b6a2fea3
OW
2247 return expand_upwards(vma, address);
2248}
2249
2250struct vm_area_struct *
2251find_extend_vma(struct mm_struct *mm, unsigned long addr)
2252{
2253 struct vm_area_struct *vma, *prev;
2254
2255 addr &= PAGE_MASK;
2256 vma = find_vma_prev(mm, addr, &prev);
2257 if (vma && (vma->vm_start <= addr))
2258 return vma;
1c127185 2259 if (!prev || expand_stack(prev, addr))
b6a2fea3 2260 return NULL;
cea10a19
ML
2261 if (prev->vm_flags & VM_LOCKED)
2262 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
b6a2fea3
OW
2263 return prev;
2264}
2265#else
2266int expand_stack(struct vm_area_struct *vma, unsigned long address)
2267{
09884964
LT
2268 struct vm_area_struct *prev;
2269
2270 address &= PAGE_MASK;
2271 prev = vma->vm_prev;
2272 if (prev && prev->vm_end == address) {
2273 if (!(prev->vm_flags & VM_GROWSDOWN))
2274 return -ENOMEM;
2275 }
b6a2fea3
OW
2276 return expand_downwards(vma, address);
2277}
2278
1da177e4
LT
2279struct vm_area_struct *
2280find_extend_vma(struct mm_struct * mm, unsigned long addr)
2281{
2282 struct vm_area_struct * vma;
2283 unsigned long start;
2284
2285 addr &= PAGE_MASK;
2286 vma = find_vma(mm,addr);
2287 if (!vma)
2288 return NULL;
2289 if (vma->vm_start <= addr)
2290 return vma;
2291 if (!(vma->vm_flags & VM_GROWSDOWN))
2292 return NULL;
2293 start = vma->vm_start;
2294 if (expand_stack(vma, addr))
2295 return NULL;
cea10a19
ML
2296 if (vma->vm_flags & VM_LOCKED)
2297 __mlock_vma_pages_range(vma, addr, start, NULL);
1da177e4
LT
2298 return vma;
2299}
2300#endif
2301
1da177e4 2302/*
2c0b3814 2303 * Ok - we have the memory areas we should free on the vma list,
1da177e4 2304 * so release them, and do the vma updates.
2c0b3814
HD
2305 *
2306 * Called with the mm semaphore held.
1da177e4 2307 */
2c0b3814 2308static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1da177e4 2309{
4f74d2c8
LT
2310 unsigned long nr_accounted = 0;
2311
365e9c87
HD
2312 /* Update high watermark before we lower total_vm */
2313 update_hiwater_vm(mm);
1da177e4 2314 do {
2c0b3814
HD
2315 long nrpages = vma_pages(vma);
2316
4f74d2c8
LT
2317 if (vma->vm_flags & VM_ACCOUNT)
2318 nr_accounted += nrpages;
2c0b3814 2319 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
a8fb5618 2320 vma = remove_vma(vma);
146425a3 2321 } while (vma);
4f74d2c8 2322 vm_unacct_memory(nr_accounted);
1da177e4
LT
2323 validate_mm(mm);
2324}
2325
2326/*
2327 * Get rid of page table information in the indicated region.
2328 *
f10df686 2329 * Called with the mm semaphore held.
1da177e4
LT
2330 */
2331static void unmap_region(struct mm_struct *mm,
e0da382c
HD
2332 struct vm_area_struct *vma, struct vm_area_struct *prev,
2333 unsigned long start, unsigned long end)
1da177e4 2334{
e0da382c 2335 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
d16dfc55 2336 struct mmu_gather tlb;
1da177e4
LT
2337
2338 lru_add_drain();
2b047252 2339 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 2340 update_hiwater_rss(mm);
4f74d2c8 2341 unmap_vmas(&tlb, vma, start, end);
d16dfc55 2342 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
6ee8630e 2343 next ? next->vm_start : USER_PGTABLES_CEILING);
d16dfc55 2344 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
2345}
2346
2347/*
2348 * Create a list of vma's touched by the unmap, removing them from the mm's
2349 * vma list as we go..
2350 */
2351static void
2352detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2353 struct vm_area_struct *prev, unsigned long end)
2354{
2355 struct vm_area_struct **insertion_point;
2356 struct vm_area_struct *tail_vma = NULL;
2357
2358 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
297c5eee 2359 vma->vm_prev = NULL;
1da177e4 2360 do {
d3737187 2361 vma_rb_erase(vma, &mm->mm_rb);
1da177e4
LT
2362 mm->map_count--;
2363 tail_vma = vma;
2364 vma = vma->vm_next;
2365 } while (vma && vma->vm_start < end);
2366 *insertion_point = vma;
d3737187 2367 if (vma) {
297c5eee 2368 vma->vm_prev = prev;
d3737187
ML
2369 vma_gap_update(vma);
2370 } else
2371 mm->highest_vm_end = prev ? prev->vm_end : 0;
1da177e4
LT
2372 tail_vma->vm_next = NULL;
2373 mm->mmap_cache = NULL; /* Kill the cache. */
2374}
2375
2376/*
659ace58
KM
2377 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2378 * munmap path where it doesn't make sense to fail.
1da177e4 2379 */
659ace58 2380static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1da177e4
LT
2381 unsigned long addr, int new_below)
2382{
1da177e4 2383 struct vm_area_struct *new;
5beb4930 2384 int err = -ENOMEM;
1da177e4 2385
a5516438
AK
2386 if (is_vm_hugetlb_page(vma) && (addr &
2387 ~(huge_page_mask(hstate_vma(vma)))))
1da177e4
LT
2388 return -EINVAL;
2389
e94b1766 2390 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1da177e4 2391 if (!new)
5beb4930 2392 goto out_err;
1da177e4
LT
2393
2394 /* most fields are the same, copy all, and then fixup */
2395 *new = *vma;
2396
5beb4930
RR
2397 INIT_LIST_HEAD(&new->anon_vma_chain);
2398
1da177e4
LT
2399 if (new_below)
2400 new->vm_end = addr;
2401 else {
2402 new->vm_start = addr;
2403 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2404 }
2405
ef0855d3
ON
2406 err = vma_dup_policy(vma, new);
2407 if (err)
5beb4930 2408 goto out_free_vma;
1da177e4 2409
5beb4930
RR
2410 if (anon_vma_clone(new, vma))
2411 goto out_free_mpol;
2412
e9714acf 2413 if (new->vm_file)
1da177e4
LT
2414 get_file(new->vm_file);
2415
2416 if (new->vm_ops && new->vm_ops->open)
2417 new->vm_ops->open(new);
2418
2419 if (new_below)
5beb4930 2420 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1da177e4
LT
2421 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2422 else
5beb4930 2423 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1da177e4 2424
5beb4930
RR
2425 /* Success. */
2426 if (!err)
2427 return 0;
2428
2429 /* Clean everything up if vma_adjust failed. */
58927533
RR
2430 if (new->vm_ops && new->vm_ops->close)
2431 new->vm_ops->close(new);
e9714acf 2432 if (new->vm_file)
5beb4930 2433 fput(new->vm_file);
2aeadc30 2434 unlink_anon_vmas(new);
5beb4930 2435 out_free_mpol:
ef0855d3 2436 mpol_put(vma_policy(new));
5beb4930
RR
2437 out_free_vma:
2438 kmem_cache_free(vm_area_cachep, new);
2439 out_err:
2440 return err;
1da177e4
LT
2441}
2442
659ace58
KM
2443/*
2444 * Split a vma into two pieces at address 'addr', a new vma is allocated
2445 * either for the first part or the tail.
2446 */
2447int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2448 unsigned long addr, int new_below)
2449{
2450 if (mm->map_count >= sysctl_max_map_count)
2451 return -ENOMEM;
2452
2453 return __split_vma(mm, vma, addr, new_below);
2454}
2455
1da177e4
LT
2456/* Munmap is split into 2 main parts -- this part which finds
2457 * what needs doing, and the areas themselves, which do the
2458 * work. This now handles partial unmappings.
2459 * Jeremy Fitzhardinge <jeremy@goop.org>
2460 */
2461int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2462{
2463 unsigned long end;
146425a3 2464 struct vm_area_struct *vma, *prev, *last;
1da177e4
LT
2465
2466 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2467 return -EINVAL;
2468
2469 if ((len = PAGE_ALIGN(len)) == 0)
2470 return -EINVAL;
2471
2472 /* Find the first overlapping VMA */
9be34c9d 2473 vma = find_vma(mm, start);
146425a3 2474 if (!vma)
1da177e4 2475 return 0;
9be34c9d 2476 prev = vma->vm_prev;
146425a3 2477 /* we have start < vma->vm_end */
1da177e4
LT
2478
2479 /* if it doesn't overlap, we have nothing.. */
2480 end = start + len;
146425a3 2481 if (vma->vm_start >= end)
1da177e4
LT
2482 return 0;
2483
2484 /*
2485 * If we need to split any vma, do it now to save pain later.
2486 *
2487 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2488 * unmapped vm_area_struct will remain in use: so lower split_vma
2489 * places tmp vma above, and higher split_vma places tmp vma below.
2490 */
146425a3 2491 if (start > vma->vm_start) {
659ace58
KM
2492 int error;
2493
2494 /*
2495 * Make sure that map_count on return from munmap() will
2496 * not exceed its limit; but let map_count go just above
2497 * its limit temporarily, to help free resources as expected.
2498 */
2499 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2500 return -ENOMEM;
2501
2502 error = __split_vma(mm, vma, start, 0);
1da177e4
LT
2503 if (error)
2504 return error;
146425a3 2505 prev = vma;
1da177e4
LT
2506 }
2507
2508 /* Does it split the last one? */
2509 last = find_vma(mm, end);
2510 if (last && end > last->vm_start) {
659ace58 2511 int error = __split_vma(mm, last, end, 1);
1da177e4
LT
2512 if (error)
2513 return error;
2514 }
146425a3 2515 vma = prev? prev->vm_next: mm->mmap;
1da177e4 2516
ba470de4
RR
2517 /*
2518 * unlock any mlock()ed ranges before detaching vmas
2519 */
2520 if (mm->locked_vm) {
2521 struct vm_area_struct *tmp = vma;
2522 while (tmp && tmp->vm_start < end) {
2523 if (tmp->vm_flags & VM_LOCKED) {
2524 mm->locked_vm -= vma_pages(tmp);
2525 munlock_vma_pages_all(tmp);
2526 }
2527 tmp = tmp->vm_next;
2528 }
2529 }
2530
1da177e4
LT
2531 /*
2532 * Remove the vma's, and unmap the actual pages
2533 */
146425a3
HD
2534 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2535 unmap_region(mm, vma, prev, start, end);
1da177e4
LT
2536
2537 /* Fix up all other VM information */
2c0b3814 2538 remove_vma_list(mm, vma);
1da177e4
LT
2539
2540 return 0;
2541}
1da177e4 2542
bfce281c 2543int vm_munmap(unsigned long start, size_t len)
1da177e4
LT
2544{
2545 int ret;
bfce281c 2546 struct mm_struct *mm = current->mm;
1da177e4
LT
2547
2548 down_write(&mm->mmap_sem);
a46ef99d 2549 ret = do_munmap(mm, start, len);
1da177e4
LT
2550 up_write(&mm->mmap_sem);
2551 return ret;
2552}
a46ef99d
LT
2553EXPORT_SYMBOL(vm_munmap);
2554
2555SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2556{
2557 profile_munmap(addr);
bfce281c 2558 return vm_munmap(addr, len);
a46ef99d 2559}
1da177e4
LT
2560
2561static inline void verify_mm_writelocked(struct mm_struct *mm)
2562{
a241ec65 2563#ifdef CONFIG_DEBUG_VM
1da177e4
LT
2564 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2565 WARN_ON(1);
2566 up_read(&mm->mmap_sem);
2567 }
2568#endif
2569}
2570
2571/*
2572 * this is really a simplified "do_mmap". it only handles
2573 * anonymous maps. eventually we may be able to do some
2574 * brk-specific accounting here.
2575 */
e4eb1ff6 2576static unsigned long do_brk(unsigned long addr, unsigned long len)
1da177e4
LT
2577{
2578 struct mm_struct * mm = current->mm;
2579 struct vm_area_struct * vma, * prev;
2580 unsigned long flags;
2581 struct rb_node ** rb_link, * rb_parent;
2582 pgoff_t pgoff = addr >> PAGE_SHIFT;
3a459756 2583 int error;
1da177e4
LT
2584
2585 len = PAGE_ALIGN(len);
2586 if (!len)
2587 return addr;
2588
3a459756
KK
2589 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2590
2c6a1016
AV
2591 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2592 if (error & ~PAGE_MASK)
3a459756
KK
2593 return error;
2594
1da177e4
LT
2595 /*
2596 * mlock MCL_FUTURE?
2597 */
2598 if (mm->def_flags & VM_LOCKED) {
2599 unsigned long locked, lock_limit;
93ea1d0a
CW
2600 locked = len >> PAGE_SHIFT;
2601 locked += mm->locked_vm;
59e99e5b 2602 lock_limit = rlimit(RLIMIT_MEMLOCK);
93ea1d0a 2603 lock_limit >>= PAGE_SHIFT;
1da177e4
LT
2604 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2605 return -EAGAIN;
2606 }
2607
2608 /*
2609 * mm->mmap_sem is required to protect against another thread
2610 * changing the mappings in case we sleep.
2611 */
2612 verify_mm_writelocked(mm);
2613
2614 /*
2615 * Clear old maps. this also does some error checking for us
2616 */
2617 munmap_back:
6597d783 2618 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1da177e4
LT
2619 if (do_munmap(mm, addr, len))
2620 return -ENOMEM;
2621 goto munmap_back;
2622 }
2623
2624 /* Check against address space limits *after* clearing old maps... */
119f657c 2625 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1da177e4
LT
2626 return -ENOMEM;
2627
2628 if (mm->map_count > sysctl_max_map_count)
2629 return -ENOMEM;
2630
191c5424 2631 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
1da177e4
LT
2632 return -ENOMEM;
2633
1da177e4 2634 /* Can we just expand an old private anonymous mapping? */
ba470de4
RR
2635 vma = vma_merge(mm, prev, addr, addr + len, flags,
2636 NULL, NULL, pgoff, NULL);
2637 if (vma)
1da177e4
LT
2638 goto out;
2639
2640 /*
2641 * create a vma struct for an anonymous mapping
2642 */
c5e3b83e 2643 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1da177e4
LT
2644 if (!vma) {
2645 vm_unacct_memory(len >> PAGE_SHIFT);
2646 return -ENOMEM;
2647 }
1da177e4 2648
5beb4930 2649 INIT_LIST_HEAD(&vma->anon_vma_chain);
1da177e4
LT
2650 vma->vm_mm = mm;
2651 vma->vm_start = addr;
2652 vma->vm_end = addr + len;
2653 vma->vm_pgoff = pgoff;
2654 vma->vm_flags = flags;
3ed75eb8 2655 vma->vm_page_prot = vm_get_page_prot(flags);
1da177e4
LT
2656 vma_link(mm, vma, prev, rb_link, rb_parent);
2657out:
3af9e859 2658 perf_event_mmap(vma);
1da177e4 2659 mm->total_vm += len >> PAGE_SHIFT;
128557ff
ML
2660 if (flags & VM_LOCKED)
2661 mm->locked_vm += (len >> PAGE_SHIFT);
d9104d1c 2662 vma->vm_flags |= VM_SOFTDIRTY;
1da177e4
LT
2663 return addr;
2664}
2665
e4eb1ff6
LT
2666unsigned long vm_brk(unsigned long addr, unsigned long len)
2667{
2668 struct mm_struct *mm = current->mm;
2669 unsigned long ret;
128557ff 2670 bool populate;
e4eb1ff6
LT
2671
2672 down_write(&mm->mmap_sem);
2673 ret = do_brk(addr, len);
128557ff 2674 populate = ((mm->def_flags & VM_LOCKED) != 0);
e4eb1ff6 2675 up_write(&mm->mmap_sem);
128557ff
ML
2676 if (populate)
2677 mm_populate(addr, len);
e4eb1ff6
LT
2678 return ret;
2679}
2680EXPORT_SYMBOL(vm_brk);
1da177e4
LT
2681
2682/* Release all mmaps. */
2683void exit_mmap(struct mm_struct *mm)
2684{
d16dfc55 2685 struct mmu_gather tlb;
ba470de4 2686 struct vm_area_struct *vma;
1da177e4
LT
2687 unsigned long nr_accounted = 0;
2688
d6dd61c8 2689 /* mm's last user has gone, and its about to be pulled down */
cddb8a5c 2690 mmu_notifier_release(mm);
d6dd61c8 2691
ba470de4
RR
2692 if (mm->locked_vm) {
2693 vma = mm->mmap;
2694 while (vma) {
2695 if (vma->vm_flags & VM_LOCKED)
2696 munlock_vma_pages_all(vma);
2697 vma = vma->vm_next;
2698 }
2699 }
9480c53e
JF
2700
2701 arch_exit_mmap(mm);
2702
ba470de4 2703 vma = mm->mmap;
9480c53e
JF
2704 if (!vma) /* Can happen if dup_mmap() received an OOM */
2705 return;
2706
1da177e4 2707 lru_add_drain();
1da177e4 2708 flush_cache_mm(mm);
2b047252 2709 tlb_gather_mmu(&tlb, mm, 0, -1);
901608d9 2710 /* update_hiwater_rss(mm) here? but nobody should be looking */
e0da382c 2711 /* Use -1 here to ensure all VMAs in the mm are unmapped */
4f74d2c8 2712 unmap_vmas(&tlb, vma, 0, -1);
9ba69294 2713
6ee8630e 2714 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
853f5e26 2715 tlb_finish_mmu(&tlb, 0, -1);
1da177e4 2716
1da177e4 2717 /*
8f4f8c16
HD
2718 * Walk the list again, actually closing and freeing it,
2719 * with preemption enabled, without holding any MM locks.
1da177e4 2720 */
4f74d2c8
LT
2721 while (vma) {
2722 if (vma->vm_flags & VM_ACCOUNT)
2723 nr_accounted += vma_pages(vma);
a8fb5618 2724 vma = remove_vma(vma);
4f74d2c8
LT
2725 }
2726 vm_unacct_memory(nr_accounted);
e0da382c 2727
e1f56c89
KS
2728 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2729 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
1da177e4
LT
2730}
2731
2732/* Insert vm structure into process list sorted by address
2733 * and into the inode's i_mmap tree. If vm_file is non-NULL
3d48ae45 2734 * then i_mmap_mutex is taken here.
1da177e4 2735 */
6597d783 2736int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1da177e4 2737{
6597d783
HD
2738 struct vm_area_struct *prev;
2739 struct rb_node **rb_link, *rb_parent;
1da177e4
LT
2740
2741 /*
2742 * The vm_pgoff of a purely anonymous vma should be irrelevant
2743 * until its first write fault, when page's anon_vma and index
2744 * are set. But now set the vm_pgoff it will almost certainly
2745 * end up with (unless mremap moves it elsewhere before that
2746 * first wfault), so /proc/pid/maps tells a consistent story.
2747 *
2748 * By setting it to reflect the virtual start address of the
2749 * vma, merges and splits can happen in a seamless way, just
2750 * using the existing file pgoff checks and manipulations.
2751 * Similarly in do_mmap_pgoff and in do_brk.
2752 */
2753 if (!vma->vm_file) {
2754 BUG_ON(vma->anon_vma);
2755 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2756 }
6597d783
HD
2757 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2758 &prev, &rb_link, &rb_parent))
1da177e4 2759 return -ENOMEM;
2fd4ef85 2760 if ((vma->vm_flags & VM_ACCOUNT) &&
34b4e4aa 2761 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2fd4ef85 2762 return -ENOMEM;
2b144498 2763
1da177e4
LT
2764 vma_link(mm, vma, prev, rb_link, rb_parent);
2765 return 0;
2766}
2767
2768/*
2769 * Copy the vma structure to a new location in the same mm,
2770 * prior to moving page table entries, to effect an mremap move.
2771 */
2772struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
38a76013
ML
2773 unsigned long addr, unsigned long len, pgoff_t pgoff,
2774 bool *need_rmap_locks)
1da177e4
LT
2775{
2776 struct vm_area_struct *vma = *vmap;
2777 unsigned long vma_start = vma->vm_start;
2778 struct mm_struct *mm = vma->vm_mm;
2779 struct vm_area_struct *new_vma, *prev;
2780 struct rb_node **rb_link, *rb_parent;
948f017b 2781 bool faulted_in_anon_vma = true;
1da177e4
LT
2782
2783 /*
2784 * If anonymous vma has not yet been faulted, update new pgoff
2785 * to match new location, to increase its chance of merging.
2786 */
948f017b 2787 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
1da177e4 2788 pgoff = addr >> PAGE_SHIFT;
948f017b
AA
2789 faulted_in_anon_vma = false;
2790 }
1da177e4 2791
6597d783
HD
2792 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2793 return NULL; /* should never get here */
1da177e4
LT
2794 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2795 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2796 if (new_vma) {
2797 /*
2798 * Source vma may have been merged into new_vma
2799 */
948f017b
AA
2800 if (unlikely(vma_start >= new_vma->vm_start &&
2801 vma_start < new_vma->vm_end)) {
2802 /*
2803 * The only way we can get a vma_merge with
2804 * self during an mremap is if the vma hasn't
2805 * been faulted in yet and we were allowed to
2806 * reset the dst vma->vm_pgoff to the
2807 * destination address of the mremap to allow
2808 * the merge to happen. mremap must change the
2809 * vm_pgoff linearity between src and dst vmas
2810 * (in turn preventing a vma_merge) to be
2811 * safe. It is only safe to keep the vm_pgoff
2812 * linear if there are no pages mapped yet.
2813 */
2814 VM_BUG_ON(faulted_in_anon_vma);
38a76013 2815 *vmap = vma = new_vma;
108d6642 2816 }
38a76013 2817 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1da177e4 2818 } else {
e94b1766 2819 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1da177e4
LT
2820 if (new_vma) {
2821 *new_vma = *vma;
523d4e20
ML
2822 new_vma->vm_start = addr;
2823 new_vma->vm_end = addr + len;
2824 new_vma->vm_pgoff = pgoff;
ef0855d3 2825 if (vma_dup_policy(vma, new_vma))
5beb4930
RR
2826 goto out_free_vma;
2827 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2828 if (anon_vma_clone(new_vma, vma))
2829 goto out_free_mempol;
e9714acf 2830 if (new_vma->vm_file)
1da177e4
LT
2831 get_file(new_vma->vm_file);
2832 if (new_vma->vm_ops && new_vma->vm_ops->open)
2833 new_vma->vm_ops->open(new_vma);
2834 vma_link(mm, new_vma, prev, rb_link, rb_parent);
38a76013 2835 *need_rmap_locks = false;
1da177e4
LT
2836 }
2837 }
2838 return new_vma;
5beb4930
RR
2839
2840 out_free_mempol:
ef0855d3 2841 mpol_put(vma_policy(new_vma));
5beb4930
RR
2842 out_free_vma:
2843 kmem_cache_free(vm_area_cachep, new_vma);
2844 return NULL;
1da177e4 2845}
119f657c 2846
2847/*
2848 * Return true if the calling process may expand its vm space by the passed
2849 * number of pages
2850 */
2851int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2852{
2853 unsigned long cur = mm->total_vm; /* pages */
2854 unsigned long lim;
2855
59e99e5b 2856 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
119f657c 2857
2858 if (cur + npages > lim)
2859 return 0;
2860 return 1;
2861}
fa5dc22f
RM
2862
2863
b1d0e4f5
NP
2864static int special_mapping_fault(struct vm_area_struct *vma,
2865 struct vm_fault *vmf)
fa5dc22f 2866{
b1d0e4f5 2867 pgoff_t pgoff;
fa5dc22f
RM
2868 struct page **pages;
2869
b1d0e4f5
NP
2870 /*
2871 * special mappings have no vm_file, and in that case, the mm
2872 * uses vm_pgoff internally. So we have to subtract it from here.
2873 * We are allowed to do this because we are the mm; do not copy
2874 * this code into drivers!
2875 */
2876 pgoff = vmf->pgoff - vma->vm_pgoff;
fa5dc22f 2877
b1d0e4f5
NP
2878 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2879 pgoff--;
fa5dc22f
RM
2880
2881 if (*pages) {
2882 struct page *page = *pages;
2883 get_page(page);
b1d0e4f5
NP
2884 vmf->page = page;
2885 return 0;
fa5dc22f
RM
2886 }
2887
b1d0e4f5 2888 return VM_FAULT_SIGBUS;
fa5dc22f
RM
2889}
2890
2891/*
2892 * Having a close hook prevents vma merging regardless of flags.
2893 */
2894static void special_mapping_close(struct vm_area_struct *vma)
2895{
2896}
2897
f0f37e2f 2898static const struct vm_operations_struct special_mapping_vmops = {
fa5dc22f 2899 .close = special_mapping_close,
b1d0e4f5 2900 .fault = special_mapping_fault,
fa5dc22f
RM
2901};
2902
2903/*
2904 * Called with mm->mmap_sem held for writing.
2905 * Insert a new vma covering the given region, with the given flags.
2906 * Its pages are supplied by the given array of struct page *.
2907 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2908 * The region past the last page supplied will always produce SIGBUS.
2909 * The array pointer and the pages it points to are assumed to stay alive
2910 * for as long as this mapping might exist.
2911 */
2912int install_special_mapping(struct mm_struct *mm,
2913 unsigned long addr, unsigned long len,
2914 unsigned long vm_flags, struct page **pages)
2915{
462e635e 2916 int ret;
fa5dc22f
RM
2917 struct vm_area_struct *vma;
2918
2919 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2920 if (unlikely(vma == NULL))
2921 return -ENOMEM;
2922
5beb4930 2923 INIT_LIST_HEAD(&vma->anon_vma_chain);
fa5dc22f
RM
2924 vma->vm_mm = mm;
2925 vma->vm_start = addr;
2926 vma->vm_end = addr + len;
2927
d9104d1c 2928 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3ed75eb8 2929 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
fa5dc22f
RM
2930
2931 vma->vm_ops = &special_mapping_vmops;
2932 vma->vm_private_data = pages;
2933
462e635e
TO
2934 ret = insert_vm_struct(mm, vma);
2935 if (ret)
2936 goto out;
fa5dc22f
RM
2937
2938 mm->total_vm += len >> PAGE_SHIFT;
2939
cdd6c482 2940 perf_event_mmap(vma);
089dd79d 2941
fa5dc22f 2942 return 0;
462e635e
TO
2943
2944out:
2945 kmem_cache_free(vm_area_cachep, vma);
2946 return ret;
fa5dc22f 2947}
7906d00c
AA
2948
2949static DEFINE_MUTEX(mm_all_locks_mutex);
2950
454ed842 2951static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
7906d00c 2952{
bf181b9f 2953 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
7906d00c
AA
2954 /*
2955 * The LSB of head.next can't change from under us
2956 * because we hold the mm_all_locks_mutex.
2957 */
572043c9 2958 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
7906d00c
AA
2959 /*
2960 * We can safely modify head.next after taking the
5a505085 2961 * anon_vma->root->rwsem. If some other vma in this mm shares
7906d00c
AA
2962 * the same anon_vma we won't take it again.
2963 *
2964 * No need of atomic instructions here, head.next
2965 * can't change from under us thanks to the
5a505085 2966 * anon_vma->root->rwsem.
7906d00c
AA
2967 */
2968 if (__test_and_set_bit(0, (unsigned long *)
bf181b9f 2969 &anon_vma->root->rb_root.rb_node))
7906d00c
AA
2970 BUG();
2971 }
2972}
2973
454ed842 2974static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
7906d00c
AA
2975{
2976 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2977 /*
2978 * AS_MM_ALL_LOCKS can't change from under us because
2979 * we hold the mm_all_locks_mutex.
2980 *
2981 * Operations on ->flags have to be atomic because
2982 * even if AS_MM_ALL_LOCKS is stable thanks to the
2983 * mm_all_locks_mutex, there may be other cpus
2984 * changing other bitflags in parallel to us.
2985 */
2986 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2987 BUG();
3d48ae45 2988 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
7906d00c
AA
2989 }
2990}
2991
2992/*
2993 * This operation locks against the VM for all pte/vma/mm related
2994 * operations that could ever happen on a certain mm. This includes
2995 * vmtruncate, try_to_unmap, and all page faults.
2996 *
2997 * The caller must take the mmap_sem in write mode before calling
2998 * mm_take_all_locks(). The caller isn't allowed to release the
2999 * mmap_sem until mm_drop_all_locks() returns.
3000 *
3001 * mmap_sem in write mode is required in order to block all operations
3002 * that could modify pagetables and free pages without need of
3003 * altering the vma layout (for example populate_range() with
3004 * nonlinear vmas). It's also needed in write mode to avoid new
3005 * anon_vmas to be associated with existing vmas.
3006 *
3007 * A single task can't take more than one mm_take_all_locks() in a row
3008 * or it would deadlock.
3009 *
bf181b9f 3010 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
7906d00c
AA
3011 * mapping->flags avoid to take the same lock twice, if more than one
3012 * vma in this mm is backed by the same anon_vma or address_space.
3013 *
3014 * We can take all the locks in random order because the VM code
631b0cfd 3015 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
7906d00c
AA
3016 * takes more than one of them in a row. Secondly we're protected
3017 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3018 *
3019 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3020 * that may have to take thousand of locks.
3021 *
3022 * mm_take_all_locks() can fail if it's interrupted by signals.
3023 */
3024int mm_take_all_locks(struct mm_struct *mm)
3025{
3026 struct vm_area_struct *vma;
5beb4930 3027 struct anon_vma_chain *avc;
7906d00c
AA
3028
3029 BUG_ON(down_read_trylock(&mm->mmap_sem));
3030
3031 mutex_lock(&mm_all_locks_mutex);
3032
3033 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3034 if (signal_pending(current))
3035 goto out_unlock;
7906d00c 3036 if (vma->vm_file && vma->vm_file->f_mapping)
454ed842 3037 vm_lock_mapping(mm, vma->vm_file->f_mapping);
7906d00c 3038 }
7cd5a02f
PZ
3039
3040 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3041 if (signal_pending(current))
3042 goto out_unlock;
3043 if (vma->anon_vma)
5beb4930
RR
3044 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3045 vm_lock_anon_vma(mm, avc->anon_vma);
7906d00c 3046 }
7cd5a02f 3047
584cff54 3048 return 0;
7906d00c
AA
3049
3050out_unlock:
584cff54
KC
3051 mm_drop_all_locks(mm);
3052 return -EINTR;
7906d00c
AA
3053}
3054
3055static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3056{
bf181b9f 3057 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
7906d00c
AA
3058 /*
3059 * The LSB of head.next can't change to 0 from under
3060 * us because we hold the mm_all_locks_mutex.
3061 *
3062 * We must however clear the bitflag before unlocking
bf181b9f 3063 * the vma so the users using the anon_vma->rb_root will
7906d00c
AA
3064 * never see our bitflag.
3065 *
3066 * No need of atomic instructions here, head.next
3067 * can't change from under us until we release the
5a505085 3068 * anon_vma->root->rwsem.
7906d00c
AA
3069 */
3070 if (!__test_and_clear_bit(0, (unsigned long *)
bf181b9f 3071 &anon_vma->root->rb_root.rb_node))
7906d00c 3072 BUG();
08b52706 3073 anon_vma_unlock_write(anon_vma);
7906d00c
AA
3074 }
3075}
3076
3077static void vm_unlock_mapping(struct address_space *mapping)
3078{
3079 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3080 /*
3081 * AS_MM_ALL_LOCKS can't change to 0 from under us
3082 * because we hold the mm_all_locks_mutex.
3083 */
3d48ae45 3084 mutex_unlock(&mapping->i_mmap_mutex);
7906d00c
AA
3085 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3086 &mapping->flags))
3087 BUG();
3088 }
3089}
3090
3091/*
3092 * The mmap_sem cannot be released by the caller until
3093 * mm_drop_all_locks() returns.
3094 */
3095void mm_drop_all_locks(struct mm_struct *mm)
3096{
3097 struct vm_area_struct *vma;
5beb4930 3098 struct anon_vma_chain *avc;
7906d00c
AA
3099
3100 BUG_ON(down_read_trylock(&mm->mmap_sem));
3101 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3102
3103 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3104 if (vma->anon_vma)
5beb4930
RR
3105 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3106 vm_unlock_anon_vma(avc->anon_vma);
7906d00c
AA
3107 if (vma->vm_file && vma->vm_file->f_mapping)
3108 vm_unlock_mapping(vma->vm_file->f_mapping);
3109 }
3110
3111 mutex_unlock(&mm_all_locks_mutex);
3112}
8feae131
DH
3113
3114/*
3115 * initialise the VMA slab
3116 */
3117void __init mmap_init(void)
3118{
00a62ce9
KM
3119 int ret;
3120
3121 ret = percpu_counter_init(&vm_committed_as, 0);
3122 VM_BUG_ON(ret);
8feae131 3123}
c9b1d098
AS
3124
3125/*
3126 * Initialise sysctl_user_reserve_kbytes.
3127 *
3128 * This is intended to prevent a user from starting a single memory hogging
3129 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3130 * mode.
3131 *
3132 * The default value is min(3% of free memory, 128MB)
3133 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3134 */
1640879a 3135static int init_user_reserve(void)
c9b1d098
AS
3136{
3137 unsigned long free_kbytes;
3138
3139 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3140
3141 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3142 return 0;
3143}
3144module_init(init_user_reserve)
4eeab4f5
AS
3145
3146/*
3147 * Initialise sysctl_admin_reserve_kbytes.
3148 *
3149 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3150 * to log in and kill a memory hogging process.
3151 *
3152 * Systems with more than 256MB will reserve 8MB, enough to recover
3153 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3154 * only reserve 3% of free pages by default.
3155 */
1640879a 3156static int init_admin_reserve(void)
4eeab4f5
AS
3157{
3158 unsigned long free_kbytes;
3159
3160 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3161
3162 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3163 return 0;
3164}
3165module_init(init_admin_reserve)
1640879a
AS
3166
3167/*
3168 * Reinititalise user and admin reserves if memory is added or removed.
3169 *
3170 * The default user reserve max is 128MB, and the default max for the
3171 * admin reserve is 8MB. These are usually, but not always, enough to
3172 * enable recovery from a memory hogging process using login/sshd, a shell,
3173 * and tools like top. It may make sense to increase or even disable the
3174 * reserve depending on the existence of swap or variations in the recovery
3175 * tools. So, the admin may have changed them.
3176 *
3177 * If memory is added and the reserves have been eliminated or increased above
3178 * the default max, then we'll trust the admin.
3179 *
3180 * If memory is removed and there isn't enough free memory, then we
3181 * need to reset the reserves.
3182 *
3183 * Otherwise keep the reserve set by the admin.
3184 */
3185static int reserve_mem_notifier(struct notifier_block *nb,
3186 unsigned long action, void *data)
3187{
3188 unsigned long tmp, free_kbytes;
3189
3190 switch (action) {
3191 case MEM_ONLINE:
3192 /* Default max is 128MB. Leave alone if modified by operator. */
3193 tmp = sysctl_user_reserve_kbytes;
3194 if (0 < tmp && tmp < (1UL << 17))
3195 init_user_reserve();
3196
3197 /* Default max is 8MB. Leave alone if modified by operator. */
3198 tmp = sysctl_admin_reserve_kbytes;
3199 if (0 < tmp && tmp < (1UL << 13))
3200 init_admin_reserve();
3201
3202 break;
3203 case MEM_OFFLINE:
3204 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3205
3206 if (sysctl_user_reserve_kbytes > free_kbytes) {
3207 init_user_reserve();
3208 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3209 sysctl_user_reserve_kbytes);
3210 }
3211
3212 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3213 init_admin_reserve();
3214 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3215 sysctl_admin_reserve_kbytes);
3216 }
3217 break;
3218 default:
3219 break;
3220 }
3221 return NOTIFY_OK;
3222}
3223
3224static struct notifier_block reserve_mem_nb = {
3225 .notifier_call = reserve_mem_notifier,
3226};
3227
3228static int __meminit init_reserve_notifier(void)
3229{
3230 if (register_hotmemory_notifier(&reserve_mem_nb))
3231 printk("Failed registering memory add/remove notifier for admin reserve");
3232
3233 return 0;
3234}
3235module_init(init_reserve_notifier)