[PATCH] page migration cleanup: group functions
[linux-block.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
18#include <linux/pagemap.h>
e23ca00b 19#include <linux/buffer_head.h>
b20a3503
CL
20#include <linux/mm_inline.h>
21#include <linux/pagevec.h>
22#include <linux/rmap.h>
23#include <linux/topology.h>
24#include <linux/cpu.h>
25#include <linux/cpuset.h>
26#include <linux/swapops.h>
27
28#include "internal.h"
29
b20a3503
CL
30/* The maximum number of pages to take off the LRU for migration */
31#define MIGRATE_CHUNK_SIZE 256
32
33#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
34
35/*
36 * Isolate one page from the LRU lists. If successful put it onto
37 * the indicated list with elevated page count.
38 *
39 * Result:
40 * -EBUSY: page not on LRU list
41 * 0: page removed from LRU list and added to the specified list.
42 */
43int isolate_lru_page(struct page *page, struct list_head *pagelist)
44{
45 int ret = -EBUSY;
46
47 if (PageLRU(page)) {
48 struct zone *zone = page_zone(page);
49
50 spin_lock_irq(&zone->lru_lock);
51 if (PageLRU(page)) {
52 ret = 0;
53 get_page(page);
54 ClearPageLRU(page);
55 if (PageActive(page))
56 del_page_from_active_list(zone, page);
57 else
58 del_page_from_inactive_list(zone, page);
59 list_add_tail(&page->lru, pagelist);
60 }
61 spin_unlock_irq(&zone->lru_lock);
62 }
63 return ret;
64}
65
66/*
67 * migrate_prep() needs to be called after we have compiled the list of pages
68 * to be migrated using isolate_lru_page() but before we begin a series of calls
69 * to migrate_pages().
70 */
71int migrate_prep(void)
72{
73 /* Must have swap device for migration */
74 if (nr_swap_pages <= 0)
75 return -ENODEV;
76
77 /*
78 * Clear the LRU lists so pages can be isolated.
79 * Note that pages may be moved off the LRU after we have
80 * drained them. Those pages will fail to migrate like other
81 * pages that may be busy.
82 */
83 lru_add_drain_all();
84
85 return 0;
86}
87
88static inline void move_to_lru(struct page *page)
89{
90 list_del(&page->lru);
91 if (PageActive(page)) {
92 /*
93 * lru_cache_add_active checks that
94 * the PG_active bit is off.
95 */
96 ClearPageActive(page);
97 lru_cache_add_active(page);
98 } else {
99 lru_cache_add(page);
100 }
101 put_page(page);
102}
103
104/*
105 * Add isolated pages on the list back to the LRU.
106 *
107 * returns the number of pages put back.
108 */
109int putback_lru_pages(struct list_head *l)
110{
111 struct page *page;
112 struct page *page2;
113 int count = 0;
114
115 list_for_each_entry_safe(page, page2, l, lru) {
116 move_to_lru(page);
117 count++;
118 }
119 return count;
120}
121
b20a3503
CL
122/*
123 * swapout a single page
124 * page is locked upon entry, unlocked on exit
125 */
126static int swap_page(struct page *page)
127{
128 struct address_space *mapping = page_mapping(page);
129
130 if (page_mapped(page) && mapping)
131 if (try_to_unmap(page, 1) != SWAP_SUCCESS)
132 goto unlock_retry;
133
134 if (PageDirty(page)) {
135 /* Page is dirty, try to write it out here */
136 switch(pageout(page, mapping)) {
137 case PAGE_KEEP:
138 case PAGE_ACTIVATE:
139 goto unlock_retry;
140
141 case PAGE_SUCCESS:
142 goto retry;
143
144 case PAGE_CLEAN:
145 ; /* try to free the page below */
146 }
147 }
148
149 if (PagePrivate(page)) {
150 if (!try_to_release_page(page, GFP_KERNEL) ||
151 (!mapping && page_count(page) == 1))
152 goto unlock_retry;
153 }
154
155 if (remove_mapping(mapping, page)) {
156 /* Success */
157 unlock_page(page);
158 return 0;
159 }
160
161unlock_retry:
162 unlock_page(page);
163
164retry:
165 return -EAGAIN;
166}
b20a3503
CL
167
168/*
169 * Remove references for a page and establish the new page with the correct
170 * basic settings to be able to stop accesses to the page.
171 */
172int migrate_page_remove_references(struct page *newpage,
173 struct page *page, int nr_refs)
174{
175 struct address_space *mapping = page_mapping(page);
176 struct page **radix_pointer;
177
178 /*
179 * Avoid doing any of the following work if the page count
180 * indicates that the page is in use or truncate has removed
181 * the page.
182 */
183 if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
184 return -EAGAIN;
185
186 /*
187 * Establish swap ptes for anonymous pages or destroy pte
188 * maps for files.
189 *
190 * In order to reestablish file backed mappings the fault handlers
191 * will take the radix tree_lock which may then be used to stop
192 * processses from accessing this page until the new page is ready.
193 *
194 * A process accessing via a swap pte (an anonymous page) will take a
195 * page_lock on the old page which will block the process until the
196 * migration attempt is complete. At that time the PageSwapCache bit
197 * will be examined. If the page was migrated then the PageSwapCache
198 * bit will be clear and the operation to retrieve the page will be
199 * retried which will find the new page in the radix tree. Then a new
200 * direct mapping may be generated based on the radix tree contents.
201 *
202 * If the page was not migrated then the PageSwapCache bit
203 * is still set and the operation may continue.
204 */
205 if (try_to_unmap(page, 1) == SWAP_FAIL)
206 /* A vma has VM_LOCKED set -> permanent failure */
207 return -EPERM;
208
209 /*
210 * Give up if we were unable to remove all mappings.
211 */
212 if (page_mapcount(page))
213 return -EAGAIN;
214
215 write_lock_irq(&mapping->tree_lock);
216
217 radix_pointer = (struct page **)radix_tree_lookup_slot(
218 &mapping->page_tree,
219 page_index(page));
220
221 if (!page_mapping(page) || page_count(page) != nr_refs ||
222 *radix_pointer != page) {
223 write_unlock_irq(&mapping->tree_lock);
e23ca00b 224 return -EAGAIN;
b20a3503
CL
225 }
226
227 /*
228 * Now we know that no one else is looking at the page.
229 *
230 * Certain minimal information about a page must be available
231 * in order for other subsystems to properly handle the page if they
232 * find it through the radix tree update before we are finished
233 * copying the page.
234 */
235 get_page(newpage);
236 newpage->index = page->index;
237 newpage->mapping = page->mapping;
238 if (PageSwapCache(page)) {
239 SetPageSwapCache(newpage);
240 set_page_private(newpage, page_private(page));
241 }
242
243 *radix_pointer = newpage;
244 __put_page(page);
245 write_unlock_irq(&mapping->tree_lock);
246
247 return 0;
248}
249EXPORT_SYMBOL(migrate_page_remove_references);
250
251/*
252 * Copy the page to its new location
253 */
254void migrate_page_copy(struct page *newpage, struct page *page)
255{
256 copy_highpage(newpage, page);
257
258 if (PageError(page))
259 SetPageError(newpage);
260 if (PageReferenced(page))
261 SetPageReferenced(newpage);
262 if (PageUptodate(page))
263 SetPageUptodate(newpage);
264 if (PageActive(page))
265 SetPageActive(newpage);
266 if (PageChecked(page))
267 SetPageChecked(newpage);
268 if (PageMappedToDisk(page))
269 SetPageMappedToDisk(newpage);
270
271 if (PageDirty(page)) {
272 clear_page_dirty_for_io(page);
273 set_page_dirty(newpage);
274 }
275
276 ClearPageSwapCache(page);
277 ClearPageActive(page);
278 ClearPagePrivate(page);
279 set_page_private(page, 0);
280 page->mapping = NULL;
281
282 /*
283 * If any waiters have accumulated on the new page then
284 * wake them up.
285 */
286 if (PageWriteback(newpage))
287 end_page_writeback(newpage);
288}
289EXPORT_SYMBOL(migrate_page_copy);
290
1d8b85cc
CL
291/************************************************************
292 * Migration functions
293 ***********************************************************/
294
295/* Always fail migration. Used for mappings that are not movable */
296int fail_migrate_page(struct page *newpage, struct page *page)
297{
298 return -EIO;
299}
300EXPORT_SYMBOL(fail_migrate_page);
301
b20a3503
CL
302/*
303 * Common logic to directly migrate a single page suitable for
304 * pages that do not use PagePrivate.
305 *
306 * Pages are locked upon entry and exit.
307 */
308int migrate_page(struct page *newpage, struct page *page)
309{
310 int rc;
311
312 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
313
314 rc = migrate_page_remove_references(newpage, page, 2);
315
316 if (rc)
317 return rc;
318
319 migrate_page_copy(newpage, page);
320
321 /*
322 * Remove auxiliary swap entries and replace
323 * them with real ptes.
324 *
325 * Note that a real pte entry will allow processes that are not
326 * waiting on the page lock to use the new page via the page tables
327 * before the new page is unlocked.
328 */
329 remove_from_swap(newpage);
330 return 0;
331}
332EXPORT_SYMBOL(migrate_page);
333
1d8b85cc
CL
334/*
335 * Migration function for pages with buffers. This function can only be used
336 * if the underlying filesystem guarantees that no other references to "page"
337 * exist.
338 */
339int buffer_migrate_page(struct page *newpage, struct page *page)
340{
341 struct address_space *mapping = page->mapping;
342 struct buffer_head *bh, *head;
343 int rc;
344
345 if (!mapping)
346 return -EAGAIN;
347
348 if (!page_has_buffers(page))
349 return migrate_page(newpage, page);
350
351 head = page_buffers(page);
352
353 rc = migrate_page_remove_references(newpage, page, 3);
354
355 if (rc)
356 return rc;
357
358 bh = head;
359 do {
360 get_bh(bh);
361 lock_buffer(bh);
362 bh = bh->b_this_page;
363
364 } while (bh != head);
365
366 ClearPagePrivate(page);
367 set_page_private(newpage, page_private(page));
368 set_page_private(page, 0);
369 put_page(page);
370 get_page(newpage);
371
372 bh = head;
373 do {
374 set_bh_page(bh, newpage, bh_offset(bh));
375 bh = bh->b_this_page;
376
377 } while (bh != head);
378
379 SetPagePrivate(newpage);
380
381 migrate_page_copy(newpage, page);
382
383 bh = head;
384 do {
385 unlock_buffer(bh);
386 put_bh(bh);
387 bh = bh->b_this_page;
388
389 } while (bh != head);
390
391 return 0;
392}
393EXPORT_SYMBOL(buffer_migrate_page);
394
b20a3503
CL
395/*
396 * migrate_pages
397 *
398 * Two lists are passed to this function. The first list
399 * contains the pages isolated from the LRU to be migrated.
400 * The second list contains new pages that the pages isolated
401 * can be moved to. If the second list is NULL then all
402 * pages are swapped out.
403 *
404 * The function returns after 10 attempts or if no pages
405 * are movable anymore because to has become empty
406 * or no retryable pages exist anymore.
407 *
408 * Return: Number of pages not migrated when "to" ran empty.
409 */
410int migrate_pages(struct list_head *from, struct list_head *to,
411 struct list_head *moved, struct list_head *failed)
412{
413 int retry;
414 int nr_failed = 0;
415 int pass = 0;
416 struct page *page;
417 struct page *page2;
418 int swapwrite = current->flags & PF_SWAPWRITE;
419 int rc;
420
421 if (!swapwrite)
422 current->flags |= PF_SWAPWRITE;
423
424redo:
425 retry = 0;
426
427 list_for_each_entry_safe(page, page2, from, lru) {
428 struct page *newpage = NULL;
429 struct address_space *mapping;
430
431 cond_resched();
432
433 rc = 0;
434 if (page_count(page) == 1)
435 /* page was freed from under us. So we are done. */
436 goto next;
437
438 if (to && list_empty(to))
439 break;
440
441 /*
442 * Skip locked pages during the first two passes to give the
443 * functions holding the lock time to release the page. Later we
444 * use lock_page() to have a higher chance of acquiring the
445 * lock.
446 */
447 rc = -EAGAIN;
448 if (pass > 2)
449 lock_page(page);
450 else
451 if (TestSetPageLocked(page))
452 goto next;
453
454 /*
455 * Only wait on writeback if we have already done a pass where
456 * we we may have triggered writeouts for lots of pages.
457 */
458 if (pass > 0) {
459 wait_on_page_writeback(page);
460 } else {
461 if (PageWriteback(page))
462 goto unlock_page;
463 }
464
465 /*
466 * Anonymous pages must have swap cache references otherwise
467 * the information contained in the page maps cannot be
468 * preserved.
469 */
470 if (PageAnon(page) && !PageSwapCache(page)) {
471 if (!add_to_swap(page, GFP_KERNEL)) {
472 rc = -ENOMEM;
473 goto unlock_page;
474 }
475 }
476
477 if (!to) {
478 rc = swap_page(page);
479 goto next;
480 }
481
482 newpage = lru_to_page(to);
483 lock_page(newpage);
484
485 /*
486 * Pages are properly locked and writeback is complete.
487 * Try to migrate the page.
488 */
489 mapping = page_mapping(page);
490 if (!mapping)
491 goto unlock_both;
492
493 if (mapping->a_ops->migratepage) {
494 /*
495 * Most pages have a mapping and most filesystems
496 * should provide a migration function. Anonymous
497 * pages are part of swap space which also has its
498 * own migration function. This is the most common
499 * path for page migration.
500 */
501 rc = mapping->a_ops->migratepage(newpage, page);
502 goto unlock_both;
503 }
504
4c28f811
CL
505 /* Make sure the dirty bit is up to date */
506 if (try_to_unmap(page, 1) == SWAP_FAIL) {
507 rc = -EPERM;
508 goto unlock_both;
509 }
510
511 if (page_mapcount(page)) {
512 rc = -EAGAIN;
513 goto unlock_both;
514 }
515
b20a3503
CL
516 /*
517 * Default handling if a filesystem does not provide
518 * a migration function. We can only migrate clean
519 * pages so try to write out any dirty pages first.
520 */
521 if (PageDirty(page)) {
522 switch (pageout(page, mapping)) {
523 case PAGE_KEEP:
524 case PAGE_ACTIVATE:
525 goto unlock_both;
526
527 case PAGE_SUCCESS:
528 unlock_page(newpage);
529 goto next;
530
531 case PAGE_CLEAN:
532 ; /* try to migrate the page below */
533 }
534 }
535
536 /*
537 * Buffers are managed in a filesystem specific way.
538 * We must have no buffers or drop them.
539 */
540 if (!page_has_buffers(page) ||
541 try_to_release_page(page, GFP_KERNEL)) {
542 rc = migrate_page(newpage, page);
543 goto unlock_both;
544 }
545
546 /*
547 * On early passes with mapped pages simply
548 * retry. There may be a lock held for some
549 * buffers that may go away. Later
550 * swap them out.
551 */
552 if (pass > 4) {
553 /*
554 * Persistently unable to drop buffers..... As a
555 * measure of last resort we fall back to
556 * swap_page().
557 */
558 unlock_page(newpage);
559 newpage = NULL;
560 rc = swap_page(page);
561 goto next;
562 }
563
564unlock_both:
565 unlock_page(newpage);
566
567unlock_page:
568 unlock_page(page);
569
570next:
571 if (rc == -EAGAIN) {
572 retry++;
573 } else if (rc) {
574 /* Permanent failure */
575 list_move(&page->lru, failed);
576 nr_failed++;
577 } else {
578 if (newpage) {
579 /* Successful migration. Return page to LRU */
580 move_to_lru(newpage);
581 }
582 list_move(&page->lru, moved);
583 }
584 }
585 if (retry && pass++ < 10)
586 goto redo;
587
588 if (!swapwrite)
589 current->flags &= ~PF_SWAPWRITE;
590
591 return nr_failed + retry;
592}
593
b20a3503
CL
594/*
595 * Migrate the list 'pagelist' of pages to a certain destination.
596 *
597 * Specify destination with either non-NULL vma or dest_node >= 0
598 * Return the number of pages not migrated or error code
599 */
600int migrate_pages_to(struct list_head *pagelist,
601 struct vm_area_struct *vma, int dest)
602{
603 LIST_HEAD(newlist);
604 LIST_HEAD(moved);
605 LIST_HEAD(failed);
606 int err = 0;
607 unsigned long offset = 0;
608 int nr_pages;
609 struct page *page;
610 struct list_head *p;
611
612redo:
613 nr_pages = 0;
614 list_for_each(p, pagelist) {
615 if (vma) {
616 /*
617 * The address passed to alloc_page_vma is used to
618 * generate the proper interleave behavior. We fake
619 * the address here by an increasing offset in order
620 * to get the proper distribution of pages.
621 *
622 * No decision has been made as to which page
623 * a certain old page is moved to so we cannot
624 * specify the correct address.
625 */
626 page = alloc_page_vma(GFP_HIGHUSER, vma,
627 offset + vma->vm_start);
628 offset += PAGE_SIZE;
629 }
630 else
631 page = alloc_pages_node(dest, GFP_HIGHUSER, 0);
632
633 if (!page) {
634 err = -ENOMEM;
635 goto out;
636 }
637 list_add_tail(&page->lru, &newlist);
638 nr_pages++;
639 if (nr_pages > MIGRATE_CHUNK_SIZE)
640 break;
641 }
642 err = migrate_pages(pagelist, &newlist, &moved, &failed);
643
644 putback_lru_pages(&moved); /* Call release pages instead ?? */
645
646 if (err >= 0 && list_empty(&newlist) && !list_empty(pagelist))
647 goto redo;
648out:
649 /* Return leftover allocated pages */
650 while (!list_empty(&newlist)) {
651 page = list_entry(newlist.next, struct page, lru);
652 list_del(&page->lru);
653 __free_page(page);
654 }
655 list_splice(&failed, pagelist);
656 if (err < 0)
657 return err;
658
659 /* Calculate number of leftover pages */
660 nr_pages = 0;
661 list_for_each(p, pagelist)
662 nr_pages++;
663 return nr_pages;
664}