Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-block.git] / mm / migrate.c
CommitLineData
b20a3503 1/*
14e0f9bc 2 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
42cb14b1 33#include <linux/backing-dev.h>
4f5ca265 34#include <linux/syscalls.h>
290408d4 35#include <linux/hugetlb.h>
8e6ac7fa 36#include <linux/hugetlb_cgroup.h>
5a0e3ad6 37#include <linux/gfp.h>
bf6bddf1 38#include <linux/balloon_compaction.h>
f714f4f2 39#include <linux/mmu_notifier.h>
33c3fc71 40#include <linux/page_idle.h>
d435edca 41#include <linux/page_owner.h>
b20a3503 42
0d1836c3
MN
43#include <asm/tlbflush.h>
44
7b2a2d4a
MG
45#define CREATE_TRACE_POINTS
46#include <trace/events/migrate.h>
47
b20a3503
CL
48#include "internal.h"
49
b20a3503 50/*
742755a1 51 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
52 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
53 * undesirable, use migrate_prep_local()
b20a3503
CL
54 */
55int migrate_prep(void)
56{
b20a3503
CL
57 /*
58 * Clear the LRU lists so pages can be isolated.
59 * Note that pages may be moved off the LRU after we have
60 * drained them. Those pages will fail to migrate like other
61 * pages that may be busy.
62 */
63 lru_add_drain_all();
64
65 return 0;
66}
67
748446bb
MG
68/* Do the necessary work of migrate_prep but not if it involves other CPUs */
69int migrate_prep_local(void)
70{
71 lru_add_drain();
72
73 return 0;
74}
75
5733c7d1
RA
76/*
77 * Put previously isolated pages back onto the appropriate lists
78 * from where they were once taken off for compaction/migration.
79 *
59c82b70
JK
80 * This function shall be used whenever the isolated pageset has been
81 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
82 * and isolate_huge_page().
5733c7d1
RA
83 */
84void putback_movable_pages(struct list_head *l)
85{
86 struct page *page;
87 struct page *page2;
88
b20a3503 89 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
90 if (unlikely(PageHuge(page))) {
91 putback_active_hugepage(page);
92 continue;
93 }
e24f0b8f 94 list_del(&page->lru);
a731286d 95 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 96 page_is_file_cache(page));
117aad1e 97 if (unlikely(isolated_balloon_page(page)))
bf6bddf1
RA
98 balloon_page_putback(page);
99 else
100 putback_lru_page(page);
b20a3503 101 }
b20a3503
CL
102}
103
0697212a
CL
104/*
105 * Restore a potential migration pte to a working pte entry
106 */
e9995ef9
HD
107static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
108 unsigned long addr, void *old)
0697212a
CL
109{
110 struct mm_struct *mm = vma->vm_mm;
111 swp_entry_t entry;
0697212a
CL
112 pmd_t *pmd;
113 pte_t *ptep, pte;
114 spinlock_t *ptl;
115
290408d4
NH
116 if (unlikely(PageHuge(new))) {
117 ptep = huge_pte_offset(mm, addr);
118 if (!ptep)
119 goto out;
cb900f41 120 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
290408d4 121 } else {
6219049a
BL
122 pmd = mm_find_pmd(mm, addr);
123 if (!pmd)
290408d4 124 goto out;
0697212a 125
290408d4 126 ptep = pte_offset_map(pmd, addr);
0697212a 127
486cf46f
HD
128 /*
129 * Peek to check is_swap_pte() before taking ptlock? No, we
130 * can race mremap's move_ptes(), which skips anon_vma lock.
131 */
290408d4
NH
132
133 ptl = pte_lockptr(mm, pmd);
134 }
0697212a 135
0697212a
CL
136 spin_lock(ptl);
137 pte = *ptep;
138 if (!is_swap_pte(pte))
e9995ef9 139 goto unlock;
0697212a
CL
140
141 entry = pte_to_swp_entry(pte);
142
e9995ef9
HD
143 if (!is_migration_entry(entry) ||
144 migration_entry_to_page(entry) != old)
145 goto unlock;
0697212a 146
0697212a
CL
147 get_page(new);
148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
c3d16e16
CG
149 if (pte_swp_soft_dirty(*ptep))
150 pte = pte_mksoft_dirty(pte);
d3cb8bf6
MG
151
152 /* Recheck VMA as permissions can change since migration started */
0697212a 153 if (is_write_migration_entry(entry))
d3cb8bf6
MG
154 pte = maybe_mkwrite(pte, vma);
155
3ef8fd7f 156#ifdef CONFIG_HUGETLB_PAGE
be7517d6 157 if (PageHuge(new)) {
290408d4 158 pte = pte_mkhuge(pte);
be7517d6
TL
159 pte = arch_make_huge_pte(pte, vma, new, 0);
160 }
3ef8fd7f 161#endif
c2cc499c 162 flush_dcache_page(new);
0697212a 163 set_pte_at(mm, addr, ptep, pte);
04e62a29 164
290408d4
NH
165 if (PageHuge(new)) {
166 if (PageAnon(new))
167 hugepage_add_anon_rmap(new, vma, addr);
168 else
53f9263b 169 page_dup_rmap(new, true);
290408d4 170 } else if (PageAnon(new))
d281ee61 171 page_add_anon_rmap(new, vma, addr, false);
04e62a29
CL
172 else
173 page_add_file_rmap(new);
174
e388466d 175 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
51afb12b
HD
176 mlock_vma_page(new);
177
04e62a29 178 /* No need to invalidate - it was non-present before */
4b3073e1 179 update_mmu_cache(vma, addr, ptep);
e9995ef9 180unlock:
0697212a 181 pte_unmap_unlock(ptep, ptl);
e9995ef9
HD
182out:
183 return SWAP_AGAIN;
0697212a
CL
184}
185
04e62a29
CL
186/*
187 * Get rid of all migration entries and replace them by
188 * references to the indicated page.
189 */
e388466d 190void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 191{
051ac83a
JK
192 struct rmap_walk_control rwc = {
193 .rmap_one = remove_migration_pte,
194 .arg = old,
195 };
196
e388466d
KS
197 if (locked)
198 rmap_walk_locked(new, &rwc);
199 else
200 rmap_walk(new, &rwc);
04e62a29
CL
201}
202
0697212a
CL
203/*
204 * Something used the pte of a page under migration. We need to
205 * get to the page and wait until migration is finished.
206 * When we return from this function the fault will be retried.
0697212a 207 */
e66f17ff 208void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 209 spinlock_t *ptl)
0697212a 210{
30dad309 211 pte_t pte;
0697212a
CL
212 swp_entry_t entry;
213 struct page *page;
214
30dad309 215 spin_lock(ptl);
0697212a
CL
216 pte = *ptep;
217 if (!is_swap_pte(pte))
218 goto out;
219
220 entry = pte_to_swp_entry(pte);
221 if (!is_migration_entry(entry))
222 goto out;
223
224 page = migration_entry_to_page(entry);
225
e286781d
NP
226 /*
227 * Once radix-tree replacement of page migration started, page_count
228 * *must* be zero. And, we don't want to call wait_on_page_locked()
229 * against a page without get_page().
230 * So, we use get_page_unless_zero(), here. Even failed, page fault
231 * will occur again.
232 */
233 if (!get_page_unless_zero(page))
234 goto out;
0697212a
CL
235 pte_unmap_unlock(ptep, ptl);
236 wait_on_page_locked(page);
237 put_page(page);
238 return;
239out:
240 pte_unmap_unlock(ptep, ptl);
241}
242
30dad309
NH
243void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
244 unsigned long address)
245{
246 spinlock_t *ptl = pte_lockptr(mm, pmd);
247 pte_t *ptep = pte_offset_map(pmd, address);
248 __migration_entry_wait(mm, ptep, ptl);
249}
250
cb900f41
KS
251void migration_entry_wait_huge(struct vm_area_struct *vma,
252 struct mm_struct *mm, pte_t *pte)
30dad309 253{
cb900f41 254 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
255 __migration_entry_wait(mm, pte, ptl);
256}
257
b969c4ab
MG
258#ifdef CONFIG_BLOCK
259/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
260static bool buffer_migrate_lock_buffers(struct buffer_head *head,
261 enum migrate_mode mode)
b969c4ab
MG
262{
263 struct buffer_head *bh = head;
264
265 /* Simple case, sync compaction */
a6bc32b8 266 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
267 do {
268 get_bh(bh);
269 lock_buffer(bh);
270 bh = bh->b_this_page;
271
272 } while (bh != head);
273
274 return true;
275 }
276
277 /* async case, we cannot block on lock_buffer so use trylock_buffer */
278 do {
279 get_bh(bh);
280 if (!trylock_buffer(bh)) {
281 /*
282 * We failed to lock the buffer and cannot stall in
283 * async migration. Release the taken locks
284 */
285 struct buffer_head *failed_bh = bh;
286 put_bh(failed_bh);
287 bh = head;
288 while (bh != failed_bh) {
289 unlock_buffer(bh);
290 put_bh(bh);
291 bh = bh->b_this_page;
292 }
293 return false;
294 }
295
296 bh = bh->b_this_page;
297 } while (bh != head);
298 return true;
299}
300#else
301static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 302 enum migrate_mode mode)
b969c4ab
MG
303{
304 return true;
305}
306#endif /* CONFIG_BLOCK */
307
b20a3503 308/*
c3fcf8a5 309 * Replace the page in the mapping.
5b5c7120
CL
310 *
311 * The number of remaining references must be:
312 * 1 for anonymous pages without a mapping
313 * 2 for pages with a mapping
266cf658 314 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 315 */
36bc08cc 316int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 317 struct page *newpage, struct page *page,
8e321fef
BL
318 struct buffer_head *head, enum migrate_mode mode,
319 int extra_count)
b20a3503 320{
42cb14b1
HD
321 struct zone *oldzone, *newzone;
322 int dirty;
8e321fef 323 int expected_count = 1 + extra_count;
7cf9c2c7 324 void **pslot;
b20a3503 325
6c5240ae 326 if (!mapping) {
0e8c7d0f 327 /* Anonymous page without mapping */
8e321fef 328 if (page_count(page) != expected_count)
6c5240ae 329 return -EAGAIN;
cf4b769a
HD
330
331 /* No turning back from here */
cf4b769a
HD
332 newpage->index = page->index;
333 newpage->mapping = page->mapping;
334 if (PageSwapBacked(page))
fa9949da 335 __SetPageSwapBacked(newpage);
cf4b769a 336
78bd5209 337 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
338 }
339
42cb14b1
HD
340 oldzone = page_zone(page);
341 newzone = page_zone(newpage);
342
19fd6231 343 spin_lock_irq(&mapping->tree_lock);
b20a3503 344
7cf9c2c7
NP
345 pslot = radix_tree_lookup_slot(&mapping->page_tree,
346 page_index(page));
b20a3503 347
8e321fef 348 expected_count += 1 + page_has_private(page);
e286781d 349 if (page_count(page) != expected_count ||
29c1f677 350 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 351 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 352 return -EAGAIN;
b20a3503
CL
353 }
354
fe896d18 355 if (!page_ref_freeze(page, expected_count)) {
19fd6231 356 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
357 return -EAGAIN;
358 }
359
b969c4ab
MG
360 /*
361 * In the async migration case of moving a page with buffers, lock the
362 * buffers using trylock before the mapping is moved. If the mapping
363 * was moved, we later failed to lock the buffers and could not move
364 * the mapping back due to an elevated page count, we would have to
365 * block waiting on other references to be dropped.
366 */
a6bc32b8
MG
367 if (mode == MIGRATE_ASYNC && head &&
368 !buffer_migrate_lock_buffers(head, mode)) {
fe896d18 369 page_ref_unfreeze(page, expected_count);
b969c4ab
MG
370 spin_unlock_irq(&mapping->tree_lock);
371 return -EAGAIN;
372 }
373
b20a3503 374 /*
cf4b769a
HD
375 * Now we know that no one else is looking at the page:
376 * no turning back from here.
b20a3503 377 */
cf4b769a
HD
378 newpage->index = page->index;
379 newpage->mapping = page->mapping;
380 if (PageSwapBacked(page))
fa9949da 381 __SetPageSwapBacked(newpage);
cf4b769a 382
7cf9c2c7 383 get_page(newpage); /* add cache reference */
b20a3503
CL
384 if (PageSwapCache(page)) {
385 SetPageSwapCache(newpage);
386 set_page_private(newpage, page_private(page));
387 }
388
42cb14b1
HD
389 /* Move dirty while page refs frozen and newpage not yet exposed */
390 dirty = PageDirty(page);
391 if (dirty) {
392 ClearPageDirty(page);
393 SetPageDirty(newpage);
394 }
395
7cf9c2c7
NP
396 radix_tree_replace_slot(pslot, newpage);
397
398 /*
937a94c9
JG
399 * Drop cache reference from old page by unfreezing
400 * to one less reference.
7cf9c2c7
NP
401 * We know this isn't the last reference.
402 */
fe896d18 403 page_ref_unfreeze(page, expected_count - 1);
7cf9c2c7 404
42cb14b1
HD
405 spin_unlock(&mapping->tree_lock);
406 /* Leave irq disabled to prevent preemption while updating stats */
407
0e8c7d0f
CL
408 /*
409 * If moved to a different zone then also account
410 * the page for that zone. Other VM counters will be
411 * taken care of when we establish references to the
412 * new page and drop references to the old page.
413 *
414 * Note that anonymous pages are accounted for
415 * via NR_FILE_PAGES and NR_ANON_PAGES if they
416 * are mapped to swap space.
417 */
42cb14b1
HD
418 if (newzone != oldzone) {
419 __dec_zone_state(oldzone, NR_FILE_PAGES);
420 __inc_zone_state(newzone, NR_FILE_PAGES);
421 if (PageSwapBacked(page) && !PageSwapCache(page)) {
422 __dec_zone_state(oldzone, NR_SHMEM);
423 __inc_zone_state(newzone, NR_SHMEM);
424 }
425 if (dirty && mapping_cap_account_dirty(mapping)) {
426 __dec_zone_state(oldzone, NR_FILE_DIRTY);
427 __inc_zone_state(newzone, NR_FILE_DIRTY);
428 }
4b02108a 429 }
42cb14b1 430 local_irq_enable();
b20a3503 431
78bd5209 432 return MIGRATEPAGE_SUCCESS;
b20a3503 433}
1118dce7 434EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 435
290408d4
NH
436/*
437 * The expected number of remaining references is the same as that
438 * of migrate_page_move_mapping().
439 */
440int migrate_huge_page_move_mapping(struct address_space *mapping,
441 struct page *newpage, struct page *page)
442{
443 int expected_count;
444 void **pslot;
445
290408d4
NH
446 spin_lock_irq(&mapping->tree_lock);
447
448 pslot = radix_tree_lookup_slot(&mapping->page_tree,
449 page_index(page));
450
451 expected_count = 2 + page_has_private(page);
452 if (page_count(page) != expected_count ||
29c1f677 453 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
454 spin_unlock_irq(&mapping->tree_lock);
455 return -EAGAIN;
456 }
457
fe896d18 458 if (!page_ref_freeze(page, expected_count)) {
290408d4
NH
459 spin_unlock_irq(&mapping->tree_lock);
460 return -EAGAIN;
461 }
462
cf4b769a
HD
463 newpage->index = page->index;
464 newpage->mapping = page->mapping;
6a93ca8f 465
290408d4
NH
466 get_page(newpage);
467
468 radix_tree_replace_slot(pslot, newpage);
469
fe896d18 470 page_ref_unfreeze(page, expected_count - 1);
290408d4
NH
471
472 spin_unlock_irq(&mapping->tree_lock);
6a93ca8f 473
78bd5209 474 return MIGRATEPAGE_SUCCESS;
290408d4
NH
475}
476
30b0a105
DH
477/*
478 * Gigantic pages are so large that we do not guarantee that page++ pointer
479 * arithmetic will work across the entire page. We need something more
480 * specialized.
481 */
482static void __copy_gigantic_page(struct page *dst, struct page *src,
483 int nr_pages)
484{
485 int i;
486 struct page *dst_base = dst;
487 struct page *src_base = src;
488
489 for (i = 0; i < nr_pages; ) {
490 cond_resched();
491 copy_highpage(dst, src);
492
493 i++;
494 dst = mem_map_next(dst, dst_base, i);
495 src = mem_map_next(src, src_base, i);
496 }
497}
498
499static void copy_huge_page(struct page *dst, struct page *src)
500{
501 int i;
502 int nr_pages;
503
504 if (PageHuge(src)) {
505 /* hugetlbfs page */
506 struct hstate *h = page_hstate(src);
507 nr_pages = pages_per_huge_page(h);
508
509 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
510 __copy_gigantic_page(dst, src, nr_pages);
511 return;
512 }
513 } else {
514 /* thp page */
515 BUG_ON(!PageTransHuge(src));
516 nr_pages = hpage_nr_pages(src);
517 }
518
519 for (i = 0; i < nr_pages; i++) {
520 cond_resched();
521 copy_highpage(dst + i, src + i);
522 }
523}
524
b20a3503
CL
525/*
526 * Copy the page to its new location
527 */
290408d4 528void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 529{
7851a45c
RR
530 int cpupid;
531
b32967ff 532 if (PageHuge(page) || PageTransHuge(page))
290408d4
NH
533 copy_huge_page(newpage, page);
534 else
535 copy_highpage(newpage, page);
b20a3503
CL
536
537 if (PageError(page))
538 SetPageError(newpage);
539 if (PageReferenced(page))
540 SetPageReferenced(newpage);
541 if (PageUptodate(page))
542 SetPageUptodate(newpage);
894bc310 543 if (TestClearPageActive(page)) {
309381fe 544 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 545 SetPageActive(newpage);
418b27ef
LS
546 } else if (TestClearPageUnevictable(page))
547 SetPageUnevictable(newpage);
b20a3503
CL
548 if (PageChecked(page))
549 SetPageChecked(newpage);
550 if (PageMappedToDisk(page))
551 SetPageMappedToDisk(newpage);
552
42cb14b1
HD
553 /* Move dirty on pages not done by migrate_page_move_mapping() */
554 if (PageDirty(page))
555 SetPageDirty(newpage);
b20a3503 556
33c3fc71
VD
557 if (page_is_young(page))
558 set_page_young(newpage);
559 if (page_is_idle(page))
560 set_page_idle(newpage);
561
7851a45c
RR
562 /*
563 * Copy NUMA information to the new page, to prevent over-eager
564 * future migrations of this same page.
565 */
566 cpupid = page_cpupid_xchg_last(page, -1);
567 page_cpupid_xchg_last(newpage, cpupid);
568
e9995ef9 569 ksm_migrate_page(newpage, page);
c8d6553b
HD
570 /*
571 * Please do not reorder this without considering how mm/ksm.c's
572 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
573 */
b3b3a99c
NH
574 if (PageSwapCache(page))
575 ClearPageSwapCache(page);
b20a3503
CL
576 ClearPagePrivate(page);
577 set_page_private(page, 0);
b20a3503
CL
578
579 /*
580 * If any waiters have accumulated on the new page then
581 * wake them up.
582 */
583 if (PageWriteback(newpage))
584 end_page_writeback(newpage);
d435edca
VB
585
586 copy_page_owner(page, newpage);
74485cf2
JW
587
588 mem_cgroup_migrate(page, newpage);
b20a3503 589}
1118dce7 590EXPORT_SYMBOL(migrate_page_copy);
b20a3503 591
1d8b85cc
CL
592/************************************************************
593 * Migration functions
594 ***********************************************************/
595
b20a3503
CL
596/*
597 * Common logic to directly migrate a single page suitable for
266cf658 598 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
599 *
600 * Pages are locked upon entry and exit.
601 */
2d1db3b1 602int migrate_page(struct address_space *mapping,
a6bc32b8
MG
603 struct page *newpage, struct page *page,
604 enum migrate_mode mode)
b20a3503
CL
605{
606 int rc;
607
608 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
609
8e321fef 610 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 611
78bd5209 612 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
613 return rc;
614
615 migrate_page_copy(newpage, page);
78bd5209 616 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
617}
618EXPORT_SYMBOL(migrate_page);
619
9361401e 620#ifdef CONFIG_BLOCK
1d8b85cc
CL
621/*
622 * Migration function for pages with buffers. This function can only be used
623 * if the underlying filesystem guarantees that no other references to "page"
624 * exist.
625 */
2d1db3b1 626int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 627 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 628{
1d8b85cc
CL
629 struct buffer_head *bh, *head;
630 int rc;
631
1d8b85cc 632 if (!page_has_buffers(page))
a6bc32b8 633 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
634
635 head = page_buffers(page);
636
8e321fef 637 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
1d8b85cc 638
78bd5209 639 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
640 return rc;
641
b969c4ab
MG
642 /*
643 * In the async case, migrate_page_move_mapping locked the buffers
644 * with an IRQ-safe spinlock held. In the sync case, the buffers
645 * need to be locked now
646 */
a6bc32b8
MG
647 if (mode != MIGRATE_ASYNC)
648 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
649
650 ClearPagePrivate(page);
651 set_page_private(newpage, page_private(page));
652 set_page_private(page, 0);
653 put_page(page);
654 get_page(newpage);
655
656 bh = head;
657 do {
658 set_bh_page(bh, newpage, bh_offset(bh));
659 bh = bh->b_this_page;
660
661 } while (bh != head);
662
663 SetPagePrivate(newpage);
664
665 migrate_page_copy(newpage, page);
666
667 bh = head;
668 do {
669 unlock_buffer(bh);
670 put_bh(bh);
671 bh = bh->b_this_page;
672
673 } while (bh != head);
674
78bd5209 675 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
676}
677EXPORT_SYMBOL(buffer_migrate_page);
9361401e 678#endif
1d8b85cc 679
04e62a29
CL
680/*
681 * Writeback a page to clean the dirty state
682 */
683static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 684{
04e62a29
CL
685 struct writeback_control wbc = {
686 .sync_mode = WB_SYNC_NONE,
687 .nr_to_write = 1,
688 .range_start = 0,
689 .range_end = LLONG_MAX,
04e62a29
CL
690 .for_reclaim = 1
691 };
692 int rc;
693
694 if (!mapping->a_ops->writepage)
695 /* No write method for the address space */
696 return -EINVAL;
697
698 if (!clear_page_dirty_for_io(page))
699 /* Someone else already triggered a write */
700 return -EAGAIN;
701
8351a6e4 702 /*
04e62a29
CL
703 * A dirty page may imply that the underlying filesystem has
704 * the page on some queue. So the page must be clean for
705 * migration. Writeout may mean we loose the lock and the
706 * page state is no longer what we checked for earlier.
707 * At this point we know that the migration attempt cannot
708 * be successful.
8351a6e4 709 */
e388466d 710 remove_migration_ptes(page, page, false);
8351a6e4 711
04e62a29 712 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 713
04e62a29
CL
714 if (rc != AOP_WRITEPAGE_ACTIVATE)
715 /* unlocked. Relock */
716 lock_page(page);
717
bda8550d 718 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
719}
720
721/*
722 * Default handling if a filesystem does not provide a migration function.
723 */
724static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 725 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 726{
b969c4ab 727 if (PageDirty(page)) {
a6bc32b8
MG
728 /* Only writeback pages in full synchronous migration */
729 if (mode != MIGRATE_SYNC)
b969c4ab 730 return -EBUSY;
04e62a29 731 return writeout(mapping, page);
b969c4ab 732 }
8351a6e4
CL
733
734 /*
735 * Buffers may be managed in a filesystem specific way.
736 * We must have no buffers or drop them.
737 */
266cf658 738 if (page_has_private(page) &&
8351a6e4
CL
739 !try_to_release_page(page, GFP_KERNEL))
740 return -EAGAIN;
741
a6bc32b8 742 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
743}
744
e24f0b8f
CL
745/*
746 * Move a page to a newly allocated page
747 * The page is locked and all ptes have been successfully removed.
748 *
749 * The new page will have replaced the old page if this function
750 * is successful.
894bc310
LS
751 *
752 * Return value:
753 * < 0 - error code
78bd5209 754 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 755 */
3fe2011f 756static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 757 enum migrate_mode mode)
e24f0b8f
CL
758{
759 struct address_space *mapping;
760 int rc;
761
7db7671f
HD
762 VM_BUG_ON_PAGE(!PageLocked(page), page);
763 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 764
e24f0b8f
CL
765 mapping = page_mapping(page);
766 if (!mapping)
a6bc32b8 767 rc = migrate_page(mapping, newpage, page, mode);
b969c4ab 768 else if (mapping->a_ops->migratepage)
e24f0b8f 769 /*
b969c4ab
MG
770 * Most pages have a mapping and most filesystems provide a
771 * migratepage callback. Anonymous pages are part of swap
772 * space which also has its own migratepage callback. This
773 * is the most common path for page migration.
e24f0b8f 774 */
5c3f9a67 775 rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
b969c4ab 776 else
a6bc32b8 777 rc = fallback_migrate_page(mapping, newpage, page, mode);
e24f0b8f 778
5c3f9a67
HD
779 /*
780 * When successful, old pagecache page->mapping must be cleared before
781 * page is freed; but stats require that PageAnon be left as PageAnon.
782 */
783 if (rc == MIGRATEPAGE_SUCCESS) {
5c3f9a67
HD
784 if (!PageAnon(page))
785 page->mapping = NULL;
3fe2011f 786 }
e24f0b8f
CL
787 return rc;
788}
789
0dabec93 790static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 791 int force, enum migrate_mode mode)
e24f0b8f 792{
0dabec93 793 int rc = -EAGAIN;
2ebba6b7 794 int page_was_mapped = 0;
3f6c8272 795 struct anon_vma *anon_vma = NULL;
95a402c3 796
529ae9aa 797 if (!trylock_page(page)) {
a6bc32b8 798 if (!force || mode == MIGRATE_ASYNC)
0dabec93 799 goto out;
3e7d3449
MG
800
801 /*
802 * It's not safe for direct compaction to call lock_page.
803 * For example, during page readahead pages are added locked
804 * to the LRU. Later, when the IO completes the pages are
805 * marked uptodate and unlocked. However, the queueing
806 * could be merging multiple pages for one bio (e.g.
807 * mpage_readpages). If an allocation happens for the
808 * second or third page, the process can end up locking
809 * the same page twice and deadlocking. Rather than
810 * trying to be clever about what pages can be locked,
811 * avoid the use of lock_page for direct compaction
812 * altogether.
813 */
814 if (current->flags & PF_MEMALLOC)
0dabec93 815 goto out;
3e7d3449 816
e24f0b8f
CL
817 lock_page(page);
818 }
819
820 if (PageWriteback(page)) {
11bc82d6 821 /*
fed5b64a 822 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
823 * necessary to wait for PageWriteback. In the async case,
824 * the retry loop is too short and in the sync-light case,
825 * the overhead of stalling is too much
11bc82d6 826 */
a6bc32b8 827 if (mode != MIGRATE_SYNC) {
11bc82d6 828 rc = -EBUSY;
0a31bc97 829 goto out_unlock;
11bc82d6
AA
830 }
831 if (!force)
0a31bc97 832 goto out_unlock;
e24f0b8f
CL
833 wait_on_page_writeback(page);
834 }
03f15c86 835
e24f0b8f 836 /*
dc386d4d
KH
837 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
838 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 839 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 840 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
841 * File Caches may use write_page() or lock_page() in migration, then,
842 * just care Anon page here.
03f15c86
HD
843 *
844 * Only page_get_anon_vma() understands the subtleties of
845 * getting a hold on an anon_vma from outside one of its mms.
846 * But if we cannot get anon_vma, then we won't need it anyway,
847 * because that implies that the anon page is no longer mapped
848 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 849 */
03f15c86 850 if (PageAnon(page) && !PageKsm(page))
746b18d4 851 anon_vma = page_get_anon_vma(page);
62e1c553 852
7db7671f
HD
853 /*
854 * Block others from accessing the new page when we get around to
855 * establishing additional references. We are usually the only one
856 * holding a reference to newpage at this point. We used to have a BUG
857 * here if trylock_page(newpage) fails, but would like to allow for
858 * cases where there might be a race with the previous use of newpage.
859 * This is much like races on refcount of oldpage: just don't BUG().
860 */
861 if (unlikely(!trylock_page(newpage)))
862 goto out_unlock;
863
d6d86c0a 864 if (unlikely(isolated_balloon_page(page))) {
bf6bddf1
RA
865 /*
866 * A ballooned page does not need any special attention from
867 * physical to virtual reverse mapping procedures.
868 * Skip any attempt to unmap PTEs or to remap swap cache,
869 * in order to avoid burning cycles at rmap level, and perform
870 * the page migration right away (proteced by page lock).
871 */
872 rc = balloon_page_migrate(newpage, page, mode);
7db7671f 873 goto out_unlock_both;
bf6bddf1
RA
874 }
875
dc386d4d 876 /*
62e1c553
SL
877 * Corner case handling:
878 * 1. When a new swap-cache page is read into, it is added to the LRU
879 * and treated as swapcache but it has no rmap yet.
880 * Calling try_to_unmap() against a page->mapping==NULL page will
881 * trigger a BUG. So handle it here.
882 * 2. An orphaned page (see truncate_complete_page) might have
883 * fs-private metadata. The page can be picked up due to memory
884 * offlining. Everywhere else except page reclaim, the page is
885 * invisible to the vm, so the page can not be migrated. So try to
886 * free the metadata, so the page can be freed.
e24f0b8f 887 */
62e1c553 888 if (!page->mapping) {
309381fe 889 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 890 if (page_has_private(page)) {
62e1c553 891 try_to_free_buffers(page);
7db7671f 892 goto out_unlock_both;
62e1c553 893 }
7db7671f
HD
894 } else if (page_mapped(page)) {
895 /* Establish migration ptes */
03f15c86
HD
896 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
897 page);
2ebba6b7 898 try_to_unmap(page,
da1b13cc 899 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
900 page_was_mapped = 1;
901 }
dc386d4d 902
e6a1530d 903 if (!page_mapped(page))
5c3f9a67 904 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 905
5c3f9a67
HD
906 if (page_was_mapped)
907 remove_migration_ptes(page,
e388466d 908 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 909
7db7671f
HD
910out_unlock_both:
911 unlock_page(newpage);
912out_unlock:
3f6c8272 913 /* Drop an anon_vma reference if we took one */
76545066 914 if (anon_vma)
9e60109f 915 put_anon_vma(anon_vma);
e24f0b8f 916 unlock_page(page);
0dabec93
MK
917out:
918 return rc;
919}
95a402c3 920
ef2a5153
GU
921/*
922 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
923 * around it.
924 */
925#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
926#define ICE_noinline noinline
927#else
928#define ICE_noinline
929#endif
930
0dabec93
MK
931/*
932 * Obtain the lock on page, remove all ptes and migrate the page
933 * to the newly allocated page in newpage.
934 */
ef2a5153
GU
935static ICE_noinline int unmap_and_move(new_page_t get_new_page,
936 free_page_t put_new_page,
937 unsigned long private, struct page *page,
add05cec
NH
938 int force, enum migrate_mode mode,
939 enum migrate_reason reason)
0dabec93 940{
2def7424 941 int rc = MIGRATEPAGE_SUCCESS;
0dabec93 942 int *result = NULL;
2def7424 943 struct page *newpage;
0dabec93 944
2def7424 945 newpage = get_new_page(page, private, &result);
0dabec93
MK
946 if (!newpage)
947 return -ENOMEM;
948
949 if (page_count(page) == 1) {
950 /* page was freed from under us. So we are done. */
951 goto out;
952 }
953
4d2fa965
KS
954 if (unlikely(PageTransHuge(page))) {
955 lock_page(page);
956 rc = split_huge_page(page);
957 unlock_page(page);
958 if (rc)
0dabec93 959 goto out;
4d2fa965 960 }
0dabec93 961
9c620e2b 962 rc = __unmap_and_move(page, newpage, force, mode);
7cd12b4a 963 if (rc == MIGRATEPAGE_SUCCESS) {
2def7424 964 put_new_page = NULL;
7cd12b4a
VB
965 set_page_owner_migrate_reason(newpage, reason);
966 }
bf6bddf1 967
0dabec93 968out:
e24f0b8f 969 if (rc != -EAGAIN) {
0dabec93
MK
970 /*
971 * A page that has been migrated has all references
972 * removed and will be freed. A page that has not been
973 * migrated will have kepts its references and be
974 * restored.
975 */
976 list_del(&page->lru);
a731286d 977 dec_zone_page_state(page, NR_ISOLATED_ANON +
6c0b1351 978 page_is_file_cache(page));
f4c18e6f 979 /* Soft-offlined page shouldn't go through lru cache list */
d7e69488
MK
980 if (reason == MR_MEMORY_FAILURE && rc == MIGRATEPAGE_SUCCESS) {
981 /*
982 * With this release, we free successfully migrated
983 * page and set PG_HWPoison on just freed page
984 * intentionally. Although it's rather weird, it's how
985 * HWPoison flag works at the moment.
986 */
f4c18e6f 987 put_page(page);
da1b13cc
WL
988 if (!test_set_page_hwpoison(page))
989 num_poisoned_pages_inc();
990 } else
add05cec 991 putback_lru_page(page);
e24f0b8f 992 }
68711a74 993
95a402c3 994 /*
68711a74
DR
995 * If migration was not successful and there's a freeing callback, use
996 * it. Otherwise, putback_lru_page() will drop the reference grabbed
997 * during isolation.
95a402c3 998 */
cf4b769a 999 if (put_new_page)
68711a74 1000 put_new_page(newpage, private);
cf4b769a 1001 else if (unlikely(__is_movable_balloon_page(newpage))) {
d6d86c0a
KK
1002 /* drop our reference, page already in the balloon */
1003 put_page(newpage);
8bdd6380 1004 } else
68711a74
DR
1005 putback_lru_page(newpage);
1006
742755a1
CL
1007 if (result) {
1008 if (rc)
1009 *result = rc;
1010 else
1011 *result = page_to_nid(newpage);
1012 }
e24f0b8f
CL
1013 return rc;
1014}
1015
290408d4
NH
1016/*
1017 * Counterpart of unmap_and_move_page() for hugepage migration.
1018 *
1019 * This function doesn't wait the completion of hugepage I/O
1020 * because there is no race between I/O and migration for hugepage.
1021 * Note that currently hugepage I/O occurs only in direct I/O
1022 * where no lock is held and PG_writeback is irrelevant,
1023 * and writeback status of all subpages are counted in the reference
1024 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1025 * under direct I/O, the reference of the head page is 512 and a bit more.)
1026 * This means that when we try to migrate hugepage whose subpages are
1027 * doing direct I/O, some references remain after try_to_unmap() and
1028 * hugepage migration fails without data corruption.
1029 *
1030 * There is also no race when direct I/O is issued on the page under migration,
1031 * because then pte is replaced with migration swap entry and direct I/O code
1032 * will wait in the page fault for migration to complete.
1033 */
1034static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1035 free_page_t put_new_page, unsigned long private,
1036 struct page *hpage, int force,
7cd12b4a 1037 enum migrate_mode mode, int reason)
290408d4 1038{
2def7424 1039 int rc = -EAGAIN;
290408d4 1040 int *result = NULL;
2ebba6b7 1041 int page_was_mapped = 0;
32665f2b 1042 struct page *new_hpage;
290408d4
NH
1043 struct anon_vma *anon_vma = NULL;
1044
83467efb
NH
1045 /*
1046 * Movability of hugepages depends on architectures and hugepage size.
1047 * This check is necessary because some callers of hugepage migration
1048 * like soft offline and memory hotremove don't walk through page
1049 * tables or check whether the hugepage is pmd-based or not before
1050 * kicking migration.
1051 */
100873d7 1052 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1053 putback_active_hugepage(hpage);
83467efb 1054 return -ENOSYS;
32665f2b 1055 }
83467efb 1056
32665f2b 1057 new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
1058 if (!new_hpage)
1059 return -ENOMEM;
1060
290408d4 1061 if (!trylock_page(hpage)) {
a6bc32b8 1062 if (!force || mode != MIGRATE_SYNC)
290408d4
NH
1063 goto out;
1064 lock_page(hpage);
1065 }
1066
746b18d4
PZ
1067 if (PageAnon(hpage))
1068 anon_vma = page_get_anon_vma(hpage);
290408d4 1069
7db7671f
HD
1070 if (unlikely(!trylock_page(new_hpage)))
1071 goto put_anon;
1072
2ebba6b7
HD
1073 if (page_mapped(hpage)) {
1074 try_to_unmap(hpage,
1075 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1076 page_was_mapped = 1;
1077 }
290408d4
NH
1078
1079 if (!page_mapped(hpage))
5c3f9a67 1080 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1081
5c3f9a67
HD
1082 if (page_was_mapped)
1083 remove_migration_ptes(hpage,
e388466d 1084 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1085
7db7671f
HD
1086 unlock_page(new_hpage);
1087
1088put_anon:
fd4a4663 1089 if (anon_vma)
9e60109f 1090 put_anon_vma(anon_vma);
8e6ac7fa 1091
2def7424 1092 if (rc == MIGRATEPAGE_SUCCESS) {
8e6ac7fa 1093 hugetlb_cgroup_migrate(hpage, new_hpage);
2def7424 1094 put_new_page = NULL;
7cd12b4a 1095 set_page_owner_migrate_reason(new_hpage, reason);
2def7424 1096 }
8e6ac7fa 1097
290408d4 1098 unlock_page(hpage);
09761333 1099out:
b8ec1cee
NH
1100 if (rc != -EAGAIN)
1101 putback_active_hugepage(hpage);
68711a74
DR
1102
1103 /*
1104 * If migration was not successful and there's a freeing callback, use
1105 * it. Otherwise, put_page() will drop the reference grabbed during
1106 * isolation.
1107 */
2def7424 1108 if (put_new_page)
68711a74
DR
1109 put_new_page(new_hpage, private);
1110 else
3aaa76e1 1111 putback_active_hugepage(new_hpage);
68711a74 1112
290408d4
NH
1113 if (result) {
1114 if (rc)
1115 *result = rc;
1116 else
1117 *result = page_to_nid(new_hpage);
1118 }
1119 return rc;
1120}
1121
b20a3503 1122/*
c73e5c9c
SB
1123 * migrate_pages - migrate the pages specified in a list, to the free pages
1124 * supplied as the target for the page migration
b20a3503 1125 *
c73e5c9c
SB
1126 * @from: The list of pages to be migrated.
1127 * @get_new_page: The function used to allocate free pages to be used
1128 * as the target of the page migration.
68711a74
DR
1129 * @put_new_page: The function used to free target pages if migration
1130 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1131 * @private: Private data to be passed on to get_new_page()
1132 * @mode: The migration mode that specifies the constraints for
1133 * page migration, if any.
1134 * @reason: The reason for page migration.
b20a3503 1135 *
c73e5c9c
SB
1136 * The function returns after 10 attempts or if no pages are movable any more
1137 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1138 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1139 * or free list only if ret != 0.
b20a3503 1140 *
c73e5c9c 1141 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1142 */
9c620e2b 1143int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1144 free_page_t put_new_page, unsigned long private,
1145 enum migrate_mode mode, int reason)
b20a3503 1146{
e24f0b8f 1147 int retry = 1;
b20a3503 1148 int nr_failed = 0;
5647bc29 1149 int nr_succeeded = 0;
b20a3503
CL
1150 int pass = 0;
1151 struct page *page;
1152 struct page *page2;
1153 int swapwrite = current->flags & PF_SWAPWRITE;
1154 int rc;
1155
1156 if (!swapwrite)
1157 current->flags |= PF_SWAPWRITE;
1158
e24f0b8f
CL
1159 for(pass = 0; pass < 10 && retry; pass++) {
1160 retry = 0;
b20a3503 1161
e24f0b8f 1162 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 1163 cond_resched();
2d1db3b1 1164
31caf665
NH
1165 if (PageHuge(page))
1166 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1167 put_new_page, private, page,
7cd12b4a 1168 pass > 2, mode, reason);
31caf665 1169 else
68711a74 1170 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1171 private, page, pass > 2, mode,
1172 reason);
2d1db3b1 1173
e24f0b8f 1174 switch(rc) {
95a402c3 1175 case -ENOMEM:
dfef2ef4 1176 nr_failed++;
95a402c3 1177 goto out;
e24f0b8f 1178 case -EAGAIN:
2d1db3b1 1179 retry++;
e24f0b8f 1180 break;
78bd5209 1181 case MIGRATEPAGE_SUCCESS:
5647bc29 1182 nr_succeeded++;
e24f0b8f
CL
1183 break;
1184 default:
354a3363
NH
1185 /*
1186 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1187 * unlike -EAGAIN case, the failed page is
1188 * removed from migration page list and not
1189 * retried in the next outer loop.
1190 */
2d1db3b1 1191 nr_failed++;
e24f0b8f 1192 break;
2d1db3b1 1193 }
b20a3503
CL
1194 }
1195 }
f2f81fb2
VB
1196 nr_failed += retry;
1197 rc = nr_failed;
95a402c3 1198out:
5647bc29
MG
1199 if (nr_succeeded)
1200 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1201 if (nr_failed)
1202 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1203 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1204
b20a3503
CL
1205 if (!swapwrite)
1206 current->flags &= ~PF_SWAPWRITE;
1207
78bd5209 1208 return rc;
b20a3503 1209}
95a402c3 1210
742755a1
CL
1211#ifdef CONFIG_NUMA
1212/*
1213 * Move a list of individual pages
1214 */
1215struct page_to_node {
1216 unsigned long addr;
1217 struct page *page;
1218 int node;
1219 int status;
1220};
1221
1222static struct page *new_page_node(struct page *p, unsigned long private,
1223 int **result)
1224{
1225 struct page_to_node *pm = (struct page_to_node *)private;
1226
1227 while (pm->node != MAX_NUMNODES && pm->page != p)
1228 pm++;
1229
1230 if (pm->node == MAX_NUMNODES)
1231 return NULL;
1232
1233 *result = &pm->status;
1234
e632a938
NH
1235 if (PageHuge(p))
1236 return alloc_huge_page_node(page_hstate(compound_head(p)),
1237 pm->node);
1238 else
96db800f 1239 return __alloc_pages_node(pm->node,
e97ca8e5 1240 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
742755a1
CL
1241}
1242
1243/*
1244 * Move a set of pages as indicated in the pm array. The addr
1245 * field must be set to the virtual address of the page to be moved
1246 * and the node number must contain a valid target node.
5e9a0f02 1247 * The pm array ends with node = MAX_NUMNODES.
742755a1 1248 */
5e9a0f02
BG
1249static int do_move_page_to_node_array(struct mm_struct *mm,
1250 struct page_to_node *pm,
1251 int migrate_all)
742755a1
CL
1252{
1253 int err;
1254 struct page_to_node *pp;
1255 LIST_HEAD(pagelist);
1256
1257 down_read(&mm->mmap_sem);
1258
1259 /*
1260 * Build a list of pages to migrate
1261 */
742755a1
CL
1262 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1263 struct vm_area_struct *vma;
1264 struct page *page;
1265
742755a1
CL
1266 err = -EFAULT;
1267 vma = find_vma(mm, pp->addr);
70384dc6 1268 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1269 goto set_status;
1270
d899844e
KS
1271 /* FOLL_DUMP to ignore special (like zero) pages */
1272 page = follow_page(vma, pp->addr,
1273 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
89f5b7da
LT
1274
1275 err = PTR_ERR(page);
1276 if (IS_ERR(page))
1277 goto set_status;
1278
742755a1
CL
1279 err = -ENOENT;
1280 if (!page)
1281 goto set_status;
1282
742755a1
CL
1283 pp->page = page;
1284 err = page_to_nid(page);
1285
1286 if (err == pp->node)
1287 /*
1288 * Node already in the right place
1289 */
1290 goto put_and_set;
1291
1292 err = -EACCES;
1293 if (page_mapcount(page) > 1 &&
1294 !migrate_all)
1295 goto put_and_set;
1296
e632a938 1297 if (PageHuge(page)) {
e66f17ff
NH
1298 if (PageHead(page))
1299 isolate_huge_page(page, &pagelist);
e632a938
NH
1300 goto put_and_set;
1301 }
1302
62695a84 1303 err = isolate_lru_page(page);
6d9c285a 1304 if (!err) {
62695a84 1305 list_add_tail(&page->lru, &pagelist);
6d9c285a
KM
1306 inc_zone_page_state(page, NR_ISOLATED_ANON +
1307 page_is_file_cache(page));
1308 }
742755a1
CL
1309put_and_set:
1310 /*
1311 * Either remove the duplicate refcount from
1312 * isolate_lru_page() or drop the page ref if it was
1313 * not isolated.
1314 */
1315 put_page(page);
1316set_status:
1317 pp->status = err;
1318 }
1319
e78bbfa8 1320 err = 0;
cf608ac1 1321 if (!list_empty(&pagelist)) {
68711a74 1322 err = migrate_pages(&pagelist, new_page_node, NULL,
9c620e2b 1323 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
cf608ac1 1324 if (err)
e632a938 1325 putback_movable_pages(&pagelist);
cf608ac1 1326 }
742755a1
CL
1327
1328 up_read(&mm->mmap_sem);
1329 return err;
1330}
1331
5e9a0f02
BG
1332/*
1333 * Migrate an array of page address onto an array of nodes and fill
1334 * the corresponding array of status.
1335 */
3268c63e 1336static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1337 unsigned long nr_pages,
1338 const void __user * __user *pages,
1339 const int __user *nodes,
1340 int __user *status, int flags)
1341{
3140a227 1342 struct page_to_node *pm;
3140a227
BG
1343 unsigned long chunk_nr_pages;
1344 unsigned long chunk_start;
1345 int err;
5e9a0f02 1346
3140a227
BG
1347 err = -ENOMEM;
1348 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1349 if (!pm)
5e9a0f02 1350 goto out;
35282a2d
BG
1351
1352 migrate_prep();
1353
5e9a0f02 1354 /*
3140a227
BG
1355 * Store a chunk of page_to_node array in a page,
1356 * but keep the last one as a marker
5e9a0f02 1357 */
3140a227 1358 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1359
3140a227
BG
1360 for (chunk_start = 0;
1361 chunk_start < nr_pages;
1362 chunk_start += chunk_nr_pages) {
1363 int j;
5e9a0f02 1364
3140a227
BG
1365 if (chunk_start + chunk_nr_pages > nr_pages)
1366 chunk_nr_pages = nr_pages - chunk_start;
1367
1368 /* fill the chunk pm with addrs and nodes from user-space */
1369 for (j = 0; j < chunk_nr_pages; j++) {
1370 const void __user *p;
5e9a0f02
BG
1371 int node;
1372
3140a227
BG
1373 err = -EFAULT;
1374 if (get_user(p, pages + j + chunk_start))
1375 goto out_pm;
1376 pm[j].addr = (unsigned long) p;
1377
1378 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1379 goto out_pm;
1380
1381 err = -ENODEV;
6f5a55f1
LT
1382 if (node < 0 || node >= MAX_NUMNODES)
1383 goto out_pm;
1384
389162c2 1385 if (!node_state(node, N_MEMORY))
5e9a0f02
BG
1386 goto out_pm;
1387
1388 err = -EACCES;
1389 if (!node_isset(node, task_nodes))
1390 goto out_pm;
1391
3140a227
BG
1392 pm[j].node = node;
1393 }
1394
1395 /* End marker for this chunk */
1396 pm[chunk_nr_pages].node = MAX_NUMNODES;
1397
1398 /* Migrate this chunk */
1399 err = do_move_page_to_node_array(mm, pm,
1400 flags & MPOL_MF_MOVE_ALL);
1401 if (err < 0)
1402 goto out_pm;
5e9a0f02 1403
5e9a0f02 1404 /* Return status information */
3140a227
BG
1405 for (j = 0; j < chunk_nr_pages; j++)
1406 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1407 err = -EFAULT;
3140a227
BG
1408 goto out_pm;
1409 }
1410 }
1411 err = 0;
5e9a0f02
BG
1412
1413out_pm:
3140a227 1414 free_page((unsigned long)pm);
5e9a0f02
BG
1415out:
1416 return err;
1417}
1418
742755a1 1419/*
2f007e74 1420 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1421 */
80bba129
BG
1422static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1423 const void __user **pages, int *status)
742755a1 1424{
2f007e74 1425 unsigned long i;
2f007e74 1426
742755a1
CL
1427 down_read(&mm->mmap_sem);
1428
2f007e74 1429 for (i = 0; i < nr_pages; i++) {
80bba129 1430 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1431 struct vm_area_struct *vma;
1432 struct page *page;
c095adbc 1433 int err = -EFAULT;
2f007e74
BG
1434
1435 vma = find_vma(mm, addr);
70384dc6 1436 if (!vma || addr < vma->vm_start)
742755a1
CL
1437 goto set_status;
1438
d899844e
KS
1439 /* FOLL_DUMP to ignore special (like zero) pages */
1440 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1441
1442 err = PTR_ERR(page);
1443 if (IS_ERR(page))
1444 goto set_status;
1445
d899844e 1446 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1447set_status:
80bba129
BG
1448 *status = err;
1449
1450 pages++;
1451 status++;
1452 }
1453
1454 up_read(&mm->mmap_sem);
1455}
1456
1457/*
1458 * Determine the nodes of a user array of pages and store it in
1459 * a user array of status.
1460 */
1461static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1462 const void __user * __user *pages,
1463 int __user *status)
1464{
1465#define DO_PAGES_STAT_CHUNK_NR 16
1466 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1467 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1468
87b8d1ad
PA
1469 while (nr_pages) {
1470 unsigned long chunk_nr;
80bba129 1471
87b8d1ad
PA
1472 chunk_nr = nr_pages;
1473 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1474 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1475
1476 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1477 break;
80bba129
BG
1478
1479 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1480
87b8d1ad
PA
1481 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1482 break;
742755a1 1483
87b8d1ad
PA
1484 pages += chunk_nr;
1485 status += chunk_nr;
1486 nr_pages -= chunk_nr;
1487 }
1488 return nr_pages ? -EFAULT : 0;
742755a1
CL
1489}
1490
1491/*
1492 * Move a list of pages in the address space of the currently executing
1493 * process.
1494 */
938bb9f5
HC
1495SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1496 const void __user * __user *, pages,
1497 const int __user *, nodes,
1498 int __user *, status, int, flags)
742755a1 1499{
c69e8d9c 1500 const struct cred *cred = current_cred(), *tcred;
742755a1 1501 struct task_struct *task;
742755a1 1502 struct mm_struct *mm;
5e9a0f02 1503 int err;
3268c63e 1504 nodemask_t task_nodes;
742755a1
CL
1505
1506 /* Check flags */
1507 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1508 return -EINVAL;
1509
1510 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1511 return -EPERM;
1512
1513 /* Find the mm_struct */
a879bf58 1514 rcu_read_lock();
228ebcbe 1515 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1516 if (!task) {
a879bf58 1517 rcu_read_unlock();
742755a1
CL
1518 return -ESRCH;
1519 }
3268c63e 1520 get_task_struct(task);
742755a1
CL
1521
1522 /*
1523 * Check if this process has the right to modify the specified
1524 * process. The right exists if the process has administrative
1525 * capabilities, superuser privileges or the same
1526 * userid as the target process.
1527 */
c69e8d9c 1528 tcred = __task_cred(task);
b38a86eb
EB
1529 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1530 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
742755a1 1531 !capable(CAP_SYS_NICE)) {
c69e8d9c 1532 rcu_read_unlock();
742755a1 1533 err = -EPERM;
5e9a0f02 1534 goto out;
742755a1 1535 }
c69e8d9c 1536 rcu_read_unlock();
742755a1 1537
86c3a764
DQ
1538 err = security_task_movememory(task);
1539 if (err)
5e9a0f02 1540 goto out;
86c3a764 1541
3268c63e
CL
1542 task_nodes = cpuset_mems_allowed(task);
1543 mm = get_task_mm(task);
1544 put_task_struct(task);
1545
6e8b09ea
SL
1546 if (!mm)
1547 return -EINVAL;
1548
1549 if (nodes)
1550 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1551 nodes, status, flags);
1552 else
1553 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1554
742755a1
CL
1555 mmput(mm);
1556 return err;
3268c63e
CL
1557
1558out:
1559 put_task_struct(task);
1560 return err;
742755a1 1561}
742755a1 1562
7039e1db
PZ
1563#ifdef CONFIG_NUMA_BALANCING
1564/*
1565 * Returns true if this is a safe migration target node for misplaced NUMA
1566 * pages. Currently it only checks the watermarks which crude
1567 */
1568static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1569 unsigned long nr_migrate_pages)
7039e1db
PZ
1570{
1571 int z;
1572 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1573 struct zone *zone = pgdat->node_zones + z;
1574
1575 if (!populated_zone(zone))
1576 continue;
1577
6e543d57 1578 if (!zone_reclaimable(zone))
7039e1db
PZ
1579 continue;
1580
1581 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1582 if (!zone_watermark_ok(zone, 0,
1583 high_wmark_pages(zone) +
1584 nr_migrate_pages,
1585 0, 0))
1586 continue;
1587 return true;
1588 }
1589 return false;
1590}
1591
1592static struct page *alloc_misplaced_dst_page(struct page *page,
1593 unsigned long data,
1594 int **result)
1595{
1596 int nid = (int) data;
1597 struct page *newpage;
1598
96db800f 1599 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1600 (GFP_HIGHUSER_MOVABLE |
1601 __GFP_THISNODE | __GFP_NOMEMALLOC |
1602 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1603 ~__GFP_RECLAIM, 0);
bac0382c 1604
7039e1db
PZ
1605 return newpage;
1606}
1607
a8f60772
MG
1608/*
1609 * page migration rate limiting control.
1610 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1611 * window of time. Default here says do not migrate more than 1280M per second.
1612 */
1613static unsigned int migrate_interval_millisecs __read_mostly = 100;
1614static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1615
b32967ff 1616/* Returns true if the node is migrate rate-limited after the update */
1c30e017
MG
1617static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1618 unsigned long nr_pages)
7039e1db 1619{
a8f60772
MG
1620 /*
1621 * Rate-limit the amount of data that is being migrated to a node.
1622 * Optimal placement is no good if the memory bus is saturated and
1623 * all the time is being spent migrating!
1624 */
a8f60772 1625 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1c5e9c27 1626 spin_lock(&pgdat->numabalancing_migrate_lock);
a8f60772
MG
1627 pgdat->numabalancing_migrate_nr_pages = 0;
1628 pgdat->numabalancing_migrate_next_window = jiffies +
1629 msecs_to_jiffies(migrate_interval_millisecs);
1c5e9c27 1630 spin_unlock(&pgdat->numabalancing_migrate_lock);
a8f60772 1631 }
af1839d7
MG
1632 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1633 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1634 nr_pages);
1c5e9c27 1635 return true;
af1839d7 1636 }
1c5e9c27
MG
1637
1638 /*
1639 * This is an unlocked non-atomic update so errors are possible.
1640 * The consequences are failing to migrate when we potentiall should
1641 * have which is not severe enough to warrant locking. If it is ever
1642 * a problem, it can be converted to a per-cpu counter.
1643 */
1644 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1645 return false;
b32967ff
MG
1646}
1647
1c30e017 1648static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1649{
340ef390 1650 int page_lru;
a8f60772 1651
309381fe 1652 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1653
7039e1db 1654 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1655 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1656 return 0;
7039e1db 1657
340ef390
HD
1658 if (isolate_lru_page(page))
1659 return 0;
7039e1db 1660
340ef390
HD
1661 /*
1662 * migrate_misplaced_transhuge_page() skips page migration's usual
1663 * check on page_count(), so we must do it here, now that the page
1664 * has been isolated: a GUP pin, or any other pin, prevents migration.
1665 * The expected page count is 3: 1 for page's mapcount and 1 for the
1666 * caller's pin and 1 for the reference taken by isolate_lru_page().
1667 */
1668 if (PageTransHuge(page) && page_count(page) != 3) {
1669 putback_lru_page(page);
1670 return 0;
7039e1db
PZ
1671 }
1672
340ef390
HD
1673 page_lru = page_is_file_cache(page);
1674 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1675 hpage_nr_pages(page));
1676
149c33e1 1677 /*
340ef390
HD
1678 * Isolating the page has taken another reference, so the
1679 * caller's reference can be safely dropped without the page
1680 * disappearing underneath us during migration.
149c33e1
MG
1681 */
1682 put_page(page);
340ef390 1683 return 1;
b32967ff
MG
1684}
1685
de466bd6
MG
1686bool pmd_trans_migrating(pmd_t pmd)
1687{
1688 struct page *page = pmd_page(pmd);
1689 return PageLocked(page);
1690}
1691
b32967ff
MG
1692/*
1693 * Attempt to migrate a misplaced page to the specified destination
1694 * node. Caller is expected to have an elevated reference count on
1695 * the page that will be dropped by this function before returning.
1696 */
1bc115d8
MG
1697int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1698 int node)
b32967ff
MG
1699{
1700 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1701 int isolated;
b32967ff
MG
1702 int nr_remaining;
1703 LIST_HEAD(migratepages);
1704
1705 /*
1bc115d8
MG
1706 * Don't migrate file pages that are mapped in multiple processes
1707 * with execute permissions as they are probably shared libraries.
b32967ff 1708 */
1bc115d8
MG
1709 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1710 (vma->vm_flags & VM_EXEC))
b32967ff 1711 goto out;
b32967ff
MG
1712
1713 /*
1714 * Rate-limit the amount of data that is being migrated to a node.
1715 * Optimal placement is no good if the memory bus is saturated and
1716 * all the time is being spent migrating!
1717 */
340ef390 1718 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1719 goto out;
b32967ff
MG
1720
1721 isolated = numamigrate_isolate_page(pgdat, page);
1722 if (!isolated)
1723 goto out;
1724
1725 list_add(&page->lru, &migratepages);
9c620e2b 1726 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1727 NULL, node, MIGRATE_ASYNC,
1728 MR_NUMA_MISPLACED);
b32967ff 1729 if (nr_remaining) {
59c82b70
JK
1730 if (!list_empty(&migratepages)) {
1731 list_del(&page->lru);
1732 dec_zone_page_state(page, NR_ISOLATED_ANON +
1733 page_is_file_cache(page));
1734 putback_lru_page(page);
1735 }
b32967ff
MG
1736 isolated = 0;
1737 } else
1738 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1739 BUG_ON(!list_empty(&migratepages));
7039e1db 1740 return isolated;
340ef390
HD
1741
1742out:
1743 put_page(page);
1744 return 0;
7039e1db 1745}
220018d3 1746#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1747
220018d3 1748#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1749/*
1750 * Migrates a THP to a given target node. page must be locked and is unlocked
1751 * before returning.
1752 */
b32967ff
MG
1753int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1754 struct vm_area_struct *vma,
1755 pmd_t *pmd, pmd_t entry,
1756 unsigned long address,
1757 struct page *page, int node)
1758{
c4088ebd 1759 spinlock_t *ptl;
b32967ff
MG
1760 pg_data_t *pgdat = NODE_DATA(node);
1761 int isolated = 0;
1762 struct page *new_page = NULL;
b32967ff 1763 int page_lru = page_is_file_cache(page);
f714f4f2
MG
1764 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1765 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2b4847e7 1766 pmd_t orig_entry;
b32967ff 1767
b32967ff
MG
1768 /*
1769 * Rate-limit the amount of data that is being migrated to a node.
1770 * Optimal placement is no good if the memory bus is saturated and
1771 * all the time is being spent migrating!
1772 */
d28d4335 1773 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
1774 goto out_dropref;
1775
1776 new_page = alloc_pages_node(node,
71baba4b 1777 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
e97ca8e5 1778 HPAGE_PMD_ORDER);
340ef390
HD
1779 if (!new_page)
1780 goto out_fail;
9a982250 1781 prep_transhuge_page(new_page);
340ef390 1782
b32967ff 1783 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 1784 if (!isolated) {
b32967ff 1785 put_page(new_page);
340ef390 1786 goto out_fail;
b32967ff 1787 }
458aa76d
AK
1788 /*
1789 * We are not sure a pending tlb flush here is for a huge page
1790 * mapping or not. Hence use the tlb range variant
1791 */
b0943d61
MG
1792 if (mm_tlb_flush_pending(mm))
1793 flush_tlb_range(vma, mmun_start, mmun_end);
1794
b32967ff 1795 /* Prepare a page as a migration target */
48c935ad 1796 __SetPageLocked(new_page);
fa9949da 1797 __SetPageSwapBacked(new_page);
b32967ff
MG
1798
1799 /* anon mapping, we can simply copy page->mapping to the new page: */
1800 new_page->mapping = page->mapping;
1801 new_page->index = page->index;
1802 migrate_page_copy(new_page, page);
1803 WARN_ON(PageLRU(new_page));
1804
1805 /* Recheck the target PMD */
f714f4f2 1806 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 1807 ptl = pmd_lock(mm, pmd);
2b4847e7
MG
1808 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1809fail_putback:
c4088ebd 1810 spin_unlock(ptl);
f714f4f2 1811 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
1812
1813 /* Reverse changes made by migrate_page_copy() */
1814 if (TestClearPageActive(new_page))
1815 SetPageActive(page);
1816 if (TestClearPageUnevictable(new_page))
1817 SetPageUnevictable(page);
b32967ff
MG
1818
1819 unlock_page(new_page);
1820 put_page(new_page); /* Free it */
1821
a54a407f
MG
1822 /* Retake the callers reference and putback on LRU */
1823 get_page(page);
b32967ff 1824 putback_lru_page(page);
a54a407f
MG
1825 mod_zone_page_state(page_zone(page),
1826 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
1827
1828 goto out_unlock;
b32967ff
MG
1829 }
1830
2b4847e7 1831 orig_entry = *pmd;
b32967ff 1832 entry = mk_pmd(new_page, vma->vm_page_prot);
b32967ff 1833 entry = pmd_mkhuge(entry);
2b4847e7 1834 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 1835
2b4847e7
MG
1836 /*
1837 * Clear the old entry under pagetable lock and establish the new PTE.
1838 * Any parallel GUP will either observe the old page blocking on the
1839 * page lock, block on the page table lock or observe the new page.
1840 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1841 * guarantee the copy is visible before the pagetable update.
1842 */
f714f4f2 1843 flush_cache_range(vma, mmun_start, mmun_end);
d281ee61 1844 page_add_anon_rmap(new_page, vma, mmun_start, true);
8809aa2d 1845 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
f714f4f2 1846 set_pmd_at(mm, mmun_start, pmd, entry);
ce4a9cc5 1847 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7
MG
1848
1849 if (page_count(page) != 2) {
f714f4f2 1850 set_pmd_at(mm, mmun_start, pmd, orig_entry);
458aa76d 1851 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
34ee645e 1852 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2b4847e7 1853 update_mmu_cache_pmd(vma, address, &entry);
d281ee61 1854 page_remove_rmap(new_page, true);
2b4847e7
MG
1855 goto fail_putback;
1856 }
1857
51afb12b 1858 mlock_migrate_page(new_page, page);
d281ee61 1859 page_remove_rmap(page, true);
7cd12b4a 1860 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 1861
c4088ebd 1862 spin_unlock(ptl);
f714f4f2 1863 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff 1864
11de9927
MG
1865 /* Take an "isolate" reference and put new page on the LRU. */
1866 get_page(new_page);
1867 putback_lru_page(new_page);
1868
b32967ff
MG
1869 unlock_page(new_page);
1870 unlock_page(page);
1871 put_page(page); /* Drop the rmap reference */
1872 put_page(page); /* Drop the LRU isolation reference */
1873
1874 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1875 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1876
b32967ff
MG
1877 mod_zone_page_state(page_zone(page),
1878 NR_ISOLATED_ANON + page_lru,
1879 -HPAGE_PMD_NR);
1880 return isolated;
1881
340ef390
HD
1882out_fail:
1883 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 1884out_dropref:
2b4847e7
MG
1885 ptl = pmd_lock(mm, pmd);
1886 if (pmd_same(*pmd, entry)) {
4d942466 1887 entry = pmd_modify(entry, vma->vm_page_prot);
f714f4f2 1888 set_pmd_at(mm, mmun_start, pmd, entry);
2b4847e7
MG
1889 update_mmu_cache_pmd(vma, address, &entry);
1890 }
1891 spin_unlock(ptl);
a54a407f 1892
eb4489f6 1893out_unlock:
340ef390 1894 unlock_page(page);
b32967ff 1895 put_page(page);
b32967ff
MG
1896 return 0;
1897}
7039e1db
PZ
1898#endif /* CONFIG_NUMA_BALANCING */
1899
1900#endif /* CONFIG_NUMA */