[PATCH] sab: consolidate kmem_bufctl_t
[linux-2.6-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
d41dee36 61#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99 pud_ERROR(*pud);
100 pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
e0da382c 113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 114{
e0da382c
HD
115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_free_tlb(tlb, page);
118 dec_page_state(nr_page_table_pages);
119 tlb->mm->nr_ptes--;
1da177e4
LT
120}
121
e0da382c
HD
122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 unsigned long addr, unsigned long end,
124 unsigned long floor, unsigned long ceiling)
1da177e4
LT
125{
126 pmd_t *pmd;
127 unsigned long next;
e0da382c 128 unsigned long start;
1da177e4 129
e0da382c 130 start = addr;
1da177e4 131 pmd = pmd_offset(pud, addr);
1da177e4
LT
132 do {
133 next = pmd_addr_end(addr, end);
134 if (pmd_none_or_clear_bad(pmd))
135 continue;
e0da382c 136 free_pte_range(tlb, pmd);
1da177e4
LT
137 } while (pmd++, addr = next, addr != end);
138
e0da382c
HD
139 start &= PUD_MASK;
140 if (start < floor)
141 return;
142 if (ceiling) {
143 ceiling &= PUD_MASK;
144 if (!ceiling)
145 return;
1da177e4 146 }
e0da382c
HD
147 if (end - 1 > ceiling - 1)
148 return;
149
150 pmd = pmd_offset(pud, start);
151 pud_clear(pud);
152 pmd_free_tlb(tlb, pmd);
1da177e4
LT
153}
154
e0da382c
HD
155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 unsigned long addr, unsigned long end,
157 unsigned long floor, unsigned long ceiling)
1da177e4
LT
158{
159 pud_t *pud;
160 unsigned long next;
e0da382c 161 unsigned long start;
1da177e4 162
e0da382c 163 start = addr;
1da177e4 164 pud = pud_offset(pgd, addr);
1da177e4
LT
165 do {
166 next = pud_addr_end(addr, end);
167 if (pud_none_or_clear_bad(pud))
168 continue;
e0da382c 169 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
170 } while (pud++, addr = next, addr != end);
171
e0da382c
HD
172 start &= PGDIR_MASK;
173 if (start < floor)
174 return;
175 if (ceiling) {
176 ceiling &= PGDIR_MASK;
177 if (!ceiling)
178 return;
1da177e4 179 }
e0da382c
HD
180 if (end - 1 > ceiling - 1)
181 return;
182
183 pud = pud_offset(pgd, start);
184 pgd_clear(pgd);
185 pud_free_tlb(tlb, pud);
1da177e4
LT
186}
187
188/*
e0da382c
HD
189 * This function frees user-level page tables of a process.
190 *
1da177e4
LT
191 * Must be called with pagetable lock held.
192 */
3bf5ee95 193void free_pgd_range(struct mmu_gather **tlb,
e0da382c
HD
194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
1da177e4
LT
196{
197 pgd_t *pgd;
198 unsigned long next;
e0da382c
HD
199 unsigned long start;
200
201 /*
202 * The next few lines have given us lots of grief...
203 *
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
207 *
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
215 *
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
220 *
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
225 */
1da177e4 226
e0da382c
HD
227 addr &= PMD_MASK;
228 if (addr < floor) {
229 addr += PMD_SIZE;
230 if (!addr)
231 return;
232 }
233 if (ceiling) {
234 ceiling &= PMD_MASK;
235 if (!ceiling)
236 return;
237 }
238 if (end - 1 > ceiling - 1)
239 end -= PMD_SIZE;
240 if (addr > end - 1)
241 return;
242
243 start = addr;
3bf5ee95 244 pgd = pgd_offset((*tlb)->mm, addr);
1da177e4
LT
245 do {
246 next = pgd_addr_end(addr, end);
247 if (pgd_none_or_clear_bad(pgd))
248 continue;
3bf5ee95 249 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
1da177e4 250 } while (pgd++, addr = next, addr != end);
e0da382c 251
3bf5ee95
HD
252 if (!tlb_is_full_mm(*tlb))
253 flush_tlb_pgtables((*tlb)->mm, start, end);
e0da382c
HD
254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
3bf5ee95 257 unsigned long floor, unsigned long ceiling)
e0da382c
HD
258{
259 while (vma) {
260 struct vm_area_struct *next = vma->vm_next;
261 unsigned long addr = vma->vm_start;
262
3bf5ee95
HD
263 if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 265 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
266 } else {
267 /*
268 * Optimization: gather nearby vmas into one call down
269 */
270 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271 && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272 HPAGE_SIZE)) {
273 vma = next;
274 next = vma->vm_next;
275 }
276 free_pgd_range(tlb, addr, vma->vm_end,
277 floor, next? next->vm_start: ceiling);
278 }
e0da382c
HD
279 vma = next;
280 }
1da177e4
LT
281}
282
3bf5ee95
HD
283pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284 unsigned long address)
1da177e4
LT
285{
286 if (!pmd_present(*pmd)) {
287 struct page *new;
288
289 spin_unlock(&mm->page_table_lock);
290 new = pte_alloc_one(mm, address);
291 spin_lock(&mm->page_table_lock);
292 if (!new)
293 return NULL;
294 /*
295 * Because we dropped the lock, we should re-check the
296 * entry, as somebody else could have populated it..
297 */
298 if (pmd_present(*pmd)) {
299 pte_free(new);
300 goto out;
301 }
302 mm->nr_ptes++;
303 inc_page_state(nr_page_table_pages);
304 pmd_populate(mm, pmd, new);
305 }
306out:
307 return pte_offset_map(pmd, address);
308}
309
310pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311{
312 if (!pmd_present(*pmd)) {
313 pte_t *new;
314
315 spin_unlock(&mm->page_table_lock);
316 new = pte_alloc_one_kernel(mm, address);
317 spin_lock(&mm->page_table_lock);
318 if (!new)
319 return NULL;
320
321 /*
322 * Because we dropped the lock, we should re-check the
323 * entry, as somebody else could have populated it..
324 */
325 if (pmd_present(*pmd)) {
326 pte_free_kernel(new);
327 goto out;
328 }
329 pmd_populate_kernel(mm, pmd, new);
330 }
331out:
332 return pte_offset_kernel(pmd, address);
333}
334
335/*
336 * copy one vm_area from one task to the other. Assumes the page tables
337 * already present in the new task to be cleared in the whole range
338 * covered by this vma.
339 *
340 * dst->page_table_lock is held on entry and exit,
341 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
342 */
343
344static inline void
345copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
346 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
347 unsigned long addr)
348{
349 pte_t pte = *src_pte;
350 struct page *page;
351 unsigned long pfn;
352
353 /* pte contains position in swap or file, so copy. */
354 if (unlikely(!pte_present(pte))) {
355 if (!pte_file(pte)) {
356 swap_duplicate(pte_to_swp_entry(pte));
357 /* make sure dst_mm is on swapoff's mmlist. */
358 if (unlikely(list_empty(&dst_mm->mmlist))) {
359 spin_lock(&mmlist_lock);
360 list_add(&dst_mm->mmlist, &src_mm->mmlist);
361 spin_unlock(&mmlist_lock);
362 }
363 }
364 set_pte_at(dst_mm, addr, dst_pte, pte);
365 return;
366 }
367
368 pfn = pte_pfn(pte);
369 /* the pte points outside of valid memory, the
370 * mapping is assumed to be good, meaningful
371 * and not mapped via rmap - duplicate the
372 * mapping as is.
373 */
374 page = NULL;
375 if (pfn_valid(pfn))
376 page = pfn_to_page(pfn);
377
378 if (!page || PageReserved(page)) {
379 set_pte_at(dst_mm, addr, dst_pte, pte);
380 return;
381 }
382
383 /*
384 * If it's a COW mapping, write protect it both
385 * in the parent and the child
386 */
387 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
388 ptep_set_wrprotect(src_mm, addr, src_pte);
389 pte = *src_pte;
390 }
391
392 /*
393 * If it's a shared mapping, mark it clean in
394 * the child
395 */
396 if (vm_flags & VM_SHARED)
397 pte = pte_mkclean(pte);
398 pte = pte_mkold(pte);
399 get_page(page);
400 inc_mm_counter(dst_mm, rss);
401 if (PageAnon(page))
402 inc_mm_counter(dst_mm, anon_rss);
403 set_pte_at(dst_mm, addr, dst_pte, pte);
404 page_dup_rmap(page);
405}
406
407static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
408 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
409 unsigned long addr, unsigned long end)
410{
411 pte_t *src_pte, *dst_pte;
412 unsigned long vm_flags = vma->vm_flags;
413 int progress;
414
415again:
416 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
417 if (!dst_pte)
418 return -ENOMEM;
419 src_pte = pte_offset_map_nested(src_pmd, addr);
420
421 progress = 0;
422 spin_lock(&src_mm->page_table_lock);
423 do {
424 /*
425 * We are holding two locks at this point - either of them
426 * could generate latencies in another task on another CPU.
427 */
428 if (progress >= 32 && (need_resched() ||
429 need_lockbreak(&src_mm->page_table_lock) ||
430 need_lockbreak(&dst_mm->page_table_lock)))
431 break;
432 if (pte_none(*src_pte)) {
433 progress++;
434 continue;
435 }
436 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
437 progress += 8;
438 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
439 spin_unlock(&src_mm->page_table_lock);
440
441 pte_unmap_nested(src_pte - 1);
442 pte_unmap(dst_pte - 1);
443 cond_resched_lock(&dst_mm->page_table_lock);
444 if (addr != end)
445 goto again;
446 return 0;
447}
448
449static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
450 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
451 unsigned long addr, unsigned long end)
452{
453 pmd_t *src_pmd, *dst_pmd;
454 unsigned long next;
455
456 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
457 if (!dst_pmd)
458 return -ENOMEM;
459 src_pmd = pmd_offset(src_pud, addr);
460 do {
461 next = pmd_addr_end(addr, end);
462 if (pmd_none_or_clear_bad(src_pmd))
463 continue;
464 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
465 vma, addr, next))
466 return -ENOMEM;
467 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
468 return 0;
469}
470
471static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
472 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
473 unsigned long addr, unsigned long end)
474{
475 pud_t *src_pud, *dst_pud;
476 unsigned long next;
477
478 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
479 if (!dst_pud)
480 return -ENOMEM;
481 src_pud = pud_offset(src_pgd, addr);
482 do {
483 next = pud_addr_end(addr, end);
484 if (pud_none_or_clear_bad(src_pud))
485 continue;
486 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
487 vma, addr, next))
488 return -ENOMEM;
489 } while (dst_pud++, src_pud++, addr = next, addr != end);
490 return 0;
491}
492
493int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
494 struct vm_area_struct *vma)
495{
496 pgd_t *src_pgd, *dst_pgd;
497 unsigned long next;
498 unsigned long addr = vma->vm_start;
499 unsigned long end = vma->vm_end;
500
d992895b
NP
501 /*
502 * Don't copy ptes where a page fault will fill them correctly.
503 * Fork becomes much lighter when there are big shared or private
504 * readonly mappings. The tradeoff is that copy_page_range is more
505 * efficient than faulting.
506 */
507 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
508 if (!vma->anon_vma)
509 return 0;
510 }
511
1da177e4
LT
512 if (is_vm_hugetlb_page(vma))
513 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
514
515 dst_pgd = pgd_offset(dst_mm, addr);
516 src_pgd = pgd_offset(src_mm, addr);
517 do {
518 next = pgd_addr_end(addr, end);
519 if (pgd_none_or_clear_bad(src_pgd))
520 continue;
521 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
522 vma, addr, next))
523 return -ENOMEM;
524 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
525 return 0;
526}
527
528static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
529 unsigned long addr, unsigned long end,
530 struct zap_details *details)
531{
532 pte_t *pte;
533
534 pte = pte_offset_map(pmd, addr);
535 do {
536 pte_t ptent = *pte;
537 if (pte_none(ptent))
538 continue;
539 if (pte_present(ptent)) {
540 struct page *page = NULL;
541 unsigned long pfn = pte_pfn(ptent);
542 if (pfn_valid(pfn)) {
543 page = pfn_to_page(pfn);
544 if (PageReserved(page))
545 page = NULL;
546 }
547 if (unlikely(details) && page) {
548 /*
549 * unmap_shared_mapping_pages() wants to
550 * invalidate cache without truncating:
551 * unmap shared but keep private pages.
552 */
553 if (details->check_mapping &&
554 details->check_mapping != page->mapping)
555 continue;
556 /*
557 * Each page->index must be checked when
558 * invalidating or truncating nonlinear.
559 */
560 if (details->nonlinear_vma &&
561 (page->index < details->first_index ||
562 page->index > details->last_index))
563 continue;
564 }
565 ptent = ptep_get_and_clear(tlb->mm, addr, pte);
566 tlb_remove_tlb_entry(tlb, pte, addr);
567 if (unlikely(!page))
568 continue;
569 if (unlikely(details) && details->nonlinear_vma
570 && linear_page_index(details->nonlinear_vma,
571 addr) != page->index)
572 set_pte_at(tlb->mm, addr, pte,
573 pgoff_to_pte(page->index));
574 if (pte_dirty(ptent))
575 set_page_dirty(page);
576 if (PageAnon(page))
577 dec_mm_counter(tlb->mm, anon_rss);
578 else if (pte_young(ptent))
579 mark_page_accessed(page);
580 tlb->freed++;
581 page_remove_rmap(page);
582 tlb_remove_page(tlb, page);
583 continue;
584 }
585 /*
586 * If details->check_mapping, we leave swap entries;
587 * if details->nonlinear_vma, we leave file entries.
588 */
589 if (unlikely(details))
590 continue;
591 if (!pte_file(ptent))
592 free_swap_and_cache(pte_to_swp_entry(ptent));
593 pte_clear(tlb->mm, addr, pte);
594 } while (pte++, addr += PAGE_SIZE, addr != end);
595 pte_unmap(pte - 1);
596}
597
598static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
599 unsigned long addr, unsigned long end,
600 struct zap_details *details)
601{
602 pmd_t *pmd;
603 unsigned long next;
604
605 pmd = pmd_offset(pud, addr);
606 do {
607 next = pmd_addr_end(addr, end);
608 if (pmd_none_or_clear_bad(pmd))
609 continue;
610 zap_pte_range(tlb, pmd, addr, next, details);
611 } while (pmd++, addr = next, addr != end);
612}
613
614static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
615 unsigned long addr, unsigned long end,
616 struct zap_details *details)
617{
618 pud_t *pud;
619 unsigned long next;
620
621 pud = pud_offset(pgd, addr);
622 do {
623 next = pud_addr_end(addr, end);
624 if (pud_none_or_clear_bad(pud))
625 continue;
626 zap_pmd_range(tlb, pud, addr, next, details);
627 } while (pud++, addr = next, addr != end);
628}
629
630static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
631 unsigned long addr, unsigned long end,
632 struct zap_details *details)
633{
634 pgd_t *pgd;
635 unsigned long next;
636
637 if (details && !details->check_mapping && !details->nonlinear_vma)
638 details = NULL;
639
640 BUG_ON(addr >= end);
641 tlb_start_vma(tlb, vma);
642 pgd = pgd_offset(vma->vm_mm, addr);
643 do {
644 next = pgd_addr_end(addr, end);
645 if (pgd_none_or_clear_bad(pgd))
646 continue;
647 zap_pud_range(tlb, pgd, addr, next, details);
648 } while (pgd++, addr = next, addr != end);
649 tlb_end_vma(tlb, vma);
650}
651
652#ifdef CONFIG_PREEMPT
653# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
654#else
655/* No preempt: go for improved straight-line efficiency */
656# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
657#endif
658
659/**
660 * unmap_vmas - unmap a range of memory covered by a list of vma's
661 * @tlbp: address of the caller's struct mmu_gather
662 * @mm: the controlling mm_struct
663 * @vma: the starting vma
664 * @start_addr: virtual address at which to start unmapping
665 * @end_addr: virtual address at which to end unmapping
666 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
667 * @details: details of nonlinear truncation or shared cache invalidation
668 *
ee39b37b 669 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4
LT
670 *
671 * Unmap all pages in the vma list. Called under page_table_lock.
672 *
673 * We aim to not hold page_table_lock for too long (for scheduling latency
674 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
675 * return the ending mmu_gather to the caller.
676 *
677 * Only addresses between `start' and `end' will be unmapped.
678 *
679 * The VMA list must be sorted in ascending virtual address order.
680 *
681 * unmap_vmas() assumes that the caller will flush the whole unmapped address
682 * range after unmap_vmas() returns. So the only responsibility here is to
683 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
684 * drops the lock and schedules.
685 */
ee39b37b 686unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
1da177e4
LT
687 struct vm_area_struct *vma, unsigned long start_addr,
688 unsigned long end_addr, unsigned long *nr_accounted,
689 struct zap_details *details)
690{
691 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
692 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
693 int tlb_start_valid = 0;
ee39b37b 694 unsigned long start = start_addr;
1da177e4
LT
695 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
696 int fullmm = tlb_is_full_mm(*tlbp);
697
698 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
699 unsigned long end;
700
701 start = max(vma->vm_start, start_addr);
702 if (start >= vma->vm_end)
703 continue;
704 end = min(vma->vm_end, end_addr);
705 if (end <= vma->vm_start)
706 continue;
707
708 if (vma->vm_flags & VM_ACCOUNT)
709 *nr_accounted += (end - start) >> PAGE_SHIFT;
710
1da177e4
LT
711 while (start != end) {
712 unsigned long block;
713
714 if (!tlb_start_valid) {
715 tlb_start = start;
716 tlb_start_valid = 1;
717 }
718
719 if (is_vm_hugetlb_page(vma)) {
720 block = end - start;
721 unmap_hugepage_range(vma, start, end);
722 } else {
723 block = min(zap_bytes, end - start);
724 unmap_page_range(*tlbp, vma, start,
725 start + block, details);
726 }
727
728 start += block;
729 zap_bytes -= block;
730 if ((long)zap_bytes > 0)
731 continue;
732
733 tlb_finish_mmu(*tlbp, tlb_start, start);
734
735 if (need_resched() ||
736 need_lockbreak(&mm->page_table_lock) ||
737 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
738 if (i_mmap_lock) {
739 /* must reset count of rss freed */
740 *tlbp = tlb_gather_mmu(mm, fullmm);
1da177e4
LT
741 goto out;
742 }
743 spin_unlock(&mm->page_table_lock);
744 cond_resched();
745 spin_lock(&mm->page_table_lock);
746 }
747
748 *tlbp = tlb_gather_mmu(mm, fullmm);
749 tlb_start_valid = 0;
750 zap_bytes = ZAP_BLOCK_SIZE;
751 }
752 }
753out:
ee39b37b 754 return start; /* which is now the end (or restart) address */
1da177e4
LT
755}
756
757/**
758 * zap_page_range - remove user pages in a given range
759 * @vma: vm_area_struct holding the applicable pages
760 * @address: starting address of pages to zap
761 * @size: number of bytes to zap
762 * @details: details of nonlinear truncation or shared cache invalidation
763 */
ee39b37b 764unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
765 unsigned long size, struct zap_details *details)
766{
767 struct mm_struct *mm = vma->vm_mm;
768 struct mmu_gather *tlb;
769 unsigned long end = address + size;
770 unsigned long nr_accounted = 0;
771
772 if (is_vm_hugetlb_page(vma)) {
773 zap_hugepage_range(vma, address, size);
ee39b37b 774 return end;
1da177e4
LT
775 }
776
777 lru_add_drain();
778 spin_lock(&mm->page_table_lock);
779 tlb = tlb_gather_mmu(mm, 0);
ee39b37b 780 end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
1da177e4
LT
781 tlb_finish_mmu(tlb, address, end);
782 spin_unlock(&mm->page_table_lock);
ee39b37b 783 return end;
1da177e4
LT
784}
785
786/*
787 * Do a quick page-table lookup for a single page.
788 * mm->page_table_lock must be held.
789 */
1aaf18ff
AM
790static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
791 int read, int write, int accessed)
1da177e4
LT
792{
793 pgd_t *pgd;
794 pud_t *pud;
795 pmd_t *pmd;
796 pte_t *ptep, pte;
797 unsigned long pfn;
798 struct page *page;
799
800 page = follow_huge_addr(mm, address, write);
801 if (! IS_ERR(page))
802 return page;
803
804 pgd = pgd_offset(mm, address);
805 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
806 goto out;
807
808 pud = pud_offset(pgd, address);
809 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
810 goto out;
811
812 pmd = pmd_offset(pud, address);
813 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
814 goto out;
815 if (pmd_huge(*pmd))
816 return follow_huge_pmd(mm, address, pmd, write);
817
818 ptep = pte_offset_map(pmd, address);
819 if (!ptep)
820 goto out;
821
822 pte = *ptep;
823 pte_unmap(ptep);
824 if (pte_present(pte)) {
f33ea7f4 825 if (write && !pte_write(pte))
1da177e4
LT
826 goto out;
827 if (read && !pte_read(pte))
828 goto out;
829 pfn = pte_pfn(pte);
830 if (pfn_valid(pfn)) {
831 page = pfn_to_page(pfn);
f33ea7f4
NP
832 if (accessed) {
833 if (write && !pte_dirty(pte) &&!PageDirty(page))
834 set_page_dirty(page);
1aaf18ff 835 mark_page_accessed(page);
f33ea7f4 836 }
1da177e4
LT
837 return page;
838 }
839 }
840
841out:
842 return NULL;
843}
844
1aaf18ff 845inline struct page *
1da177e4
LT
846follow_page(struct mm_struct *mm, unsigned long address, int write)
847{
1aaf18ff 848 return __follow_page(mm, address, 0, write, 1);
1da177e4
LT
849}
850
1aaf18ff
AM
851/*
852 * check_user_page_readable() can be called frm niterrupt context by oprofile,
853 * so we need to avoid taking any non-irq-safe locks
854 */
855int check_user_page_readable(struct mm_struct *mm, unsigned long address)
1da177e4 856{
1aaf18ff 857 return __follow_page(mm, address, 1, 0, 0) != NULL;
1da177e4 858}
1da177e4
LT
859EXPORT_SYMBOL(check_user_page_readable);
860
1da177e4
LT
861static inline int
862untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
863 unsigned long address)
864{
865 pgd_t *pgd;
866 pud_t *pud;
867 pmd_t *pmd;
868
869 /* Check if the vma is for an anonymous mapping. */
870 if (vma->vm_ops && vma->vm_ops->nopage)
871 return 0;
872
873 /* Check if page directory entry exists. */
874 pgd = pgd_offset(mm, address);
875 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
876 return 1;
877
878 pud = pud_offset(pgd, address);
879 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
880 return 1;
881
882 /* Check if page middle directory entry exists. */
883 pmd = pmd_offset(pud, address);
884 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
885 return 1;
886
887 /* There is a pte slot for 'address' in 'mm'. */
888 return 0;
889}
890
1da177e4
LT
891int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
892 unsigned long start, int len, int write, int force,
893 struct page **pages, struct vm_area_struct **vmas)
894{
895 int i;
896 unsigned int flags;
897
898 /*
899 * Require read or write permissions.
900 * If 'force' is set, we only require the "MAY" flags.
901 */
902 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
903 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
904 i = 0;
905
906 do {
907 struct vm_area_struct * vma;
908
909 vma = find_extend_vma(mm, start);
910 if (!vma && in_gate_area(tsk, start)) {
911 unsigned long pg = start & PAGE_MASK;
912 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
913 pgd_t *pgd;
914 pud_t *pud;
915 pmd_t *pmd;
916 pte_t *pte;
917 if (write) /* user gate pages are read-only */
918 return i ? : -EFAULT;
919 if (pg > TASK_SIZE)
920 pgd = pgd_offset_k(pg);
921 else
922 pgd = pgd_offset_gate(mm, pg);
923 BUG_ON(pgd_none(*pgd));
924 pud = pud_offset(pgd, pg);
925 BUG_ON(pud_none(*pud));
926 pmd = pmd_offset(pud, pg);
690dbe1c
HD
927 if (pmd_none(*pmd))
928 return i ? : -EFAULT;
1da177e4 929 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
930 if (pte_none(*pte)) {
931 pte_unmap(pte);
932 return i ? : -EFAULT;
933 }
1da177e4
LT
934 if (pages) {
935 pages[i] = pte_page(*pte);
936 get_page(pages[i]);
937 }
938 pte_unmap(pte);
939 if (vmas)
940 vmas[i] = gate_vma;
941 i++;
942 start += PAGE_SIZE;
943 len--;
944 continue;
945 }
946
947 if (!vma || (vma->vm_flags & VM_IO)
948 || !(flags & vma->vm_flags))
949 return i ? : -EFAULT;
950
951 if (is_vm_hugetlb_page(vma)) {
952 i = follow_hugetlb_page(mm, vma, pages, vmas,
953 &start, &len, i);
954 continue;
955 }
956 spin_lock(&mm->page_table_lock);
957 do {
f33ea7f4 958 int write_access = write;
08ef4729 959 struct page *page;
1da177e4
LT
960
961 cond_resched_lock(&mm->page_table_lock);
f33ea7f4 962 while (!(page = follow_page(mm, start, write_access))) {
a68d2ebc
LT
963 int ret;
964
1da177e4
LT
965 /*
966 * Shortcut for anonymous pages. We don't want
967 * to force the creation of pages tables for
08ef4729 968 * insanely big anonymously mapped areas that
1da177e4
LT
969 * nobody touched so far. This is important
970 * for doing a core dump for these mappings.
971 */
4ceb5db9 972 if (!write && untouched_anonymous_page(mm,vma,start)) {
08ef4729 973 page = ZERO_PAGE(start);
1da177e4
LT
974 break;
975 }
976 spin_unlock(&mm->page_table_lock);
a68d2ebc
LT
977 ret = __handle_mm_fault(mm, vma, start, write_access);
978
979 /*
980 * The VM_FAULT_WRITE bit tells us that do_wp_page has
981 * broken COW when necessary, even if maybe_mkwrite
982 * decided not to set pte_write. We can thus safely do
983 * subsequent page lookups as if they were reads.
984 */
985 if (ret & VM_FAULT_WRITE)
f33ea7f4 986 write_access = 0;
a68d2ebc
LT
987
988 switch (ret & ~VM_FAULT_WRITE) {
1da177e4
LT
989 case VM_FAULT_MINOR:
990 tsk->min_flt++;
991 break;
992 case VM_FAULT_MAJOR:
993 tsk->maj_flt++;
994 break;
995 case VM_FAULT_SIGBUS:
996 return i ? i : -EFAULT;
997 case VM_FAULT_OOM:
998 return i ? i : -ENOMEM;
999 default:
1000 BUG();
1001 }
1da177e4
LT
1002 spin_lock(&mm->page_table_lock);
1003 }
1004 if (pages) {
08ef4729
HD
1005 pages[i] = page;
1006 flush_dcache_page(page);
1007 if (!PageReserved(page))
1008 page_cache_get(page);
1da177e4
LT
1009 }
1010 if (vmas)
1011 vmas[i] = vma;
1012 i++;
1013 start += PAGE_SIZE;
1014 len--;
08ef4729 1015 } while (len && start < vma->vm_end);
1da177e4 1016 spin_unlock(&mm->page_table_lock);
08ef4729 1017 } while (len);
1da177e4
LT
1018 return i;
1019}
1da177e4
LT
1020EXPORT_SYMBOL(get_user_pages);
1021
1022static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1023 unsigned long addr, unsigned long end, pgprot_t prot)
1024{
1025 pte_t *pte;
1026
1027 pte = pte_alloc_map(mm, pmd, addr);
1028 if (!pte)
1029 return -ENOMEM;
1030 do {
1031 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1032 BUG_ON(!pte_none(*pte));
1033 set_pte_at(mm, addr, pte, zero_pte);
1034 } while (pte++, addr += PAGE_SIZE, addr != end);
1035 pte_unmap(pte - 1);
1036 return 0;
1037}
1038
1039static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1040 unsigned long addr, unsigned long end, pgprot_t prot)
1041{
1042 pmd_t *pmd;
1043 unsigned long next;
1044
1045 pmd = pmd_alloc(mm, pud, addr);
1046 if (!pmd)
1047 return -ENOMEM;
1048 do {
1049 next = pmd_addr_end(addr, end);
1050 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1051 return -ENOMEM;
1052 } while (pmd++, addr = next, addr != end);
1053 return 0;
1054}
1055
1056static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1057 unsigned long addr, unsigned long end, pgprot_t prot)
1058{
1059 pud_t *pud;
1060 unsigned long next;
1061
1062 pud = pud_alloc(mm, pgd, addr);
1063 if (!pud)
1064 return -ENOMEM;
1065 do {
1066 next = pud_addr_end(addr, end);
1067 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1068 return -ENOMEM;
1069 } while (pud++, addr = next, addr != end);
1070 return 0;
1071}
1072
1073int zeromap_page_range(struct vm_area_struct *vma,
1074 unsigned long addr, unsigned long size, pgprot_t prot)
1075{
1076 pgd_t *pgd;
1077 unsigned long next;
1078 unsigned long end = addr + size;
1079 struct mm_struct *mm = vma->vm_mm;
1080 int err;
1081
1082 BUG_ON(addr >= end);
1083 pgd = pgd_offset(mm, addr);
1084 flush_cache_range(vma, addr, end);
1085 spin_lock(&mm->page_table_lock);
1086 do {
1087 next = pgd_addr_end(addr, end);
1088 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1089 if (err)
1090 break;
1091 } while (pgd++, addr = next, addr != end);
1092 spin_unlock(&mm->page_table_lock);
1093 return err;
1094}
1095
1096/*
1097 * maps a range of physical memory into the requested pages. the old
1098 * mappings are removed. any references to nonexistent pages results
1099 * in null mappings (currently treated as "copy-on-access")
1100 */
1101static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1102 unsigned long addr, unsigned long end,
1103 unsigned long pfn, pgprot_t prot)
1104{
1105 pte_t *pte;
1106
1107 pte = pte_alloc_map(mm, pmd, addr);
1108 if (!pte)
1109 return -ENOMEM;
1110 do {
1111 BUG_ON(!pte_none(*pte));
1112 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1113 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1114 pfn++;
1115 } while (pte++, addr += PAGE_SIZE, addr != end);
1116 pte_unmap(pte - 1);
1117 return 0;
1118}
1119
1120static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1121 unsigned long addr, unsigned long end,
1122 unsigned long pfn, pgprot_t prot)
1123{
1124 pmd_t *pmd;
1125 unsigned long next;
1126
1127 pfn -= addr >> PAGE_SHIFT;
1128 pmd = pmd_alloc(mm, pud, addr);
1129 if (!pmd)
1130 return -ENOMEM;
1131 do {
1132 next = pmd_addr_end(addr, end);
1133 if (remap_pte_range(mm, pmd, addr, next,
1134 pfn + (addr >> PAGE_SHIFT), prot))
1135 return -ENOMEM;
1136 } while (pmd++, addr = next, addr != end);
1137 return 0;
1138}
1139
1140static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1141 unsigned long addr, unsigned long end,
1142 unsigned long pfn, pgprot_t prot)
1143{
1144 pud_t *pud;
1145 unsigned long next;
1146
1147 pfn -= addr >> PAGE_SHIFT;
1148 pud = pud_alloc(mm, pgd, addr);
1149 if (!pud)
1150 return -ENOMEM;
1151 do {
1152 next = pud_addr_end(addr, end);
1153 if (remap_pmd_range(mm, pud, addr, next,
1154 pfn + (addr >> PAGE_SHIFT), prot))
1155 return -ENOMEM;
1156 } while (pud++, addr = next, addr != end);
1157 return 0;
1158}
1159
1160/* Note: this is only safe if the mm semaphore is held when called. */
1161int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1162 unsigned long pfn, unsigned long size, pgprot_t prot)
1163{
1164 pgd_t *pgd;
1165 unsigned long next;
2d15cab8 1166 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1167 struct mm_struct *mm = vma->vm_mm;
1168 int err;
1169
1170 /*
1171 * Physically remapped pages are special. Tell the
1172 * rest of the world about it:
1173 * VM_IO tells people not to look at these pages
1174 * (accesses can have side effects).
1175 * VM_RESERVED tells swapout not to try to touch
1176 * this region.
1177 */
1178 vma->vm_flags |= VM_IO | VM_RESERVED;
1179
1180 BUG_ON(addr >= end);
1181 pfn -= addr >> PAGE_SHIFT;
1182 pgd = pgd_offset(mm, addr);
1183 flush_cache_range(vma, addr, end);
1184 spin_lock(&mm->page_table_lock);
1185 do {
1186 next = pgd_addr_end(addr, end);
1187 err = remap_pud_range(mm, pgd, addr, next,
1188 pfn + (addr >> PAGE_SHIFT), prot);
1189 if (err)
1190 break;
1191 } while (pgd++, addr = next, addr != end);
1192 spin_unlock(&mm->page_table_lock);
1193 return err;
1194}
1195EXPORT_SYMBOL(remap_pfn_range);
1196
1197/*
1198 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1199 * servicing faults for write access. In the normal case, do always want
1200 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1201 * that do not have writing enabled, when used by access_process_vm.
1202 */
1203static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1204{
1205 if (likely(vma->vm_flags & VM_WRITE))
1206 pte = pte_mkwrite(pte);
1207 return pte;
1208}
1209
1210/*
1211 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1212 */
1213static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
1214 pte_t *page_table)
1215{
1216 pte_t entry;
1217
1218 entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1219 vma);
1220 ptep_establish(vma, address, page_table, entry);
1221 update_mmu_cache(vma, address, entry);
1222 lazy_mmu_prot_update(entry);
1223}
1224
1225/*
1226 * This routine handles present pages, when users try to write
1227 * to a shared page. It is done by copying the page to a new address
1228 * and decrementing the shared-page counter for the old page.
1229 *
1230 * Goto-purists beware: the only reason for goto's here is that it results
1231 * in better assembly code.. The "default" path will see no jumps at all.
1232 *
1233 * Note that this routine assumes that the protection checks have been
1234 * done by the caller (the low-level page fault routine in most cases).
1235 * Thus we can safely just mark it writable once we've done any necessary
1236 * COW.
1237 *
1238 * We also mark the page dirty at this point even though the page will
1239 * change only once the write actually happens. This avoids a few races,
1240 * and potentially makes it more efficient.
1241 *
1242 * We hold the mm semaphore and the page_table_lock on entry and exit
1243 * with the page_table_lock released.
1244 */
1245static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1246 unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1247{
1248 struct page *old_page, *new_page;
1249 unsigned long pfn = pte_pfn(pte);
1250 pte_t entry;
f33ea7f4 1251 int ret;
1da177e4
LT
1252
1253 if (unlikely(!pfn_valid(pfn))) {
1254 /*
1255 * This should really halt the system so it can be debugged or
1256 * at least the kernel stops what it's doing before it corrupts
1257 * data, but for the moment just pretend this is OOM.
1258 */
1259 pte_unmap(page_table);
1260 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1261 address);
1262 spin_unlock(&mm->page_table_lock);
1263 return VM_FAULT_OOM;
1264 }
1265 old_page = pfn_to_page(pfn);
1266
d296e9cd 1267 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1da177e4
LT
1268 int reuse = can_share_swap_page(old_page);
1269 unlock_page(old_page);
1270 if (reuse) {
1271 flush_cache_page(vma, address, pfn);
1272 entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1273 vma);
1274 ptep_set_access_flags(vma, address, page_table, entry, 1);
1275 update_mmu_cache(vma, address, entry);
1276 lazy_mmu_prot_update(entry);
1277 pte_unmap(page_table);
1278 spin_unlock(&mm->page_table_lock);
f33ea7f4 1279 return VM_FAULT_MINOR|VM_FAULT_WRITE;
1da177e4
LT
1280 }
1281 }
1282 pte_unmap(page_table);
1283
1284 /*
1285 * Ok, we need to copy. Oh, well..
1286 */
1287 if (!PageReserved(old_page))
1288 page_cache_get(old_page);
1289 spin_unlock(&mm->page_table_lock);
1290
1291 if (unlikely(anon_vma_prepare(vma)))
1292 goto no_new_page;
1293 if (old_page == ZERO_PAGE(address)) {
1294 new_page = alloc_zeroed_user_highpage(vma, address);
1295 if (!new_page)
1296 goto no_new_page;
1297 } else {
1298 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1299 if (!new_page)
1300 goto no_new_page;
1301 copy_user_highpage(new_page, old_page, address);
1302 }
1303 /*
1304 * Re-check the pte - we dropped the lock
1305 */
f33ea7f4 1306 ret = VM_FAULT_MINOR;
1da177e4
LT
1307 spin_lock(&mm->page_table_lock);
1308 page_table = pte_offset_map(pmd, address);
1309 if (likely(pte_same(*page_table, pte))) {
1310 if (PageAnon(old_page))
1311 dec_mm_counter(mm, anon_rss);
1312 if (PageReserved(old_page))
1313 inc_mm_counter(mm, rss);
1314 else
1315 page_remove_rmap(old_page);
1316 flush_cache_page(vma, address, pfn);
1317 break_cow(vma, new_page, address, page_table);
1318 lru_cache_add_active(new_page);
1319 page_add_anon_rmap(new_page, vma, address);
1320
1321 /* Free the old page.. */
1322 new_page = old_page;
f33ea7f4 1323 ret |= VM_FAULT_WRITE;
1da177e4
LT
1324 }
1325 pte_unmap(page_table);
1326 page_cache_release(new_page);
1327 page_cache_release(old_page);
1328 spin_unlock(&mm->page_table_lock);
f33ea7f4 1329 return ret;
1da177e4
LT
1330
1331no_new_page:
1332 page_cache_release(old_page);
1333 return VM_FAULT_OOM;
1334}
1335
1336/*
1337 * Helper functions for unmap_mapping_range().
1338 *
1339 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1340 *
1341 * We have to restart searching the prio_tree whenever we drop the lock,
1342 * since the iterator is only valid while the lock is held, and anyway
1343 * a later vma might be split and reinserted earlier while lock dropped.
1344 *
1345 * The list of nonlinear vmas could be handled more efficiently, using
1346 * a placeholder, but handle it in the same way until a need is shown.
1347 * It is important to search the prio_tree before nonlinear list: a vma
1348 * may become nonlinear and be shifted from prio_tree to nonlinear list
1349 * while the lock is dropped; but never shifted from list to prio_tree.
1350 *
1351 * In order to make forward progress despite restarting the search,
1352 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1353 * quickly skip it next time around. Since the prio_tree search only
1354 * shows us those vmas affected by unmapping the range in question, we
1355 * can't efficiently keep all vmas in step with mapping->truncate_count:
1356 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1357 * mapping->truncate_count and vma->vm_truncate_count are protected by
1358 * i_mmap_lock.
1359 *
1360 * In order to make forward progress despite repeatedly restarting some
ee39b37b 1361 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
1362 * and restart from that address when we reach that vma again. It might
1363 * have been split or merged, shrunk or extended, but never shifted: so
1364 * restart_addr remains valid so long as it remains in the vma's range.
1365 * unmap_mapping_range forces truncate_count to leap over page-aligned
1366 * values so we can save vma's restart_addr in its truncate_count field.
1367 */
1368#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1369
1370static void reset_vma_truncate_counts(struct address_space *mapping)
1371{
1372 struct vm_area_struct *vma;
1373 struct prio_tree_iter iter;
1374
1375 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1376 vma->vm_truncate_count = 0;
1377 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1378 vma->vm_truncate_count = 0;
1379}
1380
1381static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1382 unsigned long start_addr, unsigned long end_addr,
1383 struct zap_details *details)
1384{
1385 unsigned long restart_addr;
1386 int need_break;
1387
1388again:
1389 restart_addr = vma->vm_truncate_count;
1390 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1391 start_addr = restart_addr;
1392 if (start_addr >= end_addr) {
1393 /* Top of vma has been split off since last time */
1394 vma->vm_truncate_count = details->truncate_count;
1395 return 0;
1396 }
1397 }
1398
ee39b37b
HD
1399 restart_addr = zap_page_range(vma, start_addr,
1400 end_addr - start_addr, details);
1da177e4
LT
1401
1402 /*
1403 * We cannot rely on the break test in unmap_vmas:
1404 * on the one hand, we don't want to restart our loop
1405 * just because that broke out for the page_table_lock;
1406 * on the other hand, it does no test when vma is small.
1407 */
1408 need_break = need_resched() ||
1409 need_lockbreak(details->i_mmap_lock);
1410
ee39b37b 1411 if (restart_addr >= end_addr) {
1da177e4
LT
1412 /* We have now completed this vma: mark it so */
1413 vma->vm_truncate_count = details->truncate_count;
1414 if (!need_break)
1415 return 0;
1416 } else {
1417 /* Note restart_addr in vma's truncate_count field */
ee39b37b 1418 vma->vm_truncate_count = restart_addr;
1da177e4
LT
1419 if (!need_break)
1420 goto again;
1421 }
1422
1423 spin_unlock(details->i_mmap_lock);
1424 cond_resched();
1425 spin_lock(details->i_mmap_lock);
1426 return -EINTR;
1427}
1428
1429static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1430 struct zap_details *details)
1431{
1432 struct vm_area_struct *vma;
1433 struct prio_tree_iter iter;
1434 pgoff_t vba, vea, zba, zea;
1435
1436restart:
1437 vma_prio_tree_foreach(vma, &iter, root,
1438 details->first_index, details->last_index) {
1439 /* Skip quickly over those we have already dealt with */
1440 if (vma->vm_truncate_count == details->truncate_count)
1441 continue;
1442
1443 vba = vma->vm_pgoff;
1444 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1445 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1446 zba = details->first_index;
1447 if (zba < vba)
1448 zba = vba;
1449 zea = details->last_index;
1450 if (zea > vea)
1451 zea = vea;
1452
1453 if (unmap_mapping_range_vma(vma,
1454 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1455 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1456 details) < 0)
1457 goto restart;
1458 }
1459}
1460
1461static inline void unmap_mapping_range_list(struct list_head *head,
1462 struct zap_details *details)
1463{
1464 struct vm_area_struct *vma;
1465
1466 /*
1467 * In nonlinear VMAs there is no correspondence between virtual address
1468 * offset and file offset. So we must perform an exhaustive search
1469 * across *all* the pages in each nonlinear VMA, not just the pages
1470 * whose virtual address lies outside the file truncation point.
1471 */
1472restart:
1473 list_for_each_entry(vma, head, shared.vm_set.list) {
1474 /* Skip quickly over those we have already dealt with */
1475 if (vma->vm_truncate_count == details->truncate_count)
1476 continue;
1477 details->nonlinear_vma = vma;
1478 if (unmap_mapping_range_vma(vma, vma->vm_start,
1479 vma->vm_end, details) < 0)
1480 goto restart;
1481 }
1482}
1483
1484/**
1485 * unmap_mapping_range - unmap the portion of all mmaps
1486 * in the specified address_space corresponding to the specified
1487 * page range in the underlying file.
3d41088f 1488 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
1489 * @holebegin: byte in first page to unmap, relative to the start of
1490 * the underlying file. This will be rounded down to a PAGE_SIZE
1491 * boundary. Note that this is different from vmtruncate(), which
1492 * must keep the partial page. In contrast, we must get rid of
1493 * partial pages.
1494 * @holelen: size of prospective hole in bytes. This will be rounded
1495 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1496 * end of the file.
1497 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1498 * but 0 when invalidating pagecache, don't throw away private data.
1499 */
1500void unmap_mapping_range(struct address_space *mapping,
1501 loff_t const holebegin, loff_t const holelen, int even_cows)
1502{
1503 struct zap_details details;
1504 pgoff_t hba = holebegin >> PAGE_SHIFT;
1505 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1506
1507 /* Check for overflow. */
1508 if (sizeof(holelen) > sizeof(hlen)) {
1509 long long holeend =
1510 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1511 if (holeend & ~(long long)ULONG_MAX)
1512 hlen = ULONG_MAX - hba + 1;
1513 }
1514
1515 details.check_mapping = even_cows? NULL: mapping;
1516 details.nonlinear_vma = NULL;
1517 details.first_index = hba;
1518 details.last_index = hba + hlen - 1;
1519 if (details.last_index < details.first_index)
1520 details.last_index = ULONG_MAX;
1521 details.i_mmap_lock = &mapping->i_mmap_lock;
1522
1523 spin_lock(&mapping->i_mmap_lock);
1524
1525 /* serialize i_size write against truncate_count write */
1526 smp_wmb();
1527 /* Protect against page faults, and endless unmapping loops */
1528 mapping->truncate_count++;
1529 /*
1530 * For archs where spin_lock has inclusive semantics like ia64
1531 * this smp_mb() will prevent to read pagetable contents
1532 * before the truncate_count increment is visible to
1533 * other cpus.
1534 */
1535 smp_mb();
1536 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1537 if (mapping->truncate_count == 0)
1538 reset_vma_truncate_counts(mapping);
1539 mapping->truncate_count++;
1540 }
1541 details.truncate_count = mapping->truncate_count;
1542
1543 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1544 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1545 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1546 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1547 spin_unlock(&mapping->i_mmap_lock);
1548}
1549EXPORT_SYMBOL(unmap_mapping_range);
1550
1551/*
1552 * Handle all mappings that got truncated by a "truncate()"
1553 * system call.
1554 *
1555 * NOTE! We have to be ready to update the memory sharing
1556 * between the file and the memory map for a potential last
1557 * incomplete page. Ugly, but necessary.
1558 */
1559int vmtruncate(struct inode * inode, loff_t offset)
1560{
1561 struct address_space *mapping = inode->i_mapping;
1562 unsigned long limit;
1563
1564 if (inode->i_size < offset)
1565 goto do_expand;
1566 /*
1567 * truncation of in-use swapfiles is disallowed - it would cause
1568 * subsequent swapout to scribble on the now-freed blocks.
1569 */
1570 if (IS_SWAPFILE(inode))
1571 goto out_busy;
1572 i_size_write(inode, offset);
1573 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1574 truncate_inode_pages(mapping, offset);
1575 goto out_truncate;
1576
1577do_expand:
1578 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1579 if (limit != RLIM_INFINITY && offset > limit)
1580 goto out_sig;
1581 if (offset > inode->i_sb->s_maxbytes)
1582 goto out_big;
1583 i_size_write(inode, offset);
1584
1585out_truncate:
1586 if (inode->i_op && inode->i_op->truncate)
1587 inode->i_op->truncate(inode);
1588 return 0;
1589out_sig:
1590 send_sig(SIGXFSZ, current, 0);
1591out_big:
1592 return -EFBIG;
1593out_busy:
1594 return -ETXTBSY;
1595}
1596
1597EXPORT_SYMBOL(vmtruncate);
1598
1599/*
1600 * Primitive swap readahead code. We simply read an aligned block of
1601 * (1 << page_cluster) entries in the swap area. This method is chosen
1602 * because it doesn't cost us any seek time. We also make sure to queue
1603 * the 'original' request together with the readahead ones...
1604 *
1605 * This has been extended to use the NUMA policies from the mm triggering
1606 * the readahead.
1607 *
1608 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1609 */
1610void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1611{
1612#ifdef CONFIG_NUMA
1613 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1614#endif
1615 int i, num;
1616 struct page *new_page;
1617 unsigned long offset;
1618
1619 /*
1620 * Get the number of handles we should do readahead io to.
1621 */
1622 num = valid_swaphandles(entry, &offset);
1623 for (i = 0; i < num; offset++, i++) {
1624 /* Ok, do the async read-ahead now */
1625 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1626 offset), vma, addr);
1627 if (!new_page)
1628 break;
1629 page_cache_release(new_page);
1630#ifdef CONFIG_NUMA
1631 /*
1632 * Find the next applicable VMA for the NUMA policy.
1633 */
1634 addr += PAGE_SIZE;
1635 if (addr == 0)
1636 vma = NULL;
1637 if (vma) {
1638 if (addr >= vma->vm_end) {
1639 vma = next_vma;
1640 next_vma = vma ? vma->vm_next : NULL;
1641 }
1642 if (vma && addr < vma->vm_start)
1643 vma = NULL;
1644 } else {
1645 if (next_vma && addr >= next_vma->vm_start) {
1646 vma = next_vma;
1647 next_vma = vma->vm_next;
1648 }
1649 }
1650#endif
1651 }
1652 lru_add_drain(); /* Push any new pages onto the LRU now */
1653}
1654
1655/*
1656 * We hold the mm semaphore and the page_table_lock on entry and
1657 * should release the pagetable lock on exit..
1658 */
1659static int do_swap_page(struct mm_struct * mm,
1660 struct vm_area_struct * vma, unsigned long address,
1661 pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1662{
1663 struct page *page;
1664 swp_entry_t entry = pte_to_swp_entry(orig_pte);
1665 pte_t pte;
1666 int ret = VM_FAULT_MINOR;
1667
1668 pte_unmap(page_table);
1669 spin_unlock(&mm->page_table_lock);
1670 page = lookup_swap_cache(entry);
1671 if (!page) {
1672 swapin_readahead(entry, address, vma);
1673 page = read_swap_cache_async(entry, vma, address);
1674 if (!page) {
1675 /*
1676 * Back out if somebody else faulted in this pte while
1677 * we released the page table lock.
1678 */
1679 spin_lock(&mm->page_table_lock);
1680 page_table = pte_offset_map(pmd, address);
1681 if (likely(pte_same(*page_table, orig_pte)))
1682 ret = VM_FAULT_OOM;
1683 else
1684 ret = VM_FAULT_MINOR;
1685 pte_unmap(page_table);
1686 spin_unlock(&mm->page_table_lock);
1687 goto out;
1688 }
1689
1690 /* Had to read the page from swap area: Major fault */
1691 ret = VM_FAULT_MAJOR;
1692 inc_page_state(pgmajfault);
1693 grab_swap_token();
1694 }
1695
1696 mark_page_accessed(page);
1697 lock_page(page);
1698
1699 /*
1700 * Back out if somebody else faulted in this pte while we
1701 * released the page table lock.
1702 */
1703 spin_lock(&mm->page_table_lock);
1704 page_table = pte_offset_map(pmd, address);
1705 if (unlikely(!pte_same(*page_table, orig_pte))) {
1da177e4 1706 ret = VM_FAULT_MINOR;
b8107480
KK
1707 goto out_nomap;
1708 }
1709
1710 if (unlikely(!PageUptodate(page))) {
1711 ret = VM_FAULT_SIGBUS;
1712 goto out_nomap;
1da177e4
LT
1713 }
1714
1715 /* The page isn't present yet, go ahead with the fault. */
1da177e4
LT
1716
1717 inc_mm_counter(mm, rss);
1718 pte = mk_pte(page, vma->vm_page_prot);
1719 if (write_access && can_share_swap_page(page)) {
1720 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1721 write_access = 0;
1722 }
1da177e4
LT
1723
1724 flush_icache_page(vma, page);
1725 set_pte_at(mm, address, page_table, pte);
1726 page_add_anon_rmap(page, vma, address);
1727
c475a8ab
HD
1728 swap_free(entry);
1729 if (vm_swap_full())
1730 remove_exclusive_swap_page(page);
1731 unlock_page(page);
1732
1da177e4
LT
1733 if (write_access) {
1734 if (do_wp_page(mm, vma, address,
1735 page_table, pmd, pte) == VM_FAULT_OOM)
1736 ret = VM_FAULT_OOM;
1737 goto out;
1738 }
1739
1740 /* No need to invalidate - it was non-present before */
1741 update_mmu_cache(vma, address, pte);
1742 lazy_mmu_prot_update(pte);
1743 pte_unmap(page_table);
1744 spin_unlock(&mm->page_table_lock);
1745out:
1746 return ret;
b8107480
KK
1747out_nomap:
1748 pte_unmap(page_table);
1749 spin_unlock(&mm->page_table_lock);
1750 unlock_page(page);
1751 page_cache_release(page);
1752 goto out;
1da177e4
LT
1753}
1754
1755/*
1756 * We are called with the MM semaphore and page_table_lock
1757 * spinlock held to protect against concurrent faults in
1758 * multithreaded programs.
1759 */
1760static int
1761do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1762 pte_t *page_table, pmd_t *pmd, int write_access,
1763 unsigned long addr)
1764{
1765 pte_t entry;
1766 struct page * page = ZERO_PAGE(addr);
1767
1768 /* Read-only mapping of ZERO_PAGE. */
1769 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1770
1771 /* ..except if it's a write access */
1772 if (write_access) {
1773 /* Allocate our own private page. */
1774 pte_unmap(page_table);
1775 spin_unlock(&mm->page_table_lock);
1776
1777 if (unlikely(anon_vma_prepare(vma)))
1778 goto no_mem;
1779 page = alloc_zeroed_user_highpage(vma, addr);
1780 if (!page)
1781 goto no_mem;
1782
1783 spin_lock(&mm->page_table_lock);
1784 page_table = pte_offset_map(pmd, addr);
1785
1786 if (!pte_none(*page_table)) {
1787 pte_unmap(page_table);
1788 page_cache_release(page);
1789 spin_unlock(&mm->page_table_lock);
1790 goto out;
1791 }
1792 inc_mm_counter(mm, rss);
1793 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1794 vma->vm_page_prot)),
1795 vma);
1796 lru_cache_add_active(page);
1797 SetPageReferenced(page);
1798 page_add_anon_rmap(page, vma, addr);
1799 }
1800
1801 set_pte_at(mm, addr, page_table, entry);
1802 pte_unmap(page_table);
1803
1804 /* No need to invalidate - it was non-present before */
1805 update_mmu_cache(vma, addr, entry);
1806 lazy_mmu_prot_update(entry);
1807 spin_unlock(&mm->page_table_lock);
1808out:
1809 return VM_FAULT_MINOR;
1810no_mem:
1811 return VM_FAULT_OOM;
1812}
1813
1814/*
1815 * do_no_page() tries to create a new page mapping. It aggressively
1816 * tries to share with existing pages, but makes a separate copy if
1817 * the "write_access" parameter is true in order to avoid the next
1818 * page fault.
1819 *
1820 * As this is called only for pages that do not currently exist, we
1821 * do not need to flush old virtual caches or the TLB.
1822 *
1823 * This is called with the MM semaphore held and the page table
1824 * spinlock held. Exit with the spinlock released.
1825 */
1826static int
1827do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1828 unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1829{
1830 struct page * new_page;
1831 struct address_space *mapping = NULL;
1832 pte_t entry;
1833 unsigned int sequence = 0;
1834 int ret = VM_FAULT_MINOR;
1835 int anon = 0;
1836
1837 if (!vma->vm_ops || !vma->vm_ops->nopage)
1838 return do_anonymous_page(mm, vma, page_table,
1839 pmd, write_access, address);
1840 pte_unmap(page_table);
1841 spin_unlock(&mm->page_table_lock);
1842
1843 if (vma->vm_file) {
1844 mapping = vma->vm_file->f_mapping;
1845 sequence = mapping->truncate_count;
1846 smp_rmb(); /* serializes i_size against truncate_count */
1847 }
1848retry:
1849 cond_resched();
1850 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1851 /*
1852 * No smp_rmb is needed here as long as there's a full
1853 * spin_lock/unlock sequence inside the ->nopage callback
1854 * (for the pagecache lookup) that acts as an implicit
1855 * smp_mb() and prevents the i_size read to happen
1856 * after the next truncate_count read.
1857 */
1858
1859 /* no page was available -- either SIGBUS or OOM */
1860 if (new_page == NOPAGE_SIGBUS)
1861 return VM_FAULT_SIGBUS;
1862 if (new_page == NOPAGE_OOM)
1863 return VM_FAULT_OOM;
1864
1865 /*
1866 * Should we do an early C-O-W break?
1867 */
1868 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1869 struct page *page;
1870
1871 if (unlikely(anon_vma_prepare(vma)))
1872 goto oom;
1873 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1874 if (!page)
1875 goto oom;
1876 copy_user_highpage(page, new_page, address);
1877 page_cache_release(new_page);
1878 new_page = page;
1879 anon = 1;
1880 }
1881
1882 spin_lock(&mm->page_table_lock);
1883 /*
1884 * For a file-backed vma, someone could have truncated or otherwise
1885 * invalidated this page. If unmap_mapping_range got called,
1886 * retry getting the page.
1887 */
1888 if (mapping && unlikely(sequence != mapping->truncate_count)) {
1889 sequence = mapping->truncate_count;
1890 spin_unlock(&mm->page_table_lock);
1891 page_cache_release(new_page);
1892 goto retry;
1893 }
1894 page_table = pte_offset_map(pmd, address);
1895
1896 /*
1897 * This silly early PAGE_DIRTY setting removes a race
1898 * due to the bad i386 page protection. But it's valid
1899 * for other architectures too.
1900 *
1901 * Note that if write_access is true, we either now have
1902 * an exclusive copy of the page, or this is a shared mapping,
1903 * so we can make it writable and dirty to avoid having to
1904 * handle that later.
1905 */
1906 /* Only go through if we didn't race with anybody else... */
1907 if (pte_none(*page_table)) {
1908 if (!PageReserved(new_page))
1909 inc_mm_counter(mm, rss);
1910
1911 flush_icache_page(vma, new_page);
1912 entry = mk_pte(new_page, vma->vm_page_prot);
1913 if (write_access)
1914 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1915 set_pte_at(mm, address, page_table, entry);
1916 if (anon) {
1917 lru_cache_add_active(new_page);
1918 page_add_anon_rmap(new_page, vma, address);
1919 } else
1920 page_add_file_rmap(new_page);
1921 pte_unmap(page_table);
1922 } else {
1923 /* One of our sibling threads was faster, back out. */
1924 pte_unmap(page_table);
1925 page_cache_release(new_page);
1926 spin_unlock(&mm->page_table_lock);
1927 goto out;
1928 }
1929
1930 /* no need to invalidate: a not-present page shouldn't be cached */
1931 update_mmu_cache(vma, address, entry);
1932 lazy_mmu_prot_update(entry);
1933 spin_unlock(&mm->page_table_lock);
1934out:
1935 return ret;
1936oom:
1937 page_cache_release(new_page);
1938 ret = VM_FAULT_OOM;
1939 goto out;
1940}
1941
1942/*
1943 * Fault of a previously existing named mapping. Repopulate the pte
1944 * from the encoded file_pte if possible. This enables swappable
1945 * nonlinear vmas.
1946 */
1947static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1948 unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1949{
1950 unsigned long pgoff;
1951 int err;
1952
1953 BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1954 /*
1955 * Fall back to the linear mapping if the fs does not support
1956 * ->populate:
1957 */
4944e76d 1958 if (!vma->vm_ops->populate ||
1da177e4
LT
1959 (write_access && !(vma->vm_flags & VM_SHARED))) {
1960 pte_clear(mm, address, pte);
1961 return do_no_page(mm, vma, address, write_access, pte, pmd);
1962 }
1963
1964 pgoff = pte_to_pgoff(*pte);
1965
1966 pte_unmap(pte);
1967 spin_unlock(&mm->page_table_lock);
1968
1969 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1970 if (err == -ENOMEM)
1971 return VM_FAULT_OOM;
1972 if (err)
1973 return VM_FAULT_SIGBUS;
1974 return VM_FAULT_MAJOR;
1975}
1976
1977/*
1978 * These routines also need to handle stuff like marking pages dirty
1979 * and/or accessed for architectures that don't do it in hardware (most
1980 * RISC architectures). The early dirtying is also good on the i386.
1981 *
1982 * There is also a hook called "update_mmu_cache()" that architectures
1983 * with external mmu caches can use to update those (ie the Sparc or
1984 * PowerPC hashed page tables that act as extended TLBs).
1985 *
1986 * Note the "page_table_lock". It is to protect against kswapd removing
1987 * pages from under us. Note that kswapd only ever _removes_ pages, never
1988 * adds them. As such, once we have noticed that the page is not present,
1989 * we can drop the lock early.
1990 *
1991 * The adding of pages is protected by the MM semaphore (which we hold),
1992 * so we don't need to worry about a page being suddenly been added into
1993 * our VM.
1994 *
1995 * We enter with the pagetable spinlock held, we are supposed to
1996 * release it when done.
1997 */
1998static inline int handle_pte_fault(struct mm_struct *mm,
1999 struct vm_area_struct * vma, unsigned long address,
2000 int write_access, pte_t *pte, pmd_t *pmd)
2001{
2002 pte_t entry;
2003
2004 entry = *pte;
2005 if (!pte_present(entry)) {
2006 /*
2007 * If it truly wasn't present, we know that kswapd
2008 * and the PTE updates will not touch it later. So
2009 * drop the lock.
2010 */
2011 if (pte_none(entry))
2012 return do_no_page(mm, vma, address, write_access, pte, pmd);
2013 if (pte_file(entry))
2014 return do_file_page(mm, vma, address, write_access, pte, pmd);
2015 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
2016 }
2017
2018 if (write_access) {
2019 if (!pte_write(entry))
2020 return do_wp_page(mm, vma, address, pte, pmd, entry);
1da177e4
LT
2021 entry = pte_mkdirty(entry);
2022 }
2023 entry = pte_mkyoung(entry);
2024 ptep_set_access_flags(vma, address, pte, entry, write_access);
2025 update_mmu_cache(vma, address, entry);
2026 lazy_mmu_prot_update(entry);
2027 pte_unmap(pte);
2028 spin_unlock(&mm->page_table_lock);
2029 return VM_FAULT_MINOR;
2030}
2031
2032/*
2033 * By the time we get here, we already hold the mm semaphore
2034 */
f33ea7f4 2035int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
1da177e4
LT
2036 unsigned long address, int write_access)
2037{
2038 pgd_t *pgd;
2039 pud_t *pud;
2040 pmd_t *pmd;
2041 pte_t *pte;
2042
2043 __set_current_state(TASK_RUNNING);
2044
2045 inc_page_state(pgfault);
2046
2047 if (is_vm_hugetlb_page(vma))
2048 return VM_FAULT_SIGBUS; /* mapping truncation does this. */
2049
2050 /*
2051 * We need the page table lock to synchronize with kswapd
2052 * and the SMP-safe atomic PTE updates.
2053 */
2054 pgd = pgd_offset(mm, address);
2055 spin_lock(&mm->page_table_lock);
2056
2057 pud = pud_alloc(mm, pgd, address);
2058 if (!pud)
2059 goto oom;
2060
2061 pmd = pmd_alloc(mm, pud, address);
2062 if (!pmd)
2063 goto oom;
2064
2065 pte = pte_alloc_map(mm, pmd, address);
2066 if (!pte)
2067 goto oom;
2068
2069 return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
2070
2071 oom:
2072 spin_unlock(&mm->page_table_lock);
2073 return VM_FAULT_OOM;
2074}
2075
2076#ifndef __PAGETABLE_PUD_FOLDED
2077/*
2078 * Allocate page upper directory.
2079 *
2080 * We've already handled the fast-path in-line, and we own the
2081 * page table lock.
2082 */
2083pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2084{
2085 pud_t *new;
2086
2087 spin_unlock(&mm->page_table_lock);
2088 new = pud_alloc_one(mm, address);
2089 spin_lock(&mm->page_table_lock);
2090 if (!new)
2091 return NULL;
2092
2093 /*
2094 * Because we dropped the lock, we should re-check the
2095 * entry, as somebody else could have populated it..
2096 */
2097 if (pgd_present(*pgd)) {
2098 pud_free(new);
2099 goto out;
2100 }
2101 pgd_populate(mm, pgd, new);
2102 out:
2103 return pud_offset(pgd, address);
2104}
2105#endif /* __PAGETABLE_PUD_FOLDED */
2106
2107#ifndef __PAGETABLE_PMD_FOLDED
2108/*
2109 * Allocate page middle directory.
2110 *
2111 * We've already handled the fast-path in-line, and we own the
2112 * page table lock.
2113 */
2114pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2115{
2116 pmd_t *new;
2117
2118 spin_unlock(&mm->page_table_lock);
2119 new = pmd_alloc_one(mm, address);
2120 spin_lock(&mm->page_table_lock);
2121 if (!new)
2122 return NULL;
2123
2124 /*
2125 * Because we dropped the lock, we should re-check the
2126 * entry, as somebody else could have populated it..
2127 */
2128#ifndef __ARCH_HAS_4LEVEL_HACK
2129 if (pud_present(*pud)) {
2130 pmd_free(new);
2131 goto out;
2132 }
2133 pud_populate(mm, pud, new);
2134#else
2135 if (pgd_present(*pud)) {
2136 pmd_free(new);
2137 goto out;
2138 }
2139 pgd_populate(mm, pud, new);
2140#endif /* __ARCH_HAS_4LEVEL_HACK */
2141
2142 out:
2143 return pmd_offset(pud, address);
2144}
2145#endif /* __PAGETABLE_PMD_FOLDED */
2146
2147int make_pages_present(unsigned long addr, unsigned long end)
2148{
2149 int ret, len, write;
2150 struct vm_area_struct * vma;
2151
2152 vma = find_vma(current->mm, addr);
2153 if (!vma)
2154 return -1;
2155 write = (vma->vm_flags & VM_WRITE) != 0;
2156 if (addr >= end)
2157 BUG();
2158 if (end > vma->vm_end)
2159 BUG();
2160 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2161 ret = get_user_pages(current, current->mm, addr,
2162 len, write, 0, NULL, NULL);
2163 if (ret < 0)
2164 return ret;
2165 return ret == len ? 0 : -1;
2166}
2167
2168/*
2169 * Map a vmalloc()-space virtual address to the physical page.
2170 */
2171struct page * vmalloc_to_page(void * vmalloc_addr)
2172{
2173 unsigned long addr = (unsigned long) vmalloc_addr;
2174 struct page *page = NULL;
2175 pgd_t *pgd = pgd_offset_k(addr);
2176 pud_t *pud;
2177 pmd_t *pmd;
2178 pte_t *ptep, pte;
2179
2180 if (!pgd_none(*pgd)) {
2181 pud = pud_offset(pgd, addr);
2182 if (!pud_none(*pud)) {
2183 pmd = pmd_offset(pud, addr);
2184 if (!pmd_none(*pmd)) {
2185 ptep = pte_offset_map(pmd, addr);
2186 pte = *ptep;
2187 if (pte_present(pte))
2188 page = pte_page(pte);
2189 pte_unmap(ptep);
2190 }
2191 }
2192 }
2193 return page;
2194}
2195
2196EXPORT_SYMBOL(vmalloc_to_page);
2197
2198/*
2199 * Map a vmalloc()-space virtual address to the physical page frame number.
2200 */
2201unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2202{
2203 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2204}
2205
2206EXPORT_SYMBOL(vmalloc_to_pfn);
2207
2208/*
2209 * update_mem_hiwater
2210 * - update per process rss and vm high water data
2211 */
2212void update_mem_hiwater(struct task_struct *tsk)
2213{
2214 if (tsk->mm) {
2215 unsigned long rss = get_mm_counter(tsk->mm, rss);
2216
2217 if (tsk->mm->hiwater_rss < rss)
2218 tsk->mm->hiwater_rss = rss;
2219 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2220 tsk->mm->hiwater_vm = tsk->mm->total_vm;
2221 }
2222}
2223
2224#if !defined(__HAVE_ARCH_GATE_AREA)
2225
2226#if defined(AT_SYSINFO_EHDR)
2227struct vm_area_struct gate_vma;
2228
2229static int __init gate_vma_init(void)
2230{
2231 gate_vma.vm_mm = NULL;
2232 gate_vma.vm_start = FIXADDR_USER_START;
2233 gate_vma.vm_end = FIXADDR_USER_END;
2234 gate_vma.vm_page_prot = PAGE_READONLY;
2235 gate_vma.vm_flags = 0;
2236 return 0;
2237}
2238__initcall(gate_vma_init);
2239#endif
2240
2241struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2242{
2243#ifdef AT_SYSINFO_EHDR
2244 return &gate_vma;
2245#else
2246 return NULL;
2247#endif
2248}
2249
2250int in_gate_area_no_task(unsigned long addr)
2251{
2252#ifdef AT_SYSINFO_EHDR
2253 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2254 return 1;
2255#endif
2256 return 0;
2257}
2258
2259#endif /* __HAVE_ARCH_GATE_AREA */