mm: initialize MAX_ORDER_NR_PAGES at a time instead of doing larger sections
[linux-2.6-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
5042db43 52#include <linux/memremap.h>
9a840895 53#include <linux/ksm.h>
1da177e4 54#include <linux/rmap.h>
b95f1b31 55#include <linux/export.h>
0ff92245 56#include <linux/delayacct.h>
1da177e4 57#include <linux/init.h>
01c8f1c4 58#include <linux/pfn_t.h>
edc79b2a 59#include <linux/writeback.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
3dc14741
HD
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
1da177e4 73
6952b61d 74#include <asm/io.h>
33a709b2 75#include <asm/mmu_context.h>
1da177e4 76#include <asm/pgalloc.h>
7c0f6ba6 77#include <linux/uaccess.h>
1da177e4
LT
78#include <asm/tlb.h>
79#include <asm/tlbflush.h>
80#include <asm/pgtable.h>
81
42b77728
JB
82#include "internal.h"
83
af27d940 84#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 85#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
86#endif
87
d41dee36 88#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
89/* use the per-pgdat data instead for discontigmem - mbligh */
90unsigned long max_mapnr;
1da177e4 91EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
92
93struct page *mem_map;
1da177e4
LT
94EXPORT_SYMBOL(mem_map);
95#endif
96
1da177e4
LT
97/*
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
103 */
166f61b9 104void *high_memory;
1da177e4 105EXPORT_SYMBOL(high_memory);
1da177e4 106
32a93233
IM
107/*
108 * Randomize the address space (stacks, mmaps, brk, etc.).
109 *
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
112 */
113int randomize_va_space __read_mostly =
114#ifdef CONFIG_COMPAT_BRK
115 1;
116#else
117 2;
118#endif
a62eaf15
AK
119
120static int __init disable_randmaps(char *s)
121{
122 randomize_va_space = 0;
9b41046c 123 return 1;
a62eaf15
AK
124}
125__setup("norandmaps", disable_randmaps);
126
62eede62 127unsigned long zero_pfn __read_mostly;
0b70068e
AB
128EXPORT_SYMBOL(zero_pfn);
129
166f61b9
TH
130unsigned long highest_memmap_pfn __read_mostly;
131
a13ea5b7
HD
132/*
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 */
135static int __init init_zero_pfn(void)
136{
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
139}
140core_initcall(init_zero_pfn);
a62eaf15 141
d559db08 142
34e55232
KH
143#if defined(SPLIT_RSS_COUNTING)
144
ea48cf78 145void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
146{
147 int i;
148
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
34e55232
KH
153 }
154 }
05af2e10 155 current->rss_stat.events = 0;
34e55232
KH
156}
157
158static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159{
160 struct task_struct *task = current;
161
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
166}
167#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170/* sync counter once per 64 page faults */
171#define TASK_RSS_EVENTS_THRESH (64)
172static void check_sync_rss_stat(struct task_struct *task)
173{
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 177 sync_mm_rss(task->mm);
34e55232 178}
9547d01b 179#else /* SPLIT_RSS_COUNTING */
34e55232
KH
180
181#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184static void check_sync_rss_stat(struct task_struct *task)
185{
186}
187
9547d01b
PZ
188#endif /* SPLIT_RSS_COUNTING */
189
1da177e4
LT
190/*
191 * Note: this doesn't free the actual pages themselves. That
192 * has been handled earlier when unmapping all the memory regions.
193 */
9e1b32ca
BH
194static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
195 unsigned long addr)
1da177e4 196{
2f569afd 197 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 198 pmd_clear(pmd);
9e1b32ca 199 pte_free_tlb(tlb, token, addr);
c4812909 200 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
201}
202
e0da382c
HD
203static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
204 unsigned long addr, unsigned long end,
205 unsigned long floor, unsigned long ceiling)
1da177e4
LT
206{
207 pmd_t *pmd;
208 unsigned long next;
e0da382c 209 unsigned long start;
1da177e4 210
e0da382c 211 start = addr;
1da177e4 212 pmd = pmd_offset(pud, addr);
1da177e4
LT
213 do {
214 next = pmd_addr_end(addr, end);
215 if (pmd_none_or_clear_bad(pmd))
216 continue;
9e1b32ca 217 free_pte_range(tlb, pmd, addr);
1da177e4
LT
218 } while (pmd++, addr = next, addr != end);
219
e0da382c
HD
220 start &= PUD_MASK;
221 if (start < floor)
222 return;
223 if (ceiling) {
224 ceiling &= PUD_MASK;
225 if (!ceiling)
226 return;
1da177e4 227 }
e0da382c
HD
228 if (end - 1 > ceiling - 1)
229 return;
230
231 pmd = pmd_offset(pud, start);
232 pud_clear(pud);
9e1b32ca 233 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 234 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
235}
236
c2febafc 237static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
238 unsigned long addr, unsigned long end,
239 unsigned long floor, unsigned long ceiling)
1da177e4
LT
240{
241 pud_t *pud;
242 unsigned long next;
e0da382c 243 unsigned long start;
1da177e4 244
e0da382c 245 start = addr;
c2febafc 246 pud = pud_offset(p4d, addr);
1da177e4
LT
247 do {
248 next = pud_addr_end(addr, end);
249 if (pud_none_or_clear_bad(pud))
250 continue;
e0da382c 251 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
252 } while (pud++, addr = next, addr != end);
253
c2febafc
KS
254 start &= P4D_MASK;
255 if (start < floor)
256 return;
257 if (ceiling) {
258 ceiling &= P4D_MASK;
259 if (!ceiling)
260 return;
261 }
262 if (end - 1 > ceiling - 1)
263 return;
264
265 pud = pud_offset(p4d, start);
266 p4d_clear(p4d);
267 pud_free_tlb(tlb, pud, start);
b4e98d9a 268 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
269}
270
271static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
272 unsigned long addr, unsigned long end,
273 unsigned long floor, unsigned long ceiling)
274{
275 p4d_t *p4d;
276 unsigned long next;
277 unsigned long start;
278
279 start = addr;
280 p4d = p4d_offset(pgd, addr);
281 do {
282 next = p4d_addr_end(addr, end);
283 if (p4d_none_or_clear_bad(p4d))
284 continue;
285 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
286 } while (p4d++, addr = next, addr != end);
287
e0da382c
HD
288 start &= PGDIR_MASK;
289 if (start < floor)
290 return;
291 if (ceiling) {
292 ceiling &= PGDIR_MASK;
293 if (!ceiling)
294 return;
1da177e4 295 }
e0da382c
HD
296 if (end - 1 > ceiling - 1)
297 return;
298
c2febafc 299 p4d = p4d_offset(pgd, start);
e0da382c 300 pgd_clear(pgd);
c2febafc 301 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
302}
303
304/*
e0da382c 305 * This function frees user-level page tables of a process.
1da177e4 306 */
42b77728 307void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
308 unsigned long addr, unsigned long end,
309 unsigned long floor, unsigned long ceiling)
1da177e4
LT
310{
311 pgd_t *pgd;
312 unsigned long next;
e0da382c
HD
313
314 /*
315 * The next few lines have given us lots of grief...
316 *
317 * Why are we testing PMD* at this top level? Because often
318 * there will be no work to do at all, and we'd prefer not to
319 * go all the way down to the bottom just to discover that.
320 *
321 * Why all these "- 1"s? Because 0 represents both the bottom
322 * of the address space and the top of it (using -1 for the
323 * top wouldn't help much: the masks would do the wrong thing).
324 * The rule is that addr 0 and floor 0 refer to the bottom of
325 * the address space, but end 0 and ceiling 0 refer to the top
326 * Comparisons need to use "end - 1" and "ceiling - 1" (though
327 * that end 0 case should be mythical).
328 *
329 * Wherever addr is brought up or ceiling brought down, we must
330 * be careful to reject "the opposite 0" before it confuses the
331 * subsequent tests. But what about where end is brought down
332 * by PMD_SIZE below? no, end can't go down to 0 there.
333 *
334 * Whereas we round start (addr) and ceiling down, by different
335 * masks at different levels, in order to test whether a table
336 * now has no other vmas using it, so can be freed, we don't
337 * bother to round floor or end up - the tests don't need that.
338 */
1da177e4 339
e0da382c
HD
340 addr &= PMD_MASK;
341 if (addr < floor) {
342 addr += PMD_SIZE;
343 if (!addr)
344 return;
345 }
346 if (ceiling) {
347 ceiling &= PMD_MASK;
348 if (!ceiling)
349 return;
350 }
351 if (end - 1 > ceiling - 1)
352 end -= PMD_SIZE;
353 if (addr > end - 1)
354 return;
07e32661
AK
355 /*
356 * We add page table cache pages with PAGE_SIZE,
357 * (see pte_free_tlb()), flush the tlb if we need
358 */
ed6a7935 359 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 360 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
361 do {
362 next = pgd_addr_end(addr, end);
363 if (pgd_none_or_clear_bad(pgd))
364 continue;
c2febafc 365 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 366 } while (pgd++, addr = next, addr != end);
e0da382c
HD
367}
368
42b77728 369void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 370 unsigned long floor, unsigned long ceiling)
e0da382c
HD
371{
372 while (vma) {
373 struct vm_area_struct *next = vma->vm_next;
374 unsigned long addr = vma->vm_start;
375
8f4f8c16 376 /*
25d9e2d1 377 * Hide vma from rmap and truncate_pagecache before freeing
378 * pgtables
8f4f8c16 379 */
5beb4930 380 unlink_anon_vmas(vma);
8f4f8c16
HD
381 unlink_file_vma(vma);
382
9da61aef 383 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 384 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 385 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
386 } else {
387 /*
388 * Optimization: gather nearby vmas into one call down
389 */
390 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 391 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
392 vma = next;
393 next = vma->vm_next;
5beb4930 394 unlink_anon_vmas(vma);
8f4f8c16 395 unlink_file_vma(vma);
3bf5ee95
HD
396 }
397 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 398 floor, next ? next->vm_start : ceiling);
3bf5ee95 399 }
e0da382c
HD
400 vma = next;
401 }
1da177e4
LT
402}
403
4cf58924 404int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 405{
c4088ebd 406 spinlock_t *ptl;
4cf58924 407 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
408 if (!new)
409 return -ENOMEM;
410
362a61ad
NP
411 /*
412 * Ensure all pte setup (eg. pte page lock and page clearing) are
413 * visible before the pte is made visible to other CPUs by being
414 * put into page tables.
415 *
416 * The other side of the story is the pointer chasing in the page
417 * table walking code (when walking the page table without locking;
418 * ie. most of the time). Fortunately, these data accesses consist
419 * of a chain of data-dependent loads, meaning most CPUs (alpha
420 * being the notable exception) will already guarantee loads are
421 * seen in-order. See the alpha page table accessors for the
422 * smp_read_barrier_depends() barriers in page table walking code.
423 */
424 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425
c4088ebd 426 ptl = pmd_lock(mm, pmd);
8ac1f832 427 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 428 mm_inc_nr_ptes(mm);
1da177e4 429 pmd_populate(mm, pmd, new);
2f569afd 430 new = NULL;
4b471e88 431 }
c4088ebd 432 spin_unlock(ptl);
2f569afd
MS
433 if (new)
434 pte_free(mm, new);
1bb3630e 435 return 0;
1da177e4
LT
436}
437
4cf58924 438int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 439{
4cf58924 440 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
441 if (!new)
442 return -ENOMEM;
443
362a61ad
NP
444 smp_wmb(); /* See comment in __pte_alloc */
445
1bb3630e 446 spin_lock(&init_mm.page_table_lock);
8ac1f832 447 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 448 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 449 new = NULL;
4b471e88 450 }
1bb3630e 451 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
452 if (new)
453 pte_free_kernel(&init_mm, new);
1bb3630e 454 return 0;
1da177e4
LT
455}
456
d559db08
KH
457static inline void init_rss_vec(int *rss)
458{
459 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
460}
461
462static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 463{
d559db08
KH
464 int i;
465
34e55232 466 if (current->mm == mm)
05af2e10 467 sync_mm_rss(mm);
d559db08
KH
468 for (i = 0; i < NR_MM_COUNTERS; i++)
469 if (rss[i])
470 add_mm_counter(mm, i, rss[i]);
ae859762
HD
471}
472
b5810039 473/*
6aab341e
LT
474 * This function is called to print an error when a bad pte
475 * is found. For example, we might have a PFN-mapped pte in
476 * a region that doesn't allow it.
b5810039
NP
477 *
478 * The calling function must still handle the error.
479 */
3dc14741
HD
480static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
481 pte_t pte, struct page *page)
b5810039 482{
3dc14741 483 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
484 p4d_t *p4d = p4d_offset(pgd, addr);
485 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
486 pmd_t *pmd = pmd_offset(pud, addr);
487 struct address_space *mapping;
488 pgoff_t index;
d936cf9b
HD
489 static unsigned long resume;
490 static unsigned long nr_shown;
491 static unsigned long nr_unshown;
492
493 /*
494 * Allow a burst of 60 reports, then keep quiet for that minute;
495 * or allow a steady drip of one report per second.
496 */
497 if (nr_shown == 60) {
498 if (time_before(jiffies, resume)) {
499 nr_unshown++;
500 return;
501 }
502 if (nr_unshown) {
1170532b
JP
503 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
504 nr_unshown);
d936cf9b
HD
505 nr_unshown = 0;
506 }
507 nr_shown = 0;
508 }
509 if (nr_shown++ == 0)
510 resume = jiffies + 60 * HZ;
3dc14741
HD
511
512 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
513 index = linear_page_index(vma, addr);
514
1170532b
JP
515 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
516 current->comm,
517 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 518 if (page)
f0b791a3 519 dump_page(page, "bad pte");
1170532b
JP
520 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
521 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 522 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
523 vma->vm_file,
524 vma->vm_ops ? vma->vm_ops->fault : NULL,
525 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
526 mapping ? mapping->a_ops->readpage : NULL);
b5810039 527 dump_stack();
373d4d09 528 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
529}
530
ee498ed7 531/*
7e675137 532 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 533 *
7e675137
NP
534 * "Special" mappings do not wish to be associated with a "struct page" (either
535 * it doesn't exist, or it exists but they don't want to touch it). In this
536 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 537 *
7e675137
NP
538 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
539 * pte bit, in which case this function is trivial. Secondly, an architecture
540 * may not have a spare pte bit, which requires a more complicated scheme,
541 * described below.
542 *
543 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
544 * special mapping (even if there are underlying and valid "struct pages").
545 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 546 *
b379d790
JH
547 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
548 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
549 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
550 * mapping will always honor the rule
6aab341e
LT
551 *
552 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553 *
7e675137
NP
554 * And for normal mappings this is false.
555 *
556 * This restricts such mappings to be a linear translation from virtual address
557 * to pfn. To get around this restriction, we allow arbitrary mappings so long
558 * as the vma is not a COW mapping; in that case, we know that all ptes are
559 * special (because none can have been COWed).
b379d790 560 *
b379d790 561 *
7e675137 562 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
563 *
564 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
565 * page" backing, however the difference is that _all_ pages with a struct
566 * page (that is, those where pfn_valid is true) are refcounted and considered
567 * normal pages by the VM. The disadvantage is that pages are refcounted
568 * (which can be slower and simply not an option for some PFNMAP users). The
569 * advantage is that we don't have to follow the strict linearity rule of
570 * PFNMAP mappings in order to support COWable mappings.
571 *
ee498ed7 572 */
df6ad698
JG
573struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
574 pte_t pte, bool with_public_device)
ee498ed7 575{
22b31eec 576 unsigned long pfn = pte_pfn(pte);
7e675137 577
00b3a331 578 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 579 if (likely(!pte_special(pte)))
22b31eec 580 goto check_pfn;
667a0a06
DV
581 if (vma->vm_ops && vma->vm_ops->find_special_page)
582 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
583 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
584 return NULL;
df6ad698
JG
585 if (is_zero_pfn(pfn))
586 return NULL;
587
588 /*
589 * Device public pages are special pages (they are ZONE_DEVICE
590 * pages but different from persistent memory). They behave
591 * allmost like normal pages. The difference is that they are
592 * not on the lru and thus should never be involve with any-
593 * thing that involve lru manipulation (mlock, numa balancing,
594 * ...).
595 *
596 * This is why we still want to return NULL for such page from
597 * vm_normal_page() so that we do not have to special case all
598 * call site of vm_normal_page().
599 */
7d790d2d 600 if (likely(pfn <= highest_memmap_pfn)) {
df6ad698
JG
601 struct page *page = pfn_to_page(pfn);
602
603 if (is_device_public_page(page)) {
604 if (with_public_device)
605 return page;
606 return NULL;
607 }
608 }
e1fb4a08
DJ
609
610 if (pte_devmap(pte))
611 return NULL;
612
df6ad698 613 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
614 return NULL;
615 }
616
00b3a331 617 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 618
b379d790
JH
619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 if (vma->vm_flags & VM_MIXEDMAP) {
621 if (!pfn_valid(pfn))
622 return NULL;
623 goto out;
624 } else {
7e675137
NP
625 unsigned long off;
626 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
627 if (pfn == vma->vm_pgoff + off)
628 return NULL;
629 if (!is_cow_mapping(vma->vm_flags))
630 return NULL;
631 }
6aab341e
LT
632 }
633
b38af472
HD
634 if (is_zero_pfn(pfn))
635 return NULL;
00b3a331 636
22b31eec
HD
637check_pfn:
638 if (unlikely(pfn > highest_memmap_pfn)) {
639 print_bad_pte(vma, addr, pte, NULL);
640 return NULL;
641 }
6aab341e
LT
642
643 /*
7e675137 644 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 645 * eg. VDSO mappings can cause them to exist.
6aab341e 646 */
b379d790 647out:
6aab341e 648 return pfn_to_page(pfn);
ee498ed7
HD
649}
650
28093f9f
GS
651#ifdef CONFIG_TRANSPARENT_HUGEPAGE
652struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
653 pmd_t pmd)
654{
655 unsigned long pfn = pmd_pfn(pmd);
656
657 /*
658 * There is no pmd_special() but there may be special pmds, e.g.
659 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 660 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
661 */
662 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
663 if (vma->vm_flags & VM_MIXEDMAP) {
664 if (!pfn_valid(pfn))
665 return NULL;
666 goto out;
667 } else {
668 unsigned long off;
669 off = (addr - vma->vm_start) >> PAGE_SHIFT;
670 if (pfn == vma->vm_pgoff + off)
671 return NULL;
672 if (!is_cow_mapping(vma->vm_flags))
673 return NULL;
674 }
675 }
676
e1fb4a08
DJ
677 if (pmd_devmap(pmd))
678 return NULL;
28093f9f
GS
679 if (is_zero_pfn(pfn))
680 return NULL;
681 if (unlikely(pfn > highest_memmap_pfn))
682 return NULL;
683
684 /*
685 * NOTE! We still have PageReserved() pages in the page tables.
686 * eg. VDSO mappings can cause them to exist.
687 */
688out:
689 return pfn_to_page(pfn);
690}
691#endif
692
1da177e4
LT
693/*
694 * copy one vm_area from one task to the other. Assumes the page tables
695 * already present in the new task to be cleared in the whole range
696 * covered by this vma.
1da177e4
LT
697 */
698
570a335b 699static inline unsigned long
1da177e4 700copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 701 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 702 unsigned long addr, int *rss)
1da177e4 703{
b5810039 704 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
705 pte_t pte = *src_pte;
706 struct page *page;
1da177e4
LT
707
708 /* pte contains position in swap or file, so copy. */
709 if (unlikely(!pte_present(pte))) {
0661a336
KS
710 swp_entry_t entry = pte_to_swp_entry(pte);
711
712 if (likely(!non_swap_entry(entry))) {
713 if (swap_duplicate(entry) < 0)
714 return entry.val;
715
716 /* make sure dst_mm is on swapoff's mmlist. */
717 if (unlikely(list_empty(&dst_mm->mmlist))) {
718 spin_lock(&mmlist_lock);
719 if (list_empty(&dst_mm->mmlist))
720 list_add(&dst_mm->mmlist,
721 &src_mm->mmlist);
722 spin_unlock(&mmlist_lock);
723 }
724 rss[MM_SWAPENTS]++;
725 } else if (is_migration_entry(entry)) {
726 page = migration_entry_to_page(entry);
727
eca56ff9 728 rss[mm_counter(page)]++;
0661a336
KS
729
730 if (is_write_migration_entry(entry) &&
731 is_cow_mapping(vm_flags)) {
732 /*
733 * COW mappings require pages in both
734 * parent and child to be set to read.
735 */
736 make_migration_entry_read(&entry);
737 pte = swp_entry_to_pte(entry);
738 if (pte_swp_soft_dirty(*src_pte))
739 pte = pte_swp_mksoft_dirty(pte);
740 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 741 }
5042db43
JG
742 } else if (is_device_private_entry(entry)) {
743 page = device_private_entry_to_page(entry);
744
745 /*
746 * Update rss count even for unaddressable pages, as
747 * they should treated just like normal pages in this
748 * respect.
749 *
750 * We will likely want to have some new rss counters
751 * for unaddressable pages, at some point. But for now
752 * keep things as they are.
753 */
754 get_page(page);
755 rss[mm_counter(page)]++;
756 page_dup_rmap(page, false);
757
758 /*
759 * We do not preserve soft-dirty information, because so
760 * far, checkpoint/restore is the only feature that
761 * requires that. And checkpoint/restore does not work
762 * when a device driver is involved (you cannot easily
763 * save and restore device driver state).
764 */
765 if (is_write_device_private_entry(entry) &&
766 is_cow_mapping(vm_flags)) {
767 make_device_private_entry_read(&entry);
768 pte = swp_entry_to_pte(entry);
769 set_pte_at(src_mm, addr, src_pte, pte);
770 }
1da177e4 771 }
ae859762 772 goto out_set_pte;
1da177e4
LT
773 }
774
1da177e4
LT
775 /*
776 * If it's a COW mapping, write protect it both
777 * in the parent and the child
778 */
1b2de5d0 779 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 780 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 781 pte = pte_wrprotect(pte);
1da177e4
LT
782 }
783
784 /*
785 * If it's a shared mapping, mark it clean in
786 * the child
787 */
788 if (vm_flags & VM_SHARED)
789 pte = pte_mkclean(pte);
790 pte = pte_mkold(pte);
6aab341e
LT
791
792 page = vm_normal_page(vma, addr, pte);
793 if (page) {
794 get_page(page);
53f9263b 795 page_dup_rmap(page, false);
eca56ff9 796 rss[mm_counter(page)]++;
df6ad698
JG
797 } else if (pte_devmap(pte)) {
798 page = pte_page(pte);
799
800 /*
801 * Cache coherent device memory behave like regular page and
802 * not like persistent memory page. For more informations see
803 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804 */
805 if (is_device_public_page(page)) {
806 get_page(page);
807 page_dup_rmap(page, false);
808 rss[mm_counter(page)]++;
809 }
6aab341e 810 }
ae859762
HD
811
812out_set_pte:
813 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 814 return 0;
1da177e4
LT
815}
816
21bda264 817static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
818 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
819 unsigned long addr, unsigned long end)
1da177e4 820{
c36987e2 821 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 822 pte_t *src_pte, *dst_pte;
c74df32c 823 spinlock_t *src_ptl, *dst_ptl;
e040f218 824 int progress = 0;
d559db08 825 int rss[NR_MM_COUNTERS];
570a335b 826 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
827
828again:
d559db08
KH
829 init_rss_vec(rss);
830
c74df32c 831 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
832 if (!dst_pte)
833 return -ENOMEM;
ece0e2b6 834 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 835 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 836 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
837 orig_src_pte = src_pte;
838 orig_dst_pte = dst_pte;
6606c3e0 839 arch_enter_lazy_mmu_mode();
1da177e4 840
1da177e4
LT
841 do {
842 /*
843 * We are holding two locks at this point - either of them
844 * could generate latencies in another task on another CPU.
845 */
e040f218
HD
846 if (progress >= 32) {
847 progress = 0;
848 if (need_resched() ||
95c354fe 849 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
850 break;
851 }
1da177e4
LT
852 if (pte_none(*src_pte)) {
853 progress++;
854 continue;
855 }
570a335b
HD
856 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
857 vma, addr, rss);
858 if (entry.val)
859 break;
1da177e4
LT
860 progress += 8;
861 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 862
6606c3e0 863 arch_leave_lazy_mmu_mode();
c74df32c 864 spin_unlock(src_ptl);
ece0e2b6 865 pte_unmap(orig_src_pte);
d559db08 866 add_mm_rss_vec(dst_mm, rss);
c36987e2 867 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 868 cond_resched();
570a335b
HD
869
870 if (entry.val) {
871 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
872 return -ENOMEM;
873 progress = 0;
874 }
1da177e4
LT
875 if (addr != end)
876 goto again;
877 return 0;
878}
879
880static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
881 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
882 unsigned long addr, unsigned long end)
883{
884 pmd_t *src_pmd, *dst_pmd;
885 unsigned long next;
886
887 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
888 if (!dst_pmd)
889 return -ENOMEM;
890 src_pmd = pmd_offset(src_pud, addr);
891 do {
892 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
893 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
894 || pmd_devmap(*src_pmd)) {
71e3aac0 895 int err;
a00cc7d9 896 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
897 err = copy_huge_pmd(dst_mm, src_mm,
898 dst_pmd, src_pmd, addr, vma);
899 if (err == -ENOMEM)
900 return -ENOMEM;
901 if (!err)
902 continue;
903 /* fall through */
904 }
1da177e4
LT
905 if (pmd_none_or_clear_bad(src_pmd))
906 continue;
907 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
908 vma, addr, next))
909 return -ENOMEM;
910 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
911 return 0;
912}
913
914static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 915 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
916 unsigned long addr, unsigned long end)
917{
918 pud_t *src_pud, *dst_pud;
919 unsigned long next;
920
c2febafc 921 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
922 if (!dst_pud)
923 return -ENOMEM;
c2febafc 924 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
925 do {
926 next = pud_addr_end(addr, end);
a00cc7d9
MW
927 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
928 int err;
929
930 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
931 err = copy_huge_pud(dst_mm, src_mm,
932 dst_pud, src_pud, addr, vma);
933 if (err == -ENOMEM)
934 return -ENOMEM;
935 if (!err)
936 continue;
937 /* fall through */
938 }
1da177e4
LT
939 if (pud_none_or_clear_bad(src_pud))
940 continue;
941 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
942 vma, addr, next))
943 return -ENOMEM;
944 } while (dst_pud++, src_pud++, addr = next, addr != end);
945 return 0;
946}
947
c2febafc
KS
948static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
949 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
950 unsigned long addr, unsigned long end)
951{
952 p4d_t *src_p4d, *dst_p4d;
953 unsigned long next;
954
955 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
956 if (!dst_p4d)
957 return -ENOMEM;
958 src_p4d = p4d_offset(src_pgd, addr);
959 do {
960 next = p4d_addr_end(addr, end);
961 if (p4d_none_or_clear_bad(src_p4d))
962 continue;
963 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
964 vma, addr, next))
965 return -ENOMEM;
966 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
967 return 0;
968}
969
1da177e4
LT
970int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971 struct vm_area_struct *vma)
972{
973 pgd_t *src_pgd, *dst_pgd;
974 unsigned long next;
975 unsigned long addr = vma->vm_start;
976 unsigned long end = vma->vm_end;
ac46d4f3 977 struct mmu_notifier_range range;
2ec74c3e 978 bool is_cow;
cddb8a5c 979 int ret;
1da177e4 980
d992895b
NP
981 /*
982 * Don't copy ptes where a page fault will fill them correctly.
983 * Fork becomes much lighter when there are big shared or private
984 * readonly mappings. The tradeoff is that copy_page_range is more
985 * efficient than faulting.
986 */
0661a336
KS
987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988 !vma->anon_vma)
989 return 0;
d992895b 990
1da177e4
LT
991 if (is_vm_hugetlb_page(vma))
992 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993
b3b9c293 994 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 995 /*
996 * We do not free on error cases below as remove_vma
997 * gets called on error from higher level routine
998 */
5180da41 999 ret = track_pfn_copy(vma);
2ab64037 1000 if (ret)
1001 return ret;
1002 }
1003
cddb8a5c
AA
1004 /*
1005 * We need to invalidate the secondary MMU mappings only when
1006 * there could be a permission downgrade on the ptes of the
1007 * parent mm. And a permission downgrade will only happen if
1008 * is_cow_mapping() returns true.
1009 */
2ec74c3e 1010 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
1011
1012 if (is_cow) {
7269f999
JG
1013 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1014 0, vma, src_mm, addr, end);
ac46d4f3
JG
1015 mmu_notifier_invalidate_range_start(&range);
1016 }
cddb8a5c
AA
1017
1018 ret = 0;
1da177e4
LT
1019 dst_pgd = pgd_offset(dst_mm, addr);
1020 src_pgd = pgd_offset(src_mm, addr);
1021 do {
1022 next = pgd_addr_end(addr, end);
1023 if (pgd_none_or_clear_bad(src_pgd))
1024 continue;
c2febafc 1025 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1026 vma, addr, next))) {
1027 ret = -ENOMEM;
1028 break;
1029 }
1da177e4 1030 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1031
2ec74c3e 1032 if (is_cow)
ac46d4f3 1033 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1034 return ret;
1da177e4
LT
1035}
1036
51c6f666 1037static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1038 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1039 unsigned long addr, unsigned long end,
97a89413 1040 struct zap_details *details)
1da177e4 1041{
b5810039 1042 struct mm_struct *mm = tlb->mm;
d16dfc55 1043 int force_flush = 0;
d559db08 1044 int rss[NR_MM_COUNTERS];
97a89413 1045 spinlock_t *ptl;
5f1a1907 1046 pte_t *start_pte;
97a89413 1047 pte_t *pte;
8a5f14a2 1048 swp_entry_t entry;
d559db08 1049
ed6a7935 1050 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1051again:
e303297e 1052 init_rss_vec(rss);
5f1a1907
SR
1053 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1054 pte = start_pte;
3ea27719 1055 flush_tlb_batched_pending(mm);
6606c3e0 1056 arch_enter_lazy_mmu_mode();
1da177e4
LT
1057 do {
1058 pte_t ptent = *pte;
166f61b9 1059 if (pte_none(ptent))
1da177e4 1060 continue;
6f5e6b9e 1061
1da177e4 1062 if (pte_present(ptent)) {
ee498ed7 1063 struct page *page;
51c6f666 1064
df6ad698 1065 page = _vm_normal_page(vma, addr, ptent, true);
1da177e4
LT
1066 if (unlikely(details) && page) {
1067 /*
1068 * unmap_shared_mapping_pages() wants to
1069 * invalidate cache without truncating:
1070 * unmap shared but keep private pages.
1071 */
1072 if (details->check_mapping &&
800d8c63 1073 details->check_mapping != page_rmapping(page))
1da177e4 1074 continue;
1da177e4 1075 }
b5810039 1076 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1077 tlb->fullmm);
1da177e4
LT
1078 tlb_remove_tlb_entry(tlb, pte, addr);
1079 if (unlikely(!page))
1080 continue;
eca56ff9
JM
1081
1082 if (!PageAnon(page)) {
1cf35d47
LT
1083 if (pte_dirty(ptent)) {
1084 force_flush = 1;
6237bcd9 1085 set_page_dirty(page);
1cf35d47 1086 }
4917e5d0 1087 if (pte_young(ptent) &&
64363aad 1088 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1089 mark_page_accessed(page);
6237bcd9 1090 }
eca56ff9 1091 rss[mm_counter(page)]--;
d281ee61 1092 page_remove_rmap(page, false);
3dc14741
HD
1093 if (unlikely(page_mapcount(page) < 0))
1094 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1095 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1096 force_flush = 1;
ce9ec37b 1097 addr += PAGE_SIZE;
d16dfc55 1098 break;
1cf35d47 1099 }
1da177e4
LT
1100 continue;
1101 }
5042db43
JG
1102
1103 entry = pte_to_swp_entry(ptent);
1104 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1105 struct page *page = device_private_entry_to_page(entry);
1106
1107 if (unlikely(details && details->check_mapping)) {
1108 /*
1109 * unmap_shared_mapping_pages() wants to
1110 * invalidate cache without truncating:
1111 * unmap shared but keep private pages.
1112 */
1113 if (details->check_mapping !=
1114 page_rmapping(page))
1115 continue;
1116 }
1117
1118 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1119 rss[mm_counter(page)]--;
1120 page_remove_rmap(page, false);
1121 put_page(page);
1122 continue;
1123 }
1124
3e8715fd
KS
1125 /* If details->check_mapping, we leave swap entries. */
1126 if (unlikely(details))
1da177e4 1127 continue;
b084d435 1128
8a5f14a2
KS
1129 entry = pte_to_swp_entry(ptent);
1130 if (!non_swap_entry(entry))
1131 rss[MM_SWAPENTS]--;
1132 else if (is_migration_entry(entry)) {
1133 struct page *page;
9f9f1acd 1134
8a5f14a2 1135 page = migration_entry_to_page(entry);
eca56ff9 1136 rss[mm_counter(page)]--;
b084d435 1137 }
8a5f14a2
KS
1138 if (unlikely(!free_swap_and_cache(entry)))
1139 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1140 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1141 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1142
d559db08 1143 add_mm_rss_vec(mm, rss);
6606c3e0 1144 arch_leave_lazy_mmu_mode();
51c6f666 1145
1cf35d47 1146 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1147 if (force_flush)
1cf35d47 1148 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1149 pte_unmap_unlock(start_pte, ptl);
1150
1151 /*
1152 * If we forced a TLB flush (either due to running out of
1153 * batch buffers or because we needed to flush dirty TLB
1154 * entries before releasing the ptl), free the batched
1155 * memory too. Restart if we didn't do everything.
1156 */
1157 if (force_flush) {
1158 force_flush = 0;
fa0aafb8 1159 tlb_flush_mmu(tlb);
2b047252 1160 if (addr != end)
d16dfc55
PZ
1161 goto again;
1162 }
1163
51c6f666 1164 return addr;
1da177e4
LT
1165}
1166
51c6f666 1167static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1168 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1169 unsigned long addr, unsigned long end,
97a89413 1170 struct zap_details *details)
1da177e4
LT
1171{
1172 pmd_t *pmd;
1173 unsigned long next;
1174
1175 pmd = pmd_offset(pud, addr);
1176 do {
1177 next = pmd_addr_end(addr, end);
84c3fc4e 1178 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1179 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1180 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1181 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1182 goto next;
71e3aac0
AA
1183 /* fall through */
1184 }
1a5a9906
AA
1185 /*
1186 * Here there can be other concurrent MADV_DONTNEED or
1187 * trans huge page faults running, and if the pmd is
1188 * none or trans huge it can change under us. This is
1189 * because MADV_DONTNEED holds the mmap_sem in read
1190 * mode.
1191 */
1192 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1193 goto next;
97a89413 1194 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1195next:
97a89413
PZ
1196 cond_resched();
1197 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1198
1199 return addr;
1da177e4
LT
1200}
1201
51c6f666 1202static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1203 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1204 unsigned long addr, unsigned long end,
97a89413 1205 struct zap_details *details)
1da177e4
LT
1206{
1207 pud_t *pud;
1208 unsigned long next;
1209
c2febafc 1210 pud = pud_offset(p4d, addr);
1da177e4
LT
1211 do {
1212 next = pud_addr_end(addr, end);
a00cc7d9
MW
1213 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1214 if (next - addr != HPAGE_PUD_SIZE) {
1215 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1216 split_huge_pud(vma, pud, addr);
1217 } else if (zap_huge_pud(tlb, vma, pud, addr))
1218 goto next;
1219 /* fall through */
1220 }
97a89413 1221 if (pud_none_or_clear_bad(pud))
1da177e4 1222 continue;
97a89413 1223 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1224next:
1225 cond_resched();
97a89413 1226 } while (pud++, addr = next, addr != end);
51c6f666
RH
1227
1228 return addr;
1da177e4
LT
1229}
1230
c2febafc
KS
1231static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1232 struct vm_area_struct *vma, pgd_t *pgd,
1233 unsigned long addr, unsigned long end,
1234 struct zap_details *details)
1235{
1236 p4d_t *p4d;
1237 unsigned long next;
1238
1239 p4d = p4d_offset(pgd, addr);
1240 do {
1241 next = p4d_addr_end(addr, end);
1242 if (p4d_none_or_clear_bad(p4d))
1243 continue;
1244 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1245 } while (p4d++, addr = next, addr != end);
1246
1247 return addr;
1248}
1249
aac45363 1250void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1251 struct vm_area_struct *vma,
1252 unsigned long addr, unsigned long end,
1253 struct zap_details *details)
1da177e4
LT
1254{
1255 pgd_t *pgd;
1256 unsigned long next;
1257
1da177e4
LT
1258 BUG_ON(addr >= end);
1259 tlb_start_vma(tlb, vma);
1260 pgd = pgd_offset(vma->vm_mm, addr);
1261 do {
1262 next = pgd_addr_end(addr, end);
97a89413 1263 if (pgd_none_or_clear_bad(pgd))
1da177e4 1264 continue;
c2febafc 1265 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1266 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1267 tlb_end_vma(tlb, vma);
1268}
51c6f666 1269
f5cc4eef
AV
1270
1271static void unmap_single_vma(struct mmu_gather *tlb,
1272 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1273 unsigned long end_addr,
f5cc4eef
AV
1274 struct zap_details *details)
1275{
1276 unsigned long start = max(vma->vm_start, start_addr);
1277 unsigned long end;
1278
1279 if (start >= vma->vm_end)
1280 return;
1281 end = min(vma->vm_end, end_addr);
1282 if (end <= vma->vm_start)
1283 return;
1284
cbc91f71
SD
1285 if (vma->vm_file)
1286 uprobe_munmap(vma, start, end);
1287
b3b9c293 1288 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1289 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1290
1291 if (start != end) {
1292 if (unlikely(is_vm_hugetlb_page(vma))) {
1293 /*
1294 * It is undesirable to test vma->vm_file as it
1295 * should be non-null for valid hugetlb area.
1296 * However, vm_file will be NULL in the error
7aa6b4ad 1297 * cleanup path of mmap_region. When
f5cc4eef 1298 * hugetlbfs ->mmap method fails,
7aa6b4ad 1299 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1300 * before calling this function to clean up.
1301 * Since no pte has actually been setup, it is
1302 * safe to do nothing in this case.
1303 */
24669e58 1304 if (vma->vm_file) {
83cde9e8 1305 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1306 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1307 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1308 }
f5cc4eef
AV
1309 } else
1310 unmap_page_range(tlb, vma, start, end, details);
1311 }
1da177e4
LT
1312}
1313
1da177e4
LT
1314/**
1315 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1316 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1317 * @vma: the starting vma
1318 * @start_addr: virtual address at which to start unmapping
1319 * @end_addr: virtual address at which to end unmapping
1da177e4 1320 *
508034a3 1321 * Unmap all pages in the vma list.
1da177e4 1322 *
1da177e4
LT
1323 * Only addresses between `start' and `end' will be unmapped.
1324 *
1325 * The VMA list must be sorted in ascending virtual address order.
1326 *
1327 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328 * range after unmap_vmas() returns. So the only responsibility here is to
1329 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330 * drops the lock and schedules.
1331 */
6e8bb019 1332void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1333 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1334 unsigned long end_addr)
1da177e4 1335{
ac46d4f3 1336 struct mmu_notifier_range range;
1da177e4 1337
6f4f13e8
JG
1338 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1339 start_addr, end_addr);
ac46d4f3 1340 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1341 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1342 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1343 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1344}
1345
1346/**
1347 * zap_page_range - remove user pages in a given range
1348 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1349 * @start: starting address of pages to zap
1da177e4 1350 * @size: number of bytes to zap
f5cc4eef
AV
1351 *
1352 * Caller must protect the VMA list
1da177e4 1353 */
7e027b14 1354void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1355 unsigned long size)
1da177e4 1356{
ac46d4f3 1357 struct mmu_notifier_range range;
d16dfc55 1358 struct mmu_gather tlb;
1da177e4 1359
1da177e4 1360 lru_add_drain();
7269f999 1361 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1362 start, start + size);
ac46d4f3
JG
1363 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1364 update_hiwater_rss(vma->vm_mm);
1365 mmu_notifier_invalidate_range_start(&range);
1366 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1367 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1368 mmu_notifier_invalidate_range_end(&range);
1369 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1370}
1371
f5cc4eef
AV
1372/**
1373 * zap_page_range_single - remove user pages in a given range
1374 * @vma: vm_area_struct holding the applicable pages
1375 * @address: starting address of pages to zap
1376 * @size: number of bytes to zap
8a5f14a2 1377 * @details: details of shared cache invalidation
f5cc4eef
AV
1378 *
1379 * The range must fit into one VMA.
1da177e4 1380 */
f5cc4eef 1381static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1382 unsigned long size, struct zap_details *details)
1383{
ac46d4f3 1384 struct mmu_notifier_range range;
d16dfc55 1385 struct mmu_gather tlb;
1da177e4 1386
1da177e4 1387 lru_add_drain();
7269f999 1388 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1389 address, address + size);
ac46d4f3
JG
1390 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1391 update_hiwater_rss(vma->vm_mm);
1392 mmu_notifier_invalidate_range_start(&range);
1393 unmap_single_vma(&tlb, vma, address, range.end, details);
1394 mmu_notifier_invalidate_range_end(&range);
1395 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1396}
1397
c627f9cc
JS
1398/**
1399 * zap_vma_ptes - remove ptes mapping the vma
1400 * @vma: vm_area_struct holding ptes to be zapped
1401 * @address: starting address of pages to zap
1402 * @size: number of bytes to zap
1403 *
1404 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1405 *
1406 * The entire address range must be fully contained within the vma.
1407 *
c627f9cc 1408 */
27d036e3 1409void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1410 unsigned long size)
1411{
1412 if (address < vma->vm_start || address + size > vma->vm_end ||
1413 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1414 return;
1415
f5cc4eef 1416 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1417}
1418EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419
25ca1d6c 1420pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1421 spinlock_t **ptl)
c9cfcddf 1422{
c2febafc
KS
1423 pgd_t *pgd;
1424 p4d_t *p4d;
1425 pud_t *pud;
1426 pmd_t *pmd;
1427
1428 pgd = pgd_offset(mm, addr);
1429 p4d = p4d_alloc(mm, pgd, addr);
1430 if (!p4d)
1431 return NULL;
1432 pud = pud_alloc(mm, p4d, addr);
1433 if (!pud)
1434 return NULL;
1435 pmd = pmd_alloc(mm, pud, addr);
1436 if (!pmd)
1437 return NULL;
1438
1439 VM_BUG_ON(pmd_trans_huge(*pmd));
1440 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1441}
1442
238f58d8
LT
1443/*
1444 * This is the old fallback for page remapping.
1445 *
1446 * For historical reasons, it only allows reserved pages. Only
1447 * old drivers should use this, and they needed to mark their
1448 * pages reserved for the old functions anyway.
1449 */
423bad60
NP
1450static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1451 struct page *page, pgprot_t prot)
238f58d8 1452{
423bad60 1453 struct mm_struct *mm = vma->vm_mm;
238f58d8 1454 int retval;
c9cfcddf 1455 pte_t *pte;
8a9f3ccd
BS
1456 spinlock_t *ptl;
1457
238f58d8 1458 retval = -EINVAL;
0ee930e6 1459 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
5b4e655e 1460 goto out;
238f58d8
LT
1461 retval = -ENOMEM;
1462 flush_dcache_page(page);
c9cfcddf 1463 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1464 if (!pte)
5b4e655e 1465 goto out;
238f58d8
LT
1466 retval = -EBUSY;
1467 if (!pte_none(*pte))
1468 goto out_unlock;
1469
1470 /* Ok, finally just insert the thing.. */
1471 get_page(page);
eca56ff9 1472 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1473 page_add_file_rmap(page, false);
238f58d8
LT
1474 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1475
1476 retval = 0;
8a9f3ccd
BS
1477 pte_unmap_unlock(pte, ptl);
1478 return retval;
238f58d8
LT
1479out_unlock:
1480 pte_unmap_unlock(pte, ptl);
1481out:
1482 return retval;
1483}
1484
bfa5bf6d
REB
1485/**
1486 * vm_insert_page - insert single page into user vma
1487 * @vma: user vma to map to
1488 * @addr: target user address of this page
1489 * @page: source kernel page
1490 *
a145dd41
LT
1491 * This allows drivers to insert individual pages they've allocated
1492 * into a user vma.
1493 *
1494 * The page has to be a nice clean _individual_ kernel allocation.
1495 * If you allocate a compound page, you need to have marked it as
1496 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1497 * (see split_page()).
a145dd41
LT
1498 *
1499 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1500 * took an arbitrary page protection parameter. This doesn't allow
1501 * that. Your vma protection will have to be set up correctly, which
1502 * means that if you want a shared writable mapping, you'd better
1503 * ask for a shared writable mapping!
1504 *
1505 * The page does not need to be reserved.
4b6e1e37
KK
1506 *
1507 * Usually this function is called from f_op->mmap() handler
1508 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1509 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1510 * function from other places, for example from page-fault handler.
a862f68a
MR
1511 *
1512 * Return: %0 on success, negative error code otherwise.
a145dd41 1513 */
423bad60
NP
1514int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1515 struct page *page)
a145dd41
LT
1516{
1517 if (addr < vma->vm_start || addr >= vma->vm_end)
1518 return -EFAULT;
1519 if (!page_count(page))
1520 return -EINVAL;
4b6e1e37
KK
1521 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1522 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1523 BUG_ON(vma->vm_flags & VM_PFNMAP);
1524 vma->vm_flags |= VM_MIXEDMAP;
1525 }
423bad60 1526 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1527}
e3c3374f 1528EXPORT_SYMBOL(vm_insert_page);
a145dd41 1529
9b5a8e00 1530static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1531 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1532{
1533 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1534 pte_t *pte, entry;
1535 spinlock_t *ptl;
1536
423bad60
NP
1537 pte = get_locked_pte(mm, addr, &ptl);
1538 if (!pte)
9b5a8e00 1539 return VM_FAULT_OOM;
b2770da6
RZ
1540 if (!pte_none(*pte)) {
1541 if (mkwrite) {
1542 /*
1543 * For read faults on private mappings the PFN passed
1544 * in may not match the PFN we have mapped if the
1545 * mapped PFN is a writeable COW page. In the mkwrite
1546 * case we are creating a writable PTE for a shared
f2c57d91
JK
1547 * mapping and we expect the PFNs to match. If they
1548 * don't match, we are likely racing with block
1549 * allocation and mapping invalidation so just skip the
1550 * update.
b2770da6 1551 */
f2c57d91
JK
1552 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1553 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1554 goto out_unlock;
f2c57d91 1555 }
cae85cb8
JK
1556 entry = pte_mkyoung(*pte);
1557 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1558 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1559 update_mmu_cache(vma, addr, pte);
1560 }
1561 goto out_unlock;
b2770da6 1562 }
423bad60
NP
1563
1564 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1565 if (pfn_t_devmap(pfn))
1566 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1567 else
1568 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1569
b2770da6
RZ
1570 if (mkwrite) {
1571 entry = pte_mkyoung(entry);
1572 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1573 }
1574
423bad60 1575 set_pte_at(mm, addr, pte, entry);
4b3073e1 1576 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1577
423bad60
NP
1578out_unlock:
1579 pte_unmap_unlock(pte, ptl);
9b5a8e00 1580 return VM_FAULT_NOPAGE;
423bad60
NP
1581}
1582
f5e6d1d5
MW
1583/**
1584 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1585 * @vma: user vma to map to
1586 * @addr: target user address of this page
1587 * @pfn: source kernel pfn
1588 * @pgprot: pgprot flags for the inserted page
1589 *
1590 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1591 * to override pgprot on a per-page basis.
1592 *
1593 * This only makes sense for IO mappings, and it makes no sense for
1594 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1595 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1596 * impractical.
1597 *
ae2b01f3 1598 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1599 * Return: vm_fault_t value.
1600 */
1601vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1602 unsigned long pfn, pgprot_t pgprot)
1603{
6d958546
MW
1604 /*
1605 * Technically, architectures with pte_special can avoid all these
1606 * restrictions (same for remap_pfn_range). However we would like
1607 * consistency in testing and feature parity among all, so we should
1608 * try to keep these invariants in place for everybody.
1609 */
1610 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1611 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1612 (VM_PFNMAP|VM_MIXEDMAP));
1613 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1614 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1615
1616 if (addr < vma->vm_start || addr >= vma->vm_end)
1617 return VM_FAULT_SIGBUS;
1618
1619 if (!pfn_modify_allowed(pfn, pgprot))
1620 return VM_FAULT_SIGBUS;
1621
1622 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1623
9b5a8e00 1624 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1625 false);
f5e6d1d5
MW
1626}
1627EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1628
ae2b01f3
MW
1629/**
1630 * vmf_insert_pfn - insert single pfn into user vma
1631 * @vma: user vma to map to
1632 * @addr: target user address of this page
1633 * @pfn: source kernel pfn
1634 *
1635 * Similar to vm_insert_page, this allows drivers to insert individual pages
1636 * they've allocated into a user vma. Same comments apply.
1637 *
1638 * This function should only be called from a vm_ops->fault handler, and
1639 * in that case the handler should return the result of this function.
1640 *
1641 * vma cannot be a COW mapping.
1642 *
1643 * As this is called only for pages that do not currently exist, we
1644 * do not need to flush old virtual caches or the TLB.
1645 *
1646 * Context: Process context. May allocate using %GFP_KERNEL.
1647 * Return: vm_fault_t value.
1648 */
1649vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1650 unsigned long pfn)
1651{
1652 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1653}
1654EXPORT_SYMBOL(vmf_insert_pfn);
1655
785a3fab
DW
1656static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1657{
1658 /* these checks mirror the abort conditions in vm_normal_page */
1659 if (vma->vm_flags & VM_MIXEDMAP)
1660 return true;
1661 if (pfn_t_devmap(pfn))
1662 return true;
1663 if (pfn_t_special(pfn))
1664 return true;
1665 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1666 return true;
1667 return false;
1668}
1669
79f3aa5b
MW
1670static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1671 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 1672{
87744ab3 1673 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 1674 int err;
87744ab3 1675
785a3fab 1676 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1677
423bad60 1678 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1679 return VM_FAULT_SIGBUS;
308a047c
BP
1680
1681 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1682
42e4089c 1683 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1684 return VM_FAULT_SIGBUS;
42e4089c 1685
423bad60
NP
1686 /*
1687 * If we don't have pte special, then we have to use the pfn_valid()
1688 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1689 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1690 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1691 * without pte special, it would there be refcounted as a normal page.
423bad60 1692 */
00b3a331
LD
1693 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1694 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1695 struct page *page;
1696
03fc2da6
DW
1697 /*
1698 * At this point we are committed to insert_page()
1699 * regardless of whether the caller specified flags that
1700 * result in pfn_t_has_page() == false.
1701 */
1702 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1703 err = insert_page(vma, addr, page, pgprot);
1704 } else {
9b5a8e00 1705 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1706 }
b2770da6 1707
5d747637
MW
1708 if (err == -ENOMEM)
1709 return VM_FAULT_OOM;
1710 if (err < 0 && err != -EBUSY)
1711 return VM_FAULT_SIGBUS;
1712
1713 return VM_FAULT_NOPAGE;
e0dc0d8f 1714}
79f3aa5b
MW
1715
1716vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1717 pfn_t pfn)
1718{
1719 return __vm_insert_mixed(vma, addr, pfn, false);
1720}
5d747637 1721EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1722
ab77dab4
SJ
1723/*
1724 * If the insertion of PTE failed because someone else already added a
1725 * different entry in the mean time, we treat that as success as we assume
1726 * the same entry was actually inserted.
1727 */
ab77dab4
SJ
1728vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1729 unsigned long addr, pfn_t pfn)
b2770da6 1730{
79f3aa5b 1731 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 1732}
ab77dab4 1733EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1734
1da177e4
LT
1735/*
1736 * maps a range of physical memory into the requested pages. the old
1737 * mappings are removed. any references to nonexistent pages results
1738 * in null mappings (currently treated as "copy-on-access")
1739 */
1740static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1741 unsigned long addr, unsigned long end,
1742 unsigned long pfn, pgprot_t prot)
1743{
1744 pte_t *pte;
c74df32c 1745 spinlock_t *ptl;
42e4089c 1746 int err = 0;
1da177e4 1747
c74df32c 1748 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1749 if (!pte)
1750 return -ENOMEM;
6606c3e0 1751 arch_enter_lazy_mmu_mode();
1da177e4
LT
1752 do {
1753 BUG_ON(!pte_none(*pte));
42e4089c
AK
1754 if (!pfn_modify_allowed(pfn, prot)) {
1755 err = -EACCES;
1756 break;
1757 }
7e675137 1758 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1759 pfn++;
1760 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1761 arch_leave_lazy_mmu_mode();
c74df32c 1762 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1763 return err;
1da177e4
LT
1764}
1765
1766static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1767 unsigned long addr, unsigned long end,
1768 unsigned long pfn, pgprot_t prot)
1769{
1770 pmd_t *pmd;
1771 unsigned long next;
42e4089c 1772 int err;
1da177e4
LT
1773
1774 pfn -= addr >> PAGE_SHIFT;
1775 pmd = pmd_alloc(mm, pud, addr);
1776 if (!pmd)
1777 return -ENOMEM;
f66055ab 1778 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1779 do {
1780 next = pmd_addr_end(addr, end);
42e4089c
AK
1781 err = remap_pte_range(mm, pmd, addr, next,
1782 pfn + (addr >> PAGE_SHIFT), prot);
1783 if (err)
1784 return err;
1da177e4
LT
1785 } while (pmd++, addr = next, addr != end);
1786 return 0;
1787}
1788
c2febafc 1789static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1790 unsigned long addr, unsigned long end,
1791 unsigned long pfn, pgprot_t prot)
1792{
1793 pud_t *pud;
1794 unsigned long next;
42e4089c 1795 int err;
1da177e4
LT
1796
1797 pfn -= addr >> PAGE_SHIFT;
c2febafc 1798 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1799 if (!pud)
1800 return -ENOMEM;
1801 do {
1802 next = pud_addr_end(addr, end);
42e4089c
AK
1803 err = remap_pmd_range(mm, pud, addr, next,
1804 pfn + (addr >> PAGE_SHIFT), prot);
1805 if (err)
1806 return err;
1da177e4
LT
1807 } while (pud++, addr = next, addr != end);
1808 return 0;
1809}
1810
c2febafc
KS
1811static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1812 unsigned long addr, unsigned long end,
1813 unsigned long pfn, pgprot_t prot)
1814{
1815 p4d_t *p4d;
1816 unsigned long next;
42e4089c 1817 int err;
c2febafc
KS
1818
1819 pfn -= addr >> PAGE_SHIFT;
1820 p4d = p4d_alloc(mm, pgd, addr);
1821 if (!p4d)
1822 return -ENOMEM;
1823 do {
1824 next = p4d_addr_end(addr, end);
42e4089c
AK
1825 err = remap_pud_range(mm, p4d, addr, next,
1826 pfn + (addr >> PAGE_SHIFT), prot);
1827 if (err)
1828 return err;
c2febafc
KS
1829 } while (p4d++, addr = next, addr != end);
1830 return 0;
1831}
1832
bfa5bf6d
REB
1833/**
1834 * remap_pfn_range - remap kernel memory to userspace
1835 * @vma: user vma to map to
1836 * @addr: target user address to start at
1837 * @pfn: physical address of kernel memory
1838 * @size: size of map area
1839 * @prot: page protection flags for this mapping
1840 *
a862f68a
MR
1841 * Note: this is only safe if the mm semaphore is held when called.
1842 *
1843 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 1844 */
1da177e4
LT
1845int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1846 unsigned long pfn, unsigned long size, pgprot_t prot)
1847{
1848 pgd_t *pgd;
1849 unsigned long next;
2d15cab8 1850 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1851 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1852 unsigned long remap_pfn = pfn;
1da177e4
LT
1853 int err;
1854
1855 /*
1856 * Physically remapped pages are special. Tell the
1857 * rest of the world about it:
1858 * VM_IO tells people not to look at these pages
1859 * (accesses can have side effects).
6aab341e
LT
1860 * VM_PFNMAP tells the core MM that the base pages are just
1861 * raw PFN mappings, and do not have a "struct page" associated
1862 * with them.
314e51b9
KK
1863 * VM_DONTEXPAND
1864 * Disable vma merging and expanding with mremap().
1865 * VM_DONTDUMP
1866 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1867 *
1868 * There's a horrible special case to handle copy-on-write
1869 * behaviour that some programs depend on. We mark the "original"
1870 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1871 * See vm_normal_page() for details.
1da177e4 1872 */
b3b9c293
KK
1873 if (is_cow_mapping(vma->vm_flags)) {
1874 if (addr != vma->vm_start || end != vma->vm_end)
1875 return -EINVAL;
fb155c16 1876 vma->vm_pgoff = pfn;
b3b9c293
KK
1877 }
1878
d5957d2f 1879 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1880 if (err)
3c8bb73a 1881 return -EINVAL;
fb155c16 1882
314e51b9 1883 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1884
1885 BUG_ON(addr >= end);
1886 pfn -= addr >> PAGE_SHIFT;
1887 pgd = pgd_offset(mm, addr);
1888 flush_cache_range(vma, addr, end);
1da177e4
LT
1889 do {
1890 next = pgd_addr_end(addr, end);
c2febafc 1891 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1892 pfn + (addr >> PAGE_SHIFT), prot);
1893 if (err)
1894 break;
1895 } while (pgd++, addr = next, addr != end);
2ab64037 1896
1897 if (err)
d5957d2f 1898 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1899
1da177e4
LT
1900 return err;
1901}
1902EXPORT_SYMBOL(remap_pfn_range);
1903
b4cbb197
LT
1904/**
1905 * vm_iomap_memory - remap memory to userspace
1906 * @vma: user vma to map to
1907 * @start: start of area
1908 * @len: size of area
1909 *
1910 * This is a simplified io_remap_pfn_range() for common driver use. The
1911 * driver just needs to give us the physical memory range to be mapped,
1912 * we'll figure out the rest from the vma information.
1913 *
1914 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1915 * whatever write-combining details or similar.
a862f68a
MR
1916 *
1917 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
1918 */
1919int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1920{
1921 unsigned long vm_len, pfn, pages;
1922
1923 /* Check that the physical memory area passed in looks valid */
1924 if (start + len < start)
1925 return -EINVAL;
1926 /*
1927 * You *really* shouldn't map things that aren't page-aligned,
1928 * but we've historically allowed it because IO memory might
1929 * just have smaller alignment.
1930 */
1931 len += start & ~PAGE_MASK;
1932 pfn = start >> PAGE_SHIFT;
1933 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1934 if (pfn + pages < pfn)
1935 return -EINVAL;
1936
1937 /* We start the mapping 'vm_pgoff' pages into the area */
1938 if (vma->vm_pgoff > pages)
1939 return -EINVAL;
1940 pfn += vma->vm_pgoff;
1941 pages -= vma->vm_pgoff;
1942
1943 /* Can we fit all of the mapping? */
1944 vm_len = vma->vm_end - vma->vm_start;
1945 if (vm_len >> PAGE_SHIFT > pages)
1946 return -EINVAL;
1947
1948 /* Ok, let it rip */
1949 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1950}
1951EXPORT_SYMBOL(vm_iomap_memory);
1952
aee16b3c
JF
1953static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1954 unsigned long addr, unsigned long end,
1955 pte_fn_t fn, void *data)
1956{
1957 pte_t *pte;
1958 int err;
2f569afd 1959 pgtable_t token;
94909914 1960 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1961
1962 pte = (mm == &init_mm) ?
1963 pte_alloc_kernel(pmd, addr) :
1964 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1965 if (!pte)
1966 return -ENOMEM;
1967
1968 BUG_ON(pmd_huge(*pmd));
1969
38e0edb1
JF
1970 arch_enter_lazy_mmu_mode();
1971
2f569afd 1972 token = pmd_pgtable(*pmd);
aee16b3c
JF
1973
1974 do {
c36987e2 1975 err = fn(pte++, token, addr, data);
aee16b3c
JF
1976 if (err)
1977 break;
c36987e2 1978 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1979
38e0edb1
JF
1980 arch_leave_lazy_mmu_mode();
1981
aee16b3c
JF
1982 if (mm != &init_mm)
1983 pte_unmap_unlock(pte-1, ptl);
1984 return err;
1985}
1986
1987static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1988 unsigned long addr, unsigned long end,
1989 pte_fn_t fn, void *data)
1990{
1991 pmd_t *pmd;
1992 unsigned long next;
1993 int err;
1994
ceb86879
AK
1995 BUG_ON(pud_huge(*pud));
1996
aee16b3c
JF
1997 pmd = pmd_alloc(mm, pud, addr);
1998 if (!pmd)
1999 return -ENOMEM;
2000 do {
2001 next = pmd_addr_end(addr, end);
2002 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2003 if (err)
2004 break;
2005 } while (pmd++, addr = next, addr != end);
2006 return err;
2007}
2008
c2febafc 2009static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2010 unsigned long addr, unsigned long end,
2011 pte_fn_t fn, void *data)
2012{
2013 pud_t *pud;
2014 unsigned long next;
2015 int err;
2016
c2febafc 2017 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2018 if (!pud)
2019 return -ENOMEM;
2020 do {
2021 next = pud_addr_end(addr, end);
2022 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2023 if (err)
2024 break;
2025 } while (pud++, addr = next, addr != end);
2026 return err;
2027}
2028
c2febafc
KS
2029static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2030 unsigned long addr, unsigned long end,
2031 pte_fn_t fn, void *data)
2032{
2033 p4d_t *p4d;
2034 unsigned long next;
2035 int err;
2036
2037 p4d = p4d_alloc(mm, pgd, addr);
2038 if (!p4d)
2039 return -ENOMEM;
2040 do {
2041 next = p4d_addr_end(addr, end);
2042 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2043 if (err)
2044 break;
2045 } while (p4d++, addr = next, addr != end);
2046 return err;
2047}
2048
aee16b3c
JF
2049/*
2050 * Scan a region of virtual memory, filling in page tables as necessary
2051 * and calling a provided function on each leaf page table.
2052 */
2053int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2054 unsigned long size, pte_fn_t fn, void *data)
2055{
2056 pgd_t *pgd;
2057 unsigned long next;
57250a5b 2058 unsigned long end = addr + size;
aee16b3c
JF
2059 int err;
2060
9cb65bc3
MP
2061 if (WARN_ON(addr >= end))
2062 return -EINVAL;
2063
aee16b3c
JF
2064 pgd = pgd_offset(mm, addr);
2065 do {
2066 next = pgd_addr_end(addr, end);
c2febafc 2067 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2068 if (err)
2069 break;
2070 } while (pgd++, addr = next, addr != end);
57250a5b 2071
aee16b3c
JF
2072 return err;
2073}
2074EXPORT_SYMBOL_GPL(apply_to_page_range);
2075
8f4e2101 2076/*
9b4bdd2f
KS
2077 * handle_pte_fault chooses page fault handler according to an entry which was
2078 * read non-atomically. Before making any commitment, on those architectures
2079 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2080 * parts, do_swap_page must check under lock before unmapping the pte and
2081 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2082 * and do_anonymous_page can safely check later on).
8f4e2101 2083 */
4c21e2f2 2084static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2085 pte_t *page_table, pte_t orig_pte)
2086{
2087 int same = 1;
2088#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2089 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2090 spinlock_t *ptl = pte_lockptr(mm, pmd);
2091 spin_lock(ptl);
8f4e2101 2092 same = pte_same(*page_table, orig_pte);
4c21e2f2 2093 spin_unlock(ptl);
8f4e2101
HD
2094 }
2095#endif
2096 pte_unmap(page_table);
2097 return same;
2098}
2099
9de455b2 2100static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2101{
0abdd7a8
DW
2102 debug_dma_assert_idle(src);
2103
6aab341e
LT
2104 /*
2105 * If the source page was a PFN mapping, we don't have
2106 * a "struct page" for it. We do a best-effort copy by
2107 * just copying from the original user address. If that
2108 * fails, we just zero-fill it. Live with it.
2109 */
2110 if (unlikely(!src)) {
9b04c5fe 2111 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2112 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2113
2114 /*
2115 * This really shouldn't fail, because the page is there
2116 * in the page tables. But it might just be unreadable,
2117 * in which case we just give up and fill the result with
2118 * zeroes.
2119 */
2120 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2121 clear_page(kaddr);
9b04c5fe 2122 kunmap_atomic(kaddr);
c4ec7b0d 2123 flush_dcache_page(dst);
0ed361de
NP
2124 } else
2125 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2126}
2127
c20cd45e
MH
2128static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2129{
2130 struct file *vm_file = vma->vm_file;
2131
2132 if (vm_file)
2133 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2134
2135 /*
2136 * Special mappings (e.g. VDSO) do not have any file so fake
2137 * a default GFP_KERNEL for them.
2138 */
2139 return GFP_KERNEL;
2140}
2141
fb09a464
KS
2142/*
2143 * Notify the address space that the page is about to become writable so that
2144 * it can prohibit this or wait for the page to get into an appropriate state.
2145 *
2146 * We do this without the lock held, so that it can sleep if it needs to.
2147 */
2b740303 2148static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2149{
2b740303 2150 vm_fault_t ret;
38b8cb7f
JK
2151 struct page *page = vmf->page;
2152 unsigned int old_flags = vmf->flags;
fb09a464 2153
38b8cb7f 2154 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2155
11bac800 2156 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2157 /* Restore original flags so that caller is not surprised */
2158 vmf->flags = old_flags;
fb09a464
KS
2159 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2160 return ret;
2161 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2162 lock_page(page);
2163 if (!page->mapping) {
2164 unlock_page(page);
2165 return 0; /* retry */
2166 }
2167 ret |= VM_FAULT_LOCKED;
2168 } else
2169 VM_BUG_ON_PAGE(!PageLocked(page), page);
2170 return ret;
2171}
2172
97ba0c2b
JK
2173/*
2174 * Handle dirtying of a page in shared file mapping on a write fault.
2175 *
2176 * The function expects the page to be locked and unlocks it.
2177 */
2178static void fault_dirty_shared_page(struct vm_area_struct *vma,
2179 struct page *page)
2180{
2181 struct address_space *mapping;
2182 bool dirtied;
2183 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2184
2185 dirtied = set_page_dirty(page);
2186 VM_BUG_ON_PAGE(PageAnon(page), page);
2187 /*
2188 * Take a local copy of the address_space - page.mapping may be zeroed
2189 * by truncate after unlock_page(). The address_space itself remains
2190 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2191 * release semantics to prevent the compiler from undoing this copying.
2192 */
2193 mapping = page_rmapping(page);
2194 unlock_page(page);
2195
2196 if ((dirtied || page_mkwrite) && mapping) {
2197 /*
2198 * Some device drivers do not set page.mapping
2199 * but still dirty their pages
2200 */
2201 balance_dirty_pages_ratelimited(mapping);
2202 }
2203
2204 if (!page_mkwrite)
2205 file_update_time(vma->vm_file);
2206}
2207
4e047f89
SR
2208/*
2209 * Handle write page faults for pages that can be reused in the current vma
2210 *
2211 * This can happen either due to the mapping being with the VM_SHARED flag,
2212 * or due to us being the last reference standing to the page. In either
2213 * case, all we need to do here is to mark the page as writable and update
2214 * any related book-keeping.
2215 */
997dd98d 2216static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2217 __releases(vmf->ptl)
4e047f89 2218{
82b0f8c3 2219 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2220 struct page *page = vmf->page;
4e047f89
SR
2221 pte_t entry;
2222 /*
2223 * Clear the pages cpupid information as the existing
2224 * information potentially belongs to a now completely
2225 * unrelated process.
2226 */
2227 if (page)
2228 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2229
2994302b
JK
2230 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2231 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2232 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2233 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2234 update_mmu_cache(vma, vmf->address, vmf->pte);
2235 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2236}
2237
2f38ab2c
SR
2238/*
2239 * Handle the case of a page which we actually need to copy to a new page.
2240 *
2241 * Called with mmap_sem locked and the old page referenced, but
2242 * without the ptl held.
2243 *
2244 * High level logic flow:
2245 *
2246 * - Allocate a page, copy the content of the old page to the new one.
2247 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2248 * - Take the PTL. If the pte changed, bail out and release the allocated page
2249 * - If the pte is still the way we remember it, update the page table and all
2250 * relevant references. This includes dropping the reference the page-table
2251 * held to the old page, as well as updating the rmap.
2252 * - In any case, unlock the PTL and drop the reference we took to the old page.
2253 */
2b740303 2254static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2255{
82b0f8c3 2256 struct vm_area_struct *vma = vmf->vma;
bae473a4 2257 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2258 struct page *old_page = vmf->page;
2f38ab2c 2259 struct page *new_page = NULL;
2f38ab2c
SR
2260 pte_t entry;
2261 int page_copied = 0;
2f38ab2c 2262 struct mem_cgroup *memcg;
ac46d4f3 2263 struct mmu_notifier_range range;
2f38ab2c
SR
2264
2265 if (unlikely(anon_vma_prepare(vma)))
2266 goto oom;
2267
2994302b 2268 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2269 new_page = alloc_zeroed_user_highpage_movable(vma,
2270 vmf->address);
2f38ab2c
SR
2271 if (!new_page)
2272 goto oom;
2273 } else {
bae473a4 2274 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2275 vmf->address);
2f38ab2c
SR
2276 if (!new_page)
2277 goto oom;
82b0f8c3 2278 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2279 }
2f38ab2c 2280
2cf85583 2281 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2282 goto oom_free_new;
2283
eb3c24f3
MG
2284 __SetPageUptodate(new_page);
2285
7269f999 2286 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2287 vmf->address & PAGE_MASK,
ac46d4f3
JG
2288 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2289 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2290
2291 /*
2292 * Re-check the pte - we dropped the lock
2293 */
82b0f8c3 2294 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2295 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2296 if (old_page) {
2297 if (!PageAnon(old_page)) {
eca56ff9
JM
2298 dec_mm_counter_fast(mm,
2299 mm_counter_file(old_page));
2f38ab2c
SR
2300 inc_mm_counter_fast(mm, MM_ANONPAGES);
2301 }
2302 } else {
2303 inc_mm_counter_fast(mm, MM_ANONPAGES);
2304 }
2994302b 2305 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2306 entry = mk_pte(new_page, vma->vm_page_prot);
2307 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2308 /*
2309 * Clear the pte entry and flush it first, before updating the
2310 * pte with the new entry. This will avoid a race condition
2311 * seen in the presence of one thread doing SMC and another
2312 * thread doing COW.
2313 */
82b0f8c3
JK
2314 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2315 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2316 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2317 lru_cache_add_active_or_unevictable(new_page, vma);
2318 /*
2319 * We call the notify macro here because, when using secondary
2320 * mmu page tables (such as kvm shadow page tables), we want the
2321 * new page to be mapped directly into the secondary page table.
2322 */
82b0f8c3
JK
2323 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2324 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2325 if (old_page) {
2326 /*
2327 * Only after switching the pte to the new page may
2328 * we remove the mapcount here. Otherwise another
2329 * process may come and find the rmap count decremented
2330 * before the pte is switched to the new page, and
2331 * "reuse" the old page writing into it while our pte
2332 * here still points into it and can be read by other
2333 * threads.
2334 *
2335 * The critical issue is to order this
2336 * page_remove_rmap with the ptp_clear_flush above.
2337 * Those stores are ordered by (if nothing else,)
2338 * the barrier present in the atomic_add_negative
2339 * in page_remove_rmap.
2340 *
2341 * Then the TLB flush in ptep_clear_flush ensures that
2342 * no process can access the old page before the
2343 * decremented mapcount is visible. And the old page
2344 * cannot be reused until after the decremented
2345 * mapcount is visible. So transitively, TLBs to
2346 * old page will be flushed before it can be reused.
2347 */
d281ee61 2348 page_remove_rmap(old_page, false);
2f38ab2c
SR
2349 }
2350
2351 /* Free the old page.. */
2352 new_page = old_page;
2353 page_copied = 1;
2354 } else {
f627c2f5 2355 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2356 }
2357
2358 if (new_page)
09cbfeaf 2359 put_page(new_page);
2f38ab2c 2360
82b0f8c3 2361 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2362 /*
2363 * No need to double call mmu_notifier->invalidate_range() callback as
2364 * the above ptep_clear_flush_notify() did already call it.
2365 */
ac46d4f3 2366 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2367 if (old_page) {
2368 /*
2369 * Don't let another task, with possibly unlocked vma,
2370 * keep the mlocked page.
2371 */
2372 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2373 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2374 if (PageMlocked(old_page))
2375 munlock_vma_page(old_page);
2f38ab2c
SR
2376 unlock_page(old_page);
2377 }
09cbfeaf 2378 put_page(old_page);
2f38ab2c
SR
2379 }
2380 return page_copied ? VM_FAULT_WRITE : 0;
2381oom_free_new:
09cbfeaf 2382 put_page(new_page);
2f38ab2c
SR
2383oom:
2384 if (old_page)
09cbfeaf 2385 put_page(old_page);
2f38ab2c
SR
2386 return VM_FAULT_OOM;
2387}
2388
66a6197c
JK
2389/**
2390 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2391 * writeable once the page is prepared
2392 *
2393 * @vmf: structure describing the fault
2394 *
2395 * This function handles all that is needed to finish a write page fault in a
2396 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2397 * It handles locking of PTE and modifying it.
66a6197c
JK
2398 *
2399 * The function expects the page to be locked or other protection against
2400 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2401 *
2402 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2403 * we acquired PTE lock.
66a6197c 2404 */
2b740303 2405vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2406{
2407 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2408 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2409 &vmf->ptl);
2410 /*
2411 * We might have raced with another page fault while we released the
2412 * pte_offset_map_lock.
2413 */
2414 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2415 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2416 return VM_FAULT_NOPAGE;
66a6197c
JK
2417 }
2418 wp_page_reuse(vmf);
a19e2553 2419 return 0;
66a6197c
JK
2420}
2421
dd906184
BH
2422/*
2423 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2424 * mapping
2425 */
2b740303 2426static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2427{
82b0f8c3 2428 struct vm_area_struct *vma = vmf->vma;
bae473a4 2429
dd906184 2430 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2431 vm_fault_t ret;
dd906184 2432
82b0f8c3 2433 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2434 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2435 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2436 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2437 return ret;
66a6197c 2438 return finish_mkwrite_fault(vmf);
dd906184 2439 }
997dd98d
JK
2440 wp_page_reuse(vmf);
2441 return VM_FAULT_WRITE;
dd906184
BH
2442}
2443
2b740303 2444static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2445 __releases(vmf->ptl)
93e478d4 2446{
82b0f8c3 2447 struct vm_area_struct *vma = vmf->vma;
93e478d4 2448
a41b70d6 2449 get_page(vmf->page);
93e478d4 2450
93e478d4 2451 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2452 vm_fault_t tmp;
93e478d4 2453
82b0f8c3 2454 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2455 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2456 if (unlikely(!tmp || (tmp &
2457 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2458 put_page(vmf->page);
93e478d4
SR
2459 return tmp;
2460 }
66a6197c 2461 tmp = finish_mkwrite_fault(vmf);
a19e2553 2462 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2463 unlock_page(vmf->page);
a41b70d6 2464 put_page(vmf->page);
66a6197c 2465 return tmp;
93e478d4 2466 }
66a6197c
JK
2467 } else {
2468 wp_page_reuse(vmf);
997dd98d 2469 lock_page(vmf->page);
93e478d4 2470 }
997dd98d
JK
2471 fault_dirty_shared_page(vma, vmf->page);
2472 put_page(vmf->page);
93e478d4 2473
997dd98d 2474 return VM_FAULT_WRITE;
93e478d4
SR
2475}
2476
1da177e4
LT
2477/*
2478 * This routine handles present pages, when users try to write
2479 * to a shared page. It is done by copying the page to a new address
2480 * and decrementing the shared-page counter for the old page.
2481 *
1da177e4
LT
2482 * Note that this routine assumes that the protection checks have been
2483 * done by the caller (the low-level page fault routine in most cases).
2484 * Thus we can safely just mark it writable once we've done any necessary
2485 * COW.
2486 *
2487 * We also mark the page dirty at this point even though the page will
2488 * change only once the write actually happens. This avoids a few races,
2489 * and potentially makes it more efficient.
2490 *
8f4e2101
HD
2491 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2492 * but allow concurrent faults), with pte both mapped and locked.
2493 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2494 */
2b740303 2495static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2496 __releases(vmf->ptl)
1da177e4 2497{
82b0f8c3 2498 struct vm_area_struct *vma = vmf->vma;
1da177e4 2499
a41b70d6
JK
2500 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2501 if (!vmf->page) {
251b97f5 2502 /*
64e45507
PF
2503 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2504 * VM_PFNMAP VMA.
251b97f5
PZ
2505 *
2506 * We should not cow pages in a shared writeable mapping.
dd906184 2507 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2508 */
2509 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2510 (VM_WRITE|VM_SHARED))
2994302b 2511 return wp_pfn_shared(vmf);
2f38ab2c 2512
82b0f8c3 2513 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2514 return wp_page_copy(vmf);
251b97f5 2515 }
1da177e4 2516
d08b3851 2517 /*
ee6a6457
PZ
2518 * Take out anonymous pages first, anonymous shared vmas are
2519 * not dirty accountable.
d08b3851 2520 */
52d1e606 2521 if (PageAnon(vmf->page)) {
ba3c4ce6 2522 int total_map_swapcount;
52d1e606
KT
2523 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2524 page_count(vmf->page) != 1))
2525 goto copy;
a41b70d6
JK
2526 if (!trylock_page(vmf->page)) {
2527 get_page(vmf->page);
82b0f8c3 2528 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2529 lock_page(vmf->page);
82b0f8c3
JK
2530 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2531 vmf->address, &vmf->ptl);
2994302b 2532 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2533 unlock_page(vmf->page);
82b0f8c3 2534 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2535 put_page(vmf->page);
28766805 2536 return 0;
ab967d86 2537 }
a41b70d6 2538 put_page(vmf->page);
ee6a6457 2539 }
52d1e606
KT
2540 if (PageKsm(vmf->page)) {
2541 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2542 vmf->address);
2543 unlock_page(vmf->page);
2544 if (!reused)
2545 goto copy;
2546 wp_page_reuse(vmf);
2547 return VM_FAULT_WRITE;
2548 }
ba3c4ce6
HY
2549 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2550 if (total_map_swapcount == 1) {
6d0a07ed
AA
2551 /*
2552 * The page is all ours. Move it to
2553 * our anon_vma so the rmap code will
2554 * not search our parent or siblings.
2555 * Protected against the rmap code by
2556 * the page lock.
2557 */
a41b70d6 2558 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2559 }
a41b70d6 2560 unlock_page(vmf->page);
997dd98d
JK
2561 wp_page_reuse(vmf);
2562 return VM_FAULT_WRITE;
b009c024 2563 }
a41b70d6 2564 unlock_page(vmf->page);
ee6a6457 2565 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2566 (VM_WRITE|VM_SHARED))) {
a41b70d6 2567 return wp_page_shared(vmf);
1da177e4 2568 }
52d1e606 2569copy:
1da177e4
LT
2570 /*
2571 * Ok, we need to copy. Oh, well..
2572 */
a41b70d6 2573 get_page(vmf->page);
28766805 2574
82b0f8c3 2575 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2576 return wp_page_copy(vmf);
1da177e4
LT
2577}
2578
97a89413 2579static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2580 unsigned long start_addr, unsigned long end_addr,
2581 struct zap_details *details)
2582{
f5cc4eef 2583 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2584}
2585
f808c13f 2586static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2587 struct zap_details *details)
2588{
2589 struct vm_area_struct *vma;
1da177e4
LT
2590 pgoff_t vba, vea, zba, zea;
2591
6b2dbba8 2592 vma_interval_tree_foreach(vma, root,
1da177e4 2593 details->first_index, details->last_index) {
1da177e4
LT
2594
2595 vba = vma->vm_pgoff;
d6e93217 2596 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2597 zba = details->first_index;
2598 if (zba < vba)
2599 zba = vba;
2600 zea = details->last_index;
2601 if (zea > vea)
2602 zea = vea;
2603
97a89413 2604 unmap_mapping_range_vma(vma,
1da177e4
LT
2605 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2606 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2607 details);
1da177e4
LT
2608 }
2609}
2610
977fbdcd
MW
2611/**
2612 * unmap_mapping_pages() - Unmap pages from processes.
2613 * @mapping: The address space containing pages to be unmapped.
2614 * @start: Index of first page to be unmapped.
2615 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2616 * @even_cows: Whether to unmap even private COWed pages.
2617 *
2618 * Unmap the pages in this address space from any userspace process which
2619 * has them mmaped. Generally, you want to remove COWed pages as well when
2620 * a file is being truncated, but not when invalidating pages from the page
2621 * cache.
2622 */
2623void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2624 pgoff_t nr, bool even_cows)
2625{
2626 struct zap_details details = { };
2627
2628 details.check_mapping = even_cows ? NULL : mapping;
2629 details.first_index = start;
2630 details.last_index = start + nr - 1;
2631 if (details.last_index < details.first_index)
2632 details.last_index = ULONG_MAX;
2633
2634 i_mmap_lock_write(mapping);
2635 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2636 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2637 i_mmap_unlock_write(mapping);
2638}
2639
1da177e4 2640/**
8a5f14a2 2641 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2642 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2643 * file.
2644 *
3d41088f 2645 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2646 * @holebegin: byte in first page to unmap, relative to the start of
2647 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2648 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2649 * must keep the partial page. In contrast, we must get rid of
2650 * partial pages.
2651 * @holelen: size of prospective hole in bytes. This will be rounded
2652 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2653 * end of the file.
2654 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2655 * but 0 when invalidating pagecache, don't throw away private data.
2656 */
2657void unmap_mapping_range(struct address_space *mapping,
2658 loff_t const holebegin, loff_t const holelen, int even_cows)
2659{
1da177e4
LT
2660 pgoff_t hba = holebegin >> PAGE_SHIFT;
2661 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2662
2663 /* Check for overflow. */
2664 if (sizeof(holelen) > sizeof(hlen)) {
2665 long long holeend =
2666 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2667 if (holeend & ~(long long)ULONG_MAX)
2668 hlen = ULONG_MAX - hba + 1;
2669 }
2670
977fbdcd 2671 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2672}
2673EXPORT_SYMBOL(unmap_mapping_range);
2674
1da177e4 2675/*
8f4e2101
HD
2676 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2677 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2678 * We return with pte unmapped and unlocked.
2679 *
2680 * We return with the mmap_sem locked or unlocked in the same cases
2681 * as does filemap_fault().
1da177e4 2682 */
2b740303 2683vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2684{
82b0f8c3 2685 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2686 struct page *page = NULL, *swapcache;
00501b53 2687 struct mem_cgroup *memcg;
65500d23 2688 swp_entry_t entry;
1da177e4 2689 pte_t pte;
d065bd81 2690 int locked;
ad8c2ee8 2691 int exclusive = 0;
2b740303 2692 vm_fault_t ret = 0;
1da177e4 2693
eaf649eb 2694 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2695 goto out;
65500d23 2696
2994302b 2697 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2698 if (unlikely(non_swap_entry(entry))) {
2699 if (is_migration_entry(entry)) {
82b0f8c3
JK
2700 migration_entry_wait(vma->vm_mm, vmf->pmd,
2701 vmf->address);
5042db43
JG
2702 } else if (is_device_private_entry(entry)) {
2703 /*
2704 * For un-addressable device memory we call the pgmap
2705 * fault handler callback. The callback must migrate
2706 * the page back to some CPU accessible page.
2707 */
2708 ret = device_private_entry_fault(vma, vmf->address, entry,
2709 vmf->flags, vmf->pmd);
d1737fdb
AK
2710 } else if (is_hwpoison_entry(entry)) {
2711 ret = VM_FAULT_HWPOISON;
2712 } else {
2994302b 2713 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2714 ret = VM_FAULT_SIGBUS;
d1737fdb 2715 }
0697212a
CL
2716 goto out;
2717 }
0bcac06f
MK
2718
2719
0ff92245 2720 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2721 page = lookup_swap_cache(entry, vma, vmf->address);
2722 swapcache = page;
f8020772 2723
1da177e4 2724 if (!page) {
0bcac06f
MK
2725 struct swap_info_struct *si = swp_swap_info(entry);
2726
aa8d22a1
MK
2727 if (si->flags & SWP_SYNCHRONOUS_IO &&
2728 __swap_count(si, entry) == 1) {
0bcac06f 2729 /* skip swapcache */
e9e9b7ec
MK
2730 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2731 vmf->address);
0bcac06f
MK
2732 if (page) {
2733 __SetPageLocked(page);
2734 __SetPageSwapBacked(page);
2735 set_page_private(page, entry.val);
2736 lru_cache_add_anon(page);
2737 swap_readpage(page, true);
2738 }
aa8d22a1 2739 } else {
e9e9b7ec
MK
2740 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2741 vmf);
aa8d22a1 2742 swapcache = page;
0bcac06f
MK
2743 }
2744
1da177e4
LT
2745 if (!page) {
2746 /*
8f4e2101
HD
2747 * Back out if somebody else faulted in this pte
2748 * while we released the pte lock.
1da177e4 2749 */
82b0f8c3
JK
2750 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2751 vmf->address, &vmf->ptl);
2994302b 2752 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2753 ret = VM_FAULT_OOM;
0ff92245 2754 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2755 goto unlock;
1da177e4
LT
2756 }
2757
2758 /* Had to read the page from swap area: Major fault */
2759 ret = VM_FAULT_MAJOR;
f8891e5e 2760 count_vm_event(PGMAJFAULT);
2262185c 2761 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2762 } else if (PageHWPoison(page)) {
71f72525
WF
2763 /*
2764 * hwpoisoned dirty swapcache pages are kept for killing
2765 * owner processes (which may be unknown at hwpoison time)
2766 */
d1737fdb
AK
2767 ret = VM_FAULT_HWPOISON;
2768 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2769 goto out_release;
1da177e4
LT
2770 }
2771
82b0f8c3 2772 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2773
073e587e 2774 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2775 if (!locked) {
2776 ret |= VM_FAULT_RETRY;
2777 goto out_release;
2778 }
073e587e 2779
4969c119 2780 /*
31c4a3d3
HD
2781 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2782 * release the swapcache from under us. The page pin, and pte_same
2783 * test below, are not enough to exclude that. Even if it is still
2784 * swapcache, we need to check that the page's swap has not changed.
4969c119 2785 */
0bcac06f
MK
2786 if (unlikely((!PageSwapCache(page) ||
2787 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2788 goto out_page;
2789
82b0f8c3 2790 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2791 if (unlikely(!page)) {
2792 ret = VM_FAULT_OOM;
2793 page = swapcache;
cbf86cfe 2794 goto out_page;
5ad64688
HD
2795 }
2796
2cf85583
TH
2797 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2798 &memcg, false)) {
8a9f3ccd 2799 ret = VM_FAULT_OOM;
bc43f75c 2800 goto out_page;
8a9f3ccd
BS
2801 }
2802
1da177e4 2803 /*
8f4e2101 2804 * Back out if somebody else already faulted in this pte.
1da177e4 2805 */
82b0f8c3
JK
2806 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2807 &vmf->ptl);
2994302b 2808 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2809 goto out_nomap;
b8107480
KK
2810
2811 if (unlikely(!PageUptodate(page))) {
2812 ret = VM_FAULT_SIGBUS;
2813 goto out_nomap;
1da177e4
LT
2814 }
2815
8c7c6e34
KH
2816 /*
2817 * The page isn't present yet, go ahead with the fault.
2818 *
2819 * Be careful about the sequence of operations here.
2820 * To get its accounting right, reuse_swap_page() must be called
2821 * while the page is counted on swap but not yet in mapcount i.e.
2822 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2823 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2824 */
1da177e4 2825
bae473a4
KS
2826 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2827 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2828 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2829 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2830 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2831 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2832 ret |= VM_FAULT_WRITE;
d281ee61 2833 exclusive = RMAP_EXCLUSIVE;
1da177e4 2834 }
1da177e4 2835 flush_icache_page(vma, page);
2994302b 2836 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2837 pte = pte_mksoft_dirty(pte);
82b0f8c3 2838 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 2839 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 2840 vmf->orig_pte = pte;
0bcac06f
MK
2841
2842 /* ksm created a completely new copy */
2843 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 2844 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2845 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2846 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
2847 } else {
2848 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2849 mem_cgroup_commit_charge(page, memcg, true, false);
2850 activate_page(page);
00501b53 2851 }
1da177e4 2852
c475a8ab 2853 swap_free(entry);
5ccc5aba
VD
2854 if (mem_cgroup_swap_full(page) ||
2855 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2856 try_to_free_swap(page);
c475a8ab 2857 unlock_page(page);
0bcac06f 2858 if (page != swapcache && swapcache) {
4969c119
AA
2859 /*
2860 * Hold the lock to avoid the swap entry to be reused
2861 * until we take the PT lock for the pte_same() check
2862 * (to avoid false positives from pte_same). For
2863 * further safety release the lock after the swap_free
2864 * so that the swap count won't change under a
2865 * parallel locked swapcache.
2866 */
2867 unlock_page(swapcache);
09cbfeaf 2868 put_page(swapcache);
4969c119 2869 }
c475a8ab 2870
82b0f8c3 2871 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2872 ret |= do_wp_page(vmf);
61469f1d
HD
2873 if (ret & VM_FAULT_ERROR)
2874 ret &= VM_FAULT_ERROR;
1da177e4
LT
2875 goto out;
2876 }
2877
2878 /* No need to invalidate - it was non-present before */
82b0f8c3 2879 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2880unlock:
82b0f8c3 2881 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2882out:
2883 return ret;
b8107480 2884out_nomap:
f627c2f5 2885 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2886 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2887out_page:
b8107480 2888 unlock_page(page);
4779cb31 2889out_release:
09cbfeaf 2890 put_page(page);
0bcac06f 2891 if (page != swapcache && swapcache) {
4969c119 2892 unlock_page(swapcache);
09cbfeaf 2893 put_page(swapcache);
4969c119 2894 }
65500d23 2895 return ret;
1da177e4
LT
2896}
2897
2898/*
8f4e2101
HD
2899 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2900 * but allow concurrent faults), and pte mapped but not yet locked.
2901 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2902 */
2b740303 2903static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 2904{
82b0f8c3 2905 struct vm_area_struct *vma = vmf->vma;
00501b53 2906 struct mem_cgroup *memcg;
8f4e2101 2907 struct page *page;
2b740303 2908 vm_fault_t ret = 0;
1da177e4 2909 pte_t entry;
1da177e4 2910
6b7339f4
KS
2911 /* File mapping without ->vm_ops ? */
2912 if (vma->vm_flags & VM_SHARED)
2913 return VM_FAULT_SIGBUS;
2914
7267ec00
KS
2915 /*
2916 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2917 * pte_offset_map() on pmds where a huge pmd might be created
2918 * from a different thread.
2919 *
2920 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2921 * parallel threads are excluded by other means.
2922 *
2923 * Here we only have down_read(mmap_sem).
2924 */
4cf58924 2925 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
2926 return VM_FAULT_OOM;
2927
2928 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2929 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2930 return 0;
2931
11ac5524 2932 /* Use the zero-page for reads */
82b0f8c3 2933 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2934 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2935 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2936 vma->vm_page_prot));
82b0f8c3
JK
2937 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2938 vmf->address, &vmf->ptl);
2939 if (!pte_none(*vmf->pte))
a13ea5b7 2940 goto unlock;
6b31d595
MH
2941 ret = check_stable_address_space(vma->vm_mm);
2942 if (ret)
2943 goto unlock;
6b251fc9
AA
2944 /* Deliver the page fault to userland, check inside PT lock */
2945 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2946 pte_unmap_unlock(vmf->pte, vmf->ptl);
2947 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2948 }
a13ea5b7
HD
2949 goto setpte;
2950 }
2951
557ed1fa 2952 /* Allocate our own private page. */
557ed1fa
NP
2953 if (unlikely(anon_vma_prepare(vma)))
2954 goto oom;
82b0f8c3 2955 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2956 if (!page)
2957 goto oom;
eb3c24f3 2958
2cf85583
TH
2959 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2960 false))
eb3c24f3
MG
2961 goto oom_free_page;
2962
52f37629
MK
2963 /*
2964 * The memory barrier inside __SetPageUptodate makes sure that
2965 * preceeding stores to the page contents become visible before
2966 * the set_pte_at() write.
2967 */
0ed361de 2968 __SetPageUptodate(page);
8f4e2101 2969
557ed1fa 2970 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2971 if (vma->vm_flags & VM_WRITE)
2972 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2973
82b0f8c3
JK
2974 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2975 &vmf->ptl);
2976 if (!pte_none(*vmf->pte))
557ed1fa 2977 goto release;
9ba69294 2978
6b31d595
MH
2979 ret = check_stable_address_space(vma->vm_mm);
2980 if (ret)
2981 goto release;
2982
6b251fc9
AA
2983 /* Deliver the page fault to userland, check inside PT lock */
2984 if (userfaultfd_missing(vma)) {
82b0f8c3 2985 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 2986 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2987 put_page(page);
82b0f8c3 2988 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
2989 }
2990
bae473a4 2991 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 2992 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2993 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2994 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2995setpte:
82b0f8c3 2996 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
2997
2998 /* No need to invalidate - it was non-present before */
82b0f8c3 2999 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3000unlock:
82b0f8c3 3001 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3002 return ret;
8f4e2101 3003release:
f627c2f5 3004 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3005 put_page(page);
8f4e2101 3006 goto unlock;
8a9f3ccd 3007oom_free_page:
09cbfeaf 3008 put_page(page);
65500d23 3009oom:
1da177e4
LT
3010 return VM_FAULT_OOM;
3011}
3012
9a95f3cf
PC
3013/*
3014 * The mmap_sem must have been held on entry, and may have been
3015 * released depending on flags and vma->vm_ops->fault() return value.
3016 * See filemap_fault() and __lock_page_retry().
3017 */
2b740303 3018static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3019{
82b0f8c3 3020 struct vm_area_struct *vma = vmf->vma;
2b740303 3021 vm_fault_t ret;
7eae74af 3022
63f3655f
MH
3023 /*
3024 * Preallocate pte before we take page_lock because this might lead to
3025 * deadlocks for memcg reclaim which waits for pages under writeback:
3026 * lock_page(A)
3027 * SetPageWriteback(A)
3028 * unlock_page(A)
3029 * lock_page(B)
3030 * lock_page(B)
3031 * pte_alloc_pne
3032 * shrink_page_list
3033 * wait_on_page_writeback(A)
3034 * SetPageWriteback(B)
3035 * unlock_page(B)
3036 * # flush A, B to clear the writeback
3037 */
3038 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3039 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3040 if (!vmf->prealloc_pte)
3041 return VM_FAULT_OOM;
3042 smp_wmb(); /* See comment in __pte_alloc() */
3043 }
3044
11bac800 3045 ret = vma->vm_ops->fault(vmf);
3917048d 3046 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3047 VM_FAULT_DONE_COW)))
bc2466e4 3048 return ret;
7eae74af 3049
667240e0 3050 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3051 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3052 unlock_page(vmf->page);
3053 put_page(vmf->page);
936ca80d 3054 vmf->page = NULL;
7eae74af
KS
3055 return VM_FAULT_HWPOISON;
3056 }
3057
3058 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3059 lock_page(vmf->page);
7eae74af 3060 else
667240e0 3061 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3062
7eae74af
KS
3063 return ret;
3064}
3065
d0f0931d
RZ
3066/*
3067 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3068 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3069 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3070 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3071 */
3072static int pmd_devmap_trans_unstable(pmd_t *pmd)
3073{
3074 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3075}
3076
2b740303 3077static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3078{
82b0f8c3 3079 struct vm_area_struct *vma = vmf->vma;
7267ec00 3080
82b0f8c3 3081 if (!pmd_none(*vmf->pmd))
7267ec00 3082 goto map_pte;
82b0f8c3
JK
3083 if (vmf->prealloc_pte) {
3084 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3085 if (unlikely(!pmd_none(*vmf->pmd))) {
3086 spin_unlock(vmf->ptl);
7267ec00
KS
3087 goto map_pte;
3088 }
3089
c4812909 3090 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3091 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3092 spin_unlock(vmf->ptl);
7f2b6ce8 3093 vmf->prealloc_pte = NULL;
4cf58924 3094 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3095 return VM_FAULT_OOM;
3096 }
3097map_pte:
3098 /*
3099 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3100 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3101 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3102 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3103 * running immediately after a huge pmd fault in a different thread of
3104 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3105 * All we have to ensure is that it is a regular pmd that we can walk
3106 * with pte_offset_map() and we can do that through an atomic read in
3107 * C, which is what pmd_trans_unstable() provides.
7267ec00 3108 */
d0f0931d 3109 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3110 return VM_FAULT_NOPAGE;
3111
d0f0931d
RZ
3112 /*
3113 * At this point we know that our vmf->pmd points to a page of ptes
3114 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3115 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3116 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3117 * be valid and we will re-check to make sure the vmf->pte isn't
3118 * pte_none() under vmf->ptl protection when we return to
3119 * alloc_set_pte().
3120 */
82b0f8c3
JK
3121 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3122 &vmf->ptl);
7267ec00
KS
3123 return 0;
3124}
3125
e496cf3d 3126#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3127
3128#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3129static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3130 unsigned long haddr)
3131{
3132 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3133 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3134 return false;
3135 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3136 return false;
3137 return true;
3138}
3139
82b0f8c3 3140static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3141{
82b0f8c3 3142 struct vm_area_struct *vma = vmf->vma;
953c66c2 3143
82b0f8c3 3144 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3145 /*
3146 * We are going to consume the prealloc table,
3147 * count that as nr_ptes.
3148 */
c4812909 3149 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3150 vmf->prealloc_pte = NULL;
953c66c2
AK
3151}
3152
2b740303 3153static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3154{
82b0f8c3
JK
3155 struct vm_area_struct *vma = vmf->vma;
3156 bool write = vmf->flags & FAULT_FLAG_WRITE;
3157 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3158 pmd_t entry;
2b740303
SJ
3159 int i;
3160 vm_fault_t ret;
10102459
KS
3161
3162 if (!transhuge_vma_suitable(vma, haddr))
3163 return VM_FAULT_FALLBACK;
3164
3165 ret = VM_FAULT_FALLBACK;
3166 page = compound_head(page);
3167
953c66c2
AK
3168 /*
3169 * Archs like ppc64 need additonal space to store information
3170 * related to pte entry. Use the preallocated table for that.
3171 */
82b0f8c3 3172 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3173 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3174 if (!vmf->prealloc_pte)
953c66c2
AK
3175 return VM_FAULT_OOM;
3176 smp_wmb(); /* See comment in __pte_alloc() */
3177 }
3178
82b0f8c3
JK
3179 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3180 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3181 goto out;
3182
3183 for (i = 0; i < HPAGE_PMD_NR; i++)
3184 flush_icache_page(vma, page + i);
3185
3186 entry = mk_huge_pmd(page, vma->vm_page_prot);
3187 if (write)
f55e1014 3188 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3189
fadae295 3190 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3191 page_add_file_rmap(page, true);
953c66c2
AK
3192 /*
3193 * deposit and withdraw with pmd lock held
3194 */
3195 if (arch_needs_pgtable_deposit())
82b0f8c3 3196 deposit_prealloc_pte(vmf);
10102459 3197
82b0f8c3 3198 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3199
82b0f8c3 3200 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3201
3202 /* fault is handled */
3203 ret = 0;
95ecedcd 3204 count_vm_event(THP_FILE_MAPPED);
10102459 3205out:
82b0f8c3 3206 spin_unlock(vmf->ptl);
10102459
KS
3207 return ret;
3208}
3209#else
2b740303 3210static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3211{
3212 BUILD_BUG();
3213 return 0;
3214}
3215#endif
3216
8c6e50b0 3217/**
7267ec00
KS
3218 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3219 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3220 *
82b0f8c3 3221 * @vmf: fault environment
7267ec00 3222 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3223 * @page: page to map
8c6e50b0 3224 *
82b0f8c3
JK
3225 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3226 * return.
8c6e50b0
KS
3227 *
3228 * Target users are page handler itself and implementations of
3229 * vm_ops->map_pages.
a862f68a
MR
3230 *
3231 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3232 */
2b740303 3233vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3234 struct page *page)
3bb97794 3235{
82b0f8c3
JK
3236 struct vm_area_struct *vma = vmf->vma;
3237 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3238 pte_t entry;
2b740303 3239 vm_fault_t ret;
10102459 3240
82b0f8c3 3241 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3242 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3243 /* THP on COW? */
3244 VM_BUG_ON_PAGE(memcg, page);
3245
82b0f8c3 3246 ret = do_set_pmd(vmf, page);
10102459 3247 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3248 return ret;
10102459 3249 }
3bb97794 3250
82b0f8c3
JK
3251 if (!vmf->pte) {
3252 ret = pte_alloc_one_map(vmf);
7267ec00 3253 if (ret)
b0b9b3df 3254 return ret;
7267ec00
KS
3255 }
3256
3257 /* Re-check under ptl */
b0b9b3df
HD
3258 if (unlikely(!pte_none(*vmf->pte)))
3259 return VM_FAULT_NOPAGE;
7267ec00 3260
3bb97794
KS
3261 flush_icache_page(vma, page);
3262 entry = mk_pte(page, vma->vm_page_prot);
3263 if (write)
3264 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3265 /* copy-on-write page */
3266 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3267 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3268 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3269 mem_cgroup_commit_charge(page, memcg, false, false);
3270 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3271 } else {
eca56ff9 3272 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3273 page_add_file_rmap(page, false);
3bb97794 3274 }
82b0f8c3 3275 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3276
3277 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3278 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3279
b0b9b3df 3280 return 0;
3bb97794
KS
3281}
3282
9118c0cb
JK
3283
3284/**
3285 * finish_fault - finish page fault once we have prepared the page to fault
3286 *
3287 * @vmf: structure describing the fault
3288 *
3289 * This function handles all that is needed to finish a page fault once the
3290 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3291 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3292 * addition.
9118c0cb
JK
3293 *
3294 * The function expects the page to be locked and on success it consumes a
3295 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3296 *
3297 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3298 */
2b740303 3299vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3300{
3301 struct page *page;
2b740303 3302 vm_fault_t ret = 0;
9118c0cb
JK
3303
3304 /* Did we COW the page? */
3305 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3306 !(vmf->vma->vm_flags & VM_SHARED))
3307 page = vmf->cow_page;
3308 else
3309 page = vmf->page;
6b31d595
MH
3310
3311 /*
3312 * check even for read faults because we might have lost our CoWed
3313 * page
3314 */
3315 if (!(vmf->vma->vm_flags & VM_SHARED))
3316 ret = check_stable_address_space(vmf->vma->vm_mm);
3317 if (!ret)
3318 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3319 if (vmf->pte)
3320 pte_unmap_unlock(vmf->pte, vmf->ptl);
3321 return ret;
3322}
3323
3a91053a
KS
3324static unsigned long fault_around_bytes __read_mostly =
3325 rounddown_pow_of_two(65536);
a9b0f861 3326
a9b0f861
KS
3327#ifdef CONFIG_DEBUG_FS
3328static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3329{
a9b0f861 3330 *val = fault_around_bytes;
1592eef0
KS
3331 return 0;
3332}
3333
b4903d6e 3334/*
da391d64
WK
3335 * fault_around_bytes must be rounded down to the nearest page order as it's
3336 * what do_fault_around() expects to see.
b4903d6e 3337 */
a9b0f861 3338static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3339{
a9b0f861 3340 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3341 return -EINVAL;
b4903d6e
AR
3342 if (val > PAGE_SIZE)
3343 fault_around_bytes = rounddown_pow_of_two(val);
3344 else
3345 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3346 return 0;
3347}
0a1345f8 3348DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3349 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3350
3351static int __init fault_around_debugfs(void)
3352{
d9f7979c
GKH
3353 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3354 &fault_around_bytes_fops);
1592eef0
KS
3355 return 0;
3356}
3357late_initcall(fault_around_debugfs);
1592eef0 3358#endif
8c6e50b0 3359
1fdb412b
KS
3360/*
3361 * do_fault_around() tries to map few pages around the fault address. The hope
3362 * is that the pages will be needed soon and this will lower the number of
3363 * faults to handle.
3364 *
3365 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3366 * not ready to be mapped: not up-to-date, locked, etc.
3367 *
3368 * This function is called with the page table lock taken. In the split ptlock
3369 * case the page table lock only protects only those entries which belong to
3370 * the page table corresponding to the fault address.
3371 *
3372 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3373 * only once.
3374 *
da391d64
WK
3375 * fault_around_bytes defines how many bytes we'll try to map.
3376 * do_fault_around() expects it to be set to a power of two less than or equal
3377 * to PTRS_PER_PTE.
1fdb412b 3378 *
da391d64
WK
3379 * The virtual address of the area that we map is naturally aligned to
3380 * fault_around_bytes rounded down to the machine page size
3381 * (and therefore to page order). This way it's easier to guarantee
3382 * that we don't cross page table boundaries.
1fdb412b 3383 */
2b740303 3384static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3385{
82b0f8c3 3386 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3387 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3388 pgoff_t end_pgoff;
2b740303
SJ
3389 int off;
3390 vm_fault_t ret = 0;
8c6e50b0 3391
4db0c3c2 3392 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3393 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3394
82b0f8c3
JK
3395 vmf->address = max(address & mask, vmf->vma->vm_start);
3396 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3397 start_pgoff -= off;
8c6e50b0
KS
3398
3399 /*
da391d64
WK
3400 * end_pgoff is either the end of the page table, the end of
3401 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3402 */
bae473a4 3403 end_pgoff = start_pgoff -
82b0f8c3 3404 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3405 PTRS_PER_PTE - 1;
82b0f8c3 3406 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3407 start_pgoff + nr_pages - 1);
8c6e50b0 3408
82b0f8c3 3409 if (pmd_none(*vmf->pmd)) {
4cf58924 3410 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3411 if (!vmf->prealloc_pte)
c5f88bd2 3412 goto out;
7267ec00 3413 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3414 }
3415
82b0f8c3 3416 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3417
7267ec00 3418 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3419 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3420 ret = VM_FAULT_NOPAGE;
3421 goto out;
3422 }
3423
3424 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3425 if (!vmf->pte)
7267ec00
KS
3426 goto out;
3427
3428 /* check if the page fault is solved */
82b0f8c3
JK
3429 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3430 if (!pte_none(*vmf->pte))
7267ec00 3431 ret = VM_FAULT_NOPAGE;
82b0f8c3 3432 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3433out:
82b0f8c3
JK
3434 vmf->address = address;
3435 vmf->pte = NULL;
7267ec00 3436 return ret;
8c6e50b0
KS
3437}
3438
2b740303 3439static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3440{
82b0f8c3 3441 struct vm_area_struct *vma = vmf->vma;
2b740303 3442 vm_fault_t ret = 0;
8c6e50b0
KS
3443
3444 /*
3445 * Let's call ->map_pages() first and use ->fault() as fallback
3446 * if page by the offset is not ready to be mapped (cold cache or
3447 * something).
3448 */
9b4bdd2f 3449 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3450 ret = do_fault_around(vmf);
7267ec00
KS
3451 if (ret)
3452 return ret;
8c6e50b0 3453 }
e655fb29 3454
936ca80d 3455 ret = __do_fault(vmf);
e655fb29
KS
3456 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3457 return ret;
3458
9118c0cb 3459 ret |= finish_fault(vmf);
936ca80d 3460 unlock_page(vmf->page);
7267ec00 3461 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3462 put_page(vmf->page);
e655fb29
KS
3463 return ret;
3464}
3465
2b740303 3466static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3467{
82b0f8c3 3468 struct vm_area_struct *vma = vmf->vma;
2b740303 3469 vm_fault_t ret;
ec47c3b9
KS
3470
3471 if (unlikely(anon_vma_prepare(vma)))
3472 return VM_FAULT_OOM;
3473
936ca80d
JK
3474 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3475 if (!vmf->cow_page)
ec47c3b9
KS
3476 return VM_FAULT_OOM;
3477
2cf85583 3478 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3479 &vmf->memcg, false)) {
936ca80d 3480 put_page(vmf->cow_page);
ec47c3b9
KS
3481 return VM_FAULT_OOM;
3482 }
3483
936ca80d 3484 ret = __do_fault(vmf);
ec47c3b9
KS
3485 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3486 goto uncharge_out;
3917048d
JK
3487 if (ret & VM_FAULT_DONE_COW)
3488 return ret;
ec47c3b9 3489
b1aa812b 3490 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3491 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3492
9118c0cb 3493 ret |= finish_fault(vmf);
b1aa812b
JK
3494 unlock_page(vmf->page);
3495 put_page(vmf->page);
7267ec00
KS
3496 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3497 goto uncharge_out;
ec47c3b9
KS
3498 return ret;
3499uncharge_out:
3917048d 3500 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3501 put_page(vmf->cow_page);
ec47c3b9
KS
3502 return ret;
3503}
3504
2b740303 3505static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3506{
82b0f8c3 3507 struct vm_area_struct *vma = vmf->vma;
2b740303 3508 vm_fault_t ret, tmp;
1d65f86d 3509
936ca80d 3510 ret = __do_fault(vmf);
7eae74af 3511 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3512 return ret;
1da177e4
LT
3513
3514 /*
f0c6d4d2
KS
3515 * Check if the backing address space wants to know that the page is
3516 * about to become writable
1da177e4 3517 */
fb09a464 3518 if (vma->vm_ops->page_mkwrite) {
936ca80d 3519 unlock_page(vmf->page);
38b8cb7f 3520 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3521 if (unlikely(!tmp ||
3522 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3523 put_page(vmf->page);
fb09a464 3524 return tmp;
4294621f 3525 }
fb09a464
KS
3526 }
3527
9118c0cb 3528 ret |= finish_fault(vmf);
7267ec00
KS
3529 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3530 VM_FAULT_RETRY))) {
936ca80d
JK
3531 unlock_page(vmf->page);
3532 put_page(vmf->page);
f0c6d4d2 3533 return ret;
1da177e4 3534 }
b827e496 3535
97ba0c2b 3536 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3537 return ret;
54cb8821 3538}
d00806b1 3539
9a95f3cf
PC
3540/*
3541 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3542 * but allow concurrent faults).
3543 * The mmap_sem may have been released depending on flags and our
3544 * return value. See filemap_fault() and __lock_page_or_retry().
fc8efd2d
JS
3545 * If mmap_sem is released, vma may become invalid (for example
3546 * by other thread calling munmap()).
9a95f3cf 3547 */
2b740303 3548static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3549{
82b0f8c3 3550 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3551 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3552 vm_fault_t ret;
54cb8821 3553
ff09d7ec
AK
3554 /*
3555 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3556 */
3557 if (!vma->vm_ops->fault) {
3558 /*
3559 * If we find a migration pmd entry or a none pmd entry, which
3560 * should never happen, return SIGBUS
3561 */
3562 if (unlikely(!pmd_present(*vmf->pmd)))
3563 ret = VM_FAULT_SIGBUS;
3564 else {
3565 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3566 vmf->pmd,
3567 vmf->address,
3568 &vmf->ptl);
3569 /*
3570 * Make sure this is not a temporary clearing of pte
3571 * by holding ptl and checking again. A R/M/W update
3572 * of pte involves: take ptl, clearing the pte so that
3573 * we don't have concurrent modification by hardware
3574 * followed by an update.
3575 */
3576 if (unlikely(pte_none(*vmf->pte)))
3577 ret = VM_FAULT_SIGBUS;
3578 else
3579 ret = VM_FAULT_NOPAGE;
3580
3581 pte_unmap_unlock(vmf->pte, vmf->ptl);
3582 }
3583 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3584 ret = do_read_fault(vmf);
3585 else if (!(vma->vm_flags & VM_SHARED))
3586 ret = do_cow_fault(vmf);
3587 else
3588 ret = do_shared_fault(vmf);
3589
3590 /* preallocated pagetable is unused: free it */
3591 if (vmf->prealloc_pte) {
fc8efd2d 3592 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3593 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3594 }
3595 return ret;
54cb8821
NP
3596}
3597
b19a9939 3598static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3599 unsigned long addr, int page_nid,
3600 int *flags)
9532fec1
MG
3601{
3602 get_page(page);
3603
3604 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3605 if (page_nid == numa_node_id()) {
9532fec1 3606 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3607 *flags |= TNF_FAULT_LOCAL;
3608 }
9532fec1
MG
3609
3610 return mpol_misplaced(page, vma, addr);
3611}
3612
2b740303 3613static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3614{
82b0f8c3 3615 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3616 struct page *page = NULL;
98fa15f3 3617 int page_nid = NUMA_NO_NODE;
90572890 3618 int last_cpupid;
cbee9f88 3619 int target_nid;
b8593bfd 3620 bool migrated = false;
04a86453 3621 pte_t pte, old_pte;
288bc549 3622 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3623 int flags = 0;
d10e63f2
MG
3624
3625 /*
166f61b9
TH
3626 * The "pte" at this point cannot be used safely without
3627 * validation through pte_unmap_same(). It's of NUMA type but
3628 * the pfn may be screwed if the read is non atomic.
166f61b9 3629 */
82b0f8c3
JK
3630 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3631 spin_lock(vmf->ptl);
cee216a6 3632 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3633 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3634 goto out;
3635 }
3636
cee216a6
AK
3637 /*
3638 * Make it present again, Depending on how arch implementes non
3639 * accessible ptes, some can allow access by kernel mode.
3640 */
04a86453
AK
3641 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3642 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 3643 pte = pte_mkyoung(pte);
b191f9b1
MG
3644 if (was_writable)
3645 pte = pte_mkwrite(pte);
04a86453 3646 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 3647 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3648
82b0f8c3 3649 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3650 if (!page) {
82b0f8c3 3651 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3652 return 0;
3653 }
3654
e81c4802
KS
3655 /* TODO: handle PTE-mapped THP */
3656 if (PageCompound(page)) {
82b0f8c3 3657 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3658 return 0;
3659 }
3660
6688cc05 3661 /*
bea66fbd
MG
3662 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3663 * much anyway since they can be in shared cache state. This misses
3664 * the case where a mapping is writable but the process never writes
3665 * to it but pte_write gets cleared during protection updates and
3666 * pte_dirty has unpredictable behaviour between PTE scan updates,
3667 * background writeback, dirty balancing and application behaviour.
6688cc05 3668 */
d59dc7bc 3669 if (!pte_write(pte))
6688cc05
PZ
3670 flags |= TNF_NO_GROUP;
3671
dabe1d99
RR
3672 /*
3673 * Flag if the page is shared between multiple address spaces. This
3674 * is later used when determining whether to group tasks together
3675 */
3676 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3677 flags |= TNF_SHARED;
3678
90572890 3679 last_cpupid = page_cpupid_last(page);
8191acbd 3680 page_nid = page_to_nid(page);
82b0f8c3 3681 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3682 &flags);
82b0f8c3 3683 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 3684 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
3685 put_page(page);
3686 goto out;
3687 }
3688
3689 /* Migrate to the requested node */
1bc115d8 3690 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3691 if (migrated) {
8191acbd 3692 page_nid = target_nid;
6688cc05 3693 flags |= TNF_MIGRATED;
074c2381
MG
3694 } else
3695 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3696
3697out:
98fa15f3 3698 if (page_nid != NUMA_NO_NODE)
6688cc05 3699 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3700 return 0;
3701}
3702
2b740303 3703static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3704{
f4200391 3705 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3706 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3707 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3708 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3709 return VM_FAULT_FALLBACK;
3710}
3711
183f24aa 3712/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3713static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3714{
82b0f8c3
JK
3715 if (vma_is_anonymous(vmf->vma))
3716 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3717 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3718 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3719
3720 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3721 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3722 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3723
b96375f7
MW
3724 return VM_FAULT_FALLBACK;
3725}
3726
38e08854
LS
3727static inline bool vma_is_accessible(struct vm_area_struct *vma)
3728{
3729 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3730}
3731
2b740303 3732static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3733{
3734#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3735 /* No support for anonymous transparent PUD pages yet */
3736 if (vma_is_anonymous(vmf->vma))
3737 return VM_FAULT_FALLBACK;
3738 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3739 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3740#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3741 return VM_FAULT_FALLBACK;
3742}
3743
2b740303 3744static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3745{
3746#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3747 /* No support for anonymous transparent PUD pages yet */
3748 if (vma_is_anonymous(vmf->vma))
3749 return VM_FAULT_FALLBACK;
3750 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3751 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3752#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3753 return VM_FAULT_FALLBACK;
3754}
3755
1da177e4
LT
3756/*
3757 * These routines also need to handle stuff like marking pages dirty
3758 * and/or accessed for architectures that don't do it in hardware (most
3759 * RISC architectures). The early dirtying is also good on the i386.
3760 *
3761 * There is also a hook called "update_mmu_cache()" that architectures
3762 * with external mmu caches can use to update those (ie the Sparc or
3763 * PowerPC hashed page tables that act as extended TLBs).
3764 *
7267ec00
KS
3765 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3766 * concurrent faults).
9a95f3cf 3767 *
7267ec00
KS
3768 * The mmap_sem may have been released depending on flags and our return value.
3769 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3770 */
2b740303 3771static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3772{
3773 pte_t entry;
3774
82b0f8c3 3775 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3776 /*
3777 * Leave __pte_alloc() until later: because vm_ops->fault may
3778 * want to allocate huge page, and if we expose page table
3779 * for an instant, it will be difficult to retract from
3780 * concurrent faults and from rmap lookups.
3781 */
82b0f8c3 3782 vmf->pte = NULL;
7267ec00
KS
3783 } else {
3784 /* See comment in pte_alloc_one_map() */
d0f0931d 3785 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3786 return 0;
3787 /*
3788 * A regular pmd is established and it can't morph into a huge
3789 * pmd from under us anymore at this point because we hold the
3790 * mmap_sem read mode and khugepaged takes it in write mode.
3791 * So now it's safe to run pte_offset_map().
3792 */
82b0f8c3 3793 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3794 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3795
3796 /*
3797 * some architectures can have larger ptes than wordsize,
3798 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3799 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3800 * accesses. The code below just needs a consistent view
3801 * for the ifs and we later double check anyway with the
7267ec00
KS
3802 * ptl lock held. So here a barrier will do.
3803 */
3804 barrier();
2994302b 3805 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3806 pte_unmap(vmf->pte);
3807 vmf->pte = NULL;
65500d23 3808 }
1da177e4
LT
3809 }
3810
82b0f8c3
JK
3811 if (!vmf->pte) {
3812 if (vma_is_anonymous(vmf->vma))
3813 return do_anonymous_page(vmf);
7267ec00 3814 else
82b0f8c3 3815 return do_fault(vmf);
7267ec00
KS
3816 }
3817
2994302b
JK
3818 if (!pte_present(vmf->orig_pte))
3819 return do_swap_page(vmf);
7267ec00 3820
2994302b
JK
3821 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3822 return do_numa_page(vmf);
d10e63f2 3823
82b0f8c3
JK
3824 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3825 spin_lock(vmf->ptl);
2994302b 3826 entry = vmf->orig_pte;
82b0f8c3 3827 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3828 goto unlock;
82b0f8c3 3829 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3830 if (!pte_write(entry))
2994302b 3831 return do_wp_page(vmf);
1da177e4
LT
3832 entry = pte_mkdirty(entry);
3833 }
3834 entry = pte_mkyoung(entry);
82b0f8c3
JK
3835 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3836 vmf->flags & FAULT_FLAG_WRITE)) {
3837 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3838 } else {
3839 /*
3840 * This is needed only for protection faults but the arch code
3841 * is not yet telling us if this is a protection fault or not.
3842 * This still avoids useless tlb flushes for .text page faults
3843 * with threads.
3844 */
82b0f8c3
JK
3845 if (vmf->flags & FAULT_FLAG_WRITE)
3846 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3847 }
8f4e2101 3848unlock:
82b0f8c3 3849 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3850 return 0;
1da177e4
LT
3851}
3852
3853/*
3854 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3855 *
3856 * The mmap_sem may have been released depending on flags and our
3857 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3858 */
2b740303
SJ
3859static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3860 unsigned long address, unsigned int flags)
1da177e4 3861{
82b0f8c3 3862 struct vm_fault vmf = {
bae473a4 3863 .vma = vma,
1a29d85e 3864 .address = address & PAGE_MASK,
bae473a4 3865 .flags = flags,
0721ec8b 3866 .pgoff = linear_page_index(vma, address),
667240e0 3867 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3868 };
fde26bed 3869 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 3870 struct mm_struct *mm = vma->vm_mm;
1da177e4 3871 pgd_t *pgd;
c2febafc 3872 p4d_t *p4d;
2b740303 3873 vm_fault_t ret;
1da177e4 3874
1da177e4 3875 pgd = pgd_offset(mm, address);
c2febafc
KS
3876 p4d = p4d_alloc(mm, pgd, address);
3877 if (!p4d)
3878 return VM_FAULT_OOM;
a00cc7d9 3879
c2febafc 3880 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3881 if (!vmf.pud)
c74df32c 3882 return VM_FAULT_OOM;
7635d9cb 3883 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3884 ret = create_huge_pud(&vmf);
3885 if (!(ret & VM_FAULT_FALLBACK))
3886 return ret;
3887 } else {
3888 pud_t orig_pud = *vmf.pud;
3889
3890 barrier();
3891 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 3892
a00cc7d9
MW
3893 /* NUMA case for anonymous PUDs would go here */
3894
f6f37321 3895 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
3896 ret = wp_huge_pud(&vmf, orig_pud);
3897 if (!(ret & VM_FAULT_FALLBACK))
3898 return ret;
3899 } else {
3900 huge_pud_set_accessed(&vmf, orig_pud);
3901 return 0;
3902 }
3903 }
3904 }
3905
3906 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3907 if (!vmf.pmd)
c74df32c 3908 return VM_FAULT_OOM;
7635d9cb 3909 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 3910 ret = create_huge_pmd(&vmf);
c0292554
KS
3911 if (!(ret & VM_FAULT_FALLBACK))
3912 return ret;
71e3aac0 3913 } else {
82b0f8c3 3914 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3915
71e3aac0 3916 barrier();
84c3fc4e
ZY
3917 if (unlikely(is_swap_pmd(orig_pmd))) {
3918 VM_BUG_ON(thp_migration_supported() &&
3919 !is_pmd_migration_entry(orig_pmd));
3920 if (is_pmd_migration_entry(orig_pmd))
3921 pmd_migration_entry_wait(mm, vmf.pmd);
3922 return 0;
3923 }
5c7fb56e 3924 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3925 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3926 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3927
f6f37321 3928 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 3929 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3930 if (!(ret & VM_FAULT_FALLBACK))
3931 return ret;
a1dd450b 3932 } else {
82b0f8c3 3933 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3934 return 0;
1f1d06c3 3935 }
71e3aac0
AA
3936 }
3937 }
3938
82b0f8c3 3939 return handle_pte_fault(&vmf);
1da177e4
LT
3940}
3941
9a95f3cf
PC
3942/*
3943 * By the time we get here, we already hold the mm semaphore
3944 *
3945 * The mmap_sem may have been released depending on flags and our
3946 * return value. See filemap_fault() and __lock_page_or_retry().
3947 */
2b740303 3948vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 3949 unsigned int flags)
519e5247 3950{
2b740303 3951 vm_fault_t ret;
519e5247
JW
3952
3953 __set_current_state(TASK_RUNNING);
3954
3955 count_vm_event(PGFAULT);
2262185c 3956 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
3957
3958 /* do counter updates before entering really critical section. */
3959 check_sync_rss_stat(current);
3960
de0c799b
LD
3961 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3962 flags & FAULT_FLAG_INSTRUCTION,
3963 flags & FAULT_FLAG_REMOTE))
3964 return VM_FAULT_SIGSEGV;
3965
519e5247
JW
3966 /*
3967 * Enable the memcg OOM handling for faults triggered in user
3968 * space. Kernel faults are handled more gracefully.
3969 */
3970 if (flags & FAULT_FLAG_USER)
29ef680a 3971 mem_cgroup_enter_user_fault();
519e5247 3972
bae473a4
KS
3973 if (unlikely(is_vm_hugetlb_page(vma)))
3974 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3975 else
3976 ret = __handle_mm_fault(vma, address, flags);
519e5247 3977
49426420 3978 if (flags & FAULT_FLAG_USER) {
29ef680a 3979 mem_cgroup_exit_user_fault();
166f61b9
TH
3980 /*
3981 * The task may have entered a memcg OOM situation but
3982 * if the allocation error was handled gracefully (no
3983 * VM_FAULT_OOM), there is no need to kill anything.
3984 * Just clean up the OOM state peacefully.
3985 */
3986 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3987 mem_cgroup_oom_synchronize(false);
49426420 3988 }
3812c8c8 3989
519e5247
JW
3990 return ret;
3991}
e1d6d01a 3992EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3993
90eceff1
KS
3994#ifndef __PAGETABLE_P4D_FOLDED
3995/*
3996 * Allocate p4d page table.
3997 * We've already handled the fast-path in-line.
3998 */
3999int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4000{
4001 p4d_t *new = p4d_alloc_one(mm, address);
4002 if (!new)
4003 return -ENOMEM;
4004
4005 smp_wmb(); /* See comment in __pte_alloc */
4006
4007 spin_lock(&mm->page_table_lock);
4008 if (pgd_present(*pgd)) /* Another has populated it */
4009 p4d_free(mm, new);
4010 else
4011 pgd_populate(mm, pgd, new);
4012 spin_unlock(&mm->page_table_lock);
4013 return 0;
4014}
4015#endif /* __PAGETABLE_P4D_FOLDED */
4016
1da177e4
LT
4017#ifndef __PAGETABLE_PUD_FOLDED
4018/*
4019 * Allocate page upper directory.
872fec16 4020 * We've already handled the fast-path in-line.
1da177e4 4021 */
c2febafc 4022int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4023{
c74df32c
HD
4024 pud_t *new = pud_alloc_one(mm, address);
4025 if (!new)
1bb3630e 4026 return -ENOMEM;
1da177e4 4027
362a61ad
NP
4028 smp_wmb(); /* See comment in __pte_alloc */
4029
872fec16 4030 spin_lock(&mm->page_table_lock);
c2febafc 4031#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4032 if (!p4d_present(*p4d)) {
4033 mm_inc_nr_puds(mm);
c2febafc 4034 p4d_populate(mm, p4d, new);
b4e98d9a 4035 } else /* Another has populated it */
5e541973 4036 pud_free(mm, new);
b4e98d9a
KS
4037#else
4038 if (!pgd_present(*p4d)) {
4039 mm_inc_nr_puds(mm);
c2febafc 4040 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4041 } else /* Another has populated it */
4042 pud_free(mm, new);
c2febafc 4043#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4044 spin_unlock(&mm->page_table_lock);
1bb3630e 4045 return 0;
1da177e4
LT
4046}
4047#endif /* __PAGETABLE_PUD_FOLDED */
4048
4049#ifndef __PAGETABLE_PMD_FOLDED
4050/*
4051 * Allocate page middle directory.
872fec16 4052 * We've already handled the fast-path in-line.
1da177e4 4053 */
1bb3630e 4054int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4055{
a00cc7d9 4056 spinlock_t *ptl;
c74df32c
HD
4057 pmd_t *new = pmd_alloc_one(mm, address);
4058 if (!new)
1bb3630e 4059 return -ENOMEM;
1da177e4 4060
362a61ad
NP
4061 smp_wmb(); /* See comment in __pte_alloc */
4062
a00cc7d9 4063 ptl = pud_lock(mm, pud);
1da177e4 4064#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4065 if (!pud_present(*pud)) {
4066 mm_inc_nr_pmds(mm);
1bb3630e 4067 pud_populate(mm, pud, new);
dc6c9a35 4068 } else /* Another has populated it */
5e541973 4069 pmd_free(mm, new);
dc6c9a35
KS
4070#else
4071 if (!pgd_present(*pud)) {
4072 mm_inc_nr_pmds(mm);
1bb3630e 4073 pgd_populate(mm, pud, new);
dc6c9a35
KS
4074 } else /* Another has populated it */
4075 pmd_free(mm, new);
1da177e4 4076#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4077 spin_unlock(ptl);
1bb3630e 4078 return 0;
e0f39591 4079}
1da177e4
LT
4080#endif /* __PAGETABLE_PMD_FOLDED */
4081
09796395 4082static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4083 struct mmu_notifier_range *range,
a4d1a885 4084 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4085{
4086 pgd_t *pgd;
c2febafc 4087 p4d_t *p4d;
f8ad0f49
JW
4088 pud_t *pud;
4089 pmd_t *pmd;
4090 pte_t *ptep;
4091
4092 pgd = pgd_offset(mm, address);
4093 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4094 goto out;
4095
c2febafc
KS
4096 p4d = p4d_offset(pgd, address);
4097 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4098 goto out;
4099
4100 pud = pud_offset(p4d, address);
f8ad0f49
JW
4101 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4102 goto out;
4103
4104 pmd = pmd_offset(pud, address);
f66055ab 4105 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4106
09796395
RZ
4107 if (pmd_huge(*pmd)) {
4108 if (!pmdpp)
4109 goto out;
4110
ac46d4f3 4111 if (range) {
7269f999 4112 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4113 NULL, mm, address & PMD_MASK,
4114 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4115 mmu_notifier_invalidate_range_start(range);
a4d1a885 4116 }
09796395
RZ
4117 *ptlp = pmd_lock(mm, pmd);
4118 if (pmd_huge(*pmd)) {
4119 *pmdpp = pmd;
4120 return 0;
4121 }
4122 spin_unlock(*ptlp);
ac46d4f3
JG
4123 if (range)
4124 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4125 }
4126
4127 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4128 goto out;
4129
ac46d4f3 4130 if (range) {
7269f999 4131 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4132 address & PAGE_MASK,
4133 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4134 mmu_notifier_invalidate_range_start(range);
a4d1a885 4135 }
f8ad0f49 4136 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4137 if (!pte_present(*ptep))
4138 goto unlock;
4139 *ptepp = ptep;
4140 return 0;
4141unlock:
4142 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4143 if (range)
4144 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4145out:
4146 return -EINVAL;
4147}
4148
f729c8c9
RZ
4149static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4150 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4151{
4152 int res;
4153
4154 /* (void) is needed to make gcc happy */
4155 (void) __cond_lock(*ptlp,
ac46d4f3 4156 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4157 ptepp, NULL, ptlp)));
09796395
RZ
4158 return res;
4159}
4160
4161int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4162 struct mmu_notifier_range *range,
4163 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4164{
4165 int res;
4166
4167 /* (void) is needed to make gcc happy */
4168 (void) __cond_lock(*ptlp,
ac46d4f3 4169 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4170 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4171 return res;
4172}
09796395 4173EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4174
3b6748e2
JW
4175/**
4176 * follow_pfn - look up PFN at a user virtual address
4177 * @vma: memory mapping
4178 * @address: user virtual address
4179 * @pfn: location to store found PFN
4180 *
4181 * Only IO mappings and raw PFN mappings are allowed.
4182 *
a862f68a 4183 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4184 */
4185int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4186 unsigned long *pfn)
4187{
4188 int ret = -EINVAL;
4189 spinlock_t *ptl;
4190 pte_t *ptep;
4191
4192 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4193 return ret;
4194
4195 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4196 if (ret)
4197 return ret;
4198 *pfn = pte_pfn(*ptep);
4199 pte_unmap_unlock(ptep, ptl);
4200 return 0;
4201}
4202EXPORT_SYMBOL(follow_pfn);
4203
28b2ee20 4204#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4205int follow_phys(struct vm_area_struct *vma,
4206 unsigned long address, unsigned int flags,
4207 unsigned long *prot, resource_size_t *phys)
28b2ee20 4208{
03668a4d 4209 int ret = -EINVAL;
28b2ee20
RR
4210 pte_t *ptep, pte;
4211 spinlock_t *ptl;
28b2ee20 4212
d87fe660 4213 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4214 goto out;
28b2ee20 4215
03668a4d 4216 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4217 goto out;
28b2ee20 4218 pte = *ptep;
03668a4d 4219
f6f37321 4220 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4221 goto unlock;
28b2ee20
RR
4222
4223 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4224 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4225
03668a4d 4226 ret = 0;
28b2ee20
RR
4227unlock:
4228 pte_unmap_unlock(ptep, ptl);
4229out:
d87fe660 4230 return ret;
28b2ee20
RR
4231}
4232
4233int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4234 void *buf, int len, int write)
4235{
4236 resource_size_t phys_addr;
4237 unsigned long prot = 0;
2bc7273b 4238 void __iomem *maddr;
28b2ee20
RR
4239 int offset = addr & (PAGE_SIZE-1);
4240
d87fe660 4241 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4242 return -EINVAL;
4243
9cb12d7b 4244 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4245 if (!maddr)
4246 return -ENOMEM;
4247
28b2ee20
RR
4248 if (write)
4249 memcpy_toio(maddr + offset, buf, len);
4250 else
4251 memcpy_fromio(buf, maddr + offset, len);
4252 iounmap(maddr);
4253
4254 return len;
4255}
5a73633e 4256EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4257#endif
4258
0ec76a11 4259/*
206cb636
SW
4260 * Access another process' address space as given in mm. If non-NULL, use the
4261 * given task for page fault accounting.
0ec76a11 4262 */
84d77d3f 4263int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4264 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4265{
0ec76a11 4266 struct vm_area_struct *vma;
0ec76a11 4267 void *old_buf = buf;
442486ec 4268 int write = gup_flags & FOLL_WRITE;
0ec76a11 4269
0ec76a11 4270 down_read(&mm->mmap_sem);
183ff22b 4271 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4272 while (len) {
4273 int bytes, ret, offset;
4274 void *maddr;
28b2ee20 4275 struct page *page = NULL;
0ec76a11 4276
1e987790 4277 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4278 gup_flags, &page, &vma, NULL);
28b2ee20 4279 if (ret <= 0) {
dbffcd03
RR
4280#ifndef CONFIG_HAVE_IOREMAP_PROT
4281 break;
4282#else
28b2ee20
RR
4283 /*
4284 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4285 * we can access using slightly different code.
4286 */
28b2ee20 4287 vma = find_vma(mm, addr);
fe936dfc 4288 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4289 break;
4290 if (vma->vm_ops && vma->vm_ops->access)
4291 ret = vma->vm_ops->access(vma, addr, buf,
4292 len, write);
4293 if (ret <= 0)
28b2ee20
RR
4294 break;
4295 bytes = ret;
dbffcd03 4296#endif
0ec76a11 4297 } else {
28b2ee20
RR
4298 bytes = len;
4299 offset = addr & (PAGE_SIZE-1);
4300 if (bytes > PAGE_SIZE-offset)
4301 bytes = PAGE_SIZE-offset;
4302
4303 maddr = kmap(page);
4304 if (write) {
4305 copy_to_user_page(vma, page, addr,
4306 maddr + offset, buf, bytes);
4307 set_page_dirty_lock(page);
4308 } else {
4309 copy_from_user_page(vma, page, addr,
4310 buf, maddr + offset, bytes);
4311 }
4312 kunmap(page);
09cbfeaf 4313 put_page(page);
0ec76a11 4314 }
0ec76a11
DH
4315 len -= bytes;
4316 buf += bytes;
4317 addr += bytes;
4318 }
4319 up_read(&mm->mmap_sem);
0ec76a11
DH
4320
4321 return buf - old_buf;
4322}
03252919 4323
5ddd36b9 4324/**
ae91dbfc 4325 * access_remote_vm - access another process' address space
5ddd36b9
SW
4326 * @mm: the mm_struct of the target address space
4327 * @addr: start address to access
4328 * @buf: source or destination buffer
4329 * @len: number of bytes to transfer
6347e8d5 4330 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4331 *
4332 * The caller must hold a reference on @mm.
a862f68a
MR
4333 *
4334 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4335 */
4336int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4337 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4338{
6347e8d5 4339 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4340}
4341
206cb636
SW
4342/*
4343 * Access another process' address space.
4344 * Source/target buffer must be kernel space,
4345 * Do not walk the page table directly, use get_user_pages
4346 */
4347int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4348 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4349{
4350 struct mm_struct *mm;
4351 int ret;
4352
4353 mm = get_task_mm(tsk);
4354 if (!mm)
4355 return 0;
4356
f307ab6d 4357 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4358
206cb636
SW
4359 mmput(mm);
4360
4361 return ret;
4362}
fcd35857 4363EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4364
03252919
AK
4365/*
4366 * Print the name of a VMA.
4367 */
4368void print_vma_addr(char *prefix, unsigned long ip)
4369{
4370 struct mm_struct *mm = current->mm;
4371 struct vm_area_struct *vma;
4372
e8bff74a 4373 /*
0a7f682d 4374 * we might be running from an atomic context so we cannot sleep
e8bff74a 4375 */
0a7f682d 4376 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4377 return;
4378
03252919
AK
4379 vma = find_vma(mm, ip);
4380 if (vma && vma->vm_file) {
4381 struct file *f = vma->vm_file;
0a7f682d 4382 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4383 if (buf) {
2fbc57c5 4384 char *p;
03252919 4385
9bf39ab2 4386 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4387 if (IS_ERR(p))
4388 p = "?";
2fbc57c5 4389 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4390 vma->vm_start,
4391 vma->vm_end - vma->vm_start);
4392 free_page((unsigned long)buf);
4393 }
4394 }
51a07e50 4395 up_read(&mm->mmap_sem);
03252919 4396}
3ee1afa3 4397
662bbcb2 4398#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4399void __might_fault(const char *file, int line)
3ee1afa3 4400{
95156f00
PZ
4401 /*
4402 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4403 * holding the mmap_sem, this is safe because kernel memory doesn't
4404 * get paged out, therefore we'll never actually fault, and the
4405 * below annotations will generate false positives.
4406 */
db68ce10 4407 if (uaccess_kernel())
95156f00 4408 return;
9ec23531 4409 if (pagefault_disabled())
662bbcb2 4410 return;
9ec23531
DH
4411 __might_sleep(file, line, 0);
4412#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4413 if (current->mm)
3ee1afa3 4414 might_lock_read(&current->mm->mmap_sem);
9ec23531 4415#endif
3ee1afa3 4416}
9ec23531 4417EXPORT_SYMBOL(__might_fault);
3ee1afa3 4418#endif
47ad8475
AA
4419
4420#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4421/*
4422 * Process all subpages of the specified huge page with the specified
4423 * operation. The target subpage will be processed last to keep its
4424 * cache lines hot.
4425 */
4426static inline void process_huge_page(
4427 unsigned long addr_hint, unsigned int pages_per_huge_page,
4428 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4429 void *arg)
47ad8475 4430{
c79b57e4
HY
4431 int i, n, base, l;
4432 unsigned long addr = addr_hint &
4433 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4434
c6ddfb6c 4435 /* Process target subpage last to keep its cache lines hot */
47ad8475 4436 might_sleep();
c79b57e4
HY
4437 n = (addr_hint - addr) / PAGE_SIZE;
4438 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4439 /* If target subpage in first half of huge page */
c79b57e4
HY
4440 base = 0;
4441 l = n;
c6ddfb6c 4442 /* Process subpages at the end of huge page */
c79b57e4
HY
4443 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4444 cond_resched();
c6ddfb6c 4445 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4446 }
4447 } else {
c6ddfb6c 4448 /* If target subpage in second half of huge page */
c79b57e4
HY
4449 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4450 l = pages_per_huge_page - n;
c6ddfb6c 4451 /* Process subpages at the begin of huge page */
c79b57e4
HY
4452 for (i = 0; i < base; i++) {
4453 cond_resched();
c6ddfb6c 4454 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4455 }
4456 }
4457 /*
c6ddfb6c
HY
4458 * Process remaining subpages in left-right-left-right pattern
4459 * towards the target subpage
c79b57e4
HY
4460 */
4461 for (i = 0; i < l; i++) {
4462 int left_idx = base + i;
4463 int right_idx = base + 2 * l - 1 - i;
4464
4465 cond_resched();
c6ddfb6c 4466 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4467 cond_resched();
c6ddfb6c 4468 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4469 }
4470}
4471
c6ddfb6c
HY
4472static void clear_gigantic_page(struct page *page,
4473 unsigned long addr,
4474 unsigned int pages_per_huge_page)
4475{
4476 int i;
4477 struct page *p = page;
4478
4479 might_sleep();
4480 for (i = 0; i < pages_per_huge_page;
4481 i++, p = mem_map_next(p, page, i)) {
4482 cond_resched();
4483 clear_user_highpage(p, addr + i * PAGE_SIZE);
4484 }
4485}
4486
4487static void clear_subpage(unsigned long addr, int idx, void *arg)
4488{
4489 struct page *page = arg;
4490
4491 clear_user_highpage(page + idx, addr);
4492}
4493
4494void clear_huge_page(struct page *page,
4495 unsigned long addr_hint, unsigned int pages_per_huge_page)
4496{
4497 unsigned long addr = addr_hint &
4498 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4499
4500 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4501 clear_gigantic_page(page, addr, pages_per_huge_page);
4502 return;
4503 }
4504
4505 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4506}
4507
47ad8475
AA
4508static void copy_user_gigantic_page(struct page *dst, struct page *src,
4509 unsigned long addr,
4510 struct vm_area_struct *vma,
4511 unsigned int pages_per_huge_page)
4512{
4513 int i;
4514 struct page *dst_base = dst;
4515 struct page *src_base = src;
4516
4517 for (i = 0; i < pages_per_huge_page; ) {
4518 cond_resched();
4519 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4520
4521 i++;
4522 dst = mem_map_next(dst, dst_base, i);
4523 src = mem_map_next(src, src_base, i);
4524 }
4525}
4526
c9f4cd71
HY
4527struct copy_subpage_arg {
4528 struct page *dst;
4529 struct page *src;
4530 struct vm_area_struct *vma;
4531};
4532
4533static void copy_subpage(unsigned long addr, int idx, void *arg)
4534{
4535 struct copy_subpage_arg *copy_arg = arg;
4536
4537 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4538 addr, copy_arg->vma);
4539}
4540
47ad8475 4541void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4542 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4543 unsigned int pages_per_huge_page)
4544{
c9f4cd71
HY
4545 unsigned long addr = addr_hint &
4546 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4547 struct copy_subpage_arg arg = {
4548 .dst = dst,
4549 .src = src,
4550 .vma = vma,
4551 };
47ad8475
AA
4552
4553 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4554 copy_user_gigantic_page(dst, src, addr, vma,
4555 pages_per_huge_page);
4556 return;
4557 }
4558
c9f4cd71 4559 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4560}
fa4d75c1
MK
4561
4562long copy_huge_page_from_user(struct page *dst_page,
4563 const void __user *usr_src,
810a56b9
MK
4564 unsigned int pages_per_huge_page,
4565 bool allow_pagefault)
fa4d75c1
MK
4566{
4567 void *src = (void *)usr_src;
4568 void *page_kaddr;
4569 unsigned long i, rc = 0;
4570 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4571
4572 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4573 if (allow_pagefault)
4574 page_kaddr = kmap(dst_page + i);
4575 else
4576 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4577 rc = copy_from_user(page_kaddr,
4578 (const void __user *)(src + i * PAGE_SIZE),
4579 PAGE_SIZE);
810a56b9
MK
4580 if (allow_pagefault)
4581 kunmap(dst_page + i);
4582 else
4583 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4584
4585 ret_val -= (PAGE_SIZE - rc);
4586 if (rc)
4587 break;
4588
4589 cond_resched();
4590 }
4591 return ret_val;
4592}
47ad8475 4593#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4594
40b64acd 4595#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4596
4597static struct kmem_cache *page_ptl_cachep;
4598
4599void __init ptlock_cache_init(void)
4600{
4601 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4602 SLAB_PANIC, NULL);
4603}
4604
539edb58 4605bool ptlock_alloc(struct page *page)
49076ec2
KS
4606{
4607 spinlock_t *ptl;
4608
b35f1819 4609 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4610 if (!ptl)
4611 return false;
539edb58 4612 page->ptl = ptl;
49076ec2
KS
4613 return true;
4614}
4615
539edb58 4616void ptlock_free(struct page *page)
49076ec2 4617{
b35f1819 4618 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4619}
4620#endif