clk: imx: imx8mn: mark sys_pll1/2 as fixed clock
[linux-2.6-block.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
1da177e4 74
6952b61d 75#include <asm/io.h>
33a709b2 76#include <asm/mmu_context.h>
1da177e4 77#include <asm/pgalloc.h>
7c0f6ba6 78#include <linux/uaccess.h>
1da177e4
LT
79#include <asm/tlb.h>
80#include <asm/tlbflush.h>
81#include <asm/pgtable.h>
82
42b77728
JB
83#include "internal.h"
84
af27d940 85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
87#endif
88
d41dee36 89#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
90/* use the per-pgdat data instead for discontigmem - mbligh */
91unsigned long max_mapnr;
1da177e4 92EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
93
94struct page *mem_map;
1da177e4
LT
95EXPORT_SYMBOL(mem_map);
96#endif
97
1da177e4
LT
98/*
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
104 */
166f61b9 105void *high_memory;
1da177e4 106EXPORT_SYMBOL(high_memory);
1da177e4 107
32a93233
IM
108/*
109 * Randomize the address space (stacks, mmaps, brk, etc.).
110 *
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
113 */
114int randomize_va_space __read_mostly =
115#ifdef CONFIG_COMPAT_BRK
116 1;
117#else
118 2;
119#endif
a62eaf15
AK
120
121static int __init disable_randmaps(char *s)
122{
123 randomize_va_space = 0;
9b41046c 124 return 1;
a62eaf15
AK
125}
126__setup("norandmaps", disable_randmaps);
127
62eede62 128unsigned long zero_pfn __read_mostly;
0b70068e
AB
129EXPORT_SYMBOL(zero_pfn);
130
166f61b9
TH
131unsigned long highest_memmap_pfn __read_mostly;
132
a13ea5b7
HD
133/*
134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135 */
136static int __init init_zero_pfn(void)
137{
138 zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 return 0;
140}
141core_initcall(init_zero_pfn);
a62eaf15 142
d559db08 143
34e55232
KH
144#if defined(SPLIT_RSS_COUNTING)
145
ea48cf78 146void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
147{
148 int i;
149
150 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
151 if (current->rss_stat.count[i]) {
152 add_mm_counter(mm, i, current->rss_stat.count[i]);
153 current->rss_stat.count[i] = 0;
34e55232
KH
154 }
155 }
05af2e10 156 current->rss_stat.events = 0;
34e55232
KH
157}
158
159static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160{
161 struct task_struct *task = current;
162
163 if (likely(task->mm == mm))
164 task->rss_stat.count[member] += val;
165 else
166 add_mm_counter(mm, member, val);
167}
168#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170
171/* sync counter once per 64 page faults */
172#define TASK_RSS_EVENTS_THRESH (64)
173static void check_sync_rss_stat(struct task_struct *task)
174{
175 if (unlikely(task != current))
176 return;
177 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 178 sync_mm_rss(task->mm);
34e55232 179}
9547d01b 180#else /* SPLIT_RSS_COUNTING */
34e55232
KH
181
182#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184
185static void check_sync_rss_stat(struct task_struct *task)
186{
187}
188
9547d01b
PZ
189#endif /* SPLIT_RSS_COUNTING */
190
1da177e4
LT
191/*
192 * Note: this doesn't free the actual pages themselves. That
193 * has been handled earlier when unmapping all the memory regions.
194 */
9e1b32ca
BH
195static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 unsigned long addr)
1da177e4 197{
2f569afd 198 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 199 pmd_clear(pmd);
9e1b32ca 200 pte_free_tlb(tlb, token, addr);
c4812909 201 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
202}
203
e0da382c
HD
204static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
1da177e4
LT
207{
208 pmd_t *pmd;
209 unsigned long next;
e0da382c 210 unsigned long start;
1da177e4 211
e0da382c 212 start = addr;
1da177e4 213 pmd = pmd_offset(pud, addr);
1da177e4
LT
214 do {
215 next = pmd_addr_end(addr, end);
216 if (pmd_none_or_clear_bad(pmd))
217 continue;
9e1b32ca 218 free_pte_range(tlb, pmd, addr);
1da177e4
LT
219 } while (pmd++, addr = next, addr != end);
220
e0da382c
HD
221 start &= PUD_MASK;
222 if (start < floor)
223 return;
224 if (ceiling) {
225 ceiling &= PUD_MASK;
226 if (!ceiling)
227 return;
1da177e4 228 }
e0da382c
HD
229 if (end - 1 > ceiling - 1)
230 return;
231
232 pmd = pmd_offset(pud, start);
233 pud_clear(pud);
9e1b32ca 234 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 235 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
236}
237
c2febafc 238static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
239 unsigned long addr, unsigned long end,
240 unsigned long floor, unsigned long ceiling)
1da177e4
LT
241{
242 pud_t *pud;
243 unsigned long next;
e0da382c 244 unsigned long start;
1da177e4 245
e0da382c 246 start = addr;
c2febafc 247 pud = pud_offset(p4d, addr);
1da177e4
LT
248 do {
249 next = pud_addr_end(addr, end);
250 if (pud_none_or_clear_bad(pud))
251 continue;
e0da382c 252 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
253 } while (pud++, addr = next, addr != end);
254
c2febafc
KS
255 start &= P4D_MASK;
256 if (start < floor)
257 return;
258 if (ceiling) {
259 ceiling &= P4D_MASK;
260 if (!ceiling)
261 return;
262 }
263 if (end - 1 > ceiling - 1)
264 return;
265
266 pud = pud_offset(p4d, start);
267 p4d_clear(p4d);
268 pud_free_tlb(tlb, pud, start);
b4e98d9a 269 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
270}
271
272static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 unsigned long addr, unsigned long end,
274 unsigned long floor, unsigned long ceiling)
275{
276 p4d_t *p4d;
277 unsigned long next;
278 unsigned long start;
279
280 start = addr;
281 p4d = p4d_offset(pgd, addr);
282 do {
283 next = p4d_addr_end(addr, end);
284 if (p4d_none_or_clear_bad(p4d))
285 continue;
286 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 } while (p4d++, addr = next, addr != end);
288
e0da382c
HD
289 start &= PGDIR_MASK;
290 if (start < floor)
291 return;
292 if (ceiling) {
293 ceiling &= PGDIR_MASK;
294 if (!ceiling)
295 return;
1da177e4 296 }
e0da382c
HD
297 if (end - 1 > ceiling - 1)
298 return;
299
c2febafc 300 p4d = p4d_offset(pgd, start);
e0da382c 301 pgd_clear(pgd);
c2febafc 302 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
303}
304
305/*
e0da382c 306 * This function frees user-level page tables of a process.
1da177e4 307 */
42b77728 308void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
309 unsigned long addr, unsigned long end,
310 unsigned long floor, unsigned long ceiling)
1da177e4
LT
311{
312 pgd_t *pgd;
313 unsigned long next;
e0da382c
HD
314
315 /*
316 * The next few lines have given us lots of grief...
317 *
318 * Why are we testing PMD* at this top level? Because often
319 * there will be no work to do at all, and we'd prefer not to
320 * go all the way down to the bottom just to discover that.
321 *
322 * Why all these "- 1"s? Because 0 represents both the bottom
323 * of the address space and the top of it (using -1 for the
324 * top wouldn't help much: the masks would do the wrong thing).
325 * The rule is that addr 0 and floor 0 refer to the bottom of
326 * the address space, but end 0 and ceiling 0 refer to the top
327 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 * that end 0 case should be mythical).
329 *
330 * Wherever addr is brought up or ceiling brought down, we must
331 * be careful to reject "the opposite 0" before it confuses the
332 * subsequent tests. But what about where end is brought down
333 * by PMD_SIZE below? no, end can't go down to 0 there.
334 *
335 * Whereas we round start (addr) and ceiling down, by different
336 * masks at different levels, in order to test whether a table
337 * now has no other vmas using it, so can be freed, we don't
338 * bother to round floor or end up - the tests don't need that.
339 */
1da177e4 340
e0da382c
HD
341 addr &= PMD_MASK;
342 if (addr < floor) {
343 addr += PMD_SIZE;
344 if (!addr)
345 return;
346 }
347 if (ceiling) {
348 ceiling &= PMD_MASK;
349 if (!ceiling)
350 return;
351 }
352 if (end - 1 > ceiling - 1)
353 end -= PMD_SIZE;
354 if (addr > end - 1)
355 return;
07e32661
AK
356 /*
357 * We add page table cache pages with PAGE_SIZE,
358 * (see pte_free_tlb()), flush the tlb if we need
359 */
ed6a7935 360 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 361 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
362 do {
363 next = pgd_addr_end(addr, end);
364 if (pgd_none_or_clear_bad(pgd))
365 continue;
c2febafc 366 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 367 } while (pgd++, addr = next, addr != end);
e0da382c
HD
368}
369
42b77728 370void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 371 unsigned long floor, unsigned long ceiling)
e0da382c
HD
372{
373 while (vma) {
374 struct vm_area_struct *next = vma->vm_next;
375 unsigned long addr = vma->vm_start;
376
8f4f8c16 377 /*
25d9e2d1 378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
8f4f8c16 380 */
5beb4930 381 unlink_anon_vmas(vma);
8f4f8c16
HD
382 unlink_file_vma(vma);
383
9da61aef 384 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 386 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
387 } else {
388 /*
389 * Optimization: gather nearby vmas into one call down
390 */
391 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 392 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
393 vma = next;
394 next = vma->vm_next;
5beb4930 395 unlink_anon_vmas(vma);
8f4f8c16 396 unlink_file_vma(vma);
3bf5ee95
HD
397 }
398 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 399 floor, next ? next->vm_start : ceiling);
3bf5ee95 400 }
e0da382c
HD
401 vma = next;
402 }
1da177e4
LT
403}
404
4cf58924 405int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 406{
c4088ebd 407 spinlock_t *ptl;
4cf58924 408 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
409 if (!new)
410 return -ENOMEM;
411
362a61ad
NP
412 /*
413 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 * visible before the pte is made visible to other CPUs by being
415 * put into page tables.
416 *
417 * The other side of the story is the pointer chasing in the page
418 * table walking code (when walking the page table without locking;
419 * ie. most of the time). Fortunately, these data accesses consist
420 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 * being the notable exception) will already guarantee loads are
422 * seen in-order. See the alpha page table accessors for the
423 * smp_read_barrier_depends() barriers in page table walking code.
424 */
425 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426
c4088ebd 427 ptl = pmd_lock(mm, pmd);
8ac1f832 428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 429 mm_inc_nr_ptes(mm);
1da177e4 430 pmd_populate(mm, pmd, new);
2f569afd 431 new = NULL;
4b471e88 432 }
c4088ebd 433 spin_unlock(ptl);
2f569afd
MS
434 if (new)
435 pte_free(mm, new);
1bb3630e 436 return 0;
1da177e4
LT
437}
438
4cf58924 439int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 440{
4cf58924 441 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
442 if (!new)
443 return -ENOMEM;
444
362a61ad
NP
445 smp_wmb(); /* See comment in __pte_alloc */
446
1bb3630e 447 spin_lock(&init_mm.page_table_lock);
8ac1f832 448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 449 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 450 new = NULL;
4b471e88 451 }
1bb3630e 452 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
453 if (new)
454 pte_free_kernel(&init_mm, new);
1bb3630e 455 return 0;
1da177e4
LT
456}
457
d559db08
KH
458static inline void init_rss_vec(int *rss)
459{
460 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461}
462
463static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 464{
d559db08
KH
465 int i;
466
34e55232 467 if (current->mm == mm)
05af2e10 468 sync_mm_rss(mm);
d559db08
KH
469 for (i = 0; i < NR_MM_COUNTERS; i++)
470 if (rss[i])
471 add_mm_counter(mm, i, rss[i]);
ae859762
HD
472}
473
b5810039 474/*
6aab341e
LT
475 * This function is called to print an error when a bad pte
476 * is found. For example, we might have a PFN-mapped pte in
477 * a region that doesn't allow it.
b5810039
NP
478 *
479 * The calling function must still handle the error.
480 */
3dc14741
HD
481static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 pte_t pte, struct page *page)
b5810039 483{
3dc14741 484 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
485 p4d_t *p4d = p4d_offset(pgd, addr);
486 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
487 pmd_t *pmd = pmd_offset(pud, addr);
488 struct address_space *mapping;
489 pgoff_t index;
d936cf9b
HD
490 static unsigned long resume;
491 static unsigned long nr_shown;
492 static unsigned long nr_unshown;
493
494 /*
495 * Allow a burst of 60 reports, then keep quiet for that minute;
496 * or allow a steady drip of one report per second.
497 */
498 if (nr_shown == 60) {
499 if (time_before(jiffies, resume)) {
500 nr_unshown++;
501 return;
502 }
503 if (nr_unshown) {
1170532b
JP
504 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 nr_unshown);
d936cf9b
HD
506 nr_unshown = 0;
507 }
508 nr_shown = 0;
509 }
510 if (nr_shown++ == 0)
511 resume = jiffies + 60 * HZ;
3dc14741
HD
512
513 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 index = linear_page_index(vma, addr);
515
1170532b
JP
516 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
517 current->comm,
518 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 519 if (page)
f0b791a3 520 dump_page(page, "bad pte");
6aa9b8b2 521 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 523 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
524 vma->vm_file,
525 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 mapping ? mapping->a_ops->readpage : NULL);
b5810039 528 dump_stack();
373d4d09 529 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
530}
531
ee498ed7 532/*
7e675137 533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 534 *
7e675137
NP
535 * "Special" mappings do not wish to be associated with a "struct page" (either
536 * it doesn't exist, or it exists but they don't want to touch it). In this
537 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 538 *
7e675137
NP
539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540 * pte bit, in which case this function is trivial. Secondly, an architecture
541 * may not have a spare pte bit, which requires a more complicated scheme,
542 * described below.
543 *
544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545 * special mapping (even if there are underlying and valid "struct pages").
546 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 547 *
b379d790
JH
548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551 * mapping will always honor the rule
6aab341e
LT
552 *
553 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554 *
7e675137
NP
555 * And for normal mappings this is false.
556 *
557 * This restricts such mappings to be a linear translation from virtual address
558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
559 * as the vma is not a COW mapping; in that case, we know that all ptes are
560 * special (because none can have been COWed).
b379d790 561 *
b379d790 562 *
7e675137 563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
564 *
565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566 * page" backing, however the difference is that _all_ pages with a struct
567 * page (that is, those where pfn_valid is true) are refcounted and considered
568 * normal pages by the VM. The disadvantage is that pages are refcounted
569 * (which can be slower and simply not an option for some PFNMAP users). The
570 * advantage is that we don't have to follow the strict linearity rule of
571 * PFNMAP mappings in order to support COWable mappings.
572 *
ee498ed7 573 */
25b2995a
CH
574struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 pte_t pte)
ee498ed7 576{
22b31eec 577 unsigned long pfn = pte_pfn(pte);
7e675137 578
00b3a331 579 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 580 if (likely(!pte_special(pte)))
22b31eec 581 goto check_pfn;
667a0a06
DV
582 if (vma->vm_ops && vma->vm_ops->find_special_page)
583 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
584 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 return NULL;
df6ad698
JG
586 if (is_zero_pfn(pfn))
587 return NULL;
e1fb4a08
DJ
588 if (pte_devmap(pte))
589 return NULL;
590
df6ad698 591 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
592 return NULL;
593 }
594
00b3a331 595 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 596
b379d790
JH
597 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
598 if (vma->vm_flags & VM_MIXEDMAP) {
599 if (!pfn_valid(pfn))
600 return NULL;
601 goto out;
602 } else {
7e675137
NP
603 unsigned long off;
604 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
605 if (pfn == vma->vm_pgoff + off)
606 return NULL;
607 if (!is_cow_mapping(vma->vm_flags))
608 return NULL;
609 }
6aab341e
LT
610 }
611
b38af472
HD
612 if (is_zero_pfn(pfn))
613 return NULL;
00b3a331 614
22b31eec
HD
615check_pfn:
616 if (unlikely(pfn > highest_memmap_pfn)) {
617 print_bad_pte(vma, addr, pte, NULL);
618 return NULL;
619 }
6aab341e
LT
620
621 /*
7e675137 622 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 623 * eg. VDSO mappings can cause them to exist.
6aab341e 624 */
b379d790 625out:
6aab341e 626 return pfn_to_page(pfn);
ee498ed7
HD
627}
628
28093f9f
GS
629#ifdef CONFIG_TRANSPARENT_HUGEPAGE
630struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
631 pmd_t pmd)
632{
633 unsigned long pfn = pmd_pfn(pmd);
634
635 /*
636 * There is no pmd_special() but there may be special pmds, e.g.
637 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 638 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
639 */
640 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
641 if (vma->vm_flags & VM_MIXEDMAP) {
642 if (!pfn_valid(pfn))
643 return NULL;
644 goto out;
645 } else {
646 unsigned long off;
647 off = (addr - vma->vm_start) >> PAGE_SHIFT;
648 if (pfn == vma->vm_pgoff + off)
649 return NULL;
650 if (!is_cow_mapping(vma->vm_flags))
651 return NULL;
652 }
653 }
654
e1fb4a08
DJ
655 if (pmd_devmap(pmd))
656 return NULL;
28093f9f
GS
657 if (is_zero_pfn(pfn))
658 return NULL;
659 if (unlikely(pfn > highest_memmap_pfn))
660 return NULL;
661
662 /*
663 * NOTE! We still have PageReserved() pages in the page tables.
664 * eg. VDSO mappings can cause them to exist.
665 */
666out:
667 return pfn_to_page(pfn);
668}
669#endif
670
1da177e4
LT
671/*
672 * copy one vm_area from one task to the other. Assumes the page tables
673 * already present in the new task to be cleared in the whole range
674 * covered by this vma.
1da177e4
LT
675 */
676
570a335b 677static inline unsigned long
1da177e4 678copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 679 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 680 unsigned long addr, int *rss)
1da177e4 681{
b5810039 682 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
683 pte_t pte = *src_pte;
684 struct page *page;
1da177e4
LT
685
686 /* pte contains position in swap or file, so copy. */
687 if (unlikely(!pte_present(pte))) {
0661a336
KS
688 swp_entry_t entry = pte_to_swp_entry(pte);
689
690 if (likely(!non_swap_entry(entry))) {
691 if (swap_duplicate(entry) < 0)
692 return entry.val;
693
694 /* make sure dst_mm is on swapoff's mmlist. */
695 if (unlikely(list_empty(&dst_mm->mmlist))) {
696 spin_lock(&mmlist_lock);
697 if (list_empty(&dst_mm->mmlist))
698 list_add(&dst_mm->mmlist,
699 &src_mm->mmlist);
700 spin_unlock(&mmlist_lock);
701 }
702 rss[MM_SWAPENTS]++;
703 } else if (is_migration_entry(entry)) {
704 page = migration_entry_to_page(entry);
705
eca56ff9 706 rss[mm_counter(page)]++;
0661a336
KS
707
708 if (is_write_migration_entry(entry) &&
709 is_cow_mapping(vm_flags)) {
710 /*
711 * COW mappings require pages in both
712 * parent and child to be set to read.
713 */
714 make_migration_entry_read(&entry);
715 pte = swp_entry_to_pte(entry);
716 if (pte_swp_soft_dirty(*src_pte))
717 pte = pte_swp_mksoft_dirty(pte);
718 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 719 }
5042db43
JG
720 } else if (is_device_private_entry(entry)) {
721 page = device_private_entry_to_page(entry);
722
723 /*
724 * Update rss count even for unaddressable pages, as
725 * they should treated just like normal pages in this
726 * respect.
727 *
728 * We will likely want to have some new rss counters
729 * for unaddressable pages, at some point. But for now
730 * keep things as they are.
731 */
732 get_page(page);
733 rss[mm_counter(page)]++;
734 page_dup_rmap(page, false);
735
736 /*
737 * We do not preserve soft-dirty information, because so
738 * far, checkpoint/restore is the only feature that
739 * requires that. And checkpoint/restore does not work
740 * when a device driver is involved (you cannot easily
741 * save and restore device driver state).
742 */
743 if (is_write_device_private_entry(entry) &&
744 is_cow_mapping(vm_flags)) {
745 make_device_private_entry_read(&entry);
746 pte = swp_entry_to_pte(entry);
747 set_pte_at(src_mm, addr, src_pte, pte);
748 }
1da177e4 749 }
ae859762 750 goto out_set_pte;
1da177e4
LT
751 }
752
1da177e4
LT
753 /*
754 * If it's a COW mapping, write protect it both
755 * in the parent and the child
756 */
1b2de5d0 757 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 758 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 759 pte = pte_wrprotect(pte);
1da177e4
LT
760 }
761
762 /*
763 * If it's a shared mapping, mark it clean in
764 * the child
765 */
766 if (vm_flags & VM_SHARED)
767 pte = pte_mkclean(pte);
768 pte = pte_mkold(pte);
6aab341e
LT
769
770 page = vm_normal_page(vma, addr, pte);
771 if (page) {
772 get_page(page);
53f9263b 773 page_dup_rmap(page, false);
eca56ff9 774 rss[mm_counter(page)]++;
df6ad698
JG
775 } else if (pte_devmap(pte)) {
776 page = pte_page(pte);
6aab341e 777 }
ae859762
HD
778
779out_set_pte:
780 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 781 return 0;
1da177e4
LT
782}
783
21bda264 784static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
785 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
786 unsigned long addr, unsigned long end)
1da177e4 787{
c36987e2 788 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 789 pte_t *src_pte, *dst_pte;
c74df32c 790 spinlock_t *src_ptl, *dst_ptl;
e040f218 791 int progress = 0;
d559db08 792 int rss[NR_MM_COUNTERS];
570a335b 793 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
794
795again:
d559db08
KH
796 init_rss_vec(rss);
797
c74df32c 798 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
799 if (!dst_pte)
800 return -ENOMEM;
ece0e2b6 801 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 802 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 803 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
804 orig_src_pte = src_pte;
805 orig_dst_pte = dst_pte;
6606c3e0 806 arch_enter_lazy_mmu_mode();
1da177e4 807
1da177e4
LT
808 do {
809 /*
810 * We are holding two locks at this point - either of them
811 * could generate latencies in another task on another CPU.
812 */
e040f218
HD
813 if (progress >= 32) {
814 progress = 0;
815 if (need_resched() ||
95c354fe 816 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
817 break;
818 }
1da177e4
LT
819 if (pte_none(*src_pte)) {
820 progress++;
821 continue;
822 }
570a335b
HD
823 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
824 vma, addr, rss);
825 if (entry.val)
826 break;
1da177e4
LT
827 progress += 8;
828 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 829
6606c3e0 830 arch_leave_lazy_mmu_mode();
c74df32c 831 spin_unlock(src_ptl);
ece0e2b6 832 pte_unmap(orig_src_pte);
d559db08 833 add_mm_rss_vec(dst_mm, rss);
c36987e2 834 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 835 cond_resched();
570a335b
HD
836
837 if (entry.val) {
838 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
839 return -ENOMEM;
840 progress = 0;
841 }
1da177e4
LT
842 if (addr != end)
843 goto again;
844 return 0;
845}
846
847static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
848 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
849 unsigned long addr, unsigned long end)
850{
851 pmd_t *src_pmd, *dst_pmd;
852 unsigned long next;
853
854 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
855 if (!dst_pmd)
856 return -ENOMEM;
857 src_pmd = pmd_offset(src_pud, addr);
858 do {
859 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
860 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
861 || pmd_devmap(*src_pmd)) {
71e3aac0 862 int err;
a00cc7d9 863 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
864 err = copy_huge_pmd(dst_mm, src_mm,
865 dst_pmd, src_pmd, addr, vma);
866 if (err == -ENOMEM)
867 return -ENOMEM;
868 if (!err)
869 continue;
870 /* fall through */
871 }
1da177e4
LT
872 if (pmd_none_or_clear_bad(src_pmd))
873 continue;
874 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
875 vma, addr, next))
876 return -ENOMEM;
877 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
878 return 0;
879}
880
881static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 882 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
883 unsigned long addr, unsigned long end)
884{
885 pud_t *src_pud, *dst_pud;
886 unsigned long next;
887
c2febafc 888 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
889 if (!dst_pud)
890 return -ENOMEM;
c2febafc 891 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
892 do {
893 next = pud_addr_end(addr, end);
a00cc7d9
MW
894 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
895 int err;
896
897 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
898 err = copy_huge_pud(dst_mm, src_mm,
899 dst_pud, src_pud, addr, vma);
900 if (err == -ENOMEM)
901 return -ENOMEM;
902 if (!err)
903 continue;
904 /* fall through */
905 }
1da177e4
LT
906 if (pud_none_or_clear_bad(src_pud))
907 continue;
908 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
909 vma, addr, next))
910 return -ENOMEM;
911 } while (dst_pud++, src_pud++, addr = next, addr != end);
912 return 0;
913}
914
c2febafc
KS
915static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
917 unsigned long addr, unsigned long end)
918{
919 p4d_t *src_p4d, *dst_p4d;
920 unsigned long next;
921
922 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
923 if (!dst_p4d)
924 return -ENOMEM;
925 src_p4d = p4d_offset(src_pgd, addr);
926 do {
927 next = p4d_addr_end(addr, end);
928 if (p4d_none_or_clear_bad(src_p4d))
929 continue;
930 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
931 vma, addr, next))
932 return -ENOMEM;
933 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
934 return 0;
935}
936
1da177e4
LT
937int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938 struct vm_area_struct *vma)
939{
940 pgd_t *src_pgd, *dst_pgd;
941 unsigned long next;
942 unsigned long addr = vma->vm_start;
943 unsigned long end = vma->vm_end;
ac46d4f3 944 struct mmu_notifier_range range;
2ec74c3e 945 bool is_cow;
cddb8a5c 946 int ret;
1da177e4 947
d992895b
NP
948 /*
949 * Don't copy ptes where a page fault will fill them correctly.
950 * Fork becomes much lighter when there are big shared or private
951 * readonly mappings. The tradeoff is that copy_page_range is more
952 * efficient than faulting.
953 */
0661a336
KS
954 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
955 !vma->anon_vma)
956 return 0;
d992895b 957
1da177e4
LT
958 if (is_vm_hugetlb_page(vma))
959 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
960
b3b9c293 961 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 962 /*
963 * We do not free on error cases below as remove_vma
964 * gets called on error from higher level routine
965 */
5180da41 966 ret = track_pfn_copy(vma);
2ab64037 967 if (ret)
968 return ret;
969 }
970
cddb8a5c
AA
971 /*
972 * We need to invalidate the secondary MMU mappings only when
973 * there could be a permission downgrade on the ptes of the
974 * parent mm. And a permission downgrade will only happen if
975 * is_cow_mapping() returns true.
976 */
2ec74c3e 977 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
978
979 if (is_cow) {
7269f999
JG
980 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
981 0, vma, src_mm, addr, end);
ac46d4f3
JG
982 mmu_notifier_invalidate_range_start(&range);
983 }
cddb8a5c
AA
984
985 ret = 0;
1da177e4
LT
986 dst_pgd = pgd_offset(dst_mm, addr);
987 src_pgd = pgd_offset(src_mm, addr);
988 do {
989 next = pgd_addr_end(addr, end);
990 if (pgd_none_or_clear_bad(src_pgd))
991 continue;
c2febafc 992 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
993 vma, addr, next))) {
994 ret = -ENOMEM;
995 break;
996 }
1da177e4 997 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 998
2ec74c3e 999 if (is_cow)
ac46d4f3 1000 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1001 return ret;
1da177e4
LT
1002}
1003
51c6f666 1004static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1005 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1006 unsigned long addr, unsigned long end,
97a89413 1007 struct zap_details *details)
1da177e4 1008{
b5810039 1009 struct mm_struct *mm = tlb->mm;
d16dfc55 1010 int force_flush = 0;
d559db08 1011 int rss[NR_MM_COUNTERS];
97a89413 1012 spinlock_t *ptl;
5f1a1907 1013 pte_t *start_pte;
97a89413 1014 pte_t *pte;
8a5f14a2 1015 swp_entry_t entry;
d559db08 1016
ed6a7935 1017 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1018again:
e303297e 1019 init_rss_vec(rss);
5f1a1907
SR
1020 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021 pte = start_pte;
3ea27719 1022 flush_tlb_batched_pending(mm);
6606c3e0 1023 arch_enter_lazy_mmu_mode();
1da177e4
LT
1024 do {
1025 pte_t ptent = *pte;
166f61b9 1026 if (pte_none(ptent))
1da177e4 1027 continue;
6f5e6b9e 1028
7b167b68
MK
1029 if (need_resched())
1030 break;
1031
1da177e4 1032 if (pte_present(ptent)) {
ee498ed7 1033 struct page *page;
51c6f666 1034
25b2995a 1035 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1036 if (unlikely(details) && page) {
1037 /*
1038 * unmap_shared_mapping_pages() wants to
1039 * invalidate cache without truncating:
1040 * unmap shared but keep private pages.
1041 */
1042 if (details->check_mapping &&
800d8c63 1043 details->check_mapping != page_rmapping(page))
1da177e4 1044 continue;
1da177e4 1045 }
b5810039 1046 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1047 tlb->fullmm);
1da177e4
LT
1048 tlb_remove_tlb_entry(tlb, pte, addr);
1049 if (unlikely(!page))
1050 continue;
eca56ff9
JM
1051
1052 if (!PageAnon(page)) {
1cf35d47
LT
1053 if (pte_dirty(ptent)) {
1054 force_flush = 1;
6237bcd9 1055 set_page_dirty(page);
1cf35d47 1056 }
4917e5d0 1057 if (pte_young(ptent) &&
64363aad 1058 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1059 mark_page_accessed(page);
6237bcd9 1060 }
eca56ff9 1061 rss[mm_counter(page)]--;
d281ee61 1062 page_remove_rmap(page, false);
3dc14741
HD
1063 if (unlikely(page_mapcount(page) < 0))
1064 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1065 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1066 force_flush = 1;
ce9ec37b 1067 addr += PAGE_SIZE;
d16dfc55 1068 break;
1cf35d47 1069 }
1da177e4
LT
1070 continue;
1071 }
5042db43
JG
1072
1073 entry = pte_to_swp_entry(ptent);
1074 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1075 struct page *page = device_private_entry_to_page(entry);
1076
1077 if (unlikely(details && details->check_mapping)) {
1078 /*
1079 * unmap_shared_mapping_pages() wants to
1080 * invalidate cache without truncating:
1081 * unmap shared but keep private pages.
1082 */
1083 if (details->check_mapping !=
1084 page_rmapping(page))
1085 continue;
1086 }
1087
1088 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1089 rss[mm_counter(page)]--;
1090 page_remove_rmap(page, false);
1091 put_page(page);
1092 continue;
1093 }
1094
3e8715fd
KS
1095 /* If details->check_mapping, we leave swap entries. */
1096 if (unlikely(details))
1da177e4 1097 continue;
b084d435 1098
8a5f14a2
KS
1099 if (!non_swap_entry(entry))
1100 rss[MM_SWAPENTS]--;
1101 else if (is_migration_entry(entry)) {
1102 struct page *page;
9f9f1acd 1103
8a5f14a2 1104 page = migration_entry_to_page(entry);
eca56ff9 1105 rss[mm_counter(page)]--;
b084d435 1106 }
8a5f14a2
KS
1107 if (unlikely(!free_swap_and_cache(entry)))
1108 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1109 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1110 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1111
d559db08 1112 add_mm_rss_vec(mm, rss);
6606c3e0 1113 arch_leave_lazy_mmu_mode();
51c6f666 1114
1cf35d47 1115 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1116 if (force_flush)
1cf35d47 1117 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1118 pte_unmap_unlock(start_pte, ptl);
1119
1120 /*
1121 * If we forced a TLB flush (either due to running out of
1122 * batch buffers or because we needed to flush dirty TLB
1123 * entries before releasing the ptl), free the batched
1124 * memory too. Restart if we didn't do everything.
1125 */
1126 if (force_flush) {
1127 force_flush = 0;
fa0aafb8 1128 tlb_flush_mmu(tlb);
7b167b68
MK
1129 }
1130
1131 if (addr != end) {
1132 cond_resched();
1133 goto again;
d16dfc55
PZ
1134 }
1135
51c6f666 1136 return addr;
1da177e4
LT
1137}
1138
51c6f666 1139static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1140 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1141 unsigned long addr, unsigned long end,
97a89413 1142 struct zap_details *details)
1da177e4
LT
1143{
1144 pmd_t *pmd;
1145 unsigned long next;
1146
1147 pmd = pmd_offset(pud, addr);
1148 do {
1149 next = pmd_addr_end(addr, end);
84c3fc4e 1150 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1151 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1152 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1153 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1154 goto next;
71e3aac0
AA
1155 /* fall through */
1156 }
1a5a9906
AA
1157 /*
1158 * Here there can be other concurrent MADV_DONTNEED or
1159 * trans huge page faults running, and if the pmd is
1160 * none or trans huge it can change under us. This is
1161 * because MADV_DONTNEED holds the mmap_sem in read
1162 * mode.
1163 */
1164 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1165 goto next;
97a89413 1166 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1167next:
97a89413
PZ
1168 cond_resched();
1169 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1170
1171 return addr;
1da177e4
LT
1172}
1173
51c6f666 1174static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1175 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1176 unsigned long addr, unsigned long end,
97a89413 1177 struct zap_details *details)
1da177e4
LT
1178{
1179 pud_t *pud;
1180 unsigned long next;
1181
c2febafc 1182 pud = pud_offset(p4d, addr);
1da177e4
LT
1183 do {
1184 next = pud_addr_end(addr, end);
a00cc7d9
MW
1185 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1186 if (next - addr != HPAGE_PUD_SIZE) {
1187 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1188 split_huge_pud(vma, pud, addr);
1189 } else if (zap_huge_pud(tlb, vma, pud, addr))
1190 goto next;
1191 /* fall through */
1192 }
97a89413 1193 if (pud_none_or_clear_bad(pud))
1da177e4 1194 continue;
97a89413 1195 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1196next:
1197 cond_resched();
97a89413 1198 } while (pud++, addr = next, addr != end);
51c6f666
RH
1199
1200 return addr;
1da177e4
LT
1201}
1202
c2febafc
KS
1203static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1204 struct vm_area_struct *vma, pgd_t *pgd,
1205 unsigned long addr, unsigned long end,
1206 struct zap_details *details)
1207{
1208 p4d_t *p4d;
1209 unsigned long next;
1210
1211 p4d = p4d_offset(pgd, addr);
1212 do {
1213 next = p4d_addr_end(addr, end);
1214 if (p4d_none_or_clear_bad(p4d))
1215 continue;
1216 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1217 } while (p4d++, addr = next, addr != end);
1218
1219 return addr;
1220}
1221
aac45363 1222void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1223 struct vm_area_struct *vma,
1224 unsigned long addr, unsigned long end,
1225 struct zap_details *details)
1da177e4
LT
1226{
1227 pgd_t *pgd;
1228 unsigned long next;
1229
1da177e4
LT
1230 BUG_ON(addr >= end);
1231 tlb_start_vma(tlb, vma);
1232 pgd = pgd_offset(vma->vm_mm, addr);
1233 do {
1234 next = pgd_addr_end(addr, end);
97a89413 1235 if (pgd_none_or_clear_bad(pgd))
1da177e4 1236 continue;
c2febafc 1237 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1238 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1239 tlb_end_vma(tlb, vma);
1240}
51c6f666 1241
f5cc4eef
AV
1242
1243static void unmap_single_vma(struct mmu_gather *tlb,
1244 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1245 unsigned long end_addr,
f5cc4eef
AV
1246 struct zap_details *details)
1247{
1248 unsigned long start = max(vma->vm_start, start_addr);
1249 unsigned long end;
1250
1251 if (start >= vma->vm_end)
1252 return;
1253 end = min(vma->vm_end, end_addr);
1254 if (end <= vma->vm_start)
1255 return;
1256
cbc91f71
SD
1257 if (vma->vm_file)
1258 uprobe_munmap(vma, start, end);
1259
b3b9c293 1260 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1261 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1262
1263 if (start != end) {
1264 if (unlikely(is_vm_hugetlb_page(vma))) {
1265 /*
1266 * It is undesirable to test vma->vm_file as it
1267 * should be non-null for valid hugetlb area.
1268 * However, vm_file will be NULL in the error
7aa6b4ad 1269 * cleanup path of mmap_region. When
f5cc4eef 1270 * hugetlbfs ->mmap method fails,
7aa6b4ad 1271 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1272 * before calling this function to clean up.
1273 * Since no pte has actually been setup, it is
1274 * safe to do nothing in this case.
1275 */
24669e58 1276 if (vma->vm_file) {
83cde9e8 1277 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1278 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1279 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1280 }
f5cc4eef
AV
1281 } else
1282 unmap_page_range(tlb, vma, start, end, details);
1283 }
1da177e4
LT
1284}
1285
1da177e4
LT
1286/**
1287 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1288 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1289 * @vma: the starting vma
1290 * @start_addr: virtual address at which to start unmapping
1291 * @end_addr: virtual address at which to end unmapping
1da177e4 1292 *
508034a3 1293 * Unmap all pages in the vma list.
1da177e4 1294 *
1da177e4
LT
1295 * Only addresses between `start' and `end' will be unmapped.
1296 *
1297 * The VMA list must be sorted in ascending virtual address order.
1298 *
1299 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1300 * range after unmap_vmas() returns. So the only responsibility here is to
1301 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1302 * drops the lock and schedules.
1303 */
6e8bb019 1304void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1305 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1306 unsigned long end_addr)
1da177e4 1307{
ac46d4f3 1308 struct mmu_notifier_range range;
1da177e4 1309
6f4f13e8
JG
1310 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1311 start_addr, end_addr);
ac46d4f3 1312 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1313 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1314 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1315 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1316}
1317
1318/**
1319 * zap_page_range - remove user pages in a given range
1320 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1321 * @start: starting address of pages to zap
1da177e4 1322 * @size: number of bytes to zap
f5cc4eef
AV
1323 *
1324 * Caller must protect the VMA list
1da177e4 1325 */
7e027b14 1326void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1327 unsigned long size)
1da177e4 1328{
ac46d4f3 1329 struct mmu_notifier_range range;
d16dfc55 1330 struct mmu_gather tlb;
1da177e4 1331
1da177e4 1332 lru_add_drain();
7269f999 1333 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1334 start, start + size);
ac46d4f3
JG
1335 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1336 update_hiwater_rss(vma->vm_mm);
1337 mmu_notifier_invalidate_range_start(&range);
1338 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1339 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1340 mmu_notifier_invalidate_range_end(&range);
1341 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1342}
1343
f5cc4eef
AV
1344/**
1345 * zap_page_range_single - remove user pages in a given range
1346 * @vma: vm_area_struct holding the applicable pages
1347 * @address: starting address of pages to zap
1348 * @size: number of bytes to zap
8a5f14a2 1349 * @details: details of shared cache invalidation
f5cc4eef
AV
1350 *
1351 * The range must fit into one VMA.
1da177e4 1352 */
f5cc4eef 1353static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1354 unsigned long size, struct zap_details *details)
1355{
ac46d4f3 1356 struct mmu_notifier_range range;
d16dfc55 1357 struct mmu_gather tlb;
1da177e4 1358
1da177e4 1359 lru_add_drain();
7269f999 1360 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1361 address, address + size);
ac46d4f3
JG
1362 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1363 update_hiwater_rss(vma->vm_mm);
1364 mmu_notifier_invalidate_range_start(&range);
1365 unmap_single_vma(&tlb, vma, address, range.end, details);
1366 mmu_notifier_invalidate_range_end(&range);
1367 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1368}
1369
c627f9cc
JS
1370/**
1371 * zap_vma_ptes - remove ptes mapping the vma
1372 * @vma: vm_area_struct holding ptes to be zapped
1373 * @address: starting address of pages to zap
1374 * @size: number of bytes to zap
1375 *
1376 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1377 *
1378 * The entire address range must be fully contained within the vma.
1379 *
c627f9cc 1380 */
27d036e3 1381void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1382 unsigned long size)
1383{
1384 if (address < vma->vm_start || address + size > vma->vm_end ||
1385 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1386 return;
1387
f5cc4eef 1388 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1389}
1390EXPORT_SYMBOL_GPL(zap_vma_ptes);
1391
25ca1d6c 1392pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1393 spinlock_t **ptl)
c9cfcddf 1394{
c2febafc
KS
1395 pgd_t *pgd;
1396 p4d_t *p4d;
1397 pud_t *pud;
1398 pmd_t *pmd;
1399
1400 pgd = pgd_offset(mm, addr);
1401 p4d = p4d_alloc(mm, pgd, addr);
1402 if (!p4d)
1403 return NULL;
1404 pud = pud_alloc(mm, p4d, addr);
1405 if (!pud)
1406 return NULL;
1407 pmd = pmd_alloc(mm, pud, addr);
1408 if (!pmd)
1409 return NULL;
1410
1411 VM_BUG_ON(pmd_trans_huge(*pmd));
1412 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1413}
1414
238f58d8
LT
1415/*
1416 * This is the old fallback for page remapping.
1417 *
1418 * For historical reasons, it only allows reserved pages. Only
1419 * old drivers should use this, and they needed to mark their
1420 * pages reserved for the old functions anyway.
1421 */
423bad60
NP
1422static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1423 struct page *page, pgprot_t prot)
238f58d8 1424{
423bad60 1425 struct mm_struct *mm = vma->vm_mm;
238f58d8 1426 int retval;
c9cfcddf 1427 pte_t *pte;
8a9f3ccd
BS
1428 spinlock_t *ptl;
1429
238f58d8 1430 retval = -EINVAL;
0ee930e6 1431 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
5b4e655e 1432 goto out;
238f58d8
LT
1433 retval = -ENOMEM;
1434 flush_dcache_page(page);
c9cfcddf 1435 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1436 if (!pte)
5b4e655e 1437 goto out;
238f58d8
LT
1438 retval = -EBUSY;
1439 if (!pte_none(*pte))
1440 goto out_unlock;
1441
1442 /* Ok, finally just insert the thing.. */
1443 get_page(page);
eca56ff9 1444 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1445 page_add_file_rmap(page, false);
238f58d8
LT
1446 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1447
1448 retval = 0;
1449out_unlock:
1450 pte_unmap_unlock(pte, ptl);
1451out:
1452 return retval;
1453}
1454
bfa5bf6d
REB
1455/**
1456 * vm_insert_page - insert single page into user vma
1457 * @vma: user vma to map to
1458 * @addr: target user address of this page
1459 * @page: source kernel page
1460 *
a145dd41
LT
1461 * This allows drivers to insert individual pages they've allocated
1462 * into a user vma.
1463 *
1464 * The page has to be a nice clean _individual_ kernel allocation.
1465 * If you allocate a compound page, you need to have marked it as
1466 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1467 * (see split_page()).
a145dd41
LT
1468 *
1469 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1470 * took an arbitrary page protection parameter. This doesn't allow
1471 * that. Your vma protection will have to be set up correctly, which
1472 * means that if you want a shared writable mapping, you'd better
1473 * ask for a shared writable mapping!
1474 *
1475 * The page does not need to be reserved.
4b6e1e37
KK
1476 *
1477 * Usually this function is called from f_op->mmap() handler
1478 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1479 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1480 * function from other places, for example from page-fault handler.
a862f68a
MR
1481 *
1482 * Return: %0 on success, negative error code otherwise.
a145dd41 1483 */
423bad60
NP
1484int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1485 struct page *page)
a145dd41
LT
1486{
1487 if (addr < vma->vm_start || addr >= vma->vm_end)
1488 return -EFAULT;
1489 if (!page_count(page))
1490 return -EINVAL;
4b6e1e37
KK
1491 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1492 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1493 BUG_ON(vma->vm_flags & VM_PFNMAP);
1494 vma->vm_flags |= VM_MIXEDMAP;
1495 }
423bad60 1496 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1497}
e3c3374f 1498EXPORT_SYMBOL(vm_insert_page);
a145dd41 1499
a667d745
SJ
1500/*
1501 * __vm_map_pages - maps range of kernel pages into user vma
1502 * @vma: user vma to map to
1503 * @pages: pointer to array of source kernel pages
1504 * @num: number of pages in page array
1505 * @offset: user's requested vm_pgoff
1506 *
1507 * This allows drivers to map range of kernel pages into a user vma.
1508 *
1509 * Return: 0 on success and error code otherwise.
1510 */
1511static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1512 unsigned long num, unsigned long offset)
1513{
1514 unsigned long count = vma_pages(vma);
1515 unsigned long uaddr = vma->vm_start;
1516 int ret, i;
1517
1518 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1519 if (offset >= num)
a667d745
SJ
1520 return -ENXIO;
1521
1522 /* Fail if the user requested size exceeds available object size */
1523 if (count > num - offset)
1524 return -ENXIO;
1525
1526 for (i = 0; i < count; i++) {
1527 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1528 if (ret < 0)
1529 return ret;
1530 uaddr += PAGE_SIZE;
1531 }
1532
1533 return 0;
1534}
1535
1536/**
1537 * vm_map_pages - maps range of kernel pages starts with non zero offset
1538 * @vma: user vma to map to
1539 * @pages: pointer to array of source kernel pages
1540 * @num: number of pages in page array
1541 *
1542 * Maps an object consisting of @num pages, catering for the user's
1543 * requested vm_pgoff
1544 *
1545 * If we fail to insert any page into the vma, the function will return
1546 * immediately leaving any previously inserted pages present. Callers
1547 * from the mmap handler may immediately return the error as their caller
1548 * will destroy the vma, removing any successfully inserted pages. Other
1549 * callers should make their own arrangements for calling unmap_region().
1550 *
1551 * Context: Process context. Called by mmap handlers.
1552 * Return: 0 on success and error code otherwise.
1553 */
1554int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1555 unsigned long num)
1556{
1557 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1558}
1559EXPORT_SYMBOL(vm_map_pages);
1560
1561/**
1562 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1563 * @vma: user vma to map to
1564 * @pages: pointer to array of source kernel pages
1565 * @num: number of pages in page array
1566 *
1567 * Similar to vm_map_pages(), except that it explicitly sets the offset
1568 * to 0. This function is intended for the drivers that did not consider
1569 * vm_pgoff.
1570 *
1571 * Context: Process context. Called by mmap handlers.
1572 * Return: 0 on success and error code otherwise.
1573 */
1574int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1575 unsigned long num)
1576{
1577 return __vm_map_pages(vma, pages, num, 0);
1578}
1579EXPORT_SYMBOL(vm_map_pages_zero);
1580
9b5a8e00 1581static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1582 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1583{
1584 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1585 pte_t *pte, entry;
1586 spinlock_t *ptl;
1587
423bad60
NP
1588 pte = get_locked_pte(mm, addr, &ptl);
1589 if (!pte)
9b5a8e00 1590 return VM_FAULT_OOM;
b2770da6
RZ
1591 if (!pte_none(*pte)) {
1592 if (mkwrite) {
1593 /*
1594 * For read faults on private mappings the PFN passed
1595 * in may not match the PFN we have mapped if the
1596 * mapped PFN is a writeable COW page. In the mkwrite
1597 * case we are creating a writable PTE for a shared
f2c57d91
JK
1598 * mapping and we expect the PFNs to match. If they
1599 * don't match, we are likely racing with block
1600 * allocation and mapping invalidation so just skip the
1601 * update.
b2770da6 1602 */
f2c57d91
JK
1603 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1604 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1605 goto out_unlock;
f2c57d91 1606 }
cae85cb8
JK
1607 entry = pte_mkyoung(*pte);
1608 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1609 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1610 update_mmu_cache(vma, addr, pte);
1611 }
1612 goto out_unlock;
b2770da6 1613 }
423bad60
NP
1614
1615 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1616 if (pfn_t_devmap(pfn))
1617 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1618 else
1619 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1620
b2770da6
RZ
1621 if (mkwrite) {
1622 entry = pte_mkyoung(entry);
1623 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1624 }
1625
423bad60 1626 set_pte_at(mm, addr, pte, entry);
4b3073e1 1627 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1628
423bad60
NP
1629out_unlock:
1630 pte_unmap_unlock(pte, ptl);
9b5a8e00 1631 return VM_FAULT_NOPAGE;
423bad60
NP
1632}
1633
f5e6d1d5
MW
1634/**
1635 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1636 * @vma: user vma to map to
1637 * @addr: target user address of this page
1638 * @pfn: source kernel pfn
1639 * @pgprot: pgprot flags for the inserted page
1640 *
1641 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1642 * to override pgprot on a per-page basis.
1643 *
1644 * This only makes sense for IO mappings, and it makes no sense for
1645 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1646 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1647 * impractical.
1648 *
ae2b01f3 1649 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1650 * Return: vm_fault_t value.
1651 */
1652vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1653 unsigned long pfn, pgprot_t pgprot)
1654{
6d958546
MW
1655 /*
1656 * Technically, architectures with pte_special can avoid all these
1657 * restrictions (same for remap_pfn_range). However we would like
1658 * consistency in testing and feature parity among all, so we should
1659 * try to keep these invariants in place for everybody.
1660 */
1661 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1662 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1663 (VM_PFNMAP|VM_MIXEDMAP));
1664 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1665 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1666
1667 if (addr < vma->vm_start || addr >= vma->vm_end)
1668 return VM_FAULT_SIGBUS;
1669
1670 if (!pfn_modify_allowed(pfn, pgprot))
1671 return VM_FAULT_SIGBUS;
1672
1673 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1674
9b5a8e00 1675 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1676 false);
f5e6d1d5
MW
1677}
1678EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1679
ae2b01f3
MW
1680/**
1681 * vmf_insert_pfn - insert single pfn into user vma
1682 * @vma: user vma to map to
1683 * @addr: target user address of this page
1684 * @pfn: source kernel pfn
1685 *
1686 * Similar to vm_insert_page, this allows drivers to insert individual pages
1687 * they've allocated into a user vma. Same comments apply.
1688 *
1689 * This function should only be called from a vm_ops->fault handler, and
1690 * in that case the handler should return the result of this function.
1691 *
1692 * vma cannot be a COW mapping.
1693 *
1694 * As this is called only for pages that do not currently exist, we
1695 * do not need to flush old virtual caches or the TLB.
1696 *
1697 * Context: Process context. May allocate using %GFP_KERNEL.
1698 * Return: vm_fault_t value.
1699 */
1700vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1701 unsigned long pfn)
1702{
1703 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1704}
1705EXPORT_SYMBOL(vmf_insert_pfn);
1706
785a3fab
DW
1707static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1708{
1709 /* these checks mirror the abort conditions in vm_normal_page */
1710 if (vma->vm_flags & VM_MIXEDMAP)
1711 return true;
1712 if (pfn_t_devmap(pfn))
1713 return true;
1714 if (pfn_t_special(pfn))
1715 return true;
1716 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1717 return true;
1718 return false;
1719}
1720
79f3aa5b
MW
1721static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1722 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 1723{
87744ab3 1724 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 1725 int err;
87744ab3 1726
785a3fab 1727 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1728
423bad60 1729 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1730 return VM_FAULT_SIGBUS;
308a047c
BP
1731
1732 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1733
42e4089c 1734 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1735 return VM_FAULT_SIGBUS;
42e4089c 1736
423bad60
NP
1737 /*
1738 * If we don't have pte special, then we have to use the pfn_valid()
1739 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1740 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1741 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1742 * without pte special, it would there be refcounted as a normal page.
423bad60 1743 */
00b3a331
LD
1744 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1745 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1746 struct page *page;
1747
03fc2da6
DW
1748 /*
1749 * At this point we are committed to insert_page()
1750 * regardless of whether the caller specified flags that
1751 * result in pfn_t_has_page() == false.
1752 */
1753 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1754 err = insert_page(vma, addr, page, pgprot);
1755 } else {
9b5a8e00 1756 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1757 }
b2770da6 1758
5d747637
MW
1759 if (err == -ENOMEM)
1760 return VM_FAULT_OOM;
1761 if (err < 0 && err != -EBUSY)
1762 return VM_FAULT_SIGBUS;
1763
1764 return VM_FAULT_NOPAGE;
e0dc0d8f 1765}
79f3aa5b
MW
1766
1767vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1768 pfn_t pfn)
1769{
1770 return __vm_insert_mixed(vma, addr, pfn, false);
1771}
5d747637 1772EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1773
ab77dab4
SJ
1774/*
1775 * If the insertion of PTE failed because someone else already added a
1776 * different entry in the mean time, we treat that as success as we assume
1777 * the same entry was actually inserted.
1778 */
ab77dab4
SJ
1779vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1780 unsigned long addr, pfn_t pfn)
b2770da6 1781{
79f3aa5b 1782 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 1783}
ab77dab4 1784EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1785
1da177e4
LT
1786/*
1787 * maps a range of physical memory into the requested pages. the old
1788 * mappings are removed. any references to nonexistent pages results
1789 * in null mappings (currently treated as "copy-on-access")
1790 */
1791static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1792 unsigned long addr, unsigned long end,
1793 unsigned long pfn, pgprot_t prot)
1794{
1795 pte_t *pte;
c74df32c 1796 spinlock_t *ptl;
42e4089c 1797 int err = 0;
1da177e4 1798
c74df32c 1799 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1800 if (!pte)
1801 return -ENOMEM;
6606c3e0 1802 arch_enter_lazy_mmu_mode();
1da177e4
LT
1803 do {
1804 BUG_ON(!pte_none(*pte));
42e4089c
AK
1805 if (!pfn_modify_allowed(pfn, prot)) {
1806 err = -EACCES;
1807 break;
1808 }
7e675137 1809 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1810 pfn++;
1811 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1812 arch_leave_lazy_mmu_mode();
c74df32c 1813 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1814 return err;
1da177e4
LT
1815}
1816
1817static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1818 unsigned long addr, unsigned long end,
1819 unsigned long pfn, pgprot_t prot)
1820{
1821 pmd_t *pmd;
1822 unsigned long next;
42e4089c 1823 int err;
1da177e4
LT
1824
1825 pfn -= addr >> PAGE_SHIFT;
1826 pmd = pmd_alloc(mm, pud, addr);
1827 if (!pmd)
1828 return -ENOMEM;
f66055ab 1829 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1830 do {
1831 next = pmd_addr_end(addr, end);
42e4089c
AK
1832 err = remap_pte_range(mm, pmd, addr, next,
1833 pfn + (addr >> PAGE_SHIFT), prot);
1834 if (err)
1835 return err;
1da177e4
LT
1836 } while (pmd++, addr = next, addr != end);
1837 return 0;
1838}
1839
c2febafc 1840static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1841 unsigned long addr, unsigned long end,
1842 unsigned long pfn, pgprot_t prot)
1843{
1844 pud_t *pud;
1845 unsigned long next;
42e4089c 1846 int err;
1da177e4
LT
1847
1848 pfn -= addr >> PAGE_SHIFT;
c2febafc 1849 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1850 if (!pud)
1851 return -ENOMEM;
1852 do {
1853 next = pud_addr_end(addr, end);
42e4089c
AK
1854 err = remap_pmd_range(mm, pud, addr, next,
1855 pfn + (addr >> PAGE_SHIFT), prot);
1856 if (err)
1857 return err;
1da177e4
LT
1858 } while (pud++, addr = next, addr != end);
1859 return 0;
1860}
1861
c2febafc
KS
1862static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1863 unsigned long addr, unsigned long end,
1864 unsigned long pfn, pgprot_t prot)
1865{
1866 p4d_t *p4d;
1867 unsigned long next;
42e4089c 1868 int err;
c2febafc
KS
1869
1870 pfn -= addr >> PAGE_SHIFT;
1871 p4d = p4d_alloc(mm, pgd, addr);
1872 if (!p4d)
1873 return -ENOMEM;
1874 do {
1875 next = p4d_addr_end(addr, end);
42e4089c
AK
1876 err = remap_pud_range(mm, p4d, addr, next,
1877 pfn + (addr >> PAGE_SHIFT), prot);
1878 if (err)
1879 return err;
c2febafc
KS
1880 } while (p4d++, addr = next, addr != end);
1881 return 0;
1882}
1883
bfa5bf6d
REB
1884/**
1885 * remap_pfn_range - remap kernel memory to userspace
1886 * @vma: user vma to map to
1887 * @addr: target user address to start at
1888 * @pfn: physical address of kernel memory
1889 * @size: size of map area
1890 * @prot: page protection flags for this mapping
1891 *
a862f68a
MR
1892 * Note: this is only safe if the mm semaphore is held when called.
1893 *
1894 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 1895 */
1da177e4
LT
1896int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1897 unsigned long pfn, unsigned long size, pgprot_t prot)
1898{
1899 pgd_t *pgd;
1900 unsigned long next;
2d15cab8 1901 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1902 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1903 unsigned long remap_pfn = pfn;
1da177e4
LT
1904 int err;
1905
1906 /*
1907 * Physically remapped pages are special. Tell the
1908 * rest of the world about it:
1909 * VM_IO tells people not to look at these pages
1910 * (accesses can have side effects).
6aab341e
LT
1911 * VM_PFNMAP tells the core MM that the base pages are just
1912 * raw PFN mappings, and do not have a "struct page" associated
1913 * with them.
314e51b9
KK
1914 * VM_DONTEXPAND
1915 * Disable vma merging and expanding with mremap().
1916 * VM_DONTDUMP
1917 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1918 *
1919 * There's a horrible special case to handle copy-on-write
1920 * behaviour that some programs depend on. We mark the "original"
1921 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1922 * See vm_normal_page() for details.
1da177e4 1923 */
b3b9c293
KK
1924 if (is_cow_mapping(vma->vm_flags)) {
1925 if (addr != vma->vm_start || end != vma->vm_end)
1926 return -EINVAL;
fb155c16 1927 vma->vm_pgoff = pfn;
b3b9c293
KK
1928 }
1929
d5957d2f 1930 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1931 if (err)
3c8bb73a 1932 return -EINVAL;
fb155c16 1933
314e51b9 1934 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1935
1936 BUG_ON(addr >= end);
1937 pfn -= addr >> PAGE_SHIFT;
1938 pgd = pgd_offset(mm, addr);
1939 flush_cache_range(vma, addr, end);
1da177e4
LT
1940 do {
1941 next = pgd_addr_end(addr, end);
c2febafc 1942 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1943 pfn + (addr >> PAGE_SHIFT), prot);
1944 if (err)
1945 break;
1946 } while (pgd++, addr = next, addr != end);
2ab64037 1947
1948 if (err)
d5957d2f 1949 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1950
1da177e4
LT
1951 return err;
1952}
1953EXPORT_SYMBOL(remap_pfn_range);
1954
b4cbb197
LT
1955/**
1956 * vm_iomap_memory - remap memory to userspace
1957 * @vma: user vma to map to
1958 * @start: start of area
1959 * @len: size of area
1960 *
1961 * This is a simplified io_remap_pfn_range() for common driver use. The
1962 * driver just needs to give us the physical memory range to be mapped,
1963 * we'll figure out the rest from the vma information.
1964 *
1965 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1966 * whatever write-combining details or similar.
a862f68a
MR
1967 *
1968 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
1969 */
1970int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1971{
1972 unsigned long vm_len, pfn, pages;
1973
1974 /* Check that the physical memory area passed in looks valid */
1975 if (start + len < start)
1976 return -EINVAL;
1977 /*
1978 * You *really* shouldn't map things that aren't page-aligned,
1979 * but we've historically allowed it because IO memory might
1980 * just have smaller alignment.
1981 */
1982 len += start & ~PAGE_MASK;
1983 pfn = start >> PAGE_SHIFT;
1984 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1985 if (pfn + pages < pfn)
1986 return -EINVAL;
1987
1988 /* We start the mapping 'vm_pgoff' pages into the area */
1989 if (vma->vm_pgoff > pages)
1990 return -EINVAL;
1991 pfn += vma->vm_pgoff;
1992 pages -= vma->vm_pgoff;
1993
1994 /* Can we fit all of the mapping? */
1995 vm_len = vma->vm_end - vma->vm_start;
1996 if (vm_len >> PAGE_SHIFT > pages)
1997 return -EINVAL;
1998
1999 /* Ok, let it rip */
2000 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2001}
2002EXPORT_SYMBOL(vm_iomap_memory);
2003
aee16b3c
JF
2004static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2005 unsigned long addr, unsigned long end,
2006 pte_fn_t fn, void *data)
2007{
2008 pte_t *pte;
2009 int err;
94909914 2010 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2011
2012 pte = (mm == &init_mm) ?
2013 pte_alloc_kernel(pmd, addr) :
2014 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2015 if (!pte)
2016 return -ENOMEM;
2017
2018 BUG_ON(pmd_huge(*pmd));
2019
38e0edb1
JF
2020 arch_enter_lazy_mmu_mode();
2021
aee16b3c 2022 do {
8b1e0f81 2023 err = fn(pte++, addr, data);
aee16b3c
JF
2024 if (err)
2025 break;
c36987e2 2026 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2027
38e0edb1
JF
2028 arch_leave_lazy_mmu_mode();
2029
aee16b3c
JF
2030 if (mm != &init_mm)
2031 pte_unmap_unlock(pte-1, ptl);
2032 return err;
2033}
2034
2035static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2036 unsigned long addr, unsigned long end,
2037 pte_fn_t fn, void *data)
2038{
2039 pmd_t *pmd;
2040 unsigned long next;
2041 int err;
2042
ceb86879
AK
2043 BUG_ON(pud_huge(*pud));
2044
aee16b3c
JF
2045 pmd = pmd_alloc(mm, pud, addr);
2046 if (!pmd)
2047 return -ENOMEM;
2048 do {
2049 next = pmd_addr_end(addr, end);
2050 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2051 if (err)
2052 break;
2053 } while (pmd++, addr = next, addr != end);
2054 return err;
2055}
2056
c2febafc 2057static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2058 unsigned long addr, unsigned long end,
2059 pte_fn_t fn, void *data)
2060{
2061 pud_t *pud;
2062 unsigned long next;
2063 int err;
2064
c2febafc 2065 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2066 if (!pud)
2067 return -ENOMEM;
2068 do {
2069 next = pud_addr_end(addr, end);
2070 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2071 if (err)
2072 break;
2073 } while (pud++, addr = next, addr != end);
2074 return err;
2075}
2076
c2febafc
KS
2077static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2078 unsigned long addr, unsigned long end,
2079 pte_fn_t fn, void *data)
2080{
2081 p4d_t *p4d;
2082 unsigned long next;
2083 int err;
2084
2085 p4d = p4d_alloc(mm, pgd, addr);
2086 if (!p4d)
2087 return -ENOMEM;
2088 do {
2089 next = p4d_addr_end(addr, end);
2090 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2091 if (err)
2092 break;
2093 } while (p4d++, addr = next, addr != end);
2094 return err;
2095}
2096
aee16b3c
JF
2097/*
2098 * Scan a region of virtual memory, filling in page tables as necessary
2099 * and calling a provided function on each leaf page table.
2100 */
2101int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2102 unsigned long size, pte_fn_t fn, void *data)
2103{
2104 pgd_t *pgd;
2105 unsigned long next;
57250a5b 2106 unsigned long end = addr + size;
aee16b3c
JF
2107 int err;
2108
9cb65bc3
MP
2109 if (WARN_ON(addr >= end))
2110 return -EINVAL;
2111
aee16b3c
JF
2112 pgd = pgd_offset(mm, addr);
2113 do {
2114 next = pgd_addr_end(addr, end);
c2febafc 2115 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2116 if (err)
2117 break;
2118 } while (pgd++, addr = next, addr != end);
57250a5b 2119
aee16b3c
JF
2120 return err;
2121}
2122EXPORT_SYMBOL_GPL(apply_to_page_range);
2123
8f4e2101 2124/*
9b4bdd2f
KS
2125 * handle_pte_fault chooses page fault handler according to an entry which was
2126 * read non-atomically. Before making any commitment, on those architectures
2127 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2128 * parts, do_swap_page must check under lock before unmapping the pte and
2129 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2130 * and do_anonymous_page can safely check later on).
8f4e2101 2131 */
4c21e2f2 2132static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2133 pte_t *page_table, pte_t orig_pte)
2134{
2135 int same = 1;
2136#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2137 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2138 spinlock_t *ptl = pte_lockptr(mm, pmd);
2139 spin_lock(ptl);
8f4e2101 2140 same = pte_same(*page_table, orig_pte);
4c21e2f2 2141 spin_unlock(ptl);
8f4e2101
HD
2142 }
2143#endif
2144 pte_unmap(page_table);
2145 return same;
2146}
2147
9de455b2 2148static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2149{
0abdd7a8
DW
2150 debug_dma_assert_idle(src);
2151
6aab341e
LT
2152 /*
2153 * If the source page was a PFN mapping, we don't have
2154 * a "struct page" for it. We do a best-effort copy by
2155 * just copying from the original user address. If that
2156 * fails, we just zero-fill it. Live with it.
2157 */
2158 if (unlikely(!src)) {
9b04c5fe 2159 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2160 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2161
2162 /*
2163 * This really shouldn't fail, because the page is there
2164 * in the page tables. But it might just be unreadable,
2165 * in which case we just give up and fill the result with
2166 * zeroes.
2167 */
2168 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2169 clear_page(kaddr);
9b04c5fe 2170 kunmap_atomic(kaddr);
c4ec7b0d 2171 flush_dcache_page(dst);
0ed361de
NP
2172 } else
2173 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2174}
2175
c20cd45e
MH
2176static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2177{
2178 struct file *vm_file = vma->vm_file;
2179
2180 if (vm_file)
2181 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2182
2183 /*
2184 * Special mappings (e.g. VDSO) do not have any file so fake
2185 * a default GFP_KERNEL for them.
2186 */
2187 return GFP_KERNEL;
2188}
2189
fb09a464
KS
2190/*
2191 * Notify the address space that the page is about to become writable so that
2192 * it can prohibit this or wait for the page to get into an appropriate state.
2193 *
2194 * We do this without the lock held, so that it can sleep if it needs to.
2195 */
2b740303 2196static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2197{
2b740303 2198 vm_fault_t ret;
38b8cb7f
JK
2199 struct page *page = vmf->page;
2200 unsigned int old_flags = vmf->flags;
fb09a464 2201
38b8cb7f 2202 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2203
dc617f29
DW
2204 if (vmf->vma->vm_file &&
2205 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2206 return VM_FAULT_SIGBUS;
2207
11bac800 2208 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2209 /* Restore original flags so that caller is not surprised */
2210 vmf->flags = old_flags;
fb09a464
KS
2211 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2212 return ret;
2213 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2214 lock_page(page);
2215 if (!page->mapping) {
2216 unlock_page(page);
2217 return 0; /* retry */
2218 }
2219 ret |= VM_FAULT_LOCKED;
2220 } else
2221 VM_BUG_ON_PAGE(!PageLocked(page), page);
2222 return ret;
2223}
2224
97ba0c2b
JK
2225/*
2226 * Handle dirtying of a page in shared file mapping on a write fault.
2227 *
2228 * The function expects the page to be locked and unlocks it.
2229 */
2230static void fault_dirty_shared_page(struct vm_area_struct *vma,
2231 struct page *page)
2232{
2233 struct address_space *mapping;
2234 bool dirtied;
2235 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2236
2237 dirtied = set_page_dirty(page);
2238 VM_BUG_ON_PAGE(PageAnon(page), page);
2239 /*
2240 * Take a local copy of the address_space - page.mapping may be zeroed
2241 * by truncate after unlock_page(). The address_space itself remains
2242 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2243 * release semantics to prevent the compiler from undoing this copying.
2244 */
2245 mapping = page_rmapping(page);
2246 unlock_page(page);
2247
2248 if ((dirtied || page_mkwrite) && mapping) {
2249 /*
2250 * Some device drivers do not set page.mapping
2251 * but still dirty their pages
2252 */
2253 balance_dirty_pages_ratelimited(mapping);
2254 }
2255
2256 if (!page_mkwrite)
2257 file_update_time(vma->vm_file);
2258}
2259
4e047f89
SR
2260/*
2261 * Handle write page faults for pages that can be reused in the current vma
2262 *
2263 * This can happen either due to the mapping being with the VM_SHARED flag,
2264 * or due to us being the last reference standing to the page. In either
2265 * case, all we need to do here is to mark the page as writable and update
2266 * any related book-keeping.
2267 */
997dd98d 2268static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2269 __releases(vmf->ptl)
4e047f89 2270{
82b0f8c3 2271 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2272 struct page *page = vmf->page;
4e047f89
SR
2273 pte_t entry;
2274 /*
2275 * Clear the pages cpupid information as the existing
2276 * information potentially belongs to a now completely
2277 * unrelated process.
2278 */
2279 if (page)
2280 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2281
2994302b
JK
2282 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2283 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2284 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2285 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2286 update_mmu_cache(vma, vmf->address, vmf->pte);
2287 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2288}
2289
2f38ab2c
SR
2290/*
2291 * Handle the case of a page which we actually need to copy to a new page.
2292 *
2293 * Called with mmap_sem locked and the old page referenced, but
2294 * without the ptl held.
2295 *
2296 * High level logic flow:
2297 *
2298 * - Allocate a page, copy the content of the old page to the new one.
2299 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2300 * - Take the PTL. If the pte changed, bail out and release the allocated page
2301 * - If the pte is still the way we remember it, update the page table and all
2302 * relevant references. This includes dropping the reference the page-table
2303 * held to the old page, as well as updating the rmap.
2304 * - In any case, unlock the PTL and drop the reference we took to the old page.
2305 */
2b740303 2306static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2307{
82b0f8c3 2308 struct vm_area_struct *vma = vmf->vma;
bae473a4 2309 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2310 struct page *old_page = vmf->page;
2f38ab2c 2311 struct page *new_page = NULL;
2f38ab2c
SR
2312 pte_t entry;
2313 int page_copied = 0;
2f38ab2c 2314 struct mem_cgroup *memcg;
ac46d4f3 2315 struct mmu_notifier_range range;
2f38ab2c
SR
2316
2317 if (unlikely(anon_vma_prepare(vma)))
2318 goto oom;
2319
2994302b 2320 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2321 new_page = alloc_zeroed_user_highpage_movable(vma,
2322 vmf->address);
2f38ab2c
SR
2323 if (!new_page)
2324 goto oom;
2325 } else {
bae473a4 2326 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2327 vmf->address);
2f38ab2c
SR
2328 if (!new_page)
2329 goto oom;
82b0f8c3 2330 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2331 }
2f38ab2c 2332
2cf85583 2333 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2334 goto oom_free_new;
2335
eb3c24f3
MG
2336 __SetPageUptodate(new_page);
2337
7269f999 2338 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2339 vmf->address & PAGE_MASK,
ac46d4f3
JG
2340 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2341 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2342
2343 /*
2344 * Re-check the pte - we dropped the lock
2345 */
82b0f8c3 2346 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2347 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2348 if (old_page) {
2349 if (!PageAnon(old_page)) {
eca56ff9
JM
2350 dec_mm_counter_fast(mm,
2351 mm_counter_file(old_page));
2f38ab2c
SR
2352 inc_mm_counter_fast(mm, MM_ANONPAGES);
2353 }
2354 } else {
2355 inc_mm_counter_fast(mm, MM_ANONPAGES);
2356 }
2994302b 2357 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2358 entry = mk_pte(new_page, vma->vm_page_prot);
2359 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2360 /*
2361 * Clear the pte entry and flush it first, before updating the
2362 * pte with the new entry. This will avoid a race condition
2363 * seen in the presence of one thread doing SMC and another
2364 * thread doing COW.
2365 */
82b0f8c3
JK
2366 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2367 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2368 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2369 lru_cache_add_active_or_unevictable(new_page, vma);
2370 /*
2371 * We call the notify macro here because, when using secondary
2372 * mmu page tables (such as kvm shadow page tables), we want the
2373 * new page to be mapped directly into the secondary page table.
2374 */
82b0f8c3
JK
2375 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2376 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2377 if (old_page) {
2378 /*
2379 * Only after switching the pte to the new page may
2380 * we remove the mapcount here. Otherwise another
2381 * process may come and find the rmap count decremented
2382 * before the pte is switched to the new page, and
2383 * "reuse" the old page writing into it while our pte
2384 * here still points into it and can be read by other
2385 * threads.
2386 *
2387 * The critical issue is to order this
2388 * page_remove_rmap with the ptp_clear_flush above.
2389 * Those stores are ordered by (if nothing else,)
2390 * the barrier present in the atomic_add_negative
2391 * in page_remove_rmap.
2392 *
2393 * Then the TLB flush in ptep_clear_flush ensures that
2394 * no process can access the old page before the
2395 * decremented mapcount is visible. And the old page
2396 * cannot be reused until after the decremented
2397 * mapcount is visible. So transitively, TLBs to
2398 * old page will be flushed before it can be reused.
2399 */
d281ee61 2400 page_remove_rmap(old_page, false);
2f38ab2c
SR
2401 }
2402
2403 /* Free the old page.. */
2404 new_page = old_page;
2405 page_copied = 1;
2406 } else {
f627c2f5 2407 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2408 }
2409
2410 if (new_page)
09cbfeaf 2411 put_page(new_page);
2f38ab2c 2412
82b0f8c3 2413 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2414 /*
2415 * No need to double call mmu_notifier->invalidate_range() callback as
2416 * the above ptep_clear_flush_notify() did already call it.
2417 */
ac46d4f3 2418 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2419 if (old_page) {
2420 /*
2421 * Don't let another task, with possibly unlocked vma,
2422 * keep the mlocked page.
2423 */
2424 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2425 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2426 if (PageMlocked(old_page))
2427 munlock_vma_page(old_page);
2f38ab2c
SR
2428 unlock_page(old_page);
2429 }
09cbfeaf 2430 put_page(old_page);
2f38ab2c
SR
2431 }
2432 return page_copied ? VM_FAULT_WRITE : 0;
2433oom_free_new:
09cbfeaf 2434 put_page(new_page);
2f38ab2c
SR
2435oom:
2436 if (old_page)
09cbfeaf 2437 put_page(old_page);
2f38ab2c
SR
2438 return VM_FAULT_OOM;
2439}
2440
66a6197c
JK
2441/**
2442 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2443 * writeable once the page is prepared
2444 *
2445 * @vmf: structure describing the fault
2446 *
2447 * This function handles all that is needed to finish a write page fault in a
2448 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2449 * It handles locking of PTE and modifying it.
66a6197c
JK
2450 *
2451 * The function expects the page to be locked or other protection against
2452 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2453 *
2454 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2455 * we acquired PTE lock.
66a6197c 2456 */
2b740303 2457vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2458{
2459 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2460 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2461 &vmf->ptl);
2462 /*
2463 * We might have raced with another page fault while we released the
2464 * pte_offset_map_lock.
2465 */
2466 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2467 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2468 return VM_FAULT_NOPAGE;
66a6197c
JK
2469 }
2470 wp_page_reuse(vmf);
a19e2553 2471 return 0;
66a6197c
JK
2472}
2473
dd906184
BH
2474/*
2475 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2476 * mapping
2477 */
2b740303 2478static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2479{
82b0f8c3 2480 struct vm_area_struct *vma = vmf->vma;
bae473a4 2481
dd906184 2482 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2483 vm_fault_t ret;
dd906184 2484
82b0f8c3 2485 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2486 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2487 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2488 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2489 return ret;
66a6197c 2490 return finish_mkwrite_fault(vmf);
dd906184 2491 }
997dd98d
JK
2492 wp_page_reuse(vmf);
2493 return VM_FAULT_WRITE;
dd906184
BH
2494}
2495
2b740303 2496static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2497 __releases(vmf->ptl)
93e478d4 2498{
82b0f8c3 2499 struct vm_area_struct *vma = vmf->vma;
93e478d4 2500
a41b70d6 2501 get_page(vmf->page);
93e478d4 2502
93e478d4 2503 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2504 vm_fault_t tmp;
93e478d4 2505
82b0f8c3 2506 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2507 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2508 if (unlikely(!tmp || (tmp &
2509 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2510 put_page(vmf->page);
93e478d4
SR
2511 return tmp;
2512 }
66a6197c 2513 tmp = finish_mkwrite_fault(vmf);
a19e2553 2514 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2515 unlock_page(vmf->page);
a41b70d6 2516 put_page(vmf->page);
66a6197c 2517 return tmp;
93e478d4 2518 }
66a6197c
JK
2519 } else {
2520 wp_page_reuse(vmf);
997dd98d 2521 lock_page(vmf->page);
93e478d4 2522 }
997dd98d
JK
2523 fault_dirty_shared_page(vma, vmf->page);
2524 put_page(vmf->page);
93e478d4 2525
997dd98d 2526 return VM_FAULT_WRITE;
93e478d4
SR
2527}
2528
1da177e4
LT
2529/*
2530 * This routine handles present pages, when users try to write
2531 * to a shared page. It is done by copying the page to a new address
2532 * and decrementing the shared-page counter for the old page.
2533 *
1da177e4
LT
2534 * Note that this routine assumes that the protection checks have been
2535 * done by the caller (the low-level page fault routine in most cases).
2536 * Thus we can safely just mark it writable once we've done any necessary
2537 * COW.
2538 *
2539 * We also mark the page dirty at this point even though the page will
2540 * change only once the write actually happens. This avoids a few races,
2541 * and potentially makes it more efficient.
2542 *
8f4e2101
HD
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), with pte both mapped and locked.
2545 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2546 */
2b740303 2547static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2548 __releases(vmf->ptl)
1da177e4 2549{
82b0f8c3 2550 struct vm_area_struct *vma = vmf->vma;
1da177e4 2551
a41b70d6
JK
2552 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2553 if (!vmf->page) {
251b97f5 2554 /*
64e45507
PF
2555 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2556 * VM_PFNMAP VMA.
251b97f5
PZ
2557 *
2558 * We should not cow pages in a shared writeable mapping.
dd906184 2559 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2560 */
2561 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2562 (VM_WRITE|VM_SHARED))
2994302b 2563 return wp_pfn_shared(vmf);
2f38ab2c 2564
82b0f8c3 2565 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2566 return wp_page_copy(vmf);
251b97f5 2567 }
1da177e4 2568
d08b3851 2569 /*
ee6a6457
PZ
2570 * Take out anonymous pages first, anonymous shared vmas are
2571 * not dirty accountable.
d08b3851 2572 */
52d1e606 2573 if (PageAnon(vmf->page)) {
ba3c4ce6 2574 int total_map_swapcount;
52d1e606
KT
2575 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2576 page_count(vmf->page) != 1))
2577 goto copy;
a41b70d6
JK
2578 if (!trylock_page(vmf->page)) {
2579 get_page(vmf->page);
82b0f8c3 2580 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2581 lock_page(vmf->page);
82b0f8c3
JK
2582 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2583 vmf->address, &vmf->ptl);
2994302b 2584 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2585 unlock_page(vmf->page);
82b0f8c3 2586 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2587 put_page(vmf->page);
28766805 2588 return 0;
ab967d86 2589 }
a41b70d6 2590 put_page(vmf->page);
ee6a6457 2591 }
52d1e606
KT
2592 if (PageKsm(vmf->page)) {
2593 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2594 vmf->address);
2595 unlock_page(vmf->page);
2596 if (!reused)
2597 goto copy;
2598 wp_page_reuse(vmf);
2599 return VM_FAULT_WRITE;
2600 }
ba3c4ce6
HY
2601 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2602 if (total_map_swapcount == 1) {
6d0a07ed
AA
2603 /*
2604 * The page is all ours. Move it to
2605 * our anon_vma so the rmap code will
2606 * not search our parent or siblings.
2607 * Protected against the rmap code by
2608 * the page lock.
2609 */
a41b70d6 2610 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2611 }
a41b70d6 2612 unlock_page(vmf->page);
997dd98d
JK
2613 wp_page_reuse(vmf);
2614 return VM_FAULT_WRITE;
b009c024 2615 }
a41b70d6 2616 unlock_page(vmf->page);
ee6a6457 2617 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2618 (VM_WRITE|VM_SHARED))) {
a41b70d6 2619 return wp_page_shared(vmf);
1da177e4 2620 }
52d1e606 2621copy:
1da177e4
LT
2622 /*
2623 * Ok, we need to copy. Oh, well..
2624 */
a41b70d6 2625 get_page(vmf->page);
28766805 2626
82b0f8c3 2627 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2628 return wp_page_copy(vmf);
1da177e4
LT
2629}
2630
97a89413 2631static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2632 unsigned long start_addr, unsigned long end_addr,
2633 struct zap_details *details)
2634{
f5cc4eef 2635 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2636}
2637
f808c13f 2638static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2639 struct zap_details *details)
2640{
2641 struct vm_area_struct *vma;
1da177e4
LT
2642 pgoff_t vba, vea, zba, zea;
2643
6b2dbba8 2644 vma_interval_tree_foreach(vma, root,
1da177e4 2645 details->first_index, details->last_index) {
1da177e4
LT
2646
2647 vba = vma->vm_pgoff;
d6e93217 2648 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2649 zba = details->first_index;
2650 if (zba < vba)
2651 zba = vba;
2652 zea = details->last_index;
2653 if (zea > vea)
2654 zea = vea;
2655
97a89413 2656 unmap_mapping_range_vma(vma,
1da177e4
LT
2657 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2658 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2659 details);
1da177e4
LT
2660 }
2661}
2662
977fbdcd
MW
2663/**
2664 * unmap_mapping_pages() - Unmap pages from processes.
2665 * @mapping: The address space containing pages to be unmapped.
2666 * @start: Index of first page to be unmapped.
2667 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2668 * @even_cows: Whether to unmap even private COWed pages.
2669 *
2670 * Unmap the pages in this address space from any userspace process which
2671 * has them mmaped. Generally, you want to remove COWed pages as well when
2672 * a file is being truncated, but not when invalidating pages from the page
2673 * cache.
2674 */
2675void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2676 pgoff_t nr, bool even_cows)
2677{
2678 struct zap_details details = { };
2679
2680 details.check_mapping = even_cows ? NULL : mapping;
2681 details.first_index = start;
2682 details.last_index = start + nr - 1;
2683 if (details.last_index < details.first_index)
2684 details.last_index = ULONG_MAX;
2685
2686 i_mmap_lock_write(mapping);
2687 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2688 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2689 i_mmap_unlock_write(mapping);
2690}
2691
1da177e4 2692/**
8a5f14a2 2693 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2694 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2695 * file.
2696 *
3d41088f 2697 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2698 * @holebegin: byte in first page to unmap, relative to the start of
2699 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2700 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2701 * must keep the partial page. In contrast, we must get rid of
2702 * partial pages.
2703 * @holelen: size of prospective hole in bytes. This will be rounded
2704 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2705 * end of the file.
2706 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2707 * but 0 when invalidating pagecache, don't throw away private data.
2708 */
2709void unmap_mapping_range(struct address_space *mapping,
2710 loff_t const holebegin, loff_t const holelen, int even_cows)
2711{
1da177e4
LT
2712 pgoff_t hba = holebegin >> PAGE_SHIFT;
2713 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2714
2715 /* Check for overflow. */
2716 if (sizeof(holelen) > sizeof(hlen)) {
2717 long long holeend =
2718 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2719 if (holeend & ~(long long)ULONG_MAX)
2720 hlen = ULONG_MAX - hba + 1;
2721 }
2722
977fbdcd 2723 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2724}
2725EXPORT_SYMBOL(unmap_mapping_range);
2726
1da177e4 2727/*
8f4e2101
HD
2728 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2729 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2730 * We return with pte unmapped and unlocked.
2731 *
2732 * We return with the mmap_sem locked or unlocked in the same cases
2733 * as does filemap_fault().
1da177e4 2734 */
2b740303 2735vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2736{
82b0f8c3 2737 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2738 struct page *page = NULL, *swapcache;
00501b53 2739 struct mem_cgroup *memcg;
65500d23 2740 swp_entry_t entry;
1da177e4 2741 pte_t pte;
d065bd81 2742 int locked;
ad8c2ee8 2743 int exclusive = 0;
2b740303 2744 vm_fault_t ret = 0;
1da177e4 2745
eaf649eb 2746 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2747 goto out;
65500d23 2748
2994302b 2749 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2750 if (unlikely(non_swap_entry(entry))) {
2751 if (is_migration_entry(entry)) {
82b0f8c3
JK
2752 migration_entry_wait(vma->vm_mm, vmf->pmd,
2753 vmf->address);
5042db43 2754 } else if (is_device_private_entry(entry)) {
897e6365
CH
2755 vmf->page = device_private_entry_to_page(entry);
2756 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
2757 } else if (is_hwpoison_entry(entry)) {
2758 ret = VM_FAULT_HWPOISON;
2759 } else {
2994302b 2760 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2761 ret = VM_FAULT_SIGBUS;
d1737fdb 2762 }
0697212a
CL
2763 goto out;
2764 }
0bcac06f
MK
2765
2766
0ff92245 2767 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2768 page = lookup_swap_cache(entry, vma, vmf->address);
2769 swapcache = page;
f8020772 2770
1da177e4 2771 if (!page) {
0bcac06f
MK
2772 struct swap_info_struct *si = swp_swap_info(entry);
2773
aa8d22a1 2774 if (si->flags & SWP_SYNCHRONOUS_IO &&
eb085574 2775 __swap_count(entry) == 1) {
0bcac06f 2776 /* skip swapcache */
e9e9b7ec
MK
2777 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2778 vmf->address);
0bcac06f
MK
2779 if (page) {
2780 __SetPageLocked(page);
2781 __SetPageSwapBacked(page);
2782 set_page_private(page, entry.val);
2783 lru_cache_add_anon(page);
2784 swap_readpage(page, true);
2785 }
aa8d22a1 2786 } else {
e9e9b7ec
MK
2787 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2788 vmf);
aa8d22a1 2789 swapcache = page;
0bcac06f
MK
2790 }
2791
1da177e4
LT
2792 if (!page) {
2793 /*
8f4e2101
HD
2794 * Back out if somebody else faulted in this pte
2795 * while we released the pte lock.
1da177e4 2796 */
82b0f8c3
JK
2797 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2798 vmf->address, &vmf->ptl);
2994302b 2799 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2800 ret = VM_FAULT_OOM;
0ff92245 2801 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2802 goto unlock;
1da177e4
LT
2803 }
2804
2805 /* Had to read the page from swap area: Major fault */
2806 ret = VM_FAULT_MAJOR;
f8891e5e 2807 count_vm_event(PGMAJFAULT);
2262185c 2808 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2809 } else if (PageHWPoison(page)) {
71f72525
WF
2810 /*
2811 * hwpoisoned dirty swapcache pages are kept for killing
2812 * owner processes (which may be unknown at hwpoison time)
2813 */
d1737fdb
AK
2814 ret = VM_FAULT_HWPOISON;
2815 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2816 goto out_release;
1da177e4
LT
2817 }
2818
82b0f8c3 2819 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2820
073e587e 2821 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2822 if (!locked) {
2823 ret |= VM_FAULT_RETRY;
2824 goto out_release;
2825 }
073e587e 2826
4969c119 2827 /*
31c4a3d3
HD
2828 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2829 * release the swapcache from under us. The page pin, and pte_same
2830 * test below, are not enough to exclude that. Even if it is still
2831 * swapcache, we need to check that the page's swap has not changed.
4969c119 2832 */
0bcac06f
MK
2833 if (unlikely((!PageSwapCache(page) ||
2834 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2835 goto out_page;
2836
82b0f8c3 2837 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2838 if (unlikely(!page)) {
2839 ret = VM_FAULT_OOM;
2840 page = swapcache;
cbf86cfe 2841 goto out_page;
5ad64688
HD
2842 }
2843
2cf85583
TH
2844 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2845 &memcg, false)) {
8a9f3ccd 2846 ret = VM_FAULT_OOM;
bc43f75c 2847 goto out_page;
8a9f3ccd
BS
2848 }
2849
1da177e4 2850 /*
8f4e2101 2851 * Back out if somebody else already faulted in this pte.
1da177e4 2852 */
82b0f8c3
JK
2853 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2854 &vmf->ptl);
2994302b 2855 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2856 goto out_nomap;
b8107480
KK
2857
2858 if (unlikely(!PageUptodate(page))) {
2859 ret = VM_FAULT_SIGBUS;
2860 goto out_nomap;
1da177e4
LT
2861 }
2862
8c7c6e34
KH
2863 /*
2864 * The page isn't present yet, go ahead with the fault.
2865 *
2866 * Be careful about the sequence of operations here.
2867 * To get its accounting right, reuse_swap_page() must be called
2868 * while the page is counted on swap but not yet in mapcount i.e.
2869 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2870 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2871 */
1da177e4 2872
bae473a4
KS
2873 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2874 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2875 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2876 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2877 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2878 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2879 ret |= VM_FAULT_WRITE;
d281ee61 2880 exclusive = RMAP_EXCLUSIVE;
1da177e4 2881 }
1da177e4 2882 flush_icache_page(vma, page);
2994302b 2883 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2884 pte = pte_mksoft_dirty(pte);
82b0f8c3 2885 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 2886 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 2887 vmf->orig_pte = pte;
0bcac06f
MK
2888
2889 /* ksm created a completely new copy */
2890 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 2891 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2892 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2893 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
2894 } else {
2895 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2896 mem_cgroup_commit_charge(page, memcg, true, false);
2897 activate_page(page);
00501b53 2898 }
1da177e4 2899
c475a8ab 2900 swap_free(entry);
5ccc5aba
VD
2901 if (mem_cgroup_swap_full(page) ||
2902 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2903 try_to_free_swap(page);
c475a8ab 2904 unlock_page(page);
0bcac06f 2905 if (page != swapcache && swapcache) {
4969c119
AA
2906 /*
2907 * Hold the lock to avoid the swap entry to be reused
2908 * until we take the PT lock for the pte_same() check
2909 * (to avoid false positives from pte_same). For
2910 * further safety release the lock after the swap_free
2911 * so that the swap count won't change under a
2912 * parallel locked swapcache.
2913 */
2914 unlock_page(swapcache);
09cbfeaf 2915 put_page(swapcache);
4969c119 2916 }
c475a8ab 2917
82b0f8c3 2918 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2919 ret |= do_wp_page(vmf);
61469f1d
HD
2920 if (ret & VM_FAULT_ERROR)
2921 ret &= VM_FAULT_ERROR;
1da177e4
LT
2922 goto out;
2923 }
2924
2925 /* No need to invalidate - it was non-present before */
82b0f8c3 2926 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2927unlock:
82b0f8c3 2928 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2929out:
2930 return ret;
b8107480 2931out_nomap:
f627c2f5 2932 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2933 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2934out_page:
b8107480 2935 unlock_page(page);
4779cb31 2936out_release:
09cbfeaf 2937 put_page(page);
0bcac06f 2938 if (page != swapcache && swapcache) {
4969c119 2939 unlock_page(swapcache);
09cbfeaf 2940 put_page(swapcache);
4969c119 2941 }
65500d23 2942 return ret;
1da177e4
LT
2943}
2944
2945/*
8f4e2101
HD
2946 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2947 * but allow concurrent faults), and pte mapped but not yet locked.
2948 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2949 */
2b740303 2950static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 2951{
82b0f8c3 2952 struct vm_area_struct *vma = vmf->vma;
00501b53 2953 struct mem_cgroup *memcg;
8f4e2101 2954 struct page *page;
2b740303 2955 vm_fault_t ret = 0;
1da177e4 2956 pte_t entry;
1da177e4 2957
6b7339f4
KS
2958 /* File mapping without ->vm_ops ? */
2959 if (vma->vm_flags & VM_SHARED)
2960 return VM_FAULT_SIGBUS;
2961
7267ec00
KS
2962 /*
2963 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2964 * pte_offset_map() on pmds where a huge pmd might be created
2965 * from a different thread.
2966 *
2967 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2968 * parallel threads are excluded by other means.
2969 *
2970 * Here we only have down_read(mmap_sem).
2971 */
4cf58924 2972 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
2973 return VM_FAULT_OOM;
2974
2975 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2976 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2977 return 0;
2978
11ac5524 2979 /* Use the zero-page for reads */
82b0f8c3 2980 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2981 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2982 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2983 vma->vm_page_prot));
82b0f8c3
JK
2984 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2985 vmf->address, &vmf->ptl);
2986 if (!pte_none(*vmf->pte))
a13ea5b7 2987 goto unlock;
6b31d595
MH
2988 ret = check_stable_address_space(vma->vm_mm);
2989 if (ret)
2990 goto unlock;
6b251fc9
AA
2991 /* Deliver the page fault to userland, check inside PT lock */
2992 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2993 pte_unmap_unlock(vmf->pte, vmf->ptl);
2994 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2995 }
a13ea5b7
HD
2996 goto setpte;
2997 }
2998
557ed1fa 2999 /* Allocate our own private page. */
557ed1fa
NP
3000 if (unlikely(anon_vma_prepare(vma)))
3001 goto oom;
82b0f8c3 3002 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3003 if (!page)
3004 goto oom;
eb3c24f3 3005
2cf85583
TH
3006 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3007 false))
eb3c24f3
MG
3008 goto oom_free_page;
3009
52f37629
MK
3010 /*
3011 * The memory barrier inside __SetPageUptodate makes sure that
3012 * preceeding stores to the page contents become visible before
3013 * the set_pte_at() write.
3014 */
0ed361de 3015 __SetPageUptodate(page);
8f4e2101 3016
557ed1fa 3017 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3018 if (vma->vm_flags & VM_WRITE)
3019 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3020
82b0f8c3
JK
3021 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3022 &vmf->ptl);
3023 if (!pte_none(*vmf->pte))
557ed1fa 3024 goto release;
9ba69294 3025
6b31d595
MH
3026 ret = check_stable_address_space(vma->vm_mm);
3027 if (ret)
3028 goto release;
3029
6b251fc9
AA
3030 /* Deliver the page fault to userland, check inside PT lock */
3031 if (userfaultfd_missing(vma)) {
82b0f8c3 3032 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3033 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3034 put_page(page);
82b0f8c3 3035 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3036 }
3037
bae473a4 3038 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3039 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3040 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3041 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3042setpte:
82b0f8c3 3043 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3044
3045 /* No need to invalidate - it was non-present before */
82b0f8c3 3046 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3047unlock:
82b0f8c3 3048 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3049 return ret;
8f4e2101 3050release:
f627c2f5 3051 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3052 put_page(page);
8f4e2101 3053 goto unlock;
8a9f3ccd 3054oom_free_page:
09cbfeaf 3055 put_page(page);
65500d23 3056oom:
1da177e4
LT
3057 return VM_FAULT_OOM;
3058}
3059
9a95f3cf
PC
3060/*
3061 * The mmap_sem must have been held on entry, and may have been
3062 * released depending on flags and vma->vm_ops->fault() return value.
3063 * See filemap_fault() and __lock_page_retry().
3064 */
2b740303 3065static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3066{
82b0f8c3 3067 struct vm_area_struct *vma = vmf->vma;
2b740303 3068 vm_fault_t ret;
7eae74af 3069
63f3655f
MH
3070 /*
3071 * Preallocate pte before we take page_lock because this might lead to
3072 * deadlocks for memcg reclaim which waits for pages under writeback:
3073 * lock_page(A)
3074 * SetPageWriteback(A)
3075 * unlock_page(A)
3076 * lock_page(B)
3077 * lock_page(B)
3078 * pte_alloc_pne
3079 * shrink_page_list
3080 * wait_on_page_writeback(A)
3081 * SetPageWriteback(B)
3082 * unlock_page(B)
3083 * # flush A, B to clear the writeback
3084 */
3085 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3086 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3087 if (!vmf->prealloc_pte)
3088 return VM_FAULT_OOM;
3089 smp_wmb(); /* See comment in __pte_alloc() */
3090 }
3091
11bac800 3092 ret = vma->vm_ops->fault(vmf);
3917048d 3093 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3094 VM_FAULT_DONE_COW)))
bc2466e4 3095 return ret;
7eae74af 3096
667240e0 3097 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3098 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3099 unlock_page(vmf->page);
3100 put_page(vmf->page);
936ca80d 3101 vmf->page = NULL;
7eae74af
KS
3102 return VM_FAULT_HWPOISON;
3103 }
3104
3105 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3106 lock_page(vmf->page);
7eae74af 3107 else
667240e0 3108 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3109
7eae74af
KS
3110 return ret;
3111}
3112
d0f0931d
RZ
3113/*
3114 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3115 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3116 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3117 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3118 */
3119static int pmd_devmap_trans_unstable(pmd_t *pmd)
3120{
3121 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3122}
3123
2b740303 3124static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3125{
82b0f8c3 3126 struct vm_area_struct *vma = vmf->vma;
7267ec00 3127
82b0f8c3 3128 if (!pmd_none(*vmf->pmd))
7267ec00 3129 goto map_pte;
82b0f8c3
JK
3130 if (vmf->prealloc_pte) {
3131 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3132 if (unlikely(!pmd_none(*vmf->pmd))) {
3133 spin_unlock(vmf->ptl);
7267ec00
KS
3134 goto map_pte;
3135 }
3136
c4812909 3137 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3138 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3139 spin_unlock(vmf->ptl);
7f2b6ce8 3140 vmf->prealloc_pte = NULL;
4cf58924 3141 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3142 return VM_FAULT_OOM;
3143 }
3144map_pte:
3145 /*
3146 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3147 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3148 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3149 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3150 * running immediately after a huge pmd fault in a different thread of
3151 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3152 * All we have to ensure is that it is a regular pmd that we can walk
3153 * with pte_offset_map() and we can do that through an atomic read in
3154 * C, which is what pmd_trans_unstable() provides.
7267ec00 3155 */
d0f0931d 3156 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3157 return VM_FAULT_NOPAGE;
3158
d0f0931d
RZ
3159 /*
3160 * At this point we know that our vmf->pmd points to a page of ptes
3161 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3162 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3163 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3164 * be valid and we will re-check to make sure the vmf->pte isn't
3165 * pte_none() under vmf->ptl protection when we return to
3166 * alloc_set_pte().
3167 */
82b0f8c3
JK
3168 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3169 &vmf->ptl);
7267ec00
KS
3170 return 0;
3171}
3172
e496cf3d 3173#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
82b0f8c3 3174static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3175{
82b0f8c3 3176 struct vm_area_struct *vma = vmf->vma;
953c66c2 3177
82b0f8c3 3178 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3179 /*
3180 * We are going to consume the prealloc table,
3181 * count that as nr_ptes.
3182 */
c4812909 3183 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3184 vmf->prealloc_pte = NULL;
953c66c2
AK
3185}
3186
2b740303 3187static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3188{
82b0f8c3
JK
3189 struct vm_area_struct *vma = vmf->vma;
3190 bool write = vmf->flags & FAULT_FLAG_WRITE;
3191 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3192 pmd_t entry;
2b740303
SJ
3193 int i;
3194 vm_fault_t ret;
10102459
KS
3195
3196 if (!transhuge_vma_suitable(vma, haddr))
3197 return VM_FAULT_FALLBACK;
3198
3199 ret = VM_FAULT_FALLBACK;
3200 page = compound_head(page);
3201
953c66c2
AK
3202 /*
3203 * Archs like ppc64 need additonal space to store information
3204 * related to pte entry. Use the preallocated table for that.
3205 */
82b0f8c3 3206 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3207 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3208 if (!vmf->prealloc_pte)
953c66c2
AK
3209 return VM_FAULT_OOM;
3210 smp_wmb(); /* See comment in __pte_alloc() */
3211 }
3212
82b0f8c3
JK
3213 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3214 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3215 goto out;
3216
3217 for (i = 0; i < HPAGE_PMD_NR; i++)
3218 flush_icache_page(vma, page + i);
3219
3220 entry = mk_huge_pmd(page, vma->vm_page_prot);
3221 if (write)
f55e1014 3222 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3223
fadae295 3224 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3225 page_add_file_rmap(page, true);
953c66c2
AK
3226 /*
3227 * deposit and withdraw with pmd lock held
3228 */
3229 if (arch_needs_pgtable_deposit())
82b0f8c3 3230 deposit_prealloc_pte(vmf);
10102459 3231
82b0f8c3 3232 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3233
82b0f8c3 3234 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3235
3236 /* fault is handled */
3237 ret = 0;
95ecedcd 3238 count_vm_event(THP_FILE_MAPPED);
10102459 3239out:
82b0f8c3 3240 spin_unlock(vmf->ptl);
10102459
KS
3241 return ret;
3242}
3243#else
2b740303 3244static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3245{
3246 BUILD_BUG();
3247 return 0;
3248}
3249#endif
3250
8c6e50b0 3251/**
7267ec00
KS
3252 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3253 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3254 *
82b0f8c3 3255 * @vmf: fault environment
7267ec00 3256 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3257 * @page: page to map
8c6e50b0 3258 *
82b0f8c3
JK
3259 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3260 * return.
8c6e50b0
KS
3261 *
3262 * Target users are page handler itself and implementations of
3263 * vm_ops->map_pages.
a862f68a
MR
3264 *
3265 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3266 */
2b740303 3267vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3268 struct page *page)
3bb97794 3269{
82b0f8c3
JK
3270 struct vm_area_struct *vma = vmf->vma;
3271 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3272 pte_t entry;
2b740303 3273 vm_fault_t ret;
10102459 3274
82b0f8c3 3275 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3276 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3277 /* THP on COW? */
3278 VM_BUG_ON_PAGE(memcg, page);
3279
82b0f8c3 3280 ret = do_set_pmd(vmf, page);
10102459 3281 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3282 return ret;
10102459 3283 }
3bb97794 3284
82b0f8c3
JK
3285 if (!vmf->pte) {
3286 ret = pte_alloc_one_map(vmf);
7267ec00 3287 if (ret)
b0b9b3df 3288 return ret;
7267ec00
KS
3289 }
3290
3291 /* Re-check under ptl */
b0b9b3df
HD
3292 if (unlikely(!pte_none(*vmf->pte)))
3293 return VM_FAULT_NOPAGE;
7267ec00 3294
3bb97794
KS
3295 flush_icache_page(vma, page);
3296 entry = mk_pte(page, vma->vm_page_prot);
3297 if (write)
3298 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3299 /* copy-on-write page */
3300 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3301 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3302 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3303 mem_cgroup_commit_charge(page, memcg, false, false);
3304 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3305 } else {
eca56ff9 3306 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3307 page_add_file_rmap(page, false);
3bb97794 3308 }
82b0f8c3 3309 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3310
3311 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3312 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3313
b0b9b3df 3314 return 0;
3bb97794
KS
3315}
3316
9118c0cb
JK
3317
3318/**
3319 * finish_fault - finish page fault once we have prepared the page to fault
3320 *
3321 * @vmf: structure describing the fault
3322 *
3323 * This function handles all that is needed to finish a page fault once the
3324 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3325 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3326 * addition.
9118c0cb
JK
3327 *
3328 * The function expects the page to be locked and on success it consumes a
3329 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3330 *
3331 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3332 */
2b740303 3333vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3334{
3335 struct page *page;
2b740303 3336 vm_fault_t ret = 0;
9118c0cb
JK
3337
3338 /* Did we COW the page? */
3339 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3340 !(vmf->vma->vm_flags & VM_SHARED))
3341 page = vmf->cow_page;
3342 else
3343 page = vmf->page;
6b31d595
MH
3344
3345 /*
3346 * check even for read faults because we might have lost our CoWed
3347 * page
3348 */
3349 if (!(vmf->vma->vm_flags & VM_SHARED))
3350 ret = check_stable_address_space(vmf->vma->vm_mm);
3351 if (!ret)
3352 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3353 if (vmf->pte)
3354 pte_unmap_unlock(vmf->pte, vmf->ptl);
3355 return ret;
3356}
3357
3a91053a
KS
3358static unsigned long fault_around_bytes __read_mostly =
3359 rounddown_pow_of_two(65536);
a9b0f861 3360
a9b0f861
KS
3361#ifdef CONFIG_DEBUG_FS
3362static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3363{
a9b0f861 3364 *val = fault_around_bytes;
1592eef0
KS
3365 return 0;
3366}
3367
b4903d6e 3368/*
da391d64
WK
3369 * fault_around_bytes must be rounded down to the nearest page order as it's
3370 * what do_fault_around() expects to see.
b4903d6e 3371 */
a9b0f861 3372static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3373{
a9b0f861 3374 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3375 return -EINVAL;
b4903d6e
AR
3376 if (val > PAGE_SIZE)
3377 fault_around_bytes = rounddown_pow_of_two(val);
3378 else
3379 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3380 return 0;
3381}
0a1345f8 3382DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3383 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3384
3385static int __init fault_around_debugfs(void)
3386{
d9f7979c
GKH
3387 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3388 &fault_around_bytes_fops);
1592eef0
KS
3389 return 0;
3390}
3391late_initcall(fault_around_debugfs);
1592eef0 3392#endif
8c6e50b0 3393
1fdb412b
KS
3394/*
3395 * do_fault_around() tries to map few pages around the fault address. The hope
3396 * is that the pages will be needed soon and this will lower the number of
3397 * faults to handle.
3398 *
3399 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3400 * not ready to be mapped: not up-to-date, locked, etc.
3401 *
3402 * This function is called with the page table lock taken. In the split ptlock
3403 * case the page table lock only protects only those entries which belong to
3404 * the page table corresponding to the fault address.
3405 *
3406 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3407 * only once.
3408 *
da391d64
WK
3409 * fault_around_bytes defines how many bytes we'll try to map.
3410 * do_fault_around() expects it to be set to a power of two less than or equal
3411 * to PTRS_PER_PTE.
1fdb412b 3412 *
da391d64
WK
3413 * The virtual address of the area that we map is naturally aligned to
3414 * fault_around_bytes rounded down to the machine page size
3415 * (and therefore to page order). This way it's easier to guarantee
3416 * that we don't cross page table boundaries.
1fdb412b 3417 */
2b740303 3418static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3419{
82b0f8c3 3420 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3421 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3422 pgoff_t end_pgoff;
2b740303
SJ
3423 int off;
3424 vm_fault_t ret = 0;
8c6e50b0 3425
4db0c3c2 3426 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3427 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3428
82b0f8c3
JK
3429 vmf->address = max(address & mask, vmf->vma->vm_start);
3430 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3431 start_pgoff -= off;
8c6e50b0
KS
3432
3433 /*
da391d64
WK
3434 * end_pgoff is either the end of the page table, the end of
3435 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3436 */
bae473a4 3437 end_pgoff = start_pgoff -
82b0f8c3 3438 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3439 PTRS_PER_PTE - 1;
82b0f8c3 3440 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3441 start_pgoff + nr_pages - 1);
8c6e50b0 3442
82b0f8c3 3443 if (pmd_none(*vmf->pmd)) {
4cf58924 3444 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3445 if (!vmf->prealloc_pte)
c5f88bd2 3446 goto out;
7267ec00 3447 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3448 }
3449
82b0f8c3 3450 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3451
7267ec00 3452 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3453 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3454 ret = VM_FAULT_NOPAGE;
3455 goto out;
3456 }
3457
3458 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3459 if (!vmf->pte)
7267ec00
KS
3460 goto out;
3461
3462 /* check if the page fault is solved */
82b0f8c3
JK
3463 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3464 if (!pte_none(*vmf->pte))
7267ec00 3465 ret = VM_FAULT_NOPAGE;
82b0f8c3 3466 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3467out:
82b0f8c3
JK
3468 vmf->address = address;
3469 vmf->pte = NULL;
7267ec00 3470 return ret;
8c6e50b0
KS
3471}
3472
2b740303 3473static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3474{
82b0f8c3 3475 struct vm_area_struct *vma = vmf->vma;
2b740303 3476 vm_fault_t ret = 0;
8c6e50b0
KS
3477
3478 /*
3479 * Let's call ->map_pages() first and use ->fault() as fallback
3480 * if page by the offset is not ready to be mapped (cold cache or
3481 * something).
3482 */
9b4bdd2f 3483 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3484 ret = do_fault_around(vmf);
7267ec00
KS
3485 if (ret)
3486 return ret;
8c6e50b0 3487 }
e655fb29 3488
936ca80d 3489 ret = __do_fault(vmf);
e655fb29
KS
3490 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3491 return ret;
3492
9118c0cb 3493 ret |= finish_fault(vmf);
936ca80d 3494 unlock_page(vmf->page);
7267ec00 3495 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3496 put_page(vmf->page);
e655fb29
KS
3497 return ret;
3498}
3499
2b740303 3500static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3501{
82b0f8c3 3502 struct vm_area_struct *vma = vmf->vma;
2b740303 3503 vm_fault_t ret;
ec47c3b9
KS
3504
3505 if (unlikely(anon_vma_prepare(vma)))
3506 return VM_FAULT_OOM;
3507
936ca80d
JK
3508 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3509 if (!vmf->cow_page)
ec47c3b9
KS
3510 return VM_FAULT_OOM;
3511
2cf85583 3512 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3513 &vmf->memcg, false)) {
936ca80d 3514 put_page(vmf->cow_page);
ec47c3b9
KS
3515 return VM_FAULT_OOM;
3516 }
3517
936ca80d 3518 ret = __do_fault(vmf);
ec47c3b9
KS
3519 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3520 goto uncharge_out;
3917048d
JK
3521 if (ret & VM_FAULT_DONE_COW)
3522 return ret;
ec47c3b9 3523
b1aa812b 3524 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3525 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3526
9118c0cb 3527 ret |= finish_fault(vmf);
b1aa812b
JK
3528 unlock_page(vmf->page);
3529 put_page(vmf->page);
7267ec00
KS
3530 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3531 goto uncharge_out;
ec47c3b9
KS
3532 return ret;
3533uncharge_out:
3917048d 3534 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3535 put_page(vmf->cow_page);
ec47c3b9
KS
3536 return ret;
3537}
3538
2b740303 3539static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3540{
82b0f8c3 3541 struct vm_area_struct *vma = vmf->vma;
2b740303 3542 vm_fault_t ret, tmp;
1d65f86d 3543
936ca80d 3544 ret = __do_fault(vmf);
7eae74af 3545 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3546 return ret;
1da177e4
LT
3547
3548 /*
f0c6d4d2
KS
3549 * Check if the backing address space wants to know that the page is
3550 * about to become writable
1da177e4 3551 */
fb09a464 3552 if (vma->vm_ops->page_mkwrite) {
936ca80d 3553 unlock_page(vmf->page);
38b8cb7f 3554 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3555 if (unlikely(!tmp ||
3556 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3557 put_page(vmf->page);
fb09a464 3558 return tmp;
4294621f 3559 }
fb09a464
KS
3560 }
3561
9118c0cb 3562 ret |= finish_fault(vmf);
7267ec00
KS
3563 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3564 VM_FAULT_RETRY))) {
936ca80d
JK
3565 unlock_page(vmf->page);
3566 put_page(vmf->page);
f0c6d4d2 3567 return ret;
1da177e4 3568 }
b827e496 3569
97ba0c2b 3570 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3571 return ret;
54cb8821 3572}
d00806b1 3573
9a95f3cf
PC
3574/*
3575 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3576 * but allow concurrent faults).
3577 * The mmap_sem may have been released depending on flags and our
3578 * return value. See filemap_fault() and __lock_page_or_retry().
fc8efd2d
JS
3579 * If mmap_sem is released, vma may become invalid (for example
3580 * by other thread calling munmap()).
9a95f3cf 3581 */
2b740303 3582static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3583{
82b0f8c3 3584 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3585 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3586 vm_fault_t ret;
54cb8821 3587
ff09d7ec
AK
3588 /*
3589 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3590 */
3591 if (!vma->vm_ops->fault) {
3592 /*
3593 * If we find a migration pmd entry or a none pmd entry, which
3594 * should never happen, return SIGBUS
3595 */
3596 if (unlikely(!pmd_present(*vmf->pmd)))
3597 ret = VM_FAULT_SIGBUS;
3598 else {
3599 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3600 vmf->pmd,
3601 vmf->address,
3602 &vmf->ptl);
3603 /*
3604 * Make sure this is not a temporary clearing of pte
3605 * by holding ptl and checking again. A R/M/W update
3606 * of pte involves: take ptl, clearing the pte so that
3607 * we don't have concurrent modification by hardware
3608 * followed by an update.
3609 */
3610 if (unlikely(pte_none(*vmf->pte)))
3611 ret = VM_FAULT_SIGBUS;
3612 else
3613 ret = VM_FAULT_NOPAGE;
3614
3615 pte_unmap_unlock(vmf->pte, vmf->ptl);
3616 }
3617 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3618 ret = do_read_fault(vmf);
3619 else if (!(vma->vm_flags & VM_SHARED))
3620 ret = do_cow_fault(vmf);
3621 else
3622 ret = do_shared_fault(vmf);
3623
3624 /* preallocated pagetable is unused: free it */
3625 if (vmf->prealloc_pte) {
fc8efd2d 3626 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3627 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3628 }
3629 return ret;
54cb8821
NP
3630}
3631
b19a9939 3632static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3633 unsigned long addr, int page_nid,
3634 int *flags)
9532fec1
MG
3635{
3636 get_page(page);
3637
3638 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3639 if (page_nid == numa_node_id()) {
9532fec1 3640 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3641 *flags |= TNF_FAULT_LOCAL;
3642 }
9532fec1
MG
3643
3644 return mpol_misplaced(page, vma, addr);
3645}
3646
2b740303 3647static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3648{
82b0f8c3 3649 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3650 struct page *page = NULL;
98fa15f3 3651 int page_nid = NUMA_NO_NODE;
90572890 3652 int last_cpupid;
cbee9f88 3653 int target_nid;
b8593bfd 3654 bool migrated = false;
04a86453 3655 pte_t pte, old_pte;
288bc549 3656 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3657 int flags = 0;
d10e63f2
MG
3658
3659 /*
166f61b9
TH
3660 * The "pte" at this point cannot be used safely without
3661 * validation through pte_unmap_same(). It's of NUMA type but
3662 * the pfn may be screwed if the read is non atomic.
166f61b9 3663 */
82b0f8c3
JK
3664 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3665 spin_lock(vmf->ptl);
cee216a6 3666 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3667 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3668 goto out;
3669 }
3670
cee216a6
AK
3671 /*
3672 * Make it present again, Depending on how arch implementes non
3673 * accessible ptes, some can allow access by kernel mode.
3674 */
04a86453
AK
3675 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3676 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 3677 pte = pte_mkyoung(pte);
b191f9b1
MG
3678 if (was_writable)
3679 pte = pte_mkwrite(pte);
04a86453 3680 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 3681 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3682
82b0f8c3 3683 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3684 if (!page) {
82b0f8c3 3685 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3686 return 0;
3687 }
3688
e81c4802
KS
3689 /* TODO: handle PTE-mapped THP */
3690 if (PageCompound(page)) {
82b0f8c3 3691 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3692 return 0;
3693 }
3694
6688cc05 3695 /*
bea66fbd
MG
3696 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3697 * much anyway since they can be in shared cache state. This misses
3698 * the case where a mapping is writable but the process never writes
3699 * to it but pte_write gets cleared during protection updates and
3700 * pte_dirty has unpredictable behaviour between PTE scan updates,
3701 * background writeback, dirty balancing and application behaviour.
6688cc05 3702 */
d59dc7bc 3703 if (!pte_write(pte))
6688cc05
PZ
3704 flags |= TNF_NO_GROUP;
3705
dabe1d99
RR
3706 /*
3707 * Flag if the page is shared between multiple address spaces. This
3708 * is later used when determining whether to group tasks together
3709 */
3710 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3711 flags |= TNF_SHARED;
3712
90572890 3713 last_cpupid = page_cpupid_last(page);
8191acbd 3714 page_nid = page_to_nid(page);
82b0f8c3 3715 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3716 &flags);
82b0f8c3 3717 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 3718 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
3719 put_page(page);
3720 goto out;
3721 }
3722
3723 /* Migrate to the requested node */
1bc115d8 3724 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3725 if (migrated) {
8191acbd 3726 page_nid = target_nid;
6688cc05 3727 flags |= TNF_MIGRATED;
074c2381
MG
3728 } else
3729 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3730
3731out:
98fa15f3 3732 if (page_nid != NUMA_NO_NODE)
6688cc05 3733 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3734 return 0;
3735}
3736
2b740303 3737static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3738{
f4200391 3739 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3740 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3741 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3742 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3743 return VM_FAULT_FALLBACK;
3744}
3745
183f24aa 3746/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3747static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3748{
82b0f8c3
JK
3749 if (vma_is_anonymous(vmf->vma))
3750 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3751 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3752 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3753
3754 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3755 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3756 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3757
b96375f7
MW
3758 return VM_FAULT_FALLBACK;
3759}
3760
38e08854
LS
3761static inline bool vma_is_accessible(struct vm_area_struct *vma)
3762{
3763 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3764}
3765
2b740303 3766static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3767{
3768#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3769 /* No support for anonymous transparent PUD pages yet */
3770 if (vma_is_anonymous(vmf->vma))
3771 return VM_FAULT_FALLBACK;
3772 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3773 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3774#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3775 return VM_FAULT_FALLBACK;
3776}
3777
2b740303 3778static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3779{
3780#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3781 /* No support for anonymous transparent PUD pages yet */
3782 if (vma_is_anonymous(vmf->vma))
3783 return VM_FAULT_FALLBACK;
3784 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3785 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3786#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3787 return VM_FAULT_FALLBACK;
3788}
3789
1da177e4
LT
3790/*
3791 * These routines also need to handle stuff like marking pages dirty
3792 * and/or accessed for architectures that don't do it in hardware (most
3793 * RISC architectures). The early dirtying is also good on the i386.
3794 *
3795 * There is also a hook called "update_mmu_cache()" that architectures
3796 * with external mmu caches can use to update those (ie the Sparc or
3797 * PowerPC hashed page tables that act as extended TLBs).
3798 *
7267ec00
KS
3799 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3800 * concurrent faults).
9a95f3cf 3801 *
7267ec00
KS
3802 * The mmap_sem may have been released depending on flags and our return value.
3803 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3804 */
2b740303 3805static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3806{
3807 pte_t entry;
3808
82b0f8c3 3809 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3810 /*
3811 * Leave __pte_alloc() until later: because vm_ops->fault may
3812 * want to allocate huge page, and if we expose page table
3813 * for an instant, it will be difficult to retract from
3814 * concurrent faults and from rmap lookups.
3815 */
82b0f8c3 3816 vmf->pte = NULL;
7267ec00
KS
3817 } else {
3818 /* See comment in pte_alloc_one_map() */
d0f0931d 3819 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3820 return 0;
3821 /*
3822 * A regular pmd is established and it can't morph into a huge
3823 * pmd from under us anymore at this point because we hold the
3824 * mmap_sem read mode and khugepaged takes it in write mode.
3825 * So now it's safe to run pte_offset_map().
3826 */
82b0f8c3 3827 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3828 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3829
3830 /*
3831 * some architectures can have larger ptes than wordsize,
3832 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3833 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3834 * accesses. The code below just needs a consistent view
3835 * for the ifs and we later double check anyway with the
7267ec00
KS
3836 * ptl lock held. So here a barrier will do.
3837 */
3838 barrier();
2994302b 3839 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3840 pte_unmap(vmf->pte);
3841 vmf->pte = NULL;
65500d23 3842 }
1da177e4
LT
3843 }
3844
82b0f8c3
JK
3845 if (!vmf->pte) {
3846 if (vma_is_anonymous(vmf->vma))
3847 return do_anonymous_page(vmf);
7267ec00 3848 else
82b0f8c3 3849 return do_fault(vmf);
7267ec00
KS
3850 }
3851
2994302b
JK
3852 if (!pte_present(vmf->orig_pte))
3853 return do_swap_page(vmf);
7267ec00 3854
2994302b
JK
3855 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3856 return do_numa_page(vmf);
d10e63f2 3857
82b0f8c3
JK
3858 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3859 spin_lock(vmf->ptl);
2994302b 3860 entry = vmf->orig_pte;
82b0f8c3 3861 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3862 goto unlock;
82b0f8c3 3863 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3864 if (!pte_write(entry))
2994302b 3865 return do_wp_page(vmf);
1da177e4
LT
3866 entry = pte_mkdirty(entry);
3867 }
3868 entry = pte_mkyoung(entry);
82b0f8c3
JK
3869 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3870 vmf->flags & FAULT_FLAG_WRITE)) {
3871 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3872 } else {
3873 /*
3874 * This is needed only for protection faults but the arch code
3875 * is not yet telling us if this is a protection fault or not.
3876 * This still avoids useless tlb flushes for .text page faults
3877 * with threads.
3878 */
82b0f8c3
JK
3879 if (vmf->flags & FAULT_FLAG_WRITE)
3880 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3881 }
8f4e2101 3882unlock:
82b0f8c3 3883 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3884 return 0;
1da177e4
LT
3885}
3886
3887/*
3888 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3889 *
3890 * The mmap_sem may have been released depending on flags and our
3891 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3892 */
2b740303
SJ
3893static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3894 unsigned long address, unsigned int flags)
1da177e4 3895{
82b0f8c3 3896 struct vm_fault vmf = {
bae473a4 3897 .vma = vma,
1a29d85e 3898 .address = address & PAGE_MASK,
bae473a4 3899 .flags = flags,
0721ec8b 3900 .pgoff = linear_page_index(vma, address),
667240e0 3901 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3902 };
fde26bed 3903 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 3904 struct mm_struct *mm = vma->vm_mm;
1da177e4 3905 pgd_t *pgd;
c2febafc 3906 p4d_t *p4d;
2b740303 3907 vm_fault_t ret;
1da177e4 3908
1da177e4 3909 pgd = pgd_offset(mm, address);
c2febafc
KS
3910 p4d = p4d_alloc(mm, pgd, address);
3911 if (!p4d)
3912 return VM_FAULT_OOM;
a00cc7d9 3913
c2febafc 3914 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3915 if (!vmf.pud)
c74df32c 3916 return VM_FAULT_OOM;
7635d9cb 3917 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3918 ret = create_huge_pud(&vmf);
3919 if (!(ret & VM_FAULT_FALLBACK))
3920 return ret;
3921 } else {
3922 pud_t orig_pud = *vmf.pud;
3923
3924 barrier();
3925 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 3926
a00cc7d9
MW
3927 /* NUMA case for anonymous PUDs would go here */
3928
f6f37321 3929 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
3930 ret = wp_huge_pud(&vmf, orig_pud);
3931 if (!(ret & VM_FAULT_FALLBACK))
3932 return ret;
3933 } else {
3934 huge_pud_set_accessed(&vmf, orig_pud);
3935 return 0;
3936 }
3937 }
3938 }
3939
3940 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3941 if (!vmf.pmd)
c74df32c 3942 return VM_FAULT_OOM;
7635d9cb 3943 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 3944 ret = create_huge_pmd(&vmf);
c0292554
KS
3945 if (!(ret & VM_FAULT_FALLBACK))
3946 return ret;
71e3aac0 3947 } else {
82b0f8c3 3948 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3949
71e3aac0 3950 barrier();
84c3fc4e
ZY
3951 if (unlikely(is_swap_pmd(orig_pmd))) {
3952 VM_BUG_ON(thp_migration_supported() &&
3953 !is_pmd_migration_entry(orig_pmd));
3954 if (is_pmd_migration_entry(orig_pmd))
3955 pmd_migration_entry_wait(mm, vmf.pmd);
3956 return 0;
3957 }
5c7fb56e 3958 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3959 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3960 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3961
f6f37321 3962 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 3963 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3964 if (!(ret & VM_FAULT_FALLBACK))
3965 return ret;
a1dd450b 3966 } else {
82b0f8c3 3967 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3968 return 0;
1f1d06c3 3969 }
71e3aac0
AA
3970 }
3971 }
3972
82b0f8c3 3973 return handle_pte_fault(&vmf);
1da177e4
LT
3974}
3975
9a95f3cf
PC
3976/*
3977 * By the time we get here, we already hold the mm semaphore
3978 *
3979 * The mmap_sem may have been released depending on flags and our
3980 * return value. See filemap_fault() and __lock_page_or_retry().
3981 */
2b740303 3982vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 3983 unsigned int flags)
519e5247 3984{
2b740303 3985 vm_fault_t ret;
519e5247
JW
3986
3987 __set_current_state(TASK_RUNNING);
3988
3989 count_vm_event(PGFAULT);
2262185c 3990 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
3991
3992 /* do counter updates before entering really critical section. */
3993 check_sync_rss_stat(current);
3994
de0c799b
LD
3995 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3996 flags & FAULT_FLAG_INSTRUCTION,
3997 flags & FAULT_FLAG_REMOTE))
3998 return VM_FAULT_SIGSEGV;
3999
519e5247
JW
4000 /*
4001 * Enable the memcg OOM handling for faults triggered in user
4002 * space. Kernel faults are handled more gracefully.
4003 */
4004 if (flags & FAULT_FLAG_USER)
29ef680a 4005 mem_cgroup_enter_user_fault();
519e5247 4006
bae473a4
KS
4007 if (unlikely(is_vm_hugetlb_page(vma)))
4008 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4009 else
4010 ret = __handle_mm_fault(vma, address, flags);
519e5247 4011
49426420 4012 if (flags & FAULT_FLAG_USER) {
29ef680a 4013 mem_cgroup_exit_user_fault();
166f61b9
TH
4014 /*
4015 * The task may have entered a memcg OOM situation but
4016 * if the allocation error was handled gracefully (no
4017 * VM_FAULT_OOM), there is no need to kill anything.
4018 * Just clean up the OOM state peacefully.
4019 */
4020 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4021 mem_cgroup_oom_synchronize(false);
49426420 4022 }
3812c8c8 4023
519e5247
JW
4024 return ret;
4025}
e1d6d01a 4026EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4027
90eceff1
KS
4028#ifndef __PAGETABLE_P4D_FOLDED
4029/*
4030 * Allocate p4d page table.
4031 * We've already handled the fast-path in-line.
4032 */
4033int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4034{
4035 p4d_t *new = p4d_alloc_one(mm, address);
4036 if (!new)
4037 return -ENOMEM;
4038
4039 smp_wmb(); /* See comment in __pte_alloc */
4040
4041 spin_lock(&mm->page_table_lock);
4042 if (pgd_present(*pgd)) /* Another has populated it */
4043 p4d_free(mm, new);
4044 else
4045 pgd_populate(mm, pgd, new);
4046 spin_unlock(&mm->page_table_lock);
4047 return 0;
4048}
4049#endif /* __PAGETABLE_P4D_FOLDED */
4050
1da177e4
LT
4051#ifndef __PAGETABLE_PUD_FOLDED
4052/*
4053 * Allocate page upper directory.
872fec16 4054 * We've already handled the fast-path in-line.
1da177e4 4055 */
c2febafc 4056int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4057{
c74df32c
HD
4058 pud_t *new = pud_alloc_one(mm, address);
4059 if (!new)
1bb3630e 4060 return -ENOMEM;
1da177e4 4061
362a61ad
NP
4062 smp_wmb(); /* See comment in __pte_alloc */
4063
872fec16 4064 spin_lock(&mm->page_table_lock);
c2febafc 4065#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4066 if (!p4d_present(*p4d)) {
4067 mm_inc_nr_puds(mm);
c2febafc 4068 p4d_populate(mm, p4d, new);
b4e98d9a 4069 } else /* Another has populated it */
5e541973 4070 pud_free(mm, new);
b4e98d9a
KS
4071#else
4072 if (!pgd_present(*p4d)) {
4073 mm_inc_nr_puds(mm);
c2febafc 4074 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4075 } else /* Another has populated it */
4076 pud_free(mm, new);
c2febafc 4077#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4078 spin_unlock(&mm->page_table_lock);
1bb3630e 4079 return 0;
1da177e4
LT
4080}
4081#endif /* __PAGETABLE_PUD_FOLDED */
4082
4083#ifndef __PAGETABLE_PMD_FOLDED
4084/*
4085 * Allocate page middle directory.
872fec16 4086 * We've already handled the fast-path in-line.
1da177e4 4087 */
1bb3630e 4088int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4089{
a00cc7d9 4090 spinlock_t *ptl;
c74df32c
HD
4091 pmd_t *new = pmd_alloc_one(mm, address);
4092 if (!new)
1bb3630e 4093 return -ENOMEM;
1da177e4 4094
362a61ad
NP
4095 smp_wmb(); /* See comment in __pte_alloc */
4096
a00cc7d9 4097 ptl = pud_lock(mm, pud);
1da177e4 4098#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4099 if (!pud_present(*pud)) {
4100 mm_inc_nr_pmds(mm);
1bb3630e 4101 pud_populate(mm, pud, new);
dc6c9a35 4102 } else /* Another has populated it */
5e541973 4103 pmd_free(mm, new);
dc6c9a35
KS
4104#else
4105 if (!pgd_present(*pud)) {
4106 mm_inc_nr_pmds(mm);
1bb3630e 4107 pgd_populate(mm, pud, new);
dc6c9a35
KS
4108 } else /* Another has populated it */
4109 pmd_free(mm, new);
1da177e4 4110#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4111 spin_unlock(ptl);
1bb3630e 4112 return 0;
e0f39591 4113}
1da177e4
LT
4114#endif /* __PAGETABLE_PMD_FOLDED */
4115
09796395 4116static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4117 struct mmu_notifier_range *range,
a4d1a885 4118 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4119{
4120 pgd_t *pgd;
c2febafc 4121 p4d_t *p4d;
f8ad0f49
JW
4122 pud_t *pud;
4123 pmd_t *pmd;
4124 pte_t *ptep;
4125
4126 pgd = pgd_offset(mm, address);
4127 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4128 goto out;
4129
c2febafc
KS
4130 p4d = p4d_offset(pgd, address);
4131 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4132 goto out;
4133
4134 pud = pud_offset(p4d, address);
f8ad0f49
JW
4135 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4136 goto out;
4137
4138 pmd = pmd_offset(pud, address);
f66055ab 4139 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4140
09796395
RZ
4141 if (pmd_huge(*pmd)) {
4142 if (!pmdpp)
4143 goto out;
4144
ac46d4f3 4145 if (range) {
7269f999 4146 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4147 NULL, mm, address & PMD_MASK,
4148 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4149 mmu_notifier_invalidate_range_start(range);
a4d1a885 4150 }
09796395
RZ
4151 *ptlp = pmd_lock(mm, pmd);
4152 if (pmd_huge(*pmd)) {
4153 *pmdpp = pmd;
4154 return 0;
4155 }
4156 spin_unlock(*ptlp);
ac46d4f3
JG
4157 if (range)
4158 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4159 }
4160
4161 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4162 goto out;
4163
ac46d4f3 4164 if (range) {
7269f999 4165 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4166 address & PAGE_MASK,
4167 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4168 mmu_notifier_invalidate_range_start(range);
a4d1a885 4169 }
f8ad0f49 4170 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4171 if (!pte_present(*ptep))
4172 goto unlock;
4173 *ptepp = ptep;
4174 return 0;
4175unlock:
4176 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4177 if (range)
4178 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4179out:
4180 return -EINVAL;
4181}
4182
f729c8c9
RZ
4183static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4184 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4185{
4186 int res;
4187
4188 /* (void) is needed to make gcc happy */
4189 (void) __cond_lock(*ptlp,
ac46d4f3 4190 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4191 ptepp, NULL, ptlp)));
09796395
RZ
4192 return res;
4193}
4194
4195int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4196 struct mmu_notifier_range *range,
4197 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4198{
4199 int res;
4200
4201 /* (void) is needed to make gcc happy */
4202 (void) __cond_lock(*ptlp,
ac46d4f3 4203 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4204 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4205 return res;
4206}
09796395 4207EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4208
3b6748e2
JW
4209/**
4210 * follow_pfn - look up PFN at a user virtual address
4211 * @vma: memory mapping
4212 * @address: user virtual address
4213 * @pfn: location to store found PFN
4214 *
4215 * Only IO mappings and raw PFN mappings are allowed.
4216 *
a862f68a 4217 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4218 */
4219int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4220 unsigned long *pfn)
4221{
4222 int ret = -EINVAL;
4223 spinlock_t *ptl;
4224 pte_t *ptep;
4225
4226 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4227 return ret;
4228
4229 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4230 if (ret)
4231 return ret;
4232 *pfn = pte_pfn(*ptep);
4233 pte_unmap_unlock(ptep, ptl);
4234 return 0;
4235}
4236EXPORT_SYMBOL(follow_pfn);
4237
28b2ee20 4238#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4239int follow_phys(struct vm_area_struct *vma,
4240 unsigned long address, unsigned int flags,
4241 unsigned long *prot, resource_size_t *phys)
28b2ee20 4242{
03668a4d 4243 int ret = -EINVAL;
28b2ee20
RR
4244 pte_t *ptep, pte;
4245 spinlock_t *ptl;
28b2ee20 4246
d87fe660 4247 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4248 goto out;
28b2ee20 4249
03668a4d 4250 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4251 goto out;
28b2ee20 4252 pte = *ptep;
03668a4d 4253
f6f37321 4254 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4255 goto unlock;
28b2ee20
RR
4256
4257 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4258 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4259
03668a4d 4260 ret = 0;
28b2ee20
RR
4261unlock:
4262 pte_unmap_unlock(ptep, ptl);
4263out:
d87fe660 4264 return ret;
28b2ee20
RR
4265}
4266
4267int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4268 void *buf, int len, int write)
4269{
4270 resource_size_t phys_addr;
4271 unsigned long prot = 0;
2bc7273b 4272 void __iomem *maddr;
28b2ee20
RR
4273 int offset = addr & (PAGE_SIZE-1);
4274
d87fe660 4275 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4276 return -EINVAL;
4277
9cb12d7b 4278 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4279 if (!maddr)
4280 return -ENOMEM;
4281
28b2ee20
RR
4282 if (write)
4283 memcpy_toio(maddr + offset, buf, len);
4284 else
4285 memcpy_fromio(buf, maddr + offset, len);
4286 iounmap(maddr);
4287
4288 return len;
4289}
5a73633e 4290EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4291#endif
4292
0ec76a11 4293/*
206cb636
SW
4294 * Access another process' address space as given in mm. If non-NULL, use the
4295 * given task for page fault accounting.
0ec76a11 4296 */
84d77d3f 4297int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4298 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4299{
0ec76a11 4300 struct vm_area_struct *vma;
0ec76a11 4301 void *old_buf = buf;
442486ec 4302 int write = gup_flags & FOLL_WRITE;
0ec76a11 4303
1e426fe2
KK
4304 if (down_read_killable(&mm->mmap_sem))
4305 return 0;
4306
183ff22b 4307 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4308 while (len) {
4309 int bytes, ret, offset;
4310 void *maddr;
28b2ee20 4311 struct page *page = NULL;
0ec76a11 4312
1e987790 4313 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4314 gup_flags, &page, &vma, NULL);
28b2ee20 4315 if (ret <= 0) {
dbffcd03
RR
4316#ifndef CONFIG_HAVE_IOREMAP_PROT
4317 break;
4318#else
28b2ee20
RR
4319 /*
4320 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4321 * we can access using slightly different code.
4322 */
28b2ee20 4323 vma = find_vma(mm, addr);
fe936dfc 4324 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4325 break;
4326 if (vma->vm_ops && vma->vm_ops->access)
4327 ret = vma->vm_ops->access(vma, addr, buf,
4328 len, write);
4329 if (ret <= 0)
28b2ee20
RR
4330 break;
4331 bytes = ret;
dbffcd03 4332#endif
0ec76a11 4333 } else {
28b2ee20
RR
4334 bytes = len;
4335 offset = addr & (PAGE_SIZE-1);
4336 if (bytes > PAGE_SIZE-offset)
4337 bytes = PAGE_SIZE-offset;
4338
4339 maddr = kmap(page);
4340 if (write) {
4341 copy_to_user_page(vma, page, addr,
4342 maddr + offset, buf, bytes);
4343 set_page_dirty_lock(page);
4344 } else {
4345 copy_from_user_page(vma, page, addr,
4346 buf, maddr + offset, bytes);
4347 }
4348 kunmap(page);
09cbfeaf 4349 put_page(page);
0ec76a11 4350 }
0ec76a11
DH
4351 len -= bytes;
4352 buf += bytes;
4353 addr += bytes;
4354 }
4355 up_read(&mm->mmap_sem);
0ec76a11
DH
4356
4357 return buf - old_buf;
4358}
03252919 4359
5ddd36b9 4360/**
ae91dbfc 4361 * access_remote_vm - access another process' address space
5ddd36b9
SW
4362 * @mm: the mm_struct of the target address space
4363 * @addr: start address to access
4364 * @buf: source or destination buffer
4365 * @len: number of bytes to transfer
6347e8d5 4366 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4367 *
4368 * The caller must hold a reference on @mm.
a862f68a
MR
4369 *
4370 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4371 */
4372int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4373 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4374{
6347e8d5 4375 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4376}
4377
206cb636
SW
4378/*
4379 * Access another process' address space.
4380 * Source/target buffer must be kernel space,
4381 * Do not walk the page table directly, use get_user_pages
4382 */
4383int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4384 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4385{
4386 struct mm_struct *mm;
4387 int ret;
4388
4389 mm = get_task_mm(tsk);
4390 if (!mm)
4391 return 0;
4392
f307ab6d 4393 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4394
206cb636
SW
4395 mmput(mm);
4396
4397 return ret;
4398}
fcd35857 4399EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4400
03252919
AK
4401/*
4402 * Print the name of a VMA.
4403 */
4404void print_vma_addr(char *prefix, unsigned long ip)
4405{
4406 struct mm_struct *mm = current->mm;
4407 struct vm_area_struct *vma;
4408
e8bff74a 4409 /*
0a7f682d 4410 * we might be running from an atomic context so we cannot sleep
e8bff74a 4411 */
0a7f682d 4412 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4413 return;
4414
03252919
AK
4415 vma = find_vma(mm, ip);
4416 if (vma && vma->vm_file) {
4417 struct file *f = vma->vm_file;
0a7f682d 4418 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4419 if (buf) {
2fbc57c5 4420 char *p;
03252919 4421
9bf39ab2 4422 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4423 if (IS_ERR(p))
4424 p = "?";
2fbc57c5 4425 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4426 vma->vm_start,
4427 vma->vm_end - vma->vm_start);
4428 free_page((unsigned long)buf);
4429 }
4430 }
51a07e50 4431 up_read(&mm->mmap_sem);
03252919 4432}
3ee1afa3 4433
662bbcb2 4434#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4435void __might_fault(const char *file, int line)
3ee1afa3 4436{
95156f00
PZ
4437 /*
4438 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4439 * holding the mmap_sem, this is safe because kernel memory doesn't
4440 * get paged out, therefore we'll never actually fault, and the
4441 * below annotations will generate false positives.
4442 */
db68ce10 4443 if (uaccess_kernel())
95156f00 4444 return;
9ec23531 4445 if (pagefault_disabled())
662bbcb2 4446 return;
9ec23531
DH
4447 __might_sleep(file, line, 0);
4448#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4449 if (current->mm)
3ee1afa3 4450 might_lock_read(&current->mm->mmap_sem);
9ec23531 4451#endif
3ee1afa3 4452}
9ec23531 4453EXPORT_SYMBOL(__might_fault);
3ee1afa3 4454#endif
47ad8475
AA
4455
4456#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4457/*
4458 * Process all subpages of the specified huge page with the specified
4459 * operation. The target subpage will be processed last to keep its
4460 * cache lines hot.
4461 */
4462static inline void process_huge_page(
4463 unsigned long addr_hint, unsigned int pages_per_huge_page,
4464 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4465 void *arg)
47ad8475 4466{
c79b57e4
HY
4467 int i, n, base, l;
4468 unsigned long addr = addr_hint &
4469 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4470
c6ddfb6c 4471 /* Process target subpage last to keep its cache lines hot */
47ad8475 4472 might_sleep();
c79b57e4
HY
4473 n = (addr_hint - addr) / PAGE_SIZE;
4474 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4475 /* If target subpage in first half of huge page */
c79b57e4
HY
4476 base = 0;
4477 l = n;
c6ddfb6c 4478 /* Process subpages at the end of huge page */
c79b57e4
HY
4479 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4480 cond_resched();
c6ddfb6c 4481 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4482 }
4483 } else {
c6ddfb6c 4484 /* If target subpage in second half of huge page */
c79b57e4
HY
4485 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4486 l = pages_per_huge_page - n;
c6ddfb6c 4487 /* Process subpages at the begin of huge page */
c79b57e4
HY
4488 for (i = 0; i < base; i++) {
4489 cond_resched();
c6ddfb6c 4490 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4491 }
4492 }
4493 /*
c6ddfb6c
HY
4494 * Process remaining subpages in left-right-left-right pattern
4495 * towards the target subpage
c79b57e4
HY
4496 */
4497 for (i = 0; i < l; i++) {
4498 int left_idx = base + i;
4499 int right_idx = base + 2 * l - 1 - i;
4500
4501 cond_resched();
c6ddfb6c 4502 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4503 cond_resched();
c6ddfb6c 4504 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4505 }
4506}
4507
c6ddfb6c
HY
4508static void clear_gigantic_page(struct page *page,
4509 unsigned long addr,
4510 unsigned int pages_per_huge_page)
4511{
4512 int i;
4513 struct page *p = page;
4514
4515 might_sleep();
4516 for (i = 0; i < pages_per_huge_page;
4517 i++, p = mem_map_next(p, page, i)) {
4518 cond_resched();
4519 clear_user_highpage(p, addr + i * PAGE_SIZE);
4520 }
4521}
4522
4523static void clear_subpage(unsigned long addr, int idx, void *arg)
4524{
4525 struct page *page = arg;
4526
4527 clear_user_highpage(page + idx, addr);
4528}
4529
4530void clear_huge_page(struct page *page,
4531 unsigned long addr_hint, unsigned int pages_per_huge_page)
4532{
4533 unsigned long addr = addr_hint &
4534 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4535
4536 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4537 clear_gigantic_page(page, addr, pages_per_huge_page);
4538 return;
4539 }
4540
4541 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4542}
4543
47ad8475
AA
4544static void copy_user_gigantic_page(struct page *dst, struct page *src,
4545 unsigned long addr,
4546 struct vm_area_struct *vma,
4547 unsigned int pages_per_huge_page)
4548{
4549 int i;
4550 struct page *dst_base = dst;
4551 struct page *src_base = src;
4552
4553 for (i = 0; i < pages_per_huge_page; ) {
4554 cond_resched();
4555 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4556
4557 i++;
4558 dst = mem_map_next(dst, dst_base, i);
4559 src = mem_map_next(src, src_base, i);
4560 }
4561}
4562
c9f4cd71
HY
4563struct copy_subpage_arg {
4564 struct page *dst;
4565 struct page *src;
4566 struct vm_area_struct *vma;
4567};
4568
4569static void copy_subpage(unsigned long addr, int idx, void *arg)
4570{
4571 struct copy_subpage_arg *copy_arg = arg;
4572
4573 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4574 addr, copy_arg->vma);
4575}
4576
47ad8475 4577void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4578 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4579 unsigned int pages_per_huge_page)
4580{
c9f4cd71
HY
4581 unsigned long addr = addr_hint &
4582 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4583 struct copy_subpage_arg arg = {
4584 .dst = dst,
4585 .src = src,
4586 .vma = vma,
4587 };
47ad8475
AA
4588
4589 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4590 copy_user_gigantic_page(dst, src, addr, vma,
4591 pages_per_huge_page);
4592 return;
4593 }
4594
c9f4cd71 4595 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4596}
fa4d75c1
MK
4597
4598long copy_huge_page_from_user(struct page *dst_page,
4599 const void __user *usr_src,
810a56b9
MK
4600 unsigned int pages_per_huge_page,
4601 bool allow_pagefault)
fa4d75c1
MK
4602{
4603 void *src = (void *)usr_src;
4604 void *page_kaddr;
4605 unsigned long i, rc = 0;
4606 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4607
4608 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4609 if (allow_pagefault)
4610 page_kaddr = kmap(dst_page + i);
4611 else
4612 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4613 rc = copy_from_user(page_kaddr,
4614 (const void __user *)(src + i * PAGE_SIZE),
4615 PAGE_SIZE);
810a56b9
MK
4616 if (allow_pagefault)
4617 kunmap(dst_page + i);
4618 else
4619 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4620
4621 ret_val -= (PAGE_SIZE - rc);
4622 if (rc)
4623 break;
4624
4625 cond_resched();
4626 }
4627 return ret_val;
4628}
47ad8475 4629#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4630
40b64acd 4631#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4632
4633static struct kmem_cache *page_ptl_cachep;
4634
4635void __init ptlock_cache_init(void)
4636{
4637 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4638 SLAB_PANIC, NULL);
4639}
4640
539edb58 4641bool ptlock_alloc(struct page *page)
49076ec2
KS
4642{
4643 spinlock_t *ptl;
4644
b35f1819 4645 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4646 if (!ptl)
4647 return false;
539edb58 4648 page->ptl = ptl;
49076ec2
KS
4649 return true;
4650}
4651
539edb58 4652void ptlock_free(struct page *page)
49076ec2 4653{
b35f1819 4654 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4655}
4656#endif