drm/amd/powerplay: fix incorrect voltage table value for polaris10
[linux-2.6-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
01c8f1c4 53#include <linux/pfn_t.h>
edc79b2a 54#include <linux/writeback.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
3dc14741
HD
57#include <linux/kallsyms.h>
58#include <linux/swapops.h>
59#include <linux/elf.h>
5a0e3ad6 60#include <linux/gfp.h>
4daae3b4 61#include <linux/migrate.h>
2fbc57c5 62#include <linux/string.h>
0abdd7a8 63#include <linux/dma-debug.h>
1592eef0 64#include <linux/debugfs.h>
6b251fc9 65#include <linux/userfaultfd_k.h>
bc2466e4 66#include <linux/dax.h>
1da177e4 67
6952b61d 68#include <asm/io.h>
33a709b2 69#include <asm/mmu_context.h>
1da177e4
LT
70#include <asm/pgalloc.h>
71#include <asm/uaccess.h>
72#include <asm/tlb.h>
73#include <asm/tlbflush.h>
74#include <asm/pgtable.h>
75
42b77728
JB
76#include "internal.h"
77
90572890
PZ
78#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
80#endif
81
d41dee36 82#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
83/* use the per-pgdat data instead for discontigmem - mbligh */
84unsigned long max_mapnr;
85struct page *mem_map;
86
87EXPORT_SYMBOL(max_mapnr);
88EXPORT_SYMBOL(mem_map);
89#endif
90
1da177e4
LT
91/*
92 * A number of key systems in x86 including ioremap() rely on the assumption
93 * that high_memory defines the upper bound on direct map memory, then end
94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 * and ZONE_HIGHMEM.
97 */
98void * high_memory;
1da177e4 99
1da177e4 100EXPORT_SYMBOL(high_memory);
1da177e4 101
32a93233
IM
102/*
103 * Randomize the address space (stacks, mmaps, brk, etc.).
104 *
105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106 * as ancient (libc5 based) binaries can segfault. )
107 */
108int randomize_va_space __read_mostly =
109#ifdef CONFIG_COMPAT_BRK
110 1;
111#else
112 2;
113#endif
a62eaf15
AK
114
115static int __init disable_randmaps(char *s)
116{
117 randomize_va_space = 0;
9b41046c 118 return 1;
a62eaf15
AK
119}
120__setup("norandmaps", disable_randmaps);
121
62eede62 122unsigned long zero_pfn __read_mostly;
03f6462a 123unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 124
0b70068e
AB
125EXPORT_SYMBOL(zero_pfn);
126
a13ea5b7
HD
127/*
128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129 */
130static int __init init_zero_pfn(void)
131{
132 zero_pfn = page_to_pfn(ZERO_PAGE(0));
133 return 0;
134}
135core_initcall(init_zero_pfn);
a62eaf15 136
d559db08 137
34e55232
KH
138#if defined(SPLIT_RSS_COUNTING)
139
ea48cf78 140void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
141{
142 int i;
143
144 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
145 if (current->rss_stat.count[i]) {
146 add_mm_counter(mm, i, current->rss_stat.count[i]);
147 current->rss_stat.count[i] = 0;
34e55232
KH
148 }
149 }
05af2e10 150 current->rss_stat.events = 0;
34e55232
KH
151}
152
153static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154{
155 struct task_struct *task = current;
156
157 if (likely(task->mm == mm))
158 task->rss_stat.count[member] += val;
159 else
160 add_mm_counter(mm, member, val);
161}
162#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164
165/* sync counter once per 64 page faults */
166#define TASK_RSS_EVENTS_THRESH (64)
167static void check_sync_rss_stat(struct task_struct *task)
168{
169 if (unlikely(task != current))
170 return;
171 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 172 sync_mm_rss(task->mm);
34e55232 173}
9547d01b 174#else /* SPLIT_RSS_COUNTING */
34e55232
KH
175
176#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178
179static void check_sync_rss_stat(struct task_struct *task)
180{
181}
182
9547d01b
PZ
183#endif /* SPLIT_RSS_COUNTING */
184
185#ifdef HAVE_GENERIC_MMU_GATHER
186
ca1d6c7d 187static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
188{
189 struct mmu_gather_batch *batch;
190
191 batch = tlb->active;
192 if (batch->next) {
193 tlb->active = batch->next;
ca1d6c7d 194 return true;
9547d01b
PZ
195 }
196
53a59fc6 197 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 198 return false;
53a59fc6 199
9547d01b
PZ
200 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
201 if (!batch)
ca1d6c7d 202 return false;
9547d01b 203
53a59fc6 204 tlb->batch_count++;
9547d01b
PZ
205 batch->next = NULL;
206 batch->nr = 0;
207 batch->max = MAX_GATHER_BATCH;
208
209 tlb->active->next = batch;
210 tlb->active = batch;
211
ca1d6c7d 212 return true;
9547d01b
PZ
213}
214
215/* tlb_gather_mmu
216 * Called to initialize an (on-stack) mmu_gather structure for page-table
217 * tear-down from @mm. The @fullmm argument is used when @mm is without
218 * users and we're going to destroy the full address space (exit/execve).
219 */
2b047252 220void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
221{
222 tlb->mm = mm;
223
2b047252
LT
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
1de14c3c 226 tlb->need_flush_all = 0;
9547d01b
PZ
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
53a59fc6 231 tlb->batch_count = 0;
9547d01b
PZ
232
233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235#endif
fb7332a9
WD
236
237 __tlb_reset_range(tlb);
9547d01b
PZ
238}
239
1cf35d47 240static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 241{
721c21c1
WD
242 if (!tlb->end)
243 return;
244
9547d01b 245 tlb_flush(tlb);
34ee645e 246 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
247#ifdef CONFIG_HAVE_RCU_TABLE_FREE
248 tlb_table_flush(tlb);
34e55232 249#endif
fb7332a9 250 __tlb_reset_range(tlb);
1cf35d47
LT
251}
252
253static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254{
255 struct mmu_gather_batch *batch;
34e55232 256
721c21c1 257 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
258 free_pages_and_swap_cache(batch->pages, batch->nr);
259 batch->nr = 0;
260 }
261 tlb->active = &tlb->local;
262}
263
1cf35d47
LT
264void tlb_flush_mmu(struct mmu_gather *tlb)
265{
1cf35d47
LT
266 tlb_flush_mmu_tlbonly(tlb);
267 tlb_flush_mmu_free(tlb);
268}
269
9547d01b
PZ
270/* tlb_finish_mmu
271 * Called at the end of the shootdown operation to free up any resources
272 * that were required.
273 */
274void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
275{
276 struct mmu_gather_batch *batch, *next;
277
278 tlb_flush_mmu(tlb);
279
280 /* keep the page table cache within bounds */
281 check_pgt_cache();
282
283 for (batch = tlb->local.next; batch; batch = next) {
284 next = batch->next;
285 free_pages((unsigned long)batch, 0);
286 }
287 tlb->local.next = NULL;
288}
289
290/* __tlb_remove_page
291 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
292 * handling the additional races in SMP caused by other CPUs caching valid
293 * mappings in their TLBs. Returns the number of free page slots left.
294 * When out of page slots we must call tlb_flush_mmu().
295 */
296int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
297{
298 struct mmu_gather_batch *batch;
299
fb7332a9 300 VM_BUG_ON(!tlb->end);
9547d01b 301
9547d01b
PZ
302 batch = tlb->active;
303 batch->pages[batch->nr++] = page;
304 if (batch->nr == batch->max) {
305 if (!tlb_next_batch(tlb))
306 return 0;
0b43c3aa 307 batch = tlb->active;
9547d01b 308 }
309381fe 309 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b
PZ
310
311 return batch->max - batch->nr;
312}
313
314#endif /* HAVE_GENERIC_MMU_GATHER */
315
26723911
PZ
316#ifdef CONFIG_HAVE_RCU_TABLE_FREE
317
318/*
319 * See the comment near struct mmu_table_batch.
320 */
321
322static void tlb_remove_table_smp_sync(void *arg)
323{
324 /* Simply deliver the interrupt */
325}
326
327static void tlb_remove_table_one(void *table)
328{
329 /*
330 * This isn't an RCU grace period and hence the page-tables cannot be
331 * assumed to be actually RCU-freed.
332 *
333 * It is however sufficient for software page-table walkers that rely on
334 * IRQ disabling. See the comment near struct mmu_table_batch.
335 */
336 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
337 __tlb_remove_table(table);
338}
339
340static void tlb_remove_table_rcu(struct rcu_head *head)
341{
342 struct mmu_table_batch *batch;
343 int i;
344
345 batch = container_of(head, struct mmu_table_batch, rcu);
346
347 for (i = 0; i < batch->nr; i++)
348 __tlb_remove_table(batch->tables[i]);
349
350 free_page((unsigned long)batch);
351}
352
353void tlb_table_flush(struct mmu_gather *tlb)
354{
355 struct mmu_table_batch **batch = &tlb->batch;
356
357 if (*batch) {
358 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
359 *batch = NULL;
360 }
361}
362
363void tlb_remove_table(struct mmu_gather *tlb, void *table)
364{
365 struct mmu_table_batch **batch = &tlb->batch;
366
26723911
PZ
367 /*
368 * When there's less then two users of this mm there cannot be a
369 * concurrent page-table walk.
370 */
371 if (atomic_read(&tlb->mm->mm_users) < 2) {
372 __tlb_remove_table(table);
373 return;
374 }
375
376 if (*batch == NULL) {
377 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
378 if (*batch == NULL) {
379 tlb_remove_table_one(table);
380 return;
381 }
382 (*batch)->nr = 0;
383 }
384 (*batch)->tables[(*batch)->nr++] = table;
385 if ((*batch)->nr == MAX_TABLE_BATCH)
386 tlb_table_flush(tlb);
387}
388
9547d01b 389#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 390
1da177e4
LT
391/*
392 * Note: this doesn't free the actual pages themselves. That
393 * has been handled earlier when unmapping all the memory regions.
394 */
9e1b32ca
BH
395static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
396 unsigned long addr)
1da177e4 397{
2f569afd 398 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 399 pmd_clear(pmd);
9e1b32ca 400 pte_free_tlb(tlb, token, addr);
e1f56c89 401 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
402}
403
e0da382c
HD
404static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
405 unsigned long addr, unsigned long end,
406 unsigned long floor, unsigned long ceiling)
1da177e4
LT
407{
408 pmd_t *pmd;
409 unsigned long next;
e0da382c 410 unsigned long start;
1da177e4 411
e0da382c 412 start = addr;
1da177e4 413 pmd = pmd_offset(pud, addr);
1da177e4
LT
414 do {
415 next = pmd_addr_end(addr, end);
416 if (pmd_none_or_clear_bad(pmd))
417 continue;
9e1b32ca 418 free_pte_range(tlb, pmd, addr);
1da177e4
LT
419 } while (pmd++, addr = next, addr != end);
420
e0da382c
HD
421 start &= PUD_MASK;
422 if (start < floor)
423 return;
424 if (ceiling) {
425 ceiling &= PUD_MASK;
426 if (!ceiling)
427 return;
1da177e4 428 }
e0da382c
HD
429 if (end - 1 > ceiling - 1)
430 return;
431
432 pmd = pmd_offset(pud, start);
433 pud_clear(pud);
9e1b32ca 434 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 435 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
436}
437
e0da382c
HD
438static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
439 unsigned long addr, unsigned long end,
440 unsigned long floor, unsigned long ceiling)
1da177e4
LT
441{
442 pud_t *pud;
443 unsigned long next;
e0da382c 444 unsigned long start;
1da177e4 445
e0da382c 446 start = addr;
1da177e4 447 pud = pud_offset(pgd, addr);
1da177e4
LT
448 do {
449 next = pud_addr_end(addr, end);
450 if (pud_none_or_clear_bad(pud))
451 continue;
e0da382c 452 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
453 } while (pud++, addr = next, addr != end);
454
e0da382c
HD
455 start &= PGDIR_MASK;
456 if (start < floor)
457 return;
458 if (ceiling) {
459 ceiling &= PGDIR_MASK;
460 if (!ceiling)
461 return;
1da177e4 462 }
e0da382c
HD
463 if (end - 1 > ceiling - 1)
464 return;
465
466 pud = pud_offset(pgd, start);
467 pgd_clear(pgd);
9e1b32ca 468 pud_free_tlb(tlb, pud, start);
1da177e4
LT
469}
470
471/*
e0da382c 472 * This function frees user-level page tables of a process.
1da177e4 473 */
42b77728 474void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
475 unsigned long addr, unsigned long end,
476 unsigned long floor, unsigned long ceiling)
1da177e4
LT
477{
478 pgd_t *pgd;
479 unsigned long next;
e0da382c
HD
480
481 /*
482 * The next few lines have given us lots of grief...
483 *
484 * Why are we testing PMD* at this top level? Because often
485 * there will be no work to do at all, and we'd prefer not to
486 * go all the way down to the bottom just to discover that.
487 *
488 * Why all these "- 1"s? Because 0 represents both the bottom
489 * of the address space and the top of it (using -1 for the
490 * top wouldn't help much: the masks would do the wrong thing).
491 * The rule is that addr 0 and floor 0 refer to the bottom of
492 * the address space, but end 0 and ceiling 0 refer to the top
493 * Comparisons need to use "end - 1" and "ceiling - 1" (though
494 * that end 0 case should be mythical).
495 *
496 * Wherever addr is brought up or ceiling brought down, we must
497 * be careful to reject "the opposite 0" before it confuses the
498 * subsequent tests. But what about where end is brought down
499 * by PMD_SIZE below? no, end can't go down to 0 there.
500 *
501 * Whereas we round start (addr) and ceiling down, by different
502 * masks at different levels, in order to test whether a table
503 * now has no other vmas using it, so can be freed, we don't
504 * bother to round floor or end up - the tests don't need that.
505 */
1da177e4 506
e0da382c
HD
507 addr &= PMD_MASK;
508 if (addr < floor) {
509 addr += PMD_SIZE;
510 if (!addr)
511 return;
512 }
513 if (ceiling) {
514 ceiling &= PMD_MASK;
515 if (!ceiling)
516 return;
517 }
518 if (end - 1 > ceiling - 1)
519 end -= PMD_SIZE;
520 if (addr > end - 1)
521 return;
522
42b77728 523 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
524 do {
525 next = pgd_addr_end(addr, end);
526 if (pgd_none_or_clear_bad(pgd))
527 continue;
42b77728 528 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 529 } while (pgd++, addr = next, addr != end);
e0da382c
HD
530}
531
42b77728 532void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 533 unsigned long floor, unsigned long ceiling)
e0da382c
HD
534{
535 while (vma) {
536 struct vm_area_struct *next = vma->vm_next;
537 unsigned long addr = vma->vm_start;
538
8f4f8c16 539 /*
25d9e2d1 540 * Hide vma from rmap and truncate_pagecache before freeing
541 * pgtables
8f4f8c16 542 */
5beb4930 543 unlink_anon_vmas(vma);
8f4f8c16
HD
544 unlink_file_vma(vma);
545
9da61aef 546 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 547 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 548 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
549 } else {
550 /*
551 * Optimization: gather nearby vmas into one call down
552 */
553 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 554 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
555 vma = next;
556 next = vma->vm_next;
5beb4930 557 unlink_anon_vmas(vma);
8f4f8c16 558 unlink_file_vma(vma);
3bf5ee95
HD
559 }
560 free_pgd_range(tlb, addr, vma->vm_end,
561 floor, next? next->vm_start: ceiling);
562 }
e0da382c
HD
563 vma = next;
564 }
1da177e4
LT
565}
566
3ed3a4f0 567int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 568{
c4088ebd 569 spinlock_t *ptl;
2f569afd 570 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
571 if (!new)
572 return -ENOMEM;
573
362a61ad
NP
574 /*
575 * Ensure all pte setup (eg. pte page lock and page clearing) are
576 * visible before the pte is made visible to other CPUs by being
577 * put into page tables.
578 *
579 * The other side of the story is the pointer chasing in the page
580 * table walking code (when walking the page table without locking;
581 * ie. most of the time). Fortunately, these data accesses consist
582 * of a chain of data-dependent loads, meaning most CPUs (alpha
583 * being the notable exception) will already guarantee loads are
584 * seen in-order. See the alpha page table accessors for the
585 * smp_read_barrier_depends() barriers in page table walking code.
586 */
587 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
588
c4088ebd 589 ptl = pmd_lock(mm, pmd);
8ac1f832 590 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 591 atomic_long_inc(&mm->nr_ptes);
1da177e4 592 pmd_populate(mm, pmd, new);
2f569afd 593 new = NULL;
4b471e88 594 }
c4088ebd 595 spin_unlock(ptl);
2f569afd
MS
596 if (new)
597 pte_free(mm, new);
1bb3630e 598 return 0;
1da177e4
LT
599}
600
1bb3630e 601int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 602{
1bb3630e
HD
603 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 if (!new)
605 return -ENOMEM;
606
362a61ad
NP
607 smp_wmb(); /* See comment in __pte_alloc */
608
1bb3630e 609 spin_lock(&init_mm.page_table_lock);
8ac1f832 610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 611 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 612 new = NULL;
4b471e88 613 }
1bb3630e 614 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
615 if (new)
616 pte_free_kernel(&init_mm, new);
1bb3630e 617 return 0;
1da177e4
LT
618}
619
d559db08
KH
620static inline void init_rss_vec(int *rss)
621{
622 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
623}
624
625static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 626{
d559db08
KH
627 int i;
628
34e55232 629 if (current->mm == mm)
05af2e10 630 sync_mm_rss(mm);
d559db08
KH
631 for (i = 0; i < NR_MM_COUNTERS; i++)
632 if (rss[i])
633 add_mm_counter(mm, i, rss[i]);
ae859762
HD
634}
635
b5810039 636/*
6aab341e
LT
637 * This function is called to print an error when a bad pte
638 * is found. For example, we might have a PFN-mapped pte in
639 * a region that doesn't allow it.
b5810039
NP
640 *
641 * The calling function must still handle the error.
642 */
3dc14741
HD
643static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
644 pte_t pte, struct page *page)
b5810039 645{
3dc14741
HD
646 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
647 pud_t *pud = pud_offset(pgd, addr);
648 pmd_t *pmd = pmd_offset(pud, addr);
649 struct address_space *mapping;
650 pgoff_t index;
d936cf9b
HD
651 static unsigned long resume;
652 static unsigned long nr_shown;
653 static unsigned long nr_unshown;
654
655 /*
656 * Allow a burst of 60 reports, then keep quiet for that minute;
657 * or allow a steady drip of one report per second.
658 */
659 if (nr_shown == 60) {
660 if (time_before(jiffies, resume)) {
661 nr_unshown++;
662 return;
663 }
664 if (nr_unshown) {
1170532b
JP
665 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
666 nr_unshown);
d936cf9b
HD
667 nr_unshown = 0;
668 }
669 nr_shown = 0;
670 }
671 if (nr_shown++ == 0)
672 resume = jiffies + 60 * HZ;
3dc14741
HD
673
674 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
675 index = linear_page_index(vma, addr);
676
1170532b
JP
677 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
678 current->comm,
679 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 680 if (page)
f0b791a3 681 dump_page(page, "bad pte");
1170532b
JP
682 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
683 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
3dc14741
HD
684 /*
685 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
686 */
2682582a
KK
687 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
688 vma->vm_file,
689 vma->vm_ops ? vma->vm_ops->fault : NULL,
690 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
691 mapping ? mapping->a_ops->readpage : NULL);
b5810039 692 dump_stack();
373d4d09 693 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
694}
695
ee498ed7 696/*
7e675137 697 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 698 *
7e675137
NP
699 * "Special" mappings do not wish to be associated with a "struct page" (either
700 * it doesn't exist, or it exists but they don't want to touch it). In this
701 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 702 *
7e675137
NP
703 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704 * pte bit, in which case this function is trivial. Secondly, an architecture
705 * may not have a spare pte bit, which requires a more complicated scheme,
706 * described below.
707 *
708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709 * special mapping (even if there are underlying and valid "struct pages").
710 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 711 *
b379d790
JH
712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715 * mapping will always honor the rule
6aab341e
LT
716 *
717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718 *
7e675137
NP
719 * And for normal mappings this is false.
720 *
721 * This restricts such mappings to be a linear translation from virtual address
722 * to pfn. To get around this restriction, we allow arbitrary mappings so long
723 * as the vma is not a COW mapping; in that case, we know that all ptes are
724 * special (because none can have been COWed).
b379d790 725 *
b379d790 726 *
7e675137 727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
728 *
729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730 * page" backing, however the difference is that _all_ pages with a struct
731 * page (that is, those where pfn_valid is true) are refcounted and considered
732 * normal pages by the VM. The disadvantage is that pages are refcounted
733 * (which can be slower and simply not an option for some PFNMAP users). The
734 * advantage is that we don't have to follow the strict linearity rule of
735 * PFNMAP mappings in order to support COWable mappings.
736 *
ee498ed7 737 */
7e675137
NP
738#ifdef __HAVE_ARCH_PTE_SPECIAL
739# define HAVE_PTE_SPECIAL 1
740#else
741# define HAVE_PTE_SPECIAL 0
742#endif
743struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744 pte_t pte)
ee498ed7 745{
22b31eec 746 unsigned long pfn = pte_pfn(pte);
7e675137
NP
747
748 if (HAVE_PTE_SPECIAL) {
b38af472 749 if (likely(!pte_special(pte)))
22b31eec 750 goto check_pfn;
667a0a06
DV
751 if (vma->vm_ops && vma->vm_ops->find_special_page)
752 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
753 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
754 return NULL;
62eede62 755 if (!is_zero_pfn(pfn))
22b31eec 756 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
757 return NULL;
758 }
759
760 /* !HAVE_PTE_SPECIAL case follows: */
761
b379d790
JH
762 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
763 if (vma->vm_flags & VM_MIXEDMAP) {
764 if (!pfn_valid(pfn))
765 return NULL;
766 goto out;
767 } else {
7e675137
NP
768 unsigned long off;
769 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
770 if (pfn == vma->vm_pgoff + off)
771 return NULL;
772 if (!is_cow_mapping(vma->vm_flags))
773 return NULL;
774 }
6aab341e
LT
775 }
776
b38af472
HD
777 if (is_zero_pfn(pfn))
778 return NULL;
22b31eec
HD
779check_pfn:
780 if (unlikely(pfn > highest_memmap_pfn)) {
781 print_bad_pte(vma, addr, pte, NULL);
782 return NULL;
783 }
6aab341e
LT
784
785 /*
7e675137 786 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 787 * eg. VDSO mappings can cause them to exist.
6aab341e 788 */
b379d790 789out:
6aab341e 790 return pfn_to_page(pfn);
ee498ed7
HD
791}
792
28093f9f
GS
793#ifdef CONFIG_TRANSPARENT_HUGEPAGE
794struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
795 pmd_t pmd)
796{
797 unsigned long pfn = pmd_pfn(pmd);
798
799 /*
800 * There is no pmd_special() but there may be special pmds, e.g.
801 * in a direct-access (dax) mapping, so let's just replicate the
802 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
803 */
804 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
805 if (vma->vm_flags & VM_MIXEDMAP) {
806 if (!pfn_valid(pfn))
807 return NULL;
808 goto out;
809 } else {
810 unsigned long off;
811 off = (addr - vma->vm_start) >> PAGE_SHIFT;
812 if (pfn == vma->vm_pgoff + off)
813 return NULL;
814 if (!is_cow_mapping(vma->vm_flags))
815 return NULL;
816 }
817 }
818
819 if (is_zero_pfn(pfn))
820 return NULL;
821 if (unlikely(pfn > highest_memmap_pfn))
822 return NULL;
823
824 /*
825 * NOTE! We still have PageReserved() pages in the page tables.
826 * eg. VDSO mappings can cause them to exist.
827 */
828out:
829 return pfn_to_page(pfn);
830}
831#endif
832
1da177e4
LT
833/*
834 * copy one vm_area from one task to the other. Assumes the page tables
835 * already present in the new task to be cleared in the whole range
836 * covered by this vma.
1da177e4
LT
837 */
838
570a335b 839static inline unsigned long
1da177e4 840copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 841 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 842 unsigned long addr, int *rss)
1da177e4 843{
b5810039 844 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
845 pte_t pte = *src_pte;
846 struct page *page;
1da177e4
LT
847
848 /* pte contains position in swap or file, so copy. */
849 if (unlikely(!pte_present(pte))) {
0661a336
KS
850 swp_entry_t entry = pte_to_swp_entry(pte);
851
852 if (likely(!non_swap_entry(entry))) {
853 if (swap_duplicate(entry) < 0)
854 return entry.val;
855
856 /* make sure dst_mm is on swapoff's mmlist. */
857 if (unlikely(list_empty(&dst_mm->mmlist))) {
858 spin_lock(&mmlist_lock);
859 if (list_empty(&dst_mm->mmlist))
860 list_add(&dst_mm->mmlist,
861 &src_mm->mmlist);
862 spin_unlock(&mmlist_lock);
863 }
864 rss[MM_SWAPENTS]++;
865 } else if (is_migration_entry(entry)) {
866 page = migration_entry_to_page(entry);
867
eca56ff9 868 rss[mm_counter(page)]++;
0661a336
KS
869
870 if (is_write_migration_entry(entry) &&
871 is_cow_mapping(vm_flags)) {
872 /*
873 * COW mappings require pages in both
874 * parent and child to be set to read.
875 */
876 make_migration_entry_read(&entry);
877 pte = swp_entry_to_pte(entry);
878 if (pte_swp_soft_dirty(*src_pte))
879 pte = pte_swp_mksoft_dirty(pte);
880 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 881 }
1da177e4 882 }
ae859762 883 goto out_set_pte;
1da177e4
LT
884 }
885
1da177e4
LT
886 /*
887 * If it's a COW mapping, write protect it both
888 * in the parent and the child
889 */
67121172 890 if (is_cow_mapping(vm_flags)) {
1da177e4 891 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 892 pte = pte_wrprotect(pte);
1da177e4
LT
893 }
894
895 /*
896 * If it's a shared mapping, mark it clean in
897 * the child
898 */
899 if (vm_flags & VM_SHARED)
900 pte = pte_mkclean(pte);
901 pte = pte_mkold(pte);
6aab341e
LT
902
903 page = vm_normal_page(vma, addr, pte);
904 if (page) {
905 get_page(page);
53f9263b 906 page_dup_rmap(page, false);
eca56ff9 907 rss[mm_counter(page)]++;
6aab341e 908 }
ae859762
HD
909
910out_set_pte:
911 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 912 return 0;
1da177e4
LT
913}
914
21bda264 915static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
916 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
917 unsigned long addr, unsigned long end)
1da177e4 918{
c36987e2 919 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 920 pte_t *src_pte, *dst_pte;
c74df32c 921 spinlock_t *src_ptl, *dst_ptl;
e040f218 922 int progress = 0;
d559db08 923 int rss[NR_MM_COUNTERS];
570a335b 924 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
925
926again:
d559db08
KH
927 init_rss_vec(rss);
928
c74df32c 929 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
930 if (!dst_pte)
931 return -ENOMEM;
ece0e2b6 932 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 933 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 934 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
935 orig_src_pte = src_pte;
936 orig_dst_pte = dst_pte;
6606c3e0 937 arch_enter_lazy_mmu_mode();
1da177e4 938
1da177e4
LT
939 do {
940 /*
941 * We are holding two locks at this point - either of them
942 * could generate latencies in another task on another CPU.
943 */
e040f218
HD
944 if (progress >= 32) {
945 progress = 0;
946 if (need_resched() ||
95c354fe 947 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
948 break;
949 }
1da177e4
LT
950 if (pte_none(*src_pte)) {
951 progress++;
952 continue;
953 }
570a335b
HD
954 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
955 vma, addr, rss);
956 if (entry.val)
957 break;
1da177e4
LT
958 progress += 8;
959 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 960
6606c3e0 961 arch_leave_lazy_mmu_mode();
c74df32c 962 spin_unlock(src_ptl);
ece0e2b6 963 pte_unmap(orig_src_pte);
d559db08 964 add_mm_rss_vec(dst_mm, rss);
c36987e2 965 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 966 cond_resched();
570a335b
HD
967
968 if (entry.val) {
969 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
970 return -ENOMEM;
971 progress = 0;
972 }
1da177e4
LT
973 if (addr != end)
974 goto again;
975 return 0;
976}
977
978static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
980 unsigned long addr, unsigned long end)
981{
982 pmd_t *src_pmd, *dst_pmd;
983 unsigned long next;
984
985 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
986 if (!dst_pmd)
987 return -ENOMEM;
988 src_pmd = pmd_offset(src_pud, addr);
989 do {
990 next = pmd_addr_end(addr, end);
5c7fb56e 991 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 992 int err;
14d1a55c 993 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
994 err = copy_huge_pmd(dst_mm, src_mm,
995 dst_pmd, src_pmd, addr, vma);
996 if (err == -ENOMEM)
997 return -ENOMEM;
998 if (!err)
999 continue;
1000 /* fall through */
1001 }
1da177e4
LT
1002 if (pmd_none_or_clear_bad(src_pmd))
1003 continue;
1004 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1005 vma, addr, next))
1006 return -ENOMEM;
1007 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1008 return 0;
1009}
1010
1011static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1012 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1013 unsigned long addr, unsigned long end)
1014{
1015 pud_t *src_pud, *dst_pud;
1016 unsigned long next;
1017
1018 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1019 if (!dst_pud)
1020 return -ENOMEM;
1021 src_pud = pud_offset(src_pgd, addr);
1022 do {
1023 next = pud_addr_end(addr, end);
1024 if (pud_none_or_clear_bad(src_pud))
1025 continue;
1026 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1027 vma, addr, next))
1028 return -ENOMEM;
1029 } while (dst_pud++, src_pud++, addr = next, addr != end);
1030 return 0;
1031}
1032
1033int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1034 struct vm_area_struct *vma)
1035{
1036 pgd_t *src_pgd, *dst_pgd;
1037 unsigned long next;
1038 unsigned long addr = vma->vm_start;
1039 unsigned long end = vma->vm_end;
2ec74c3e
SG
1040 unsigned long mmun_start; /* For mmu_notifiers */
1041 unsigned long mmun_end; /* For mmu_notifiers */
1042 bool is_cow;
cddb8a5c 1043 int ret;
1da177e4 1044
d992895b
NP
1045 /*
1046 * Don't copy ptes where a page fault will fill them correctly.
1047 * Fork becomes much lighter when there are big shared or private
1048 * readonly mappings. The tradeoff is that copy_page_range is more
1049 * efficient than faulting.
1050 */
0661a336
KS
1051 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1052 !vma->anon_vma)
1053 return 0;
d992895b 1054
1da177e4
LT
1055 if (is_vm_hugetlb_page(vma))
1056 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1057
b3b9c293 1058 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1059 /*
1060 * We do not free on error cases below as remove_vma
1061 * gets called on error from higher level routine
1062 */
5180da41 1063 ret = track_pfn_copy(vma);
2ab64037 1064 if (ret)
1065 return ret;
1066 }
1067
cddb8a5c
AA
1068 /*
1069 * We need to invalidate the secondary MMU mappings only when
1070 * there could be a permission downgrade on the ptes of the
1071 * parent mm. And a permission downgrade will only happen if
1072 * is_cow_mapping() returns true.
1073 */
2ec74c3e
SG
1074 is_cow = is_cow_mapping(vma->vm_flags);
1075 mmun_start = addr;
1076 mmun_end = end;
1077 if (is_cow)
1078 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1079 mmun_end);
cddb8a5c
AA
1080
1081 ret = 0;
1da177e4
LT
1082 dst_pgd = pgd_offset(dst_mm, addr);
1083 src_pgd = pgd_offset(src_mm, addr);
1084 do {
1085 next = pgd_addr_end(addr, end);
1086 if (pgd_none_or_clear_bad(src_pgd))
1087 continue;
cddb8a5c
AA
1088 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1089 vma, addr, next))) {
1090 ret = -ENOMEM;
1091 break;
1092 }
1da177e4 1093 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1094
2ec74c3e
SG
1095 if (is_cow)
1096 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1097 return ret;
1da177e4
LT
1098}
1099
51c6f666 1100static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1101 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1102 unsigned long addr, unsigned long end,
97a89413 1103 struct zap_details *details)
1da177e4 1104{
b5810039 1105 struct mm_struct *mm = tlb->mm;
d16dfc55 1106 int force_flush = 0;
d559db08 1107 int rss[NR_MM_COUNTERS];
97a89413 1108 spinlock_t *ptl;
5f1a1907 1109 pte_t *start_pte;
97a89413 1110 pte_t *pte;
8a5f14a2 1111 swp_entry_t entry;
d559db08 1112
d16dfc55 1113again:
e303297e 1114 init_rss_vec(rss);
5f1a1907
SR
1115 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1116 pte = start_pte;
6606c3e0 1117 arch_enter_lazy_mmu_mode();
1da177e4
LT
1118 do {
1119 pte_t ptent = *pte;
51c6f666 1120 if (pte_none(ptent)) {
1da177e4 1121 continue;
51c6f666 1122 }
6f5e6b9e 1123
1da177e4 1124 if (pte_present(ptent)) {
ee498ed7 1125 struct page *page;
51c6f666 1126
6aab341e 1127 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1128 if (unlikely(details) && page) {
1129 /*
1130 * unmap_shared_mapping_pages() wants to
1131 * invalidate cache without truncating:
1132 * unmap shared but keep private pages.
1133 */
1134 if (details->check_mapping &&
1135 details->check_mapping != page->mapping)
1136 continue;
1da177e4 1137 }
b5810039 1138 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1139 tlb->fullmm);
1da177e4
LT
1140 tlb_remove_tlb_entry(tlb, pte, addr);
1141 if (unlikely(!page))
1142 continue;
eca56ff9
JM
1143
1144 if (!PageAnon(page)) {
1cf35d47 1145 if (pte_dirty(ptent)) {
aac45363
MH
1146 /*
1147 * oom_reaper cannot tear down dirty
1148 * pages
1149 */
1150 if (unlikely(details && details->ignore_dirty))
1151 continue;
1cf35d47 1152 force_flush = 1;
6237bcd9 1153 set_page_dirty(page);
1cf35d47 1154 }
4917e5d0 1155 if (pte_young(ptent) &&
64363aad 1156 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1157 mark_page_accessed(page);
6237bcd9 1158 }
eca56ff9 1159 rss[mm_counter(page)]--;
d281ee61 1160 page_remove_rmap(page, false);
3dc14741
HD
1161 if (unlikely(page_mapcount(page) < 0))
1162 print_bad_pte(vma, addr, ptent, page);
1cf35d47
LT
1163 if (unlikely(!__tlb_remove_page(tlb, page))) {
1164 force_flush = 1;
ce9ec37b 1165 addr += PAGE_SIZE;
d16dfc55 1166 break;
1cf35d47 1167 }
1da177e4
LT
1168 continue;
1169 }
aac45363
MH
1170 /* only check swap_entries if explicitly asked for in details */
1171 if (unlikely(details && !details->check_swap_entries))
1da177e4 1172 continue;
b084d435 1173
8a5f14a2
KS
1174 entry = pte_to_swp_entry(ptent);
1175 if (!non_swap_entry(entry))
1176 rss[MM_SWAPENTS]--;
1177 else if (is_migration_entry(entry)) {
1178 struct page *page;
9f9f1acd 1179
8a5f14a2 1180 page = migration_entry_to_page(entry);
eca56ff9 1181 rss[mm_counter(page)]--;
b084d435 1182 }
8a5f14a2
KS
1183 if (unlikely(!free_swap_and_cache(entry)))
1184 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1185 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1186 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1187
d559db08 1188 add_mm_rss_vec(mm, rss);
6606c3e0 1189 arch_leave_lazy_mmu_mode();
51c6f666 1190
1cf35d47 1191 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1192 if (force_flush)
1cf35d47 1193 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1194 pte_unmap_unlock(start_pte, ptl);
1195
1196 /*
1197 * If we forced a TLB flush (either due to running out of
1198 * batch buffers or because we needed to flush dirty TLB
1199 * entries before releasing the ptl), free the batched
1200 * memory too. Restart if we didn't do everything.
1201 */
1202 if (force_flush) {
1203 force_flush = 0;
1204 tlb_flush_mmu_free(tlb);
2b047252
LT
1205
1206 if (addr != end)
d16dfc55
PZ
1207 goto again;
1208 }
1209
51c6f666 1210 return addr;
1da177e4
LT
1211}
1212
51c6f666 1213static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1214 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1215 unsigned long addr, unsigned long end,
97a89413 1216 struct zap_details *details)
1da177e4
LT
1217{
1218 pmd_t *pmd;
1219 unsigned long next;
1220
1221 pmd = pmd_offset(pud, addr);
1222 do {
1223 next = pmd_addr_end(addr, end);
5c7fb56e 1224 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1225 if (next - addr != HPAGE_PMD_SIZE) {
68428398
HD
1226 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1227 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
78ddc534 1228 split_huge_pmd(vma, pmd, addr);
f21760b1 1229 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1230 goto next;
71e3aac0
AA
1231 /* fall through */
1232 }
1a5a9906
AA
1233 /*
1234 * Here there can be other concurrent MADV_DONTNEED or
1235 * trans huge page faults running, and if the pmd is
1236 * none or trans huge it can change under us. This is
1237 * because MADV_DONTNEED holds the mmap_sem in read
1238 * mode.
1239 */
1240 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1241 goto next;
97a89413 1242 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1243next:
97a89413
PZ
1244 cond_resched();
1245 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1246
1247 return addr;
1da177e4
LT
1248}
1249
51c6f666 1250static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1251 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1252 unsigned long addr, unsigned long end,
97a89413 1253 struct zap_details *details)
1da177e4
LT
1254{
1255 pud_t *pud;
1256 unsigned long next;
1257
1258 pud = pud_offset(pgd, addr);
1259 do {
1260 next = pud_addr_end(addr, end);
97a89413 1261 if (pud_none_or_clear_bad(pud))
1da177e4 1262 continue;
97a89413
PZ
1263 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1264 } while (pud++, addr = next, addr != end);
51c6f666
RH
1265
1266 return addr;
1da177e4
LT
1267}
1268
aac45363 1269void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1270 struct vm_area_struct *vma,
1271 unsigned long addr, unsigned long end,
1272 struct zap_details *details)
1da177e4
LT
1273{
1274 pgd_t *pgd;
1275 unsigned long next;
1276
1da177e4
LT
1277 BUG_ON(addr >= end);
1278 tlb_start_vma(tlb, vma);
1279 pgd = pgd_offset(vma->vm_mm, addr);
1280 do {
1281 next = pgd_addr_end(addr, end);
97a89413 1282 if (pgd_none_or_clear_bad(pgd))
1da177e4 1283 continue;
97a89413
PZ
1284 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1285 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1286 tlb_end_vma(tlb, vma);
1287}
51c6f666 1288
f5cc4eef
AV
1289
1290static void unmap_single_vma(struct mmu_gather *tlb,
1291 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1292 unsigned long end_addr,
f5cc4eef
AV
1293 struct zap_details *details)
1294{
1295 unsigned long start = max(vma->vm_start, start_addr);
1296 unsigned long end;
1297
1298 if (start >= vma->vm_end)
1299 return;
1300 end = min(vma->vm_end, end_addr);
1301 if (end <= vma->vm_start)
1302 return;
1303
cbc91f71
SD
1304 if (vma->vm_file)
1305 uprobe_munmap(vma, start, end);
1306
b3b9c293 1307 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1308 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1309
1310 if (start != end) {
1311 if (unlikely(is_vm_hugetlb_page(vma))) {
1312 /*
1313 * It is undesirable to test vma->vm_file as it
1314 * should be non-null for valid hugetlb area.
1315 * However, vm_file will be NULL in the error
7aa6b4ad 1316 * cleanup path of mmap_region. When
f5cc4eef 1317 * hugetlbfs ->mmap method fails,
7aa6b4ad 1318 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1319 * before calling this function to clean up.
1320 * Since no pte has actually been setup, it is
1321 * safe to do nothing in this case.
1322 */
24669e58 1323 if (vma->vm_file) {
83cde9e8 1324 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1325 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1326 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1327 }
f5cc4eef
AV
1328 } else
1329 unmap_page_range(tlb, vma, start, end, details);
1330 }
1da177e4
LT
1331}
1332
1da177e4
LT
1333/**
1334 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1335 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1336 * @vma: the starting vma
1337 * @start_addr: virtual address at which to start unmapping
1338 * @end_addr: virtual address at which to end unmapping
1da177e4 1339 *
508034a3 1340 * Unmap all pages in the vma list.
1da177e4 1341 *
1da177e4
LT
1342 * Only addresses between `start' and `end' will be unmapped.
1343 *
1344 * The VMA list must be sorted in ascending virtual address order.
1345 *
1346 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1347 * range after unmap_vmas() returns. So the only responsibility here is to
1348 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1349 * drops the lock and schedules.
1350 */
6e8bb019 1351void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1352 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1353 unsigned long end_addr)
1da177e4 1354{
cddb8a5c 1355 struct mm_struct *mm = vma->vm_mm;
1da177e4 1356
cddb8a5c 1357 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1358 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1359 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1360 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1361}
1362
1363/**
1364 * zap_page_range - remove user pages in a given range
1365 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1366 * @start: starting address of pages to zap
1da177e4 1367 * @size: number of bytes to zap
8a5f14a2 1368 * @details: details of shared cache invalidation
f5cc4eef
AV
1369 *
1370 * Caller must protect the VMA list
1da177e4 1371 */
7e027b14 1372void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1373 unsigned long size, struct zap_details *details)
1374{
1375 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1376 struct mmu_gather tlb;
7e027b14 1377 unsigned long end = start + size;
1da177e4 1378
1da177e4 1379 lru_add_drain();
2b047252 1380 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1381 update_hiwater_rss(mm);
7e027b14
LT
1382 mmu_notifier_invalidate_range_start(mm, start, end);
1383 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1384 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1385 mmu_notifier_invalidate_range_end(mm, start, end);
1386 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1387}
1388
f5cc4eef
AV
1389/**
1390 * zap_page_range_single - remove user pages in a given range
1391 * @vma: vm_area_struct holding the applicable pages
1392 * @address: starting address of pages to zap
1393 * @size: number of bytes to zap
8a5f14a2 1394 * @details: details of shared cache invalidation
f5cc4eef
AV
1395 *
1396 * The range must fit into one VMA.
1da177e4 1397 */
f5cc4eef 1398static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1399 unsigned long size, struct zap_details *details)
1400{
1401 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1402 struct mmu_gather tlb;
1da177e4 1403 unsigned long end = address + size;
1da177e4 1404
1da177e4 1405 lru_add_drain();
2b047252 1406 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1407 update_hiwater_rss(mm);
f5cc4eef 1408 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1409 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1410 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1411 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1412}
1413
c627f9cc
JS
1414/**
1415 * zap_vma_ptes - remove ptes mapping the vma
1416 * @vma: vm_area_struct holding ptes to be zapped
1417 * @address: starting address of pages to zap
1418 * @size: number of bytes to zap
1419 *
1420 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1421 *
1422 * The entire address range must be fully contained within the vma.
1423 *
1424 * Returns 0 if successful.
1425 */
1426int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1427 unsigned long size)
1428{
1429 if (address < vma->vm_start || address + size > vma->vm_end ||
1430 !(vma->vm_flags & VM_PFNMAP))
1431 return -1;
f5cc4eef 1432 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1433 return 0;
1434}
1435EXPORT_SYMBOL_GPL(zap_vma_ptes);
1436
25ca1d6c 1437pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1438 spinlock_t **ptl)
c9cfcddf
LT
1439{
1440 pgd_t * pgd = pgd_offset(mm, addr);
1441 pud_t * pud = pud_alloc(mm, pgd, addr);
1442 if (pud) {
49c91fb0 1443 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1444 if (pmd) {
1445 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1446 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1447 }
c9cfcddf
LT
1448 }
1449 return NULL;
1450}
1451
238f58d8
LT
1452/*
1453 * This is the old fallback for page remapping.
1454 *
1455 * For historical reasons, it only allows reserved pages. Only
1456 * old drivers should use this, and they needed to mark their
1457 * pages reserved for the old functions anyway.
1458 */
423bad60
NP
1459static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1460 struct page *page, pgprot_t prot)
238f58d8 1461{
423bad60 1462 struct mm_struct *mm = vma->vm_mm;
238f58d8 1463 int retval;
c9cfcddf 1464 pte_t *pte;
8a9f3ccd
BS
1465 spinlock_t *ptl;
1466
238f58d8 1467 retval = -EINVAL;
a145dd41 1468 if (PageAnon(page))
5b4e655e 1469 goto out;
238f58d8
LT
1470 retval = -ENOMEM;
1471 flush_dcache_page(page);
c9cfcddf 1472 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1473 if (!pte)
5b4e655e 1474 goto out;
238f58d8
LT
1475 retval = -EBUSY;
1476 if (!pte_none(*pte))
1477 goto out_unlock;
1478
1479 /* Ok, finally just insert the thing.. */
1480 get_page(page);
eca56ff9 1481 inc_mm_counter_fast(mm, mm_counter_file(page));
238f58d8
LT
1482 page_add_file_rmap(page);
1483 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1484
1485 retval = 0;
8a9f3ccd
BS
1486 pte_unmap_unlock(pte, ptl);
1487 return retval;
238f58d8
LT
1488out_unlock:
1489 pte_unmap_unlock(pte, ptl);
1490out:
1491 return retval;
1492}
1493
bfa5bf6d
REB
1494/**
1495 * vm_insert_page - insert single page into user vma
1496 * @vma: user vma to map to
1497 * @addr: target user address of this page
1498 * @page: source kernel page
1499 *
a145dd41
LT
1500 * This allows drivers to insert individual pages they've allocated
1501 * into a user vma.
1502 *
1503 * The page has to be a nice clean _individual_ kernel allocation.
1504 * If you allocate a compound page, you need to have marked it as
1505 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1506 * (see split_page()).
a145dd41
LT
1507 *
1508 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1509 * took an arbitrary page protection parameter. This doesn't allow
1510 * that. Your vma protection will have to be set up correctly, which
1511 * means that if you want a shared writable mapping, you'd better
1512 * ask for a shared writable mapping!
1513 *
1514 * The page does not need to be reserved.
4b6e1e37
KK
1515 *
1516 * Usually this function is called from f_op->mmap() handler
1517 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1518 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1519 * function from other places, for example from page-fault handler.
a145dd41 1520 */
423bad60
NP
1521int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1522 struct page *page)
a145dd41
LT
1523{
1524 if (addr < vma->vm_start || addr >= vma->vm_end)
1525 return -EFAULT;
1526 if (!page_count(page))
1527 return -EINVAL;
4b6e1e37
KK
1528 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1529 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1530 BUG_ON(vma->vm_flags & VM_PFNMAP);
1531 vma->vm_flags |= VM_MIXEDMAP;
1532 }
423bad60 1533 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1534}
e3c3374f 1535EXPORT_SYMBOL(vm_insert_page);
a145dd41 1536
423bad60 1537static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1538 pfn_t pfn, pgprot_t prot)
423bad60
NP
1539{
1540 struct mm_struct *mm = vma->vm_mm;
1541 int retval;
1542 pte_t *pte, entry;
1543 spinlock_t *ptl;
1544
1545 retval = -ENOMEM;
1546 pte = get_locked_pte(mm, addr, &ptl);
1547 if (!pte)
1548 goto out;
1549 retval = -EBUSY;
1550 if (!pte_none(*pte))
1551 goto out_unlock;
1552
1553 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1554 if (pfn_t_devmap(pfn))
1555 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1556 else
1557 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
423bad60 1558 set_pte_at(mm, addr, pte, entry);
4b3073e1 1559 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1560
1561 retval = 0;
1562out_unlock:
1563 pte_unmap_unlock(pte, ptl);
1564out:
1565 return retval;
1566}
1567
e0dc0d8f
NP
1568/**
1569 * vm_insert_pfn - insert single pfn into user vma
1570 * @vma: user vma to map to
1571 * @addr: target user address of this page
1572 * @pfn: source kernel pfn
1573 *
c462f179 1574 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1575 * they've allocated into a user vma. Same comments apply.
1576 *
1577 * This function should only be called from a vm_ops->fault handler, and
1578 * in that case the handler should return NULL.
0d71d10a
NP
1579 *
1580 * vma cannot be a COW mapping.
1581 *
1582 * As this is called only for pages that do not currently exist, we
1583 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1584 */
1585int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1586 unsigned long pfn)
1745cbc5
AL
1587{
1588 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1589}
1590EXPORT_SYMBOL(vm_insert_pfn);
1591
1592/**
1593 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1594 * @vma: user vma to map to
1595 * @addr: target user address of this page
1596 * @pfn: source kernel pfn
1597 * @pgprot: pgprot flags for the inserted page
1598 *
1599 * This is exactly like vm_insert_pfn, except that it allows drivers to
1600 * to override pgprot on a per-page basis.
1601 *
1602 * This only makes sense for IO mappings, and it makes no sense for
1603 * cow mappings. In general, using multiple vmas is preferable;
1604 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1605 * impractical.
1606 */
1607int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1608 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1609{
2ab64037 1610 int ret;
7e675137
NP
1611 /*
1612 * Technically, architectures with pte_special can avoid all these
1613 * restrictions (same for remap_pfn_range). However we would like
1614 * consistency in testing and feature parity among all, so we should
1615 * try to keep these invariants in place for everybody.
1616 */
b379d790
JH
1617 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1618 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1619 (VM_PFNMAP|VM_MIXEDMAP));
1620 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1621 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1622
423bad60
NP
1623 if (addr < vma->vm_start || addr >= vma->vm_end)
1624 return -EFAULT;
f25748e3 1625 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
2ab64037 1626 return -EINVAL;
1627
01c8f1c4 1628 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
2ab64037 1629
2ab64037 1630 return ret;
423bad60 1631}
1745cbc5 1632EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1633
423bad60 1634int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1635 pfn_t pfn)
423bad60
NP
1636{
1637 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1638
423bad60
NP
1639 if (addr < vma->vm_start || addr >= vma->vm_end)
1640 return -EFAULT;
e0dc0d8f 1641
423bad60
NP
1642 /*
1643 * If we don't have pte special, then we have to use the pfn_valid()
1644 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1645 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1646 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1647 * without pte special, it would there be refcounted as a normal page.
423bad60 1648 */
03fc2da6 1649 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1650 struct page *page;
1651
03fc2da6
DW
1652 /*
1653 * At this point we are committed to insert_page()
1654 * regardless of whether the caller specified flags that
1655 * result in pfn_t_has_page() == false.
1656 */
1657 page = pfn_to_page(pfn_t_to_pfn(pfn));
423bad60
NP
1658 return insert_page(vma, addr, page, vma->vm_page_prot);
1659 }
1660 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1661}
423bad60 1662EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1663
1da177e4
LT
1664/*
1665 * maps a range of physical memory into the requested pages. the old
1666 * mappings are removed. any references to nonexistent pages results
1667 * in null mappings (currently treated as "copy-on-access")
1668 */
1669static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1670 unsigned long addr, unsigned long end,
1671 unsigned long pfn, pgprot_t prot)
1672{
1673 pte_t *pte;
c74df32c 1674 spinlock_t *ptl;
1da177e4 1675
c74df32c 1676 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1677 if (!pte)
1678 return -ENOMEM;
6606c3e0 1679 arch_enter_lazy_mmu_mode();
1da177e4
LT
1680 do {
1681 BUG_ON(!pte_none(*pte));
7e675137 1682 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1683 pfn++;
1684 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1685 arch_leave_lazy_mmu_mode();
c74df32c 1686 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1687 return 0;
1688}
1689
1690static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1691 unsigned long addr, unsigned long end,
1692 unsigned long pfn, pgprot_t prot)
1693{
1694 pmd_t *pmd;
1695 unsigned long next;
1696
1697 pfn -= addr >> PAGE_SHIFT;
1698 pmd = pmd_alloc(mm, pud, addr);
1699 if (!pmd)
1700 return -ENOMEM;
f66055ab 1701 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1702 do {
1703 next = pmd_addr_end(addr, end);
1704 if (remap_pte_range(mm, pmd, addr, next,
1705 pfn + (addr >> PAGE_SHIFT), prot))
1706 return -ENOMEM;
1707 } while (pmd++, addr = next, addr != end);
1708 return 0;
1709}
1710
1711static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1712 unsigned long addr, unsigned long end,
1713 unsigned long pfn, pgprot_t prot)
1714{
1715 pud_t *pud;
1716 unsigned long next;
1717
1718 pfn -= addr >> PAGE_SHIFT;
1719 pud = pud_alloc(mm, pgd, addr);
1720 if (!pud)
1721 return -ENOMEM;
1722 do {
1723 next = pud_addr_end(addr, end);
1724 if (remap_pmd_range(mm, pud, addr, next,
1725 pfn + (addr >> PAGE_SHIFT), prot))
1726 return -ENOMEM;
1727 } while (pud++, addr = next, addr != end);
1728 return 0;
1729}
1730
bfa5bf6d
REB
1731/**
1732 * remap_pfn_range - remap kernel memory to userspace
1733 * @vma: user vma to map to
1734 * @addr: target user address to start at
1735 * @pfn: physical address of kernel memory
1736 * @size: size of map area
1737 * @prot: page protection flags for this mapping
1738 *
1739 * Note: this is only safe if the mm semaphore is held when called.
1740 */
1da177e4
LT
1741int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1742 unsigned long pfn, unsigned long size, pgprot_t prot)
1743{
1744 pgd_t *pgd;
1745 unsigned long next;
2d15cab8 1746 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1747 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1748 unsigned long remap_pfn = pfn;
1da177e4
LT
1749 int err;
1750
1751 /*
1752 * Physically remapped pages are special. Tell the
1753 * rest of the world about it:
1754 * VM_IO tells people not to look at these pages
1755 * (accesses can have side effects).
6aab341e
LT
1756 * VM_PFNMAP tells the core MM that the base pages are just
1757 * raw PFN mappings, and do not have a "struct page" associated
1758 * with them.
314e51b9
KK
1759 * VM_DONTEXPAND
1760 * Disable vma merging and expanding with mremap().
1761 * VM_DONTDUMP
1762 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1763 *
1764 * There's a horrible special case to handle copy-on-write
1765 * behaviour that some programs depend on. We mark the "original"
1766 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1767 * See vm_normal_page() for details.
1da177e4 1768 */
b3b9c293
KK
1769 if (is_cow_mapping(vma->vm_flags)) {
1770 if (addr != vma->vm_start || end != vma->vm_end)
1771 return -EINVAL;
fb155c16 1772 vma->vm_pgoff = pfn;
b3b9c293
KK
1773 }
1774
d5957d2f 1775 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1776 if (err)
3c8bb73a 1777 return -EINVAL;
fb155c16 1778
314e51b9 1779 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1780
1781 BUG_ON(addr >= end);
1782 pfn -= addr >> PAGE_SHIFT;
1783 pgd = pgd_offset(mm, addr);
1784 flush_cache_range(vma, addr, end);
1da177e4
LT
1785 do {
1786 next = pgd_addr_end(addr, end);
1787 err = remap_pud_range(mm, pgd, addr, next,
1788 pfn + (addr >> PAGE_SHIFT), prot);
1789 if (err)
1790 break;
1791 } while (pgd++, addr = next, addr != end);
2ab64037 1792
1793 if (err)
d5957d2f 1794 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1795
1da177e4
LT
1796 return err;
1797}
1798EXPORT_SYMBOL(remap_pfn_range);
1799
b4cbb197
LT
1800/**
1801 * vm_iomap_memory - remap memory to userspace
1802 * @vma: user vma to map to
1803 * @start: start of area
1804 * @len: size of area
1805 *
1806 * This is a simplified io_remap_pfn_range() for common driver use. The
1807 * driver just needs to give us the physical memory range to be mapped,
1808 * we'll figure out the rest from the vma information.
1809 *
1810 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1811 * whatever write-combining details or similar.
1812 */
1813int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1814{
1815 unsigned long vm_len, pfn, pages;
1816
1817 /* Check that the physical memory area passed in looks valid */
1818 if (start + len < start)
1819 return -EINVAL;
1820 /*
1821 * You *really* shouldn't map things that aren't page-aligned,
1822 * but we've historically allowed it because IO memory might
1823 * just have smaller alignment.
1824 */
1825 len += start & ~PAGE_MASK;
1826 pfn = start >> PAGE_SHIFT;
1827 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1828 if (pfn + pages < pfn)
1829 return -EINVAL;
1830
1831 /* We start the mapping 'vm_pgoff' pages into the area */
1832 if (vma->vm_pgoff > pages)
1833 return -EINVAL;
1834 pfn += vma->vm_pgoff;
1835 pages -= vma->vm_pgoff;
1836
1837 /* Can we fit all of the mapping? */
1838 vm_len = vma->vm_end - vma->vm_start;
1839 if (vm_len >> PAGE_SHIFT > pages)
1840 return -EINVAL;
1841
1842 /* Ok, let it rip */
1843 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1844}
1845EXPORT_SYMBOL(vm_iomap_memory);
1846
aee16b3c
JF
1847static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1848 unsigned long addr, unsigned long end,
1849 pte_fn_t fn, void *data)
1850{
1851 pte_t *pte;
1852 int err;
2f569afd 1853 pgtable_t token;
94909914 1854 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1855
1856 pte = (mm == &init_mm) ?
1857 pte_alloc_kernel(pmd, addr) :
1858 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1859 if (!pte)
1860 return -ENOMEM;
1861
1862 BUG_ON(pmd_huge(*pmd));
1863
38e0edb1
JF
1864 arch_enter_lazy_mmu_mode();
1865
2f569afd 1866 token = pmd_pgtable(*pmd);
aee16b3c
JF
1867
1868 do {
c36987e2 1869 err = fn(pte++, token, addr, data);
aee16b3c
JF
1870 if (err)
1871 break;
c36987e2 1872 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1873
38e0edb1
JF
1874 arch_leave_lazy_mmu_mode();
1875
aee16b3c
JF
1876 if (mm != &init_mm)
1877 pte_unmap_unlock(pte-1, ptl);
1878 return err;
1879}
1880
1881static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1882 unsigned long addr, unsigned long end,
1883 pte_fn_t fn, void *data)
1884{
1885 pmd_t *pmd;
1886 unsigned long next;
1887 int err;
1888
ceb86879
AK
1889 BUG_ON(pud_huge(*pud));
1890
aee16b3c
JF
1891 pmd = pmd_alloc(mm, pud, addr);
1892 if (!pmd)
1893 return -ENOMEM;
1894 do {
1895 next = pmd_addr_end(addr, end);
1896 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1897 if (err)
1898 break;
1899 } while (pmd++, addr = next, addr != end);
1900 return err;
1901}
1902
1903static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1904 unsigned long addr, unsigned long end,
1905 pte_fn_t fn, void *data)
1906{
1907 pud_t *pud;
1908 unsigned long next;
1909 int err;
1910
1911 pud = pud_alloc(mm, pgd, addr);
1912 if (!pud)
1913 return -ENOMEM;
1914 do {
1915 next = pud_addr_end(addr, end);
1916 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1917 if (err)
1918 break;
1919 } while (pud++, addr = next, addr != end);
1920 return err;
1921}
1922
1923/*
1924 * Scan a region of virtual memory, filling in page tables as necessary
1925 * and calling a provided function on each leaf page table.
1926 */
1927int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1928 unsigned long size, pte_fn_t fn, void *data)
1929{
1930 pgd_t *pgd;
1931 unsigned long next;
57250a5b 1932 unsigned long end = addr + size;
aee16b3c
JF
1933 int err;
1934
9cb65bc3
MP
1935 if (WARN_ON(addr >= end))
1936 return -EINVAL;
1937
aee16b3c
JF
1938 pgd = pgd_offset(mm, addr);
1939 do {
1940 next = pgd_addr_end(addr, end);
1941 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1942 if (err)
1943 break;
1944 } while (pgd++, addr = next, addr != end);
57250a5b 1945
aee16b3c
JF
1946 return err;
1947}
1948EXPORT_SYMBOL_GPL(apply_to_page_range);
1949
8f4e2101 1950/*
9b4bdd2f
KS
1951 * handle_pte_fault chooses page fault handler according to an entry which was
1952 * read non-atomically. Before making any commitment, on those architectures
1953 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1954 * parts, do_swap_page must check under lock before unmapping the pte and
1955 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 1956 * and do_anonymous_page can safely check later on).
8f4e2101 1957 */
4c21e2f2 1958static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1959 pte_t *page_table, pte_t orig_pte)
1960{
1961 int same = 1;
1962#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1963 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1964 spinlock_t *ptl = pte_lockptr(mm, pmd);
1965 spin_lock(ptl);
8f4e2101 1966 same = pte_same(*page_table, orig_pte);
4c21e2f2 1967 spin_unlock(ptl);
8f4e2101
HD
1968 }
1969#endif
1970 pte_unmap(page_table);
1971 return same;
1972}
1973
9de455b2 1974static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1975{
0abdd7a8
DW
1976 debug_dma_assert_idle(src);
1977
6aab341e
LT
1978 /*
1979 * If the source page was a PFN mapping, we don't have
1980 * a "struct page" for it. We do a best-effort copy by
1981 * just copying from the original user address. If that
1982 * fails, we just zero-fill it. Live with it.
1983 */
1984 if (unlikely(!src)) {
9b04c5fe 1985 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1986 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1987
1988 /*
1989 * This really shouldn't fail, because the page is there
1990 * in the page tables. But it might just be unreadable,
1991 * in which case we just give up and fill the result with
1992 * zeroes.
1993 */
1994 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 1995 clear_page(kaddr);
9b04c5fe 1996 kunmap_atomic(kaddr);
c4ec7b0d 1997 flush_dcache_page(dst);
0ed361de
NP
1998 } else
1999 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2000}
2001
c20cd45e
MH
2002static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2003{
2004 struct file *vm_file = vma->vm_file;
2005
2006 if (vm_file)
2007 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2008
2009 /*
2010 * Special mappings (e.g. VDSO) do not have any file so fake
2011 * a default GFP_KERNEL for them.
2012 */
2013 return GFP_KERNEL;
2014}
2015
fb09a464
KS
2016/*
2017 * Notify the address space that the page is about to become writable so that
2018 * it can prohibit this or wait for the page to get into an appropriate state.
2019 *
2020 * We do this without the lock held, so that it can sleep if it needs to.
2021 */
2022static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2023 unsigned long address)
2024{
2025 struct vm_fault vmf;
2026 int ret;
2027
2028 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2029 vmf.pgoff = page->index;
2030 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c20cd45e 2031 vmf.gfp_mask = __get_fault_gfp_mask(vma);
fb09a464 2032 vmf.page = page;
2e4cdab0 2033 vmf.cow_page = NULL;
fb09a464
KS
2034
2035 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2036 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2037 return ret;
2038 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2039 lock_page(page);
2040 if (!page->mapping) {
2041 unlock_page(page);
2042 return 0; /* retry */
2043 }
2044 ret |= VM_FAULT_LOCKED;
2045 } else
2046 VM_BUG_ON_PAGE(!PageLocked(page), page);
2047 return ret;
2048}
2049
4e047f89
SR
2050/*
2051 * Handle write page faults for pages that can be reused in the current vma
2052 *
2053 * This can happen either due to the mapping being with the VM_SHARED flag,
2054 * or due to us being the last reference standing to the page. In either
2055 * case, all we need to do here is to mark the page as writable and update
2056 * any related book-keeping.
2057 */
2058static inline int wp_page_reuse(struct mm_struct *mm,
2059 struct vm_area_struct *vma, unsigned long address,
2060 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2061 struct page *page, int page_mkwrite,
2062 int dirty_shared)
2063 __releases(ptl)
2064{
2065 pte_t entry;
2066 /*
2067 * Clear the pages cpupid information as the existing
2068 * information potentially belongs to a now completely
2069 * unrelated process.
2070 */
2071 if (page)
2072 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2073
2074 flush_cache_page(vma, address, pte_pfn(orig_pte));
2075 entry = pte_mkyoung(orig_pte);
2076 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2077 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2078 update_mmu_cache(vma, address, page_table);
2079 pte_unmap_unlock(page_table, ptl);
2080
2081 if (dirty_shared) {
2082 struct address_space *mapping;
2083 int dirtied;
2084
2085 if (!page_mkwrite)
2086 lock_page(page);
2087
2088 dirtied = set_page_dirty(page);
2089 VM_BUG_ON_PAGE(PageAnon(page), page);
2090 mapping = page->mapping;
2091 unlock_page(page);
09cbfeaf 2092 put_page(page);
4e047f89
SR
2093
2094 if ((dirtied || page_mkwrite) && mapping) {
2095 /*
2096 * Some device drivers do not set page.mapping
2097 * but still dirty their pages
2098 */
2099 balance_dirty_pages_ratelimited(mapping);
2100 }
2101
2102 if (!page_mkwrite)
2103 file_update_time(vma->vm_file);
2104 }
2105
2106 return VM_FAULT_WRITE;
2107}
2108
2f38ab2c
SR
2109/*
2110 * Handle the case of a page which we actually need to copy to a new page.
2111 *
2112 * Called with mmap_sem locked and the old page referenced, but
2113 * without the ptl held.
2114 *
2115 * High level logic flow:
2116 *
2117 * - Allocate a page, copy the content of the old page to the new one.
2118 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2119 * - Take the PTL. If the pte changed, bail out and release the allocated page
2120 * - If the pte is still the way we remember it, update the page table and all
2121 * relevant references. This includes dropping the reference the page-table
2122 * held to the old page, as well as updating the rmap.
2123 * - In any case, unlock the PTL and drop the reference we took to the old page.
2124 */
2125static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2126 unsigned long address, pte_t *page_table, pmd_t *pmd,
2127 pte_t orig_pte, struct page *old_page)
2128{
2129 struct page *new_page = NULL;
2130 spinlock_t *ptl = NULL;
2131 pte_t entry;
2132 int page_copied = 0;
2133 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2134 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2135 struct mem_cgroup *memcg;
2136
2137 if (unlikely(anon_vma_prepare(vma)))
2138 goto oom;
2139
2140 if (is_zero_pfn(pte_pfn(orig_pte))) {
2141 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2142 if (!new_page)
2143 goto oom;
2144 } else {
2145 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2146 if (!new_page)
2147 goto oom;
2148 cow_user_page(new_page, old_page, address, vma);
2149 }
2f38ab2c 2150
f627c2f5 2151 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2152 goto oom_free_new;
2153
eb3c24f3
MG
2154 __SetPageUptodate(new_page);
2155
2f38ab2c
SR
2156 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2157
2158 /*
2159 * Re-check the pte - we dropped the lock
2160 */
2161 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2162 if (likely(pte_same(*page_table, orig_pte))) {
2163 if (old_page) {
2164 if (!PageAnon(old_page)) {
eca56ff9
JM
2165 dec_mm_counter_fast(mm,
2166 mm_counter_file(old_page));
2f38ab2c
SR
2167 inc_mm_counter_fast(mm, MM_ANONPAGES);
2168 }
2169 } else {
2170 inc_mm_counter_fast(mm, MM_ANONPAGES);
2171 }
2172 flush_cache_page(vma, address, pte_pfn(orig_pte));
2173 entry = mk_pte(new_page, vma->vm_page_prot);
2174 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2175 /*
2176 * Clear the pte entry and flush it first, before updating the
2177 * pte with the new entry. This will avoid a race condition
2178 * seen in the presence of one thread doing SMC and another
2179 * thread doing COW.
2180 */
2181 ptep_clear_flush_notify(vma, address, page_table);
d281ee61 2182 page_add_new_anon_rmap(new_page, vma, address, false);
f627c2f5 2183 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2184 lru_cache_add_active_or_unevictable(new_page, vma);
2185 /*
2186 * We call the notify macro here because, when using secondary
2187 * mmu page tables (such as kvm shadow page tables), we want the
2188 * new page to be mapped directly into the secondary page table.
2189 */
2190 set_pte_at_notify(mm, address, page_table, entry);
2191 update_mmu_cache(vma, address, page_table);
2192 if (old_page) {
2193 /*
2194 * Only after switching the pte to the new page may
2195 * we remove the mapcount here. Otherwise another
2196 * process may come and find the rmap count decremented
2197 * before the pte is switched to the new page, and
2198 * "reuse" the old page writing into it while our pte
2199 * here still points into it and can be read by other
2200 * threads.
2201 *
2202 * The critical issue is to order this
2203 * page_remove_rmap with the ptp_clear_flush above.
2204 * Those stores are ordered by (if nothing else,)
2205 * the barrier present in the atomic_add_negative
2206 * in page_remove_rmap.
2207 *
2208 * Then the TLB flush in ptep_clear_flush ensures that
2209 * no process can access the old page before the
2210 * decremented mapcount is visible. And the old page
2211 * cannot be reused until after the decremented
2212 * mapcount is visible. So transitively, TLBs to
2213 * old page will be flushed before it can be reused.
2214 */
d281ee61 2215 page_remove_rmap(old_page, false);
2f38ab2c
SR
2216 }
2217
2218 /* Free the old page.. */
2219 new_page = old_page;
2220 page_copied = 1;
2221 } else {
f627c2f5 2222 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2223 }
2224
2225 if (new_page)
09cbfeaf 2226 put_page(new_page);
2f38ab2c
SR
2227
2228 pte_unmap_unlock(page_table, ptl);
2229 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2230 if (old_page) {
2231 /*
2232 * Don't let another task, with possibly unlocked vma,
2233 * keep the mlocked page.
2234 */
2235 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2236 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2237 if (PageMlocked(old_page))
2238 munlock_vma_page(old_page);
2f38ab2c
SR
2239 unlock_page(old_page);
2240 }
09cbfeaf 2241 put_page(old_page);
2f38ab2c
SR
2242 }
2243 return page_copied ? VM_FAULT_WRITE : 0;
2244oom_free_new:
09cbfeaf 2245 put_page(new_page);
2f38ab2c
SR
2246oom:
2247 if (old_page)
09cbfeaf 2248 put_page(old_page);
2f38ab2c
SR
2249 return VM_FAULT_OOM;
2250}
2251
dd906184
BH
2252/*
2253 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2254 * mapping
2255 */
2256static int wp_pfn_shared(struct mm_struct *mm,
2257 struct vm_area_struct *vma, unsigned long address,
2258 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2259 pmd_t *pmd)
2260{
2261 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2262 struct vm_fault vmf = {
2263 .page = NULL,
2264 .pgoff = linear_page_index(vma, address),
2265 .virtual_address = (void __user *)(address & PAGE_MASK),
2266 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2267 };
2268 int ret;
2269
2270 pte_unmap_unlock(page_table, ptl);
2271 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2272 if (ret & VM_FAULT_ERROR)
2273 return ret;
2274 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2275 /*
2276 * We might have raced with another page fault while we
2277 * released the pte_offset_map_lock.
2278 */
2279 if (!pte_same(*page_table, orig_pte)) {
2280 pte_unmap_unlock(page_table, ptl);
2281 return 0;
2282 }
2283 }
2284 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2285 NULL, 0, 0);
2286}
2287
93e478d4
SR
2288static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2289 unsigned long address, pte_t *page_table,
2290 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2291 struct page *old_page)
2292 __releases(ptl)
2293{
2294 int page_mkwrite = 0;
2295
09cbfeaf 2296 get_page(old_page);
93e478d4 2297
93e478d4
SR
2298 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2299 int tmp;
2300
2301 pte_unmap_unlock(page_table, ptl);
2302 tmp = do_page_mkwrite(vma, old_page, address);
2303 if (unlikely(!tmp || (tmp &
2304 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
09cbfeaf 2305 put_page(old_page);
93e478d4
SR
2306 return tmp;
2307 }
2308 /*
2309 * Since we dropped the lock we need to revalidate
2310 * the PTE as someone else may have changed it. If
2311 * they did, we just return, as we can count on the
2312 * MMU to tell us if they didn't also make it writable.
2313 */
2314 page_table = pte_offset_map_lock(mm, pmd, address,
2315 &ptl);
2316 if (!pte_same(*page_table, orig_pte)) {
2317 unlock_page(old_page);
2318 pte_unmap_unlock(page_table, ptl);
09cbfeaf 2319 put_page(old_page);
93e478d4
SR
2320 return 0;
2321 }
2322 page_mkwrite = 1;
2323 }
2324
2325 return wp_page_reuse(mm, vma, address, page_table, ptl,
2326 orig_pte, old_page, page_mkwrite, 1);
2327}
2328
1da177e4
LT
2329/*
2330 * This routine handles present pages, when users try to write
2331 * to a shared page. It is done by copying the page to a new address
2332 * and decrementing the shared-page counter for the old page.
2333 *
1da177e4
LT
2334 * Note that this routine assumes that the protection checks have been
2335 * done by the caller (the low-level page fault routine in most cases).
2336 * Thus we can safely just mark it writable once we've done any necessary
2337 * COW.
2338 *
2339 * We also mark the page dirty at this point even though the page will
2340 * change only once the write actually happens. This avoids a few races,
2341 * and potentially makes it more efficient.
2342 *
8f4e2101
HD
2343 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2344 * but allow concurrent faults), with pte both mapped and locked.
2345 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2346 */
65500d23
HD
2347static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2348 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2349 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2350 __releases(ptl)
1da177e4 2351{
2f38ab2c 2352 struct page *old_page;
1da177e4 2353
6aab341e 2354 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2355 if (!old_page) {
2356 /*
64e45507
PF
2357 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2358 * VM_PFNMAP VMA.
251b97f5
PZ
2359 *
2360 * We should not cow pages in a shared writeable mapping.
dd906184 2361 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2362 */
2363 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2364 (VM_WRITE|VM_SHARED))
dd906184
BH
2365 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2366 orig_pte, pmd);
2f38ab2c
SR
2367
2368 pte_unmap_unlock(page_table, ptl);
2369 return wp_page_copy(mm, vma, address, page_table, pmd,
2370 orig_pte, old_page);
251b97f5 2371 }
1da177e4 2372
d08b3851 2373 /*
ee6a6457
PZ
2374 * Take out anonymous pages first, anonymous shared vmas are
2375 * not dirty accountable.
d08b3851 2376 */
9a840895 2377 if (PageAnon(old_page) && !PageKsm(old_page)) {
6d0a07ed 2378 int total_mapcount;
ab967d86 2379 if (!trylock_page(old_page)) {
09cbfeaf 2380 get_page(old_page);
ab967d86
HD
2381 pte_unmap_unlock(page_table, ptl);
2382 lock_page(old_page);
2383 page_table = pte_offset_map_lock(mm, pmd, address,
2384 &ptl);
2385 if (!pte_same(*page_table, orig_pte)) {
2386 unlock_page(old_page);
28766805 2387 pte_unmap_unlock(page_table, ptl);
09cbfeaf 2388 put_page(old_page);
28766805 2389 return 0;
ab967d86 2390 }
09cbfeaf 2391 put_page(old_page);
ee6a6457 2392 }
6d0a07ed
AA
2393 if (reuse_swap_page(old_page, &total_mapcount)) {
2394 if (total_mapcount == 1) {
2395 /*
2396 * The page is all ours. Move it to
2397 * our anon_vma so the rmap code will
2398 * not search our parent or siblings.
2399 * Protected against the rmap code by
2400 * the page lock.
2401 */
2402 page_move_anon_rmap(compound_head(old_page),
2403 vma, address);
2404 }
b009c024 2405 unlock_page(old_page);
4e047f89
SR
2406 return wp_page_reuse(mm, vma, address, page_table, ptl,
2407 orig_pte, old_page, 0, 0);
b009c024 2408 }
ab967d86 2409 unlock_page(old_page);
ee6a6457 2410 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2411 (VM_WRITE|VM_SHARED))) {
93e478d4
SR
2412 return wp_page_shared(mm, vma, address, page_table, pmd,
2413 ptl, orig_pte, old_page);
1da177e4 2414 }
1da177e4
LT
2415
2416 /*
2417 * Ok, we need to copy. Oh, well..
2418 */
09cbfeaf 2419 get_page(old_page);
28766805 2420
8f4e2101 2421 pte_unmap_unlock(page_table, ptl);
2f38ab2c
SR
2422 return wp_page_copy(mm, vma, address, page_table, pmd,
2423 orig_pte, old_page);
1da177e4
LT
2424}
2425
97a89413 2426static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2427 unsigned long start_addr, unsigned long end_addr,
2428 struct zap_details *details)
2429{
f5cc4eef 2430 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2431}
2432
6b2dbba8 2433static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2434 struct zap_details *details)
2435{
2436 struct vm_area_struct *vma;
1da177e4
LT
2437 pgoff_t vba, vea, zba, zea;
2438
6b2dbba8 2439 vma_interval_tree_foreach(vma, root,
1da177e4 2440 details->first_index, details->last_index) {
1da177e4
LT
2441
2442 vba = vma->vm_pgoff;
d6e93217 2443 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2444 zba = details->first_index;
2445 if (zba < vba)
2446 zba = vba;
2447 zea = details->last_index;
2448 if (zea > vea)
2449 zea = vea;
2450
97a89413 2451 unmap_mapping_range_vma(vma,
1da177e4
LT
2452 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2453 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2454 details);
1da177e4
LT
2455 }
2456}
2457
1da177e4 2458/**
8a5f14a2
KS
2459 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2460 * address_space corresponding to the specified page range in the underlying
2461 * file.
2462 *
3d41088f 2463 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2464 * @holebegin: byte in first page to unmap, relative to the start of
2465 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2466 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2467 * must keep the partial page. In contrast, we must get rid of
2468 * partial pages.
2469 * @holelen: size of prospective hole in bytes. This will be rounded
2470 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2471 * end of the file.
2472 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2473 * but 0 when invalidating pagecache, don't throw away private data.
2474 */
2475void unmap_mapping_range(struct address_space *mapping,
2476 loff_t const holebegin, loff_t const holelen, int even_cows)
2477{
aac45363 2478 struct zap_details details = { };
1da177e4
LT
2479 pgoff_t hba = holebegin >> PAGE_SHIFT;
2480 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2481
2482 /* Check for overflow. */
2483 if (sizeof(holelen) > sizeof(hlen)) {
2484 long long holeend =
2485 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2486 if (holeend & ~(long long)ULONG_MAX)
2487 hlen = ULONG_MAX - hba + 1;
2488 }
2489
2490 details.check_mapping = even_cows? NULL: mapping;
1da177e4
LT
2491 details.first_index = hba;
2492 details.last_index = hba + hlen - 1;
2493 if (details.last_index < details.first_index)
2494 details.last_index = ULONG_MAX;
1da177e4 2495
46c043ed 2496 i_mmap_lock_write(mapping);
6b2dbba8 2497 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2498 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2499 i_mmap_unlock_write(mapping);
1da177e4
LT
2500}
2501EXPORT_SYMBOL(unmap_mapping_range);
2502
1da177e4 2503/*
8f4e2101
HD
2504 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2505 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2506 * We return with pte unmapped and unlocked.
2507 *
2508 * We return with the mmap_sem locked or unlocked in the same cases
2509 * as does filemap_fault().
1da177e4 2510 */
65500d23
HD
2511static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2512 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2513 unsigned int flags, pte_t orig_pte)
1da177e4 2514{
8f4e2101 2515 spinlock_t *ptl;
56f31801 2516 struct page *page, *swapcache;
00501b53 2517 struct mem_cgroup *memcg;
65500d23 2518 swp_entry_t entry;
1da177e4 2519 pte_t pte;
d065bd81 2520 int locked;
ad8c2ee8 2521 int exclusive = 0;
83c54070 2522 int ret = 0;
1da177e4 2523
4c21e2f2 2524 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2525 goto out;
65500d23
HD
2526
2527 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2528 if (unlikely(non_swap_entry(entry))) {
2529 if (is_migration_entry(entry)) {
2530 migration_entry_wait(mm, pmd, address);
2531 } else if (is_hwpoison_entry(entry)) {
2532 ret = VM_FAULT_HWPOISON;
2533 } else {
2534 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2535 ret = VM_FAULT_SIGBUS;
d1737fdb 2536 }
0697212a
CL
2537 goto out;
2538 }
0ff92245 2539 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2540 page = lookup_swap_cache(entry);
2541 if (!page) {
02098fea
HD
2542 page = swapin_readahead(entry,
2543 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2544 if (!page) {
2545 /*
8f4e2101
HD
2546 * Back out if somebody else faulted in this pte
2547 * while we released the pte lock.
1da177e4 2548 */
8f4e2101 2549 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2550 if (likely(pte_same(*page_table, orig_pte)))
2551 ret = VM_FAULT_OOM;
0ff92245 2552 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2553 goto unlock;
1da177e4
LT
2554 }
2555
2556 /* Had to read the page from swap area: Major fault */
2557 ret = VM_FAULT_MAJOR;
f8891e5e 2558 count_vm_event(PGMAJFAULT);
456f998e 2559 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2560 } else if (PageHWPoison(page)) {
71f72525
WF
2561 /*
2562 * hwpoisoned dirty swapcache pages are kept for killing
2563 * owner processes (which may be unknown at hwpoison time)
2564 */
d1737fdb
AK
2565 ret = VM_FAULT_HWPOISON;
2566 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2567 swapcache = page;
4779cb31 2568 goto out_release;
1da177e4
LT
2569 }
2570
56f31801 2571 swapcache = page;
d065bd81 2572 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2573
073e587e 2574 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2575 if (!locked) {
2576 ret |= VM_FAULT_RETRY;
2577 goto out_release;
2578 }
073e587e 2579
4969c119 2580 /*
31c4a3d3
HD
2581 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2582 * release the swapcache from under us. The page pin, and pte_same
2583 * test below, are not enough to exclude that. Even if it is still
2584 * swapcache, we need to check that the page's swap has not changed.
4969c119 2585 */
31c4a3d3 2586 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2587 goto out_page;
2588
cbf86cfe
HD
2589 page = ksm_might_need_to_copy(page, vma, address);
2590 if (unlikely(!page)) {
2591 ret = VM_FAULT_OOM;
2592 page = swapcache;
cbf86cfe 2593 goto out_page;
5ad64688
HD
2594 }
2595
f627c2f5 2596 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
8a9f3ccd 2597 ret = VM_FAULT_OOM;
bc43f75c 2598 goto out_page;
8a9f3ccd
BS
2599 }
2600
1da177e4 2601 /*
8f4e2101 2602 * Back out if somebody else already faulted in this pte.
1da177e4 2603 */
8f4e2101 2604 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2605 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2606 goto out_nomap;
b8107480
KK
2607
2608 if (unlikely(!PageUptodate(page))) {
2609 ret = VM_FAULT_SIGBUS;
2610 goto out_nomap;
1da177e4
LT
2611 }
2612
8c7c6e34
KH
2613 /*
2614 * The page isn't present yet, go ahead with the fault.
2615 *
2616 * Be careful about the sequence of operations here.
2617 * To get its accounting right, reuse_swap_page() must be called
2618 * while the page is counted on swap but not yet in mapcount i.e.
2619 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2620 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2621 */
1da177e4 2622
34e55232 2623 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2624 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2625 pte = mk_pte(page, vma->vm_page_prot);
6d0a07ed 2626 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2627 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2628 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2629 ret |= VM_FAULT_WRITE;
d281ee61 2630 exclusive = RMAP_EXCLUSIVE;
1da177e4 2631 }
1da177e4 2632 flush_icache_page(vma, page);
179ef71c
CG
2633 if (pte_swp_soft_dirty(orig_pte))
2634 pte = pte_mksoft_dirty(pte);
1da177e4 2635 set_pte_at(mm, address, page_table, pte);
00501b53 2636 if (page == swapcache) {
af34770e 2637 do_page_add_anon_rmap(page, vma, address, exclusive);
f627c2f5 2638 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 2639 } else { /* ksm created a completely new copy */
d281ee61 2640 page_add_new_anon_rmap(page, vma, address, false);
f627c2f5 2641 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2642 lru_cache_add_active_or_unevictable(page, vma);
2643 }
1da177e4 2644
c475a8ab 2645 swap_free(entry);
5ccc5aba
VD
2646 if (mem_cgroup_swap_full(page) ||
2647 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2648 try_to_free_swap(page);
c475a8ab 2649 unlock_page(page);
56f31801 2650 if (page != swapcache) {
4969c119
AA
2651 /*
2652 * Hold the lock to avoid the swap entry to be reused
2653 * until we take the PT lock for the pte_same() check
2654 * (to avoid false positives from pte_same). For
2655 * further safety release the lock after the swap_free
2656 * so that the swap count won't change under a
2657 * parallel locked swapcache.
2658 */
2659 unlock_page(swapcache);
09cbfeaf 2660 put_page(swapcache);
4969c119 2661 }
c475a8ab 2662
30c9f3a9 2663 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2664 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2665 if (ret & VM_FAULT_ERROR)
2666 ret &= VM_FAULT_ERROR;
1da177e4
LT
2667 goto out;
2668 }
2669
2670 /* No need to invalidate - it was non-present before */
4b3073e1 2671 update_mmu_cache(vma, address, page_table);
65500d23 2672unlock:
8f4e2101 2673 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2674out:
2675 return ret;
b8107480 2676out_nomap:
f627c2f5 2677 mem_cgroup_cancel_charge(page, memcg, false);
8f4e2101 2678 pte_unmap_unlock(page_table, ptl);
bc43f75c 2679out_page:
b8107480 2680 unlock_page(page);
4779cb31 2681out_release:
09cbfeaf 2682 put_page(page);
56f31801 2683 if (page != swapcache) {
4969c119 2684 unlock_page(swapcache);
09cbfeaf 2685 put_page(swapcache);
4969c119 2686 }
65500d23 2687 return ret;
1da177e4
LT
2688}
2689
320b2b8d 2690/*
8ca3eb08
LT
2691 * This is like a special single-page "expand_{down|up}wards()",
2692 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2693 * doesn't hit another vma.
320b2b8d
LT
2694 */
2695static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2696{
2697 address &= PAGE_MASK;
2698 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2699 struct vm_area_struct *prev = vma->vm_prev;
2700
2701 /*
2702 * Is there a mapping abutting this one below?
2703 *
2704 * That's only ok if it's the same stack mapping
2705 * that has gotten split..
2706 */
2707 if (prev && prev->vm_end == address)
2708 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2709
fee7e49d 2710 return expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2711 }
8ca3eb08
LT
2712 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2713 struct vm_area_struct *next = vma->vm_next;
2714
2715 /* As VM_GROWSDOWN but s/below/above/ */
2716 if (next && next->vm_start == address + PAGE_SIZE)
2717 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2718
fee7e49d 2719 return expand_upwards(vma, address + PAGE_SIZE);
8ca3eb08 2720 }
320b2b8d
LT
2721 return 0;
2722}
2723
1da177e4 2724/*
8f4e2101
HD
2725 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2726 * but allow concurrent faults), and pte mapped but not yet locked.
2727 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2728 */
65500d23
HD
2729static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2730 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2731 unsigned int flags)
1da177e4 2732{
00501b53 2733 struct mem_cgroup *memcg;
8f4e2101
HD
2734 struct page *page;
2735 spinlock_t *ptl;
1da177e4 2736 pte_t entry;
1da177e4 2737
11ac5524
LT
2738 pte_unmap(page_table);
2739
6b7339f4
KS
2740 /* File mapping without ->vm_ops ? */
2741 if (vma->vm_flags & VM_SHARED)
2742 return VM_FAULT_SIGBUS;
2743
11ac5524
LT
2744 /* Check if we need to add a guard page to the stack */
2745 if (check_stack_guard_page(vma, address) < 0)
9c145c56 2746 return VM_FAULT_SIGSEGV;
320b2b8d 2747
11ac5524 2748 /* Use the zero-page for reads */
593befa6 2749 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
62eede62
HD
2750 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2751 vma->vm_page_prot));
11ac5524 2752 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2753 if (!pte_none(*page_table))
2754 goto unlock;
6b251fc9
AA
2755 /* Deliver the page fault to userland, check inside PT lock */
2756 if (userfaultfd_missing(vma)) {
2757 pte_unmap_unlock(page_table, ptl);
2758 return handle_userfault(vma, address, flags,
2759 VM_UFFD_MISSING);
2760 }
a13ea5b7
HD
2761 goto setpte;
2762 }
2763
557ed1fa 2764 /* Allocate our own private page. */
557ed1fa
NP
2765 if (unlikely(anon_vma_prepare(vma)))
2766 goto oom;
2767 page = alloc_zeroed_user_highpage_movable(vma, address);
2768 if (!page)
2769 goto oom;
eb3c24f3 2770
f627c2f5 2771 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2772 goto oom_free_page;
2773
52f37629
MK
2774 /*
2775 * The memory barrier inside __SetPageUptodate makes sure that
2776 * preceeding stores to the page contents become visible before
2777 * the set_pte_at() write.
2778 */
0ed361de 2779 __SetPageUptodate(page);
8f4e2101 2780
557ed1fa 2781 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2782 if (vma->vm_flags & VM_WRITE)
2783 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2784
557ed1fa 2785 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2786 if (!pte_none(*page_table))
557ed1fa 2787 goto release;
9ba69294 2788
6b251fc9
AA
2789 /* Deliver the page fault to userland, check inside PT lock */
2790 if (userfaultfd_missing(vma)) {
2791 pte_unmap_unlock(page_table, ptl);
f627c2f5 2792 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2793 put_page(page);
6b251fc9
AA
2794 return handle_userfault(vma, address, flags,
2795 VM_UFFD_MISSING);
2796 }
2797
34e55232 2798 inc_mm_counter_fast(mm, MM_ANONPAGES);
d281ee61 2799 page_add_new_anon_rmap(page, vma, address, false);
f627c2f5 2800 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2801 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2802setpte:
65500d23 2803 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2804
2805 /* No need to invalidate - it was non-present before */
4b3073e1 2806 update_mmu_cache(vma, address, page_table);
65500d23 2807unlock:
8f4e2101 2808 pte_unmap_unlock(page_table, ptl);
83c54070 2809 return 0;
8f4e2101 2810release:
f627c2f5 2811 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2812 put_page(page);
8f4e2101 2813 goto unlock;
8a9f3ccd 2814oom_free_page:
09cbfeaf 2815 put_page(page);
65500d23 2816oom:
1da177e4
LT
2817 return VM_FAULT_OOM;
2818}
2819
9a95f3cf
PC
2820/*
2821 * The mmap_sem must have been held on entry, and may have been
2822 * released depending on flags and vma->vm_ops->fault() return value.
2823 * See filemap_fault() and __lock_page_retry().
2824 */
7eae74af 2825static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2e4cdab0 2826 pgoff_t pgoff, unsigned int flags,
bc2466e4
JK
2827 struct page *cow_page, struct page **page,
2828 void **entry)
7eae74af
KS
2829{
2830 struct vm_fault vmf;
2831 int ret;
2832
2833 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2834 vmf.pgoff = pgoff;
2835 vmf.flags = flags;
2836 vmf.page = NULL;
c20cd45e 2837 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2e4cdab0 2838 vmf.cow_page = cow_page;
7eae74af
KS
2839
2840 ret = vma->vm_ops->fault(vma, &vmf);
2841 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2842 return ret;
bc2466e4
JK
2843 if (ret & VM_FAULT_DAX_LOCKED) {
2844 *entry = vmf.entry;
2845 return ret;
2846 }
7eae74af
KS
2847
2848 if (unlikely(PageHWPoison(vmf.page))) {
2849 if (ret & VM_FAULT_LOCKED)
2850 unlock_page(vmf.page);
09cbfeaf 2851 put_page(vmf.page);
7eae74af
KS
2852 return VM_FAULT_HWPOISON;
2853 }
2854
2855 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2856 lock_page(vmf.page);
2857 else
2858 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2859
2860 *page = vmf.page;
2861 return ret;
2862}
2863
8c6e50b0
KS
2864/**
2865 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2866 *
2867 * @vma: virtual memory area
2868 * @address: user virtual address
2869 * @page: page to map
2870 * @pte: pointer to target page table entry
2871 * @write: true, if new entry is writable
2872 * @anon: true, if it's anonymous page
2873 *
2874 * Caller must hold page table lock relevant for @pte.
2875 *
2876 * Target users are page handler itself and implementations of
2877 * vm_ops->map_pages.
2878 */
2879void do_set_pte(struct vm_area_struct *vma, unsigned long address,
315d09bf 2880 struct page *page, pte_t *pte, bool write, bool anon)
3bb97794
KS
2881{
2882 pte_t entry;
2883
2884 flush_icache_page(vma, page);
2885 entry = mk_pte(page, vma->vm_page_prot);
2886 if (write)
2887 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3bb97794
KS
2888 if (anon) {
2889 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
d281ee61 2890 page_add_new_anon_rmap(page, vma, address, false);
3bb97794 2891 } else {
eca56ff9 2892 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3bb97794
KS
2893 page_add_file_rmap(page);
2894 }
2895 set_pte_at(vma->vm_mm, address, pte, entry);
2896
2897 /* no need to invalidate: a not-present page won't be cached */
2898 update_mmu_cache(vma, address, pte);
2899}
2900
3a91053a
KS
2901static unsigned long fault_around_bytes __read_mostly =
2902 rounddown_pow_of_two(65536);
a9b0f861 2903
a9b0f861
KS
2904#ifdef CONFIG_DEBUG_FS
2905static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2906{
a9b0f861 2907 *val = fault_around_bytes;
1592eef0
KS
2908 return 0;
2909}
2910
b4903d6e
AR
2911/*
2912 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2913 * rounded down to nearest page order. It's what do_fault_around() expects to
2914 * see.
2915 */
a9b0f861 2916static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2917{
a9b0f861 2918 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2919 return -EINVAL;
b4903d6e
AR
2920 if (val > PAGE_SIZE)
2921 fault_around_bytes = rounddown_pow_of_two(val);
2922 else
2923 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2924 return 0;
2925}
a9b0f861
KS
2926DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2927 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2928
2929static int __init fault_around_debugfs(void)
2930{
2931 void *ret;
2932
a9b0f861
KS
2933 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2934 &fault_around_bytes_fops);
1592eef0 2935 if (!ret)
a9b0f861 2936 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2937 return 0;
2938}
2939late_initcall(fault_around_debugfs);
1592eef0 2940#endif
8c6e50b0 2941
1fdb412b
KS
2942/*
2943 * do_fault_around() tries to map few pages around the fault address. The hope
2944 * is that the pages will be needed soon and this will lower the number of
2945 * faults to handle.
2946 *
2947 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2948 * not ready to be mapped: not up-to-date, locked, etc.
2949 *
2950 * This function is called with the page table lock taken. In the split ptlock
2951 * case the page table lock only protects only those entries which belong to
2952 * the page table corresponding to the fault address.
2953 *
2954 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2955 * only once.
2956 *
2957 * fault_around_pages() defines how many pages we'll try to map.
2958 * do_fault_around() expects it to return a power of two less than or equal to
2959 * PTRS_PER_PTE.
2960 *
2961 * The virtual address of the area that we map is naturally aligned to the
2962 * fault_around_pages() value (and therefore to page order). This way it's
2963 * easier to guarantee that we don't cross page table boundaries.
2964 */
8c6e50b0
KS
2965static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2966 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2967{
aecd6f44 2968 unsigned long start_addr, nr_pages, mask;
8c6e50b0
KS
2969 pgoff_t max_pgoff;
2970 struct vm_fault vmf;
2971 int off;
2972
4db0c3c2 2973 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
2974 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2975
2976 start_addr = max(address & mask, vma->vm_start);
8c6e50b0
KS
2977 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2978 pte -= off;
2979 pgoff -= off;
2980
2981 /*
2982 * max_pgoff is either end of page table or end of vma
850e9c69 2983 * or fault_around_pages() from pgoff, depending what is nearest.
8c6e50b0
KS
2984 */
2985 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2986 PTRS_PER_PTE - 1;
2987 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
aecd6f44 2988 pgoff + nr_pages - 1);
8c6e50b0
KS
2989
2990 /* Check if it makes any sense to call ->map_pages */
2991 while (!pte_none(*pte)) {
2992 if (++pgoff > max_pgoff)
2993 return;
2994 start_addr += PAGE_SIZE;
2995 if (start_addr >= vma->vm_end)
2996 return;
2997 pte++;
2998 }
2999
3000 vmf.virtual_address = (void __user *) start_addr;
3001 vmf.pte = pte;
3002 vmf.pgoff = pgoff;
3003 vmf.max_pgoff = max_pgoff;
3004 vmf.flags = flags;
c20cd45e 3005 vmf.gfp_mask = __get_fault_gfp_mask(vma);
8c6e50b0
KS
3006 vma->vm_ops->map_pages(vma, &vmf);
3007}
3008
e655fb29
KS
3009static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3010 unsigned long address, pmd_t *pmd,
3011 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3012{
3013 struct page *fault_page;
3014 spinlock_t *ptl;
3bb97794 3015 pte_t *pte;
8c6e50b0
KS
3016 int ret = 0;
3017
3018 /*
3019 * Let's call ->map_pages() first and use ->fault() as fallback
3020 * if page by the offset is not ready to be mapped (cold cache or
3021 * something).
3022 */
9b4bdd2f 3023 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
8c6e50b0 3024 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
5c0a85fa 3025 do_fault_around(vma, address, pte, pgoff, flags);
315d09bf 3026 if (!pte_same(*pte, orig_pte))
5c0a85fa 3027 goto unlock_out;
8c6e50b0
KS
3028 pte_unmap_unlock(pte, ptl);
3029 }
e655fb29 3030
bc2466e4 3031 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page, NULL);
e655fb29
KS
3032 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3033 return ret;
3034
3035 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3036 if (unlikely(!pte_same(*pte, orig_pte))) {
3037 pte_unmap_unlock(pte, ptl);
3038 unlock_page(fault_page);
09cbfeaf 3039 put_page(fault_page);
e655fb29
KS
3040 return ret;
3041 }
315d09bf 3042 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 3043 unlock_page(fault_page);
8c6e50b0
KS
3044unlock_out:
3045 pte_unmap_unlock(pte, ptl);
e655fb29
KS
3046 return ret;
3047}
3048
ec47c3b9
KS
3049static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3050 unsigned long address, pmd_t *pmd,
3051 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3052{
3053 struct page *fault_page, *new_page;
bc2466e4 3054 void *fault_entry;
00501b53 3055 struct mem_cgroup *memcg;
ec47c3b9 3056 spinlock_t *ptl;
3bb97794 3057 pte_t *pte;
ec47c3b9
KS
3058 int ret;
3059
3060 if (unlikely(anon_vma_prepare(vma)))
3061 return VM_FAULT_OOM;
3062
3063 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3064 if (!new_page)
3065 return VM_FAULT_OOM;
3066
f627c2f5 3067 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
09cbfeaf 3068 put_page(new_page);
ec47c3b9
KS
3069 return VM_FAULT_OOM;
3070 }
3071
bc2466e4
JK
3072 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page,
3073 &fault_entry);
ec47c3b9
KS
3074 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3075 goto uncharge_out;
3076
bc2466e4 3077 if (!(ret & VM_FAULT_DAX_LOCKED))
2e4cdab0 3078 copy_user_highpage(new_page, fault_page, address, vma);
ec47c3b9
KS
3079 __SetPageUptodate(new_page);
3080
3081 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3082 if (unlikely(!pte_same(*pte, orig_pte))) {
3083 pte_unmap_unlock(pte, ptl);
bc2466e4 3084 if (!(ret & VM_FAULT_DAX_LOCKED)) {
2e4cdab0 3085 unlock_page(fault_page);
09cbfeaf 3086 put_page(fault_page);
2e4cdab0 3087 } else {
bc2466e4
JK
3088 dax_unlock_mapping_entry(vma->vm_file->f_mapping,
3089 pgoff);
2e4cdab0 3090 }
ec47c3b9
KS
3091 goto uncharge_out;
3092 }
315d09bf 3093 do_set_pte(vma, address, new_page, pte, true, true);
f627c2f5 3094 mem_cgroup_commit_charge(new_page, memcg, false, false);
00501b53 3095 lru_cache_add_active_or_unevictable(new_page, vma);
ec47c3b9 3096 pte_unmap_unlock(pte, ptl);
bc2466e4 3097 if (!(ret & VM_FAULT_DAX_LOCKED)) {
2e4cdab0 3098 unlock_page(fault_page);
09cbfeaf 3099 put_page(fault_page);
2e4cdab0 3100 } else {
bc2466e4 3101 dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff);
2e4cdab0 3102 }
ec47c3b9
KS
3103 return ret;
3104uncharge_out:
f627c2f5 3105 mem_cgroup_cancel_charge(new_page, memcg, false);
09cbfeaf 3106 put_page(new_page);
ec47c3b9
KS
3107 return ret;
3108}
3109
f0c6d4d2 3110static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3111 unsigned long address, pmd_t *pmd,
54cb8821 3112 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3113{
f0c6d4d2
KS
3114 struct page *fault_page;
3115 struct address_space *mapping;
8f4e2101 3116 spinlock_t *ptl;
3bb97794 3117 pte_t *pte;
f0c6d4d2 3118 int dirtied = 0;
f0c6d4d2 3119 int ret, tmp;
1d65f86d 3120
bc2466e4 3121 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page, NULL);
7eae74af 3122 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3123 return ret;
1da177e4
LT
3124
3125 /*
f0c6d4d2
KS
3126 * Check if the backing address space wants to know that the page is
3127 * about to become writable
1da177e4 3128 */
fb09a464
KS
3129 if (vma->vm_ops->page_mkwrite) {
3130 unlock_page(fault_page);
3131 tmp = do_page_mkwrite(vma, fault_page, address);
3132 if (unlikely(!tmp ||
3133 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
09cbfeaf 3134 put_page(fault_page);
fb09a464 3135 return tmp;
4294621f 3136 }
fb09a464
KS
3137 }
3138
f0c6d4d2
KS
3139 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3140 if (unlikely(!pte_same(*pte, orig_pte))) {
3141 pte_unmap_unlock(pte, ptl);
3142 unlock_page(fault_page);
09cbfeaf 3143 put_page(fault_page);
f0c6d4d2 3144 return ret;
1da177e4 3145 }
315d09bf 3146 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 3147 pte_unmap_unlock(pte, ptl);
b827e496 3148
f0c6d4d2
KS
3149 if (set_page_dirty(fault_page))
3150 dirtied = 1;
d82fa87d
AM
3151 /*
3152 * Take a local copy of the address_space - page.mapping may be zeroed
3153 * by truncate after unlock_page(). The address_space itself remains
3154 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3155 * release semantics to prevent the compiler from undoing this copying.
3156 */
1c290f64 3157 mapping = page_rmapping(fault_page);
f0c6d4d2
KS
3158 unlock_page(fault_page);
3159 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3160 /*
3161 * Some device drivers do not set page.mapping but still
3162 * dirty their pages
3163 */
3164 balance_dirty_pages_ratelimited(mapping);
d08b3851 3165 }
d00806b1 3166
74ec6751 3167 if (!vma->vm_ops->page_mkwrite)
f0c6d4d2 3168 file_update_time(vma->vm_file);
b827e496 3169
1d65f86d 3170 return ret;
54cb8821 3171}
d00806b1 3172
9a95f3cf
PC
3173/*
3174 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3175 * but allow concurrent faults).
3176 * The mmap_sem may have been released depending on flags and our
3177 * return value. See filemap_fault() and __lock_page_or_retry().
3178 */
9b4bdd2f 3179static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
54cb8821 3180 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3181 unsigned int flags, pte_t orig_pte)
54cb8821 3182{
88193f7c 3183 pgoff_t pgoff = linear_page_index(vma, address);
54cb8821 3184
16abfa08 3185 pte_unmap(page_table);
6b7339f4
KS
3186 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3187 if (!vma->vm_ops->fault)
3188 return VM_FAULT_SIGBUS;
e655fb29
KS
3189 if (!(flags & FAULT_FLAG_WRITE))
3190 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3191 orig_pte);
ec47c3b9
KS
3192 if (!(vma->vm_flags & VM_SHARED))
3193 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3194 orig_pte);
f0c6d4d2 3195 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3196}
3197
b19a9939 3198static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3199 unsigned long addr, int page_nid,
3200 int *flags)
9532fec1
MG
3201{
3202 get_page(page);
3203
3204 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3205 if (page_nid == numa_node_id()) {
9532fec1 3206 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3207 *flags |= TNF_FAULT_LOCAL;
3208 }
9532fec1
MG
3209
3210 return mpol_misplaced(page, vma, addr);
3211}
3212
b19a9939 3213static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3214 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3215{
4daae3b4 3216 struct page *page = NULL;
d10e63f2 3217 spinlock_t *ptl;
8191acbd 3218 int page_nid = -1;
90572890 3219 int last_cpupid;
cbee9f88 3220 int target_nid;
b8593bfd 3221 bool migrated = false;
b191f9b1 3222 bool was_writable = pte_write(pte);
6688cc05 3223 int flags = 0;
d10e63f2 3224
c0e7cad9
MG
3225 /* A PROT_NONE fault should not end up here */
3226 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3227
d10e63f2
MG
3228 /*
3229 * The "pte" at this point cannot be used safely without
3230 * validation through pte_unmap_same(). It's of NUMA type but
3231 * the pfn may be screwed if the read is non atomic.
3232 *
4d942466
MG
3233 * We can safely just do a "set_pte_at()", because the old
3234 * page table entry is not accessible, so there would be no
3235 * concurrent hardware modifications to the PTE.
d10e63f2
MG
3236 */
3237 ptl = pte_lockptr(mm, pmd);
3238 spin_lock(ptl);
4daae3b4
MG
3239 if (unlikely(!pte_same(*ptep, pte))) {
3240 pte_unmap_unlock(ptep, ptl);
3241 goto out;
3242 }
3243
4d942466
MG
3244 /* Make it present again */
3245 pte = pte_modify(pte, vma->vm_page_prot);
3246 pte = pte_mkyoung(pte);
b191f9b1
MG
3247 if (was_writable)
3248 pte = pte_mkwrite(pte);
d10e63f2
MG
3249 set_pte_at(mm, addr, ptep, pte);
3250 update_mmu_cache(vma, addr, ptep);
3251
3252 page = vm_normal_page(vma, addr, pte);
3253 if (!page) {
3254 pte_unmap_unlock(ptep, ptl);
3255 return 0;
3256 }
3257
e81c4802
KS
3258 /* TODO: handle PTE-mapped THP */
3259 if (PageCompound(page)) {
3260 pte_unmap_unlock(ptep, ptl);
3261 return 0;
3262 }
3263
6688cc05 3264 /*
bea66fbd
MG
3265 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3266 * much anyway since they can be in shared cache state. This misses
3267 * the case where a mapping is writable but the process never writes
3268 * to it but pte_write gets cleared during protection updates and
3269 * pte_dirty has unpredictable behaviour between PTE scan updates,
3270 * background writeback, dirty balancing and application behaviour.
6688cc05 3271 */
bea66fbd 3272 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
3273 flags |= TNF_NO_GROUP;
3274
dabe1d99
RR
3275 /*
3276 * Flag if the page is shared between multiple address spaces. This
3277 * is later used when determining whether to group tasks together
3278 */
3279 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3280 flags |= TNF_SHARED;
3281
90572890 3282 last_cpupid = page_cpupid_last(page);
8191acbd 3283 page_nid = page_to_nid(page);
04bb2f94 3284 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3285 pte_unmap_unlock(ptep, ptl);
4daae3b4 3286 if (target_nid == -1) {
4daae3b4
MG
3287 put_page(page);
3288 goto out;
3289 }
3290
3291 /* Migrate to the requested node */
1bc115d8 3292 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3293 if (migrated) {
8191acbd 3294 page_nid = target_nid;
6688cc05 3295 flags |= TNF_MIGRATED;
074c2381
MG
3296 } else
3297 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3298
3299out:
8191acbd 3300 if (page_nid != -1)
6688cc05 3301 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3302 return 0;
3303}
3304
b96375f7
MW
3305static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3306 unsigned long address, pmd_t *pmd, unsigned int flags)
3307{
fb6dd5fa 3308 if (vma_is_anonymous(vma))
b96375f7
MW
3309 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3310 if (vma->vm_ops->pmd_fault)
3311 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3312 return VM_FAULT_FALLBACK;
3313}
3314
3315static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3316 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3317 unsigned int flags)
3318{
fb6dd5fa 3319 if (vma_is_anonymous(vma))
b96375f7
MW
3320 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3321 if (vma->vm_ops->pmd_fault)
3322 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3323 return VM_FAULT_FALLBACK;
3324}
3325
1da177e4
LT
3326/*
3327 * These routines also need to handle stuff like marking pages dirty
3328 * and/or accessed for architectures that don't do it in hardware (most
3329 * RISC architectures). The early dirtying is also good on the i386.
3330 *
3331 * There is also a hook called "update_mmu_cache()" that architectures
3332 * with external mmu caches can use to update those (ie the Sparc or
3333 * PowerPC hashed page tables that act as extended TLBs).
3334 *
c74df32c
HD
3335 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3336 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3337 * We return with pte unmapped and unlocked.
3338 *
3339 * The mmap_sem may have been released depending on flags and our
3340 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3341 */
c0292554 3342static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3343 struct vm_area_struct *vma, unsigned long address,
3344 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3345{
3346 pte_t entry;
8f4e2101 3347 spinlock_t *ptl;
1da177e4 3348
e37c6982
CB
3349 /*
3350 * some architectures can have larger ptes than wordsize,
3351 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3352 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3353 * The code below just needs a consistent view for the ifs and
3354 * we later double check anyway with the ptl lock held. So here
3355 * a barrier will do.
3356 */
3357 entry = *pte;
3358 barrier();
1da177e4 3359 if (!pte_present(entry)) {
65500d23 3360 if (pte_none(entry)) {
b5330628
ON
3361 if (vma_is_anonymous(vma))
3362 return do_anonymous_page(mm, vma, address,
3363 pte, pmd, flags);
3364 else
6b7339f4
KS
3365 return do_fault(mm, vma, address, pte, pmd,
3366 flags, entry);
65500d23 3367 }
65500d23 3368 return do_swap_page(mm, vma, address,
30c9f3a9 3369 pte, pmd, flags, entry);
1da177e4
LT
3370 }
3371
8a0516ed 3372 if (pte_protnone(entry))
d10e63f2
MG
3373 return do_numa_page(mm, vma, address, entry, pte, pmd);
3374
4c21e2f2 3375 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3376 spin_lock(ptl);
3377 if (unlikely(!pte_same(*pte, entry)))
3378 goto unlock;
30c9f3a9 3379 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3380 if (!pte_write(entry))
8f4e2101
HD
3381 return do_wp_page(mm, vma, address,
3382 pte, pmd, ptl, entry);
1da177e4
LT
3383 entry = pte_mkdirty(entry);
3384 }
3385 entry = pte_mkyoung(entry);
30c9f3a9 3386 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3387 update_mmu_cache(vma, address, pte);
1a44e149
AA
3388 } else {
3389 /*
3390 * This is needed only for protection faults but the arch code
3391 * is not yet telling us if this is a protection fault or not.
3392 * This still avoids useless tlb flushes for .text page faults
3393 * with threads.
3394 */
30c9f3a9 3395 if (flags & FAULT_FLAG_WRITE)
61c77326 3396 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3397 }
8f4e2101
HD
3398unlock:
3399 pte_unmap_unlock(pte, ptl);
83c54070 3400 return 0;
1da177e4
LT
3401}
3402
3403/*
3404 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3405 *
3406 * The mmap_sem may have been released depending on flags and our
3407 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3408 */
519e5247
JW
3409static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3410 unsigned long address, unsigned int flags)
1da177e4
LT
3411{
3412 pgd_t *pgd;
3413 pud_t *pud;
3414 pmd_t *pmd;
3415 pte_t *pte;
3416
1b2ee126 3417 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
d61172b4 3418 flags & FAULT_FLAG_INSTRUCTION,
1b2ee126 3419 flags & FAULT_FLAG_REMOTE))
33a709b2
DH
3420 return VM_FAULT_SIGSEGV;
3421
ac9b9c66 3422 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3423 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3424
1da177e4 3425 pgd = pgd_offset(mm, address);
1da177e4
LT
3426 pud = pud_alloc(mm, pgd, address);
3427 if (!pud)
c74df32c 3428 return VM_FAULT_OOM;
1da177e4
LT
3429 pmd = pmd_alloc(mm, pud, address);
3430 if (!pmd)
c74df32c 3431 return VM_FAULT_OOM;
71e3aac0 3432 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
b96375f7 3433 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
c0292554
KS
3434 if (!(ret & VM_FAULT_FALLBACK))
3435 return ret;
71e3aac0
AA
3436 } else {
3437 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3438 int ret;
3439
71e3aac0 3440 barrier();
5c7fb56e 3441 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
a1dd450b
WD
3442 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3443
8a0516ed 3444 if (pmd_protnone(orig_pmd))
4daae3b4 3445 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3446 orig_pmd, pmd);
3447
3d59eebc 3448 if (dirty && !pmd_write(orig_pmd)) {
b96375f7
MW
3449 ret = wp_huge_pmd(mm, vma, address, pmd,
3450 orig_pmd, flags);
9845cbbd
KS
3451 if (!(ret & VM_FAULT_FALLBACK))
3452 return ret;
a1dd450b
WD
3453 } else {
3454 huge_pmd_set_accessed(mm, vma, address, pmd,
3455 orig_pmd, dirty);
9845cbbd 3456 return 0;
1f1d06c3 3457 }
71e3aac0
AA
3458 }
3459 }
3460
3461 /*
3ed3a4f0 3462 * Use pte_alloc() instead of pte_alloc_map, because we can't
71e3aac0
AA
3463 * run pte_offset_map on the pmd, if an huge pmd could
3464 * materialize from under us from a different thread.
3465 */
3ed3a4f0 3466 if (unlikely(pte_alloc(mm, pmd, address)))
c74df32c 3467 return VM_FAULT_OOM;
ad33bb04
AA
3468 /*
3469 * If a huge pmd materialized under us just retry later. Use
3470 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3471 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3472 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3473 * in a different thread of this mm, in turn leading to a misleading
3474 * pmd_trans_huge() retval. All we have to ensure is that it is a
3475 * regular pmd that we can walk with pte_offset_map() and we can do that
3476 * through an atomic read in C, which is what pmd_trans_unstable()
3477 * provides.
3478 */
3479 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
71e3aac0
AA
3480 return 0;
3481 /*
3482 * A regular pmd is established and it can't morph into a huge pmd
3483 * from under us anymore at this point because we hold the mmap_sem
3484 * read mode and khugepaged takes it in write mode. So now it's
3485 * safe to run pte_offset_map().
3486 */
3487 pte = pte_offset_map(pmd, address);
1da177e4 3488
30c9f3a9 3489 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3490}
3491
9a95f3cf
PC
3492/*
3493 * By the time we get here, we already hold the mm semaphore
3494 *
3495 * The mmap_sem may have been released depending on flags and our
3496 * return value. See filemap_fault() and __lock_page_or_retry().
3497 */
519e5247
JW
3498int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3499 unsigned long address, unsigned int flags)
3500{
3501 int ret;
3502
3503 __set_current_state(TASK_RUNNING);
3504
3505 count_vm_event(PGFAULT);
3506 mem_cgroup_count_vm_event(mm, PGFAULT);
3507
3508 /* do counter updates before entering really critical section. */
3509 check_sync_rss_stat(current);
3510
3511 /*
3512 * Enable the memcg OOM handling for faults triggered in user
3513 * space. Kernel faults are handled more gracefully.
3514 */
3515 if (flags & FAULT_FLAG_USER)
49426420 3516 mem_cgroup_oom_enable();
519e5247
JW
3517
3518 ret = __handle_mm_fault(mm, vma, address, flags);
3519
49426420
JW
3520 if (flags & FAULT_FLAG_USER) {
3521 mem_cgroup_oom_disable();
3522 /*
3523 * The task may have entered a memcg OOM situation but
3524 * if the allocation error was handled gracefully (no
3525 * VM_FAULT_OOM), there is no need to kill anything.
3526 * Just clean up the OOM state peacefully.
3527 */
3528 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3529 mem_cgroup_oom_synchronize(false);
3530 }
3812c8c8 3531
519e5247
JW
3532 return ret;
3533}
e1d6d01a 3534EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3535
1da177e4
LT
3536#ifndef __PAGETABLE_PUD_FOLDED
3537/*
3538 * Allocate page upper directory.
872fec16 3539 * We've already handled the fast-path in-line.
1da177e4 3540 */
1bb3630e 3541int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3542{
c74df32c
HD
3543 pud_t *new = pud_alloc_one(mm, address);
3544 if (!new)
1bb3630e 3545 return -ENOMEM;
1da177e4 3546
362a61ad
NP
3547 smp_wmb(); /* See comment in __pte_alloc */
3548
872fec16 3549 spin_lock(&mm->page_table_lock);
1bb3630e 3550 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3551 pud_free(mm, new);
1bb3630e
HD
3552 else
3553 pgd_populate(mm, pgd, new);
c74df32c 3554 spin_unlock(&mm->page_table_lock);
1bb3630e 3555 return 0;
1da177e4
LT
3556}
3557#endif /* __PAGETABLE_PUD_FOLDED */
3558
3559#ifndef __PAGETABLE_PMD_FOLDED
3560/*
3561 * Allocate page middle directory.
872fec16 3562 * We've already handled the fast-path in-line.
1da177e4 3563 */
1bb3630e 3564int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3565{
c74df32c
HD
3566 pmd_t *new = pmd_alloc_one(mm, address);
3567 if (!new)
1bb3630e 3568 return -ENOMEM;
1da177e4 3569
362a61ad
NP
3570 smp_wmb(); /* See comment in __pte_alloc */
3571
872fec16 3572 spin_lock(&mm->page_table_lock);
1da177e4 3573#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3574 if (!pud_present(*pud)) {
3575 mm_inc_nr_pmds(mm);
1bb3630e 3576 pud_populate(mm, pud, new);
dc6c9a35 3577 } else /* Another has populated it */
5e541973 3578 pmd_free(mm, new);
dc6c9a35
KS
3579#else
3580 if (!pgd_present(*pud)) {
3581 mm_inc_nr_pmds(mm);
1bb3630e 3582 pgd_populate(mm, pud, new);
dc6c9a35
KS
3583 } else /* Another has populated it */
3584 pmd_free(mm, new);
1da177e4 3585#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3586 spin_unlock(&mm->page_table_lock);
1bb3630e 3587 return 0;
e0f39591 3588}
1da177e4
LT
3589#endif /* __PAGETABLE_PMD_FOLDED */
3590
1b36ba81 3591static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3592 pte_t **ptepp, spinlock_t **ptlp)
3593{
3594 pgd_t *pgd;
3595 pud_t *pud;
3596 pmd_t *pmd;
3597 pte_t *ptep;
3598
3599 pgd = pgd_offset(mm, address);
3600 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3601 goto out;
3602
3603 pud = pud_offset(pgd, address);
3604 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3605 goto out;
3606
3607 pmd = pmd_offset(pud, address);
f66055ab 3608 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3609 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3610 goto out;
3611
3612 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3613 if (pmd_huge(*pmd))
3614 goto out;
3615
3616 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3617 if (!ptep)
3618 goto out;
3619 if (!pte_present(*ptep))
3620 goto unlock;
3621 *ptepp = ptep;
3622 return 0;
3623unlock:
3624 pte_unmap_unlock(ptep, *ptlp);
3625out:
3626 return -EINVAL;
3627}
3628
1b36ba81
NK
3629static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3630 pte_t **ptepp, spinlock_t **ptlp)
3631{
3632 int res;
3633
3634 /* (void) is needed to make gcc happy */
3635 (void) __cond_lock(*ptlp,
3636 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3637 return res;
3638}
3639
3b6748e2
JW
3640/**
3641 * follow_pfn - look up PFN at a user virtual address
3642 * @vma: memory mapping
3643 * @address: user virtual address
3644 * @pfn: location to store found PFN
3645 *
3646 * Only IO mappings and raw PFN mappings are allowed.
3647 *
3648 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3649 */
3650int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3651 unsigned long *pfn)
3652{
3653 int ret = -EINVAL;
3654 spinlock_t *ptl;
3655 pte_t *ptep;
3656
3657 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3658 return ret;
3659
3660 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3661 if (ret)
3662 return ret;
3663 *pfn = pte_pfn(*ptep);
3664 pte_unmap_unlock(ptep, ptl);
3665 return 0;
3666}
3667EXPORT_SYMBOL(follow_pfn);
3668
28b2ee20 3669#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3670int follow_phys(struct vm_area_struct *vma,
3671 unsigned long address, unsigned int flags,
3672 unsigned long *prot, resource_size_t *phys)
28b2ee20 3673{
03668a4d 3674 int ret = -EINVAL;
28b2ee20
RR
3675 pte_t *ptep, pte;
3676 spinlock_t *ptl;
28b2ee20 3677
d87fe660 3678 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3679 goto out;
28b2ee20 3680
03668a4d 3681 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3682 goto out;
28b2ee20 3683 pte = *ptep;
03668a4d 3684
28b2ee20
RR
3685 if ((flags & FOLL_WRITE) && !pte_write(pte))
3686 goto unlock;
28b2ee20
RR
3687
3688 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3689 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3690
03668a4d 3691 ret = 0;
28b2ee20
RR
3692unlock:
3693 pte_unmap_unlock(ptep, ptl);
3694out:
d87fe660 3695 return ret;
28b2ee20
RR
3696}
3697
3698int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3699 void *buf, int len, int write)
3700{
3701 resource_size_t phys_addr;
3702 unsigned long prot = 0;
2bc7273b 3703 void __iomem *maddr;
28b2ee20
RR
3704 int offset = addr & (PAGE_SIZE-1);
3705
d87fe660 3706 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3707 return -EINVAL;
3708
9cb12d7b 3709 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
3710 if (write)
3711 memcpy_toio(maddr + offset, buf, len);
3712 else
3713 memcpy_fromio(buf, maddr + offset, len);
3714 iounmap(maddr);
3715
3716 return len;
3717}
5a73633e 3718EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3719#endif
3720
0ec76a11 3721/*
206cb636
SW
3722 * Access another process' address space as given in mm. If non-NULL, use the
3723 * given task for page fault accounting.
0ec76a11 3724 */
206cb636
SW
3725static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3726 unsigned long addr, void *buf, int len, int write)
0ec76a11 3727{
0ec76a11 3728 struct vm_area_struct *vma;
0ec76a11
DH
3729 void *old_buf = buf;
3730
0ec76a11 3731 down_read(&mm->mmap_sem);
183ff22b 3732 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3733 while (len) {
3734 int bytes, ret, offset;
3735 void *maddr;
28b2ee20 3736 struct page *page = NULL;
0ec76a11 3737
1e987790 3738 ret = get_user_pages_remote(tsk, mm, addr, 1,
0ec76a11 3739 write, 1, &page, &vma);
28b2ee20 3740 if (ret <= 0) {
dbffcd03
RR
3741#ifndef CONFIG_HAVE_IOREMAP_PROT
3742 break;
3743#else
28b2ee20
RR
3744 /*
3745 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3746 * we can access using slightly different code.
3747 */
28b2ee20 3748 vma = find_vma(mm, addr);
fe936dfc 3749 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3750 break;
3751 if (vma->vm_ops && vma->vm_ops->access)
3752 ret = vma->vm_ops->access(vma, addr, buf,
3753 len, write);
3754 if (ret <= 0)
28b2ee20
RR
3755 break;
3756 bytes = ret;
dbffcd03 3757#endif
0ec76a11 3758 } else {
28b2ee20
RR
3759 bytes = len;
3760 offset = addr & (PAGE_SIZE-1);
3761 if (bytes > PAGE_SIZE-offset)
3762 bytes = PAGE_SIZE-offset;
3763
3764 maddr = kmap(page);
3765 if (write) {
3766 copy_to_user_page(vma, page, addr,
3767 maddr + offset, buf, bytes);
3768 set_page_dirty_lock(page);
3769 } else {
3770 copy_from_user_page(vma, page, addr,
3771 buf, maddr + offset, bytes);
3772 }
3773 kunmap(page);
09cbfeaf 3774 put_page(page);
0ec76a11 3775 }
0ec76a11
DH
3776 len -= bytes;
3777 buf += bytes;
3778 addr += bytes;
3779 }
3780 up_read(&mm->mmap_sem);
0ec76a11
DH
3781
3782 return buf - old_buf;
3783}
03252919 3784
5ddd36b9 3785/**
ae91dbfc 3786 * access_remote_vm - access another process' address space
5ddd36b9
SW
3787 * @mm: the mm_struct of the target address space
3788 * @addr: start address to access
3789 * @buf: source or destination buffer
3790 * @len: number of bytes to transfer
3791 * @write: whether the access is a write
3792 *
3793 * The caller must hold a reference on @mm.
3794 */
3795int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3796 void *buf, int len, int write)
3797{
3798 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3799}
3800
206cb636
SW
3801/*
3802 * Access another process' address space.
3803 * Source/target buffer must be kernel space,
3804 * Do not walk the page table directly, use get_user_pages
3805 */
3806int access_process_vm(struct task_struct *tsk, unsigned long addr,
3807 void *buf, int len, int write)
3808{
3809 struct mm_struct *mm;
3810 int ret;
3811
3812 mm = get_task_mm(tsk);
3813 if (!mm)
3814 return 0;
3815
3816 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3817 mmput(mm);
3818
3819 return ret;
3820}
3821
03252919
AK
3822/*
3823 * Print the name of a VMA.
3824 */
3825void print_vma_addr(char *prefix, unsigned long ip)
3826{
3827 struct mm_struct *mm = current->mm;
3828 struct vm_area_struct *vma;
3829
e8bff74a
IM
3830 /*
3831 * Do not print if we are in atomic
3832 * contexts (in exception stacks, etc.):
3833 */
3834 if (preempt_count())
3835 return;
3836
03252919
AK
3837 down_read(&mm->mmap_sem);
3838 vma = find_vma(mm, ip);
3839 if (vma && vma->vm_file) {
3840 struct file *f = vma->vm_file;
3841 char *buf = (char *)__get_free_page(GFP_KERNEL);
3842 if (buf) {
2fbc57c5 3843 char *p;
03252919 3844
9bf39ab2 3845 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
3846 if (IS_ERR(p))
3847 p = "?";
2fbc57c5 3848 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3849 vma->vm_start,
3850 vma->vm_end - vma->vm_start);
3851 free_page((unsigned long)buf);
3852 }
3853 }
51a07e50 3854 up_read(&mm->mmap_sem);
03252919 3855}
3ee1afa3 3856
662bbcb2 3857#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 3858void __might_fault(const char *file, int line)
3ee1afa3 3859{
95156f00
PZ
3860 /*
3861 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3862 * holding the mmap_sem, this is safe because kernel memory doesn't
3863 * get paged out, therefore we'll never actually fault, and the
3864 * below annotations will generate false positives.
3865 */
3866 if (segment_eq(get_fs(), KERNEL_DS))
3867 return;
9ec23531 3868 if (pagefault_disabled())
662bbcb2 3869 return;
9ec23531
DH
3870 __might_sleep(file, line, 0);
3871#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 3872 if (current->mm)
3ee1afa3 3873 might_lock_read(&current->mm->mmap_sem);
9ec23531 3874#endif
3ee1afa3 3875}
9ec23531 3876EXPORT_SYMBOL(__might_fault);
3ee1afa3 3877#endif
47ad8475
AA
3878
3879#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3880static void clear_gigantic_page(struct page *page,
3881 unsigned long addr,
3882 unsigned int pages_per_huge_page)
3883{
3884 int i;
3885 struct page *p = page;
3886
3887 might_sleep();
3888 for (i = 0; i < pages_per_huge_page;
3889 i++, p = mem_map_next(p, page, i)) {
3890 cond_resched();
3891 clear_user_highpage(p, addr + i * PAGE_SIZE);
3892 }
3893}
3894void clear_huge_page(struct page *page,
3895 unsigned long addr, unsigned int pages_per_huge_page)
3896{
3897 int i;
3898
3899 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3900 clear_gigantic_page(page, addr, pages_per_huge_page);
3901 return;
3902 }
3903
3904 might_sleep();
3905 for (i = 0; i < pages_per_huge_page; i++) {
3906 cond_resched();
3907 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3908 }
3909}
3910
3911static void copy_user_gigantic_page(struct page *dst, struct page *src,
3912 unsigned long addr,
3913 struct vm_area_struct *vma,
3914 unsigned int pages_per_huge_page)
3915{
3916 int i;
3917 struct page *dst_base = dst;
3918 struct page *src_base = src;
3919
3920 for (i = 0; i < pages_per_huge_page; ) {
3921 cond_resched();
3922 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3923
3924 i++;
3925 dst = mem_map_next(dst, dst_base, i);
3926 src = mem_map_next(src, src_base, i);
3927 }
3928}
3929
3930void copy_user_huge_page(struct page *dst, struct page *src,
3931 unsigned long addr, struct vm_area_struct *vma,
3932 unsigned int pages_per_huge_page)
3933{
3934 int i;
3935
3936 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3937 copy_user_gigantic_page(dst, src, addr, vma,
3938 pages_per_huge_page);
3939 return;
3940 }
3941
3942 might_sleep();
3943 for (i = 0; i < pages_per_huge_page; i++) {
3944 cond_resched();
3945 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3946 }
3947}
3948#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3949
40b64acd 3950#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3951
3952static struct kmem_cache *page_ptl_cachep;
3953
3954void __init ptlock_cache_init(void)
3955{
3956 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3957 SLAB_PANIC, NULL);
3958}
3959
539edb58 3960bool ptlock_alloc(struct page *page)
49076ec2
KS
3961{
3962 spinlock_t *ptl;
3963
b35f1819 3964 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3965 if (!ptl)
3966 return false;
539edb58 3967 page->ptl = ptl;
49076ec2
KS
3968 return true;
3969}
3970
539edb58 3971void ptlock_free(struct page *page)
49076ec2 3972{
b35f1819 3973 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3974}
3975#endif