x86: PAT: clarify is_linear_pfn_mapping() interface
[linux-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
0ff92245 50#include <linux/delayacct.h>
1da177e4 51#include <linux/init.h>
edc79b2a 52#include <linux/writeback.h>
8a9f3ccd 53#include <linux/memcontrol.h>
cddb8a5c 54#include <linux/mmu_notifier.h>
1da177e4
LT
55
56#include <asm/pgalloc.h>
57#include <asm/uaccess.h>
58#include <asm/tlb.h>
59#include <asm/tlbflush.h>
60#include <asm/pgtable.h>
61
62#include <linux/swapops.h>
63#include <linux/elf.h>
64
42b77728
JB
65#include "internal.h"
66
d41dee36 67#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
68/* use the per-pgdat data instead for discontigmem - mbligh */
69unsigned long max_mapnr;
70struct page *mem_map;
71
72EXPORT_SYMBOL(max_mapnr);
73EXPORT_SYMBOL(mem_map);
74#endif
75
76unsigned long num_physpages;
77/*
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
83 */
84void * high_memory;
1da177e4
LT
85
86EXPORT_SYMBOL(num_physpages);
87EXPORT_SYMBOL(high_memory);
1da177e4 88
32a93233
IM
89/*
90 * Randomize the address space (stacks, mmaps, brk, etc.).
91 *
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
94 */
95int randomize_va_space __read_mostly =
96#ifdef CONFIG_COMPAT_BRK
97 1;
98#else
99 2;
100#endif
a62eaf15 101
2ab64037 102#ifndef track_pfn_vma_new
103/*
104 * Interface that can be used by architecture code to keep track of
105 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
106 *
107 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
108 * for physical range indicated by pfn and size.
109 */
110int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t prot,
111 unsigned long pfn, unsigned long size)
112{
113 return 0;
114}
115#endif
116
117#ifndef track_pfn_vma_copy
118/*
119 * Interface that can be used by architecture code to keep track of
120 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
121 *
122 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
123 * copied through copy_page_range().
124 */
125int track_pfn_vma_copy(struct vm_area_struct *vma)
126{
127 return 0;
128}
129#endif
130
131#ifndef untrack_pfn_vma
132/*
133 * Interface that can be used by architecture code to keep track of
134 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
135 *
136 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
137 * untrack can be called for a specific region indicated by pfn and size or
138 * can be for the entire vma (in which case size can be zero).
139 */
140void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
141 unsigned long size)
142{
143}
144#endif
145
a62eaf15
AK
146static int __init disable_randmaps(char *s)
147{
148 randomize_va_space = 0;
9b41046c 149 return 1;
a62eaf15
AK
150}
151__setup("norandmaps", disable_randmaps);
152
153
1da177e4
LT
154/*
155 * If a p?d_bad entry is found while walking page tables, report
156 * the error, before resetting entry to p?d_none. Usually (but
157 * very seldom) called out from the p?d_none_or_clear_bad macros.
158 */
159
160void pgd_clear_bad(pgd_t *pgd)
161{
162 pgd_ERROR(*pgd);
163 pgd_clear(pgd);
164}
165
166void pud_clear_bad(pud_t *pud)
167{
168 pud_ERROR(*pud);
169 pud_clear(pud);
170}
171
172void pmd_clear_bad(pmd_t *pmd)
173{
174 pmd_ERROR(*pmd);
175 pmd_clear(pmd);
176}
177
178/*
179 * Note: this doesn't free the actual pages themselves. That
180 * has been handled earlier when unmapping all the memory regions.
181 */
e0da382c 182static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 183{
2f569afd 184 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 185 pmd_clear(pmd);
2f569afd 186 pte_free_tlb(tlb, token);
e0da382c 187 tlb->mm->nr_ptes--;
1da177e4
LT
188}
189
e0da382c
HD
190static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
191 unsigned long addr, unsigned long end,
192 unsigned long floor, unsigned long ceiling)
1da177e4
LT
193{
194 pmd_t *pmd;
195 unsigned long next;
e0da382c 196 unsigned long start;
1da177e4 197
e0da382c 198 start = addr;
1da177e4 199 pmd = pmd_offset(pud, addr);
1da177e4
LT
200 do {
201 next = pmd_addr_end(addr, end);
202 if (pmd_none_or_clear_bad(pmd))
203 continue;
e0da382c 204 free_pte_range(tlb, pmd);
1da177e4
LT
205 } while (pmd++, addr = next, addr != end);
206
e0da382c
HD
207 start &= PUD_MASK;
208 if (start < floor)
209 return;
210 if (ceiling) {
211 ceiling &= PUD_MASK;
212 if (!ceiling)
213 return;
1da177e4 214 }
e0da382c
HD
215 if (end - 1 > ceiling - 1)
216 return;
217
218 pmd = pmd_offset(pud, start);
219 pud_clear(pud);
220 pmd_free_tlb(tlb, pmd);
1da177e4
LT
221}
222
e0da382c
HD
223static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
224 unsigned long addr, unsigned long end,
225 unsigned long floor, unsigned long ceiling)
1da177e4
LT
226{
227 pud_t *pud;
228 unsigned long next;
e0da382c 229 unsigned long start;
1da177e4 230
e0da382c 231 start = addr;
1da177e4 232 pud = pud_offset(pgd, addr);
1da177e4
LT
233 do {
234 next = pud_addr_end(addr, end);
235 if (pud_none_or_clear_bad(pud))
236 continue;
e0da382c 237 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
238 } while (pud++, addr = next, addr != end);
239
e0da382c
HD
240 start &= PGDIR_MASK;
241 if (start < floor)
242 return;
243 if (ceiling) {
244 ceiling &= PGDIR_MASK;
245 if (!ceiling)
246 return;
1da177e4 247 }
e0da382c
HD
248 if (end - 1 > ceiling - 1)
249 return;
250
251 pud = pud_offset(pgd, start);
252 pgd_clear(pgd);
253 pud_free_tlb(tlb, pud);
1da177e4
LT
254}
255
256/*
e0da382c
HD
257 * This function frees user-level page tables of a process.
258 *
1da177e4
LT
259 * Must be called with pagetable lock held.
260 */
42b77728 261void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
262 unsigned long addr, unsigned long end,
263 unsigned long floor, unsigned long ceiling)
1da177e4
LT
264{
265 pgd_t *pgd;
266 unsigned long next;
e0da382c
HD
267 unsigned long start;
268
269 /*
270 * The next few lines have given us lots of grief...
271 *
272 * Why are we testing PMD* at this top level? Because often
273 * there will be no work to do at all, and we'd prefer not to
274 * go all the way down to the bottom just to discover that.
275 *
276 * Why all these "- 1"s? Because 0 represents both the bottom
277 * of the address space and the top of it (using -1 for the
278 * top wouldn't help much: the masks would do the wrong thing).
279 * The rule is that addr 0 and floor 0 refer to the bottom of
280 * the address space, but end 0 and ceiling 0 refer to the top
281 * Comparisons need to use "end - 1" and "ceiling - 1" (though
282 * that end 0 case should be mythical).
283 *
284 * Wherever addr is brought up or ceiling brought down, we must
285 * be careful to reject "the opposite 0" before it confuses the
286 * subsequent tests. But what about where end is brought down
287 * by PMD_SIZE below? no, end can't go down to 0 there.
288 *
289 * Whereas we round start (addr) and ceiling down, by different
290 * masks at different levels, in order to test whether a table
291 * now has no other vmas using it, so can be freed, we don't
292 * bother to round floor or end up - the tests don't need that.
293 */
1da177e4 294
e0da382c
HD
295 addr &= PMD_MASK;
296 if (addr < floor) {
297 addr += PMD_SIZE;
298 if (!addr)
299 return;
300 }
301 if (ceiling) {
302 ceiling &= PMD_MASK;
303 if (!ceiling)
304 return;
305 }
306 if (end - 1 > ceiling - 1)
307 end -= PMD_SIZE;
308 if (addr > end - 1)
309 return;
310
311 start = addr;
42b77728 312 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
313 do {
314 next = pgd_addr_end(addr, end);
315 if (pgd_none_or_clear_bad(pgd))
316 continue;
42b77728 317 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 318 } while (pgd++, addr = next, addr != end);
e0da382c
HD
319}
320
42b77728 321void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 322 unsigned long floor, unsigned long ceiling)
e0da382c
HD
323{
324 while (vma) {
325 struct vm_area_struct *next = vma->vm_next;
326 unsigned long addr = vma->vm_start;
327
8f4f8c16
HD
328 /*
329 * Hide vma from rmap and vmtruncate before freeing pgtables
330 */
331 anon_vma_unlink(vma);
332 unlink_file_vma(vma);
333
9da61aef 334 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 335 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 336 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
337 } else {
338 /*
339 * Optimization: gather nearby vmas into one call down
340 */
341 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 342 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
343 vma = next;
344 next = vma->vm_next;
8f4f8c16
HD
345 anon_vma_unlink(vma);
346 unlink_file_vma(vma);
3bf5ee95
HD
347 }
348 free_pgd_range(tlb, addr, vma->vm_end,
349 floor, next? next->vm_start: ceiling);
350 }
e0da382c
HD
351 vma = next;
352 }
1da177e4
LT
353}
354
1bb3630e 355int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 356{
2f569afd 357 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
358 if (!new)
359 return -ENOMEM;
360
362a61ad
NP
361 /*
362 * Ensure all pte setup (eg. pte page lock and page clearing) are
363 * visible before the pte is made visible to other CPUs by being
364 * put into page tables.
365 *
366 * The other side of the story is the pointer chasing in the page
367 * table walking code (when walking the page table without locking;
368 * ie. most of the time). Fortunately, these data accesses consist
369 * of a chain of data-dependent loads, meaning most CPUs (alpha
370 * being the notable exception) will already guarantee loads are
371 * seen in-order. See the alpha page table accessors for the
372 * smp_read_barrier_depends() barriers in page table walking code.
373 */
374 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
375
c74df32c 376 spin_lock(&mm->page_table_lock);
2f569afd 377 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 378 mm->nr_ptes++;
1da177e4 379 pmd_populate(mm, pmd, new);
2f569afd 380 new = NULL;
1da177e4 381 }
c74df32c 382 spin_unlock(&mm->page_table_lock);
2f569afd
MS
383 if (new)
384 pte_free(mm, new);
1bb3630e 385 return 0;
1da177e4
LT
386}
387
1bb3630e 388int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 389{
1bb3630e
HD
390 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
391 if (!new)
392 return -ENOMEM;
393
362a61ad
NP
394 smp_wmb(); /* See comment in __pte_alloc */
395
1bb3630e 396 spin_lock(&init_mm.page_table_lock);
2f569afd 397 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 398 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
399 new = NULL;
400 }
1bb3630e 401 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
402 if (new)
403 pte_free_kernel(&init_mm, new);
1bb3630e 404 return 0;
1da177e4
LT
405}
406
ae859762
HD
407static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
408{
409 if (file_rss)
410 add_mm_counter(mm, file_rss, file_rss);
411 if (anon_rss)
412 add_mm_counter(mm, anon_rss, anon_rss);
413}
414
b5810039 415/*
6aab341e
LT
416 * This function is called to print an error when a bad pte
417 * is found. For example, we might have a PFN-mapped pte in
418 * a region that doesn't allow it.
b5810039
NP
419 *
420 * The calling function must still handle the error.
421 */
15f59ada
AB
422static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
423 unsigned long vaddr)
b5810039
NP
424{
425 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
426 "vm_flags = %lx, vaddr = %lx\n",
427 (long long)pte_val(pte),
428 (vma->vm_mm == current->mm ? current->comm : "???"),
429 vma->vm_flags, vaddr);
430 dump_stack();
431}
432
67121172
LT
433static inline int is_cow_mapping(unsigned int flags)
434{
435 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
436}
437
ee498ed7 438/*
7e675137 439 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 440 *
7e675137
NP
441 * "Special" mappings do not wish to be associated with a "struct page" (either
442 * it doesn't exist, or it exists but they don't want to touch it). In this
443 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 444 *
7e675137
NP
445 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
446 * pte bit, in which case this function is trivial. Secondly, an architecture
447 * may not have a spare pte bit, which requires a more complicated scheme,
448 * described below.
449 *
450 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
451 * special mapping (even if there are underlying and valid "struct pages").
452 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 453 *
b379d790
JH
454 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
455 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
456 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
457 * mapping will always honor the rule
6aab341e
LT
458 *
459 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
460 *
7e675137
NP
461 * And for normal mappings this is false.
462 *
463 * This restricts such mappings to be a linear translation from virtual address
464 * to pfn. To get around this restriction, we allow arbitrary mappings so long
465 * as the vma is not a COW mapping; in that case, we know that all ptes are
466 * special (because none can have been COWed).
b379d790 467 *
b379d790 468 *
7e675137 469 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
470 *
471 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
472 * page" backing, however the difference is that _all_ pages with a struct
473 * page (that is, those where pfn_valid is true) are refcounted and considered
474 * normal pages by the VM. The disadvantage is that pages are refcounted
475 * (which can be slower and simply not an option for some PFNMAP users). The
476 * advantage is that we don't have to follow the strict linearity rule of
477 * PFNMAP mappings in order to support COWable mappings.
478 *
ee498ed7 479 */
7e675137
NP
480#ifdef __HAVE_ARCH_PTE_SPECIAL
481# define HAVE_PTE_SPECIAL 1
482#else
483# define HAVE_PTE_SPECIAL 0
484#endif
485struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
486 pte_t pte)
ee498ed7 487{
7e675137
NP
488 unsigned long pfn;
489
490 if (HAVE_PTE_SPECIAL) {
491 if (likely(!pte_special(pte))) {
492 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
493 return pte_page(pte);
494 }
495 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
496 return NULL;
497 }
498
499 /* !HAVE_PTE_SPECIAL case follows: */
500
501 pfn = pte_pfn(pte);
6aab341e 502
b379d790
JH
503 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
504 if (vma->vm_flags & VM_MIXEDMAP) {
505 if (!pfn_valid(pfn))
506 return NULL;
507 goto out;
508 } else {
7e675137
NP
509 unsigned long off;
510 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
511 if (pfn == vma->vm_pgoff + off)
512 return NULL;
513 if (!is_cow_mapping(vma->vm_flags))
514 return NULL;
515 }
6aab341e
LT
516 }
517
7e675137 518 VM_BUG_ON(!pfn_valid(pfn));
6aab341e
LT
519
520 /*
7e675137 521 * NOTE! We still have PageReserved() pages in the page tables.
6aab341e 522 *
7e675137 523 * eg. VDSO mappings can cause them to exist.
6aab341e 524 */
b379d790 525out:
6aab341e 526 return pfn_to_page(pfn);
ee498ed7
HD
527}
528
1da177e4
LT
529/*
530 * copy one vm_area from one task to the other. Assumes the page tables
531 * already present in the new task to be cleared in the whole range
532 * covered by this vma.
1da177e4
LT
533 */
534
8c103762 535static inline void
1da177e4 536copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 537 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 538 unsigned long addr, int *rss)
1da177e4 539{
b5810039 540 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
541 pte_t pte = *src_pte;
542 struct page *page;
1da177e4
LT
543
544 /* pte contains position in swap or file, so copy. */
545 if (unlikely(!pte_present(pte))) {
546 if (!pte_file(pte)) {
0697212a
CL
547 swp_entry_t entry = pte_to_swp_entry(pte);
548
549 swap_duplicate(entry);
1da177e4
LT
550 /* make sure dst_mm is on swapoff's mmlist. */
551 if (unlikely(list_empty(&dst_mm->mmlist))) {
552 spin_lock(&mmlist_lock);
f412ac08
HD
553 if (list_empty(&dst_mm->mmlist))
554 list_add(&dst_mm->mmlist,
555 &src_mm->mmlist);
1da177e4
LT
556 spin_unlock(&mmlist_lock);
557 }
0697212a
CL
558 if (is_write_migration_entry(entry) &&
559 is_cow_mapping(vm_flags)) {
560 /*
561 * COW mappings require pages in both parent
562 * and child to be set to read.
563 */
564 make_migration_entry_read(&entry);
565 pte = swp_entry_to_pte(entry);
566 set_pte_at(src_mm, addr, src_pte, pte);
567 }
1da177e4 568 }
ae859762 569 goto out_set_pte;
1da177e4
LT
570 }
571
1da177e4
LT
572 /*
573 * If it's a COW mapping, write protect it both
574 * in the parent and the child
575 */
67121172 576 if (is_cow_mapping(vm_flags)) {
1da177e4 577 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 578 pte = pte_wrprotect(pte);
1da177e4
LT
579 }
580
581 /*
582 * If it's a shared mapping, mark it clean in
583 * the child
584 */
585 if (vm_flags & VM_SHARED)
586 pte = pte_mkclean(pte);
587 pte = pte_mkold(pte);
6aab341e
LT
588
589 page = vm_normal_page(vma, addr, pte);
590 if (page) {
591 get_page(page);
c97a9e10 592 page_dup_rmap(page, vma, addr);
6aab341e
LT
593 rss[!!PageAnon(page)]++;
594 }
ae859762
HD
595
596out_set_pte:
597 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
598}
599
600static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
601 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
602 unsigned long addr, unsigned long end)
603{
604 pte_t *src_pte, *dst_pte;
c74df32c 605 spinlock_t *src_ptl, *dst_ptl;
e040f218 606 int progress = 0;
8c103762 607 int rss[2];
1da177e4
LT
608
609again:
ae859762 610 rss[1] = rss[0] = 0;
c74df32c 611 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
612 if (!dst_pte)
613 return -ENOMEM;
614 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 615 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 616 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 617 arch_enter_lazy_mmu_mode();
1da177e4 618
1da177e4
LT
619 do {
620 /*
621 * We are holding two locks at this point - either of them
622 * could generate latencies in another task on another CPU.
623 */
e040f218
HD
624 if (progress >= 32) {
625 progress = 0;
626 if (need_resched() ||
95c354fe 627 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
628 break;
629 }
1da177e4
LT
630 if (pte_none(*src_pte)) {
631 progress++;
632 continue;
633 }
8c103762 634 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
635 progress += 8;
636 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 637
6606c3e0 638 arch_leave_lazy_mmu_mode();
c74df32c 639 spin_unlock(src_ptl);
1da177e4 640 pte_unmap_nested(src_pte - 1);
ae859762 641 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
642 pte_unmap_unlock(dst_pte - 1, dst_ptl);
643 cond_resched();
1da177e4
LT
644 if (addr != end)
645 goto again;
646 return 0;
647}
648
649static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
651 unsigned long addr, unsigned long end)
652{
653 pmd_t *src_pmd, *dst_pmd;
654 unsigned long next;
655
656 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
657 if (!dst_pmd)
658 return -ENOMEM;
659 src_pmd = pmd_offset(src_pud, addr);
660 do {
661 next = pmd_addr_end(addr, end);
662 if (pmd_none_or_clear_bad(src_pmd))
663 continue;
664 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
665 vma, addr, next))
666 return -ENOMEM;
667 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
668 return 0;
669}
670
671static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
672 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
673 unsigned long addr, unsigned long end)
674{
675 pud_t *src_pud, *dst_pud;
676 unsigned long next;
677
678 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
679 if (!dst_pud)
680 return -ENOMEM;
681 src_pud = pud_offset(src_pgd, addr);
682 do {
683 next = pud_addr_end(addr, end);
684 if (pud_none_or_clear_bad(src_pud))
685 continue;
686 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
687 vma, addr, next))
688 return -ENOMEM;
689 } while (dst_pud++, src_pud++, addr = next, addr != end);
690 return 0;
691}
692
693int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
694 struct vm_area_struct *vma)
695{
696 pgd_t *src_pgd, *dst_pgd;
697 unsigned long next;
698 unsigned long addr = vma->vm_start;
699 unsigned long end = vma->vm_end;
cddb8a5c 700 int ret;
1da177e4 701
d992895b
NP
702 /*
703 * Don't copy ptes where a page fault will fill them correctly.
704 * Fork becomes much lighter when there are big shared or private
705 * readonly mappings. The tradeoff is that copy_page_range is more
706 * efficient than faulting.
707 */
4d7672b4 708 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
709 if (!vma->anon_vma)
710 return 0;
711 }
712
1da177e4
LT
713 if (is_vm_hugetlb_page(vma))
714 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
715
2ab64037 716 if (is_pfn_mapping(vma)) {
717 /*
718 * We do not free on error cases below as remove_vma
719 * gets called on error from higher level routine
720 */
721 ret = track_pfn_vma_copy(vma);
722 if (ret)
723 return ret;
724 }
725
cddb8a5c
AA
726 /*
727 * We need to invalidate the secondary MMU mappings only when
728 * there could be a permission downgrade on the ptes of the
729 * parent mm. And a permission downgrade will only happen if
730 * is_cow_mapping() returns true.
731 */
732 if (is_cow_mapping(vma->vm_flags))
733 mmu_notifier_invalidate_range_start(src_mm, addr, end);
734
735 ret = 0;
1da177e4
LT
736 dst_pgd = pgd_offset(dst_mm, addr);
737 src_pgd = pgd_offset(src_mm, addr);
738 do {
739 next = pgd_addr_end(addr, end);
740 if (pgd_none_or_clear_bad(src_pgd))
741 continue;
cddb8a5c
AA
742 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
743 vma, addr, next))) {
744 ret = -ENOMEM;
745 break;
746 }
1da177e4 747 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
748
749 if (is_cow_mapping(vma->vm_flags))
750 mmu_notifier_invalidate_range_end(src_mm,
751 vma->vm_start, end);
752 return ret;
1da177e4
LT
753}
754
51c6f666 755static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 756 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 757 unsigned long addr, unsigned long end,
51c6f666 758 long *zap_work, struct zap_details *details)
1da177e4 759{
b5810039 760 struct mm_struct *mm = tlb->mm;
1da177e4 761 pte_t *pte;
508034a3 762 spinlock_t *ptl;
ae859762
HD
763 int file_rss = 0;
764 int anon_rss = 0;
1da177e4 765
508034a3 766 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 767 arch_enter_lazy_mmu_mode();
1da177e4
LT
768 do {
769 pte_t ptent = *pte;
51c6f666
RH
770 if (pte_none(ptent)) {
771 (*zap_work)--;
1da177e4 772 continue;
51c6f666 773 }
6f5e6b9e
HD
774
775 (*zap_work) -= PAGE_SIZE;
776
1da177e4 777 if (pte_present(ptent)) {
ee498ed7 778 struct page *page;
51c6f666 779
6aab341e 780 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
781 if (unlikely(details) && page) {
782 /*
783 * unmap_shared_mapping_pages() wants to
784 * invalidate cache without truncating:
785 * unmap shared but keep private pages.
786 */
787 if (details->check_mapping &&
788 details->check_mapping != page->mapping)
789 continue;
790 /*
791 * Each page->index must be checked when
792 * invalidating or truncating nonlinear.
793 */
794 if (details->nonlinear_vma &&
795 (page->index < details->first_index ||
796 page->index > details->last_index))
797 continue;
798 }
b5810039 799 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 800 tlb->fullmm);
1da177e4
LT
801 tlb_remove_tlb_entry(tlb, pte, addr);
802 if (unlikely(!page))
803 continue;
804 if (unlikely(details) && details->nonlinear_vma
805 && linear_page_index(details->nonlinear_vma,
806 addr) != page->index)
b5810039 807 set_pte_at(mm, addr, pte,
1da177e4 808 pgoff_to_pte(page->index));
1da177e4 809 if (PageAnon(page))
86d912f4 810 anon_rss--;
6237bcd9
HD
811 else {
812 if (pte_dirty(ptent))
813 set_page_dirty(page);
814 if (pte_young(ptent))
daa88c8d 815 SetPageReferenced(page);
86d912f4 816 file_rss--;
6237bcd9 817 }
7de6b805 818 page_remove_rmap(page, vma);
1da177e4
LT
819 tlb_remove_page(tlb, page);
820 continue;
821 }
822 /*
823 * If details->check_mapping, we leave swap entries;
824 * if details->nonlinear_vma, we leave file entries.
825 */
826 if (unlikely(details))
827 continue;
828 if (!pte_file(ptent))
829 free_swap_and_cache(pte_to_swp_entry(ptent));
9888a1ca 830 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 831 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 832
86d912f4 833 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 834 arch_leave_lazy_mmu_mode();
508034a3 835 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
836
837 return addr;
1da177e4
LT
838}
839
51c6f666 840static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 841 struct vm_area_struct *vma, pud_t *pud,
1da177e4 842 unsigned long addr, unsigned long end,
51c6f666 843 long *zap_work, struct zap_details *details)
1da177e4
LT
844{
845 pmd_t *pmd;
846 unsigned long next;
847
848 pmd = pmd_offset(pud, addr);
849 do {
850 next = pmd_addr_end(addr, end);
51c6f666
RH
851 if (pmd_none_or_clear_bad(pmd)) {
852 (*zap_work)--;
1da177e4 853 continue;
51c6f666
RH
854 }
855 next = zap_pte_range(tlb, vma, pmd, addr, next,
856 zap_work, details);
857 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
858
859 return addr;
1da177e4
LT
860}
861
51c6f666 862static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 863 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 864 unsigned long addr, unsigned long end,
51c6f666 865 long *zap_work, struct zap_details *details)
1da177e4
LT
866{
867 pud_t *pud;
868 unsigned long next;
869
870 pud = pud_offset(pgd, addr);
871 do {
872 next = pud_addr_end(addr, end);
51c6f666
RH
873 if (pud_none_or_clear_bad(pud)) {
874 (*zap_work)--;
1da177e4 875 continue;
51c6f666
RH
876 }
877 next = zap_pmd_range(tlb, vma, pud, addr, next,
878 zap_work, details);
879 } while (pud++, addr = next, (addr != end && *zap_work > 0));
880
881 return addr;
1da177e4
LT
882}
883
51c6f666
RH
884static unsigned long unmap_page_range(struct mmu_gather *tlb,
885 struct vm_area_struct *vma,
1da177e4 886 unsigned long addr, unsigned long end,
51c6f666 887 long *zap_work, struct zap_details *details)
1da177e4
LT
888{
889 pgd_t *pgd;
890 unsigned long next;
891
892 if (details && !details->check_mapping && !details->nonlinear_vma)
893 details = NULL;
894
895 BUG_ON(addr >= end);
896 tlb_start_vma(tlb, vma);
897 pgd = pgd_offset(vma->vm_mm, addr);
898 do {
899 next = pgd_addr_end(addr, end);
51c6f666
RH
900 if (pgd_none_or_clear_bad(pgd)) {
901 (*zap_work)--;
1da177e4 902 continue;
51c6f666
RH
903 }
904 next = zap_pud_range(tlb, vma, pgd, addr, next,
905 zap_work, details);
906 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 907 tlb_end_vma(tlb, vma);
51c6f666
RH
908
909 return addr;
1da177e4
LT
910}
911
912#ifdef CONFIG_PREEMPT
913# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
914#else
915/* No preempt: go for improved straight-line efficiency */
916# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
917#endif
918
919/**
920 * unmap_vmas - unmap a range of memory covered by a list of vma's
921 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
922 * @vma: the starting vma
923 * @start_addr: virtual address at which to start unmapping
924 * @end_addr: virtual address at which to end unmapping
925 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
926 * @details: details of nonlinear truncation or shared cache invalidation
927 *
ee39b37b 928 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 929 *
508034a3 930 * Unmap all pages in the vma list.
1da177e4 931 *
508034a3
HD
932 * We aim to not hold locks for too long (for scheduling latency reasons).
933 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
934 * return the ending mmu_gather to the caller.
935 *
936 * Only addresses between `start' and `end' will be unmapped.
937 *
938 * The VMA list must be sorted in ascending virtual address order.
939 *
940 * unmap_vmas() assumes that the caller will flush the whole unmapped address
941 * range after unmap_vmas() returns. So the only responsibility here is to
942 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
943 * drops the lock and schedules.
944 */
508034a3 945unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
946 struct vm_area_struct *vma, unsigned long start_addr,
947 unsigned long end_addr, unsigned long *nr_accounted,
948 struct zap_details *details)
949{
51c6f666 950 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
951 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
952 int tlb_start_valid = 0;
ee39b37b 953 unsigned long start = start_addr;
1da177e4 954 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 955 int fullmm = (*tlbp)->fullmm;
cddb8a5c 956 struct mm_struct *mm = vma->vm_mm;
1da177e4 957
cddb8a5c 958 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 959 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
960 unsigned long end;
961
962 start = max(vma->vm_start, start_addr);
963 if (start >= vma->vm_end)
964 continue;
965 end = min(vma->vm_end, end_addr);
966 if (end <= vma->vm_start)
967 continue;
968
969 if (vma->vm_flags & VM_ACCOUNT)
970 *nr_accounted += (end - start) >> PAGE_SHIFT;
971
2ab64037 972 if (is_pfn_mapping(vma))
973 untrack_pfn_vma(vma, 0, 0);
974
1da177e4 975 while (start != end) {
1da177e4
LT
976 if (!tlb_start_valid) {
977 tlb_start = start;
978 tlb_start_valid = 1;
979 }
980
51c6f666 981 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
982 /*
983 * It is undesirable to test vma->vm_file as it
984 * should be non-null for valid hugetlb area.
985 * However, vm_file will be NULL in the error
986 * cleanup path of do_mmap_pgoff. When
987 * hugetlbfs ->mmap method fails,
988 * do_mmap_pgoff() nullifies vma->vm_file
989 * before calling this function to clean up.
990 * Since no pte has actually been setup, it is
991 * safe to do nothing in this case.
992 */
993 if (vma->vm_file) {
994 unmap_hugepage_range(vma, start, end, NULL);
995 zap_work -= (end - start) /
a5516438 996 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
997 }
998
51c6f666
RH
999 start = end;
1000 } else
1001 start = unmap_page_range(*tlbp, vma,
1002 start, end, &zap_work, details);
1003
1004 if (zap_work > 0) {
1005 BUG_ON(start != end);
1006 break;
1da177e4
LT
1007 }
1008
1da177e4
LT
1009 tlb_finish_mmu(*tlbp, tlb_start, start);
1010
1011 if (need_resched() ||
95c354fe 1012 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 1013 if (i_mmap_lock) {
508034a3 1014 *tlbp = NULL;
1da177e4
LT
1015 goto out;
1016 }
1da177e4 1017 cond_resched();
1da177e4
LT
1018 }
1019
508034a3 1020 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 1021 tlb_start_valid = 0;
51c6f666 1022 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
1023 }
1024 }
1025out:
cddb8a5c 1026 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 1027 return start; /* which is now the end (or restart) address */
1da177e4
LT
1028}
1029
1030/**
1031 * zap_page_range - remove user pages in a given range
1032 * @vma: vm_area_struct holding the applicable pages
1033 * @address: starting address of pages to zap
1034 * @size: number of bytes to zap
1035 * @details: details of nonlinear truncation or shared cache invalidation
1036 */
ee39b37b 1037unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1038 unsigned long size, struct zap_details *details)
1039{
1040 struct mm_struct *mm = vma->vm_mm;
1041 struct mmu_gather *tlb;
1042 unsigned long end = address + size;
1043 unsigned long nr_accounted = 0;
1044
1da177e4 1045 lru_add_drain();
1da177e4 1046 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1047 update_hiwater_rss(mm);
508034a3
HD
1048 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1049 if (tlb)
1050 tlb_finish_mmu(tlb, address, end);
ee39b37b 1051 return end;
1da177e4
LT
1052}
1053
c627f9cc
JS
1054/**
1055 * zap_vma_ptes - remove ptes mapping the vma
1056 * @vma: vm_area_struct holding ptes to be zapped
1057 * @address: starting address of pages to zap
1058 * @size: number of bytes to zap
1059 *
1060 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1061 *
1062 * The entire address range must be fully contained within the vma.
1063 *
1064 * Returns 0 if successful.
1065 */
1066int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1067 unsigned long size)
1068{
1069 if (address < vma->vm_start || address + size > vma->vm_end ||
1070 !(vma->vm_flags & VM_PFNMAP))
1071 return -1;
1072 zap_page_range(vma, address, size, NULL);
1073 return 0;
1074}
1075EXPORT_SYMBOL_GPL(zap_vma_ptes);
1076
1da177e4
LT
1077/*
1078 * Do a quick page-table lookup for a single page.
1da177e4 1079 */
6aab341e 1080struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1081 unsigned int flags)
1da177e4
LT
1082{
1083 pgd_t *pgd;
1084 pud_t *pud;
1085 pmd_t *pmd;
1086 pte_t *ptep, pte;
deceb6cd 1087 spinlock_t *ptl;
1da177e4 1088 struct page *page;
6aab341e 1089 struct mm_struct *mm = vma->vm_mm;
1da177e4 1090
deceb6cd
HD
1091 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1092 if (!IS_ERR(page)) {
1093 BUG_ON(flags & FOLL_GET);
1094 goto out;
1095 }
1da177e4 1096
deceb6cd 1097 page = NULL;
1da177e4
LT
1098 pgd = pgd_offset(mm, address);
1099 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1100 goto no_page_table;
1da177e4
LT
1101
1102 pud = pud_offset(pgd, address);
ceb86879 1103 if (pud_none(*pud))
deceb6cd 1104 goto no_page_table;
ceb86879
AK
1105 if (pud_huge(*pud)) {
1106 BUG_ON(flags & FOLL_GET);
1107 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1108 goto out;
1109 }
1110 if (unlikely(pud_bad(*pud)))
1111 goto no_page_table;
1112
1da177e4 1113 pmd = pmd_offset(pud, address);
aeed5fce 1114 if (pmd_none(*pmd))
deceb6cd 1115 goto no_page_table;
deceb6cd
HD
1116 if (pmd_huge(*pmd)) {
1117 BUG_ON(flags & FOLL_GET);
1118 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1119 goto out;
deceb6cd 1120 }
aeed5fce
HD
1121 if (unlikely(pmd_bad(*pmd)))
1122 goto no_page_table;
1123
deceb6cd 1124 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1125
1126 pte = *ptep;
deceb6cd 1127 if (!pte_present(pte))
89f5b7da 1128 goto no_page;
deceb6cd
HD
1129 if ((flags & FOLL_WRITE) && !pte_write(pte))
1130 goto unlock;
6aab341e
LT
1131 page = vm_normal_page(vma, address, pte);
1132 if (unlikely(!page))
89f5b7da 1133 goto bad_page;
1da177e4 1134
deceb6cd
HD
1135 if (flags & FOLL_GET)
1136 get_page(page);
1137 if (flags & FOLL_TOUCH) {
1138 if ((flags & FOLL_WRITE) &&
1139 !pte_dirty(pte) && !PageDirty(page))
1140 set_page_dirty(page);
1141 mark_page_accessed(page);
1142 }
1143unlock:
1144 pte_unmap_unlock(ptep, ptl);
1da177e4 1145out:
deceb6cd 1146 return page;
1da177e4 1147
89f5b7da
LT
1148bad_page:
1149 pte_unmap_unlock(ptep, ptl);
1150 return ERR_PTR(-EFAULT);
1151
1152no_page:
1153 pte_unmap_unlock(ptep, ptl);
1154 if (!pte_none(pte))
1155 return page;
1156 /* Fall through to ZERO_PAGE handling */
deceb6cd
HD
1157no_page_table:
1158 /*
1159 * When core dumping an enormous anonymous area that nobody
1160 * has touched so far, we don't want to allocate page tables.
1161 */
1162 if (flags & FOLL_ANON) {
557ed1fa 1163 page = ZERO_PAGE(0);
deceb6cd
HD
1164 if (flags & FOLL_GET)
1165 get_page(page);
1166 BUG_ON(flags & FOLL_WRITE);
1167 }
1168 return page;
1da177e4
LT
1169}
1170
e121e418 1171int follow_pfnmap_pte(struct vm_area_struct *vma, unsigned long address,
1172 pte_t *ret_ptep)
1173{
1174 pgd_t *pgd;
1175 pud_t *pud;
1176 pmd_t *pmd;
1177 pte_t *ptep, pte;
1178 spinlock_t *ptl;
1179 struct page *page;
1180 struct mm_struct *mm = vma->vm_mm;
1181
1182 if (!is_pfn_mapping(vma))
1183 goto err;
1184
1185 page = NULL;
1186 pgd = pgd_offset(mm, address);
1187 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1188 goto err;
1189
1190 pud = pud_offset(pgd, address);
1191 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
1192 goto err;
1193
1194 pmd = pmd_offset(pud, address);
1195 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
1196 goto err;
1197
1198 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1199
1200 pte = *ptep;
1201 if (!pte_present(pte))
1202 goto err_unlock;
1203
1204 *ret_ptep = pte;
1205 pte_unmap_unlock(ptep, ptl);
1206 return 0;
1207
1208err_unlock:
1209 pte_unmap_unlock(ptep, ptl);
1210err:
1211 return -EINVAL;
1212}
1213
672ca28e
LT
1214/* Can we do the FOLL_ANON optimization? */
1215static inline int use_zero_page(struct vm_area_struct *vma)
1216{
1217 /*
1218 * We don't want to optimize FOLL_ANON for make_pages_present()
1219 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1220 * we want to get the page from the page tables to make sure
1221 * that we serialize and update with any other user of that
1222 * mapping.
1223 */
1224 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1225 return 0;
1226 /*
0d71d10a 1227 * And if we have a fault routine, it's not an anonymous region.
672ca28e 1228 */
0d71d10a 1229 return !vma->vm_ops || !vma->vm_ops->fault;
672ca28e
LT
1230}
1231
b291f000
NP
1232
1233
1234int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1235 unsigned long start, int len, int flags,
1da177e4
LT
1236 struct page **pages, struct vm_area_struct **vmas)
1237{
1238 int i;
b291f000
NP
1239 unsigned int vm_flags = 0;
1240 int write = !!(flags & GUP_FLAGS_WRITE);
1241 int force = !!(flags & GUP_FLAGS_FORCE);
1242 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1da177e4 1243
900cf086
JC
1244 if (len <= 0)
1245 return 0;
1da177e4
LT
1246 /*
1247 * Require read or write permissions.
1248 * If 'force' is set, we only require the "MAY" flags.
1249 */
deceb6cd
HD
1250 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1251 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1252 i = 0;
1253
1254 do {
deceb6cd
HD
1255 struct vm_area_struct *vma;
1256 unsigned int foll_flags;
1da177e4
LT
1257
1258 vma = find_extend_vma(mm, start);
1259 if (!vma && in_gate_area(tsk, start)) {
1260 unsigned long pg = start & PAGE_MASK;
1261 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1262 pgd_t *pgd;
1263 pud_t *pud;
1264 pmd_t *pmd;
1265 pte_t *pte;
b291f000
NP
1266
1267 /* user gate pages are read-only */
1268 if (!ignore && write)
1da177e4
LT
1269 return i ? : -EFAULT;
1270 if (pg > TASK_SIZE)
1271 pgd = pgd_offset_k(pg);
1272 else
1273 pgd = pgd_offset_gate(mm, pg);
1274 BUG_ON(pgd_none(*pgd));
1275 pud = pud_offset(pgd, pg);
1276 BUG_ON(pud_none(*pud));
1277 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1278 if (pmd_none(*pmd))
1279 return i ? : -EFAULT;
1da177e4 1280 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1281 if (pte_none(*pte)) {
1282 pte_unmap(pte);
1283 return i ? : -EFAULT;
1284 }
1da177e4 1285 if (pages) {
fa2a455b 1286 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1287 pages[i] = page;
1288 if (page)
1289 get_page(page);
1da177e4
LT
1290 }
1291 pte_unmap(pte);
1292 if (vmas)
1293 vmas[i] = gate_vma;
1294 i++;
1295 start += PAGE_SIZE;
1296 len--;
1297 continue;
1298 }
1299
b291f000
NP
1300 if (!vma ||
1301 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1302 (!ignore && !(vm_flags & vma->vm_flags)))
1da177e4
LT
1303 return i ? : -EFAULT;
1304
1305 if (is_vm_hugetlb_page(vma)) {
1306 i = follow_hugetlb_page(mm, vma, pages, vmas,
5b23dbe8 1307 &start, &len, i, write);
1da177e4
LT
1308 continue;
1309 }
deceb6cd
HD
1310
1311 foll_flags = FOLL_TOUCH;
1312 if (pages)
1313 foll_flags |= FOLL_GET;
672ca28e 1314 if (!write && use_zero_page(vma))
deceb6cd
HD
1315 foll_flags |= FOLL_ANON;
1316
1da177e4 1317 do {
08ef4729 1318 struct page *page;
1da177e4 1319
462e00cc
ES
1320 /*
1321 * If tsk is ooming, cut off its access to large memory
1322 * allocations. It has a pending SIGKILL, but it can't
1323 * be processed until returning to user space.
1324 */
1325 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
7a36a752 1326 return i ? i : -ENOMEM;
462e00cc 1327
deceb6cd
HD
1328 if (write)
1329 foll_flags |= FOLL_WRITE;
a68d2ebc 1330
deceb6cd 1331 cond_resched();
6aab341e 1332 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1333 int ret;
83c54070 1334 ret = handle_mm_fault(mm, vma, start,
deceb6cd 1335 foll_flags & FOLL_WRITE);
83c54070
NP
1336 if (ret & VM_FAULT_ERROR) {
1337 if (ret & VM_FAULT_OOM)
1338 return i ? i : -ENOMEM;
1339 else if (ret & VM_FAULT_SIGBUS)
1340 return i ? i : -EFAULT;
1341 BUG();
1342 }
1343 if (ret & VM_FAULT_MAJOR)
1344 tsk->maj_flt++;
1345 else
1346 tsk->min_flt++;
1347
a68d2ebc 1348 /*
83c54070
NP
1349 * The VM_FAULT_WRITE bit tells us that
1350 * do_wp_page has broken COW when necessary,
1351 * even if maybe_mkwrite decided not to set
1352 * pte_write. We can thus safely do subsequent
1353 * page lookups as if they were reads.
a68d2ebc
LT
1354 */
1355 if (ret & VM_FAULT_WRITE)
deceb6cd 1356 foll_flags &= ~FOLL_WRITE;
83c54070 1357
7f7bbbe5 1358 cond_resched();
1da177e4 1359 }
89f5b7da
LT
1360 if (IS_ERR(page))
1361 return i ? i : PTR_ERR(page);
1da177e4 1362 if (pages) {
08ef4729 1363 pages[i] = page;
03beb076 1364
a6f36be3 1365 flush_anon_page(vma, page, start);
08ef4729 1366 flush_dcache_page(page);
1da177e4
LT
1367 }
1368 if (vmas)
1369 vmas[i] = vma;
1370 i++;
1371 start += PAGE_SIZE;
1372 len--;
08ef4729 1373 } while (len && start < vma->vm_end);
08ef4729 1374 } while (len);
1da177e4
LT
1375 return i;
1376}
b291f000
NP
1377
1378int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1379 unsigned long start, int len, int write, int force,
1380 struct page **pages, struct vm_area_struct **vmas)
1381{
1382 int flags = 0;
1383
1384 if (write)
1385 flags |= GUP_FLAGS_WRITE;
1386 if (force)
1387 flags |= GUP_FLAGS_FORCE;
1388
1389 return __get_user_pages(tsk, mm,
1390 start, len, flags,
1391 pages, vmas);
1392}
1393
1da177e4
LT
1394EXPORT_SYMBOL(get_user_pages);
1395
920c7a5d
HH
1396pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1397 spinlock_t **ptl)
c9cfcddf
LT
1398{
1399 pgd_t * pgd = pgd_offset(mm, addr);
1400 pud_t * pud = pud_alloc(mm, pgd, addr);
1401 if (pud) {
49c91fb0 1402 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1403 if (pmd)
1404 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1405 }
1406 return NULL;
1407}
1408
238f58d8
LT
1409/*
1410 * This is the old fallback for page remapping.
1411 *
1412 * For historical reasons, it only allows reserved pages. Only
1413 * old drivers should use this, and they needed to mark their
1414 * pages reserved for the old functions anyway.
1415 */
423bad60
NP
1416static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1417 struct page *page, pgprot_t prot)
238f58d8 1418{
423bad60 1419 struct mm_struct *mm = vma->vm_mm;
238f58d8 1420 int retval;
c9cfcddf 1421 pte_t *pte;
8a9f3ccd
BS
1422 spinlock_t *ptl;
1423
238f58d8 1424 retval = -EINVAL;
a145dd41 1425 if (PageAnon(page))
5b4e655e 1426 goto out;
238f58d8
LT
1427 retval = -ENOMEM;
1428 flush_dcache_page(page);
c9cfcddf 1429 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1430 if (!pte)
5b4e655e 1431 goto out;
238f58d8
LT
1432 retval = -EBUSY;
1433 if (!pte_none(*pte))
1434 goto out_unlock;
1435
1436 /* Ok, finally just insert the thing.. */
1437 get_page(page);
1438 inc_mm_counter(mm, file_rss);
1439 page_add_file_rmap(page);
1440 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1441
1442 retval = 0;
8a9f3ccd
BS
1443 pte_unmap_unlock(pte, ptl);
1444 return retval;
238f58d8
LT
1445out_unlock:
1446 pte_unmap_unlock(pte, ptl);
1447out:
1448 return retval;
1449}
1450
bfa5bf6d
REB
1451/**
1452 * vm_insert_page - insert single page into user vma
1453 * @vma: user vma to map to
1454 * @addr: target user address of this page
1455 * @page: source kernel page
1456 *
a145dd41
LT
1457 * This allows drivers to insert individual pages they've allocated
1458 * into a user vma.
1459 *
1460 * The page has to be a nice clean _individual_ kernel allocation.
1461 * If you allocate a compound page, you need to have marked it as
1462 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1463 * (see split_page()).
a145dd41
LT
1464 *
1465 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1466 * took an arbitrary page protection parameter. This doesn't allow
1467 * that. Your vma protection will have to be set up correctly, which
1468 * means that if you want a shared writable mapping, you'd better
1469 * ask for a shared writable mapping!
1470 *
1471 * The page does not need to be reserved.
1472 */
423bad60
NP
1473int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1474 struct page *page)
a145dd41
LT
1475{
1476 if (addr < vma->vm_start || addr >= vma->vm_end)
1477 return -EFAULT;
1478 if (!page_count(page))
1479 return -EINVAL;
4d7672b4 1480 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1481 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1482}
e3c3374f 1483EXPORT_SYMBOL(vm_insert_page);
a145dd41 1484
423bad60
NP
1485static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1486 unsigned long pfn, pgprot_t prot)
1487{
1488 struct mm_struct *mm = vma->vm_mm;
1489 int retval;
1490 pte_t *pte, entry;
1491 spinlock_t *ptl;
1492
1493 retval = -ENOMEM;
1494 pte = get_locked_pte(mm, addr, &ptl);
1495 if (!pte)
1496 goto out;
1497 retval = -EBUSY;
1498 if (!pte_none(*pte))
1499 goto out_unlock;
1500
1501 /* Ok, finally just insert the thing.. */
1502 entry = pte_mkspecial(pfn_pte(pfn, prot));
1503 set_pte_at(mm, addr, pte, entry);
1504 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1505
1506 retval = 0;
1507out_unlock:
1508 pte_unmap_unlock(pte, ptl);
1509out:
1510 return retval;
1511}
1512
e0dc0d8f
NP
1513/**
1514 * vm_insert_pfn - insert single pfn into user vma
1515 * @vma: user vma to map to
1516 * @addr: target user address of this page
1517 * @pfn: source kernel pfn
1518 *
1519 * Similar to vm_inert_page, this allows drivers to insert individual pages
1520 * they've allocated into a user vma. Same comments apply.
1521 *
1522 * This function should only be called from a vm_ops->fault handler, and
1523 * in that case the handler should return NULL.
0d71d10a
NP
1524 *
1525 * vma cannot be a COW mapping.
1526 *
1527 * As this is called only for pages that do not currently exist, we
1528 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1529 */
1530int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1531 unsigned long pfn)
e0dc0d8f 1532{
2ab64037 1533 int ret;
7e675137
NP
1534 /*
1535 * Technically, architectures with pte_special can avoid all these
1536 * restrictions (same for remap_pfn_range). However we would like
1537 * consistency in testing and feature parity among all, so we should
1538 * try to keep these invariants in place for everybody.
1539 */
b379d790
JH
1540 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1541 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1542 (VM_PFNMAP|VM_MIXEDMAP));
1543 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1544 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1545
423bad60
NP
1546 if (addr < vma->vm_start || addr >= vma->vm_end)
1547 return -EFAULT;
2ab64037 1548 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1549 return -EINVAL;
1550
1551 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1552
1553 if (ret)
1554 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1555
1556 return ret;
423bad60
NP
1557}
1558EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1559
423bad60
NP
1560int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1561 unsigned long pfn)
1562{
1563 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1564
423bad60
NP
1565 if (addr < vma->vm_start || addr >= vma->vm_end)
1566 return -EFAULT;
e0dc0d8f 1567
423bad60
NP
1568 /*
1569 * If we don't have pte special, then we have to use the pfn_valid()
1570 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1571 * refcount the page if pfn_valid is true (hence insert_page rather
1572 * than insert_pfn).
1573 */
1574 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1575 struct page *page;
1576
1577 page = pfn_to_page(pfn);
1578 return insert_page(vma, addr, page, vma->vm_page_prot);
1579 }
1580 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1581}
423bad60 1582EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1583
1da177e4
LT
1584/*
1585 * maps a range of physical memory into the requested pages. the old
1586 * mappings are removed. any references to nonexistent pages results
1587 * in null mappings (currently treated as "copy-on-access")
1588 */
1589static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1590 unsigned long addr, unsigned long end,
1591 unsigned long pfn, pgprot_t prot)
1592{
1593 pte_t *pte;
c74df32c 1594 spinlock_t *ptl;
1da177e4 1595
c74df32c 1596 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1597 if (!pte)
1598 return -ENOMEM;
6606c3e0 1599 arch_enter_lazy_mmu_mode();
1da177e4
LT
1600 do {
1601 BUG_ON(!pte_none(*pte));
7e675137 1602 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1603 pfn++;
1604 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1605 arch_leave_lazy_mmu_mode();
c74df32c 1606 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1607 return 0;
1608}
1609
1610static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1611 unsigned long addr, unsigned long end,
1612 unsigned long pfn, pgprot_t prot)
1613{
1614 pmd_t *pmd;
1615 unsigned long next;
1616
1617 pfn -= addr >> PAGE_SHIFT;
1618 pmd = pmd_alloc(mm, pud, addr);
1619 if (!pmd)
1620 return -ENOMEM;
1621 do {
1622 next = pmd_addr_end(addr, end);
1623 if (remap_pte_range(mm, pmd, addr, next,
1624 pfn + (addr >> PAGE_SHIFT), prot))
1625 return -ENOMEM;
1626 } while (pmd++, addr = next, addr != end);
1627 return 0;
1628}
1629
1630static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1631 unsigned long addr, unsigned long end,
1632 unsigned long pfn, pgprot_t prot)
1633{
1634 pud_t *pud;
1635 unsigned long next;
1636
1637 pfn -= addr >> PAGE_SHIFT;
1638 pud = pud_alloc(mm, pgd, addr);
1639 if (!pud)
1640 return -ENOMEM;
1641 do {
1642 next = pud_addr_end(addr, end);
1643 if (remap_pmd_range(mm, pud, addr, next,
1644 pfn + (addr >> PAGE_SHIFT), prot))
1645 return -ENOMEM;
1646 } while (pud++, addr = next, addr != end);
1647 return 0;
1648}
1649
bfa5bf6d
REB
1650/**
1651 * remap_pfn_range - remap kernel memory to userspace
1652 * @vma: user vma to map to
1653 * @addr: target user address to start at
1654 * @pfn: physical address of kernel memory
1655 * @size: size of map area
1656 * @prot: page protection flags for this mapping
1657 *
1658 * Note: this is only safe if the mm semaphore is held when called.
1659 */
1da177e4
LT
1660int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1661 unsigned long pfn, unsigned long size, pgprot_t prot)
1662{
1663 pgd_t *pgd;
1664 unsigned long next;
2d15cab8 1665 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1666 struct mm_struct *mm = vma->vm_mm;
1667 int err;
1668
1669 /*
1670 * Physically remapped pages are special. Tell the
1671 * rest of the world about it:
1672 * VM_IO tells people not to look at these pages
1673 * (accesses can have side effects).
0b14c179
HD
1674 * VM_RESERVED is specified all over the place, because
1675 * in 2.4 it kept swapout's vma scan off this vma; but
1676 * in 2.6 the LRU scan won't even find its pages, so this
1677 * flag means no more than count its pages in reserved_vm,
1678 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1679 * VM_PFNMAP tells the core MM that the base pages are just
1680 * raw PFN mappings, and do not have a "struct page" associated
1681 * with them.
fb155c16
LT
1682 *
1683 * There's a horrible special case to handle copy-on-write
1684 * behaviour that some programs depend on. We mark the "original"
1685 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1686 */
3c8bb73a 1687 if (addr == vma->vm_start && end == vma->vm_end)
fb155c16 1688 vma->vm_pgoff = pfn;
3c8bb73a 1689 else if (is_cow_mapping(vma->vm_flags))
1690 return -EINVAL;
fb155c16 1691
6aab341e 1692 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1693
2ab64037 1694 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1695 if (err)
1696 return -EINVAL;
1697
1da177e4
LT
1698 BUG_ON(addr >= end);
1699 pfn -= addr >> PAGE_SHIFT;
1700 pgd = pgd_offset(mm, addr);
1701 flush_cache_range(vma, addr, end);
1da177e4
LT
1702 do {
1703 next = pgd_addr_end(addr, end);
1704 err = remap_pud_range(mm, pgd, addr, next,
1705 pfn + (addr >> PAGE_SHIFT), prot);
1706 if (err)
1707 break;
1708 } while (pgd++, addr = next, addr != end);
2ab64037 1709
1710 if (err)
1711 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1712
1da177e4
LT
1713 return err;
1714}
1715EXPORT_SYMBOL(remap_pfn_range);
1716
aee16b3c
JF
1717static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1718 unsigned long addr, unsigned long end,
1719 pte_fn_t fn, void *data)
1720{
1721 pte_t *pte;
1722 int err;
2f569afd 1723 pgtable_t token;
94909914 1724 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1725
1726 pte = (mm == &init_mm) ?
1727 pte_alloc_kernel(pmd, addr) :
1728 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1729 if (!pte)
1730 return -ENOMEM;
1731
1732 BUG_ON(pmd_huge(*pmd));
1733
2f569afd 1734 token = pmd_pgtable(*pmd);
aee16b3c
JF
1735
1736 do {
2f569afd 1737 err = fn(pte, token, addr, data);
aee16b3c
JF
1738 if (err)
1739 break;
1740 } while (pte++, addr += PAGE_SIZE, addr != end);
1741
1742 if (mm != &init_mm)
1743 pte_unmap_unlock(pte-1, ptl);
1744 return err;
1745}
1746
1747static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1748 unsigned long addr, unsigned long end,
1749 pte_fn_t fn, void *data)
1750{
1751 pmd_t *pmd;
1752 unsigned long next;
1753 int err;
1754
ceb86879
AK
1755 BUG_ON(pud_huge(*pud));
1756
aee16b3c
JF
1757 pmd = pmd_alloc(mm, pud, addr);
1758 if (!pmd)
1759 return -ENOMEM;
1760 do {
1761 next = pmd_addr_end(addr, end);
1762 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1763 if (err)
1764 break;
1765 } while (pmd++, addr = next, addr != end);
1766 return err;
1767}
1768
1769static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1770 unsigned long addr, unsigned long end,
1771 pte_fn_t fn, void *data)
1772{
1773 pud_t *pud;
1774 unsigned long next;
1775 int err;
1776
1777 pud = pud_alloc(mm, pgd, addr);
1778 if (!pud)
1779 return -ENOMEM;
1780 do {
1781 next = pud_addr_end(addr, end);
1782 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1783 if (err)
1784 break;
1785 } while (pud++, addr = next, addr != end);
1786 return err;
1787}
1788
1789/*
1790 * Scan a region of virtual memory, filling in page tables as necessary
1791 * and calling a provided function on each leaf page table.
1792 */
1793int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1794 unsigned long size, pte_fn_t fn, void *data)
1795{
1796 pgd_t *pgd;
1797 unsigned long next;
cddb8a5c 1798 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1799 int err;
1800
1801 BUG_ON(addr >= end);
cddb8a5c 1802 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1803 pgd = pgd_offset(mm, addr);
1804 do {
1805 next = pgd_addr_end(addr, end);
1806 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1807 if (err)
1808 break;
1809 } while (pgd++, addr = next, addr != end);
cddb8a5c 1810 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1811 return err;
1812}
1813EXPORT_SYMBOL_GPL(apply_to_page_range);
1814
8f4e2101
HD
1815/*
1816 * handle_pte_fault chooses page fault handler according to an entry
1817 * which was read non-atomically. Before making any commitment, on
1818 * those architectures or configurations (e.g. i386 with PAE) which
1819 * might give a mix of unmatched parts, do_swap_page and do_file_page
1820 * must check under lock before unmapping the pte and proceeding
1821 * (but do_wp_page is only called after already making such a check;
1822 * and do_anonymous_page and do_no_page can safely check later on).
1823 */
4c21e2f2 1824static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1825 pte_t *page_table, pte_t orig_pte)
1826{
1827 int same = 1;
1828#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1829 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1830 spinlock_t *ptl = pte_lockptr(mm, pmd);
1831 spin_lock(ptl);
8f4e2101 1832 same = pte_same(*page_table, orig_pte);
4c21e2f2 1833 spin_unlock(ptl);
8f4e2101
HD
1834 }
1835#endif
1836 pte_unmap(page_table);
1837 return same;
1838}
1839
1da177e4
LT
1840/*
1841 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1842 * servicing faults for write access. In the normal case, do always want
1843 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1844 * that do not have writing enabled, when used by access_process_vm.
1845 */
1846static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1847{
1848 if (likely(vma->vm_flags & VM_WRITE))
1849 pte = pte_mkwrite(pte);
1850 return pte;
1851}
1852
9de455b2 1853static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1854{
1855 /*
1856 * If the source page was a PFN mapping, we don't have
1857 * a "struct page" for it. We do a best-effort copy by
1858 * just copying from the original user address. If that
1859 * fails, we just zero-fill it. Live with it.
1860 */
1861 if (unlikely(!src)) {
1862 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1863 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1864
1865 /*
1866 * This really shouldn't fail, because the page is there
1867 * in the page tables. But it might just be unreadable,
1868 * in which case we just give up and fill the result with
1869 * zeroes.
1870 */
1871 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1872 memset(kaddr, 0, PAGE_SIZE);
1873 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1874 flush_dcache_page(dst);
0ed361de
NP
1875 } else
1876 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1877}
1878
1da177e4
LT
1879/*
1880 * This routine handles present pages, when users try to write
1881 * to a shared page. It is done by copying the page to a new address
1882 * and decrementing the shared-page counter for the old page.
1883 *
1da177e4
LT
1884 * Note that this routine assumes that the protection checks have been
1885 * done by the caller (the low-level page fault routine in most cases).
1886 * Thus we can safely just mark it writable once we've done any necessary
1887 * COW.
1888 *
1889 * We also mark the page dirty at this point even though the page will
1890 * change only once the write actually happens. This avoids a few races,
1891 * and potentially makes it more efficient.
1892 *
8f4e2101
HD
1893 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1894 * but allow concurrent faults), with pte both mapped and locked.
1895 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1896 */
65500d23
HD
1897static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1898 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1899 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1900{
e5bbe4df 1901 struct page *old_page, *new_page;
1da177e4 1902 pte_t entry;
83c54070 1903 int reuse = 0, ret = 0;
a200ee18 1904 int page_mkwrite = 0;
d08b3851 1905 struct page *dirty_page = NULL;
1da177e4 1906
6aab341e 1907 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1908 if (!old_page) {
1909 /*
1910 * VM_MIXEDMAP !pfn_valid() case
1911 *
1912 * We should not cow pages in a shared writeable mapping.
1913 * Just mark the pages writable as we can't do any dirty
1914 * accounting on raw pfn maps.
1915 */
1916 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1917 (VM_WRITE|VM_SHARED))
1918 goto reuse;
6aab341e 1919 goto gotten;
251b97f5 1920 }
1da177e4 1921
d08b3851 1922 /*
ee6a6457
PZ
1923 * Take out anonymous pages first, anonymous shared vmas are
1924 * not dirty accountable.
d08b3851 1925 */
ee6a6457 1926 if (PageAnon(old_page)) {
529ae9aa 1927 if (trylock_page(old_page)) {
ee6a6457
PZ
1928 reuse = can_share_swap_page(old_page);
1929 unlock_page(old_page);
1930 }
1931 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 1932 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
1933 /*
1934 * Only catch write-faults on shared writable pages,
1935 * read-only shared pages can get COWed by
1936 * get_user_pages(.write=1, .force=1).
1937 */
9637a5ef
DH
1938 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1939 /*
1940 * Notify the address space that the page is about to
1941 * become writable so that it can prohibit this or wait
1942 * for the page to get into an appropriate state.
1943 *
1944 * We do this without the lock held, so that it can
1945 * sleep if it needs to.
1946 */
1947 page_cache_get(old_page);
1948 pte_unmap_unlock(page_table, ptl);
1949
1950 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1951 goto unwritable_page;
1952
9637a5ef
DH
1953 /*
1954 * Since we dropped the lock we need to revalidate
1955 * the PTE as someone else may have changed it. If
1956 * they did, we just return, as we can count on the
1957 * MMU to tell us if they didn't also make it writable.
1958 */
1959 page_table = pte_offset_map_lock(mm, pmd, address,
1960 &ptl);
c3704ceb 1961 page_cache_release(old_page);
9637a5ef
DH
1962 if (!pte_same(*page_table, orig_pte))
1963 goto unlock;
a200ee18
PZ
1964
1965 page_mkwrite = 1;
1da177e4 1966 }
d08b3851
PZ
1967 dirty_page = old_page;
1968 get_page(dirty_page);
9637a5ef 1969 reuse = 1;
9637a5ef
DH
1970 }
1971
1972 if (reuse) {
251b97f5 1973reuse:
9637a5ef
DH
1974 flush_cache_page(vma, address, pte_pfn(orig_pte));
1975 entry = pte_mkyoung(orig_pte);
1976 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 1977 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 1978 update_mmu_cache(vma, address, entry);
9637a5ef
DH
1979 ret |= VM_FAULT_WRITE;
1980 goto unlock;
1da177e4 1981 }
1da177e4
LT
1982
1983 /*
1984 * Ok, we need to copy. Oh, well..
1985 */
b5810039 1986 page_cache_get(old_page);
920fc356 1987gotten:
8f4e2101 1988 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1989
1990 if (unlikely(anon_vma_prepare(vma)))
65500d23 1991 goto oom;
557ed1fa
NP
1992 VM_BUG_ON(old_page == ZERO_PAGE(0));
1993 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1994 if (!new_page)
1995 goto oom;
b291f000
NP
1996 /*
1997 * Don't let another task, with possibly unlocked vma,
1998 * keep the mlocked page.
1999 */
2000 if (vma->vm_flags & VM_LOCKED) {
2001 lock_page(old_page); /* for LRU manipulation */
2002 clear_page_mlock(old_page);
2003 unlock_page(old_page);
2004 }
557ed1fa 2005 cow_user_page(new_page, old_page, address, vma);
0ed361de 2006 __SetPageUptodate(new_page);
65500d23 2007
e1a1cd59 2008 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2009 goto oom_free_new;
2010
1da177e4
LT
2011 /*
2012 * Re-check the pte - we dropped the lock
2013 */
8f4e2101 2014 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2015 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2016 if (old_page) {
920fc356
HD
2017 if (!PageAnon(old_page)) {
2018 dec_mm_counter(mm, file_rss);
2019 inc_mm_counter(mm, anon_rss);
2020 }
2021 } else
4294621f 2022 inc_mm_counter(mm, anon_rss);
eca35133 2023 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2024 entry = mk_pte(new_page, vma->vm_page_prot);
2025 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2026 /*
2027 * Clear the pte entry and flush it first, before updating the
2028 * pte with the new entry. This will avoid a race condition
2029 * seen in the presence of one thread doing SMC and another
2030 * thread doing COW.
2031 */
cddb8a5c 2032 ptep_clear_flush_notify(vma, address, page_table);
b2e18538 2033 SetPageSwapBacked(new_page);
64d6519d 2034 lru_cache_add_active_or_unevictable(new_page, vma);
9617d95e 2035 page_add_new_anon_rmap(new_page, vma, address);
1da177e4 2036
64d6519d
LS
2037//TODO: is this safe? do_anonymous_page() does it this way.
2038 set_pte_at(mm, address, page_table, entry);
2039 update_mmu_cache(vma, address, entry);
945754a1
NP
2040 if (old_page) {
2041 /*
2042 * Only after switching the pte to the new page may
2043 * we remove the mapcount here. Otherwise another
2044 * process may come and find the rmap count decremented
2045 * before the pte is switched to the new page, and
2046 * "reuse" the old page writing into it while our pte
2047 * here still points into it and can be read by other
2048 * threads.
2049 *
2050 * The critical issue is to order this
2051 * page_remove_rmap with the ptp_clear_flush above.
2052 * Those stores are ordered by (if nothing else,)
2053 * the barrier present in the atomic_add_negative
2054 * in page_remove_rmap.
2055 *
2056 * Then the TLB flush in ptep_clear_flush ensures that
2057 * no process can access the old page before the
2058 * decremented mapcount is visible. And the old page
2059 * cannot be reused until after the decremented
2060 * mapcount is visible. So transitively, TLBs to
2061 * old page will be flushed before it can be reused.
2062 */
2063 page_remove_rmap(old_page, vma);
2064 }
2065
1da177e4
LT
2066 /* Free the old page.. */
2067 new_page = old_page;
f33ea7f4 2068 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2069 } else
2070 mem_cgroup_uncharge_page(new_page);
2071
920fc356
HD
2072 if (new_page)
2073 page_cache_release(new_page);
2074 if (old_page)
2075 page_cache_release(old_page);
65500d23 2076unlock:
8f4e2101 2077 pte_unmap_unlock(page_table, ptl);
d08b3851 2078 if (dirty_page) {
8f7b3d15
AS
2079 if (vma->vm_file)
2080 file_update_time(vma->vm_file);
2081
79352894
NP
2082 /*
2083 * Yes, Virginia, this is actually required to prevent a race
2084 * with clear_page_dirty_for_io() from clearing the page dirty
2085 * bit after it clear all dirty ptes, but before a racing
2086 * do_wp_page installs a dirty pte.
2087 *
2088 * do_no_page is protected similarly.
2089 */
2090 wait_on_page_locked(dirty_page);
a200ee18 2091 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2092 put_page(dirty_page);
2093 }
f33ea7f4 2094 return ret;
8a9f3ccd 2095oom_free_new:
6dbf6d3b 2096 page_cache_release(new_page);
65500d23 2097oom:
920fc356
HD
2098 if (old_page)
2099 page_cache_release(old_page);
1da177e4 2100 return VM_FAULT_OOM;
9637a5ef
DH
2101
2102unwritable_page:
2103 page_cache_release(old_page);
2104 return VM_FAULT_SIGBUS;
1da177e4
LT
2105}
2106
2107/*
2108 * Helper functions for unmap_mapping_range().
2109 *
2110 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2111 *
2112 * We have to restart searching the prio_tree whenever we drop the lock,
2113 * since the iterator is only valid while the lock is held, and anyway
2114 * a later vma might be split and reinserted earlier while lock dropped.
2115 *
2116 * The list of nonlinear vmas could be handled more efficiently, using
2117 * a placeholder, but handle it in the same way until a need is shown.
2118 * It is important to search the prio_tree before nonlinear list: a vma
2119 * may become nonlinear and be shifted from prio_tree to nonlinear list
2120 * while the lock is dropped; but never shifted from list to prio_tree.
2121 *
2122 * In order to make forward progress despite restarting the search,
2123 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2124 * quickly skip it next time around. Since the prio_tree search only
2125 * shows us those vmas affected by unmapping the range in question, we
2126 * can't efficiently keep all vmas in step with mapping->truncate_count:
2127 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2128 * mapping->truncate_count and vma->vm_truncate_count are protected by
2129 * i_mmap_lock.
2130 *
2131 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2132 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2133 * and restart from that address when we reach that vma again. It might
2134 * have been split or merged, shrunk or extended, but never shifted: so
2135 * restart_addr remains valid so long as it remains in the vma's range.
2136 * unmap_mapping_range forces truncate_count to leap over page-aligned
2137 * values so we can save vma's restart_addr in its truncate_count field.
2138 */
2139#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2140
2141static void reset_vma_truncate_counts(struct address_space *mapping)
2142{
2143 struct vm_area_struct *vma;
2144 struct prio_tree_iter iter;
2145
2146 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2147 vma->vm_truncate_count = 0;
2148 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2149 vma->vm_truncate_count = 0;
2150}
2151
2152static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2153 unsigned long start_addr, unsigned long end_addr,
2154 struct zap_details *details)
2155{
2156 unsigned long restart_addr;
2157 int need_break;
2158
d00806b1
NP
2159 /*
2160 * files that support invalidating or truncating portions of the
d0217ac0 2161 * file from under mmaped areas must have their ->fault function
83c54070
NP
2162 * return a locked page (and set VM_FAULT_LOCKED in the return).
2163 * This provides synchronisation against concurrent unmapping here.
d00806b1 2164 */
d00806b1 2165
1da177e4
LT
2166again:
2167 restart_addr = vma->vm_truncate_count;
2168 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2169 start_addr = restart_addr;
2170 if (start_addr >= end_addr) {
2171 /* Top of vma has been split off since last time */
2172 vma->vm_truncate_count = details->truncate_count;
2173 return 0;
2174 }
2175 }
2176
ee39b37b
HD
2177 restart_addr = zap_page_range(vma, start_addr,
2178 end_addr - start_addr, details);
95c354fe 2179 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2180
ee39b37b 2181 if (restart_addr >= end_addr) {
1da177e4
LT
2182 /* We have now completed this vma: mark it so */
2183 vma->vm_truncate_count = details->truncate_count;
2184 if (!need_break)
2185 return 0;
2186 } else {
2187 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2188 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2189 if (!need_break)
2190 goto again;
2191 }
2192
2193 spin_unlock(details->i_mmap_lock);
2194 cond_resched();
2195 spin_lock(details->i_mmap_lock);
2196 return -EINTR;
2197}
2198
2199static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2200 struct zap_details *details)
2201{
2202 struct vm_area_struct *vma;
2203 struct prio_tree_iter iter;
2204 pgoff_t vba, vea, zba, zea;
2205
2206restart:
2207 vma_prio_tree_foreach(vma, &iter, root,
2208 details->first_index, details->last_index) {
2209 /* Skip quickly over those we have already dealt with */
2210 if (vma->vm_truncate_count == details->truncate_count)
2211 continue;
2212
2213 vba = vma->vm_pgoff;
2214 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2215 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2216 zba = details->first_index;
2217 if (zba < vba)
2218 zba = vba;
2219 zea = details->last_index;
2220 if (zea > vea)
2221 zea = vea;
2222
2223 if (unmap_mapping_range_vma(vma,
2224 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2225 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2226 details) < 0)
2227 goto restart;
2228 }
2229}
2230
2231static inline void unmap_mapping_range_list(struct list_head *head,
2232 struct zap_details *details)
2233{
2234 struct vm_area_struct *vma;
2235
2236 /*
2237 * In nonlinear VMAs there is no correspondence between virtual address
2238 * offset and file offset. So we must perform an exhaustive search
2239 * across *all* the pages in each nonlinear VMA, not just the pages
2240 * whose virtual address lies outside the file truncation point.
2241 */
2242restart:
2243 list_for_each_entry(vma, head, shared.vm_set.list) {
2244 /* Skip quickly over those we have already dealt with */
2245 if (vma->vm_truncate_count == details->truncate_count)
2246 continue;
2247 details->nonlinear_vma = vma;
2248 if (unmap_mapping_range_vma(vma, vma->vm_start,
2249 vma->vm_end, details) < 0)
2250 goto restart;
2251 }
2252}
2253
2254/**
72fd4a35 2255 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2256 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2257 * @holebegin: byte in first page to unmap, relative to the start of
2258 * the underlying file. This will be rounded down to a PAGE_SIZE
2259 * boundary. Note that this is different from vmtruncate(), which
2260 * must keep the partial page. In contrast, we must get rid of
2261 * partial pages.
2262 * @holelen: size of prospective hole in bytes. This will be rounded
2263 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2264 * end of the file.
2265 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2266 * but 0 when invalidating pagecache, don't throw away private data.
2267 */
2268void unmap_mapping_range(struct address_space *mapping,
2269 loff_t const holebegin, loff_t const holelen, int even_cows)
2270{
2271 struct zap_details details;
2272 pgoff_t hba = holebegin >> PAGE_SHIFT;
2273 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2274
2275 /* Check for overflow. */
2276 if (sizeof(holelen) > sizeof(hlen)) {
2277 long long holeend =
2278 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2279 if (holeend & ~(long long)ULONG_MAX)
2280 hlen = ULONG_MAX - hba + 1;
2281 }
2282
2283 details.check_mapping = even_cows? NULL: mapping;
2284 details.nonlinear_vma = NULL;
2285 details.first_index = hba;
2286 details.last_index = hba + hlen - 1;
2287 if (details.last_index < details.first_index)
2288 details.last_index = ULONG_MAX;
2289 details.i_mmap_lock = &mapping->i_mmap_lock;
2290
2291 spin_lock(&mapping->i_mmap_lock);
2292
d00806b1 2293 /* Protect against endless unmapping loops */
1da177e4 2294 mapping->truncate_count++;
1da177e4
LT
2295 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2296 if (mapping->truncate_count == 0)
2297 reset_vma_truncate_counts(mapping);
2298 mapping->truncate_count++;
2299 }
2300 details.truncate_count = mapping->truncate_count;
2301
2302 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2303 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2304 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2305 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2306 spin_unlock(&mapping->i_mmap_lock);
2307}
2308EXPORT_SYMBOL(unmap_mapping_range);
2309
bfa5bf6d
REB
2310/**
2311 * vmtruncate - unmap mappings "freed" by truncate() syscall
2312 * @inode: inode of the file used
2313 * @offset: file offset to start truncating
1da177e4
LT
2314 *
2315 * NOTE! We have to be ready to update the memory sharing
2316 * between the file and the memory map for a potential last
2317 * incomplete page. Ugly, but necessary.
2318 */
2319int vmtruncate(struct inode * inode, loff_t offset)
2320{
61d5048f
CH
2321 if (inode->i_size < offset) {
2322 unsigned long limit;
2323
2324 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2325 if (limit != RLIM_INFINITY && offset > limit)
2326 goto out_sig;
2327 if (offset > inode->i_sb->s_maxbytes)
2328 goto out_big;
2329 i_size_write(inode, offset);
2330 } else {
2331 struct address_space *mapping = inode->i_mapping;
1da177e4 2332
61d5048f
CH
2333 /*
2334 * truncation of in-use swapfiles is disallowed - it would
2335 * cause subsequent swapout to scribble on the now-freed
2336 * blocks.
2337 */
2338 if (IS_SWAPFILE(inode))
2339 return -ETXTBSY;
2340 i_size_write(inode, offset);
2341
2342 /*
2343 * unmap_mapping_range is called twice, first simply for
2344 * efficiency so that truncate_inode_pages does fewer
2345 * single-page unmaps. However after this first call, and
2346 * before truncate_inode_pages finishes, it is possible for
2347 * private pages to be COWed, which remain after
2348 * truncate_inode_pages finishes, hence the second
2349 * unmap_mapping_range call must be made for correctness.
2350 */
2351 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2352 truncate_inode_pages(mapping, offset);
2353 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2354 }
d00806b1 2355
1da177e4
LT
2356 if (inode->i_op && inode->i_op->truncate)
2357 inode->i_op->truncate(inode);
2358 return 0;
61d5048f 2359
1da177e4
LT
2360out_sig:
2361 send_sig(SIGXFSZ, current, 0);
2362out_big:
2363 return -EFBIG;
1da177e4 2364}
1da177e4
LT
2365EXPORT_SYMBOL(vmtruncate);
2366
f6b3ec23
BP
2367int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2368{
2369 struct address_space *mapping = inode->i_mapping;
2370
2371 /*
2372 * If the underlying filesystem is not going to provide
2373 * a way to truncate a range of blocks (punch a hole) -
2374 * we should return failure right now.
2375 */
2376 if (!inode->i_op || !inode->i_op->truncate_range)
2377 return -ENOSYS;
2378
1b1dcc1b 2379 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2380 down_write(&inode->i_alloc_sem);
2381 unmap_mapping_range(mapping, offset, (end - offset), 1);
2382 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2383 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2384 inode->i_op->truncate_range(inode, offset, end);
2385 up_write(&inode->i_alloc_sem);
1b1dcc1b 2386 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2387
2388 return 0;
2389}
f6b3ec23 2390
1da177e4 2391/*
8f4e2101
HD
2392 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2393 * but allow concurrent faults), and pte mapped but not yet locked.
2394 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2395 */
65500d23
HD
2396static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2397 unsigned long address, pte_t *page_table, pmd_t *pmd,
2398 int write_access, pte_t orig_pte)
1da177e4 2399{
8f4e2101 2400 spinlock_t *ptl;
1da177e4 2401 struct page *page;
65500d23 2402 swp_entry_t entry;
1da177e4 2403 pte_t pte;
83c54070 2404 int ret = 0;
1da177e4 2405
4c21e2f2 2406 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2407 goto out;
65500d23
HD
2408
2409 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2410 if (is_migration_entry(entry)) {
2411 migration_entry_wait(mm, pmd, address);
2412 goto out;
2413 }
0ff92245 2414 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2415 page = lookup_swap_cache(entry);
2416 if (!page) {
098fe651 2417 grab_swap_token(); /* Contend for token _before_ read-in */
02098fea
HD
2418 page = swapin_readahead(entry,
2419 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2420 if (!page) {
2421 /*
8f4e2101
HD
2422 * Back out if somebody else faulted in this pte
2423 * while we released the pte lock.
1da177e4 2424 */
8f4e2101 2425 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2426 if (likely(pte_same(*page_table, orig_pte)))
2427 ret = VM_FAULT_OOM;
0ff92245 2428 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2429 goto unlock;
1da177e4
LT
2430 }
2431
2432 /* Had to read the page from swap area: Major fault */
2433 ret = VM_FAULT_MAJOR;
f8891e5e 2434 count_vm_event(PGMAJFAULT);
1da177e4
LT
2435 }
2436
073e587e
KH
2437 mark_page_accessed(page);
2438
2439 lock_page(page);
2440 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2441
e1a1cd59 2442 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd 2443 ret = VM_FAULT_OOM;
073e587e 2444 unlock_page(page);
8a9f3ccd
BS
2445 goto out;
2446 }
2447
1da177e4 2448 /*
8f4e2101 2449 * Back out if somebody else already faulted in this pte.
1da177e4 2450 */
8f4e2101 2451 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2452 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2453 goto out_nomap;
b8107480
KK
2454
2455 if (unlikely(!PageUptodate(page))) {
2456 ret = VM_FAULT_SIGBUS;
2457 goto out_nomap;
1da177e4
LT
2458 }
2459
2460 /* The page isn't present yet, go ahead with the fault. */
1da177e4 2461
4294621f 2462 inc_mm_counter(mm, anon_rss);
1da177e4
LT
2463 pte = mk_pte(page, vma->vm_page_prot);
2464 if (write_access && can_share_swap_page(page)) {
2465 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2466 write_access = 0;
2467 }
1da177e4
LT
2468
2469 flush_icache_page(vma, page);
2470 set_pte_at(mm, address, page_table, pte);
2471 page_add_anon_rmap(page, vma, address);
2472
c475a8ab 2473 swap_free(entry);
b291f000 2474 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
c475a8ab
HD
2475 remove_exclusive_swap_page(page);
2476 unlock_page(page);
2477
1da177e4 2478 if (write_access) {
61469f1d
HD
2479 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2480 if (ret & VM_FAULT_ERROR)
2481 ret &= VM_FAULT_ERROR;
1da177e4
LT
2482 goto out;
2483 }
2484
2485 /* No need to invalidate - it was non-present before */
2486 update_mmu_cache(vma, address, pte);
65500d23 2487unlock:
8f4e2101 2488 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2489out:
2490 return ret;
b8107480 2491out_nomap:
8a9f3ccd 2492 mem_cgroup_uncharge_page(page);
8f4e2101 2493 pte_unmap_unlock(page_table, ptl);
b8107480
KK
2494 unlock_page(page);
2495 page_cache_release(page);
65500d23 2496 return ret;
1da177e4
LT
2497}
2498
2499/*
8f4e2101
HD
2500 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2501 * but allow concurrent faults), and pte mapped but not yet locked.
2502 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2503 */
65500d23
HD
2504static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2505 unsigned long address, pte_t *page_table, pmd_t *pmd,
2506 int write_access)
1da177e4 2507{
8f4e2101
HD
2508 struct page *page;
2509 spinlock_t *ptl;
1da177e4 2510 pte_t entry;
1da177e4 2511
557ed1fa
NP
2512 /* Allocate our own private page. */
2513 pte_unmap(page_table);
8f4e2101 2514
557ed1fa
NP
2515 if (unlikely(anon_vma_prepare(vma)))
2516 goto oom;
2517 page = alloc_zeroed_user_highpage_movable(vma, address);
2518 if (!page)
2519 goto oom;
0ed361de 2520 __SetPageUptodate(page);
8f4e2101 2521
e1a1cd59 2522 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2523 goto oom_free_page;
2524
557ed1fa
NP
2525 entry = mk_pte(page, vma->vm_page_prot);
2526 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2527
557ed1fa
NP
2528 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2529 if (!pte_none(*page_table))
2530 goto release;
2531 inc_mm_counter(mm, anon_rss);
b2e18538 2532 SetPageSwapBacked(page);
64d6519d 2533 lru_cache_add_active_or_unevictable(page, vma);
557ed1fa 2534 page_add_new_anon_rmap(page, vma, address);
65500d23 2535 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2536
2537 /* No need to invalidate - it was non-present before */
65500d23 2538 update_mmu_cache(vma, address, entry);
65500d23 2539unlock:
8f4e2101 2540 pte_unmap_unlock(page_table, ptl);
83c54070 2541 return 0;
8f4e2101 2542release:
8a9f3ccd 2543 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2544 page_cache_release(page);
2545 goto unlock;
8a9f3ccd 2546oom_free_page:
6dbf6d3b 2547 page_cache_release(page);
65500d23 2548oom:
1da177e4
LT
2549 return VM_FAULT_OOM;
2550}
2551
2552/*
54cb8821 2553 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2554 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2555 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2556 * the next page fault.
1da177e4
LT
2557 *
2558 * As this is called only for pages that do not currently exist, we
2559 * do not need to flush old virtual caches or the TLB.
2560 *
8f4e2101 2561 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2562 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2563 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2564 */
54cb8821 2565static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2566 unsigned long address, pmd_t *pmd,
54cb8821 2567 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2568{
16abfa08 2569 pte_t *page_table;
8f4e2101 2570 spinlock_t *ptl;
d0217ac0 2571 struct page *page;
1da177e4 2572 pte_t entry;
1da177e4 2573 int anon = 0;
5b4e655e 2574 int charged = 0;
d08b3851 2575 struct page *dirty_page = NULL;
d0217ac0
NP
2576 struct vm_fault vmf;
2577 int ret;
a200ee18 2578 int page_mkwrite = 0;
54cb8821 2579
d0217ac0
NP
2580 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2581 vmf.pgoff = pgoff;
2582 vmf.flags = flags;
2583 vmf.page = NULL;
1da177e4 2584
3c18ddd1
NP
2585 ret = vma->vm_ops->fault(vma, &vmf);
2586 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2587 return ret;
1da177e4 2588
d00806b1 2589 /*
d0217ac0 2590 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2591 * locked.
2592 */
83c54070 2593 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2594 lock_page(vmf.page);
54cb8821 2595 else
d0217ac0 2596 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2597
1da177e4
LT
2598 /*
2599 * Should we do an early C-O-W break?
2600 */
d0217ac0 2601 page = vmf.page;
54cb8821 2602 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2603 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2604 anon = 1;
d00806b1 2605 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2606 ret = VM_FAULT_OOM;
54cb8821 2607 goto out;
d00806b1 2608 }
83c54070
NP
2609 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2610 vma, address);
d00806b1 2611 if (!page) {
d0217ac0 2612 ret = VM_FAULT_OOM;
54cb8821 2613 goto out;
d00806b1 2614 }
5b4e655e
KH
2615 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2616 ret = VM_FAULT_OOM;
2617 page_cache_release(page);
2618 goto out;
2619 }
2620 charged = 1;
b291f000
NP
2621 /*
2622 * Don't let another task, with possibly unlocked vma,
2623 * keep the mlocked page.
2624 */
2625 if (vma->vm_flags & VM_LOCKED)
2626 clear_page_mlock(vmf.page);
d0217ac0 2627 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2628 __SetPageUptodate(page);
9637a5ef 2629 } else {
54cb8821
NP
2630 /*
2631 * If the page will be shareable, see if the backing
9637a5ef 2632 * address space wants to know that the page is about
54cb8821
NP
2633 * to become writable
2634 */
69676147
MF
2635 if (vma->vm_ops->page_mkwrite) {
2636 unlock_page(page);
2637 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
d0217ac0
NP
2638 ret = VM_FAULT_SIGBUS;
2639 anon = 1; /* no anon but release vmf.page */
69676147
MF
2640 goto out_unlocked;
2641 }
2642 lock_page(page);
d0217ac0
NP
2643 /*
2644 * XXX: this is not quite right (racy vs
2645 * invalidate) to unlock and relock the page
2646 * like this, however a better fix requires
2647 * reworking page_mkwrite locking API, which
2648 * is better done later.
2649 */
2650 if (!page->mapping) {
83c54070 2651 ret = 0;
d0217ac0
NP
2652 anon = 1; /* no anon but release vmf.page */
2653 goto out;
2654 }
a200ee18 2655 page_mkwrite = 1;
9637a5ef
DH
2656 }
2657 }
54cb8821 2658
1da177e4
LT
2659 }
2660
8f4e2101 2661 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2662
2663 /*
2664 * This silly early PAGE_DIRTY setting removes a race
2665 * due to the bad i386 page protection. But it's valid
2666 * for other architectures too.
2667 *
2668 * Note that if write_access is true, we either now have
2669 * an exclusive copy of the page, or this is a shared mapping,
2670 * so we can make it writable and dirty to avoid having to
2671 * handle that later.
2672 */
2673 /* Only go through if we didn't race with anybody else... */
54cb8821 2674 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2675 flush_icache_page(vma, page);
2676 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2677 if (flags & FAULT_FLAG_WRITE)
1da177e4 2678 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2679 if (anon) {
64d6519d 2680 inc_mm_counter(mm, anon_rss);
b2e18538 2681 SetPageSwapBacked(page);
64d6519d
LS
2682 lru_cache_add_active_or_unevictable(page, vma);
2683 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2684 } else {
4294621f 2685 inc_mm_counter(mm, file_rss);
d00806b1 2686 page_add_file_rmap(page);
54cb8821 2687 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2688 dirty_page = page;
d08b3851
PZ
2689 get_page(dirty_page);
2690 }
4294621f 2691 }
64d6519d
LS
2692//TODO: is this safe? do_anonymous_page() does it this way.
2693 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2694
2695 /* no need to invalidate: a not-present page won't be cached */
2696 update_mmu_cache(vma, address, entry);
1da177e4 2697 } else {
5b4e655e
KH
2698 if (charged)
2699 mem_cgroup_uncharge_page(page);
d00806b1
NP
2700 if (anon)
2701 page_cache_release(page);
2702 else
54cb8821 2703 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2704 }
2705
8f4e2101 2706 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2707
2708out:
d0217ac0 2709 unlock_page(vmf.page);
69676147 2710out_unlocked:
d00806b1 2711 if (anon)
d0217ac0 2712 page_cache_release(vmf.page);
d00806b1 2713 else if (dirty_page) {
8f7b3d15
AS
2714 if (vma->vm_file)
2715 file_update_time(vma->vm_file);
2716
a200ee18 2717 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2718 put_page(dirty_page);
2719 }
d00806b1 2720
83c54070 2721 return ret;
54cb8821 2722}
d00806b1 2723
54cb8821
NP
2724static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2725 unsigned long address, pte_t *page_table, pmd_t *pmd,
2726 int write_access, pte_t orig_pte)
2727{
2728 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2729 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821
NP
2730 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2731
16abfa08
HD
2732 pte_unmap(page_table);
2733 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2734}
2735
1da177e4
LT
2736/*
2737 * Fault of a previously existing named mapping. Repopulate the pte
2738 * from the encoded file_pte if possible. This enables swappable
2739 * nonlinear vmas.
8f4e2101
HD
2740 *
2741 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2742 * but allow concurrent faults), and pte mapped but not yet locked.
2743 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2744 */
d0217ac0 2745static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23
HD
2746 unsigned long address, pte_t *page_table, pmd_t *pmd,
2747 int write_access, pte_t orig_pte)
1da177e4 2748{
d0217ac0
NP
2749 unsigned int flags = FAULT_FLAG_NONLINEAR |
2750 (write_access ? FAULT_FLAG_WRITE : 0);
65500d23 2751 pgoff_t pgoff;
1da177e4 2752
4c21e2f2 2753 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2754 return 0;
1da177e4 2755
d0217ac0
NP
2756 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2757 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
65500d23
HD
2758 /*
2759 * Page table corrupted: show pte and kill process.
2760 */
b5810039 2761 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2762 return VM_FAULT_OOM;
2763 }
65500d23
HD
2764
2765 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2766 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2767}
2768
2769/*
2770 * These routines also need to handle stuff like marking pages dirty
2771 * and/or accessed for architectures that don't do it in hardware (most
2772 * RISC architectures). The early dirtying is also good on the i386.
2773 *
2774 * There is also a hook called "update_mmu_cache()" that architectures
2775 * with external mmu caches can use to update those (ie the Sparc or
2776 * PowerPC hashed page tables that act as extended TLBs).
2777 *
c74df32c
HD
2778 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2779 * but allow concurrent faults), and pte mapped but not yet locked.
2780 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2781 */
2782static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2783 struct vm_area_struct *vma, unsigned long address,
2784 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2785{
2786 pte_t entry;
8f4e2101 2787 spinlock_t *ptl;
1da177e4 2788
8dab5241 2789 entry = *pte;
1da177e4 2790 if (!pte_present(entry)) {
65500d23 2791 if (pte_none(entry)) {
f4b81804 2792 if (vma->vm_ops) {
3c18ddd1 2793 if (likely(vma->vm_ops->fault))
54cb8821
NP
2794 return do_linear_fault(mm, vma, address,
2795 pte, pmd, write_access, entry);
f4b81804
JS
2796 }
2797 return do_anonymous_page(mm, vma, address,
2798 pte, pmd, write_access);
65500d23 2799 }
1da177e4 2800 if (pte_file(entry))
d0217ac0 2801 return do_nonlinear_fault(mm, vma, address,
65500d23
HD
2802 pte, pmd, write_access, entry);
2803 return do_swap_page(mm, vma, address,
2804 pte, pmd, write_access, entry);
1da177e4
LT
2805 }
2806
4c21e2f2 2807 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2808 spin_lock(ptl);
2809 if (unlikely(!pte_same(*pte, entry)))
2810 goto unlock;
1da177e4
LT
2811 if (write_access) {
2812 if (!pte_write(entry))
8f4e2101
HD
2813 return do_wp_page(mm, vma, address,
2814 pte, pmd, ptl, entry);
1da177e4
LT
2815 entry = pte_mkdirty(entry);
2816 }
2817 entry = pte_mkyoung(entry);
8dab5241 2818 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
1a44e149 2819 update_mmu_cache(vma, address, entry);
1a44e149
AA
2820 } else {
2821 /*
2822 * This is needed only for protection faults but the arch code
2823 * is not yet telling us if this is a protection fault or not.
2824 * This still avoids useless tlb flushes for .text page faults
2825 * with threads.
2826 */
2827 if (write_access)
2828 flush_tlb_page(vma, address);
2829 }
8f4e2101
HD
2830unlock:
2831 pte_unmap_unlock(pte, ptl);
83c54070 2832 return 0;
1da177e4
LT
2833}
2834
2835/*
2836 * By the time we get here, we already hold the mm semaphore
2837 */
83c54070 2838int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2839 unsigned long address, int write_access)
2840{
2841 pgd_t *pgd;
2842 pud_t *pud;
2843 pmd_t *pmd;
2844 pte_t *pte;
2845
2846 __set_current_state(TASK_RUNNING);
2847
f8891e5e 2848 count_vm_event(PGFAULT);
1da177e4 2849
ac9b9c66
HD
2850 if (unlikely(is_vm_hugetlb_page(vma)))
2851 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2852
1da177e4 2853 pgd = pgd_offset(mm, address);
1da177e4
LT
2854 pud = pud_alloc(mm, pgd, address);
2855 if (!pud)
c74df32c 2856 return VM_FAULT_OOM;
1da177e4
LT
2857 pmd = pmd_alloc(mm, pud, address);
2858 if (!pmd)
c74df32c 2859 return VM_FAULT_OOM;
1da177e4
LT
2860 pte = pte_alloc_map(mm, pmd, address);
2861 if (!pte)
c74df32c 2862 return VM_FAULT_OOM;
1da177e4 2863
c74df32c 2864 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2865}
2866
2867#ifndef __PAGETABLE_PUD_FOLDED
2868/*
2869 * Allocate page upper directory.
872fec16 2870 * We've already handled the fast-path in-line.
1da177e4 2871 */
1bb3630e 2872int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2873{
c74df32c
HD
2874 pud_t *new = pud_alloc_one(mm, address);
2875 if (!new)
1bb3630e 2876 return -ENOMEM;
1da177e4 2877
362a61ad
NP
2878 smp_wmb(); /* See comment in __pte_alloc */
2879
872fec16 2880 spin_lock(&mm->page_table_lock);
1bb3630e 2881 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 2882 pud_free(mm, new);
1bb3630e
HD
2883 else
2884 pgd_populate(mm, pgd, new);
c74df32c 2885 spin_unlock(&mm->page_table_lock);
1bb3630e 2886 return 0;
1da177e4
LT
2887}
2888#endif /* __PAGETABLE_PUD_FOLDED */
2889
2890#ifndef __PAGETABLE_PMD_FOLDED
2891/*
2892 * Allocate page middle directory.
872fec16 2893 * We've already handled the fast-path in-line.
1da177e4 2894 */
1bb3630e 2895int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2896{
c74df32c
HD
2897 pmd_t *new = pmd_alloc_one(mm, address);
2898 if (!new)
1bb3630e 2899 return -ENOMEM;
1da177e4 2900
362a61ad
NP
2901 smp_wmb(); /* See comment in __pte_alloc */
2902
872fec16 2903 spin_lock(&mm->page_table_lock);
1da177e4 2904#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2905 if (pud_present(*pud)) /* Another has populated it */
5e541973 2906 pmd_free(mm, new);
1bb3630e
HD
2907 else
2908 pud_populate(mm, pud, new);
1da177e4 2909#else
1bb3630e 2910 if (pgd_present(*pud)) /* Another has populated it */
5e541973 2911 pmd_free(mm, new);
1bb3630e
HD
2912 else
2913 pgd_populate(mm, pud, new);
1da177e4 2914#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2915 spin_unlock(&mm->page_table_lock);
1bb3630e 2916 return 0;
e0f39591 2917}
1da177e4
LT
2918#endif /* __PAGETABLE_PMD_FOLDED */
2919
2920int make_pages_present(unsigned long addr, unsigned long end)
2921{
2922 int ret, len, write;
2923 struct vm_area_struct * vma;
2924
2925 vma = find_vma(current->mm, addr);
2926 if (!vma)
a477097d 2927 return -ENOMEM;
1da177e4 2928 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
2929 BUG_ON(addr >= end);
2930 BUG_ON(end > vma->vm_end);
68e116a3 2931 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
2932 ret = get_user_pages(current, current->mm, addr,
2933 len, write, 0, NULL, NULL);
c11d69d8 2934 if (ret < 0)
1da177e4 2935 return ret;
9978ad58 2936 return ret == len ? 0 : -EFAULT;
1da177e4
LT
2937}
2938
1da177e4
LT
2939#if !defined(__HAVE_ARCH_GATE_AREA)
2940
2941#if defined(AT_SYSINFO_EHDR)
5ce7852c 2942static struct vm_area_struct gate_vma;
1da177e4
LT
2943
2944static int __init gate_vma_init(void)
2945{
2946 gate_vma.vm_mm = NULL;
2947 gate_vma.vm_start = FIXADDR_USER_START;
2948 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
2949 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2950 gate_vma.vm_page_prot = __P101;
f47aef55
RM
2951 /*
2952 * Make sure the vDSO gets into every core dump.
2953 * Dumping its contents makes post-mortem fully interpretable later
2954 * without matching up the same kernel and hardware config to see
2955 * what PC values meant.
2956 */
2957 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
2958 return 0;
2959}
2960__initcall(gate_vma_init);
2961#endif
2962
2963struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2964{
2965#ifdef AT_SYSINFO_EHDR
2966 return &gate_vma;
2967#else
2968 return NULL;
2969#endif
2970}
2971
2972int in_gate_area_no_task(unsigned long addr)
2973{
2974#ifdef AT_SYSINFO_EHDR
2975 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2976 return 1;
2977#endif
2978 return 0;
2979}
2980
2981#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 2982
28b2ee20
RR
2983#ifdef CONFIG_HAVE_IOREMAP_PROT
2984static resource_size_t follow_phys(struct vm_area_struct *vma,
2985 unsigned long address, unsigned int flags,
2986 unsigned long *prot)
2987{
2988 pgd_t *pgd;
2989 pud_t *pud;
2990 pmd_t *pmd;
2991 pte_t *ptep, pte;
2992 spinlock_t *ptl;
2993 resource_size_t phys_addr = 0;
2994 struct mm_struct *mm = vma->vm_mm;
2995
2996 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2997
2998 pgd = pgd_offset(mm, address);
2999 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3000 goto no_page_table;
3001
3002 pud = pud_offset(pgd, address);
3003 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3004 goto no_page_table;
3005
3006 pmd = pmd_offset(pud, address);
3007 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3008 goto no_page_table;
3009
3010 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3011 if (pmd_huge(*pmd))
3012 goto no_page_table;
3013
3014 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
3015 if (!ptep)
3016 goto out;
3017
3018 pte = *ptep;
3019 if (!pte_present(pte))
3020 goto unlock;
3021 if ((flags & FOLL_WRITE) && !pte_write(pte))
3022 goto unlock;
3023 phys_addr = pte_pfn(pte);
3024 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3025
3026 *prot = pgprot_val(pte_pgprot(pte));
3027
3028unlock:
3029 pte_unmap_unlock(ptep, ptl);
3030out:
3031 return phys_addr;
3032no_page_table:
3033 return 0;
3034}
3035
3036int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3037 void *buf, int len, int write)
3038{
3039 resource_size_t phys_addr;
3040 unsigned long prot = 0;
3041 void *maddr;
3042 int offset = addr & (PAGE_SIZE-1);
3043
3044 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3045 return -EINVAL;
3046
3047 phys_addr = follow_phys(vma, addr, write, &prot);
3048
3049 if (!phys_addr)
3050 return -EINVAL;
3051
3052 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3053 if (write)
3054 memcpy_toio(maddr + offset, buf, len);
3055 else
3056 memcpy_fromio(buf, maddr + offset, len);
3057 iounmap(maddr);
3058
3059 return len;
3060}
3061#endif
3062
0ec76a11
DH
3063/*
3064 * Access another process' address space.
3065 * Source/target buffer must be kernel space,
3066 * Do not walk the page table directly, use get_user_pages
3067 */
3068int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3069{
3070 struct mm_struct *mm;
3071 struct vm_area_struct *vma;
0ec76a11
DH
3072 void *old_buf = buf;
3073
3074 mm = get_task_mm(tsk);
3075 if (!mm)
3076 return 0;
3077
3078 down_read(&mm->mmap_sem);
183ff22b 3079 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3080 while (len) {
3081 int bytes, ret, offset;
3082 void *maddr;
28b2ee20 3083 struct page *page = NULL;
0ec76a11
DH
3084
3085 ret = get_user_pages(tsk, mm, addr, 1,
3086 write, 1, &page, &vma);
28b2ee20
RR
3087 if (ret <= 0) {
3088 /*
3089 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3090 * we can access using slightly different code.
3091 */
3092#ifdef CONFIG_HAVE_IOREMAP_PROT
3093 vma = find_vma(mm, addr);
3094 if (!vma)
3095 break;
3096 if (vma->vm_ops && vma->vm_ops->access)
3097 ret = vma->vm_ops->access(vma, addr, buf,
3098 len, write);
3099 if (ret <= 0)
3100#endif
3101 break;
3102 bytes = ret;
0ec76a11 3103 } else {
28b2ee20
RR
3104 bytes = len;
3105 offset = addr & (PAGE_SIZE-1);
3106 if (bytes > PAGE_SIZE-offset)
3107 bytes = PAGE_SIZE-offset;
3108
3109 maddr = kmap(page);
3110 if (write) {
3111 copy_to_user_page(vma, page, addr,
3112 maddr + offset, buf, bytes);
3113 set_page_dirty_lock(page);
3114 } else {
3115 copy_from_user_page(vma, page, addr,
3116 buf, maddr + offset, bytes);
3117 }
3118 kunmap(page);
3119 page_cache_release(page);
0ec76a11 3120 }
0ec76a11
DH
3121 len -= bytes;
3122 buf += bytes;
3123 addr += bytes;
3124 }
3125 up_read(&mm->mmap_sem);
3126 mmput(mm);
3127
3128 return buf - old_buf;
3129}
03252919
AK
3130
3131/*
3132 * Print the name of a VMA.
3133 */
3134void print_vma_addr(char *prefix, unsigned long ip)
3135{
3136 struct mm_struct *mm = current->mm;
3137 struct vm_area_struct *vma;
3138
e8bff74a
IM
3139 /*
3140 * Do not print if we are in atomic
3141 * contexts (in exception stacks, etc.):
3142 */
3143 if (preempt_count())
3144 return;
3145
03252919
AK
3146 down_read(&mm->mmap_sem);
3147 vma = find_vma(mm, ip);
3148 if (vma && vma->vm_file) {
3149 struct file *f = vma->vm_file;
3150 char *buf = (char *)__get_free_page(GFP_KERNEL);
3151 if (buf) {
3152 char *p, *s;
3153
cf28b486 3154 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3155 if (IS_ERR(p))
3156 p = "?";
3157 s = strrchr(p, '/');
3158 if (s)
3159 p = s+1;
3160 printk("%s%s[%lx+%lx]", prefix, p,
3161 vma->vm_start,
3162 vma->vm_end - vma->vm_start);
3163 free_page((unsigned long)buf);
3164 }
3165 }
3166 up_read(&current->mm->mmap_sem);
3167}