[PATCH] freepgt: free_pgtables use vma list
[linux-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
61#ifndef CONFIG_DISCONTIGMEM
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
85/*
86 * If a p?d_bad entry is found while walking page tables, report
87 * the error, before resetting entry to p?d_none. Usually (but
88 * very seldom) called out from the p?d_none_or_clear_bad macros.
89 */
90
91void pgd_clear_bad(pgd_t *pgd)
92{
93 pgd_ERROR(*pgd);
94 pgd_clear(pgd);
95}
96
97void pud_clear_bad(pud_t *pud)
98{
99 pud_ERROR(*pud);
100 pud_clear(pud);
101}
102
103void pmd_clear_bad(pmd_t *pmd)
104{
105 pmd_ERROR(*pmd);
106 pmd_clear(pmd);
107}
108
109/*
110 * Note: this doesn't free the actual pages themselves. That
111 * has been handled earlier when unmapping all the memory regions.
112 */
e0da382c 113static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 114{
e0da382c
HD
115 struct page *page = pmd_page(*pmd);
116 pmd_clear(pmd);
117 pte_free_tlb(tlb, page);
118 dec_page_state(nr_page_table_pages);
119 tlb->mm->nr_ptes--;
1da177e4
LT
120}
121
e0da382c
HD
122static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 unsigned long addr, unsigned long end,
124 unsigned long floor, unsigned long ceiling)
1da177e4
LT
125{
126 pmd_t *pmd;
127 unsigned long next;
e0da382c 128 unsigned long start;
1da177e4 129
e0da382c 130 start = addr;
1da177e4 131 pmd = pmd_offset(pud, addr);
1da177e4
LT
132 do {
133 next = pmd_addr_end(addr, end);
134 if (pmd_none_or_clear_bad(pmd))
135 continue;
e0da382c 136 free_pte_range(tlb, pmd);
1da177e4
LT
137 } while (pmd++, addr = next, addr != end);
138
e0da382c
HD
139 start &= PUD_MASK;
140 if (start < floor)
141 return;
142 if (ceiling) {
143 ceiling &= PUD_MASK;
144 if (!ceiling)
145 return;
1da177e4 146 }
e0da382c
HD
147 if (end - 1 > ceiling - 1)
148 return;
149
150 pmd = pmd_offset(pud, start);
151 pud_clear(pud);
152 pmd_free_tlb(tlb, pmd);
1da177e4
LT
153}
154
e0da382c
HD
155static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 unsigned long addr, unsigned long end,
157 unsigned long floor, unsigned long ceiling)
1da177e4
LT
158{
159 pud_t *pud;
160 unsigned long next;
e0da382c 161 unsigned long start;
1da177e4 162
e0da382c 163 start = addr;
1da177e4 164 pud = pud_offset(pgd, addr);
1da177e4
LT
165 do {
166 next = pud_addr_end(addr, end);
167 if (pud_none_or_clear_bad(pud))
168 continue;
e0da382c 169 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
170 } while (pud++, addr = next, addr != end);
171
e0da382c
HD
172 start &= PGDIR_MASK;
173 if (start < floor)
174 return;
175 if (ceiling) {
176 ceiling &= PGDIR_MASK;
177 if (!ceiling)
178 return;
1da177e4 179 }
e0da382c
HD
180 if (end - 1 > ceiling - 1)
181 return;
182
183 pud = pud_offset(pgd, start);
184 pgd_clear(pgd);
185 pud_free_tlb(tlb, pud);
1da177e4
LT
186}
187
188/*
e0da382c
HD
189 * This function frees user-level page tables of a process.
190 *
1da177e4
LT
191 * Must be called with pagetable lock held.
192 */
e0da382c
HD
193static inline void free_pgd_range(struct mmu_gather *tlb,
194 unsigned long addr, unsigned long end,
195 unsigned long floor, unsigned long ceiling)
1da177e4
LT
196{
197 pgd_t *pgd;
198 unsigned long next;
e0da382c
HD
199 unsigned long start;
200
201 /*
202 * The next few lines have given us lots of grief...
203 *
204 * Why are we testing PMD* at this top level? Because often
205 * there will be no work to do at all, and we'd prefer not to
206 * go all the way down to the bottom just to discover that.
207 *
208 * Why all these "- 1"s? Because 0 represents both the bottom
209 * of the address space and the top of it (using -1 for the
210 * top wouldn't help much: the masks would do the wrong thing).
211 * The rule is that addr 0 and floor 0 refer to the bottom of
212 * the address space, but end 0 and ceiling 0 refer to the top
213 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 * that end 0 case should be mythical).
215 *
216 * Wherever addr is brought up or ceiling brought down, we must
217 * be careful to reject "the opposite 0" before it confuses the
218 * subsequent tests. But what about where end is brought down
219 * by PMD_SIZE below? no, end can't go down to 0 there.
220 *
221 * Whereas we round start (addr) and ceiling down, by different
222 * masks at different levels, in order to test whether a table
223 * now has no other vmas using it, so can be freed, we don't
224 * bother to round floor or end up - the tests don't need that.
225 */
1da177e4 226
e0da382c
HD
227 addr &= PMD_MASK;
228 if (addr < floor) {
229 addr += PMD_SIZE;
230 if (!addr)
231 return;
232 }
233 if (ceiling) {
234 ceiling &= PMD_MASK;
235 if (!ceiling)
236 return;
237 }
238 if (end - 1 > ceiling - 1)
239 end -= PMD_SIZE;
240 if (addr > end - 1)
241 return;
242
243 start = addr;
1da177e4
LT
244 pgd = pgd_offset(tlb->mm, addr);
245 do {
246 next = pgd_addr_end(addr, end);
247 if (pgd_none_or_clear_bad(pgd))
248 continue;
e0da382c 249 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 250 } while (pgd++, addr = next, addr != end);
e0da382c
HD
251
252 if (!tlb_is_full_mm(tlb))
253 flush_tlb_pgtables(tlb->mm, start, end);
254}
255
256void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257 unsigned long floor, unsigned long ceiling)
258{
259 while (vma) {
260 struct vm_area_struct *next = vma->vm_next;
261 unsigned long addr = vma->vm_start;
262
263 /* Optimization: gather nearby vmas into a single call down */
264 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) {
265 vma = next;
266 next = vma->vm_next;
267 }
268 free_pgd_range(*tlb, addr, vma->vm_end,
269 floor, next? next->vm_start: ceiling);
270 vma = next;
271 }
1da177e4
LT
272}
273
274pte_t fastcall * pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
275{
276 if (!pmd_present(*pmd)) {
277 struct page *new;
278
279 spin_unlock(&mm->page_table_lock);
280 new = pte_alloc_one(mm, address);
281 spin_lock(&mm->page_table_lock);
282 if (!new)
283 return NULL;
284 /*
285 * Because we dropped the lock, we should re-check the
286 * entry, as somebody else could have populated it..
287 */
288 if (pmd_present(*pmd)) {
289 pte_free(new);
290 goto out;
291 }
292 mm->nr_ptes++;
293 inc_page_state(nr_page_table_pages);
294 pmd_populate(mm, pmd, new);
295 }
296out:
297 return pte_offset_map(pmd, address);
298}
299
300pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
301{
302 if (!pmd_present(*pmd)) {
303 pte_t *new;
304
305 spin_unlock(&mm->page_table_lock);
306 new = pte_alloc_one_kernel(mm, address);
307 spin_lock(&mm->page_table_lock);
308 if (!new)
309 return NULL;
310
311 /*
312 * Because we dropped the lock, we should re-check the
313 * entry, as somebody else could have populated it..
314 */
315 if (pmd_present(*pmd)) {
316 pte_free_kernel(new);
317 goto out;
318 }
319 pmd_populate_kernel(mm, pmd, new);
320 }
321out:
322 return pte_offset_kernel(pmd, address);
323}
324
325/*
326 * copy one vm_area from one task to the other. Assumes the page tables
327 * already present in the new task to be cleared in the whole range
328 * covered by this vma.
329 *
330 * dst->page_table_lock is held on entry and exit,
331 * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
332 */
333
334static inline void
335copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
336 pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
337 unsigned long addr)
338{
339 pte_t pte = *src_pte;
340 struct page *page;
341 unsigned long pfn;
342
343 /* pte contains position in swap or file, so copy. */
344 if (unlikely(!pte_present(pte))) {
345 if (!pte_file(pte)) {
346 swap_duplicate(pte_to_swp_entry(pte));
347 /* make sure dst_mm is on swapoff's mmlist. */
348 if (unlikely(list_empty(&dst_mm->mmlist))) {
349 spin_lock(&mmlist_lock);
350 list_add(&dst_mm->mmlist, &src_mm->mmlist);
351 spin_unlock(&mmlist_lock);
352 }
353 }
354 set_pte_at(dst_mm, addr, dst_pte, pte);
355 return;
356 }
357
358 pfn = pte_pfn(pte);
359 /* the pte points outside of valid memory, the
360 * mapping is assumed to be good, meaningful
361 * and not mapped via rmap - duplicate the
362 * mapping as is.
363 */
364 page = NULL;
365 if (pfn_valid(pfn))
366 page = pfn_to_page(pfn);
367
368 if (!page || PageReserved(page)) {
369 set_pte_at(dst_mm, addr, dst_pte, pte);
370 return;
371 }
372
373 /*
374 * If it's a COW mapping, write protect it both
375 * in the parent and the child
376 */
377 if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
378 ptep_set_wrprotect(src_mm, addr, src_pte);
379 pte = *src_pte;
380 }
381
382 /*
383 * If it's a shared mapping, mark it clean in
384 * the child
385 */
386 if (vm_flags & VM_SHARED)
387 pte = pte_mkclean(pte);
388 pte = pte_mkold(pte);
389 get_page(page);
390 inc_mm_counter(dst_mm, rss);
391 if (PageAnon(page))
392 inc_mm_counter(dst_mm, anon_rss);
393 set_pte_at(dst_mm, addr, dst_pte, pte);
394 page_dup_rmap(page);
395}
396
397static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
398 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
399 unsigned long addr, unsigned long end)
400{
401 pte_t *src_pte, *dst_pte;
402 unsigned long vm_flags = vma->vm_flags;
403 int progress;
404
405again:
406 dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
407 if (!dst_pte)
408 return -ENOMEM;
409 src_pte = pte_offset_map_nested(src_pmd, addr);
410
411 progress = 0;
412 spin_lock(&src_mm->page_table_lock);
413 do {
414 /*
415 * We are holding two locks at this point - either of them
416 * could generate latencies in another task on another CPU.
417 */
418 if (progress >= 32 && (need_resched() ||
419 need_lockbreak(&src_mm->page_table_lock) ||
420 need_lockbreak(&dst_mm->page_table_lock)))
421 break;
422 if (pte_none(*src_pte)) {
423 progress++;
424 continue;
425 }
426 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
427 progress += 8;
428 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
429 spin_unlock(&src_mm->page_table_lock);
430
431 pte_unmap_nested(src_pte - 1);
432 pte_unmap(dst_pte - 1);
433 cond_resched_lock(&dst_mm->page_table_lock);
434 if (addr != end)
435 goto again;
436 return 0;
437}
438
439static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
440 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
441 unsigned long addr, unsigned long end)
442{
443 pmd_t *src_pmd, *dst_pmd;
444 unsigned long next;
445
446 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
447 if (!dst_pmd)
448 return -ENOMEM;
449 src_pmd = pmd_offset(src_pud, addr);
450 do {
451 next = pmd_addr_end(addr, end);
452 if (pmd_none_or_clear_bad(src_pmd))
453 continue;
454 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
455 vma, addr, next))
456 return -ENOMEM;
457 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
458 return 0;
459}
460
461static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
462 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
463 unsigned long addr, unsigned long end)
464{
465 pud_t *src_pud, *dst_pud;
466 unsigned long next;
467
468 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
469 if (!dst_pud)
470 return -ENOMEM;
471 src_pud = pud_offset(src_pgd, addr);
472 do {
473 next = pud_addr_end(addr, end);
474 if (pud_none_or_clear_bad(src_pud))
475 continue;
476 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
477 vma, addr, next))
478 return -ENOMEM;
479 } while (dst_pud++, src_pud++, addr = next, addr != end);
480 return 0;
481}
482
483int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
484 struct vm_area_struct *vma)
485{
486 pgd_t *src_pgd, *dst_pgd;
487 unsigned long next;
488 unsigned long addr = vma->vm_start;
489 unsigned long end = vma->vm_end;
490
491 if (is_vm_hugetlb_page(vma))
492 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
493
494 dst_pgd = pgd_offset(dst_mm, addr);
495 src_pgd = pgd_offset(src_mm, addr);
496 do {
497 next = pgd_addr_end(addr, end);
498 if (pgd_none_or_clear_bad(src_pgd))
499 continue;
500 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
501 vma, addr, next))
502 return -ENOMEM;
503 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
504 return 0;
505}
506
507static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
508 unsigned long addr, unsigned long end,
509 struct zap_details *details)
510{
511 pte_t *pte;
512
513 pte = pte_offset_map(pmd, addr);
514 do {
515 pte_t ptent = *pte;
516 if (pte_none(ptent))
517 continue;
518 if (pte_present(ptent)) {
519 struct page *page = NULL;
520 unsigned long pfn = pte_pfn(ptent);
521 if (pfn_valid(pfn)) {
522 page = pfn_to_page(pfn);
523 if (PageReserved(page))
524 page = NULL;
525 }
526 if (unlikely(details) && page) {
527 /*
528 * unmap_shared_mapping_pages() wants to
529 * invalidate cache without truncating:
530 * unmap shared but keep private pages.
531 */
532 if (details->check_mapping &&
533 details->check_mapping != page->mapping)
534 continue;
535 /*
536 * Each page->index must be checked when
537 * invalidating or truncating nonlinear.
538 */
539 if (details->nonlinear_vma &&
540 (page->index < details->first_index ||
541 page->index > details->last_index))
542 continue;
543 }
544 ptent = ptep_get_and_clear(tlb->mm, addr, pte);
545 tlb_remove_tlb_entry(tlb, pte, addr);
546 if (unlikely(!page))
547 continue;
548 if (unlikely(details) && details->nonlinear_vma
549 && linear_page_index(details->nonlinear_vma,
550 addr) != page->index)
551 set_pte_at(tlb->mm, addr, pte,
552 pgoff_to_pte(page->index));
553 if (pte_dirty(ptent))
554 set_page_dirty(page);
555 if (PageAnon(page))
556 dec_mm_counter(tlb->mm, anon_rss);
557 else if (pte_young(ptent))
558 mark_page_accessed(page);
559 tlb->freed++;
560 page_remove_rmap(page);
561 tlb_remove_page(tlb, page);
562 continue;
563 }
564 /*
565 * If details->check_mapping, we leave swap entries;
566 * if details->nonlinear_vma, we leave file entries.
567 */
568 if (unlikely(details))
569 continue;
570 if (!pte_file(ptent))
571 free_swap_and_cache(pte_to_swp_entry(ptent));
572 pte_clear(tlb->mm, addr, pte);
573 } while (pte++, addr += PAGE_SIZE, addr != end);
574 pte_unmap(pte - 1);
575}
576
577static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
578 unsigned long addr, unsigned long end,
579 struct zap_details *details)
580{
581 pmd_t *pmd;
582 unsigned long next;
583
584 pmd = pmd_offset(pud, addr);
585 do {
586 next = pmd_addr_end(addr, end);
587 if (pmd_none_or_clear_bad(pmd))
588 continue;
589 zap_pte_range(tlb, pmd, addr, next, details);
590 } while (pmd++, addr = next, addr != end);
591}
592
593static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
594 unsigned long addr, unsigned long end,
595 struct zap_details *details)
596{
597 pud_t *pud;
598 unsigned long next;
599
600 pud = pud_offset(pgd, addr);
601 do {
602 next = pud_addr_end(addr, end);
603 if (pud_none_or_clear_bad(pud))
604 continue;
605 zap_pmd_range(tlb, pud, addr, next, details);
606 } while (pud++, addr = next, addr != end);
607}
608
609static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
610 unsigned long addr, unsigned long end,
611 struct zap_details *details)
612{
613 pgd_t *pgd;
614 unsigned long next;
615
616 if (details && !details->check_mapping && !details->nonlinear_vma)
617 details = NULL;
618
619 BUG_ON(addr >= end);
620 tlb_start_vma(tlb, vma);
621 pgd = pgd_offset(vma->vm_mm, addr);
622 do {
623 next = pgd_addr_end(addr, end);
624 if (pgd_none_or_clear_bad(pgd))
625 continue;
626 zap_pud_range(tlb, pgd, addr, next, details);
627 } while (pgd++, addr = next, addr != end);
628 tlb_end_vma(tlb, vma);
629}
630
631#ifdef CONFIG_PREEMPT
632# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
633#else
634/* No preempt: go for improved straight-line efficiency */
635# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
636#endif
637
638/**
639 * unmap_vmas - unmap a range of memory covered by a list of vma's
640 * @tlbp: address of the caller's struct mmu_gather
641 * @mm: the controlling mm_struct
642 * @vma: the starting vma
643 * @start_addr: virtual address at which to start unmapping
644 * @end_addr: virtual address at which to end unmapping
645 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
646 * @details: details of nonlinear truncation or shared cache invalidation
647 *
648 * Returns the number of vma's which were covered by the unmapping.
649 *
650 * Unmap all pages in the vma list. Called under page_table_lock.
651 *
652 * We aim to not hold page_table_lock for too long (for scheduling latency
653 * reasons). So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
654 * return the ending mmu_gather to the caller.
655 *
656 * Only addresses between `start' and `end' will be unmapped.
657 *
658 * The VMA list must be sorted in ascending virtual address order.
659 *
660 * unmap_vmas() assumes that the caller will flush the whole unmapped address
661 * range after unmap_vmas() returns. So the only responsibility here is to
662 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
663 * drops the lock and schedules.
664 */
665int unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
666 struct vm_area_struct *vma, unsigned long start_addr,
667 unsigned long end_addr, unsigned long *nr_accounted,
668 struct zap_details *details)
669{
670 unsigned long zap_bytes = ZAP_BLOCK_SIZE;
671 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
672 int tlb_start_valid = 0;
673 int ret = 0;
674 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
675 int fullmm = tlb_is_full_mm(*tlbp);
676
677 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
678 unsigned long start;
679 unsigned long end;
680
681 start = max(vma->vm_start, start_addr);
682 if (start >= vma->vm_end)
683 continue;
684 end = min(vma->vm_end, end_addr);
685 if (end <= vma->vm_start)
686 continue;
687
688 if (vma->vm_flags & VM_ACCOUNT)
689 *nr_accounted += (end - start) >> PAGE_SHIFT;
690
691 ret++;
692 while (start != end) {
693 unsigned long block;
694
695 if (!tlb_start_valid) {
696 tlb_start = start;
697 tlb_start_valid = 1;
698 }
699
700 if (is_vm_hugetlb_page(vma)) {
701 block = end - start;
702 unmap_hugepage_range(vma, start, end);
703 } else {
704 block = min(zap_bytes, end - start);
705 unmap_page_range(*tlbp, vma, start,
706 start + block, details);
707 }
708
709 start += block;
710 zap_bytes -= block;
711 if ((long)zap_bytes > 0)
712 continue;
713
714 tlb_finish_mmu(*tlbp, tlb_start, start);
715
716 if (need_resched() ||
717 need_lockbreak(&mm->page_table_lock) ||
718 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
719 if (i_mmap_lock) {
720 /* must reset count of rss freed */
721 *tlbp = tlb_gather_mmu(mm, fullmm);
722 details->break_addr = start;
723 goto out;
724 }
725 spin_unlock(&mm->page_table_lock);
726 cond_resched();
727 spin_lock(&mm->page_table_lock);
728 }
729
730 *tlbp = tlb_gather_mmu(mm, fullmm);
731 tlb_start_valid = 0;
732 zap_bytes = ZAP_BLOCK_SIZE;
733 }
734 }
735out:
736 return ret;
737}
738
739/**
740 * zap_page_range - remove user pages in a given range
741 * @vma: vm_area_struct holding the applicable pages
742 * @address: starting address of pages to zap
743 * @size: number of bytes to zap
744 * @details: details of nonlinear truncation or shared cache invalidation
745 */
746void zap_page_range(struct vm_area_struct *vma, unsigned long address,
747 unsigned long size, struct zap_details *details)
748{
749 struct mm_struct *mm = vma->vm_mm;
750 struct mmu_gather *tlb;
751 unsigned long end = address + size;
752 unsigned long nr_accounted = 0;
753
754 if (is_vm_hugetlb_page(vma)) {
755 zap_hugepage_range(vma, address, size);
756 return;
757 }
758
759 lru_add_drain();
760 spin_lock(&mm->page_table_lock);
761 tlb = tlb_gather_mmu(mm, 0);
762 unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
763 tlb_finish_mmu(tlb, address, end);
764 spin_unlock(&mm->page_table_lock);
765}
766
767/*
768 * Do a quick page-table lookup for a single page.
769 * mm->page_table_lock must be held.
770 */
771static struct page *
772__follow_page(struct mm_struct *mm, unsigned long address, int read, int write)
773{
774 pgd_t *pgd;
775 pud_t *pud;
776 pmd_t *pmd;
777 pte_t *ptep, pte;
778 unsigned long pfn;
779 struct page *page;
780
781 page = follow_huge_addr(mm, address, write);
782 if (! IS_ERR(page))
783 return page;
784
785 pgd = pgd_offset(mm, address);
786 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
787 goto out;
788
789 pud = pud_offset(pgd, address);
790 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
791 goto out;
792
793 pmd = pmd_offset(pud, address);
794 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
795 goto out;
796 if (pmd_huge(*pmd))
797 return follow_huge_pmd(mm, address, pmd, write);
798
799 ptep = pte_offset_map(pmd, address);
800 if (!ptep)
801 goto out;
802
803 pte = *ptep;
804 pte_unmap(ptep);
805 if (pte_present(pte)) {
806 if (write && !pte_write(pte))
807 goto out;
808 if (read && !pte_read(pte))
809 goto out;
810 pfn = pte_pfn(pte);
811 if (pfn_valid(pfn)) {
812 page = pfn_to_page(pfn);
813 if (write && !pte_dirty(pte) && !PageDirty(page))
814 set_page_dirty(page);
815 mark_page_accessed(page);
816 return page;
817 }
818 }
819
820out:
821 return NULL;
822}
823
824struct page *
825follow_page(struct mm_struct *mm, unsigned long address, int write)
826{
827 return __follow_page(mm, address, /*read*/0, write);
828}
829
830int
831check_user_page_readable(struct mm_struct *mm, unsigned long address)
832{
833 return __follow_page(mm, address, /*read*/1, /*write*/0) != NULL;
834}
835
836EXPORT_SYMBOL(check_user_page_readable);
837
838/*
839 * Given a physical address, is there a useful struct page pointing to
840 * it? This may become more complex in the future if we start dealing
841 * with IO-aperture pages for direct-IO.
842 */
843
844static inline struct page *get_page_map(struct page *page)
845{
846 if (!pfn_valid(page_to_pfn(page)))
847 return NULL;
848 return page;
849}
850
851
852static inline int
853untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
854 unsigned long address)
855{
856 pgd_t *pgd;
857 pud_t *pud;
858 pmd_t *pmd;
859
860 /* Check if the vma is for an anonymous mapping. */
861 if (vma->vm_ops && vma->vm_ops->nopage)
862 return 0;
863
864 /* Check if page directory entry exists. */
865 pgd = pgd_offset(mm, address);
866 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
867 return 1;
868
869 pud = pud_offset(pgd, address);
870 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
871 return 1;
872
873 /* Check if page middle directory entry exists. */
874 pmd = pmd_offset(pud, address);
875 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
876 return 1;
877
878 /* There is a pte slot for 'address' in 'mm'. */
879 return 0;
880}
881
882
883int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
884 unsigned long start, int len, int write, int force,
885 struct page **pages, struct vm_area_struct **vmas)
886{
887 int i;
888 unsigned int flags;
889
890 /*
891 * Require read or write permissions.
892 * If 'force' is set, we only require the "MAY" flags.
893 */
894 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
895 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
896 i = 0;
897
898 do {
899 struct vm_area_struct * vma;
900
901 vma = find_extend_vma(mm, start);
902 if (!vma && in_gate_area(tsk, start)) {
903 unsigned long pg = start & PAGE_MASK;
904 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
905 pgd_t *pgd;
906 pud_t *pud;
907 pmd_t *pmd;
908 pte_t *pte;
909 if (write) /* user gate pages are read-only */
910 return i ? : -EFAULT;
911 if (pg > TASK_SIZE)
912 pgd = pgd_offset_k(pg);
913 else
914 pgd = pgd_offset_gate(mm, pg);
915 BUG_ON(pgd_none(*pgd));
916 pud = pud_offset(pgd, pg);
917 BUG_ON(pud_none(*pud));
918 pmd = pmd_offset(pud, pg);
919 BUG_ON(pmd_none(*pmd));
920 pte = pte_offset_map(pmd, pg);
921 BUG_ON(pte_none(*pte));
922 if (pages) {
923 pages[i] = pte_page(*pte);
924 get_page(pages[i]);
925 }
926 pte_unmap(pte);
927 if (vmas)
928 vmas[i] = gate_vma;
929 i++;
930 start += PAGE_SIZE;
931 len--;
932 continue;
933 }
934
935 if (!vma || (vma->vm_flags & VM_IO)
936 || !(flags & vma->vm_flags))
937 return i ? : -EFAULT;
938
939 if (is_vm_hugetlb_page(vma)) {
940 i = follow_hugetlb_page(mm, vma, pages, vmas,
941 &start, &len, i);
942 continue;
943 }
944 spin_lock(&mm->page_table_lock);
945 do {
946 struct page *map;
947 int lookup_write = write;
948
949 cond_resched_lock(&mm->page_table_lock);
950 while (!(map = follow_page(mm, start, lookup_write))) {
951 /*
952 * Shortcut for anonymous pages. We don't want
953 * to force the creation of pages tables for
954 * insanly big anonymously mapped areas that
955 * nobody touched so far. This is important
956 * for doing a core dump for these mappings.
957 */
958 if (!lookup_write &&
959 untouched_anonymous_page(mm,vma,start)) {
960 map = ZERO_PAGE(start);
961 break;
962 }
963 spin_unlock(&mm->page_table_lock);
964 switch (handle_mm_fault(mm,vma,start,write)) {
965 case VM_FAULT_MINOR:
966 tsk->min_flt++;
967 break;
968 case VM_FAULT_MAJOR:
969 tsk->maj_flt++;
970 break;
971 case VM_FAULT_SIGBUS:
972 return i ? i : -EFAULT;
973 case VM_FAULT_OOM:
974 return i ? i : -ENOMEM;
975 default:
976 BUG();
977 }
978 /*
979 * Now that we have performed a write fault
980 * and surely no longer have a shared page we
981 * shouldn't write, we shouldn't ignore an
982 * unwritable page in the page table if
983 * we are forcing write access.
984 */
985 lookup_write = write && !force;
986 spin_lock(&mm->page_table_lock);
987 }
988 if (pages) {
989 pages[i] = get_page_map(map);
990 if (!pages[i]) {
991 spin_unlock(&mm->page_table_lock);
992 while (i--)
993 page_cache_release(pages[i]);
994 i = -EFAULT;
995 goto out;
996 }
997 flush_dcache_page(pages[i]);
998 if (!PageReserved(pages[i]))
999 page_cache_get(pages[i]);
1000 }
1001 if (vmas)
1002 vmas[i] = vma;
1003 i++;
1004 start += PAGE_SIZE;
1005 len--;
1006 } while(len && start < vma->vm_end);
1007 spin_unlock(&mm->page_table_lock);
1008 } while(len);
1009out:
1010 return i;
1011}
1012
1013EXPORT_SYMBOL(get_user_pages);
1014
1015static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1016 unsigned long addr, unsigned long end, pgprot_t prot)
1017{
1018 pte_t *pte;
1019
1020 pte = pte_alloc_map(mm, pmd, addr);
1021 if (!pte)
1022 return -ENOMEM;
1023 do {
1024 pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1025 BUG_ON(!pte_none(*pte));
1026 set_pte_at(mm, addr, pte, zero_pte);
1027 } while (pte++, addr += PAGE_SIZE, addr != end);
1028 pte_unmap(pte - 1);
1029 return 0;
1030}
1031
1032static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1033 unsigned long addr, unsigned long end, pgprot_t prot)
1034{
1035 pmd_t *pmd;
1036 unsigned long next;
1037
1038 pmd = pmd_alloc(mm, pud, addr);
1039 if (!pmd)
1040 return -ENOMEM;
1041 do {
1042 next = pmd_addr_end(addr, end);
1043 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1044 return -ENOMEM;
1045 } while (pmd++, addr = next, addr != end);
1046 return 0;
1047}
1048
1049static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1050 unsigned long addr, unsigned long end, pgprot_t prot)
1051{
1052 pud_t *pud;
1053 unsigned long next;
1054
1055 pud = pud_alloc(mm, pgd, addr);
1056 if (!pud)
1057 return -ENOMEM;
1058 do {
1059 next = pud_addr_end(addr, end);
1060 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1061 return -ENOMEM;
1062 } while (pud++, addr = next, addr != end);
1063 return 0;
1064}
1065
1066int zeromap_page_range(struct vm_area_struct *vma,
1067 unsigned long addr, unsigned long size, pgprot_t prot)
1068{
1069 pgd_t *pgd;
1070 unsigned long next;
1071 unsigned long end = addr + size;
1072 struct mm_struct *mm = vma->vm_mm;
1073 int err;
1074
1075 BUG_ON(addr >= end);
1076 pgd = pgd_offset(mm, addr);
1077 flush_cache_range(vma, addr, end);
1078 spin_lock(&mm->page_table_lock);
1079 do {
1080 next = pgd_addr_end(addr, end);
1081 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1082 if (err)
1083 break;
1084 } while (pgd++, addr = next, addr != end);
1085 spin_unlock(&mm->page_table_lock);
1086 return err;
1087}
1088
1089/*
1090 * maps a range of physical memory into the requested pages. the old
1091 * mappings are removed. any references to nonexistent pages results
1092 * in null mappings (currently treated as "copy-on-access")
1093 */
1094static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1095 unsigned long addr, unsigned long end,
1096 unsigned long pfn, pgprot_t prot)
1097{
1098 pte_t *pte;
1099
1100 pte = pte_alloc_map(mm, pmd, addr);
1101 if (!pte)
1102 return -ENOMEM;
1103 do {
1104 BUG_ON(!pte_none(*pte));
1105 if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1106 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1107 pfn++;
1108 } while (pte++, addr += PAGE_SIZE, addr != end);
1109 pte_unmap(pte - 1);
1110 return 0;
1111}
1112
1113static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1114 unsigned long addr, unsigned long end,
1115 unsigned long pfn, pgprot_t prot)
1116{
1117 pmd_t *pmd;
1118 unsigned long next;
1119
1120 pfn -= addr >> PAGE_SHIFT;
1121 pmd = pmd_alloc(mm, pud, addr);
1122 if (!pmd)
1123 return -ENOMEM;
1124 do {
1125 next = pmd_addr_end(addr, end);
1126 if (remap_pte_range(mm, pmd, addr, next,
1127 pfn + (addr >> PAGE_SHIFT), prot))
1128 return -ENOMEM;
1129 } while (pmd++, addr = next, addr != end);
1130 return 0;
1131}
1132
1133static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1134 unsigned long addr, unsigned long end,
1135 unsigned long pfn, pgprot_t prot)
1136{
1137 pud_t *pud;
1138 unsigned long next;
1139
1140 pfn -= addr >> PAGE_SHIFT;
1141 pud = pud_alloc(mm, pgd, addr);
1142 if (!pud)
1143 return -ENOMEM;
1144 do {
1145 next = pud_addr_end(addr, end);
1146 if (remap_pmd_range(mm, pud, addr, next,
1147 pfn + (addr >> PAGE_SHIFT), prot))
1148 return -ENOMEM;
1149 } while (pud++, addr = next, addr != end);
1150 return 0;
1151}
1152
1153/* Note: this is only safe if the mm semaphore is held when called. */
1154int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1155 unsigned long pfn, unsigned long size, pgprot_t prot)
1156{
1157 pgd_t *pgd;
1158 unsigned long next;
1159 unsigned long end = addr + size;
1160 struct mm_struct *mm = vma->vm_mm;
1161 int err;
1162
1163 /*
1164 * Physically remapped pages are special. Tell the
1165 * rest of the world about it:
1166 * VM_IO tells people not to look at these pages
1167 * (accesses can have side effects).
1168 * VM_RESERVED tells swapout not to try to touch
1169 * this region.
1170 */
1171 vma->vm_flags |= VM_IO | VM_RESERVED;
1172
1173 BUG_ON(addr >= end);
1174 pfn -= addr >> PAGE_SHIFT;
1175 pgd = pgd_offset(mm, addr);
1176 flush_cache_range(vma, addr, end);
1177 spin_lock(&mm->page_table_lock);
1178 do {
1179 next = pgd_addr_end(addr, end);
1180 err = remap_pud_range(mm, pgd, addr, next,
1181 pfn + (addr >> PAGE_SHIFT), prot);
1182 if (err)
1183 break;
1184 } while (pgd++, addr = next, addr != end);
1185 spin_unlock(&mm->page_table_lock);
1186 return err;
1187}
1188EXPORT_SYMBOL(remap_pfn_range);
1189
1190/*
1191 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1192 * servicing faults for write access. In the normal case, do always want
1193 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1194 * that do not have writing enabled, when used by access_process_vm.
1195 */
1196static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1197{
1198 if (likely(vma->vm_flags & VM_WRITE))
1199 pte = pte_mkwrite(pte);
1200 return pte;
1201}
1202
1203/*
1204 * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1205 */
1206static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
1207 pte_t *page_table)
1208{
1209 pte_t entry;
1210
1211 entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1212 vma);
1213 ptep_establish(vma, address, page_table, entry);
1214 update_mmu_cache(vma, address, entry);
1215 lazy_mmu_prot_update(entry);
1216}
1217
1218/*
1219 * This routine handles present pages, when users try to write
1220 * to a shared page. It is done by copying the page to a new address
1221 * and decrementing the shared-page counter for the old page.
1222 *
1223 * Goto-purists beware: the only reason for goto's here is that it results
1224 * in better assembly code.. The "default" path will see no jumps at all.
1225 *
1226 * Note that this routine assumes that the protection checks have been
1227 * done by the caller (the low-level page fault routine in most cases).
1228 * Thus we can safely just mark it writable once we've done any necessary
1229 * COW.
1230 *
1231 * We also mark the page dirty at this point even though the page will
1232 * change only once the write actually happens. This avoids a few races,
1233 * and potentially makes it more efficient.
1234 *
1235 * We hold the mm semaphore and the page_table_lock on entry and exit
1236 * with the page_table_lock released.
1237 */
1238static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1239 unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1240{
1241 struct page *old_page, *new_page;
1242 unsigned long pfn = pte_pfn(pte);
1243 pte_t entry;
1244
1245 if (unlikely(!pfn_valid(pfn))) {
1246 /*
1247 * This should really halt the system so it can be debugged or
1248 * at least the kernel stops what it's doing before it corrupts
1249 * data, but for the moment just pretend this is OOM.
1250 */
1251 pte_unmap(page_table);
1252 printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1253 address);
1254 spin_unlock(&mm->page_table_lock);
1255 return VM_FAULT_OOM;
1256 }
1257 old_page = pfn_to_page(pfn);
1258
1259 if (!TestSetPageLocked(old_page)) {
1260 int reuse = can_share_swap_page(old_page);
1261 unlock_page(old_page);
1262 if (reuse) {
1263 flush_cache_page(vma, address, pfn);
1264 entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1265 vma);
1266 ptep_set_access_flags(vma, address, page_table, entry, 1);
1267 update_mmu_cache(vma, address, entry);
1268 lazy_mmu_prot_update(entry);
1269 pte_unmap(page_table);
1270 spin_unlock(&mm->page_table_lock);
1271 return VM_FAULT_MINOR;
1272 }
1273 }
1274 pte_unmap(page_table);
1275
1276 /*
1277 * Ok, we need to copy. Oh, well..
1278 */
1279 if (!PageReserved(old_page))
1280 page_cache_get(old_page);
1281 spin_unlock(&mm->page_table_lock);
1282
1283 if (unlikely(anon_vma_prepare(vma)))
1284 goto no_new_page;
1285 if (old_page == ZERO_PAGE(address)) {
1286 new_page = alloc_zeroed_user_highpage(vma, address);
1287 if (!new_page)
1288 goto no_new_page;
1289 } else {
1290 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1291 if (!new_page)
1292 goto no_new_page;
1293 copy_user_highpage(new_page, old_page, address);
1294 }
1295 /*
1296 * Re-check the pte - we dropped the lock
1297 */
1298 spin_lock(&mm->page_table_lock);
1299 page_table = pte_offset_map(pmd, address);
1300 if (likely(pte_same(*page_table, pte))) {
1301 if (PageAnon(old_page))
1302 dec_mm_counter(mm, anon_rss);
1303 if (PageReserved(old_page))
1304 inc_mm_counter(mm, rss);
1305 else
1306 page_remove_rmap(old_page);
1307 flush_cache_page(vma, address, pfn);
1308 break_cow(vma, new_page, address, page_table);
1309 lru_cache_add_active(new_page);
1310 page_add_anon_rmap(new_page, vma, address);
1311
1312 /* Free the old page.. */
1313 new_page = old_page;
1314 }
1315 pte_unmap(page_table);
1316 page_cache_release(new_page);
1317 page_cache_release(old_page);
1318 spin_unlock(&mm->page_table_lock);
1319 return VM_FAULT_MINOR;
1320
1321no_new_page:
1322 page_cache_release(old_page);
1323 return VM_FAULT_OOM;
1324}
1325
1326/*
1327 * Helper functions for unmap_mapping_range().
1328 *
1329 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1330 *
1331 * We have to restart searching the prio_tree whenever we drop the lock,
1332 * since the iterator is only valid while the lock is held, and anyway
1333 * a later vma might be split and reinserted earlier while lock dropped.
1334 *
1335 * The list of nonlinear vmas could be handled more efficiently, using
1336 * a placeholder, but handle it in the same way until a need is shown.
1337 * It is important to search the prio_tree before nonlinear list: a vma
1338 * may become nonlinear and be shifted from prio_tree to nonlinear list
1339 * while the lock is dropped; but never shifted from list to prio_tree.
1340 *
1341 * In order to make forward progress despite restarting the search,
1342 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1343 * quickly skip it next time around. Since the prio_tree search only
1344 * shows us those vmas affected by unmapping the range in question, we
1345 * can't efficiently keep all vmas in step with mapping->truncate_count:
1346 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1347 * mapping->truncate_count and vma->vm_truncate_count are protected by
1348 * i_mmap_lock.
1349 *
1350 * In order to make forward progress despite repeatedly restarting some
1351 * large vma, note the break_addr set by unmap_vmas when it breaks out:
1352 * and restart from that address when we reach that vma again. It might
1353 * have been split or merged, shrunk or extended, but never shifted: so
1354 * restart_addr remains valid so long as it remains in the vma's range.
1355 * unmap_mapping_range forces truncate_count to leap over page-aligned
1356 * values so we can save vma's restart_addr in its truncate_count field.
1357 */
1358#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1359
1360static void reset_vma_truncate_counts(struct address_space *mapping)
1361{
1362 struct vm_area_struct *vma;
1363 struct prio_tree_iter iter;
1364
1365 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1366 vma->vm_truncate_count = 0;
1367 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1368 vma->vm_truncate_count = 0;
1369}
1370
1371static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1372 unsigned long start_addr, unsigned long end_addr,
1373 struct zap_details *details)
1374{
1375 unsigned long restart_addr;
1376 int need_break;
1377
1378again:
1379 restart_addr = vma->vm_truncate_count;
1380 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1381 start_addr = restart_addr;
1382 if (start_addr >= end_addr) {
1383 /* Top of vma has been split off since last time */
1384 vma->vm_truncate_count = details->truncate_count;
1385 return 0;
1386 }
1387 }
1388
1389 details->break_addr = end_addr;
1390 zap_page_range(vma, start_addr, end_addr - start_addr, details);
1391
1392 /*
1393 * We cannot rely on the break test in unmap_vmas:
1394 * on the one hand, we don't want to restart our loop
1395 * just because that broke out for the page_table_lock;
1396 * on the other hand, it does no test when vma is small.
1397 */
1398 need_break = need_resched() ||
1399 need_lockbreak(details->i_mmap_lock);
1400
1401 if (details->break_addr >= end_addr) {
1402 /* We have now completed this vma: mark it so */
1403 vma->vm_truncate_count = details->truncate_count;
1404 if (!need_break)
1405 return 0;
1406 } else {
1407 /* Note restart_addr in vma's truncate_count field */
1408 vma->vm_truncate_count = details->break_addr;
1409 if (!need_break)
1410 goto again;
1411 }
1412
1413 spin_unlock(details->i_mmap_lock);
1414 cond_resched();
1415 spin_lock(details->i_mmap_lock);
1416 return -EINTR;
1417}
1418
1419static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1420 struct zap_details *details)
1421{
1422 struct vm_area_struct *vma;
1423 struct prio_tree_iter iter;
1424 pgoff_t vba, vea, zba, zea;
1425
1426restart:
1427 vma_prio_tree_foreach(vma, &iter, root,
1428 details->first_index, details->last_index) {
1429 /* Skip quickly over those we have already dealt with */
1430 if (vma->vm_truncate_count == details->truncate_count)
1431 continue;
1432
1433 vba = vma->vm_pgoff;
1434 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1435 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1436 zba = details->first_index;
1437 if (zba < vba)
1438 zba = vba;
1439 zea = details->last_index;
1440 if (zea > vea)
1441 zea = vea;
1442
1443 if (unmap_mapping_range_vma(vma,
1444 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1445 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1446 details) < 0)
1447 goto restart;
1448 }
1449}
1450
1451static inline void unmap_mapping_range_list(struct list_head *head,
1452 struct zap_details *details)
1453{
1454 struct vm_area_struct *vma;
1455
1456 /*
1457 * In nonlinear VMAs there is no correspondence between virtual address
1458 * offset and file offset. So we must perform an exhaustive search
1459 * across *all* the pages in each nonlinear VMA, not just the pages
1460 * whose virtual address lies outside the file truncation point.
1461 */
1462restart:
1463 list_for_each_entry(vma, head, shared.vm_set.list) {
1464 /* Skip quickly over those we have already dealt with */
1465 if (vma->vm_truncate_count == details->truncate_count)
1466 continue;
1467 details->nonlinear_vma = vma;
1468 if (unmap_mapping_range_vma(vma, vma->vm_start,
1469 vma->vm_end, details) < 0)
1470 goto restart;
1471 }
1472}
1473
1474/**
1475 * unmap_mapping_range - unmap the portion of all mmaps
1476 * in the specified address_space corresponding to the specified
1477 * page range in the underlying file.
1478 * @address_space: the address space containing mmaps to be unmapped.
1479 * @holebegin: byte in first page to unmap, relative to the start of
1480 * the underlying file. This will be rounded down to a PAGE_SIZE
1481 * boundary. Note that this is different from vmtruncate(), which
1482 * must keep the partial page. In contrast, we must get rid of
1483 * partial pages.
1484 * @holelen: size of prospective hole in bytes. This will be rounded
1485 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1486 * end of the file.
1487 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1488 * but 0 when invalidating pagecache, don't throw away private data.
1489 */
1490void unmap_mapping_range(struct address_space *mapping,
1491 loff_t const holebegin, loff_t const holelen, int even_cows)
1492{
1493 struct zap_details details;
1494 pgoff_t hba = holebegin >> PAGE_SHIFT;
1495 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1496
1497 /* Check for overflow. */
1498 if (sizeof(holelen) > sizeof(hlen)) {
1499 long long holeend =
1500 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1501 if (holeend & ~(long long)ULONG_MAX)
1502 hlen = ULONG_MAX - hba + 1;
1503 }
1504
1505 details.check_mapping = even_cows? NULL: mapping;
1506 details.nonlinear_vma = NULL;
1507 details.first_index = hba;
1508 details.last_index = hba + hlen - 1;
1509 if (details.last_index < details.first_index)
1510 details.last_index = ULONG_MAX;
1511 details.i_mmap_lock = &mapping->i_mmap_lock;
1512
1513 spin_lock(&mapping->i_mmap_lock);
1514
1515 /* serialize i_size write against truncate_count write */
1516 smp_wmb();
1517 /* Protect against page faults, and endless unmapping loops */
1518 mapping->truncate_count++;
1519 /*
1520 * For archs where spin_lock has inclusive semantics like ia64
1521 * this smp_mb() will prevent to read pagetable contents
1522 * before the truncate_count increment is visible to
1523 * other cpus.
1524 */
1525 smp_mb();
1526 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1527 if (mapping->truncate_count == 0)
1528 reset_vma_truncate_counts(mapping);
1529 mapping->truncate_count++;
1530 }
1531 details.truncate_count = mapping->truncate_count;
1532
1533 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1534 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1535 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1536 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1537 spin_unlock(&mapping->i_mmap_lock);
1538}
1539EXPORT_SYMBOL(unmap_mapping_range);
1540
1541/*
1542 * Handle all mappings that got truncated by a "truncate()"
1543 * system call.
1544 *
1545 * NOTE! We have to be ready to update the memory sharing
1546 * between the file and the memory map for a potential last
1547 * incomplete page. Ugly, but necessary.
1548 */
1549int vmtruncate(struct inode * inode, loff_t offset)
1550{
1551 struct address_space *mapping = inode->i_mapping;
1552 unsigned long limit;
1553
1554 if (inode->i_size < offset)
1555 goto do_expand;
1556 /*
1557 * truncation of in-use swapfiles is disallowed - it would cause
1558 * subsequent swapout to scribble on the now-freed blocks.
1559 */
1560 if (IS_SWAPFILE(inode))
1561 goto out_busy;
1562 i_size_write(inode, offset);
1563 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1564 truncate_inode_pages(mapping, offset);
1565 goto out_truncate;
1566
1567do_expand:
1568 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1569 if (limit != RLIM_INFINITY && offset > limit)
1570 goto out_sig;
1571 if (offset > inode->i_sb->s_maxbytes)
1572 goto out_big;
1573 i_size_write(inode, offset);
1574
1575out_truncate:
1576 if (inode->i_op && inode->i_op->truncate)
1577 inode->i_op->truncate(inode);
1578 return 0;
1579out_sig:
1580 send_sig(SIGXFSZ, current, 0);
1581out_big:
1582 return -EFBIG;
1583out_busy:
1584 return -ETXTBSY;
1585}
1586
1587EXPORT_SYMBOL(vmtruncate);
1588
1589/*
1590 * Primitive swap readahead code. We simply read an aligned block of
1591 * (1 << page_cluster) entries in the swap area. This method is chosen
1592 * because it doesn't cost us any seek time. We also make sure to queue
1593 * the 'original' request together with the readahead ones...
1594 *
1595 * This has been extended to use the NUMA policies from the mm triggering
1596 * the readahead.
1597 *
1598 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1599 */
1600void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1601{
1602#ifdef CONFIG_NUMA
1603 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1604#endif
1605 int i, num;
1606 struct page *new_page;
1607 unsigned long offset;
1608
1609 /*
1610 * Get the number of handles we should do readahead io to.
1611 */
1612 num = valid_swaphandles(entry, &offset);
1613 for (i = 0; i < num; offset++, i++) {
1614 /* Ok, do the async read-ahead now */
1615 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1616 offset), vma, addr);
1617 if (!new_page)
1618 break;
1619 page_cache_release(new_page);
1620#ifdef CONFIG_NUMA
1621 /*
1622 * Find the next applicable VMA for the NUMA policy.
1623 */
1624 addr += PAGE_SIZE;
1625 if (addr == 0)
1626 vma = NULL;
1627 if (vma) {
1628 if (addr >= vma->vm_end) {
1629 vma = next_vma;
1630 next_vma = vma ? vma->vm_next : NULL;
1631 }
1632 if (vma && addr < vma->vm_start)
1633 vma = NULL;
1634 } else {
1635 if (next_vma && addr >= next_vma->vm_start) {
1636 vma = next_vma;
1637 next_vma = vma->vm_next;
1638 }
1639 }
1640#endif
1641 }
1642 lru_add_drain(); /* Push any new pages onto the LRU now */
1643}
1644
1645/*
1646 * We hold the mm semaphore and the page_table_lock on entry and
1647 * should release the pagetable lock on exit..
1648 */
1649static int do_swap_page(struct mm_struct * mm,
1650 struct vm_area_struct * vma, unsigned long address,
1651 pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1652{
1653 struct page *page;
1654 swp_entry_t entry = pte_to_swp_entry(orig_pte);
1655 pte_t pte;
1656 int ret = VM_FAULT_MINOR;
1657
1658 pte_unmap(page_table);
1659 spin_unlock(&mm->page_table_lock);
1660 page = lookup_swap_cache(entry);
1661 if (!page) {
1662 swapin_readahead(entry, address, vma);
1663 page = read_swap_cache_async(entry, vma, address);
1664 if (!page) {
1665 /*
1666 * Back out if somebody else faulted in this pte while
1667 * we released the page table lock.
1668 */
1669 spin_lock(&mm->page_table_lock);
1670 page_table = pte_offset_map(pmd, address);
1671 if (likely(pte_same(*page_table, orig_pte)))
1672 ret = VM_FAULT_OOM;
1673 else
1674 ret = VM_FAULT_MINOR;
1675 pte_unmap(page_table);
1676 spin_unlock(&mm->page_table_lock);
1677 goto out;
1678 }
1679
1680 /* Had to read the page from swap area: Major fault */
1681 ret = VM_FAULT_MAJOR;
1682 inc_page_state(pgmajfault);
1683 grab_swap_token();
1684 }
1685
1686 mark_page_accessed(page);
1687 lock_page(page);
1688
1689 /*
1690 * Back out if somebody else faulted in this pte while we
1691 * released the page table lock.
1692 */
1693 spin_lock(&mm->page_table_lock);
1694 page_table = pte_offset_map(pmd, address);
1695 if (unlikely(!pte_same(*page_table, orig_pte))) {
1696 pte_unmap(page_table);
1697 spin_unlock(&mm->page_table_lock);
1698 unlock_page(page);
1699 page_cache_release(page);
1700 ret = VM_FAULT_MINOR;
1701 goto out;
1702 }
1703
1704 /* The page isn't present yet, go ahead with the fault. */
1705
1706 swap_free(entry);
1707 if (vm_swap_full())
1708 remove_exclusive_swap_page(page);
1709
1710 inc_mm_counter(mm, rss);
1711 pte = mk_pte(page, vma->vm_page_prot);
1712 if (write_access && can_share_swap_page(page)) {
1713 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1714 write_access = 0;
1715 }
1716 unlock_page(page);
1717
1718 flush_icache_page(vma, page);
1719 set_pte_at(mm, address, page_table, pte);
1720 page_add_anon_rmap(page, vma, address);
1721
1722 if (write_access) {
1723 if (do_wp_page(mm, vma, address,
1724 page_table, pmd, pte) == VM_FAULT_OOM)
1725 ret = VM_FAULT_OOM;
1726 goto out;
1727 }
1728
1729 /* No need to invalidate - it was non-present before */
1730 update_mmu_cache(vma, address, pte);
1731 lazy_mmu_prot_update(pte);
1732 pte_unmap(page_table);
1733 spin_unlock(&mm->page_table_lock);
1734out:
1735 return ret;
1736}
1737
1738/*
1739 * We are called with the MM semaphore and page_table_lock
1740 * spinlock held to protect against concurrent faults in
1741 * multithreaded programs.
1742 */
1743static int
1744do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1745 pte_t *page_table, pmd_t *pmd, int write_access,
1746 unsigned long addr)
1747{
1748 pte_t entry;
1749 struct page * page = ZERO_PAGE(addr);
1750
1751 /* Read-only mapping of ZERO_PAGE. */
1752 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1753
1754 /* ..except if it's a write access */
1755 if (write_access) {
1756 /* Allocate our own private page. */
1757 pte_unmap(page_table);
1758 spin_unlock(&mm->page_table_lock);
1759
1760 if (unlikely(anon_vma_prepare(vma)))
1761 goto no_mem;
1762 page = alloc_zeroed_user_highpage(vma, addr);
1763 if (!page)
1764 goto no_mem;
1765
1766 spin_lock(&mm->page_table_lock);
1767 page_table = pte_offset_map(pmd, addr);
1768
1769 if (!pte_none(*page_table)) {
1770 pte_unmap(page_table);
1771 page_cache_release(page);
1772 spin_unlock(&mm->page_table_lock);
1773 goto out;
1774 }
1775 inc_mm_counter(mm, rss);
1776 entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1777 vma->vm_page_prot)),
1778 vma);
1779 lru_cache_add_active(page);
1780 SetPageReferenced(page);
1781 page_add_anon_rmap(page, vma, addr);
1782 }
1783
1784 set_pte_at(mm, addr, page_table, entry);
1785 pte_unmap(page_table);
1786
1787 /* No need to invalidate - it was non-present before */
1788 update_mmu_cache(vma, addr, entry);
1789 lazy_mmu_prot_update(entry);
1790 spin_unlock(&mm->page_table_lock);
1791out:
1792 return VM_FAULT_MINOR;
1793no_mem:
1794 return VM_FAULT_OOM;
1795}
1796
1797/*
1798 * do_no_page() tries to create a new page mapping. It aggressively
1799 * tries to share with existing pages, but makes a separate copy if
1800 * the "write_access" parameter is true in order to avoid the next
1801 * page fault.
1802 *
1803 * As this is called only for pages that do not currently exist, we
1804 * do not need to flush old virtual caches or the TLB.
1805 *
1806 * This is called with the MM semaphore held and the page table
1807 * spinlock held. Exit with the spinlock released.
1808 */
1809static int
1810do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1811 unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1812{
1813 struct page * new_page;
1814 struct address_space *mapping = NULL;
1815 pte_t entry;
1816 unsigned int sequence = 0;
1817 int ret = VM_FAULT_MINOR;
1818 int anon = 0;
1819
1820 if (!vma->vm_ops || !vma->vm_ops->nopage)
1821 return do_anonymous_page(mm, vma, page_table,
1822 pmd, write_access, address);
1823 pte_unmap(page_table);
1824 spin_unlock(&mm->page_table_lock);
1825
1826 if (vma->vm_file) {
1827 mapping = vma->vm_file->f_mapping;
1828 sequence = mapping->truncate_count;
1829 smp_rmb(); /* serializes i_size against truncate_count */
1830 }
1831retry:
1832 cond_resched();
1833 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1834 /*
1835 * No smp_rmb is needed here as long as there's a full
1836 * spin_lock/unlock sequence inside the ->nopage callback
1837 * (for the pagecache lookup) that acts as an implicit
1838 * smp_mb() and prevents the i_size read to happen
1839 * after the next truncate_count read.
1840 */
1841
1842 /* no page was available -- either SIGBUS or OOM */
1843 if (new_page == NOPAGE_SIGBUS)
1844 return VM_FAULT_SIGBUS;
1845 if (new_page == NOPAGE_OOM)
1846 return VM_FAULT_OOM;
1847
1848 /*
1849 * Should we do an early C-O-W break?
1850 */
1851 if (write_access && !(vma->vm_flags & VM_SHARED)) {
1852 struct page *page;
1853
1854 if (unlikely(anon_vma_prepare(vma)))
1855 goto oom;
1856 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1857 if (!page)
1858 goto oom;
1859 copy_user_highpage(page, new_page, address);
1860 page_cache_release(new_page);
1861 new_page = page;
1862 anon = 1;
1863 }
1864
1865 spin_lock(&mm->page_table_lock);
1866 /*
1867 * For a file-backed vma, someone could have truncated or otherwise
1868 * invalidated this page. If unmap_mapping_range got called,
1869 * retry getting the page.
1870 */
1871 if (mapping && unlikely(sequence != mapping->truncate_count)) {
1872 sequence = mapping->truncate_count;
1873 spin_unlock(&mm->page_table_lock);
1874 page_cache_release(new_page);
1875 goto retry;
1876 }
1877 page_table = pte_offset_map(pmd, address);
1878
1879 /*
1880 * This silly early PAGE_DIRTY setting removes a race
1881 * due to the bad i386 page protection. But it's valid
1882 * for other architectures too.
1883 *
1884 * Note that if write_access is true, we either now have
1885 * an exclusive copy of the page, or this is a shared mapping,
1886 * so we can make it writable and dirty to avoid having to
1887 * handle that later.
1888 */
1889 /* Only go through if we didn't race with anybody else... */
1890 if (pte_none(*page_table)) {
1891 if (!PageReserved(new_page))
1892 inc_mm_counter(mm, rss);
1893
1894 flush_icache_page(vma, new_page);
1895 entry = mk_pte(new_page, vma->vm_page_prot);
1896 if (write_access)
1897 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1898 set_pte_at(mm, address, page_table, entry);
1899 if (anon) {
1900 lru_cache_add_active(new_page);
1901 page_add_anon_rmap(new_page, vma, address);
1902 } else
1903 page_add_file_rmap(new_page);
1904 pte_unmap(page_table);
1905 } else {
1906 /* One of our sibling threads was faster, back out. */
1907 pte_unmap(page_table);
1908 page_cache_release(new_page);
1909 spin_unlock(&mm->page_table_lock);
1910 goto out;
1911 }
1912
1913 /* no need to invalidate: a not-present page shouldn't be cached */
1914 update_mmu_cache(vma, address, entry);
1915 lazy_mmu_prot_update(entry);
1916 spin_unlock(&mm->page_table_lock);
1917out:
1918 return ret;
1919oom:
1920 page_cache_release(new_page);
1921 ret = VM_FAULT_OOM;
1922 goto out;
1923}
1924
1925/*
1926 * Fault of a previously existing named mapping. Repopulate the pte
1927 * from the encoded file_pte if possible. This enables swappable
1928 * nonlinear vmas.
1929 */
1930static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1931 unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1932{
1933 unsigned long pgoff;
1934 int err;
1935
1936 BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1937 /*
1938 * Fall back to the linear mapping if the fs does not support
1939 * ->populate:
1940 */
1941 if (!vma->vm_ops || !vma->vm_ops->populate ||
1942 (write_access && !(vma->vm_flags & VM_SHARED))) {
1943 pte_clear(mm, address, pte);
1944 return do_no_page(mm, vma, address, write_access, pte, pmd);
1945 }
1946
1947 pgoff = pte_to_pgoff(*pte);
1948
1949 pte_unmap(pte);
1950 spin_unlock(&mm->page_table_lock);
1951
1952 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1953 if (err == -ENOMEM)
1954 return VM_FAULT_OOM;
1955 if (err)
1956 return VM_FAULT_SIGBUS;
1957 return VM_FAULT_MAJOR;
1958}
1959
1960/*
1961 * These routines also need to handle stuff like marking pages dirty
1962 * and/or accessed for architectures that don't do it in hardware (most
1963 * RISC architectures). The early dirtying is also good on the i386.
1964 *
1965 * There is also a hook called "update_mmu_cache()" that architectures
1966 * with external mmu caches can use to update those (ie the Sparc or
1967 * PowerPC hashed page tables that act as extended TLBs).
1968 *
1969 * Note the "page_table_lock". It is to protect against kswapd removing
1970 * pages from under us. Note that kswapd only ever _removes_ pages, never
1971 * adds them. As such, once we have noticed that the page is not present,
1972 * we can drop the lock early.
1973 *
1974 * The adding of pages is protected by the MM semaphore (which we hold),
1975 * so we don't need to worry about a page being suddenly been added into
1976 * our VM.
1977 *
1978 * We enter with the pagetable spinlock held, we are supposed to
1979 * release it when done.
1980 */
1981static inline int handle_pte_fault(struct mm_struct *mm,
1982 struct vm_area_struct * vma, unsigned long address,
1983 int write_access, pte_t *pte, pmd_t *pmd)
1984{
1985 pte_t entry;
1986
1987 entry = *pte;
1988 if (!pte_present(entry)) {
1989 /*
1990 * If it truly wasn't present, we know that kswapd
1991 * and the PTE updates will not touch it later. So
1992 * drop the lock.
1993 */
1994 if (pte_none(entry))
1995 return do_no_page(mm, vma, address, write_access, pte, pmd);
1996 if (pte_file(entry))
1997 return do_file_page(mm, vma, address, write_access, pte, pmd);
1998 return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
1999 }
2000
2001 if (write_access) {
2002 if (!pte_write(entry))
2003 return do_wp_page(mm, vma, address, pte, pmd, entry);
2004
2005 entry = pte_mkdirty(entry);
2006 }
2007 entry = pte_mkyoung(entry);
2008 ptep_set_access_flags(vma, address, pte, entry, write_access);
2009 update_mmu_cache(vma, address, entry);
2010 lazy_mmu_prot_update(entry);
2011 pte_unmap(pte);
2012 spin_unlock(&mm->page_table_lock);
2013 return VM_FAULT_MINOR;
2014}
2015
2016/*
2017 * By the time we get here, we already hold the mm semaphore
2018 */
2019int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
2020 unsigned long address, int write_access)
2021{
2022 pgd_t *pgd;
2023 pud_t *pud;
2024 pmd_t *pmd;
2025 pte_t *pte;
2026
2027 __set_current_state(TASK_RUNNING);
2028
2029 inc_page_state(pgfault);
2030
2031 if (is_vm_hugetlb_page(vma))
2032 return VM_FAULT_SIGBUS; /* mapping truncation does this. */
2033
2034 /*
2035 * We need the page table lock to synchronize with kswapd
2036 * and the SMP-safe atomic PTE updates.
2037 */
2038 pgd = pgd_offset(mm, address);
2039 spin_lock(&mm->page_table_lock);
2040
2041 pud = pud_alloc(mm, pgd, address);
2042 if (!pud)
2043 goto oom;
2044
2045 pmd = pmd_alloc(mm, pud, address);
2046 if (!pmd)
2047 goto oom;
2048
2049 pte = pte_alloc_map(mm, pmd, address);
2050 if (!pte)
2051 goto oom;
2052
2053 return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
2054
2055 oom:
2056 spin_unlock(&mm->page_table_lock);
2057 return VM_FAULT_OOM;
2058}
2059
2060#ifndef __PAGETABLE_PUD_FOLDED
2061/*
2062 * Allocate page upper directory.
2063 *
2064 * We've already handled the fast-path in-line, and we own the
2065 * page table lock.
2066 */
2067pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2068{
2069 pud_t *new;
2070
2071 spin_unlock(&mm->page_table_lock);
2072 new = pud_alloc_one(mm, address);
2073 spin_lock(&mm->page_table_lock);
2074 if (!new)
2075 return NULL;
2076
2077 /*
2078 * Because we dropped the lock, we should re-check the
2079 * entry, as somebody else could have populated it..
2080 */
2081 if (pgd_present(*pgd)) {
2082 pud_free(new);
2083 goto out;
2084 }
2085 pgd_populate(mm, pgd, new);
2086 out:
2087 return pud_offset(pgd, address);
2088}
2089#endif /* __PAGETABLE_PUD_FOLDED */
2090
2091#ifndef __PAGETABLE_PMD_FOLDED
2092/*
2093 * Allocate page middle directory.
2094 *
2095 * We've already handled the fast-path in-line, and we own the
2096 * page table lock.
2097 */
2098pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2099{
2100 pmd_t *new;
2101
2102 spin_unlock(&mm->page_table_lock);
2103 new = pmd_alloc_one(mm, address);
2104 spin_lock(&mm->page_table_lock);
2105 if (!new)
2106 return NULL;
2107
2108 /*
2109 * Because we dropped the lock, we should re-check the
2110 * entry, as somebody else could have populated it..
2111 */
2112#ifndef __ARCH_HAS_4LEVEL_HACK
2113 if (pud_present(*pud)) {
2114 pmd_free(new);
2115 goto out;
2116 }
2117 pud_populate(mm, pud, new);
2118#else
2119 if (pgd_present(*pud)) {
2120 pmd_free(new);
2121 goto out;
2122 }
2123 pgd_populate(mm, pud, new);
2124#endif /* __ARCH_HAS_4LEVEL_HACK */
2125
2126 out:
2127 return pmd_offset(pud, address);
2128}
2129#endif /* __PAGETABLE_PMD_FOLDED */
2130
2131int make_pages_present(unsigned long addr, unsigned long end)
2132{
2133 int ret, len, write;
2134 struct vm_area_struct * vma;
2135
2136 vma = find_vma(current->mm, addr);
2137 if (!vma)
2138 return -1;
2139 write = (vma->vm_flags & VM_WRITE) != 0;
2140 if (addr >= end)
2141 BUG();
2142 if (end > vma->vm_end)
2143 BUG();
2144 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2145 ret = get_user_pages(current, current->mm, addr,
2146 len, write, 0, NULL, NULL);
2147 if (ret < 0)
2148 return ret;
2149 return ret == len ? 0 : -1;
2150}
2151
2152/*
2153 * Map a vmalloc()-space virtual address to the physical page.
2154 */
2155struct page * vmalloc_to_page(void * vmalloc_addr)
2156{
2157 unsigned long addr = (unsigned long) vmalloc_addr;
2158 struct page *page = NULL;
2159 pgd_t *pgd = pgd_offset_k(addr);
2160 pud_t *pud;
2161 pmd_t *pmd;
2162 pte_t *ptep, pte;
2163
2164 if (!pgd_none(*pgd)) {
2165 pud = pud_offset(pgd, addr);
2166 if (!pud_none(*pud)) {
2167 pmd = pmd_offset(pud, addr);
2168 if (!pmd_none(*pmd)) {
2169 ptep = pte_offset_map(pmd, addr);
2170 pte = *ptep;
2171 if (pte_present(pte))
2172 page = pte_page(pte);
2173 pte_unmap(ptep);
2174 }
2175 }
2176 }
2177 return page;
2178}
2179
2180EXPORT_SYMBOL(vmalloc_to_page);
2181
2182/*
2183 * Map a vmalloc()-space virtual address to the physical page frame number.
2184 */
2185unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2186{
2187 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2188}
2189
2190EXPORT_SYMBOL(vmalloc_to_pfn);
2191
2192/*
2193 * update_mem_hiwater
2194 * - update per process rss and vm high water data
2195 */
2196void update_mem_hiwater(struct task_struct *tsk)
2197{
2198 if (tsk->mm) {
2199 unsigned long rss = get_mm_counter(tsk->mm, rss);
2200
2201 if (tsk->mm->hiwater_rss < rss)
2202 tsk->mm->hiwater_rss = rss;
2203 if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2204 tsk->mm->hiwater_vm = tsk->mm->total_vm;
2205 }
2206}
2207
2208#if !defined(__HAVE_ARCH_GATE_AREA)
2209
2210#if defined(AT_SYSINFO_EHDR)
2211struct vm_area_struct gate_vma;
2212
2213static int __init gate_vma_init(void)
2214{
2215 gate_vma.vm_mm = NULL;
2216 gate_vma.vm_start = FIXADDR_USER_START;
2217 gate_vma.vm_end = FIXADDR_USER_END;
2218 gate_vma.vm_page_prot = PAGE_READONLY;
2219 gate_vma.vm_flags = 0;
2220 return 0;
2221}
2222__initcall(gate_vma_init);
2223#endif
2224
2225struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2226{
2227#ifdef AT_SYSINFO_EHDR
2228 return &gate_vma;
2229#else
2230 return NULL;
2231#endif
2232}
2233
2234int in_gate_area_no_task(unsigned long addr)
2235{
2236#ifdef AT_SYSINFO_EHDR
2237 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2238 return 1;
2239#endif
2240 return 0;
2241}
2242
2243#endif /* __HAVE_ARCH_GATE_AREA */