[PATCH] freepgt: remove MM_VM_SIZE(mm)
[linux-2.6-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
61#ifndef CONFIG_DISCONTIGMEM
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99 pud_ERROR(*pud);
100 pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
e0da382c 113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 114{
e0da382c
HD
115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_free_tlb(tlb, page);
118 dec_page_state(nr_page_table_pages);
119 tlb->mm->nr_ptes--;
1da177e4
LT
120}
121
e0da382c
HD
122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 unsigned long addr, unsigned long end,
124 unsigned long floor, unsigned long ceiling)
1da177e4
LT
125{
126 pmd_t *pmd;
127 unsigned long next;
e0da382c 128 unsigned long start;
1da177e4 129
e0da382c 130 start = addr;
1da177e4 131 pmd = pmd_offset(pud, addr);
1da177e4
LT
132 do {
133 next = pmd_addr_end(addr, end);
134 if (pmd_none_or_clear_bad(pmd))
135 continue;
e0da382c 136 free_pte_range(tlb, pmd);
1da177e4
LT
137 } while (pmd++, addr = next, addr != end);
138
e0da382c
HD
139 start &= PUD_MASK;
140 if (start < floor)
141 return;
142 if (ceiling) {
143 ceiling &= PUD_MASK;
144 if (!ceiling)
145 return;
1da177e4 146 }
e0da382c
HD
147 if (end - 1 > ceiling - 1)
148 return;
149
150 pmd = pmd_offset(pud, start);
151 pud_clear(pud);
152 pmd_free_tlb(tlb, pmd);
1da177e4
LT
153}
154
e0da382c
HD
155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 unsigned long addr, unsigned long end,
157 unsigned long floor, unsigned long ceiling)
1da177e4
LT
158{
159 pud_t *pud;
160 unsigned long next;
e0da382c 161 unsigned long start;
1da177e4 162
e0da382c 163 start = addr;
1da177e4 164 pud = pud_offset(pgd, addr);
1da177e4
LT
165 do {
166 next = pud_addr_end(addr, end);
167 if (pud_none_or_clear_bad(pud))
168 continue;
e0da382c 169 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
170 } while (pud++, addr = next, addr != end);
171
e0da382c
HD
172 start &= PGDIR_MASK;
173 if (start < floor)
174 return;
175 if (ceiling) {
176 ceiling &= PGDIR_MASK;
177 if (!ceiling)
178 return;
1da177e4 179 }
e0da382c
HD
180 if (end - 1 > ceiling - 1)
181 return;
182
183 pud = pud_offset(pgd, start);
184 pgd_clear(pgd);
185 pud_free_tlb(tlb, pud);
1da177e4
LT
186}
187
188/*
e0da382c
HD
189 * This function frees user-level page tables of a process.
190 *
1da177e4
LT
191 * Must be called with pagetable lock held.
192 */
e0da382c
HD
193static inline void free_pgd_range(struct mmu_gather *tlb,
194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
1da177e4
LT
196{
197 pgd_t *pgd;
198 unsigned long next;
e0da382c
HD
199 unsigned long start;
200
201 /*
202 * The next few lines have given us lots of grief...
203 *
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
207 *
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
215 *
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
220 *
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
225 */
1da177e4 226
e0da382c
HD
227 addr &= PMD_MASK;
228 if (addr < floor) {
229 addr += PMD_SIZE;
230 if (!addr)
231 return;
232 }
233 if (ceiling) {
234 ceiling &= PMD_MASK;
235 if (!ceiling)
236 return;
237 }
238 if (end - 1 > ceiling - 1)
239 end -= PMD_SIZE;
240 if (addr > end - 1)
241 return;
242
243 start = addr;
1da177e4
LT
244 pgd = pgd_offset(tlb->mm, addr);
245 do {
246 next = pgd_addr_end(addr, end);
247 if (pgd_none_or_clear_bad(pgd))
248 continue;
e0da382c 249 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 250 } while (pgd++, addr = next, addr != end);
e0da382c
HD
251
252 if (!tlb_is_full_mm(tlb))
253 flush_tlb_pgtables(tlb->mm, start, end);
254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257 unsigned long floor, unsigned long ceiling)
258{
259 while (vma) {
260 struct vm_area_struct *next = vma->vm_next;
261 unsigned long addr = vma->vm_start;
262
263 /* Optimization: gather nearby vmas into a single call down */
264 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) {
265 vma = next;
266 next = vma->vm_next;
267 }
268 free_pgd_range(*tlb, addr, vma->vm_end,
269 floor, next? next->vm_start: ceiling);
270 vma = next;
271 }
1da177e4
LT
272}
273
274pte_t fastcall * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
275{
276 if (!pmd_present(*pmd)) {
277 struct page *new;
278
279 spin_unlock(&mm->page_table_lock);
280 new = pte_alloc_one(mm, address);
281 spin_lock(&mm->page_table_lock);
282 if (!new)
283 return NULL;
284 /*
285 * Because we dropped the lock, we should re-check the
286 * entry, as somebody else could have populated it..
287 */
288 if (pmd_present(*pmd)) {
289 pte_free(new);
290 goto out;
291 }
292 mm->nr_ptes++;
293 inc_page_state(nr_page_table_pages);
294 pmd_populate(mm, pmd, new);
295 }
296out:
297 return pte_offset_map(pmd, address);
298}
299
300pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
301{
302 if (!pmd_present(*pmd)) {
303 pte_t *new;
304
305 spin_unlock(&mm->page_table_lock);
306 new = pte_alloc_one_kernel(mm, address);
307 spin_lock(&mm->page_table_lock);
308 if (!new)
309 return NULL;
310
311 /*
312 * Because we dropped the lock, we should re-check the
313 * entry, as somebody else could have populated it..
314 */
315 if (pmd_present(*pmd)) {
316 pte_free_kernel(new);
317 goto out;
318 }
319 pmd_populate_kernel(mm, pmd, new);
320 }
321out:
322 return pte_offset_kernel(pmd, address);
323}
324
325/*
326 * copy one vm_area from one task to the other. Assumes the page tables
327 * already present in the new task to be cleared in the whole range
328 * covered by this vma.
329 *
330 * dst->page_table_lock is held on entry and exit,
331 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
332 */
333
334static inline void
335copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
336 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
337 unsigned long addr)
338{
339 pte_t pte = *src_pte;
340 struct page *page;
341 unsigned long pfn;
342
343 /* pte contains position in swap or file, so copy. */
344 if (unlikely(!pte_present(pte))) {
345 if (!pte_file(pte)) {
346 swap_duplicate(pte_to_swp_entry(pte));
347 /* make sure dst_mm is on swapoff's mmlist. */
348 if (unlikely(list_empty(&dst_mm->mmlist))) {
349 spin_lock(&mmlist_lock);
350 list_add(&dst_mm->mmlist, &src_mm->mmlist);
351 spin_unlock(&mmlist_lock);
352 }
353 }
354 set_pte_at(dst_mm, addr, dst_pte, pte);
355 return;
356 }
357
358 pfn = pte_pfn(pte);
359 /* the pte points outside of valid memory, the
360 * mapping is assumed to be good, meaningful
361 * and not mapped via rmap - duplicate the
362 * mapping as is.
363 */
364 page = NULL;
365 if (pfn_valid(pfn))
366 page = pfn_to_page(pfn);
367
368 if (!page || PageReserved(page)) {
369 set_pte_at(dst_mm, addr, dst_pte, pte);
370 return;
371 }
372
373 /*
374 * If it's a COW mapping, write protect it both
375 * in the parent and the child
376 */
377 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
378 ptep_set_wrprotect(src_mm, addr, src_pte);
379 pte = *src_pte;
380 }
381
382 /*
383 * If it's a shared mapping, mark it clean in
384 * the child
385 */
386 if (vm_flags & VM_SHARED)
387 pte = pte_mkclean(pte);
388 pte = pte_mkold(pte);
389 get_page(page);
390 inc_mm_counter(dst_mm, rss);
391 if (PageAnon(page))
392 inc_mm_counter(dst_mm, anon_rss);
393 set_pte_at(dst_mm, addr, dst_pte, pte);
394 page_dup_rmap(page);
395}
396
397static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
398 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
399 unsigned long addr, unsigned long end)
400{
401 pte_t *src_pte, *dst_pte;
402 unsigned long vm_flags = vma->vm_flags;
403 int progress;
404
405again:
406 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
407 if (!dst_pte)
408 return -ENOMEM;
409 src_pte = pte_offset_map_nested(src_pmd, addr);
410
411 progress = 0;
412 spin_lock(&src_mm->page_table_lock);
413 do {
414 /*
415 * We are holding two locks at this point - either of them
416 * could generate latencies in another task on another CPU.
417 */
418 if (progress >= 32 && (need_resched() ||
419 need_lockbreak(&src_mm->page_table_lock) ||
420 need_lockbreak(&dst_mm->page_table_lock)))
421 break;
422 if (pte_none(*src_pte)) {
423 progress++;
424 continue;
425 }
426 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
427 progress += 8;
428 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
429 spin_unlock(&src_mm->page_table_lock);
430
431 pte_unmap_nested(src_pte - 1);
432 pte_unmap(dst_pte - 1);
433 cond_resched_lock(&dst_mm->page_table_lock);
434 if (addr != end)
435 goto again;
436 return 0;
437}
438
439static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
440 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
441 unsigned long addr, unsigned long end)
442{
443 pmd_t *src_pmd, *dst_pmd;
444 unsigned long next;
445
446 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
447 if (!dst_pmd)
448 return -ENOMEM;
449 src_pmd = pmd_offset(src_pud, addr);
450 do {
451 next = pmd_addr_end(addr, end);
452 if (pmd_none_or_clear_bad(src_pmd))
453 continue;
454 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
455 vma, addr, next))
456 return -ENOMEM;
457 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
458 return 0;
459}
460
461static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
462 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
463 unsigned long addr, unsigned long end)
464{
465 pud_t *src_pud, *dst_pud;
466 unsigned long next;
467
468 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
469 if (!dst_pud)
470 return -ENOMEM;
471 src_pud = pud_offset(src_pgd, addr);
472 do {
473 next = pud_addr_end(addr, end);
474 if (pud_none_or_clear_bad(src_pud))
475 continue;
476 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
477 vma, addr, next))
478 return -ENOMEM;
479 } while (dst_pud++, src_pud++, addr = next, addr != end);
480 return 0;
481}
482
483int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
484 struct vm_area_struct *vma)
485{
486 pgd_t *src_pgd, *dst_pgd;
487 unsigned long next;
488 unsigned long addr = vma->vm_start;
489 unsigned long end = vma->vm_end;
490
491 if (is_vm_hugetlb_page(vma))
492 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
493
494 dst_pgd = pgd_offset(dst_mm, addr);
495 src_pgd = pgd_offset(src_mm, addr);
496 do {
497 next = pgd_addr_end(addr, end);
498 if (pgd_none_or_clear_bad(src_pgd))
499 continue;
500 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
501 vma, addr, next))
502 return -ENOMEM;
503 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
504 return 0;
505}
506
507static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
508 unsigned long addr, unsigned long end,
509 struct zap_details *details)
510{
511 pte_t *pte;
512
513 pte = pte_offset_map(pmd, addr);
514 do {
515 pte_t ptent = *pte;
516 if (pte_none(ptent))
517 continue;
518 if (pte_present(ptent)) {
519 struct page *page = NULL;
520 unsigned long pfn = pte_pfn(ptent);
521 if (pfn_valid(pfn)) {
522 page = pfn_to_page(pfn);
523 if (PageReserved(page))
524 page = NULL;
525 }
526 if (unlikely(details) && page) {
527 /*
528 * unmap_shared_mapping_pages() wants to
529 * invalidate cache without truncating:
530 * unmap shared but keep private pages.
531 */
532 if (details->check_mapping &&
533 details->check_mapping != page->mapping)
534 continue;
535 /*
536 * Each page->index must be checked when
537 * invalidating or truncating nonlinear.
538 */
539 if (details->nonlinear_vma &&
540 (page->index < details->first_index ||
541 page->index > details->last_index))
542 continue;
543 }
544 ptent = ptep_get_and_clear(tlb->mm, addr, pte);
545 tlb_remove_tlb_entry(tlb, pte, addr);
546 if (unlikely(!page))
547 continue;
548 if (unlikely(details) && details->nonlinear_vma
549 && linear_page_index(details->nonlinear_vma,
550 addr) != page->index)
551 set_pte_at(tlb->mm, addr, pte,
552 pgoff_to_pte(page->index));
553 if (pte_dirty(ptent))
554 set_page_dirty(page);
555 if (PageAnon(page))
556 dec_mm_counter(tlb->mm, anon_rss);
557 else if (pte_young(ptent))
558 mark_page_accessed(page);
559 tlb->freed++;
560 page_remove_rmap(page);
561 tlb_remove_page(tlb, page);
562 continue;
563 }
564 /*
565 * If details->check_mapping, we leave swap entries;
566 * if details->nonlinear_vma, we leave file entries.
567 */
568 if (unlikely(details))
569 continue;
570 if (!pte_file(ptent))
571 free_swap_and_cache(pte_to_swp_entry(ptent));
572 pte_clear(tlb->mm, addr, pte);
573 } while (pte++, addr += PAGE_SIZE, addr != end);
574 pte_unmap(pte - 1);
575}
576
577static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
578 unsigned long addr, unsigned long end,
579 struct zap_details *details)
580{
581 pmd_t *pmd;
582 unsigned long next;
583
584 pmd = pmd_offset(pud, addr);
585 do {
586 next = pmd_addr_end(addr, end);
587 if (pmd_none_or_clear_bad(pmd))
588 continue;
589 zap_pte_range(tlb, pmd, addr, next, details);
590 } while (pmd++, addr = next, addr != end);
591}
592
593static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
594 unsigned long addr, unsigned long end,
595 struct zap_details *details)
596{
597 pud_t *pud;
598 unsigned long next;
599
600 pud = pud_offset(pgd, addr);
601 do {
602 next = pud_addr_end(addr, end);
603 if (pud_none_or_clear_bad(pud))
604 continue;
605 zap_pmd_range(tlb, pud, addr, next, details);
606 } while (pud++, addr = next, addr != end);
607}
608
609static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
610 unsigned long addr, unsigned long end,
611 struct zap_details *details)
612{
613 pgd_t *pgd;
614 unsigned long next;
615
616 if (details && !details->check_mapping && !details->nonlinear_vma)
617 details = NULL;
618
619 BUG_ON(addr >= end);
620 tlb_start_vma(tlb, vma);
621 pgd = pgd_offset(vma->vm_mm, addr);
622 do {
623 next = pgd_addr_end(addr, end);
624 if (pgd_none_or_clear_bad(pgd))
625 continue;
626 zap_pud_range(tlb, pgd, addr, next, details);
627 } while (pgd++, addr = next, addr != end);
628 tlb_end_vma(tlb, vma);
629}
630
631#ifdef CONFIG_PREEMPT
632# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
633#else
634/* No preempt: go for improved straight-line efficiency */
635# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
636#endif
637
638/**
639 * unmap_vmas - unmap a range of memory covered by a list of vma's
640 * @tlbp: address of the caller's struct mmu_gather
641 * @mm: the controlling mm_struct
642 * @vma: the starting vma
643 * @start_addr: virtual address at which to start unmapping
644 * @end_addr: virtual address at which to end unmapping
645 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
646 * @details: details of nonlinear truncation or shared cache invalidation
647 *
ee39b37b 648 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4
LT
649 *
650 * Unmap all pages in the vma list. Called under page_table_lock.
651 *
652 * We aim to not hold page_table_lock for too long (for scheduling latency
653 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
654 * return the ending mmu_gather to the caller.
655 *
656 * Only addresses between `start' and `end' will be unmapped.
657 *
658 * The VMA list must be sorted in ascending virtual address order.
659 *
660 * unmap_vmas() assumes that the caller will flush the whole unmapped address
661 * range after unmap_vmas() returns. So the only responsibility here is to
662 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
663 * drops the lock and schedules.
664 */
ee39b37b 665unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
1da177e4
LT
666 struct vm_area_struct *vma, unsigned long start_addr,
667 unsigned long end_addr, unsigned long *nr_accounted,
668 struct zap_details *details)
669{
670 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
671 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
672 int tlb_start_valid = 0;
ee39b37b 673 unsigned long start = start_addr;
1da177e4
LT
674 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
675 int fullmm = tlb_is_full_mm(*tlbp);
676
677 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
678 unsigned long end;
679
680 start = max(vma->vm_start, start_addr);
681 if (start >= vma->vm_end)
682 continue;
683 end = min(vma->vm_end, end_addr);
684 if (end <= vma->vm_start)
685 continue;
686
687 if (vma->vm_flags & VM_ACCOUNT)
688 *nr_accounted += (end - start) >> PAGE_SHIFT;
689
1da177e4
LT
690 while (start != end) {
691 unsigned long block;
692
693 if (!tlb_start_valid) {
694 tlb_start = start;
695 tlb_start_valid = 1;
696 }
697
698 if (is_vm_hugetlb_page(vma)) {
699 block = end - start;
700 unmap_hugepage_range(vma, start, end);
701 } else {
702 block = min(zap_bytes, end - start);
703 unmap_page_range(*tlbp, vma, start,
704 start + block, details);
705 }
706
707 start += block;
708 zap_bytes -= block;
709 if ((long)zap_bytes > 0)
710 continue;
711
712 tlb_finish_mmu(*tlbp, tlb_start, start);
713
714 if (need_resched() ||
715 need_lockbreak(&mm->page_table_lock) ||
716 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
717 if (i_mmap_lock) {
718 /* must reset count of rss freed */
719 *tlbp = tlb_gather_mmu(mm, fullmm);
1da177e4
LT
720 goto out;
721 }
722 spin_unlock(&mm->page_table_lock);
723 cond_resched();
724 spin_lock(&mm->page_table_lock);
725 }
726
727 *tlbp = tlb_gather_mmu(mm, fullmm);
728 tlb_start_valid = 0;
729 zap_bytes = ZAP_BLOCK_SIZE;
730 }
731 }
732out:
ee39b37b 733 return start; /* which is now the end (or restart) address */
1da177e4
LT
734}
735
736/**
737 * zap_page_range - remove user pages in a given range
738 * @vma: vm_area_struct holding the applicable pages
739 * @address: starting address of pages to zap
740 * @size: number of bytes to zap
741 * @details: details of nonlinear truncation or shared cache invalidation
742 */
ee39b37b 743unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
744 unsigned long size, struct zap_details *details)
745{
746 struct mm_struct *mm = vma->vm_mm;
747 struct mmu_gather *tlb;
748 unsigned long end = address + size;
749 unsigned long nr_accounted = 0;
750
751 if (is_vm_hugetlb_page(vma)) {
752 zap_hugepage_range(vma, address, size);
ee39b37b 753 return end;
1da177e4
LT
754 }
755
756 lru_add_drain();
757 spin_lock(&mm->page_table_lock);
758 tlb = tlb_gather_mmu(mm, 0);
ee39b37b 759 end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
1da177e4
LT
760 tlb_finish_mmu(tlb, address, end);
761 spin_unlock(&mm->page_table_lock);
ee39b37b 762 return end;
1da177e4
LT
763}
764
765/*
766 * Do a quick page-table lookup for a single page.
767 * mm->page_table_lock must be held.
768 */
769static struct page *
770__follow_page(struct mm_struct *mm, unsigned long address, int read, int write)
771{
772 pgd_t *pgd;
773 pud_t *pud;
774 pmd_t *pmd;
775 pte_t *ptep, pte;
776 unsigned long pfn;
777 struct page *page;
778
779 page = follow_huge_addr(mm, address, write);
780 if (! IS_ERR(page))
781 return page;
782
783 pgd = pgd_offset(mm, address);
784 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
785 goto out;
786
787 pud = pud_offset(pgd, address);
788 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
789 goto out;
790
791 pmd = pmd_offset(pud, address);
792 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
793 goto out;
794 if (pmd_huge(*pmd))
795 return follow_huge_pmd(mm, address, pmd, write);
796
797 ptep = pte_offset_map(pmd, address);
798 if (!ptep)
799 goto out;
800
801 pte = *ptep;
802 pte_unmap(ptep);
803 if (pte_present(pte)) {
804 if (write && !pte_write(pte))
805 goto out;
806 if (read && !pte_read(pte))
807 goto out;
808 pfn = pte_pfn(pte);
809 if (pfn_valid(pfn)) {
810 page = pfn_to_page(pfn);
811 if (write && !pte_dirty(pte) && !PageDirty(page))
812 set_page_dirty(page);
813 mark_page_accessed(page);
814 return page;
815 }
816 }
817
818out:
819 return NULL;
820}
821
822struct page *
823follow_page(struct mm_struct *mm, unsigned long address, int write)
824{
825 return __follow_page(mm, address, /*read*/0, write);
826}
827
828int
829check_user_page_readable(struct mm_struct *mm, unsigned long address)
830{
831 return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL;
832}
833
834EXPORT_SYMBOL(check_user_page_readable);
835
836/*
837 * Given a physical address, is there a useful struct page pointing to
838 * it? This may become more complex in the future if we start dealing
839 * with IO-aperture pages for direct-IO.
840 */
841
842static inline struct page *get_page_map(struct page *page)
843{
844 if (!pfn_valid(page_to_pfn(page)))
845 return NULL;
846 return page;
847}
848
849
850static inline int
851untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
852 unsigned long address)
853{
854 pgd_t *pgd;
855 pud_t *pud;
856 pmd_t *pmd;
857
858 /* Check if the vma is for an anonymous mapping. */
859 if (vma->vm_ops && vma->vm_ops->nopage)
860 return 0;
861
862 /* Check if page directory entry exists. */
863 pgd = pgd_offset(mm, address);
864 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
865 return 1;
866
867 pud = pud_offset(pgd, address);
868 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
869 return 1;
870
871 /* Check if page middle directory entry exists. */
872 pmd = pmd_offset(pud, address);
873 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
874 return 1;
875
876 /* There is a pte slot for 'address' in 'mm'. */
877 return 0;
878}
879
880
881int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
882 unsigned long start, int len, int write, int force,
883 struct page **pages, struct vm_area_struct **vmas)
884{
885 int i;
886 unsigned int flags;
887
888 /*
889 * Require read or write permissions.
890 * If 'force' is set, we only require the "MAY" flags.
891 */
892 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
893 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
894 i = 0;
895
896 do {
897 struct vm_area_struct * vma;
898
899 vma = find_extend_vma(mm, start);
900 if (!vma && in_gate_area(tsk, start)) {
901 unsigned long pg = start & PAGE_MASK;
902 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
903 pgd_t *pgd;
904 pud_t *pud;
905 pmd_t *pmd;
906 pte_t *pte;
907 if (write) /* user gate pages are read-only */
908 return i ? : -EFAULT;
909 if (pg > TASK_SIZE)
910 pgd = pgd_offset_k(pg);
911 else
912 pgd = pgd_offset_gate(mm, pg);
913 BUG_ON(pgd_none(*pgd));
914 pud = pud_offset(pgd, pg);
915 BUG_ON(pud_none(*pud));
916 pmd = pmd_offset(pud, pg);
917 BUG_ON(pmd_none(*pmd));
918 pte = pte_offset_map(pmd, pg);
919 BUG_ON(pte_none(*pte));
920 if (pages) {
921 pages[i] = pte_page(*pte);
922 get_page(pages[i]);
923 }
924 pte_unmap(pte);
925 if (vmas)
926 vmas[i] = gate_vma;
927 i++;
928 start += PAGE_SIZE;
929 len--;
930 continue;
931 }
932
933 if (!vma || (vma->vm_flags & VM_IO)
934 || !(flags & vma->vm_flags))
935 return i ? : -EFAULT;
936
937 if (is_vm_hugetlb_page(vma)) {
938 i = follow_hugetlb_page(mm, vma, pages, vmas,
939 &start, &len, i);
940 continue;
941 }
942 spin_lock(&mm->page_table_lock);
943 do {
944 struct page *map;
945 int lookup_write = write;
946
947 cond_resched_lock(&mm->page_table_lock);
948 while (!(map = follow_page(mm, start, lookup_write))) {
949 /*
950 * Shortcut for anonymous pages. We don't want
951 * to force the creation of pages tables for
952 * insanly big anonymously mapped areas that
953 * nobody touched so far. This is important
954 * for doing a core dump for these mappings.
955 */
956 if (!lookup_write &&
957 untouched_anonymous_page(mm,vma,start)) {
958 map = ZERO_PAGE(start);
959 break;
960 }
961 spin_unlock(&mm->page_table_lock);
962 switch (handle_mm_fault(mm,vma,start,write)) {
963 case VM_FAULT_MINOR:
964 tsk->min_flt++;
965 break;
966 case VM_FAULT_MAJOR:
967 tsk->maj_flt++;
968 break;
969 case VM_FAULT_SIGBUS:
970 return i ? i : -EFAULT;
971 case VM_FAULT_OOM:
972 return i ? i : -ENOMEM;
973 default:
974 BUG();
975 }
976 /*
977 * Now that we have performed a write fault
978 * and surely no longer have a shared page we
979 * shouldn't write, we shouldn't ignore an
980 * unwritable page in the page table if
981 * we are forcing write access.
982 */
983 lookup_write = write && !force;
984 spin_lock(&mm->page_table_lock);
985 }
986 if (pages) {
987 pages[i] = get_page_map(map);
988 if (!pages[i]) {
989 spin_unlock(&mm->page_table_lock);
990 while (i--)
991 page_cache_release(pages[i]);
992 i = -EFAULT;
993 goto out;
994 }
995 flush_dcache_page(pages[i]);
996 if (!PageReserved(pages[i]))
997 page_cache_get(pages[i]);
998 }
999 if (vmas)
1000 vmas[i] = vma;
1001 i++;
1002 start += PAGE_SIZE;
1003 len--;
1004 } while(len && start < vma->vm_end);
1005 spin_unlock(&mm->page_table_lock);
1006 } while(len);
1007out:
1008 return i;
1009}
1010
1011EXPORT_SYMBOL(get_user_pages);
1012
1013static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1014 unsigned long addr, unsigned long end, pgprot_t prot)
1015{
1016 pte_t *pte;
1017
1018 pte = pte_alloc_map(mm, pmd, addr);
1019 if (!pte)
1020 return -ENOMEM;
1021 do {
1022 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1023 BUG_ON(!pte_none(*pte));
1024 set_pte_at(mm, addr, pte, zero_pte);
1025 } while (pte++, addr += PAGE_SIZE, addr != end);
1026 pte_unmap(pte - 1);
1027 return 0;
1028}
1029
1030static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1031 unsigned long addr, unsigned long end, pgprot_t prot)
1032{
1033 pmd_t *pmd;
1034 unsigned long next;
1035
1036 pmd = pmd_alloc(mm, pud, addr);
1037 if (!pmd)
1038 return -ENOMEM;
1039 do {
1040 next = pmd_addr_end(addr, end);
1041 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1042 return -ENOMEM;
1043 } while (pmd++, addr = next, addr != end);
1044 return 0;
1045}
1046
1047static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1048 unsigned long addr, unsigned long end, pgprot_t prot)
1049{
1050 pud_t *pud;
1051 unsigned long next;
1052
1053 pud = pud_alloc(mm, pgd, addr);
1054 if (!pud)
1055 return -ENOMEM;
1056 do {
1057 next = pud_addr_end(addr, end);
1058 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1059 return -ENOMEM;
1060 } while (pud++, addr = next, addr != end);
1061 return 0;
1062}
1063
1064int zeromap_page_range(struct vm_area_struct *vma,
1065 unsigned long addr, unsigned long size, pgprot_t prot)
1066{
1067 pgd_t *pgd;
1068 unsigned long next;
1069 unsigned long end = addr + size;
1070 struct mm_struct *mm = vma->vm_mm;
1071 int err;
1072
1073 BUG_ON(addr >= end);
1074 pgd = pgd_offset(mm, addr);
1075 flush_cache_range(vma, addr, end);
1076 spin_lock(&mm->page_table_lock);
1077 do {
1078 next = pgd_addr_end(addr, end);
1079 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1080 if (err)
1081 break;
1082 } while (pgd++, addr = next, addr != end);
1083 spin_unlock(&mm->page_table_lock);
1084 return err;
1085}
1086
1087/*
1088 * maps a range of physical memory into the requested pages. the old
1089 * mappings are removed. any references to nonexistent pages results
1090 * in null mappings (currently treated as "copy-on-access")
1091 */
1092static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1093 unsigned long addr, unsigned long end,
1094 unsigned long pfn, pgprot_t prot)
1095{
1096 pte_t *pte;
1097
1098 pte = pte_alloc_map(mm, pmd, addr);
1099 if (!pte)
1100 return -ENOMEM;
1101 do {
1102 BUG_ON(!pte_none(*pte));
1103 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1104 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1105 pfn++;
1106 } while (pte++, addr += PAGE_SIZE, addr != end);
1107 pte_unmap(pte - 1);
1108 return 0;
1109}
1110
1111static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1112 unsigned long addr, unsigned long end,
1113 unsigned long pfn, pgprot_t prot)
1114{
1115 pmd_t *pmd;
1116 unsigned long next;
1117
1118 pfn -= addr >> PAGE_SHIFT;
1119 pmd = pmd_alloc(mm, pud, addr);
1120 if (!pmd)
1121 return -ENOMEM;
1122 do {
1123 next = pmd_addr_end(addr, end);
1124 if (remap_pte_range(mm, pmd, addr, next,
1125 pfn + (addr >> PAGE_SHIFT), prot))
1126 return -ENOMEM;
1127 } while (pmd++, addr = next, addr != end);
1128 return 0;
1129}
1130
1131static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1132 unsigned long addr, unsigned long end,
1133 unsigned long pfn, pgprot_t prot)
1134{
1135 pud_t *pud;
1136 unsigned long next;
1137
1138 pfn -= addr >> PAGE_SHIFT;
1139 pud = pud_alloc(mm, pgd, addr);
1140 if (!pud)
1141 return -ENOMEM;
1142 do {
1143 next = pud_addr_end(addr, end);
1144 if (remap_pmd_range(mm, pud, addr, next,
1145 pfn + (addr >> PAGE_SHIFT), prot))
1146 return -ENOMEM;
1147 } while (pud++, addr = next, addr != end);
1148 return 0;
1149}
1150
1151/* Note: this is only safe if the mm semaphore is held when called. */
1152int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1153 unsigned long pfn, unsigned long size, pgprot_t prot)
1154{
1155 pgd_t *pgd;
1156 unsigned long next;
1157 unsigned long end = addr + size;
1158 struct mm_struct *mm = vma->vm_mm;
1159 int err;
1160
1161 /*
1162 * Physically remapped pages are special. Tell the
1163 * rest of the world about it:
1164 * VM_IO tells people not to look at these pages
1165 * (accesses can have side effects).
1166 * VM_RESERVED tells swapout not to try to touch
1167 * this region.
1168 */
1169 vma->vm_flags |= VM_IO | VM_RESERVED;
1170
1171 BUG_ON(addr >= end);
1172 pfn -= addr >> PAGE_SHIFT;
1173 pgd = pgd_offset(mm, addr);
1174 flush_cache_range(vma, addr, end);
1175 spin_lock(&mm->page_table_lock);
1176 do {
1177 next = pgd_addr_end(addr, end);
1178 err = remap_pud_range(mm, pgd, addr, next,
1179 pfn + (addr >> PAGE_SHIFT), prot);
1180 if (err)
1181 break;
1182 } while (pgd++, addr = next, addr != end);
1183 spin_unlock(&mm->page_table_lock);
1184 return err;
1185}
1186EXPORT_SYMBOL(remap_pfn_range);
1187
1188/*
1189 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1190 * servicing faults for write access. In the normal case, do always want
1191 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1192 * that do not have writing enabled, when used by access_process_vm.
1193 */
1194static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1195{
1196 if (likely(vma->vm_flags & VM_WRITE))
1197 pte = pte_mkwrite(pte);
1198 return pte;
1199}
1200
1201/*
1202 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1203 */
1204static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
1205 pte_t *page_table)
1206{
1207 pte_t entry;
1208
1209 entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1210 vma);
1211 ptep_establish(vma, address, page_table, entry);
1212 update_mmu_cache(vma, address, entry);
1213 lazy_mmu_prot_update(entry);
1214}
1215
1216/*
1217 * This routine handles present pages, when users try to write
1218 * to a shared page. It is done by copying the page to a new address
1219 * and decrementing the shared-page counter for the old page.
1220 *
1221 * Goto-purists beware: the only reason for goto's here is that it results
1222 * in better assembly code.. The "default" path will see no jumps at all.
1223 *
1224 * Note that this routine assumes that the protection checks have been
1225 * done by the caller (the low-level page fault routine in most cases).
1226 * Thus we can safely just mark it writable once we've done any necessary
1227 * COW.
1228 *
1229 * We also mark the page dirty at this point even though the page will
1230 * change only once the write actually happens. This avoids a few races,
1231 * and potentially makes it more efficient.
1232 *
1233 * We hold the mm semaphore and the page_table_lock on entry and exit
1234 * with the page_table_lock released.
1235 */
1236static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1237 unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1238{
1239 struct page *old_page, *new_page;
1240 unsigned long pfn = pte_pfn(pte);
1241 pte_t entry;
1242
1243 if (unlikely(!pfn_valid(pfn))) {
1244 /*
1245 * This should really halt the system so it can be debugged or
1246 * at least the kernel stops what it's doing before it corrupts
1247 * data, but for the moment just pretend this is OOM.
1248 */
1249 pte_unmap(page_table);
1250 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1251 address);
1252 spin_unlock(&mm->page_table_lock);
1253 return VM_FAULT_OOM;
1254 }
1255 old_page = pfn_to_page(pfn);
1256
1257 if (!TestSetPageLocked(old_page)) {
1258 int reuse = can_share_swap_page(old_page);
1259 unlock_page(old_page);
1260 if (reuse) {
1261 flush_cache_page(vma, address, pfn);
1262 entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1263 vma);
1264 ptep_set_access_flags(vma, address, page_table, entry, 1);
1265 update_mmu_cache(vma, address, entry);
1266 lazy_mmu_prot_update(entry);
1267 pte_unmap(page_table);
1268 spin_unlock(&mm->page_table_lock);
1269 return VM_FAULT_MINOR;
1270 }
1271 }
1272 pte_unmap(page_table);
1273
1274 /*
1275 * Ok, we need to copy. Oh, well..
1276 */
1277 if (!PageReserved(old_page))
1278 page_cache_get(old_page);
1279 spin_unlock(&mm->page_table_lock);
1280
1281 if (unlikely(anon_vma_prepare(vma)))
1282 goto no_new_page;
1283 if (old_page == ZERO_PAGE(address)) {
1284 new_page = alloc_zeroed_user_highpage(vma, address);
1285 if (!new_page)
1286 goto no_new_page;
1287 } else {
1288 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1289 if (!new_page)
1290 goto no_new_page;
1291 copy_user_highpage(new_page, old_page, address);
1292 }
1293 /*
1294 * Re-check the pte - we dropped the lock
1295 */
1296 spin_lock(&mm->page_table_lock);
1297 page_table = pte_offset_map(pmd, address);
1298 if (likely(pte_same(*page_table, pte))) {
1299 if (PageAnon(old_page))
1300 dec_mm_counter(mm, anon_rss);
1301 if (PageReserved(old_page))
1302 inc_mm_counter(mm, rss);
1303 else
1304 page_remove_rmap(old_page);
1305 flush_cache_page(vma, address, pfn);
1306 break_cow(vma, new_page, address, page_table);
1307 lru_cache_add_active(new_page);
1308 page_add_anon_rmap(new_page, vma, address);
1309
1310 /* Free the old page.. */
1311 new_page = old_page;
1312 }
1313 pte_unmap(page_table);
1314 page_cache_release(new_page);
1315 page_cache_release(old_page);
1316 spin_unlock(&mm->page_table_lock);
1317 return VM_FAULT_MINOR;
1318
1319no_new_page:
1320 page_cache_release(old_page);
1321 return VM_FAULT_OOM;
1322}
1323
1324/*
1325 * Helper functions for unmap_mapping_range().
1326 *
1327 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1328 *
1329 * We have to restart searching the prio_tree whenever we drop the lock,
1330 * since the iterator is only valid while the lock is held, and anyway
1331 * a later vma might be split and reinserted earlier while lock dropped.
1332 *
1333 * The list of nonlinear vmas could be handled more efficiently, using
1334 * a placeholder, but handle it in the same way until a need is shown.
1335 * It is important to search the prio_tree before nonlinear list: a vma
1336 * may become nonlinear and be shifted from prio_tree to nonlinear list
1337 * while the lock is dropped; but never shifted from list to prio_tree.
1338 *
1339 * In order to make forward progress despite restarting the search,
1340 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1341 * quickly skip it next time around. Since the prio_tree search only
1342 * shows us those vmas affected by unmapping the range in question, we
1343 * can't efficiently keep all vmas in step with mapping->truncate_count:
1344 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1345 * mapping->truncate_count and vma->vm_truncate_count are protected by
1346 * i_mmap_lock.
1347 *
1348 * In order to make forward progress despite repeatedly restarting some
ee39b37b 1349 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
1350 * and restart from that address when we reach that vma again. It might
1351 * have been split or merged, shrunk or extended, but never shifted: so
1352 * restart_addr remains valid so long as it remains in the vma's range.
1353 * unmap_mapping_range forces truncate_count to leap over page-aligned
1354 * values so we can save vma's restart_addr in its truncate_count field.
1355 */
1356#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1357
1358static void reset_vma_truncate_counts(struct address_space *mapping)
1359{
1360 struct vm_area_struct *vma;
1361 struct prio_tree_iter iter;
1362
1363 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1364 vma->vm_truncate_count = 0;
1365 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1366 vma->vm_truncate_count = 0;
1367}
1368
1369static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1370 unsigned long start_addr, unsigned long end_addr,
1371 struct zap_details *details)
1372{
1373 unsigned long restart_addr;
1374 int need_break;
1375
1376again:
1377 restart_addr = vma->vm_truncate_count;
1378 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1379 start_addr = restart_addr;
1380 if (start_addr >= end_addr) {
1381 /* Top of vma has been split off since last time */
1382 vma->vm_truncate_count = details->truncate_count;
1383 return 0;
1384 }
1385 }
1386
ee39b37b
HD
1387 restart_addr = zap_page_range(vma, start_addr,
1388 end_addr - start_addr, details);
1da177e4
LT
1389
1390 /*
1391 * We cannot rely on the break test in unmap_vmas:
1392 * on the one hand, we don't want to restart our loop
1393 * just because that broke out for the page_table_lock;
1394 * on the other hand, it does no test when vma is small.
1395 */
1396 need_break = need_resched() ||
1397 need_lockbreak(details->i_mmap_lock);
1398
ee39b37b 1399 if (restart_addr >= end_addr) {
1da177e4
LT
1400 /* We have now completed this vma: mark it so */
1401 vma->vm_truncate_count = details->truncate_count;
1402 if (!need_break)
1403 return 0;
1404 } else {
1405 /* Note restart_addr in vma's truncate_count field */
ee39b37b 1406 vma->vm_truncate_count = restart_addr;
1da177e4
LT
1407 if (!need_break)
1408 goto again;
1409 }
1410
1411 spin_unlock(details->i_mmap_lock);
1412 cond_resched();
1413 spin_lock(details->i_mmap_lock);
1414 return -EINTR;
1415}
1416
1417static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1418 struct zap_details *details)
1419{
1420 struct vm_area_struct *vma;
1421 struct prio_tree_iter iter;
1422 pgoff_t vba, vea, zba, zea;
1423
1424restart:
1425 vma_prio_tree_foreach(vma, &iter, root,
1426 details->first_index, details->last_index) {
1427 /* Skip quickly over those we have already dealt with */
1428 if (vma->vm_truncate_count == details->truncate_count)
1429 continue;
1430
1431 vba = vma->vm_pgoff;
1432 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1433 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1434 zba = details->first_index;
1435 if (zba < vba)
1436 zba = vba;
1437 zea = details->last_index;
1438 if (zea > vea)
1439 zea = vea;
1440
1441 if (unmap_mapping_range_vma(vma,
1442 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1443 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1444 details) < 0)
1445 goto restart;
1446 }
1447}
1448
1449static inline void unmap_mapping_range_list(struct list_head *head,
1450 struct zap_details *details)
1451{
1452 struct vm_area_struct *vma;
1453
1454 /*
1455 * In nonlinear VMAs there is no correspondence between virtual address
1456 * offset and file offset. So we must perform an exhaustive search
1457 * across *all* the pages in each nonlinear VMA, not just the pages
1458 * whose virtual address lies outside the file truncation point.
1459 */
1460restart:
1461 list_for_each_entry(vma, head, shared.vm_set.list) {
1462 /* Skip quickly over those we have already dealt with */
1463 if (vma->vm_truncate_count == details->truncate_count)
1464 continue;
1465 details->nonlinear_vma = vma;
1466 if (unmap_mapping_range_vma(vma, vma->vm_start,
1467 vma->vm_end, details) < 0)
1468 goto restart;
1469 }
1470}
1471
1472/**
1473 * unmap_mapping_range - unmap the portion of all mmaps
1474 * in the specified address_space corresponding to the specified
1475 * page range in the underlying file.
1476 * @address_space: the address space containing mmaps to be unmapped.
1477 * @holebegin: byte in first page to unmap, relative to the start of
1478 * the underlying file. This will be rounded down to a PAGE_SIZE
1479 * boundary. Note that this is different from vmtruncate(), which
1480 * must keep the partial page. In contrast, we must get rid of
1481 * partial pages.
1482 * @holelen: size of prospective hole in bytes. This will be rounded
1483 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1484 * end of the file.
1485 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1486 * but 0 when invalidating pagecache, don't throw away private data.
1487 */
1488void unmap_mapping_range(struct address_space *mapping,
1489 loff_t const holebegin, loff_t const holelen, int even_cows)
1490{
1491 struct zap_details details;
1492 pgoff_t hba = holebegin >> PAGE_SHIFT;
1493 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1494
1495 /* Check for overflow. */
1496 if (sizeof(holelen) > sizeof(hlen)) {
1497 long long holeend =
1498 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1499 if (holeend & ~(long long)ULONG_MAX)
1500 hlen = ULONG_MAX - hba + 1;
1501 }
1502
1503 details.check_mapping = even_cows? NULL: mapping;
1504 details.nonlinear_vma = NULL;
1505 details.first_index = hba;
1506 details.last_index = hba + hlen - 1;
1507 if (details.last_index < details.first_index)
1508 details.last_index = ULONG_MAX;
1509 details.i_mmap_lock = &mapping->i_mmap_lock;
1510
1511 spin_lock(&mapping->i_mmap_lock);
1512
1513 /* serialize i_size write against truncate_count write */
1514 smp_wmb();
1515 /* Protect against page faults, and endless unmapping loops */
1516 mapping->truncate_count++;
1517 /*
1518 * For archs where spin_lock has inclusive semantics like ia64
1519 * this smp_mb() will prevent to read pagetable contents
1520 * before the truncate_count increment is visible to
1521 * other cpus.
1522 */
1523 smp_mb();
1524 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1525 if (mapping->truncate_count == 0)
1526 reset_vma_truncate_counts(mapping);
1527 mapping->truncate_count++;
1528 }
1529 details.truncate_count = mapping->truncate_count;
1530
1531 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1532 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1533 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1534 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1535 spin_unlock(&mapping->i_mmap_lock);
1536}
1537EXPORT_SYMBOL(unmap_mapping_range);
1538
1539/*
1540 * Handle all mappings that got truncated by a "truncate()"
1541 * system call.
1542 *
1543 * NOTE! We have to be ready to update the memory sharing
1544 * between the file and the memory map for a potential last
1545 * incomplete page. Ugly, but necessary.
1546 */
1547int vmtruncate(struct inode * inode, loff_t offset)
1548{
1549 struct address_space *mapping = inode->i_mapping;
1550 unsigned long limit;
1551
1552 if (inode->i_size < offset)
1553 goto do_expand;
1554 /*
1555 * truncation of in-use swapfiles is disallowed - it would cause
1556 * subsequent swapout to scribble on the now-freed blocks.
1557 */
1558 if (IS_SWAPFILE(inode))
1559 goto out_busy;
1560 i_size_write(inode, offset);
1561 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1562 truncate_inode_pages(mapping, offset);
1563 goto out_truncate;
1564
1565do_expand:
1566 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1567 if (limit != RLIM_INFINITY && offset > limit)
1568 goto out_sig;
1569 if (offset > inode->i_sb->s_maxbytes)
1570 goto out_big;
1571 i_size_write(inode, offset);
1572
1573out_truncate:
1574 if (inode->i_op && inode->i_op->truncate)
1575 inode->i_op->truncate(inode);
1576 return 0;
1577out_sig:
1578 send_sig(SIGXFSZ, current, 0);
1579out_big:
1580 return -EFBIG;
1581out_busy:
1582 return -ETXTBSY;
1583}
1584
1585EXPORT_SYMBOL(vmtruncate);
1586
1587/*
1588 * Primitive swap readahead code. We simply read an aligned block of
1589 * (1 << page_cluster) entries in the swap area. This method is chosen
1590 * because it doesn't cost us any seek time. We also make sure to queue
1591 * the 'original' request together with the readahead ones...
1592 *
1593 * This has been extended to use the NUMA policies from the mm triggering
1594 * the readahead.
1595 *
1596 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1597 */
1598void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1599{
1600#ifdef CONFIG_NUMA
1601 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1602#endif
1603 int i, num;
1604 struct page *new_page;
1605 unsigned long offset;
1606
1607 /*
1608 * Get the number of handles we should do readahead io to.
1609 */
1610 num = valid_swaphandles(entry, &offset);
1611 for (i = 0; i < num; offset++, i++) {
1612 /* Ok, do the async read-ahead now */
1613 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1614 offset), vma, addr);
1615 if (!new_page)
1616 break;
1617 page_cache_release(new_page);
1618#ifdef CONFIG_NUMA
1619 /*
1620 * Find the next applicable VMA for the NUMA policy.
1621 */
1622 addr += PAGE_SIZE;
1623 if (addr == 0)
1624 vma = NULL;
1625 if (vma) {
1626 if (addr >= vma->vm_end) {
1627 vma = next_vma;
1628 next_vma = vma ? vma->vm_next : NULL;
1629 }
1630 if (vma && addr < vma->vm_start)
1631 vma = NULL;
1632 } else {
1633 if (next_vma && addr >= next_vma->vm_start) {
1634 vma = next_vma;
1635 next_vma = vma->vm_next;
1636 }
1637 }
1638#endif
1639 }
1640 lru_add_drain(); /* Push any new pages onto the LRU now */
1641}
1642
1643/*
1644 * We hold the mm semaphore and the page_table_lock on entry and
1645 * should release the pagetable lock on exit..
1646 */
1647static int do_swap_page(struct mm_struct * mm,
1648 struct vm_area_struct * vma, unsigned long address,
1649 pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1650{
1651 struct page *page;
1652 swp_entry_t entry = pte_to_swp_entry(orig_pte);
1653 pte_t pte;
1654 int ret = VM_FAULT_MINOR;
1655
1656 pte_unmap(page_table);
1657 spin_unlock(&mm->page_table_lock);
1658 page = lookup_swap_cache(entry);
1659 if (!page) {
1660 swapin_readahead(entry, address, vma);
1661 page = read_swap_cache_async(entry, vma, address);
1662 if (!page) {
1663 /*
1664 * Back out if somebody else faulted in this pte while
1665 * we released the page table lock.
1666 */
1667 spin_lock(&mm->page_table_lock);
1668 page_table = pte_offset_map(pmd, address);
1669 if (likely(pte_same(*page_table, orig_pte)))
1670 ret = VM_FAULT_OOM;
1671 else
1672 ret = VM_FAULT_MINOR;
1673 pte_unmap(page_table);
1674 spin_unlock(&mm->page_table_lock);
1675 goto out;
1676 }
1677
1678 /* Had to read the page from swap area: Major fault */
1679 ret = VM_FAULT_MAJOR;
1680 inc_page_state(pgmajfault);
1681 grab_swap_token();
1682 }
1683
1684 mark_page_accessed(page);
1685 lock_page(page);
1686
1687 /*
1688 * Back out if somebody else faulted in this pte while we
1689 * released the page table lock.
1690 */
1691 spin_lock(&mm->page_table_lock);
1692 page_table = pte_offset_map(pmd, address);
1693 if (unlikely(!pte_same(*page_table, orig_pte))) {
1694 pte_unmap(page_table);
1695 spin_unlock(&mm->page_table_lock);
1696 unlock_page(page);
1697 page_cache_release(page);
1698 ret = VM_FAULT_MINOR;
1699 goto out;
1700 }
1701
1702 /* The page isn't present yet, go ahead with the fault. */
1703
1704 swap_free(entry);
1705 if (vm_swap_full())
1706 remove_exclusive_swap_page(page);
1707
1708 inc_mm_counter(mm, rss);
1709 pte = mk_pte(page, vma->vm_page_prot);
1710 if (write_access && can_share_swap_page(page)) {
1711 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1712 write_access = 0;
1713 }
1714 unlock_page(page);
1715
1716 flush_icache_page(vma, page);
1717 set_pte_at(mm, address, page_table, pte);
1718 page_add_anon_rmap(page, vma, address);
1719
1720 if (write_access) {
1721 if (do_wp_page(mm, vma, address,
1722 page_table, pmd, pte) == VM_FAULT_OOM)
1723 ret = VM_FAULT_OOM;
1724 goto out;
1725 }
1726
1727 /* No need to invalidate - it was non-present before */
1728 update_mmu_cache(vma, address, pte);
1729 lazy_mmu_prot_update(pte);
1730 pte_unmap(page_table);
1731 spin_unlock(&mm->page_table_lock);
1732out:
1733 return ret;
1734}
1735
1736/*
1737 * We are called with the MM semaphore and page_table_lock
1738 * spinlock held to protect against concurrent faults in
1739 * multithreaded programs.
1740 */
1741static int
1742do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1743 pte_t *page_table, pmd_t *pmd, int write_access,
1744 unsigned long addr)
1745{
1746 pte_t entry;
1747 struct page * page = ZERO_PAGE(addr);
1748
1749 /* Read-only mapping of ZERO_PAGE. */
1750 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1751
1752 /* ..except if it's a write access */
1753 if (write_access) {
1754 /* Allocate our own private page. */
1755 pte_unmap(page_table);
1756 spin_unlock(&mm->page_table_lock);
1757
1758 if (unlikely(anon_vma_prepare(vma)))
1759 goto no_mem;
1760 page = alloc_zeroed_user_highpage(vma, addr);
1761 if (!page)
1762 goto no_mem;
1763
1764 spin_lock(&mm->page_table_lock);
1765 page_table = pte_offset_map(pmd, addr);
1766
1767 if (!pte_none(*page_table)) {
1768 pte_unmap(page_table);
1769 page_cache_release(page);
1770 spin_unlock(&mm->page_table_lock);
1771 goto out;
1772 }
1773 inc_mm_counter(mm, rss);
1774 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1775 vma->vm_page_prot)),
1776 vma);
1777 lru_cache_add_active(page);
1778 SetPageReferenced(page);
1779 page_add_anon_rmap(page, vma, addr);
1780 }
1781
1782 set_pte_at(mm, addr, page_table, entry);
1783 pte_unmap(page_table);
1784
1785 /* No need to invalidate - it was non-present before */
1786 update_mmu_cache(vma, addr, entry);
1787 lazy_mmu_prot_update(entry);
1788 spin_unlock(&mm->page_table_lock);
1789out:
1790 return VM_FAULT_MINOR;
1791no_mem:
1792 return VM_FAULT_OOM;
1793}
1794
1795/*
1796 * do_no_page() tries to create a new page mapping. It aggressively
1797 * tries to share with existing pages, but makes a separate copy if
1798 * the "write_access" parameter is true in order to avoid the next
1799 * page fault.
1800 *
1801 * As this is called only for pages that do not currently exist, we
1802 * do not need to flush old virtual caches or the TLB.
1803 *
1804 * This is called with the MM semaphore held and the page table
1805 * spinlock held. Exit with the spinlock released.
1806 */
1807static int
1808do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1809 unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1810{
1811 struct page * new_page;
1812 struct address_space *mapping = NULL;
1813 pte_t entry;
1814 unsigned int sequence = 0;
1815 int ret = VM_FAULT_MINOR;
1816 int anon = 0;
1817
1818 if (!vma->vm_ops || !vma->vm_ops->nopage)
1819 return do_anonymous_page(mm, vma, page_table,
1820 pmd, write_access, address);
1821 pte_unmap(page_table);
1822 spin_unlock(&mm->page_table_lock);
1823
1824 if (vma->vm_file) {
1825 mapping = vma->vm_file->f_mapping;
1826 sequence = mapping->truncate_count;
1827 smp_rmb(); /* serializes i_size against truncate_count */
1828 }
1829retry:
1830 cond_resched();
1831 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1832 /*
1833 * No smp_rmb is needed here as long as there's a full
1834 * spin_lock/unlock sequence inside the ->nopage callback
1835 * (for the pagecache lookup) that acts as an implicit
1836 * smp_mb() and prevents the i_size read to happen
1837 * after the next truncate_count read.
1838 */
1839
1840 /* no page was available -- either SIGBUS or OOM */
1841 if (new_page == NOPAGE_SIGBUS)
1842 return VM_FAULT_SIGBUS;
1843 if (new_page == NOPAGE_OOM)
1844 return VM_FAULT_OOM;
1845
1846 /*
1847 * Should we do an early C-O-W break?
1848 */
1849 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1850 struct page *page;
1851
1852 if (unlikely(anon_vma_prepare(vma)))
1853 goto oom;
1854 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1855 if (!page)
1856 goto oom;
1857 copy_user_highpage(page, new_page, address);
1858 page_cache_release(new_page);
1859 new_page = page;
1860 anon = 1;
1861 }
1862
1863 spin_lock(&mm->page_table_lock);
1864 /*
1865 * For a file-backed vma, someone could have truncated or otherwise
1866 * invalidated this page. If unmap_mapping_range got called,
1867 * retry getting the page.
1868 */
1869 if (mapping && unlikely(sequence != mapping->truncate_count)) {
1870 sequence = mapping->truncate_count;
1871 spin_unlock(&mm->page_table_lock);
1872 page_cache_release(new_page);
1873 goto retry;
1874 }
1875 page_table = pte_offset_map(pmd, address);
1876
1877 /*
1878 * This silly early PAGE_DIRTY setting removes a race
1879 * due to the bad i386 page protection. But it's valid
1880 * for other architectures too.
1881 *
1882 * Note that if write_access is true, we either now have
1883 * an exclusive copy of the page, or this is a shared mapping,
1884 * so we can make it writable and dirty to avoid having to
1885 * handle that later.
1886 */
1887 /* Only go through if we didn't race with anybody else... */
1888 if (pte_none(*page_table)) {
1889 if (!PageReserved(new_page))
1890 inc_mm_counter(mm, rss);
1891
1892 flush_icache_page(vma, new_page);
1893 entry = mk_pte(new_page, vma->vm_page_prot);
1894 if (write_access)
1895 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1896 set_pte_at(mm, address, page_table, entry);
1897 if (anon) {
1898 lru_cache_add_active(new_page);
1899 page_add_anon_rmap(new_page, vma, address);
1900 } else
1901 page_add_file_rmap(new_page);
1902 pte_unmap(page_table);
1903 } else {
1904 /* One of our sibling threads was faster, back out. */
1905 pte_unmap(page_table);
1906 page_cache_release(new_page);
1907 spin_unlock(&mm->page_table_lock);
1908 goto out;
1909 }
1910
1911 /* no need to invalidate: a not-present page shouldn't be cached */
1912 update_mmu_cache(vma, address, entry);
1913 lazy_mmu_prot_update(entry);
1914 spin_unlock(&mm->page_table_lock);
1915out:
1916 return ret;
1917oom:
1918 page_cache_release(new_page);
1919 ret = VM_FAULT_OOM;
1920 goto out;
1921}
1922
1923/*
1924 * Fault of a previously existing named mapping. Repopulate the pte
1925 * from the encoded file_pte if possible. This enables swappable
1926 * nonlinear vmas.
1927 */
1928static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1929 unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1930{
1931 unsigned long pgoff;
1932 int err;
1933
1934 BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1935 /*
1936 * Fall back to the linear mapping if the fs does not support
1937 * ->populate:
1938 */
1939 if (!vma->vm_ops || !vma->vm_ops->populate ||
1940 (write_access && !(vma->vm_flags & VM_SHARED))) {
1941 pte_clear(mm, address, pte);
1942 return do_no_page(mm, vma, address, write_access, pte, pmd);
1943 }
1944
1945 pgoff = pte_to_pgoff(*pte);
1946
1947 pte_unmap(pte);
1948 spin_unlock(&mm->page_table_lock);
1949
1950 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1951 if (err == -ENOMEM)
1952 return VM_FAULT_OOM;
1953 if (err)
1954 return VM_FAULT_SIGBUS;
1955 return VM_FAULT_MAJOR;
1956}
1957
1958/*
1959 * These routines also need to handle stuff like marking pages dirty
1960 * and/or accessed for architectures that don't do it in hardware (most
1961 * RISC architectures). The early dirtying is also good on the i386.
1962 *
1963 * There is also a hook called "update_mmu_cache()" that architectures
1964 * with external mmu caches can use to update those (ie the Sparc or
1965 * PowerPC hashed page tables that act as extended TLBs).
1966 *
1967 * Note the "page_table_lock". It is to protect against kswapd removing
1968 * pages from under us. Note that kswapd only ever _removes_ pages, never
1969 * adds them. As such, once we have noticed that the page is not present,
1970 * we can drop the lock early.
1971 *
1972 * The adding of pages is protected by the MM semaphore (which we hold),
1973 * so we don't need to worry about a page being suddenly been added into
1974 * our VM.
1975 *
1976 * We enter with the pagetable spinlock held, we are supposed to
1977 * release it when done.
1978 */
1979static inline int handle_pte_fault(struct mm_struct *mm,
1980 struct vm_area_struct * vma, unsigned long address,
1981 int write_access, pte_t *pte, pmd_t *pmd)
1982{
1983 pte_t entry;
1984
1985 entry = *pte;
1986 if (!pte_present(entry)) {
1987 /*
1988 * If it truly wasn't present, we know that kswapd
1989 * and the PTE updates will not touch it later. So
1990 * drop the lock.
1991 */
1992 if (pte_none(entry))
1993 return do_no_page(mm, vma, address, write_access, pte, pmd);
1994 if (pte_file(entry))
1995 return do_file_page(mm, vma, address, write_access, pte, pmd);
1996 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
1997 }
1998
1999 if (write_access) {
2000 if (!pte_write(entry))
2001 return do_wp_page(mm, vma, address, pte, pmd, entry);
2002
2003 entry = pte_mkdirty(entry);
2004 }
2005 entry = pte_mkyoung(entry);
2006 ptep_set_access_flags(vma, address, pte, entry, write_access);
2007 update_mmu_cache(vma, address, entry);
2008 lazy_mmu_prot_update(entry);
2009 pte_unmap(pte);
2010 spin_unlock(&mm->page_table_lock);
2011 return VM_FAULT_MINOR;
2012}
2013
2014/*
2015 * By the time we get here, we already hold the mm semaphore
2016 */
2017int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
2018 unsigned long address, int write_access)
2019{
2020 pgd_t *pgd;
2021 pud_t *pud;
2022 pmd_t *pmd;
2023 pte_t *pte;
2024
2025 __set_current_state(TASK_RUNNING);
2026
2027 inc_page_state(pgfault);
2028
2029 if (is_vm_hugetlb_page(vma))
2030 return VM_FAULT_SIGBUS; /* mapping truncation does this. */
2031
2032 /*
2033 * We need the page table lock to synchronize with kswapd
2034 * and the SMP-safe atomic PTE updates.
2035 */
2036 pgd = pgd_offset(mm, address);
2037 spin_lock(&mm->page_table_lock);
2038
2039 pud = pud_alloc(mm, pgd, address);
2040 if (!pud)
2041 goto oom;
2042
2043 pmd = pmd_alloc(mm, pud, address);
2044 if (!pmd)
2045 goto oom;
2046
2047 pte = pte_alloc_map(mm, pmd, address);
2048 if (!pte)
2049 goto oom;
2050
2051 return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
2052
2053 oom:
2054 spin_unlock(&mm->page_table_lock);
2055 return VM_FAULT_OOM;
2056}
2057
2058#ifndef __PAGETABLE_PUD_FOLDED
2059/*
2060 * Allocate page upper directory.
2061 *
2062 * We've already handled the fast-path in-line, and we own the
2063 * page table lock.
2064 */
2065pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2066{
2067 pud_t *new;
2068
2069 spin_unlock(&mm->page_table_lock);
2070 new = pud_alloc_one(mm, address);
2071 spin_lock(&mm->page_table_lock);
2072 if (!new)
2073 return NULL;
2074
2075 /*
2076 * Because we dropped the lock, we should re-check the
2077 * entry, as somebody else could have populated it..
2078 */
2079 if (pgd_present(*pgd)) {
2080 pud_free(new);
2081 goto out;
2082 }
2083 pgd_populate(mm, pgd, new);
2084 out:
2085 return pud_offset(pgd, address);
2086}
2087#endif /* __PAGETABLE_PUD_FOLDED */
2088
2089#ifndef __PAGETABLE_PMD_FOLDED
2090/*
2091 * Allocate page middle directory.
2092 *
2093 * We've already handled the fast-path in-line, and we own the
2094 * page table lock.
2095 */
2096pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2097{
2098 pmd_t *new;
2099
2100 spin_unlock(&mm->page_table_lock);
2101 new = pmd_alloc_one(mm, address);
2102 spin_lock(&mm->page_table_lock);
2103 if (!new)
2104 return NULL;
2105
2106 /*
2107 * Because we dropped the lock, we should re-check the
2108 * entry, as somebody else could have populated it..
2109 */
2110#ifndef __ARCH_HAS_4LEVEL_HACK
2111 if (pud_present(*pud)) {
2112 pmd_free(new);
2113 goto out;
2114 }
2115 pud_populate(mm, pud, new);
2116#else
2117 if (pgd_present(*pud)) {
2118 pmd_free(new);
2119 goto out;
2120 }
2121 pgd_populate(mm, pud, new);
2122#endif /* __ARCH_HAS_4LEVEL_HACK */
2123
2124 out:
2125 return pmd_offset(pud, address);
2126}
2127#endif /* __PAGETABLE_PMD_FOLDED */
2128
2129int make_pages_present(unsigned long addr, unsigned long end)
2130{
2131 int ret, len, write;
2132 struct vm_area_struct * vma;
2133
2134 vma = find_vma(current->mm, addr);
2135 if (!vma)
2136 return -1;
2137 write = (vma->vm_flags & VM_WRITE) != 0;
2138 if (addr >= end)
2139 BUG();
2140 if (end > vma->vm_end)
2141 BUG();
2142 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2143 ret = get_user_pages(current, current->mm, addr,
2144 len, write, 0, NULL, NULL);
2145 if (ret < 0)
2146 return ret;
2147 return ret == len ? 0 : -1;
2148}
2149
2150/*
2151 * Map a vmalloc()-space virtual address to the physical page.
2152 */
2153struct page * vmalloc_to_page(void * vmalloc_addr)
2154{
2155 unsigned long addr = (unsigned long) vmalloc_addr;
2156 struct page *page = NULL;
2157 pgd_t *pgd = pgd_offset_k(addr);
2158 pud_t *pud;
2159 pmd_t *pmd;
2160 pte_t *ptep, pte;
2161
2162 if (!pgd_none(*pgd)) {
2163 pud = pud_offset(pgd, addr);
2164 if (!pud_none(*pud)) {
2165 pmd = pmd_offset(pud, addr);
2166 if (!pmd_none(*pmd)) {
2167 ptep = pte_offset_map(pmd, addr);
2168 pte = *ptep;
2169 if (pte_present(pte))
2170 page = pte_page(pte);
2171 pte_unmap(ptep);
2172 }
2173 }
2174 }
2175 return page;
2176}
2177
2178EXPORT_SYMBOL(vmalloc_to_page);
2179
2180/*
2181 * Map a vmalloc()-space virtual address to the physical page frame number.
2182 */
2183unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2184{
2185 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2186}
2187
2188EXPORT_SYMBOL(vmalloc_to_pfn);
2189
2190/*
2191 * update_mem_hiwater
2192 * - update per process rss and vm high water data
2193 */
2194void update_mem_hiwater(struct task_struct *tsk)
2195{
2196 if (tsk->mm) {
2197 unsigned long rss = get_mm_counter(tsk->mm, rss);
2198
2199 if (tsk->mm->hiwater_rss < rss)
2200 tsk->mm->hiwater_rss = rss;
2201 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2202 tsk->mm->hiwater_vm = tsk->mm->total_vm;
2203 }
2204}
2205
2206#if !defined(__HAVE_ARCH_GATE_AREA)
2207
2208#if defined(AT_SYSINFO_EHDR)
2209struct vm_area_struct gate_vma;
2210
2211static int __init gate_vma_init(void)
2212{
2213 gate_vma.vm_mm = NULL;
2214 gate_vma.vm_start = FIXADDR_USER_START;
2215 gate_vma.vm_end = FIXADDR_USER_END;
2216 gate_vma.vm_page_prot = PAGE_READONLY;
2217 gate_vma.vm_flags = 0;
2218 return 0;
2219}
2220__initcall(gate_vma_init);
2221#endif
2222
2223struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2224{
2225#ifdef AT_SYSINFO_EHDR
2226 return &gate_vma;
2227#else
2228 return NULL;
2229#endif
2230}
2231
2232int in_gate_area_no_task(unsigned long addr)
2233{
2234#ifdef AT_SYSINFO_EHDR
2235 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2236 return 1;
2237#endif
2238 return 0;
2239}
2240
2241#endif /* __HAVE_ARCH_GATE_AREA */