mm/core, x86/mm/pkeys: Differentiate instruction fetches
[linux-2.6-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
01c8f1c4 53#include <linux/pfn_t.h>
edc79b2a 54#include <linux/writeback.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
3dc14741
HD
57#include <linux/kallsyms.h>
58#include <linux/swapops.h>
59#include <linux/elf.h>
5a0e3ad6 60#include <linux/gfp.h>
4daae3b4 61#include <linux/migrate.h>
2fbc57c5 62#include <linux/string.h>
0abdd7a8 63#include <linux/dma-debug.h>
1592eef0 64#include <linux/debugfs.h>
6b251fc9 65#include <linux/userfaultfd_k.h>
1da177e4 66
6952b61d 67#include <asm/io.h>
33a709b2 68#include <asm/mmu_context.h>
1da177e4
LT
69#include <asm/pgalloc.h>
70#include <asm/uaccess.h>
71#include <asm/tlb.h>
72#include <asm/tlbflush.h>
73#include <asm/pgtable.h>
74
42b77728
JB
75#include "internal.h"
76
90572890
PZ
77#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
78#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
79#endif
80
d41dee36 81#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
82/* use the per-pgdat data instead for discontigmem - mbligh */
83unsigned long max_mapnr;
84struct page *mem_map;
85
86EXPORT_SYMBOL(max_mapnr);
87EXPORT_SYMBOL(mem_map);
88#endif
89
1da177e4
LT
90/*
91 * A number of key systems in x86 including ioremap() rely on the assumption
92 * that high_memory defines the upper bound on direct map memory, then end
93 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
94 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
95 * and ZONE_HIGHMEM.
96 */
97void * high_memory;
1da177e4 98
1da177e4 99EXPORT_SYMBOL(high_memory);
1da177e4 100
32a93233
IM
101/*
102 * Randomize the address space (stacks, mmaps, brk, etc.).
103 *
104 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
105 * as ancient (libc5 based) binaries can segfault. )
106 */
107int randomize_va_space __read_mostly =
108#ifdef CONFIG_COMPAT_BRK
109 1;
110#else
111 2;
112#endif
a62eaf15
AK
113
114static int __init disable_randmaps(char *s)
115{
116 randomize_va_space = 0;
9b41046c 117 return 1;
a62eaf15
AK
118}
119__setup("norandmaps", disable_randmaps);
120
62eede62 121unsigned long zero_pfn __read_mostly;
03f6462a 122unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 123
0b70068e
AB
124EXPORT_SYMBOL(zero_pfn);
125
a13ea5b7
HD
126/*
127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
128 */
129static int __init init_zero_pfn(void)
130{
131 zero_pfn = page_to_pfn(ZERO_PAGE(0));
132 return 0;
133}
134core_initcall(init_zero_pfn);
a62eaf15 135
d559db08 136
34e55232
KH
137#if defined(SPLIT_RSS_COUNTING)
138
ea48cf78 139void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
140{
141 int i;
142
143 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
144 if (current->rss_stat.count[i]) {
145 add_mm_counter(mm, i, current->rss_stat.count[i]);
146 current->rss_stat.count[i] = 0;
34e55232
KH
147 }
148 }
05af2e10 149 current->rss_stat.events = 0;
34e55232
KH
150}
151
152static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
153{
154 struct task_struct *task = current;
155
156 if (likely(task->mm == mm))
157 task->rss_stat.count[member] += val;
158 else
159 add_mm_counter(mm, member, val);
160}
161#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
163
164/* sync counter once per 64 page faults */
165#define TASK_RSS_EVENTS_THRESH (64)
166static void check_sync_rss_stat(struct task_struct *task)
167{
168 if (unlikely(task != current))
169 return;
170 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 171 sync_mm_rss(task->mm);
34e55232 172}
9547d01b 173#else /* SPLIT_RSS_COUNTING */
34e55232
KH
174
175#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
177
178static void check_sync_rss_stat(struct task_struct *task)
179{
180}
181
9547d01b
PZ
182#endif /* SPLIT_RSS_COUNTING */
183
184#ifdef HAVE_GENERIC_MMU_GATHER
185
ca1d6c7d 186static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
187{
188 struct mmu_gather_batch *batch;
189
190 batch = tlb->active;
191 if (batch->next) {
192 tlb->active = batch->next;
ca1d6c7d 193 return true;
9547d01b
PZ
194 }
195
53a59fc6 196 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 197 return false;
53a59fc6 198
9547d01b
PZ
199 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
200 if (!batch)
ca1d6c7d 201 return false;
9547d01b 202
53a59fc6 203 tlb->batch_count++;
9547d01b
PZ
204 batch->next = NULL;
205 batch->nr = 0;
206 batch->max = MAX_GATHER_BATCH;
207
208 tlb->active->next = batch;
209 tlb->active = batch;
210
ca1d6c7d 211 return true;
9547d01b
PZ
212}
213
214/* tlb_gather_mmu
215 * Called to initialize an (on-stack) mmu_gather structure for page-table
216 * tear-down from @mm. The @fullmm argument is used when @mm is without
217 * users and we're going to destroy the full address space (exit/execve).
218 */
2b047252 219void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
220{
221 tlb->mm = mm;
222
2b047252
LT
223 /* Is it from 0 to ~0? */
224 tlb->fullmm = !(start | (end+1));
1de14c3c 225 tlb->need_flush_all = 0;
9547d01b
PZ
226 tlb->local.next = NULL;
227 tlb->local.nr = 0;
228 tlb->local.max = ARRAY_SIZE(tlb->__pages);
229 tlb->active = &tlb->local;
53a59fc6 230 tlb->batch_count = 0;
9547d01b
PZ
231
232#ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 tlb->batch = NULL;
234#endif
fb7332a9
WD
235
236 __tlb_reset_range(tlb);
9547d01b
PZ
237}
238
1cf35d47 239static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 240{
721c21c1
WD
241 if (!tlb->end)
242 return;
243
9547d01b 244 tlb_flush(tlb);
34ee645e 245 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
246#ifdef CONFIG_HAVE_RCU_TABLE_FREE
247 tlb_table_flush(tlb);
34e55232 248#endif
fb7332a9 249 __tlb_reset_range(tlb);
1cf35d47
LT
250}
251
252static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253{
254 struct mmu_gather_batch *batch;
34e55232 255
721c21c1 256 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
257 free_pages_and_swap_cache(batch->pages, batch->nr);
258 batch->nr = 0;
259 }
260 tlb->active = &tlb->local;
261}
262
1cf35d47
LT
263void tlb_flush_mmu(struct mmu_gather *tlb)
264{
1cf35d47
LT
265 tlb_flush_mmu_tlbonly(tlb);
266 tlb_flush_mmu_free(tlb);
267}
268
9547d01b
PZ
269/* tlb_finish_mmu
270 * Called at the end of the shootdown operation to free up any resources
271 * that were required.
272 */
273void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
274{
275 struct mmu_gather_batch *batch, *next;
276
277 tlb_flush_mmu(tlb);
278
279 /* keep the page table cache within bounds */
280 check_pgt_cache();
281
282 for (batch = tlb->local.next; batch; batch = next) {
283 next = batch->next;
284 free_pages((unsigned long)batch, 0);
285 }
286 tlb->local.next = NULL;
287}
288
289/* __tlb_remove_page
290 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
291 * handling the additional races in SMP caused by other CPUs caching valid
292 * mappings in their TLBs. Returns the number of free page slots left.
293 * When out of page slots we must call tlb_flush_mmu().
294 */
295int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
296{
297 struct mmu_gather_batch *batch;
298
fb7332a9 299 VM_BUG_ON(!tlb->end);
9547d01b 300
9547d01b
PZ
301 batch = tlb->active;
302 batch->pages[batch->nr++] = page;
303 if (batch->nr == batch->max) {
304 if (!tlb_next_batch(tlb))
305 return 0;
0b43c3aa 306 batch = tlb->active;
9547d01b 307 }
309381fe 308 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b
PZ
309
310 return batch->max - batch->nr;
311}
312
313#endif /* HAVE_GENERIC_MMU_GATHER */
314
26723911
PZ
315#ifdef CONFIG_HAVE_RCU_TABLE_FREE
316
317/*
318 * See the comment near struct mmu_table_batch.
319 */
320
321static void tlb_remove_table_smp_sync(void *arg)
322{
323 /* Simply deliver the interrupt */
324}
325
326static void tlb_remove_table_one(void *table)
327{
328 /*
329 * This isn't an RCU grace period and hence the page-tables cannot be
330 * assumed to be actually RCU-freed.
331 *
332 * It is however sufficient for software page-table walkers that rely on
333 * IRQ disabling. See the comment near struct mmu_table_batch.
334 */
335 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
336 __tlb_remove_table(table);
337}
338
339static void tlb_remove_table_rcu(struct rcu_head *head)
340{
341 struct mmu_table_batch *batch;
342 int i;
343
344 batch = container_of(head, struct mmu_table_batch, rcu);
345
346 for (i = 0; i < batch->nr; i++)
347 __tlb_remove_table(batch->tables[i]);
348
349 free_page((unsigned long)batch);
350}
351
352void tlb_table_flush(struct mmu_gather *tlb)
353{
354 struct mmu_table_batch **batch = &tlb->batch;
355
356 if (*batch) {
357 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
358 *batch = NULL;
359 }
360}
361
362void tlb_remove_table(struct mmu_gather *tlb, void *table)
363{
364 struct mmu_table_batch **batch = &tlb->batch;
365
26723911
PZ
366 /*
367 * When there's less then two users of this mm there cannot be a
368 * concurrent page-table walk.
369 */
370 if (atomic_read(&tlb->mm->mm_users) < 2) {
371 __tlb_remove_table(table);
372 return;
373 }
374
375 if (*batch == NULL) {
376 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
377 if (*batch == NULL) {
378 tlb_remove_table_one(table);
379 return;
380 }
381 (*batch)->nr = 0;
382 }
383 (*batch)->tables[(*batch)->nr++] = table;
384 if ((*batch)->nr == MAX_TABLE_BATCH)
385 tlb_table_flush(tlb);
386}
387
9547d01b 388#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 389
1da177e4
LT
390/*
391 * Note: this doesn't free the actual pages themselves. That
392 * has been handled earlier when unmapping all the memory regions.
393 */
9e1b32ca
BH
394static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
395 unsigned long addr)
1da177e4 396{
2f569afd 397 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 398 pmd_clear(pmd);
9e1b32ca 399 pte_free_tlb(tlb, token, addr);
e1f56c89 400 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
401}
402
e0da382c
HD
403static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
404 unsigned long addr, unsigned long end,
405 unsigned long floor, unsigned long ceiling)
1da177e4
LT
406{
407 pmd_t *pmd;
408 unsigned long next;
e0da382c 409 unsigned long start;
1da177e4 410
e0da382c 411 start = addr;
1da177e4 412 pmd = pmd_offset(pud, addr);
1da177e4
LT
413 do {
414 next = pmd_addr_end(addr, end);
415 if (pmd_none_or_clear_bad(pmd))
416 continue;
9e1b32ca 417 free_pte_range(tlb, pmd, addr);
1da177e4
LT
418 } while (pmd++, addr = next, addr != end);
419
e0da382c
HD
420 start &= PUD_MASK;
421 if (start < floor)
422 return;
423 if (ceiling) {
424 ceiling &= PUD_MASK;
425 if (!ceiling)
426 return;
1da177e4 427 }
e0da382c
HD
428 if (end - 1 > ceiling - 1)
429 return;
430
431 pmd = pmd_offset(pud, start);
432 pud_clear(pud);
9e1b32ca 433 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 434 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
435}
436
e0da382c
HD
437static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
438 unsigned long addr, unsigned long end,
439 unsigned long floor, unsigned long ceiling)
1da177e4
LT
440{
441 pud_t *pud;
442 unsigned long next;
e0da382c 443 unsigned long start;
1da177e4 444
e0da382c 445 start = addr;
1da177e4 446 pud = pud_offset(pgd, addr);
1da177e4
LT
447 do {
448 next = pud_addr_end(addr, end);
449 if (pud_none_or_clear_bad(pud))
450 continue;
e0da382c 451 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
452 } while (pud++, addr = next, addr != end);
453
e0da382c
HD
454 start &= PGDIR_MASK;
455 if (start < floor)
456 return;
457 if (ceiling) {
458 ceiling &= PGDIR_MASK;
459 if (!ceiling)
460 return;
1da177e4 461 }
e0da382c
HD
462 if (end - 1 > ceiling - 1)
463 return;
464
465 pud = pud_offset(pgd, start);
466 pgd_clear(pgd);
9e1b32ca 467 pud_free_tlb(tlb, pud, start);
1da177e4
LT
468}
469
470/*
e0da382c 471 * This function frees user-level page tables of a process.
1da177e4 472 */
42b77728 473void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
474 unsigned long addr, unsigned long end,
475 unsigned long floor, unsigned long ceiling)
1da177e4
LT
476{
477 pgd_t *pgd;
478 unsigned long next;
e0da382c
HD
479
480 /*
481 * The next few lines have given us lots of grief...
482 *
483 * Why are we testing PMD* at this top level? Because often
484 * there will be no work to do at all, and we'd prefer not to
485 * go all the way down to the bottom just to discover that.
486 *
487 * Why all these "- 1"s? Because 0 represents both the bottom
488 * of the address space and the top of it (using -1 for the
489 * top wouldn't help much: the masks would do the wrong thing).
490 * The rule is that addr 0 and floor 0 refer to the bottom of
491 * the address space, but end 0 and ceiling 0 refer to the top
492 * Comparisons need to use "end - 1" and "ceiling - 1" (though
493 * that end 0 case should be mythical).
494 *
495 * Wherever addr is brought up or ceiling brought down, we must
496 * be careful to reject "the opposite 0" before it confuses the
497 * subsequent tests. But what about where end is brought down
498 * by PMD_SIZE below? no, end can't go down to 0 there.
499 *
500 * Whereas we round start (addr) and ceiling down, by different
501 * masks at different levels, in order to test whether a table
502 * now has no other vmas using it, so can be freed, we don't
503 * bother to round floor or end up - the tests don't need that.
504 */
1da177e4 505
e0da382c
HD
506 addr &= PMD_MASK;
507 if (addr < floor) {
508 addr += PMD_SIZE;
509 if (!addr)
510 return;
511 }
512 if (ceiling) {
513 ceiling &= PMD_MASK;
514 if (!ceiling)
515 return;
516 }
517 if (end - 1 > ceiling - 1)
518 end -= PMD_SIZE;
519 if (addr > end - 1)
520 return;
521
42b77728 522 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
523 do {
524 next = pgd_addr_end(addr, end);
525 if (pgd_none_or_clear_bad(pgd))
526 continue;
42b77728 527 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 528 } while (pgd++, addr = next, addr != end);
e0da382c
HD
529}
530
42b77728 531void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 532 unsigned long floor, unsigned long ceiling)
e0da382c
HD
533{
534 while (vma) {
535 struct vm_area_struct *next = vma->vm_next;
536 unsigned long addr = vma->vm_start;
537
8f4f8c16 538 /*
25d9e2d1 539 * Hide vma from rmap and truncate_pagecache before freeing
540 * pgtables
8f4f8c16 541 */
5beb4930 542 unlink_anon_vmas(vma);
8f4f8c16
HD
543 unlink_file_vma(vma);
544
9da61aef 545 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 546 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 547 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
548 } else {
549 /*
550 * Optimization: gather nearby vmas into one call down
551 */
552 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 553 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
554 vma = next;
555 next = vma->vm_next;
5beb4930 556 unlink_anon_vmas(vma);
8f4f8c16 557 unlink_file_vma(vma);
3bf5ee95
HD
558 }
559 free_pgd_range(tlb, addr, vma->vm_end,
560 floor, next? next->vm_start: ceiling);
561 }
e0da382c
HD
562 vma = next;
563 }
1da177e4
LT
564}
565
8ac1f832
AA
566int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
567 pmd_t *pmd, unsigned long address)
1da177e4 568{
c4088ebd 569 spinlock_t *ptl;
2f569afd 570 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
571 if (!new)
572 return -ENOMEM;
573
362a61ad
NP
574 /*
575 * Ensure all pte setup (eg. pte page lock and page clearing) are
576 * visible before the pte is made visible to other CPUs by being
577 * put into page tables.
578 *
579 * The other side of the story is the pointer chasing in the page
580 * table walking code (when walking the page table without locking;
581 * ie. most of the time). Fortunately, these data accesses consist
582 * of a chain of data-dependent loads, meaning most CPUs (alpha
583 * being the notable exception) will already guarantee loads are
584 * seen in-order. See the alpha page table accessors for the
585 * smp_read_barrier_depends() barriers in page table walking code.
586 */
587 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
588
c4088ebd 589 ptl = pmd_lock(mm, pmd);
8ac1f832 590 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 591 atomic_long_inc(&mm->nr_ptes);
1da177e4 592 pmd_populate(mm, pmd, new);
2f569afd 593 new = NULL;
4b471e88 594 }
c4088ebd 595 spin_unlock(ptl);
2f569afd
MS
596 if (new)
597 pte_free(mm, new);
1bb3630e 598 return 0;
1da177e4
LT
599}
600
1bb3630e 601int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 602{
1bb3630e
HD
603 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 if (!new)
605 return -ENOMEM;
606
362a61ad
NP
607 smp_wmb(); /* See comment in __pte_alloc */
608
1bb3630e 609 spin_lock(&init_mm.page_table_lock);
8ac1f832 610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 611 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 612 new = NULL;
4b471e88 613 }
1bb3630e 614 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
615 if (new)
616 pte_free_kernel(&init_mm, new);
1bb3630e 617 return 0;
1da177e4
LT
618}
619
d559db08
KH
620static inline void init_rss_vec(int *rss)
621{
622 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
623}
624
625static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 626{
d559db08
KH
627 int i;
628
34e55232 629 if (current->mm == mm)
05af2e10 630 sync_mm_rss(mm);
d559db08
KH
631 for (i = 0; i < NR_MM_COUNTERS; i++)
632 if (rss[i])
633 add_mm_counter(mm, i, rss[i]);
ae859762
HD
634}
635
b5810039 636/*
6aab341e
LT
637 * This function is called to print an error when a bad pte
638 * is found. For example, we might have a PFN-mapped pte in
639 * a region that doesn't allow it.
b5810039
NP
640 *
641 * The calling function must still handle the error.
642 */
3dc14741
HD
643static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
644 pte_t pte, struct page *page)
b5810039 645{
3dc14741
HD
646 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
647 pud_t *pud = pud_offset(pgd, addr);
648 pmd_t *pmd = pmd_offset(pud, addr);
649 struct address_space *mapping;
650 pgoff_t index;
d936cf9b
HD
651 static unsigned long resume;
652 static unsigned long nr_shown;
653 static unsigned long nr_unshown;
654
655 /*
656 * Allow a burst of 60 reports, then keep quiet for that minute;
657 * or allow a steady drip of one report per second.
658 */
659 if (nr_shown == 60) {
660 if (time_before(jiffies, resume)) {
661 nr_unshown++;
662 return;
663 }
664 if (nr_unshown) {
1e9e6365
HD
665 printk(KERN_ALERT
666 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
667 nr_unshown);
668 nr_unshown = 0;
669 }
670 nr_shown = 0;
671 }
672 if (nr_shown++ == 0)
673 resume = jiffies + 60 * HZ;
3dc14741
HD
674
675 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
676 index = linear_page_index(vma, addr);
677
1e9e6365
HD
678 printk(KERN_ALERT
679 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
680 current->comm,
681 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 682 if (page)
f0b791a3 683 dump_page(page, "bad pte");
1e9e6365 684 printk(KERN_ALERT
3dc14741
HD
685 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
686 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
687 /*
688 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
689 */
2682582a
KK
690 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
691 vma->vm_file,
692 vma->vm_ops ? vma->vm_ops->fault : NULL,
693 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
694 mapping ? mapping->a_ops->readpage : NULL);
b5810039 695 dump_stack();
373d4d09 696 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
697}
698
ee498ed7 699/*
7e675137 700 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 701 *
7e675137
NP
702 * "Special" mappings do not wish to be associated with a "struct page" (either
703 * it doesn't exist, or it exists but they don't want to touch it). In this
704 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 705 *
7e675137
NP
706 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
707 * pte bit, in which case this function is trivial. Secondly, an architecture
708 * may not have a spare pte bit, which requires a more complicated scheme,
709 * described below.
710 *
711 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
712 * special mapping (even if there are underlying and valid "struct pages").
713 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 714 *
b379d790
JH
715 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
716 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
717 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
718 * mapping will always honor the rule
6aab341e
LT
719 *
720 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
721 *
7e675137
NP
722 * And for normal mappings this is false.
723 *
724 * This restricts such mappings to be a linear translation from virtual address
725 * to pfn. To get around this restriction, we allow arbitrary mappings so long
726 * as the vma is not a COW mapping; in that case, we know that all ptes are
727 * special (because none can have been COWed).
b379d790 728 *
b379d790 729 *
7e675137 730 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
731 *
732 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
733 * page" backing, however the difference is that _all_ pages with a struct
734 * page (that is, those where pfn_valid is true) are refcounted and considered
735 * normal pages by the VM. The disadvantage is that pages are refcounted
736 * (which can be slower and simply not an option for some PFNMAP users). The
737 * advantage is that we don't have to follow the strict linearity rule of
738 * PFNMAP mappings in order to support COWable mappings.
739 *
ee498ed7 740 */
7e675137
NP
741#ifdef __HAVE_ARCH_PTE_SPECIAL
742# define HAVE_PTE_SPECIAL 1
743#else
744# define HAVE_PTE_SPECIAL 0
745#endif
746struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
747 pte_t pte)
ee498ed7 748{
22b31eec 749 unsigned long pfn = pte_pfn(pte);
7e675137
NP
750
751 if (HAVE_PTE_SPECIAL) {
b38af472 752 if (likely(!pte_special(pte)))
22b31eec 753 goto check_pfn;
667a0a06
DV
754 if (vma->vm_ops && vma->vm_ops->find_special_page)
755 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
756 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
757 return NULL;
62eede62 758 if (!is_zero_pfn(pfn))
22b31eec 759 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
760 return NULL;
761 }
762
763 /* !HAVE_PTE_SPECIAL case follows: */
764
b379d790
JH
765 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
766 if (vma->vm_flags & VM_MIXEDMAP) {
767 if (!pfn_valid(pfn))
768 return NULL;
769 goto out;
770 } else {
7e675137
NP
771 unsigned long off;
772 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
773 if (pfn == vma->vm_pgoff + off)
774 return NULL;
775 if (!is_cow_mapping(vma->vm_flags))
776 return NULL;
777 }
6aab341e
LT
778 }
779
b38af472
HD
780 if (is_zero_pfn(pfn))
781 return NULL;
22b31eec
HD
782check_pfn:
783 if (unlikely(pfn > highest_memmap_pfn)) {
784 print_bad_pte(vma, addr, pte, NULL);
785 return NULL;
786 }
6aab341e
LT
787
788 /*
7e675137 789 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 790 * eg. VDSO mappings can cause them to exist.
6aab341e 791 */
b379d790 792out:
6aab341e 793 return pfn_to_page(pfn);
ee498ed7
HD
794}
795
1da177e4
LT
796/*
797 * copy one vm_area from one task to the other. Assumes the page tables
798 * already present in the new task to be cleared in the whole range
799 * covered by this vma.
1da177e4
LT
800 */
801
570a335b 802static inline unsigned long
1da177e4 803copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 804 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 805 unsigned long addr, int *rss)
1da177e4 806{
b5810039 807 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
808 pte_t pte = *src_pte;
809 struct page *page;
1da177e4
LT
810
811 /* pte contains position in swap or file, so copy. */
812 if (unlikely(!pte_present(pte))) {
0661a336
KS
813 swp_entry_t entry = pte_to_swp_entry(pte);
814
815 if (likely(!non_swap_entry(entry))) {
816 if (swap_duplicate(entry) < 0)
817 return entry.val;
818
819 /* make sure dst_mm is on swapoff's mmlist. */
820 if (unlikely(list_empty(&dst_mm->mmlist))) {
821 spin_lock(&mmlist_lock);
822 if (list_empty(&dst_mm->mmlist))
823 list_add(&dst_mm->mmlist,
824 &src_mm->mmlist);
825 spin_unlock(&mmlist_lock);
826 }
827 rss[MM_SWAPENTS]++;
828 } else if (is_migration_entry(entry)) {
829 page = migration_entry_to_page(entry);
830
eca56ff9 831 rss[mm_counter(page)]++;
0661a336
KS
832
833 if (is_write_migration_entry(entry) &&
834 is_cow_mapping(vm_flags)) {
835 /*
836 * COW mappings require pages in both
837 * parent and child to be set to read.
838 */
839 make_migration_entry_read(&entry);
840 pte = swp_entry_to_pte(entry);
841 if (pte_swp_soft_dirty(*src_pte))
842 pte = pte_swp_mksoft_dirty(pte);
843 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 844 }
1da177e4 845 }
ae859762 846 goto out_set_pte;
1da177e4
LT
847 }
848
1da177e4
LT
849 /*
850 * If it's a COW mapping, write protect it both
851 * in the parent and the child
852 */
67121172 853 if (is_cow_mapping(vm_flags)) {
1da177e4 854 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 855 pte = pte_wrprotect(pte);
1da177e4
LT
856 }
857
858 /*
859 * If it's a shared mapping, mark it clean in
860 * the child
861 */
862 if (vm_flags & VM_SHARED)
863 pte = pte_mkclean(pte);
864 pte = pte_mkold(pte);
6aab341e
LT
865
866 page = vm_normal_page(vma, addr, pte);
867 if (page) {
868 get_page(page);
53f9263b 869 page_dup_rmap(page, false);
eca56ff9 870 rss[mm_counter(page)]++;
6aab341e 871 }
ae859762
HD
872
873out_set_pte:
874 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 875 return 0;
1da177e4
LT
876}
877
21bda264 878static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
879 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
880 unsigned long addr, unsigned long end)
1da177e4 881{
c36987e2 882 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 883 pte_t *src_pte, *dst_pte;
c74df32c 884 spinlock_t *src_ptl, *dst_ptl;
e040f218 885 int progress = 0;
d559db08 886 int rss[NR_MM_COUNTERS];
570a335b 887 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
888
889again:
d559db08
KH
890 init_rss_vec(rss);
891
c74df32c 892 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
893 if (!dst_pte)
894 return -ENOMEM;
ece0e2b6 895 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 896 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 897 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
898 orig_src_pte = src_pte;
899 orig_dst_pte = dst_pte;
6606c3e0 900 arch_enter_lazy_mmu_mode();
1da177e4 901
1da177e4
LT
902 do {
903 /*
904 * We are holding two locks at this point - either of them
905 * could generate latencies in another task on another CPU.
906 */
e040f218
HD
907 if (progress >= 32) {
908 progress = 0;
909 if (need_resched() ||
95c354fe 910 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
911 break;
912 }
1da177e4
LT
913 if (pte_none(*src_pte)) {
914 progress++;
915 continue;
916 }
570a335b
HD
917 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
918 vma, addr, rss);
919 if (entry.val)
920 break;
1da177e4
LT
921 progress += 8;
922 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 923
6606c3e0 924 arch_leave_lazy_mmu_mode();
c74df32c 925 spin_unlock(src_ptl);
ece0e2b6 926 pte_unmap(orig_src_pte);
d559db08 927 add_mm_rss_vec(dst_mm, rss);
c36987e2 928 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 929 cond_resched();
570a335b
HD
930
931 if (entry.val) {
932 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
933 return -ENOMEM;
934 progress = 0;
935 }
1da177e4
LT
936 if (addr != end)
937 goto again;
938 return 0;
939}
940
941static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
942 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
943 unsigned long addr, unsigned long end)
944{
945 pmd_t *src_pmd, *dst_pmd;
946 unsigned long next;
947
948 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
949 if (!dst_pmd)
950 return -ENOMEM;
951 src_pmd = pmd_offset(src_pud, addr);
952 do {
953 next = pmd_addr_end(addr, end);
5c7fb56e 954 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 955 int err;
14d1a55c 956 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
957 err = copy_huge_pmd(dst_mm, src_mm,
958 dst_pmd, src_pmd, addr, vma);
959 if (err == -ENOMEM)
960 return -ENOMEM;
961 if (!err)
962 continue;
963 /* fall through */
964 }
1da177e4
LT
965 if (pmd_none_or_clear_bad(src_pmd))
966 continue;
967 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
968 vma, addr, next))
969 return -ENOMEM;
970 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
971 return 0;
972}
973
974static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
975 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
976 unsigned long addr, unsigned long end)
977{
978 pud_t *src_pud, *dst_pud;
979 unsigned long next;
980
981 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
982 if (!dst_pud)
983 return -ENOMEM;
984 src_pud = pud_offset(src_pgd, addr);
985 do {
986 next = pud_addr_end(addr, end);
987 if (pud_none_or_clear_bad(src_pud))
988 continue;
989 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
990 vma, addr, next))
991 return -ENOMEM;
992 } while (dst_pud++, src_pud++, addr = next, addr != end);
993 return 0;
994}
995
996int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
997 struct vm_area_struct *vma)
998{
999 pgd_t *src_pgd, *dst_pgd;
1000 unsigned long next;
1001 unsigned long addr = vma->vm_start;
1002 unsigned long end = vma->vm_end;
2ec74c3e
SG
1003 unsigned long mmun_start; /* For mmu_notifiers */
1004 unsigned long mmun_end; /* For mmu_notifiers */
1005 bool is_cow;
cddb8a5c 1006 int ret;
1da177e4 1007
d992895b
NP
1008 /*
1009 * Don't copy ptes where a page fault will fill them correctly.
1010 * Fork becomes much lighter when there are big shared or private
1011 * readonly mappings. The tradeoff is that copy_page_range is more
1012 * efficient than faulting.
1013 */
0661a336
KS
1014 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1015 !vma->anon_vma)
1016 return 0;
d992895b 1017
1da177e4
LT
1018 if (is_vm_hugetlb_page(vma))
1019 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1020
b3b9c293 1021 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1022 /*
1023 * We do not free on error cases below as remove_vma
1024 * gets called on error from higher level routine
1025 */
5180da41 1026 ret = track_pfn_copy(vma);
2ab64037 1027 if (ret)
1028 return ret;
1029 }
1030
cddb8a5c
AA
1031 /*
1032 * We need to invalidate the secondary MMU mappings only when
1033 * there could be a permission downgrade on the ptes of the
1034 * parent mm. And a permission downgrade will only happen if
1035 * is_cow_mapping() returns true.
1036 */
2ec74c3e
SG
1037 is_cow = is_cow_mapping(vma->vm_flags);
1038 mmun_start = addr;
1039 mmun_end = end;
1040 if (is_cow)
1041 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1042 mmun_end);
cddb8a5c
AA
1043
1044 ret = 0;
1da177e4
LT
1045 dst_pgd = pgd_offset(dst_mm, addr);
1046 src_pgd = pgd_offset(src_mm, addr);
1047 do {
1048 next = pgd_addr_end(addr, end);
1049 if (pgd_none_or_clear_bad(src_pgd))
1050 continue;
cddb8a5c
AA
1051 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1052 vma, addr, next))) {
1053 ret = -ENOMEM;
1054 break;
1055 }
1da177e4 1056 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1057
2ec74c3e
SG
1058 if (is_cow)
1059 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1060 return ret;
1da177e4
LT
1061}
1062
51c6f666 1063static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1064 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1065 unsigned long addr, unsigned long end,
97a89413 1066 struct zap_details *details)
1da177e4 1067{
b5810039 1068 struct mm_struct *mm = tlb->mm;
d16dfc55 1069 int force_flush = 0;
d559db08 1070 int rss[NR_MM_COUNTERS];
97a89413 1071 spinlock_t *ptl;
5f1a1907 1072 pte_t *start_pte;
97a89413 1073 pte_t *pte;
8a5f14a2 1074 swp_entry_t entry;
d559db08 1075
d16dfc55 1076again:
e303297e 1077 init_rss_vec(rss);
5f1a1907
SR
1078 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1079 pte = start_pte;
6606c3e0 1080 arch_enter_lazy_mmu_mode();
1da177e4
LT
1081 do {
1082 pte_t ptent = *pte;
51c6f666 1083 if (pte_none(ptent)) {
1da177e4 1084 continue;
51c6f666 1085 }
6f5e6b9e 1086
1da177e4 1087 if (pte_present(ptent)) {
ee498ed7 1088 struct page *page;
51c6f666 1089
6aab341e 1090 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1091 if (unlikely(details) && page) {
1092 /*
1093 * unmap_shared_mapping_pages() wants to
1094 * invalidate cache without truncating:
1095 * unmap shared but keep private pages.
1096 */
1097 if (details->check_mapping &&
1098 details->check_mapping != page->mapping)
1099 continue;
1da177e4 1100 }
b5810039 1101 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1102 tlb->fullmm);
1da177e4
LT
1103 tlb_remove_tlb_entry(tlb, pte, addr);
1104 if (unlikely(!page))
1105 continue;
eca56ff9
JM
1106
1107 if (!PageAnon(page)) {
1cf35d47
LT
1108 if (pte_dirty(ptent)) {
1109 force_flush = 1;
6237bcd9 1110 set_page_dirty(page);
1cf35d47 1111 }
4917e5d0 1112 if (pte_young(ptent) &&
64363aad 1113 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1114 mark_page_accessed(page);
6237bcd9 1115 }
eca56ff9 1116 rss[mm_counter(page)]--;
d281ee61 1117 page_remove_rmap(page, false);
3dc14741
HD
1118 if (unlikely(page_mapcount(page) < 0))
1119 print_bad_pte(vma, addr, ptent, page);
1cf35d47
LT
1120 if (unlikely(!__tlb_remove_page(tlb, page))) {
1121 force_flush = 1;
ce9ec37b 1122 addr += PAGE_SIZE;
d16dfc55 1123 break;
1cf35d47 1124 }
1da177e4
LT
1125 continue;
1126 }
8a5f14a2 1127 /* If details->check_mapping, we leave swap entries. */
1da177e4
LT
1128 if (unlikely(details))
1129 continue;
b084d435 1130
8a5f14a2
KS
1131 entry = pte_to_swp_entry(ptent);
1132 if (!non_swap_entry(entry))
1133 rss[MM_SWAPENTS]--;
1134 else if (is_migration_entry(entry)) {
1135 struct page *page;
9f9f1acd 1136
8a5f14a2 1137 page = migration_entry_to_page(entry);
eca56ff9 1138 rss[mm_counter(page)]--;
b084d435 1139 }
8a5f14a2
KS
1140 if (unlikely(!free_swap_and_cache(entry)))
1141 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1142 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1143 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1144
d559db08 1145 add_mm_rss_vec(mm, rss);
6606c3e0 1146 arch_leave_lazy_mmu_mode();
51c6f666 1147
1cf35d47 1148 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1149 if (force_flush)
1cf35d47 1150 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1151 pte_unmap_unlock(start_pte, ptl);
1152
1153 /*
1154 * If we forced a TLB flush (either due to running out of
1155 * batch buffers or because we needed to flush dirty TLB
1156 * entries before releasing the ptl), free the batched
1157 * memory too. Restart if we didn't do everything.
1158 */
1159 if (force_flush) {
1160 force_flush = 0;
1161 tlb_flush_mmu_free(tlb);
2b047252
LT
1162
1163 if (addr != end)
d16dfc55
PZ
1164 goto again;
1165 }
1166
51c6f666 1167 return addr;
1da177e4
LT
1168}
1169
51c6f666 1170static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1171 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1172 unsigned long addr, unsigned long end,
97a89413 1173 struct zap_details *details)
1da177e4
LT
1174{
1175 pmd_t *pmd;
1176 unsigned long next;
1177
1178 pmd = pmd_offset(pud, addr);
1179 do {
1180 next = pmd_addr_end(addr, end);
5c7fb56e 1181 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1182 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1183#ifdef CONFIG_DEBUG_VM
1184 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1185 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1186 __func__, addr, end,
1187 vma->vm_start,
1188 vma->vm_end);
1189 BUG();
1190 }
1191#endif
78ddc534 1192 split_huge_pmd(vma, pmd, addr);
f21760b1 1193 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1194 goto next;
71e3aac0
AA
1195 /* fall through */
1196 }
1a5a9906
AA
1197 /*
1198 * Here there can be other concurrent MADV_DONTNEED or
1199 * trans huge page faults running, and if the pmd is
1200 * none or trans huge it can change under us. This is
1201 * because MADV_DONTNEED holds the mmap_sem in read
1202 * mode.
1203 */
1204 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1205 goto next;
97a89413 1206 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1207next:
97a89413
PZ
1208 cond_resched();
1209 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1210
1211 return addr;
1da177e4
LT
1212}
1213
51c6f666 1214static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1215 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1216 unsigned long addr, unsigned long end,
97a89413 1217 struct zap_details *details)
1da177e4
LT
1218{
1219 pud_t *pud;
1220 unsigned long next;
1221
1222 pud = pud_offset(pgd, addr);
1223 do {
1224 next = pud_addr_end(addr, end);
97a89413 1225 if (pud_none_or_clear_bad(pud))
1da177e4 1226 continue;
97a89413
PZ
1227 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1228 } while (pud++, addr = next, addr != end);
51c6f666
RH
1229
1230 return addr;
1da177e4
LT
1231}
1232
038c7aa1
AV
1233static void unmap_page_range(struct mmu_gather *tlb,
1234 struct vm_area_struct *vma,
1235 unsigned long addr, unsigned long end,
1236 struct zap_details *details)
1da177e4
LT
1237{
1238 pgd_t *pgd;
1239 unsigned long next;
1240
8a5f14a2 1241 if (details && !details->check_mapping)
1da177e4
LT
1242 details = NULL;
1243
1244 BUG_ON(addr >= end);
1245 tlb_start_vma(tlb, vma);
1246 pgd = pgd_offset(vma->vm_mm, addr);
1247 do {
1248 next = pgd_addr_end(addr, end);
97a89413 1249 if (pgd_none_or_clear_bad(pgd))
1da177e4 1250 continue;
97a89413
PZ
1251 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1252 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1253 tlb_end_vma(tlb, vma);
1254}
51c6f666 1255
f5cc4eef
AV
1256
1257static void unmap_single_vma(struct mmu_gather *tlb,
1258 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1259 unsigned long end_addr,
f5cc4eef
AV
1260 struct zap_details *details)
1261{
1262 unsigned long start = max(vma->vm_start, start_addr);
1263 unsigned long end;
1264
1265 if (start >= vma->vm_end)
1266 return;
1267 end = min(vma->vm_end, end_addr);
1268 if (end <= vma->vm_start)
1269 return;
1270
cbc91f71
SD
1271 if (vma->vm_file)
1272 uprobe_munmap(vma, start, end);
1273
b3b9c293 1274 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1275 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1276
1277 if (start != end) {
1278 if (unlikely(is_vm_hugetlb_page(vma))) {
1279 /*
1280 * It is undesirable to test vma->vm_file as it
1281 * should be non-null for valid hugetlb area.
1282 * However, vm_file will be NULL in the error
7aa6b4ad 1283 * cleanup path of mmap_region. When
f5cc4eef 1284 * hugetlbfs ->mmap method fails,
7aa6b4ad 1285 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1286 * before calling this function to clean up.
1287 * Since no pte has actually been setup, it is
1288 * safe to do nothing in this case.
1289 */
24669e58 1290 if (vma->vm_file) {
83cde9e8 1291 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1292 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1293 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1294 }
f5cc4eef
AV
1295 } else
1296 unmap_page_range(tlb, vma, start, end, details);
1297 }
1da177e4
LT
1298}
1299
1da177e4
LT
1300/**
1301 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1302 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1303 * @vma: the starting vma
1304 * @start_addr: virtual address at which to start unmapping
1305 * @end_addr: virtual address at which to end unmapping
1da177e4 1306 *
508034a3 1307 * Unmap all pages in the vma list.
1da177e4 1308 *
1da177e4
LT
1309 * Only addresses between `start' and `end' will be unmapped.
1310 *
1311 * The VMA list must be sorted in ascending virtual address order.
1312 *
1313 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1314 * range after unmap_vmas() returns. So the only responsibility here is to
1315 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1316 * drops the lock and schedules.
1317 */
6e8bb019 1318void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1319 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1320 unsigned long end_addr)
1da177e4 1321{
cddb8a5c 1322 struct mm_struct *mm = vma->vm_mm;
1da177e4 1323
cddb8a5c 1324 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1325 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1326 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1327 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1328}
1329
1330/**
1331 * zap_page_range - remove user pages in a given range
1332 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1333 * @start: starting address of pages to zap
1da177e4 1334 * @size: number of bytes to zap
8a5f14a2 1335 * @details: details of shared cache invalidation
f5cc4eef
AV
1336 *
1337 * Caller must protect the VMA list
1da177e4 1338 */
7e027b14 1339void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1340 unsigned long size, struct zap_details *details)
1341{
1342 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1343 struct mmu_gather tlb;
7e027b14 1344 unsigned long end = start + size;
1da177e4 1345
1da177e4 1346 lru_add_drain();
2b047252 1347 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1348 update_hiwater_rss(mm);
7e027b14
LT
1349 mmu_notifier_invalidate_range_start(mm, start, end);
1350 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1351 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1352 mmu_notifier_invalidate_range_end(mm, start, end);
1353 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1354}
1355
f5cc4eef
AV
1356/**
1357 * zap_page_range_single - remove user pages in a given range
1358 * @vma: vm_area_struct holding the applicable pages
1359 * @address: starting address of pages to zap
1360 * @size: number of bytes to zap
8a5f14a2 1361 * @details: details of shared cache invalidation
f5cc4eef
AV
1362 *
1363 * The range must fit into one VMA.
1da177e4 1364 */
f5cc4eef 1365static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1366 unsigned long size, struct zap_details *details)
1367{
1368 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1369 struct mmu_gather tlb;
1da177e4 1370 unsigned long end = address + size;
1da177e4 1371
1da177e4 1372 lru_add_drain();
2b047252 1373 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1374 update_hiwater_rss(mm);
f5cc4eef 1375 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1376 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1377 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1378 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1379}
1380
c627f9cc
JS
1381/**
1382 * zap_vma_ptes - remove ptes mapping the vma
1383 * @vma: vm_area_struct holding ptes to be zapped
1384 * @address: starting address of pages to zap
1385 * @size: number of bytes to zap
1386 *
1387 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1388 *
1389 * The entire address range must be fully contained within the vma.
1390 *
1391 * Returns 0 if successful.
1392 */
1393int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1394 unsigned long size)
1395{
1396 if (address < vma->vm_start || address + size > vma->vm_end ||
1397 !(vma->vm_flags & VM_PFNMAP))
1398 return -1;
f5cc4eef 1399 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1400 return 0;
1401}
1402EXPORT_SYMBOL_GPL(zap_vma_ptes);
1403
25ca1d6c 1404pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1405 spinlock_t **ptl)
c9cfcddf
LT
1406{
1407 pgd_t * pgd = pgd_offset(mm, addr);
1408 pud_t * pud = pud_alloc(mm, pgd, addr);
1409 if (pud) {
49c91fb0 1410 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1411 if (pmd) {
1412 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1413 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1414 }
c9cfcddf
LT
1415 }
1416 return NULL;
1417}
1418
238f58d8
LT
1419/*
1420 * This is the old fallback for page remapping.
1421 *
1422 * For historical reasons, it only allows reserved pages. Only
1423 * old drivers should use this, and they needed to mark their
1424 * pages reserved for the old functions anyway.
1425 */
423bad60
NP
1426static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1427 struct page *page, pgprot_t prot)
238f58d8 1428{
423bad60 1429 struct mm_struct *mm = vma->vm_mm;
238f58d8 1430 int retval;
c9cfcddf 1431 pte_t *pte;
8a9f3ccd
BS
1432 spinlock_t *ptl;
1433
238f58d8 1434 retval = -EINVAL;
a145dd41 1435 if (PageAnon(page))
5b4e655e 1436 goto out;
238f58d8
LT
1437 retval = -ENOMEM;
1438 flush_dcache_page(page);
c9cfcddf 1439 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1440 if (!pte)
5b4e655e 1441 goto out;
238f58d8
LT
1442 retval = -EBUSY;
1443 if (!pte_none(*pte))
1444 goto out_unlock;
1445
1446 /* Ok, finally just insert the thing.. */
1447 get_page(page);
eca56ff9 1448 inc_mm_counter_fast(mm, mm_counter_file(page));
238f58d8
LT
1449 page_add_file_rmap(page);
1450 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1451
1452 retval = 0;
8a9f3ccd
BS
1453 pte_unmap_unlock(pte, ptl);
1454 return retval;
238f58d8
LT
1455out_unlock:
1456 pte_unmap_unlock(pte, ptl);
1457out:
1458 return retval;
1459}
1460
bfa5bf6d
REB
1461/**
1462 * vm_insert_page - insert single page into user vma
1463 * @vma: user vma to map to
1464 * @addr: target user address of this page
1465 * @page: source kernel page
1466 *
a145dd41
LT
1467 * This allows drivers to insert individual pages they've allocated
1468 * into a user vma.
1469 *
1470 * The page has to be a nice clean _individual_ kernel allocation.
1471 * If you allocate a compound page, you need to have marked it as
1472 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1473 * (see split_page()).
a145dd41
LT
1474 *
1475 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1476 * took an arbitrary page protection parameter. This doesn't allow
1477 * that. Your vma protection will have to be set up correctly, which
1478 * means that if you want a shared writable mapping, you'd better
1479 * ask for a shared writable mapping!
1480 *
1481 * The page does not need to be reserved.
4b6e1e37
KK
1482 *
1483 * Usually this function is called from f_op->mmap() handler
1484 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1485 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1486 * function from other places, for example from page-fault handler.
a145dd41 1487 */
423bad60
NP
1488int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1489 struct page *page)
a145dd41
LT
1490{
1491 if (addr < vma->vm_start || addr >= vma->vm_end)
1492 return -EFAULT;
1493 if (!page_count(page))
1494 return -EINVAL;
4b6e1e37
KK
1495 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1496 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1497 BUG_ON(vma->vm_flags & VM_PFNMAP);
1498 vma->vm_flags |= VM_MIXEDMAP;
1499 }
423bad60 1500 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1501}
e3c3374f 1502EXPORT_SYMBOL(vm_insert_page);
a145dd41 1503
423bad60 1504static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1505 pfn_t pfn, pgprot_t prot)
423bad60
NP
1506{
1507 struct mm_struct *mm = vma->vm_mm;
1508 int retval;
1509 pte_t *pte, entry;
1510 spinlock_t *ptl;
1511
1512 retval = -ENOMEM;
1513 pte = get_locked_pte(mm, addr, &ptl);
1514 if (!pte)
1515 goto out;
1516 retval = -EBUSY;
1517 if (!pte_none(*pte))
1518 goto out_unlock;
1519
1520 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1521 if (pfn_t_devmap(pfn))
1522 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1523 else
1524 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
423bad60 1525 set_pte_at(mm, addr, pte, entry);
4b3073e1 1526 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1527
1528 retval = 0;
1529out_unlock:
1530 pte_unmap_unlock(pte, ptl);
1531out:
1532 return retval;
1533}
1534
e0dc0d8f
NP
1535/**
1536 * vm_insert_pfn - insert single pfn into user vma
1537 * @vma: user vma to map to
1538 * @addr: target user address of this page
1539 * @pfn: source kernel pfn
1540 *
c462f179 1541 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1542 * they've allocated into a user vma. Same comments apply.
1543 *
1544 * This function should only be called from a vm_ops->fault handler, and
1545 * in that case the handler should return NULL.
0d71d10a
NP
1546 *
1547 * vma cannot be a COW mapping.
1548 *
1549 * As this is called only for pages that do not currently exist, we
1550 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1551 */
1552int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1553 unsigned long pfn)
1745cbc5
AL
1554{
1555 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1556}
1557EXPORT_SYMBOL(vm_insert_pfn);
1558
1559/**
1560 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1561 * @vma: user vma to map to
1562 * @addr: target user address of this page
1563 * @pfn: source kernel pfn
1564 * @pgprot: pgprot flags for the inserted page
1565 *
1566 * This is exactly like vm_insert_pfn, except that it allows drivers to
1567 * to override pgprot on a per-page basis.
1568 *
1569 * This only makes sense for IO mappings, and it makes no sense for
1570 * cow mappings. In general, using multiple vmas is preferable;
1571 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1572 * impractical.
1573 */
1574int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1575 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1576{
2ab64037 1577 int ret;
7e675137
NP
1578 /*
1579 * Technically, architectures with pte_special can avoid all these
1580 * restrictions (same for remap_pfn_range). However we would like
1581 * consistency in testing and feature parity among all, so we should
1582 * try to keep these invariants in place for everybody.
1583 */
b379d790
JH
1584 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1585 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1586 (VM_PFNMAP|VM_MIXEDMAP));
1587 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1588 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1589
423bad60
NP
1590 if (addr < vma->vm_start || addr >= vma->vm_end)
1591 return -EFAULT;
f25748e3 1592 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
2ab64037 1593 return -EINVAL;
1594
01c8f1c4 1595 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
2ab64037 1596
2ab64037 1597 return ret;
423bad60 1598}
1745cbc5 1599EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1600
423bad60 1601int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1602 pfn_t pfn)
423bad60
NP
1603{
1604 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1605
423bad60
NP
1606 if (addr < vma->vm_start || addr >= vma->vm_end)
1607 return -EFAULT;
e0dc0d8f 1608
423bad60
NP
1609 /*
1610 * If we don't have pte special, then we have to use the pfn_valid()
1611 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1612 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1613 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1614 * without pte special, it would there be refcounted as a normal page.
423bad60 1615 */
03fc2da6 1616 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1617 struct page *page;
1618
03fc2da6
DW
1619 /*
1620 * At this point we are committed to insert_page()
1621 * regardless of whether the caller specified flags that
1622 * result in pfn_t_has_page() == false.
1623 */
1624 page = pfn_to_page(pfn_t_to_pfn(pfn));
423bad60
NP
1625 return insert_page(vma, addr, page, vma->vm_page_prot);
1626 }
1627 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1628}
423bad60 1629EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1630
1da177e4
LT
1631/*
1632 * maps a range of physical memory into the requested pages. the old
1633 * mappings are removed. any references to nonexistent pages results
1634 * in null mappings (currently treated as "copy-on-access")
1635 */
1636static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1637 unsigned long addr, unsigned long end,
1638 unsigned long pfn, pgprot_t prot)
1639{
1640 pte_t *pte;
c74df32c 1641 spinlock_t *ptl;
1da177e4 1642
c74df32c 1643 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1644 if (!pte)
1645 return -ENOMEM;
6606c3e0 1646 arch_enter_lazy_mmu_mode();
1da177e4
LT
1647 do {
1648 BUG_ON(!pte_none(*pte));
7e675137 1649 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1650 pfn++;
1651 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1652 arch_leave_lazy_mmu_mode();
c74df32c 1653 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1654 return 0;
1655}
1656
1657static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1658 unsigned long addr, unsigned long end,
1659 unsigned long pfn, pgprot_t prot)
1660{
1661 pmd_t *pmd;
1662 unsigned long next;
1663
1664 pfn -= addr >> PAGE_SHIFT;
1665 pmd = pmd_alloc(mm, pud, addr);
1666 if (!pmd)
1667 return -ENOMEM;
f66055ab 1668 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1669 do {
1670 next = pmd_addr_end(addr, end);
1671 if (remap_pte_range(mm, pmd, addr, next,
1672 pfn + (addr >> PAGE_SHIFT), prot))
1673 return -ENOMEM;
1674 } while (pmd++, addr = next, addr != end);
1675 return 0;
1676}
1677
1678static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1679 unsigned long addr, unsigned long end,
1680 unsigned long pfn, pgprot_t prot)
1681{
1682 pud_t *pud;
1683 unsigned long next;
1684
1685 pfn -= addr >> PAGE_SHIFT;
1686 pud = pud_alloc(mm, pgd, addr);
1687 if (!pud)
1688 return -ENOMEM;
1689 do {
1690 next = pud_addr_end(addr, end);
1691 if (remap_pmd_range(mm, pud, addr, next,
1692 pfn + (addr >> PAGE_SHIFT), prot))
1693 return -ENOMEM;
1694 } while (pud++, addr = next, addr != end);
1695 return 0;
1696}
1697
bfa5bf6d
REB
1698/**
1699 * remap_pfn_range - remap kernel memory to userspace
1700 * @vma: user vma to map to
1701 * @addr: target user address to start at
1702 * @pfn: physical address of kernel memory
1703 * @size: size of map area
1704 * @prot: page protection flags for this mapping
1705 *
1706 * Note: this is only safe if the mm semaphore is held when called.
1707 */
1da177e4
LT
1708int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1709 unsigned long pfn, unsigned long size, pgprot_t prot)
1710{
1711 pgd_t *pgd;
1712 unsigned long next;
2d15cab8 1713 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1714 struct mm_struct *mm = vma->vm_mm;
1715 int err;
1716
1717 /*
1718 * Physically remapped pages are special. Tell the
1719 * rest of the world about it:
1720 * VM_IO tells people not to look at these pages
1721 * (accesses can have side effects).
6aab341e
LT
1722 * VM_PFNMAP tells the core MM that the base pages are just
1723 * raw PFN mappings, and do not have a "struct page" associated
1724 * with them.
314e51b9
KK
1725 * VM_DONTEXPAND
1726 * Disable vma merging and expanding with mremap().
1727 * VM_DONTDUMP
1728 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1729 *
1730 * There's a horrible special case to handle copy-on-write
1731 * behaviour that some programs depend on. We mark the "original"
1732 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1733 * See vm_normal_page() for details.
1da177e4 1734 */
b3b9c293
KK
1735 if (is_cow_mapping(vma->vm_flags)) {
1736 if (addr != vma->vm_start || end != vma->vm_end)
1737 return -EINVAL;
fb155c16 1738 vma->vm_pgoff = pfn;
b3b9c293
KK
1739 }
1740
1741 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1742 if (err)
3c8bb73a 1743 return -EINVAL;
fb155c16 1744
314e51b9 1745 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1746
1747 BUG_ON(addr >= end);
1748 pfn -= addr >> PAGE_SHIFT;
1749 pgd = pgd_offset(mm, addr);
1750 flush_cache_range(vma, addr, end);
1da177e4
LT
1751 do {
1752 next = pgd_addr_end(addr, end);
1753 err = remap_pud_range(mm, pgd, addr, next,
1754 pfn + (addr >> PAGE_SHIFT), prot);
1755 if (err)
1756 break;
1757 } while (pgd++, addr = next, addr != end);
2ab64037 1758
1759 if (err)
5180da41 1760 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 1761
1da177e4
LT
1762 return err;
1763}
1764EXPORT_SYMBOL(remap_pfn_range);
1765
b4cbb197
LT
1766/**
1767 * vm_iomap_memory - remap memory to userspace
1768 * @vma: user vma to map to
1769 * @start: start of area
1770 * @len: size of area
1771 *
1772 * This is a simplified io_remap_pfn_range() for common driver use. The
1773 * driver just needs to give us the physical memory range to be mapped,
1774 * we'll figure out the rest from the vma information.
1775 *
1776 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1777 * whatever write-combining details or similar.
1778 */
1779int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1780{
1781 unsigned long vm_len, pfn, pages;
1782
1783 /* Check that the physical memory area passed in looks valid */
1784 if (start + len < start)
1785 return -EINVAL;
1786 /*
1787 * You *really* shouldn't map things that aren't page-aligned,
1788 * but we've historically allowed it because IO memory might
1789 * just have smaller alignment.
1790 */
1791 len += start & ~PAGE_MASK;
1792 pfn = start >> PAGE_SHIFT;
1793 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1794 if (pfn + pages < pfn)
1795 return -EINVAL;
1796
1797 /* We start the mapping 'vm_pgoff' pages into the area */
1798 if (vma->vm_pgoff > pages)
1799 return -EINVAL;
1800 pfn += vma->vm_pgoff;
1801 pages -= vma->vm_pgoff;
1802
1803 /* Can we fit all of the mapping? */
1804 vm_len = vma->vm_end - vma->vm_start;
1805 if (vm_len >> PAGE_SHIFT > pages)
1806 return -EINVAL;
1807
1808 /* Ok, let it rip */
1809 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1810}
1811EXPORT_SYMBOL(vm_iomap_memory);
1812
aee16b3c
JF
1813static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1814 unsigned long addr, unsigned long end,
1815 pte_fn_t fn, void *data)
1816{
1817 pte_t *pte;
1818 int err;
2f569afd 1819 pgtable_t token;
94909914 1820 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1821
1822 pte = (mm == &init_mm) ?
1823 pte_alloc_kernel(pmd, addr) :
1824 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1825 if (!pte)
1826 return -ENOMEM;
1827
1828 BUG_ON(pmd_huge(*pmd));
1829
38e0edb1
JF
1830 arch_enter_lazy_mmu_mode();
1831
2f569afd 1832 token = pmd_pgtable(*pmd);
aee16b3c
JF
1833
1834 do {
c36987e2 1835 err = fn(pte++, token, addr, data);
aee16b3c
JF
1836 if (err)
1837 break;
c36987e2 1838 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1839
38e0edb1
JF
1840 arch_leave_lazy_mmu_mode();
1841
aee16b3c
JF
1842 if (mm != &init_mm)
1843 pte_unmap_unlock(pte-1, ptl);
1844 return err;
1845}
1846
1847static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1848 unsigned long addr, unsigned long end,
1849 pte_fn_t fn, void *data)
1850{
1851 pmd_t *pmd;
1852 unsigned long next;
1853 int err;
1854
ceb86879
AK
1855 BUG_ON(pud_huge(*pud));
1856
aee16b3c
JF
1857 pmd = pmd_alloc(mm, pud, addr);
1858 if (!pmd)
1859 return -ENOMEM;
1860 do {
1861 next = pmd_addr_end(addr, end);
1862 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1863 if (err)
1864 break;
1865 } while (pmd++, addr = next, addr != end);
1866 return err;
1867}
1868
1869static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1870 unsigned long addr, unsigned long end,
1871 pte_fn_t fn, void *data)
1872{
1873 pud_t *pud;
1874 unsigned long next;
1875 int err;
1876
1877 pud = pud_alloc(mm, pgd, addr);
1878 if (!pud)
1879 return -ENOMEM;
1880 do {
1881 next = pud_addr_end(addr, end);
1882 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1883 if (err)
1884 break;
1885 } while (pud++, addr = next, addr != end);
1886 return err;
1887}
1888
1889/*
1890 * Scan a region of virtual memory, filling in page tables as necessary
1891 * and calling a provided function on each leaf page table.
1892 */
1893int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1894 unsigned long size, pte_fn_t fn, void *data)
1895{
1896 pgd_t *pgd;
1897 unsigned long next;
57250a5b 1898 unsigned long end = addr + size;
aee16b3c
JF
1899 int err;
1900
1901 BUG_ON(addr >= end);
1902 pgd = pgd_offset(mm, addr);
1903 do {
1904 next = pgd_addr_end(addr, end);
1905 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1906 if (err)
1907 break;
1908 } while (pgd++, addr = next, addr != end);
57250a5b 1909
aee16b3c
JF
1910 return err;
1911}
1912EXPORT_SYMBOL_GPL(apply_to_page_range);
1913
8f4e2101 1914/*
9b4bdd2f
KS
1915 * handle_pte_fault chooses page fault handler according to an entry which was
1916 * read non-atomically. Before making any commitment, on those architectures
1917 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1918 * parts, do_swap_page must check under lock before unmapping the pte and
1919 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 1920 * and do_anonymous_page can safely check later on).
8f4e2101 1921 */
4c21e2f2 1922static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1923 pte_t *page_table, pte_t orig_pte)
1924{
1925 int same = 1;
1926#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1927 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1928 spinlock_t *ptl = pte_lockptr(mm, pmd);
1929 spin_lock(ptl);
8f4e2101 1930 same = pte_same(*page_table, orig_pte);
4c21e2f2 1931 spin_unlock(ptl);
8f4e2101
HD
1932 }
1933#endif
1934 pte_unmap(page_table);
1935 return same;
1936}
1937
9de455b2 1938static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1939{
0abdd7a8
DW
1940 debug_dma_assert_idle(src);
1941
6aab341e
LT
1942 /*
1943 * If the source page was a PFN mapping, we don't have
1944 * a "struct page" for it. We do a best-effort copy by
1945 * just copying from the original user address. If that
1946 * fails, we just zero-fill it. Live with it.
1947 */
1948 if (unlikely(!src)) {
9b04c5fe 1949 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1950 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1951
1952 /*
1953 * This really shouldn't fail, because the page is there
1954 * in the page tables. But it might just be unreadable,
1955 * in which case we just give up and fill the result with
1956 * zeroes.
1957 */
1958 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 1959 clear_page(kaddr);
9b04c5fe 1960 kunmap_atomic(kaddr);
c4ec7b0d 1961 flush_dcache_page(dst);
0ed361de
NP
1962 } else
1963 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1964}
1965
c20cd45e
MH
1966static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1967{
1968 struct file *vm_file = vma->vm_file;
1969
1970 if (vm_file)
1971 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1972
1973 /*
1974 * Special mappings (e.g. VDSO) do not have any file so fake
1975 * a default GFP_KERNEL for them.
1976 */
1977 return GFP_KERNEL;
1978}
1979
fb09a464
KS
1980/*
1981 * Notify the address space that the page is about to become writable so that
1982 * it can prohibit this or wait for the page to get into an appropriate state.
1983 *
1984 * We do this without the lock held, so that it can sleep if it needs to.
1985 */
1986static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1987 unsigned long address)
1988{
1989 struct vm_fault vmf;
1990 int ret;
1991
1992 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1993 vmf.pgoff = page->index;
1994 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c20cd45e 1995 vmf.gfp_mask = __get_fault_gfp_mask(vma);
fb09a464 1996 vmf.page = page;
2e4cdab0 1997 vmf.cow_page = NULL;
fb09a464
KS
1998
1999 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2000 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2001 return ret;
2002 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2003 lock_page(page);
2004 if (!page->mapping) {
2005 unlock_page(page);
2006 return 0; /* retry */
2007 }
2008 ret |= VM_FAULT_LOCKED;
2009 } else
2010 VM_BUG_ON_PAGE(!PageLocked(page), page);
2011 return ret;
2012}
2013
4e047f89
SR
2014/*
2015 * Handle write page faults for pages that can be reused in the current vma
2016 *
2017 * This can happen either due to the mapping being with the VM_SHARED flag,
2018 * or due to us being the last reference standing to the page. In either
2019 * case, all we need to do here is to mark the page as writable and update
2020 * any related book-keeping.
2021 */
2022static inline int wp_page_reuse(struct mm_struct *mm,
2023 struct vm_area_struct *vma, unsigned long address,
2024 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2025 struct page *page, int page_mkwrite,
2026 int dirty_shared)
2027 __releases(ptl)
2028{
2029 pte_t entry;
2030 /*
2031 * Clear the pages cpupid information as the existing
2032 * information potentially belongs to a now completely
2033 * unrelated process.
2034 */
2035 if (page)
2036 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2037
2038 flush_cache_page(vma, address, pte_pfn(orig_pte));
2039 entry = pte_mkyoung(orig_pte);
2040 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2041 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2042 update_mmu_cache(vma, address, page_table);
2043 pte_unmap_unlock(page_table, ptl);
2044
2045 if (dirty_shared) {
2046 struct address_space *mapping;
2047 int dirtied;
2048
2049 if (!page_mkwrite)
2050 lock_page(page);
2051
2052 dirtied = set_page_dirty(page);
2053 VM_BUG_ON_PAGE(PageAnon(page), page);
2054 mapping = page->mapping;
2055 unlock_page(page);
2056 page_cache_release(page);
2057
2058 if ((dirtied || page_mkwrite) && mapping) {
2059 /*
2060 * Some device drivers do not set page.mapping
2061 * but still dirty their pages
2062 */
2063 balance_dirty_pages_ratelimited(mapping);
2064 }
2065
2066 if (!page_mkwrite)
2067 file_update_time(vma->vm_file);
2068 }
2069
2070 return VM_FAULT_WRITE;
2071}
2072
2f38ab2c
SR
2073/*
2074 * Handle the case of a page which we actually need to copy to a new page.
2075 *
2076 * Called with mmap_sem locked and the old page referenced, but
2077 * without the ptl held.
2078 *
2079 * High level logic flow:
2080 *
2081 * - Allocate a page, copy the content of the old page to the new one.
2082 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2083 * - Take the PTL. If the pte changed, bail out and release the allocated page
2084 * - If the pte is still the way we remember it, update the page table and all
2085 * relevant references. This includes dropping the reference the page-table
2086 * held to the old page, as well as updating the rmap.
2087 * - In any case, unlock the PTL and drop the reference we took to the old page.
2088 */
2089static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2090 unsigned long address, pte_t *page_table, pmd_t *pmd,
2091 pte_t orig_pte, struct page *old_page)
2092{
2093 struct page *new_page = NULL;
2094 spinlock_t *ptl = NULL;
2095 pte_t entry;
2096 int page_copied = 0;
2097 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2098 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2099 struct mem_cgroup *memcg;
2100
2101 if (unlikely(anon_vma_prepare(vma)))
2102 goto oom;
2103
2104 if (is_zero_pfn(pte_pfn(orig_pte))) {
2105 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2106 if (!new_page)
2107 goto oom;
2108 } else {
2109 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2110 if (!new_page)
2111 goto oom;
2112 cow_user_page(new_page, old_page, address, vma);
2113 }
2f38ab2c 2114
f627c2f5 2115 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2116 goto oom_free_new;
2117
eb3c24f3
MG
2118 __SetPageUptodate(new_page);
2119
2f38ab2c
SR
2120 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2121
2122 /*
2123 * Re-check the pte - we dropped the lock
2124 */
2125 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2126 if (likely(pte_same(*page_table, orig_pte))) {
2127 if (old_page) {
2128 if (!PageAnon(old_page)) {
eca56ff9
JM
2129 dec_mm_counter_fast(mm,
2130 mm_counter_file(old_page));
2f38ab2c
SR
2131 inc_mm_counter_fast(mm, MM_ANONPAGES);
2132 }
2133 } else {
2134 inc_mm_counter_fast(mm, MM_ANONPAGES);
2135 }
2136 flush_cache_page(vma, address, pte_pfn(orig_pte));
2137 entry = mk_pte(new_page, vma->vm_page_prot);
2138 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2139 /*
2140 * Clear the pte entry and flush it first, before updating the
2141 * pte with the new entry. This will avoid a race condition
2142 * seen in the presence of one thread doing SMC and another
2143 * thread doing COW.
2144 */
2145 ptep_clear_flush_notify(vma, address, page_table);
d281ee61 2146 page_add_new_anon_rmap(new_page, vma, address, false);
f627c2f5 2147 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2148 lru_cache_add_active_or_unevictable(new_page, vma);
2149 /*
2150 * We call the notify macro here because, when using secondary
2151 * mmu page tables (such as kvm shadow page tables), we want the
2152 * new page to be mapped directly into the secondary page table.
2153 */
2154 set_pte_at_notify(mm, address, page_table, entry);
2155 update_mmu_cache(vma, address, page_table);
2156 if (old_page) {
2157 /*
2158 * Only after switching the pte to the new page may
2159 * we remove the mapcount here. Otherwise another
2160 * process may come and find the rmap count decremented
2161 * before the pte is switched to the new page, and
2162 * "reuse" the old page writing into it while our pte
2163 * here still points into it and can be read by other
2164 * threads.
2165 *
2166 * The critical issue is to order this
2167 * page_remove_rmap with the ptp_clear_flush above.
2168 * Those stores are ordered by (if nothing else,)
2169 * the barrier present in the atomic_add_negative
2170 * in page_remove_rmap.
2171 *
2172 * Then the TLB flush in ptep_clear_flush ensures that
2173 * no process can access the old page before the
2174 * decremented mapcount is visible. And the old page
2175 * cannot be reused until after the decremented
2176 * mapcount is visible. So transitively, TLBs to
2177 * old page will be flushed before it can be reused.
2178 */
d281ee61 2179 page_remove_rmap(old_page, false);
2f38ab2c
SR
2180 }
2181
2182 /* Free the old page.. */
2183 new_page = old_page;
2184 page_copied = 1;
2185 } else {
f627c2f5 2186 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2187 }
2188
2189 if (new_page)
2190 page_cache_release(new_page);
2191
2192 pte_unmap_unlock(page_table, ptl);
2193 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
e90309c9 2194 if (old_page) {
2f38ab2c
SR
2195 /*
2196 * Don't let another task, with possibly unlocked vma,
2197 * keep the mlocked page.
2198 */
2199 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2200 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2201 if (PageMlocked(old_page))
2202 munlock_vma_page(old_page);
2f38ab2c
SR
2203 unlock_page(old_page);
2204 }
2205 page_cache_release(old_page);
2206 }
2207 return page_copied ? VM_FAULT_WRITE : 0;
2208oom_free_new:
2209 page_cache_release(new_page);
2210oom:
2211 if (old_page)
2212 page_cache_release(old_page);
2213 return VM_FAULT_OOM;
2214}
2215
dd906184
BH
2216/*
2217 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2218 * mapping
2219 */
2220static int wp_pfn_shared(struct mm_struct *mm,
2221 struct vm_area_struct *vma, unsigned long address,
2222 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2223 pmd_t *pmd)
2224{
2225 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2226 struct vm_fault vmf = {
2227 .page = NULL,
2228 .pgoff = linear_page_index(vma, address),
2229 .virtual_address = (void __user *)(address & PAGE_MASK),
2230 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2231 };
2232 int ret;
2233
2234 pte_unmap_unlock(page_table, ptl);
2235 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2236 if (ret & VM_FAULT_ERROR)
2237 return ret;
2238 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2239 /*
2240 * We might have raced with another page fault while we
2241 * released the pte_offset_map_lock.
2242 */
2243 if (!pte_same(*page_table, orig_pte)) {
2244 pte_unmap_unlock(page_table, ptl);
2245 return 0;
2246 }
2247 }
2248 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2249 NULL, 0, 0);
2250}
2251
93e478d4
SR
2252static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2253 unsigned long address, pte_t *page_table,
2254 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2255 struct page *old_page)
2256 __releases(ptl)
2257{
2258 int page_mkwrite = 0;
2259
2260 page_cache_get(old_page);
2261
93e478d4
SR
2262 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2263 int tmp;
2264
2265 pte_unmap_unlock(page_table, ptl);
2266 tmp = do_page_mkwrite(vma, old_page, address);
2267 if (unlikely(!tmp || (tmp &
2268 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2269 page_cache_release(old_page);
2270 return tmp;
2271 }
2272 /*
2273 * Since we dropped the lock we need to revalidate
2274 * the PTE as someone else may have changed it. If
2275 * they did, we just return, as we can count on the
2276 * MMU to tell us if they didn't also make it writable.
2277 */
2278 page_table = pte_offset_map_lock(mm, pmd, address,
2279 &ptl);
2280 if (!pte_same(*page_table, orig_pte)) {
2281 unlock_page(old_page);
2282 pte_unmap_unlock(page_table, ptl);
2283 page_cache_release(old_page);
2284 return 0;
2285 }
2286 page_mkwrite = 1;
2287 }
2288
2289 return wp_page_reuse(mm, vma, address, page_table, ptl,
2290 orig_pte, old_page, page_mkwrite, 1);
2291}
2292
1da177e4
LT
2293/*
2294 * This routine handles present pages, when users try to write
2295 * to a shared page. It is done by copying the page to a new address
2296 * and decrementing the shared-page counter for the old page.
2297 *
1da177e4
LT
2298 * Note that this routine assumes that the protection checks have been
2299 * done by the caller (the low-level page fault routine in most cases).
2300 * Thus we can safely just mark it writable once we've done any necessary
2301 * COW.
2302 *
2303 * We also mark the page dirty at this point even though the page will
2304 * change only once the write actually happens. This avoids a few races,
2305 * and potentially makes it more efficient.
2306 *
8f4e2101
HD
2307 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2308 * but allow concurrent faults), with pte both mapped and locked.
2309 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2310 */
65500d23
HD
2311static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2312 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2313 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2314 __releases(ptl)
1da177e4 2315{
2f38ab2c 2316 struct page *old_page;
1da177e4 2317
6aab341e 2318 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2319 if (!old_page) {
2320 /*
64e45507
PF
2321 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2322 * VM_PFNMAP VMA.
251b97f5
PZ
2323 *
2324 * We should not cow pages in a shared writeable mapping.
dd906184 2325 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2326 */
2327 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2328 (VM_WRITE|VM_SHARED))
dd906184
BH
2329 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2330 orig_pte, pmd);
2f38ab2c
SR
2331
2332 pte_unmap_unlock(page_table, ptl);
2333 return wp_page_copy(mm, vma, address, page_table, pmd,
2334 orig_pte, old_page);
251b97f5 2335 }
1da177e4 2336
d08b3851 2337 /*
ee6a6457
PZ
2338 * Take out anonymous pages first, anonymous shared vmas are
2339 * not dirty accountable.
d08b3851 2340 */
9a840895 2341 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2342 if (!trylock_page(old_page)) {
2343 page_cache_get(old_page);
2344 pte_unmap_unlock(page_table, ptl);
2345 lock_page(old_page);
2346 page_table = pte_offset_map_lock(mm, pmd, address,
2347 &ptl);
2348 if (!pte_same(*page_table, orig_pte)) {
2349 unlock_page(old_page);
28766805
SR
2350 pte_unmap_unlock(page_table, ptl);
2351 page_cache_release(old_page);
2352 return 0;
ab967d86
HD
2353 }
2354 page_cache_release(old_page);
ee6a6457 2355 }
b009c024 2356 if (reuse_swap_page(old_page)) {
c44b6743
RR
2357 /*
2358 * The page is all ours. Move it to our anon_vma so
2359 * the rmap code will not search our parent or siblings.
2360 * Protected against the rmap code by the page lock.
2361 */
2362 page_move_anon_rmap(old_page, vma, address);
b009c024 2363 unlock_page(old_page);
4e047f89
SR
2364 return wp_page_reuse(mm, vma, address, page_table, ptl,
2365 orig_pte, old_page, 0, 0);
b009c024 2366 }
ab967d86 2367 unlock_page(old_page);
ee6a6457 2368 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2369 (VM_WRITE|VM_SHARED))) {
93e478d4
SR
2370 return wp_page_shared(mm, vma, address, page_table, pmd,
2371 ptl, orig_pte, old_page);
1da177e4 2372 }
1da177e4
LT
2373
2374 /*
2375 * Ok, we need to copy. Oh, well..
2376 */
b5810039 2377 page_cache_get(old_page);
28766805 2378
8f4e2101 2379 pte_unmap_unlock(page_table, ptl);
2f38ab2c
SR
2380 return wp_page_copy(mm, vma, address, page_table, pmd,
2381 orig_pte, old_page);
1da177e4
LT
2382}
2383
97a89413 2384static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2385 unsigned long start_addr, unsigned long end_addr,
2386 struct zap_details *details)
2387{
f5cc4eef 2388 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2389}
2390
6b2dbba8 2391static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2392 struct zap_details *details)
2393{
2394 struct vm_area_struct *vma;
1da177e4
LT
2395 pgoff_t vba, vea, zba, zea;
2396
6b2dbba8 2397 vma_interval_tree_foreach(vma, root,
1da177e4 2398 details->first_index, details->last_index) {
1da177e4
LT
2399
2400 vba = vma->vm_pgoff;
d6e93217 2401 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2402 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2403 zba = details->first_index;
2404 if (zba < vba)
2405 zba = vba;
2406 zea = details->last_index;
2407 if (zea > vea)
2408 zea = vea;
2409
97a89413 2410 unmap_mapping_range_vma(vma,
1da177e4
LT
2411 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2412 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2413 details);
1da177e4
LT
2414 }
2415}
2416
1da177e4 2417/**
8a5f14a2
KS
2418 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2419 * address_space corresponding to the specified page range in the underlying
2420 * file.
2421 *
3d41088f 2422 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2423 * @holebegin: byte in first page to unmap, relative to the start of
2424 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2425 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2426 * must keep the partial page. In contrast, we must get rid of
2427 * partial pages.
2428 * @holelen: size of prospective hole in bytes. This will be rounded
2429 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2430 * end of the file.
2431 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2432 * but 0 when invalidating pagecache, don't throw away private data.
2433 */
2434void unmap_mapping_range(struct address_space *mapping,
2435 loff_t const holebegin, loff_t const holelen, int even_cows)
2436{
2437 struct zap_details details;
2438 pgoff_t hba = holebegin >> PAGE_SHIFT;
2439 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2440
2441 /* Check for overflow. */
2442 if (sizeof(holelen) > sizeof(hlen)) {
2443 long long holeend =
2444 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2445 if (holeend & ~(long long)ULONG_MAX)
2446 hlen = ULONG_MAX - hba + 1;
2447 }
2448
2449 details.check_mapping = even_cows? NULL: mapping;
1da177e4
LT
2450 details.first_index = hba;
2451 details.last_index = hba + hlen - 1;
2452 if (details.last_index < details.first_index)
2453 details.last_index = ULONG_MAX;
1da177e4 2454
0f90cc66
RZ
2455
2456 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
46c043ed 2457 i_mmap_lock_write(mapping);
6b2dbba8 2458 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2459 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2460 i_mmap_unlock_write(mapping);
1da177e4
LT
2461}
2462EXPORT_SYMBOL(unmap_mapping_range);
2463
1da177e4 2464/*
8f4e2101
HD
2465 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2466 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2467 * We return with pte unmapped and unlocked.
2468 *
2469 * We return with the mmap_sem locked or unlocked in the same cases
2470 * as does filemap_fault().
1da177e4 2471 */
65500d23
HD
2472static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2473 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2474 unsigned int flags, pte_t orig_pte)
1da177e4 2475{
8f4e2101 2476 spinlock_t *ptl;
56f31801 2477 struct page *page, *swapcache;
00501b53 2478 struct mem_cgroup *memcg;
65500d23 2479 swp_entry_t entry;
1da177e4 2480 pte_t pte;
d065bd81 2481 int locked;
ad8c2ee8 2482 int exclusive = 0;
83c54070 2483 int ret = 0;
1da177e4 2484
4c21e2f2 2485 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2486 goto out;
65500d23
HD
2487
2488 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2489 if (unlikely(non_swap_entry(entry))) {
2490 if (is_migration_entry(entry)) {
2491 migration_entry_wait(mm, pmd, address);
2492 } else if (is_hwpoison_entry(entry)) {
2493 ret = VM_FAULT_HWPOISON;
2494 } else {
2495 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2496 ret = VM_FAULT_SIGBUS;
d1737fdb 2497 }
0697212a
CL
2498 goto out;
2499 }
0ff92245 2500 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2501 page = lookup_swap_cache(entry);
2502 if (!page) {
02098fea
HD
2503 page = swapin_readahead(entry,
2504 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2505 if (!page) {
2506 /*
8f4e2101
HD
2507 * Back out if somebody else faulted in this pte
2508 * while we released the pte lock.
1da177e4 2509 */
8f4e2101 2510 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2511 if (likely(pte_same(*page_table, orig_pte)))
2512 ret = VM_FAULT_OOM;
0ff92245 2513 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2514 goto unlock;
1da177e4
LT
2515 }
2516
2517 /* Had to read the page from swap area: Major fault */
2518 ret = VM_FAULT_MAJOR;
f8891e5e 2519 count_vm_event(PGMAJFAULT);
456f998e 2520 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2521 } else if (PageHWPoison(page)) {
71f72525
WF
2522 /*
2523 * hwpoisoned dirty swapcache pages are kept for killing
2524 * owner processes (which may be unknown at hwpoison time)
2525 */
d1737fdb
AK
2526 ret = VM_FAULT_HWPOISON;
2527 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2528 swapcache = page;
4779cb31 2529 goto out_release;
1da177e4
LT
2530 }
2531
56f31801 2532 swapcache = page;
d065bd81 2533 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2534
073e587e 2535 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2536 if (!locked) {
2537 ret |= VM_FAULT_RETRY;
2538 goto out_release;
2539 }
073e587e 2540
4969c119 2541 /*
31c4a3d3
HD
2542 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2543 * release the swapcache from under us. The page pin, and pte_same
2544 * test below, are not enough to exclude that. Even if it is still
2545 * swapcache, we need to check that the page's swap has not changed.
4969c119 2546 */
31c4a3d3 2547 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2548 goto out_page;
2549
cbf86cfe
HD
2550 page = ksm_might_need_to_copy(page, vma, address);
2551 if (unlikely(!page)) {
2552 ret = VM_FAULT_OOM;
2553 page = swapcache;
cbf86cfe 2554 goto out_page;
5ad64688
HD
2555 }
2556
f627c2f5 2557 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
8a9f3ccd 2558 ret = VM_FAULT_OOM;
bc43f75c 2559 goto out_page;
8a9f3ccd
BS
2560 }
2561
1da177e4 2562 /*
8f4e2101 2563 * Back out if somebody else already faulted in this pte.
1da177e4 2564 */
8f4e2101 2565 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2566 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2567 goto out_nomap;
b8107480
KK
2568
2569 if (unlikely(!PageUptodate(page))) {
2570 ret = VM_FAULT_SIGBUS;
2571 goto out_nomap;
1da177e4
LT
2572 }
2573
8c7c6e34
KH
2574 /*
2575 * The page isn't present yet, go ahead with the fault.
2576 *
2577 * Be careful about the sequence of operations here.
2578 * To get its accounting right, reuse_swap_page() must be called
2579 * while the page is counted on swap but not yet in mapcount i.e.
2580 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2581 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2582 */
1da177e4 2583
34e55232 2584 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2585 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2586 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2587 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2588 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2589 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2590 ret |= VM_FAULT_WRITE;
d281ee61 2591 exclusive = RMAP_EXCLUSIVE;
1da177e4 2592 }
1da177e4 2593 flush_icache_page(vma, page);
179ef71c
CG
2594 if (pte_swp_soft_dirty(orig_pte))
2595 pte = pte_mksoft_dirty(pte);
1da177e4 2596 set_pte_at(mm, address, page_table, pte);
00501b53 2597 if (page == swapcache) {
af34770e 2598 do_page_add_anon_rmap(page, vma, address, exclusive);
f627c2f5 2599 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 2600 } else { /* ksm created a completely new copy */
d281ee61 2601 page_add_new_anon_rmap(page, vma, address, false);
f627c2f5 2602 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2603 lru_cache_add_active_or_unevictable(page, vma);
2604 }
1da177e4 2605
c475a8ab 2606 swap_free(entry);
5ccc5aba
VD
2607 if (mem_cgroup_swap_full(page) ||
2608 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2609 try_to_free_swap(page);
c475a8ab 2610 unlock_page(page);
56f31801 2611 if (page != swapcache) {
4969c119
AA
2612 /*
2613 * Hold the lock to avoid the swap entry to be reused
2614 * until we take the PT lock for the pte_same() check
2615 * (to avoid false positives from pte_same). For
2616 * further safety release the lock after the swap_free
2617 * so that the swap count won't change under a
2618 * parallel locked swapcache.
2619 */
2620 unlock_page(swapcache);
2621 page_cache_release(swapcache);
2622 }
c475a8ab 2623
30c9f3a9 2624 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2625 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2626 if (ret & VM_FAULT_ERROR)
2627 ret &= VM_FAULT_ERROR;
1da177e4
LT
2628 goto out;
2629 }
2630
2631 /* No need to invalidate - it was non-present before */
4b3073e1 2632 update_mmu_cache(vma, address, page_table);
65500d23 2633unlock:
8f4e2101 2634 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2635out:
2636 return ret;
b8107480 2637out_nomap:
f627c2f5 2638 mem_cgroup_cancel_charge(page, memcg, false);
8f4e2101 2639 pte_unmap_unlock(page_table, ptl);
bc43f75c 2640out_page:
b8107480 2641 unlock_page(page);
4779cb31 2642out_release:
b8107480 2643 page_cache_release(page);
56f31801 2644 if (page != swapcache) {
4969c119
AA
2645 unlock_page(swapcache);
2646 page_cache_release(swapcache);
2647 }
65500d23 2648 return ret;
1da177e4
LT
2649}
2650
320b2b8d 2651/*
8ca3eb08
LT
2652 * This is like a special single-page "expand_{down|up}wards()",
2653 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2654 * doesn't hit another vma.
320b2b8d
LT
2655 */
2656static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2657{
2658 address &= PAGE_MASK;
2659 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2660 struct vm_area_struct *prev = vma->vm_prev;
2661
2662 /*
2663 * Is there a mapping abutting this one below?
2664 *
2665 * That's only ok if it's the same stack mapping
2666 * that has gotten split..
2667 */
2668 if (prev && prev->vm_end == address)
2669 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2670
fee7e49d 2671 return expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2672 }
8ca3eb08
LT
2673 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2674 struct vm_area_struct *next = vma->vm_next;
2675
2676 /* As VM_GROWSDOWN but s/below/above/ */
2677 if (next && next->vm_start == address + PAGE_SIZE)
2678 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2679
fee7e49d 2680 return expand_upwards(vma, address + PAGE_SIZE);
8ca3eb08 2681 }
320b2b8d
LT
2682 return 0;
2683}
2684
1da177e4 2685/*
8f4e2101
HD
2686 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2687 * but allow concurrent faults), and pte mapped but not yet locked.
2688 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2689 */
65500d23
HD
2690static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2691 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2692 unsigned int flags)
1da177e4 2693{
00501b53 2694 struct mem_cgroup *memcg;
8f4e2101
HD
2695 struct page *page;
2696 spinlock_t *ptl;
1da177e4 2697 pte_t entry;
1da177e4 2698
11ac5524
LT
2699 pte_unmap(page_table);
2700
6b7339f4
KS
2701 /* File mapping without ->vm_ops ? */
2702 if (vma->vm_flags & VM_SHARED)
2703 return VM_FAULT_SIGBUS;
2704
11ac5524
LT
2705 /* Check if we need to add a guard page to the stack */
2706 if (check_stack_guard_page(vma, address) < 0)
9c145c56 2707 return VM_FAULT_SIGSEGV;
320b2b8d 2708
11ac5524 2709 /* Use the zero-page for reads */
593befa6 2710 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
62eede62
HD
2711 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2712 vma->vm_page_prot));
11ac5524 2713 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2714 if (!pte_none(*page_table))
2715 goto unlock;
6b251fc9
AA
2716 /* Deliver the page fault to userland, check inside PT lock */
2717 if (userfaultfd_missing(vma)) {
2718 pte_unmap_unlock(page_table, ptl);
2719 return handle_userfault(vma, address, flags,
2720 VM_UFFD_MISSING);
2721 }
a13ea5b7
HD
2722 goto setpte;
2723 }
2724
557ed1fa 2725 /* Allocate our own private page. */
557ed1fa
NP
2726 if (unlikely(anon_vma_prepare(vma)))
2727 goto oom;
2728 page = alloc_zeroed_user_highpage_movable(vma, address);
2729 if (!page)
2730 goto oom;
eb3c24f3 2731
f627c2f5 2732 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2733 goto oom_free_page;
2734
52f37629
MK
2735 /*
2736 * The memory barrier inside __SetPageUptodate makes sure that
2737 * preceeding stores to the page contents become visible before
2738 * the set_pte_at() write.
2739 */
0ed361de 2740 __SetPageUptodate(page);
8f4e2101 2741
557ed1fa 2742 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2743 if (vma->vm_flags & VM_WRITE)
2744 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2745
557ed1fa 2746 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2747 if (!pte_none(*page_table))
557ed1fa 2748 goto release;
9ba69294 2749
6b251fc9
AA
2750 /* Deliver the page fault to userland, check inside PT lock */
2751 if (userfaultfd_missing(vma)) {
2752 pte_unmap_unlock(page_table, ptl);
f627c2f5 2753 mem_cgroup_cancel_charge(page, memcg, false);
6b251fc9
AA
2754 page_cache_release(page);
2755 return handle_userfault(vma, address, flags,
2756 VM_UFFD_MISSING);
2757 }
2758
34e55232 2759 inc_mm_counter_fast(mm, MM_ANONPAGES);
d281ee61 2760 page_add_new_anon_rmap(page, vma, address, false);
f627c2f5 2761 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2762 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2763setpte:
65500d23 2764 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2765
2766 /* No need to invalidate - it was non-present before */
4b3073e1 2767 update_mmu_cache(vma, address, page_table);
65500d23 2768unlock:
8f4e2101 2769 pte_unmap_unlock(page_table, ptl);
83c54070 2770 return 0;
8f4e2101 2771release:
f627c2f5 2772 mem_cgroup_cancel_charge(page, memcg, false);
8f4e2101
HD
2773 page_cache_release(page);
2774 goto unlock;
8a9f3ccd 2775oom_free_page:
6dbf6d3b 2776 page_cache_release(page);
65500d23 2777oom:
1da177e4
LT
2778 return VM_FAULT_OOM;
2779}
2780
9a95f3cf
PC
2781/*
2782 * The mmap_sem must have been held on entry, and may have been
2783 * released depending on flags and vma->vm_ops->fault() return value.
2784 * See filemap_fault() and __lock_page_retry().
2785 */
7eae74af 2786static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2e4cdab0
MW
2787 pgoff_t pgoff, unsigned int flags,
2788 struct page *cow_page, struct page **page)
7eae74af
KS
2789{
2790 struct vm_fault vmf;
2791 int ret;
2792
2793 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2794 vmf.pgoff = pgoff;
2795 vmf.flags = flags;
2796 vmf.page = NULL;
c20cd45e 2797 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2e4cdab0 2798 vmf.cow_page = cow_page;
7eae74af
KS
2799
2800 ret = vma->vm_ops->fault(vma, &vmf);
2801 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2802 return ret;
2e4cdab0
MW
2803 if (!vmf.page)
2804 goto out;
7eae74af
KS
2805
2806 if (unlikely(PageHWPoison(vmf.page))) {
2807 if (ret & VM_FAULT_LOCKED)
2808 unlock_page(vmf.page);
2809 page_cache_release(vmf.page);
2810 return VM_FAULT_HWPOISON;
2811 }
2812
2813 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2814 lock_page(vmf.page);
2815 else
2816 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2817
2e4cdab0 2818 out:
7eae74af
KS
2819 *page = vmf.page;
2820 return ret;
2821}
2822
8c6e50b0
KS
2823/**
2824 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2825 *
2826 * @vma: virtual memory area
2827 * @address: user virtual address
2828 * @page: page to map
2829 * @pte: pointer to target page table entry
2830 * @write: true, if new entry is writable
2831 * @anon: true, if it's anonymous page
2832 *
2833 * Caller must hold page table lock relevant for @pte.
2834 *
2835 * Target users are page handler itself and implementations of
2836 * vm_ops->map_pages.
2837 */
2838void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3bb97794
KS
2839 struct page *page, pte_t *pte, bool write, bool anon)
2840{
2841 pte_t entry;
2842
2843 flush_icache_page(vma, page);
2844 entry = mk_pte(page, vma->vm_page_prot);
2845 if (write)
2846 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3bb97794
KS
2847 if (anon) {
2848 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
d281ee61 2849 page_add_new_anon_rmap(page, vma, address, false);
3bb97794 2850 } else {
eca56ff9 2851 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3bb97794
KS
2852 page_add_file_rmap(page);
2853 }
2854 set_pte_at(vma->vm_mm, address, pte, entry);
2855
2856 /* no need to invalidate: a not-present page won't be cached */
2857 update_mmu_cache(vma, address, pte);
2858}
2859
3a91053a
KS
2860static unsigned long fault_around_bytes __read_mostly =
2861 rounddown_pow_of_two(65536);
a9b0f861 2862
a9b0f861
KS
2863#ifdef CONFIG_DEBUG_FS
2864static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2865{
a9b0f861 2866 *val = fault_around_bytes;
1592eef0
KS
2867 return 0;
2868}
2869
b4903d6e
AR
2870/*
2871 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2872 * rounded down to nearest page order. It's what do_fault_around() expects to
2873 * see.
2874 */
a9b0f861 2875static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2876{
a9b0f861 2877 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2878 return -EINVAL;
b4903d6e
AR
2879 if (val > PAGE_SIZE)
2880 fault_around_bytes = rounddown_pow_of_two(val);
2881 else
2882 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2883 return 0;
2884}
a9b0f861
KS
2885DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2886 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2887
2888static int __init fault_around_debugfs(void)
2889{
2890 void *ret;
2891
a9b0f861
KS
2892 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2893 &fault_around_bytes_fops);
1592eef0 2894 if (!ret)
a9b0f861 2895 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2896 return 0;
2897}
2898late_initcall(fault_around_debugfs);
1592eef0 2899#endif
8c6e50b0 2900
1fdb412b
KS
2901/*
2902 * do_fault_around() tries to map few pages around the fault address. The hope
2903 * is that the pages will be needed soon and this will lower the number of
2904 * faults to handle.
2905 *
2906 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2907 * not ready to be mapped: not up-to-date, locked, etc.
2908 *
2909 * This function is called with the page table lock taken. In the split ptlock
2910 * case the page table lock only protects only those entries which belong to
2911 * the page table corresponding to the fault address.
2912 *
2913 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2914 * only once.
2915 *
2916 * fault_around_pages() defines how many pages we'll try to map.
2917 * do_fault_around() expects it to return a power of two less than or equal to
2918 * PTRS_PER_PTE.
2919 *
2920 * The virtual address of the area that we map is naturally aligned to the
2921 * fault_around_pages() value (and therefore to page order). This way it's
2922 * easier to guarantee that we don't cross page table boundaries.
2923 */
8c6e50b0
KS
2924static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2925 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2926{
aecd6f44 2927 unsigned long start_addr, nr_pages, mask;
8c6e50b0
KS
2928 pgoff_t max_pgoff;
2929 struct vm_fault vmf;
2930 int off;
2931
4db0c3c2 2932 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
2933 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2934
2935 start_addr = max(address & mask, vma->vm_start);
8c6e50b0
KS
2936 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2937 pte -= off;
2938 pgoff -= off;
2939
2940 /*
2941 * max_pgoff is either end of page table or end of vma
850e9c69 2942 * or fault_around_pages() from pgoff, depending what is nearest.
8c6e50b0
KS
2943 */
2944 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2945 PTRS_PER_PTE - 1;
2946 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
aecd6f44 2947 pgoff + nr_pages - 1);
8c6e50b0
KS
2948
2949 /* Check if it makes any sense to call ->map_pages */
2950 while (!pte_none(*pte)) {
2951 if (++pgoff > max_pgoff)
2952 return;
2953 start_addr += PAGE_SIZE;
2954 if (start_addr >= vma->vm_end)
2955 return;
2956 pte++;
2957 }
2958
2959 vmf.virtual_address = (void __user *) start_addr;
2960 vmf.pte = pte;
2961 vmf.pgoff = pgoff;
2962 vmf.max_pgoff = max_pgoff;
2963 vmf.flags = flags;
c20cd45e 2964 vmf.gfp_mask = __get_fault_gfp_mask(vma);
8c6e50b0
KS
2965 vma->vm_ops->map_pages(vma, &vmf);
2966}
2967
e655fb29
KS
2968static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2969 unsigned long address, pmd_t *pmd,
2970 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2971{
2972 struct page *fault_page;
2973 spinlock_t *ptl;
3bb97794 2974 pte_t *pte;
8c6e50b0
KS
2975 int ret = 0;
2976
2977 /*
2978 * Let's call ->map_pages() first and use ->fault() as fallback
2979 * if page by the offset is not ready to be mapped (cold cache or
2980 * something).
2981 */
9b4bdd2f 2982 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
8c6e50b0
KS
2983 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2984 do_fault_around(vma, address, pte, pgoff, flags);
2985 if (!pte_same(*pte, orig_pte))
2986 goto unlock_out;
2987 pte_unmap_unlock(pte, ptl);
2988 }
e655fb29 2989
2e4cdab0 2990 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
e655fb29
KS
2991 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2992 return ret;
2993
2994 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2995 if (unlikely(!pte_same(*pte, orig_pte))) {
2996 pte_unmap_unlock(pte, ptl);
2997 unlock_page(fault_page);
2998 page_cache_release(fault_page);
2999 return ret;
3000 }
3bb97794 3001 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 3002 unlock_page(fault_page);
8c6e50b0
KS
3003unlock_out:
3004 pte_unmap_unlock(pte, ptl);
e655fb29
KS
3005 return ret;
3006}
3007
ec47c3b9
KS
3008static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3009 unsigned long address, pmd_t *pmd,
3010 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3011{
3012 struct page *fault_page, *new_page;
00501b53 3013 struct mem_cgroup *memcg;
ec47c3b9 3014 spinlock_t *ptl;
3bb97794 3015 pte_t *pte;
ec47c3b9
KS
3016 int ret;
3017
3018 if (unlikely(anon_vma_prepare(vma)))
3019 return VM_FAULT_OOM;
3020
3021 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3022 if (!new_page)
3023 return VM_FAULT_OOM;
3024
f627c2f5 3025 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
ec47c3b9
KS
3026 page_cache_release(new_page);
3027 return VM_FAULT_OOM;
3028 }
3029
2e4cdab0 3030 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
ec47c3b9
KS
3031 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3032 goto uncharge_out;
3033
2e4cdab0
MW
3034 if (fault_page)
3035 copy_user_highpage(new_page, fault_page, address, vma);
ec47c3b9
KS
3036 __SetPageUptodate(new_page);
3037
3038 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3039 if (unlikely(!pte_same(*pte, orig_pte))) {
3040 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
3041 if (fault_page) {
3042 unlock_page(fault_page);
3043 page_cache_release(fault_page);
3044 } else {
3045 /*
3046 * The fault handler has no page to lock, so it holds
0df9d41a 3047 * i_mmap_lock for read to protect against truncate.
2e4cdab0 3048 */
0df9d41a 3049 i_mmap_unlock_read(vma->vm_file->f_mapping);
2e4cdab0 3050 }
ec47c3b9
KS
3051 goto uncharge_out;
3052 }
3bb97794 3053 do_set_pte(vma, address, new_page, pte, true, true);
f627c2f5 3054 mem_cgroup_commit_charge(new_page, memcg, false, false);
00501b53 3055 lru_cache_add_active_or_unevictable(new_page, vma);
ec47c3b9 3056 pte_unmap_unlock(pte, ptl);
2e4cdab0
MW
3057 if (fault_page) {
3058 unlock_page(fault_page);
3059 page_cache_release(fault_page);
3060 } else {
3061 /*
3062 * The fault handler has no page to lock, so it holds
0df9d41a 3063 * i_mmap_lock for read to protect against truncate.
2e4cdab0 3064 */
0df9d41a 3065 i_mmap_unlock_read(vma->vm_file->f_mapping);
2e4cdab0 3066 }
ec47c3b9
KS
3067 return ret;
3068uncharge_out:
f627c2f5 3069 mem_cgroup_cancel_charge(new_page, memcg, false);
ec47c3b9
KS
3070 page_cache_release(new_page);
3071 return ret;
3072}
3073
f0c6d4d2 3074static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3075 unsigned long address, pmd_t *pmd,
54cb8821 3076 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3077{
f0c6d4d2
KS
3078 struct page *fault_page;
3079 struct address_space *mapping;
8f4e2101 3080 spinlock_t *ptl;
3bb97794 3081 pte_t *pte;
f0c6d4d2 3082 int dirtied = 0;
f0c6d4d2 3083 int ret, tmp;
1d65f86d 3084
2e4cdab0 3085 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
7eae74af 3086 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3087 return ret;
1da177e4
LT
3088
3089 /*
f0c6d4d2
KS
3090 * Check if the backing address space wants to know that the page is
3091 * about to become writable
1da177e4 3092 */
fb09a464
KS
3093 if (vma->vm_ops->page_mkwrite) {
3094 unlock_page(fault_page);
3095 tmp = do_page_mkwrite(vma, fault_page, address);
3096 if (unlikely(!tmp ||
3097 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
f0c6d4d2 3098 page_cache_release(fault_page);
fb09a464 3099 return tmp;
4294621f 3100 }
fb09a464
KS
3101 }
3102
f0c6d4d2
KS
3103 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3104 if (unlikely(!pte_same(*pte, orig_pte))) {
3105 pte_unmap_unlock(pte, ptl);
3106 unlock_page(fault_page);
3107 page_cache_release(fault_page);
3108 return ret;
1da177e4 3109 }
3bb97794 3110 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 3111 pte_unmap_unlock(pte, ptl);
b827e496 3112
f0c6d4d2
KS
3113 if (set_page_dirty(fault_page))
3114 dirtied = 1;
d82fa87d
AM
3115 /*
3116 * Take a local copy of the address_space - page.mapping may be zeroed
3117 * by truncate after unlock_page(). The address_space itself remains
3118 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3119 * release semantics to prevent the compiler from undoing this copying.
3120 */
1c290f64 3121 mapping = page_rmapping(fault_page);
f0c6d4d2
KS
3122 unlock_page(fault_page);
3123 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3124 /*
3125 * Some device drivers do not set page.mapping but still
3126 * dirty their pages
3127 */
3128 balance_dirty_pages_ratelimited(mapping);
d08b3851 3129 }
d00806b1 3130
74ec6751 3131 if (!vma->vm_ops->page_mkwrite)
f0c6d4d2 3132 file_update_time(vma->vm_file);
b827e496 3133
1d65f86d 3134 return ret;
54cb8821 3135}
d00806b1 3136
9a95f3cf
PC
3137/*
3138 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3139 * but allow concurrent faults).
3140 * The mmap_sem may have been released depending on flags and our
3141 * return value. See filemap_fault() and __lock_page_or_retry().
3142 */
9b4bdd2f 3143static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
54cb8821 3144 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3145 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3146{
3147 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3148 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3149
16abfa08 3150 pte_unmap(page_table);
6b7339f4
KS
3151 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3152 if (!vma->vm_ops->fault)
3153 return VM_FAULT_SIGBUS;
e655fb29
KS
3154 if (!(flags & FAULT_FLAG_WRITE))
3155 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3156 orig_pte);
ec47c3b9
KS
3157 if (!(vma->vm_flags & VM_SHARED))
3158 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3159 orig_pte);
f0c6d4d2 3160 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3161}
3162
b19a9939 3163static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3164 unsigned long addr, int page_nid,
3165 int *flags)
9532fec1
MG
3166{
3167 get_page(page);
3168
3169 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3170 if (page_nid == numa_node_id()) {
9532fec1 3171 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3172 *flags |= TNF_FAULT_LOCAL;
3173 }
9532fec1
MG
3174
3175 return mpol_misplaced(page, vma, addr);
3176}
3177
b19a9939 3178static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3179 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3180{
4daae3b4 3181 struct page *page = NULL;
d10e63f2 3182 spinlock_t *ptl;
8191acbd 3183 int page_nid = -1;
90572890 3184 int last_cpupid;
cbee9f88 3185 int target_nid;
b8593bfd 3186 bool migrated = false;
b191f9b1 3187 bool was_writable = pte_write(pte);
6688cc05 3188 int flags = 0;
d10e63f2 3189
c0e7cad9
MG
3190 /* A PROT_NONE fault should not end up here */
3191 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3192
d10e63f2
MG
3193 /*
3194 * The "pte" at this point cannot be used safely without
3195 * validation through pte_unmap_same(). It's of NUMA type but
3196 * the pfn may be screwed if the read is non atomic.
3197 *
4d942466
MG
3198 * We can safely just do a "set_pte_at()", because the old
3199 * page table entry is not accessible, so there would be no
3200 * concurrent hardware modifications to the PTE.
d10e63f2
MG
3201 */
3202 ptl = pte_lockptr(mm, pmd);
3203 spin_lock(ptl);
4daae3b4
MG
3204 if (unlikely(!pte_same(*ptep, pte))) {
3205 pte_unmap_unlock(ptep, ptl);
3206 goto out;
3207 }
3208
4d942466
MG
3209 /* Make it present again */
3210 pte = pte_modify(pte, vma->vm_page_prot);
3211 pte = pte_mkyoung(pte);
b191f9b1
MG
3212 if (was_writable)
3213 pte = pte_mkwrite(pte);
d10e63f2
MG
3214 set_pte_at(mm, addr, ptep, pte);
3215 update_mmu_cache(vma, addr, ptep);
3216
3217 page = vm_normal_page(vma, addr, pte);
3218 if (!page) {
3219 pte_unmap_unlock(ptep, ptl);
3220 return 0;
3221 }
3222
e81c4802
KS
3223 /* TODO: handle PTE-mapped THP */
3224 if (PageCompound(page)) {
3225 pte_unmap_unlock(ptep, ptl);
3226 return 0;
3227 }
3228
6688cc05 3229 /*
bea66fbd
MG
3230 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3231 * much anyway since they can be in shared cache state. This misses
3232 * the case where a mapping is writable but the process never writes
3233 * to it but pte_write gets cleared during protection updates and
3234 * pte_dirty has unpredictable behaviour between PTE scan updates,
3235 * background writeback, dirty balancing and application behaviour.
6688cc05 3236 */
bea66fbd 3237 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
3238 flags |= TNF_NO_GROUP;
3239
dabe1d99
RR
3240 /*
3241 * Flag if the page is shared between multiple address spaces. This
3242 * is later used when determining whether to group tasks together
3243 */
3244 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3245 flags |= TNF_SHARED;
3246
90572890 3247 last_cpupid = page_cpupid_last(page);
8191acbd 3248 page_nid = page_to_nid(page);
04bb2f94 3249 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3250 pte_unmap_unlock(ptep, ptl);
4daae3b4 3251 if (target_nid == -1) {
4daae3b4
MG
3252 put_page(page);
3253 goto out;
3254 }
3255
3256 /* Migrate to the requested node */
1bc115d8 3257 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3258 if (migrated) {
8191acbd 3259 page_nid = target_nid;
6688cc05 3260 flags |= TNF_MIGRATED;
074c2381
MG
3261 } else
3262 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3263
3264out:
8191acbd 3265 if (page_nid != -1)
6688cc05 3266 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3267 return 0;
3268}
3269
b96375f7
MW
3270static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3271 unsigned long address, pmd_t *pmd, unsigned int flags)
3272{
fb6dd5fa 3273 if (vma_is_anonymous(vma))
b96375f7
MW
3274 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3275 if (vma->vm_ops->pmd_fault)
3276 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3277 return VM_FAULT_FALLBACK;
3278}
3279
3280static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3281 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3282 unsigned int flags)
3283{
fb6dd5fa 3284 if (vma_is_anonymous(vma))
b96375f7
MW
3285 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3286 if (vma->vm_ops->pmd_fault)
3287 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3288 return VM_FAULT_FALLBACK;
3289}
3290
1da177e4
LT
3291/*
3292 * These routines also need to handle stuff like marking pages dirty
3293 * and/or accessed for architectures that don't do it in hardware (most
3294 * RISC architectures). The early dirtying is also good on the i386.
3295 *
3296 * There is also a hook called "update_mmu_cache()" that architectures
3297 * with external mmu caches can use to update those (ie the Sparc or
3298 * PowerPC hashed page tables that act as extended TLBs).
3299 *
c74df32c
HD
3300 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3301 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3302 * We return with pte unmapped and unlocked.
3303 *
3304 * The mmap_sem may have been released depending on flags and our
3305 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3306 */
c0292554 3307static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3308 struct vm_area_struct *vma, unsigned long address,
3309 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3310{
3311 pte_t entry;
8f4e2101 3312 spinlock_t *ptl;
1da177e4 3313
e37c6982
CB
3314 /*
3315 * some architectures can have larger ptes than wordsize,
3316 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3317 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3318 * The code below just needs a consistent view for the ifs and
3319 * we later double check anyway with the ptl lock held. So here
3320 * a barrier will do.
3321 */
3322 entry = *pte;
3323 barrier();
1da177e4 3324 if (!pte_present(entry)) {
65500d23 3325 if (pte_none(entry)) {
b5330628
ON
3326 if (vma_is_anonymous(vma))
3327 return do_anonymous_page(mm, vma, address,
3328 pte, pmd, flags);
3329 else
6b7339f4
KS
3330 return do_fault(mm, vma, address, pte, pmd,
3331 flags, entry);
65500d23 3332 }
65500d23 3333 return do_swap_page(mm, vma, address,
30c9f3a9 3334 pte, pmd, flags, entry);
1da177e4
LT
3335 }
3336
8a0516ed 3337 if (pte_protnone(entry))
d10e63f2
MG
3338 return do_numa_page(mm, vma, address, entry, pte, pmd);
3339
4c21e2f2 3340 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3341 spin_lock(ptl);
3342 if (unlikely(!pte_same(*pte, entry)))
3343 goto unlock;
30c9f3a9 3344 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3345 if (!pte_write(entry))
8f4e2101
HD
3346 return do_wp_page(mm, vma, address,
3347 pte, pmd, ptl, entry);
1da177e4
LT
3348 entry = pte_mkdirty(entry);
3349 }
3350 entry = pte_mkyoung(entry);
30c9f3a9 3351 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3352 update_mmu_cache(vma, address, pte);
1a44e149
AA
3353 } else {
3354 /*
3355 * This is needed only for protection faults but the arch code
3356 * is not yet telling us if this is a protection fault or not.
3357 * This still avoids useless tlb flushes for .text page faults
3358 * with threads.
3359 */
30c9f3a9 3360 if (flags & FAULT_FLAG_WRITE)
61c77326 3361 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3362 }
8f4e2101
HD
3363unlock:
3364 pte_unmap_unlock(pte, ptl);
83c54070 3365 return 0;
1da177e4
LT
3366}
3367
3368/*
3369 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3370 *
3371 * The mmap_sem may have been released depending on flags and our
3372 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3373 */
519e5247
JW
3374static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3375 unsigned long address, unsigned int flags)
1da177e4
LT
3376{
3377 pgd_t *pgd;
3378 pud_t *pud;
3379 pmd_t *pmd;
3380 pte_t *pte;
3381
1b2ee126 3382 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
d61172b4 3383 flags & FAULT_FLAG_INSTRUCTION,
1b2ee126 3384 flags & FAULT_FLAG_REMOTE))
33a709b2
DH
3385 return VM_FAULT_SIGSEGV;
3386
ac9b9c66 3387 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3388 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3389
1da177e4 3390 pgd = pgd_offset(mm, address);
1da177e4
LT
3391 pud = pud_alloc(mm, pgd, address);
3392 if (!pud)
c74df32c 3393 return VM_FAULT_OOM;
1da177e4
LT
3394 pmd = pmd_alloc(mm, pud, address);
3395 if (!pmd)
c74df32c 3396 return VM_FAULT_OOM;
71e3aac0 3397 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
b96375f7 3398 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
c0292554
KS
3399 if (!(ret & VM_FAULT_FALLBACK))
3400 return ret;
71e3aac0
AA
3401 } else {
3402 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3403 int ret;
3404
71e3aac0 3405 barrier();
5c7fb56e 3406 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
a1dd450b
WD
3407 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3408
8a0516ed 3409 if (pmd_protnone(orig_pmd))
4daae3b4 3410 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3411 orig_pmd, pmd);
3412
3d59eebc 3413 if (dirty && !pmd_write(orig_pmd)) {
b96375f7
MW
3414 ret = wp_huge_pmd(mm, vma, address, pmd,
3415 orig_pmd, flags);
9845cbbd
KS
3416 if (!(ret & VM_FAULT_FALLBACK))
3417 return ret;
a1dd450b
WD
3418 } else {
3419 huge_pmd_set_accessed(mm, vma, address, pmd,
3420 orig_pmd, dirty);
9845cbbd 3421 return 0;
1f1d06c3 3422 }
71e3aac0
AA
3423 }
3424 }
3425
3426 /*
3427 * Use __pte_alloc instead of pte_alloc_map, because we can't
3428 * run pte_offset_map on the pmd, if an huge pmd could
3429 * materialize from under us from a different thread.
3430 */
4fd01770
MG
3431 if (unlikely(pmd_none(*pmd)) &&
3432 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3433 return VM_FAULT_OOM;
71e3aac0 3434 /* if an huge pmd materialized from under us just retry later */
5c7fb56e 3435 if (unlikely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
71e3aac0
AA
3436 return 0;
3437 /*
3438 * A regular pmd is established and it can't morph into a huge pmd
3439 * from under us anymore at this point because we hold the mmap_sem
3440 * read mode and khugepaged takes it in write mode. So now it's
3441 * safe to run pte_offset_map().
3442 */
3443 pte = pte_offset_map(pmd, address);
1da177e4 3444
30c9f3a9 3445 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3446}
3447
9a95f3cf
PC
3448/*
3449 * By the time we get here, we already hold the mm semaphore
3450 *
3451 * The mmap_sem may have been released depending on flags and our
3452 * return value. See filemap_fault() and __lock_page_or_retry().
3453 */
519e5247
JW
3454int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3455 unsigned long address, unsigned int flags)
3456{
3457 int ret;
3458
3459 __set_current_state(TASK_RUNNING);
3460
3461 count_vm_event(PGFAULT);
3462 mem_cgroup_count_vm_event(mm, PGFAULT);
3463
3464 /* do counter updates before entering really critical section. */
3465 check_sync_rss_stat(current);
3466
3467 /*
3468 * Enable the memcg OOM handling for faults triggered in user
3469 * space. Kernel faults are handled more gracefully.
3470 */
3471 if (flags & FAULT_FLAG_USER)
49426420 3472 mem_cgroup_oom_enable();
519e5247
JW
3473
3474 ret = __handle_mm_fault(mm, vma, address, flags);
3475
49426420
JW
3476 if (flags & FAULT_FLAG_USER) {
3477 mem_cgroup_oom_disable();
3478 /*
3479 * The task may have entered a memcg OOM situation but
3480 * if the allocation error was handled gracefully (no
3481 * VM_FAULT_OOM), there is no need to kill anything.
3482 * Just clean up the OOM state peacefully.
3483 */
3484 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3485 mem_cgroup_oom_synchronize(false);
3486 }
3812c8c8 3487
519e5247
JW
3488 return ret;
3489}
e1d6d01a 3490EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3491
1da177e4
LT
3492#ifndef __PAGETABLE_PUD_FOLDED
3493/*
3494 * Allocate page upper directory.
872fec16 3495 * We've already handled the fast-path in-line.
1da177e4 3496 */
1bb3630e 3497int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3498{
c74df32c
HD
3499 pud_t *new = pud_alloc_one(mm, address);
3500 if (!new)
1bb3630e 3501 return -ENOMEM;
1da177e4 3502
362a61ad
NP
3503 smp_wmb(); /* See comment in __pte_alloc */
3504
872fec16 3505 spin_lock(&mm->page_table_lock);
1bb3630e 3506 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3507 pud_free(mm, new);
1bb3630e
HD
3508 else
3509 pgd_populate(mm, pgd, new);
c74df32c 3510 spin_unlock(&mm->page_table_lock);
1bb3630e 3511 return 0;
1da177e4
LT
3512}
3513#endif /* __PAGETABLE_PUD_FOLDED */
3514
3515#ifndef __PAGETABLE_PMD_FOLDED
3516/*
3517 * Allocate page middle directory.
872fec16 3518 * We've already handled the fast-path in-line.
1da177e4 3519 */
1bb3630e 3520int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3521{
c74df32c
HD
3522 pmd_t *new = pmd_alloc_one(mm, address);
3523 if (!new)
1bb3630e 3524 return -ENOMEM;
1da177e4 3525
362a61ad
NP
3526 smp_wmb(); /* See comment in __pte_alloc */
3527
872fec16 3528 spin_lock(&mm->page_table_lock);
1da177e4 3529#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3530 if (!pud_present(*pud)) {
3531 mm_inc_nr_pmds(mm);
1bb3630e 3532 pud_populate(mm, pud, new);
dc6c9a35 3533 } else /* Another has populated it */
5e541973 3534 pmd_free(mm, new);
dc6c9a35
KS
3535#else
3536 if (!pgd_present(*pud)) {
3537 mm_inc_nr_pmds(mm);
1bb3630e 3538 pgd_populate(mm, pud, new);
dc6c9a35
KS
3539 } else /* Another has populated it */
3540 pmd_free(mm, new);
1da177e4 3541#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3542 spin_unlock(&mm->page_table_lock);
1bb3630e 3543 return 0;
e0f39591 3544}
1da177e4
LT
3545#endif /* __PAGETABLE_PMD_FOLDED */
3546
1b36ba81 3547static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3548 pte_t **ptepp, spinlock_t **ptlp)
3549{
3550 pgd_t *pgd;
3551 pud_t *pud;
3552 pmd_t *pmd;
3553 pte_t *ptep;
3554
3555 pgd = pgd_offset(mm, address);
3556 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3557 goto out;
3558
3559 pud = pud_offset(pgd, address);
3560 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3561 goto out;
3562
3563 pmd = pmd_offset(pud, address);
f66055ab 3564 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3565 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3566 goto out;
3567
3568 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3569 if (pmd_huge(*pmd))
3570 goto out;
3571
3572 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3573 if (!ptep)
3574 goto out;
3575 if (!pte_present(*ptep))
3576 goto unlock;
3577 *ptepp = ptep;
3578 return 0;
3579unlock:
3580 pte_unmap_unlock(ptep, *ptlp);
3581out:
3582 return -EINVAL;
3583}
3584
1b36ba81
NK
3585static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3586 pte_t **ptepp, spinlock_t **ptlp)
3587{
3588 int res;
3589
3590 /* (void) is needed to make gcc happy */
3591 (void) __cond_lock(*ptlp,
3592 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3593 return res;
3594}
3595
3b6748e2
JW
3596/**
3597 * follow_pfn - look up PFN at a user virtual address
3598 * @vma: memory mapping
3599 * @address: user virtual address
3600 * @pfn: location to store found PFN
3601 *
3602 * Only IO mappings and raw PFN mappings are allowed.
3603 *
3604 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3605 */
3606int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3607 unsigned long *pfn)
3608{
3609 int ret = -EINVAL;
3610 spinlock_t *ptl;
3611 pte_t *ptep;
3612
3613 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3614 return ret;
3615
3616 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3617 if (ret)
3618 return ret;
3619 *pfn = pte_pfn(*ptep);
3620 pte_unmap_unlock(ptep, ptl);
3621 return 0;
3622}
3623EXPORT_SYMBOL(follow_pfn);
3624
28b2ee20 3625#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3626int follow_phys(struct vm_area_struct *vma,
3627 unsigned long address, unsigned int flags,
3628 unsigned long *prot, resource_size_t *phys)
28b2ee20 3629{
03668a4d 3630 int ret = -EINVAL;
28b2ee20
RR
3631 pte_t *ptep, pte;
3632 spinlock_t *ptl;
28b2ee20 3633
d87fe660 3634 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3635 goto out;
28b2ee20 3636
03668a4d 3637 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3638 goto out;
28b2ee20 3639 pte = *ptep;
03668a4d 3640
28b2ee20
RR
3641 if ((flags & FOLL_WRITE) && !pte_write(pte))
3642 goto unlock;
28b2ee20
RR
3643
3644 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3645 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3646
03668a4d 3647 ret = 0;
28b2ee20
RR
3648unlock:
3649 pte_unmap_unlock(ptep, ptl);
3650out:
d87fe660 3651 return ret;
28b2ee20
RR
3652}
3653
3654int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3655 void *buf, int len, int write)
3656{
3657 resource_size_t phys_addr;
3658 unsigned long prot = 0;
2bc7273b 3659 void __iomem *maddr;
28b2ee20
RR
3660 int offset = addr & (PAGE_SIZE-1);
3661
d87fe660 3662 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3663 return -EINVAL;
3664
9cb12d7b 3665 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
3666 if (write)
3667 memcpy_toio(maddr + offset, buf, len);
3668 else
3669 memcpy_fromio(buf, maddr + offset, len);
3670 iounmap(maddr);
3671
3672 return len;
3673}
5a73633e 3674EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3675#endif
3676
0ec76a11 3677/*
206cb636
SW
3678 * Access another process' address space as given in mm. If non-NULL, use the
3679 * given task for page fault accounting.
0ec76a11 3680 */
206cb636
SW
3681static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3682 unsigned long addr, void *buf, int len, int write)
0ec76a11 3683{
0ec76a11 3684 struct vm_area_struct *vma;
0ec76a11
DH
3685 void *old_buf = buf;
3686
0ec76a11 3687 down_read(&mm->mmap_sem);
183ff22b 3688 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3689 while (len) {
3690 int bytes, ret, offset;
3691 void *maddr;
28b2ee20 3692 struct page *page = NULL;
0ec76a11 3693
1e987790 3694 ret = get_user_pages_remote(tsk, mm, addr, 1,
0ec76a11 3695 write, 1, &page, &vma);
28b2ee20 3696 if (ret <= 0) {
dbffcd03
RR
3697#ifndef CONFIG_HAVE_IOREMAP_PROT
3698 break;
3699#else
28b2ee20
RR
3700 /*
3701 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3702 * we can access using slightly different code.
3703 */
28b2ee20 3704 vma = find_vma(mm, addr);
fe936dfc 3705 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3706 break;
3707 if (vma->vm_ops && vma->vm_ops->access)
3708 ret = vma->vm_ops->access(vma, addr, buf,
3709 len, write);
3710 if (ret <= 0)
28b2ee20
RR
3711 break;
3712 bytes = ret;
dbffcd03 3713#endif
0ec76a11 3714 } else {
28b2ee20
RR
3715 bytes = len;
3716 offset = addr & (PAGE_SIZE-1);
3717 if (bytes > PAGE_SIZE-offset)
3718 bytes = PAGE_SIZE-offset;
3719
3720 maddr = kmap(page);
3721 if (write) {
3722 copy_to_user_page(vma, page, addr,
3723 maddr + offset, buf, bytes);
3724 set_page_dirty_lock(page);
3725 } else {
3726 copy_from_user_page(vma, page, addr,
3727 buf, maddr + offset, bytes);
3728 }
3729 kunmap(page);
3730 page_cache_release(page);
0ec76a11 3731 }
0ec76a11
DH
3732 len -= bytes;
3733 buf += bytes;
3734 addr += bytes;
3735 }
3736 up_read(&mm->mmap_sem);
0ec76a11
DH
3737
3738 return buf - old_buf;
3739}
03252919 3740
5ddd36b9 3741/**
ae91dbfc 3742 * access_remote_vm - access another process' address space
5ddd36b9
SW
3743 * @mm: the mm_struct of the target address space
3744 * @addr: start address to access
3745 * @buf: source or destination buffer
3746 * @len: number of bytes to transfer
3747 * @write: whether the access is a write
3748 *
3749 * The caller must hold a reference on @mm.
3750 */
3751int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3752 void *buf, int len, int write)
3753{
3754 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3755}
3756
206cb636
SW
3757/*
3758 * Access another process' address space.
3759 * Source/target buffer must be kernel space,
3760 * Do not walk the page table directly, use get_user_pages
3761 */
3762int access_process_vm(struct task_struct *tsk, unsigned long addr,
3763 void *buf, int len, int write)
3764{
3765 struct mm_struct *mm;
3766 int ret;
3767
3768 mm = get_task_mm(tsk);
3769 if (!mm)
3770 return 0;
3771
3772 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3773 mmput(mm);
3774
3775 return ret;
3776}
3777
03252919
AK
3778/*
3779 * Print the name of a VMA.
3780 */
3781void print_vma_addr(char *prefix, unsigned long ip)
3782{
3783 struct mm_struct *mm = current->mm;
3784 struct vm_area_struct *vma;
3785
e8bff74a
IM
3786 /*
3787 * Do not print if we are in atomic
3788 * contexts (in exception stacks, etc.):
3789 */
3790 if (preempt_count())
3791 return;
3792
03252919
AK
3793 down_read(&mm->mmap_sem);
3794 vma = find_vma(mm, ip);
3795 if (vma && vma->vm_file) {
3796 struct file *f = vma->vm_file;
3797 char *buf = (char *)__get_free_page(GFP_KERNEL);
3798 if (buf) {
2fbc57c5 3799 char *p;
03252919 3800
9bf39ab2 3801 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
3802 if (IS_ERR(p))
3803 p = "?";
2fbc57c5 3804 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3805 vma->vm_start,
3806 vma->vm_end - vma->vm_start);
3807 free_page((unsigned long)buf);
3808 }
3809 }
51a07e50 3810 up_read(&mm->mmap_sem);
03252919 3811}
3ee1afa3 3812
662bbcb2 3813#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 3814void __might_fault(const char *file, int line)
3ee1afa3 3815{
95156f00
PZ
3816 /*
3817 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3818 * holding the mmap_sem, this is safe because kernel memory doesn't
3819 * get paged out, therefore we'll never actually fault, and the
3820 * below annotations will generate false positives.
3821 */
3822 if (segment_eq(get_fs(), KERNEL_DS))
3823 return;
9ec23531 3824 if (pagefault_disabled())
662bbcb2 3825 return;
9ec23531
DH
3826 __might_sleep(file, line, 0);
3827#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 3828 if (current->mm)
3ee1afa3 3829 might_lock_read(&current->mm->mmap_sem);
9ec23531 3830#endif
3ee1afa3 3831}
9ec23531 3832EXPORT_SYMBOL(__might_fault);
3ee1afa3 3833#endif
47ad8475
AA
3834
3835#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3836static void clear_gigantic_page(struct page *page,
3837 unsigned long addr,
3838 unsigned int pages_per_huge_page)
3839{
3840 int i;
3841 struct page *p = page;
3842
3843 might_sleep();
3844 for (i = 0; i < pages_per_huge_page;
3845 i++, p = mem_map_next(p, page, i)) {
3846 cond_resched();
3847 clear_user_highpage(p, addr + i * PAGE_SIZE);
3848 }
3849}
3850void clear_huge_page(struct page *page,
3851 unsigned long addr, unsigned int pages_per_huge_page)
3852{
3853 int i;
3854
3855 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3856 clear_gigantic_page(page, addr, pages_per_huge_page);
3857 return;
3858 }
3859
3860 might_sleep();
3861 for (i = 0; i < pages_per_huge_page; i++) {
3862 cond_resched();
3863 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3864 }
3865}
3866
3867static void copy_user_gigantic_page(struct page *dst, struct page *src,
3868 unsigned long addr,
3869 struct vm_area_struct *vma,
3870 unsigned int pages_per_huge_page)
3871{
3872 int i;
3873 struct page *dst_base = dst;
3874 struct page *src_base = src;
3875
3876 for (i = 0; i < pages_per_huge_page; ) {
3877 cond_resched();
3878 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3879
3880 i++;
3881 dst = mem_map_next(dst, dst_base, i);
3882 src = mem_map_next(src, src_base, i);
3883 }
3884}
3885
3886void copy_user_huge_page(struct page *dst, struct page *src,
3887 unsigned long addr, struct vm_area_struct *vma,
3888 unsigned int pages_per_huge_page)
3889{
3890 int i;
3891
3892 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3893 copy_user_gigantic_page(dst, src, addr, vma,
3894 pages_per_huge_page);
3895 return;
3896 }
3897
3898 might_sleep();
3899 for (i = 0; i < pages_per_huge_page; i++) {
3900 cond_resched();
3901 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3902 }
3903}
3904#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3905
40b64acd 3906#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3907
3908static struct kmem_cache *page_ptl_cachep;
3909
3910void __init ptlock_cache_init(void)
3911{
3912 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3913 SLAB_PANIC, NULL);
3914}
3915
539edb58 3916bool ptlock_alloc(struct page *page)
49076ec2
KS
3917{
3918 spinlock_t *ptl;
3919
b35f1819 3920 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3921 if (!ptl)
3922 return false;
539edb58 3923 page->ptl = ptl;
49076ec2
KS
3924 return true;
3925}
3926
539edb58 3927void ptlock_free(struct page *page)
49076ec2 3928{
b35f1819 3929 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3930}
3931#endif