mm: introduce new vm_map_pages() and vm_map_pages_zero() API
[linux-2.6-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
5042db43 52#include <linux/memremap.h>
9a840895 53#include <linux/ksm.h>
1da177e4 54#include <linux/rmap.h>
b95f1b31 55#include <linux/export.h>
0ff92245 56#include <linux/delayacct.h>
1da177e4 57#include <linux/init.h>
01c8f1c4 58#include <linux/pfn_t.h>
edc79b2a 59#include <linux/writeback.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
3dc14741
HD
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
1da177e4 73
6952b61d 74#include <asm/io.h>
33a709b2 75#include <asm/mmu_context.h>
1da177e4 76#include <asm/pgalloc.h>
7c0f6ba6 77#include <linux/uaccess.h>
1da177e4
LT
78#include <asm/tlb.h>
79#include <asm/tlbflush.h>
80#include <asm/pgtable.h>
81
42b77728
JB
82#include "internal.h"
83
af27d940 84#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 85#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
86#endif
87
d41dee36 88#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
89/* use the per-pgdat data instead for discontigmem - mbligh */
90unsigned long max_mapnr;
1da177e4 91EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
92
93struct page *mem_map;
1da177e4
LT
94EXPORT_SYMBOL(mem_map);
95#endif
96
1da177e4
LT
97/*
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
103 */
166f61b9 104void *high_memory;
1da177e4 105EXPORT_SYMBOL(high_memory);
1da177e4 106
32a93233
IM
107/*
108 * Randomize the address space (stacks, mmaps, brk, etc.).
109 *
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
112 */
113int randomize_va_space __read_mostly =
114#ifdef CONFIG_COMPAT_BRK
115 1;
116#else
117 2;
118#endif
a62eaf15
AK
119
120static int __init disable_randmaps(char *s)
121{
122 randomize_va_space = 0;
9b41046c 123 return 1;
a62eaf15
AK
124}
125__setup("norandmaps", disable_randmaps);
126
62eede62 127unsigned long zero_pfn __read_mostly;
0b70068e
AB
128EXPORT_SYMBOL(zero_pfn);
129
166f61b9
TH
130unsigned long highest_memmap_pfn __read_mostly;
131
a13ea5b7
HD
132/*
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 */
135static int __init init_zero_pfn(void)
136{
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
139}
140core_initcall(init_zero_pfn);
a62eaf15 141
d559db08 142
34e55232
KH
143#if defined(SPLIT_RSS_COUNTING)
144
ea48cf78 145void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
146{
147 int i;
148
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
34e55232
KH
153 }
154 }
05af2e10 155 current->rss_stat.events = 0;
34e55232
KH
156}
157
158static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159{
160 struct task_struct *task = current;
161
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
166}
167#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170/* sync counter once per 64 page faults */
171#define TASK_RSS_EVENTS_THRESH (64)
172static void check_sync_rss_stat(struct task_struct *task)
173{
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 177 sync_mm_rss(task->mm);
34e55232 178}
9547d01b 179#else /* SPLIT_RSS_COUNTING */
34e55232
KH
180
181#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184static void check_sync_rss_stat(struct task_struct *task)
185{
186}
187
9547d01b
PZ
188#endif /* SPLIT_RSS_COUNTING */
189
1da177e4
LT
190/*
191 * Note: this doesn't free the actual pages themselves. That
192 * has been handled earlier when unmapping all the memory regions.
193 */
9e1b32ca
BH
194static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
195 unsigned long addr)
1da177e4 196{
2f569afd 197 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 198 pmd_clear(pmd);
9e1b32ca 199 pte_free_tlb(tlb, token, addr);
c4812909 200 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
201}
202
e0da382c
HD
203static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
204 unsigned long addr, unsigned long end,
205 unsigned long floor, unsigned long ceiling)
1da177e4
LT
206{
207 pmd_t *pmd;
208 unsigned long next;
e0da382c 209 unsigned long start;
1da177e4 210
e0da382c 211 start = addr;
1da177e4 212 pmd = pmd_offset(pud, addr);
1da177e4
LT
213 do {
214 next = pmd_addr_end(addr, end);
215 if (pmd_none_or_clear_bad(pmd))
216 continue;
9e1b32ca 217 free_pte_range(tlb, pmd, addr);
1da177e4
LT
218 } while (pmd++, addr = next, addr != end);
219
e0da382c
HD
220 start &= PUD_MASK;
221 if (start < floor)
222 return;
223 if (ceiling) {
224 ceiling &= PUD_MASK;
225 if (!ceiling)
226 return;
1da177e4 227 }
e0da382c
HD
228 if (end - 1 > ceiling - 1)
229 return;
230
231 pmd = pmd_offset(pud, start);
232 pud_clear(pud);
9e1b32ca 233 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 234 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
235}
236
c2febafc 237static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
238 unsigned long addr, unsigned long end,
239 unsigned long floor, unsigned long ceiling)
1da177e4
LT
240{
241 pud_t *pud;
242 unsigned long next;
e0da382c 243 unsigned long start;
1da177e4 244
e0da382c 245 start = addr;
c2febafc 246 pud = pud_offset(p4d, addr);
1da177e4
LT
247 do {
248 next = pud_addr_end(addr, end);
249 if (pud_none_or_clear_bad(pud))
250 continue;
e0da382c 251 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
252 } while (pud++, addr = next, addr != end);
253
c2febafc
KS
254 start &= P4D_MASK;
255 if (start < floor)
256 return;
257 if (ceiling) {
258 ceiling &= P4D_MASK;
259 if (!ceiling)
260 return;
261 }
262 if (end - 1 > ceiling - 1)
263 return;
264
265 pud = pud_offset(p4d, start);
266 p4d_clear(p4d);
267 pud_free_tlb(tlb, pud, start);
b4e98d9a 268 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
269}
270
271static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
272 unsigned long addr, unsigned long end,
273 unsigned long floor, unsigned long ceiling)
274{
275 p4d_t *p4d;
276 unsigned long next;
277 unsigned long start;
278
279 start = addr;
280 p4d = p4d_offset(pgd, addr);
281 do {
282 next = p4d_addr_end(addr, end);
283 if (p4d_none_or_clear_bad(p4d))
284 continue;
285 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
286 } while (p4d++, addr = next, addr != end);
287
e0da382c
HD
288 start &= PGDIR_MASK;
289 if (start < floor)
290 return;
291 if (ceiling) {
292 ceiling &= PGDIR_MASK;
293 if (!ceiling)
294 return;
1da177e4 295 }
e0da382c
HD
296 if (end - 1 > ceiling - 1)
297 return;
298
c2febafc 299 p4d = p4d_offset(pgd, start);
e0da382c 300 pgd_clear(pgd);
c2febafc 301 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
302}
303
304/*
e0da382c 305 * This function frees user-level page tables of a process.
1da177e4 306 */
42b77728 307void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
308 unsigned long addr, unsigned long end,
309 unsigned long floor, unsigned long ceiling)
1da177e4
LT
310{
311 pgd_t *pgd;
312 unsigned long next;
e0da382c
HD
313
314 /*
315 * The next few lines have given us lots of grief...
316 *
317 * Why are we testing PMD* at this top level? Because often
318 * there will be no work to do at all, and we'd prefer not to
319 * go all the way down to the bottom just to discover that.
320 *
321 * Why all these "- 1"s? Because 0 represents both the bottom
322 * of the address space and the top of it (using -1 for the
323 * top wouldn't help much: the masks would do the wrong thing).
324 * The rule is that addr 0 and floor 0 refer to the bottom of
325 * the address space, but end 0 and ceiling 0 refer to the top
326 * Comparisons need to use "end - 1" and "ceiling - 1" (though
327 * that end 0 case should be mythical).
328 *
329 * Wherever addr is brought up or ceiling brought down, we must
330 * be careful to reject "the opposite 0" before it confuses the
331 * subsequent tests. But what about where end is brought down
332 * by PMD_SIZE below? no, end can't go down to 0 there.
333 *
334 * Whereas we round start (addr) and ceiling down, by different
335 * masks at different levels, in order to test whether a table
336 * now has no other vmas using it, so can be freed, we don't
337 * bother to round floor or end up - the tests don't need that.
338 */
1da177e4 339
e0da382c
HD
340 addr &= PMD_MASK;
341 if (addr < floor) {
342 addr += PMD_SIZE;
343 if (!addr)
344 return;
345 }
346 if (ceiling) {
347 ceiling &= PMD_MASK;
348 if (!ceiling)
349 return;
350 }
351 if (end - 1 > ceiling - 1)
352 end -= PMD_SIZE;
353 if (addr > end - 1)
354 return;
07e32661
AK
355 /*
356 * We add page table cache pages with PAGE_SIZE,
357 * (see pte_free_tlb()), flush the tlb if we need
358 */
ed6a7935 359 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 360 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
361 do {
362 next = pgd_addr_end(addr, end);
363 if (pgd_none_or_clear_bad(pgd))
364 continue;
c2febafc 365 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 366 } while (pgd++, addr = next, addr != end);
e0da382c
HD
367}
368
42b77728 369void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 370 unsigned long floor, unsigned long ceiling)
e0da382c
HD
371{
372 while (vma) {
373 struct vm_area_struct *next = vma->vm_next;
374 unsigned long addr = vma->vm_start;
375
8f4f8c16 376 /*
25d9e2d1 377 * Hide vma from rmap and truncate_pagecache before freeing
378 * pgtables
8f4f8c16 379 */
5beb4930 380 unlink_anon_vmas(vma);
8f4f8c16
HD
381 unlink_file_vma(vma);
382
9da61aef 383 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 384 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 385 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
386 } else {
387 /*
388 * Optimization: gather nearby vmas into one call down
389 */
390 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 391 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
392 vma = next;
393 next = vma->vm_next;
5beb4930 394 unlink_anon_vmas(vma);
8f4f8c16 395 unlink_file_vma(vma);
3bf5ee95
HD
396 }
397 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 398 floor, next ? next->vm_start : ceiling);
3bf5ee95 399 }
e0da382c
HD
400 vma = next;
401 }
1da177e4
LT
402}
403
4cf58924 404int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 405{
c4088ebd 406 spinlock_t *ptl;
4cf58924 407 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
408 if (!new)
409 return -ENOMEM;
410
362a61ad
NP
411 /*
412 * Ensure all pte setup (eg. pte page lock and page clearing) are
413 * visible before the pte is made visible to other CPUs by being
414 * put into page tables.
415 *
416 * The other side of the story is the pointer chasing in the page
417 * table walking code (when walking the page table without locking;
418 * ie. most of the time). Fortunately, these data accesses consist
419 * of a chain of data-dependent loads, meaning most CPUs (alpha
420 * being the notable exception) will already guarantee loads are
421 * seen in-order. See the alpha page table accessors for the
422 * smp_read_barrier_depends() barriers in page table walking code.
423 */
424 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
425
c4088ebd 426 ptl = pmd_lock(mm, pmd);
8ac1f832 427 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 428 mm_inc_nr_ptes(mm);
1da177e4 429 pmd_populate(mm, pmd, new);
2f569afd 430 new = NULL;
4b471e88 431 }
c4088ebd 432 spin_unlock(ptl);
2f569afd
MS
433 if (new)
434 pte_free(mm, new);
1bb3630e 435 return 0;
1da177e4
LT
436}
437
4cf58924 438int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 439{
4cf58924 440 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
441 if (!new)
442 return -ENOMEM;
443
362a61ad
NP
444 smp_wmb(); /* See comment in __pte_alloc */
445
1bb3630e 446 spin_lock(&init_mm.page_table_lock);
8ac1f832 447 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 448 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 449 new = NULL;
4b471e88 450 }
1bb3630e 451 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
452 if (new)
453 pte_free_kernel(&init_mm, new);
1bb3630e 454 return 0;
1da177e4
LT
455}
456
d559db08
KH
457static inline void init_rss_vec(int *rss)
458{
459 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
460}
461
462static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 463{
d559db08
KH
464 int i;
465
34e55232 466 if (current->mm == mm)
05af2e10 467 sync_mm_rss(mm);
d559db08
KH
468 for (i = 0; i < NR_MM_COUNTERS; i++)
469 if (rss[i])
470 add_mm_counter(mm, i, rss[i]);
ae859762
HD
471}
472
b5810039 473/*
6aab341e
LT
474 * This function is called to print an error when a bad pte
475 * is found. For example, we might have a PFN-mapped pte in
476 * a region that doesn't allow it.
b5810039
NP
477 *
478 * The calling function must still handle the error.
479 */
3dc14741
HD
480static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
481 pte_t pte, struct page *page)
b5810039 482{
3dc14741 483 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
484 p4d_t *p4d = p4d_offset(pgd, addr);
485 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
486 pmd_t *pmd = pmd_offset(pud, addr);
487 struct address_space *mapping;
488 pgoff_t index;
d936cf9b
HD
489 static unsigned long resume;
490 static unsigned long nr_shown;
491 static unsigned long nr_unshown;
492
493 /*
494 * Allow a burst of 60 reports, then keep quiet for that minute;
495 * or allow a steady drip of one report per second.
496 */
497 if (nr_shown == 60) {
498 if (time_before(jiffies, resume)) {
499 nr_unshown++;
500 return;
501 }
502 if (nr_unshown) {
1170532b
JP
503 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
504 nr_unshown);
d936cf9b
HD
505 nr_unshown = 0;
506 }
507 nr_shown = 0;
508 }
509 if (nr_shown++ == 0)
510 resume = jiffies + 60 * HZ;
3dc14741
HD
511
512 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
513 index = linear_page_index(vma, addr);
514
1170532b
JP
515 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
516 current->comm,
517 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 518 if (page)
f0b791a3 519 dump_page(page, "bad pte");
1170532b
JP
520 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
521 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 522 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
523 vma->vm_file,
524 vma->vm_ops ? vma->vm_ops->fault : NULL,
525 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
526 mapping ? mapping->a_ops->readpage : NULL);
b5810039 527 dump_stack();
373d4d09 528 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
529}
530
ee498ed7 531/*
7e675137 532 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 533 *
7e675137
NP
534 * "Special" mappings do not wish to be associated with a "struct page" (either
535 * it doesn't exist, or it exists but they don't want to touch it). In this
536 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 537 *
7e675137
NP
538 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
539 * pte bit, in which case this function is trivial. Secondly, an architecture
540 * may not have a spare pte bit, which requires a more complicated scheme,
541 * described below.
542 *
543 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
544 * special mapping (even if there are underlying and valid "struct pages").
545 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 546 *
b379d790
JH
547 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
548 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
549 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
550 * mapping will always honor the rule
6aab341e
LT
551 *
552 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
553 *
7e675137
NP
554 * And for normal mappings this is false.
555 *
556 * This restricts such mappings to be a linear translation from virtual address
557 * to pfn. To get around this restriction, we allow arbitrary mappings so long
558 * as the vma is not a COW mapping; in that case, we know that all ptes are
559 * special (because none can have been COWed).
b379d790 560 *
b379d790 561 *
7e675137 562 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
563 *
564 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
565 * page" backing, however the difference is that _all_ pages with a struct
566 * page (that is, those where pfn_valid is true) are refcounted and considered
567 * normal pages by the VM. The disadvantage is that pages are refcounted
568 * (which can be slower and simply not an option for some PFNMAP users). The
569 * advantage is that we don't have to follow the strict linearity rule of
570 * PFNMAP mappings in order to support COWable mappings.
571 *
ee498ed7 572 */
df6ad698
JG
573struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
574 pte_t pte, bool with_public_device)
ee498ed7 575{
22b31eec 576 unsigned long pfn = pte_pfn(pte);
7e675137 577
00b3a331 578 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 579 if (likely(!pte_special(pte)))
22b31eec 580 goto check_pfn;
667a0a06
DV
581 if (vma->vm_ops && vma->vm_ops->find_special_page)
582 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
583 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
584 return NULL;
df6ad698
JG
585 if (is_zero_pfn(pfn))
586 return NULL;
587
588 /*
589 * Device public pages are special pages (they are ZONE_DEVICE
590 * pages but different from persistent memory). They behave
591 * allmost like normal pages. The difference is that they are
592 * not on the lru and thus should never be involve with any-
593 * thing that involve lru manipulation (mlock, numa balancing,
594 * ...).
595 *
596 * This is why we still want to return NULL for such page from
597 * vm_normal_page() so that we do not have to special case all
598 * call site of vm_normal_page().
599 */
7d790d2d 600 if (likely(pfn <= highest_memmap_pfn)) {
df6ad698
JG
601 struct page *page = pfn_to_page(pfn);
602
603 if (is_device_public_page(page)) {
604 if (with_public_device)
605 return page;
606 return NULL;
607 }
608 }
e1fb4a08
DJ
609
610 if (pte_devmap(pte))
611 return NULL;
612
df6ad698 613 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
614 return NULL;
615 }
616
00b3a331 617 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 618
b379d790
JH
619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
620 if (vma->vm_flags & VM_MIXEDMAP) {
621 if (!pfn_valid(pfn))
622 return NULL;
623 goto out;
624 } else {
7e675137
NP
625 unsigned long off;
626 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
627 if (pfn == vma->vm_pgoff + off)
628 return NULL;
629 if (!is_cow_mapping(vma->vm_flags))
630 return NULL;
631 }
6aab341e
LT
632 }
633
b38af472
HD
634 if (is_zero_pfn(pfn))
635 return NULL;
00b3a331 636
22b31eec
HD
637check_pfn:
638 if (unlikely(pfn > highest_memmap_pfn)) {
639 print_bad_pte(vma, addr, pte, NULL);
640 return NULL;
641 }
6aab341e
LT
642
643 /*
7e675137 644 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 645 * eg. VDSO mappings can cause them to exist.
6aab341e 646 */
b379d790 647out:
6aab341e 648 return pfn_to_page(pfn);
ee498ed7
HD
649}
650
28093f9f
GS
651#ifdef CONFIG_TRANSPARENT_HUGEPAGE
652struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
653 pmd_t pmd)
654{
655 unsigned long pfn = pmd_pfn(pmd);
656
657 /*
658 * There is no pmd_special() but there may be special pmds, e.g.
659 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 660 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
661 */
662 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
663 if (vma->vm_flags & VM_MIXEDMAP) {
664 if (!pfn_valid(pfn))
665 return NULL;
666 goto out;
667 } else {
668 unsigned long off;
669 off = (addr - vma->vm_start) >> PAGE_SHIFT;
670 if (pfn == vma->vm_pgoff + off)
671 return NULL;
672 if (!is_cow_mapping(vma->vm_flags))
673 return NULL;
674 }
675 }
676
e1fb4a08
DJ
677 if (pmd_devmap(pmd))
678 return NULL;
28093f9f
GS
679 if (is_zero_pfn(pfn))
680 return NULL;
681 if (unlikely(pfn > highest_memmap_pfn))
682 return NULL;
683
684 /*
685 * NOTE! We still have PageReserved() pages in the page tables.
686 * eg. VDSO mappings can cause them to exist.
687 */
688out:
689 return pfn_to_page(pfn);
690}
691#endif
692
1da177e4
LT
693/*
694 * copy one vm_area from one task to the other. Assumes the page tables
695 * already present in the new task to be cleared in the whole range
696 * covered by this vma.
1da177e4
LT
697 */
698
570a335b 699static inline unsigned long
1da177e4 700copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 701 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 702 unsigned long addr, int *rss)
1da177e4 703{
b5810039 704 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
705 pte_t pte = *src_pte;
706 struct page *page;
1da177e4
LT
707
708 /* pte contains position in swap or file, so copy. */
709 if (unlikely(!pte_present(pte))) {
0661a336
KS
710 swp_entry_t entry = pte_to_swp_entry(pte);
711
712 if (likely(!non_swap_entry(entry))) {
713 if (swap_duplicate(entry) < 0)
714 return entry.val;
715
716 /* make sure dst_mm is on swapoff's mmlist. */
717 if (unlikely(list_empty(&dst_mm->mmlist))) {
718 spin_lock(&mmlist_lock);
719 if (list_empty(&dst_mm->mmlist))
720 list_add(&dst_mm->mmlist,
721 &src_mm->mmlist);
722 spin_unlock(&mmlist_lock);
723 }
724 rss[MM_SWAPENTS]++;
725 } else if (is_migration_entry(entry)) {
726 page = migration_entry_to_page(entry);
727
eca56ff9 728 rss[mm_counter(page)]++;
0661a336
KS
729
730 if (is_write_migration_entry(entry) &&
731 is_cow_mapping(vm_flags)) {
732 /*
733 * COW mappings require pages in both
734 * parent and child to be set to read.
735 */
736 make_migration_entry_read(&entry);
737 pte = swp_entry_to_pte(entry);
738 if (pte_swp_soft_dirty(*src_pte))
739 pte = pte_swp_mksoft_dirty(pte);
740 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 741 }
5042db43
JG
742 } else if (is_device_private_entry(entry)) {
743 page = device_private_entry_to_page(entry);
744
745 /*
746 * Update rss count even for unaddressable pages, as
747 * they should treated just like normal pages in this
748 * respect.
749 *
750 * We will likely want to have some new rss counters
751 * for unaddressable pages, at some point. But for now
752 * keep things as they are.
753 */
754 get_page(page);
755 rss[mm_counter(page)]++;
756 page_dup_rmap(page, false);
757
758 /*
759 * We do not preserve soft-dirty information, because so
760 * far, checkpoint/restore is the only feature that
761 * requires that. And checkpoint/restore does not work
762 * when a device driver is involved (you cannot easily
763 * save and restore device driver state).
764 */
765 if (is_write_device_private_entry(entry) &&
766 is_cow_mapping(vm_flags)) {
767 make_device_private_entry_read(&entry);
768 pte = swp_entry_to_pte(entry);
769 set_pte_at(src_mm, addr, src_pte, pte);
770 }
1da177e4 771 }
ae859762 772 goto out_set_pte;
1da177e4
LT
773 }
774
1da177e4
LT
775 /*
776 * If it's a COW mapping, write protect it both
777 * in the parent and the child
778 */
1b2de5d0 779 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 780 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 781 pte = pte_wrprotect(pte);
1da177e4
LT
782 }
783
784 /*
785 * If it's a shared mapping, mark it clean in
786 * the child
787 */
788 if (vm_flags & VM_SHARED)
789 pte = pte_mkclean(pte);
790 pte = pte_mkold(pte);
6aab341e
LT
791
792 page = vm_normal_page(vma, addr, pte);
793 if (page) {
794 get_page(page);
53f9263b 795 page_dup_rmap(page, false);
eca56ff9 796 rss[mm_counter(page)]++;
df6ad698
JG
797 } else if (pte_devmap(pte)) {
798 page = pte_page(pte);
799
800 /*
801 * Cache coherent device memory behave like regular page and
802 * not like persistent memory page. For more informations see
803 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
804 */
805 if (is_device_public_page(page)) {
806 get_page(page);
807 page_dup_rmap(page, false);
808 rss[mm_counter(page)]++;
809 }
6aab341e 810 }
ae859762
HD
811
812out_set_pte:
813 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 814 return 0;
1da177e4
LT
815}
816
21bda264 817static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
818 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
819 unsigned long addr, unsigned long end)
1da177e4 820{
c36987e2 821 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 822 pte_t *src_pte, *dst_pte;
c74df32c 823 spinlock_t *src_ptl, *dst_ptl;
e040f218 824 int progress = 0;
d559db08 825 int rss[NR_MM_COUNTERS];
570a335b 826 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
827
828again:
d559db08
KH
829 init_rss_vec(rss);
830
c74df32c 831 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
832 if (!dst_pte)
833 return -ENOMEM;
ece0e2b6 834 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 835 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 836 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
837 orig_src_pte = src_pte;
838 orig_dst_pte = dst_pte;
6606c3e0 839 arch_enter_lazy_mmu_mode();
1da177e4 840
1da177e4
LT
841 do {
842 /*
843 * We are holding two locks at this point - either of them
844 * could generate latencies in another task on another CPU.
845 */
e040f218
HD
846 if (progress >= 32) {
847 progress = 0;
848 if (need_resched() ||
95c354fe 849 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
850 break;
851 }
1da177e4
LT
852 if (pte_none(*src_pte)) {
853 progress++;
854 continue;
855 }
570a335b
HD
856 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
857 vma, addr, rss);
858 if (entry.val)
859 break;
1da177e4
LT
860 progress += 8;
861 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 862
6606c3e0 863 arch_leave_lazy_mmu_mode();
c74df32c 864 spin_unlock(src_ptl);
ece0e2b6 865 pte_unmap(orig_src_pte);
d559db08 866 add_mm_rss_vec(dst_mm, rss);
c36987e2 867 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 868 cond_resched();
570a335b
HD
869
870 if (entry.val) {
871 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
872 return -ENOMEM;
873 progress = 0;
874 }
1da177e4
LT
875 if (addr != end)
876 goto again;
877 return 0;
878}
879
880static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
881 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
882 unsigned long addr, unsigned long end)
883{
884 pmd_t *src_pmd, *dst_pmd;
885 unsigned long next;
886
887 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
888 if (!dst_pmd)
889 return -ENOMEM;
890 src_pmd = pmd_offset(src_pud, addr);
891 do {
892 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
893 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
894 || pmd_devmap(*src_pmd)) {
71e3aac0 895 int err;
a00cc7d9 896 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
897 err = copy_huge_pmd(dst_mm, src_mm,
898 dst_pmd, src_pmd, addr, vma);
899 if (err == -ENOMEM)
900 return -ENOMEM;
901 if (!err)
902 continue;
903 /* fall through */
904 }
1da177e4
LT
905 if (pmd_none_or_clear_bad(src_pmd))
906 continue;
907 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
908 vma, addr, next))
909 return -ENOMEM;
910 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
911 return 0;
912}
913
914static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 915 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
916 unsigned long addr, unsigned long end)
917{
918 pud_t *src_pud, *dst_pud;
919 unsigned long next;
920
c2febafc 921 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
922 if (!dst_pud)
923 return -ENOMEM;
c2febafc 924 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
925 do {
926 next = pud_addr_end(addr, end);
a00cc7d9
MW
927 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
928 int err;
929
930 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
931 err = copy_huge_pud(dst_mm, src_mm,
932 dst_pud, src_pud, addr, vma);
933 if (err == -ENOMEM)
934 return -ENOMEM;
935 if (!err)
936 continue;
937 /* fall through */
938 }
1da177e4
LT
939 if (pud_none_or_clear_bad(src_pud))
940 continue;
941 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
942 vma, addr, next))
943 return -ENOMEM;
944 } while (dst_pud++, src_pud++, addr = next, addr != end);
945 return 0;
946}
947
c2febafc
KS
948static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
949 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
950 unsigned long addr, unsigned long end)
951{
952 p4d_t *src_p4d, *dst_p4d;
953 unsigned long next;
954
955 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
956 if (!dst_p4d)
957 return -ENOMEM;
958 src_p4d = p4d_offset(src_pgd, addr);
959 do {
960 next = p4d_addr_end(addr, end);
961 if (p4d_none_or_clear_bad(src_p4d))
962 continue;
963 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
964 vma, addr, next))
965 return -ENOMEM;
966 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
967 return 0;
968}
969
1da177e4
LT
970int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971 struct vm_area_struct *vma)
972{
973 pgd_t *src_pgd, *dst_pgd;
974 unsigned long next;
975 unsigned long addr = vma->vm_start;
976 unsigned long end = vma->vm_end;
ac46d4f3 977 struct mmu_notifier_range range;
2ec74c3e 978 bool is_cow;
cddb8a5c 979 int ret;
1da177e4 980
d992895b
NP
981 /*
982 * Don't copy ptes where a page fault will fill them correctly.
983 * Fork becomes much lighter when there are big shared or private
984 * readonly mappings. The tradeoff is that copy_page_range is more
985 * efficient than faulting.
986 */
0661a336
KS
987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
988 !vma->anon_vma)
989 return 0;
d992895b 990
1da177e4
LT
991 if (is_vm_hugetlb_page(vma))
992 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
993
b3b9c293 994 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 995 /*
996 * We do not free on error cases below as remove_vma
997 * gets called on error from higher level routine
998 */
5180da41 999 ret = track_pfn_copy(vma);
2ab64037 1000 if (ret)
1001 return ret;
1002 }
1003
cddb8a5c
AA
1004 /*
1005 * We need to invalidate the secondary MMU mappings only when
1006 * there could be a permission downgrade on the ptes of the
1007 * parent mm. And a permission downgrade will only happen if
1008 * is_cow_mapping() returns true.
1009 */
2ec74c3e 1010 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
1011
1012 if (is_cow) {
7269f999
JG
1013 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1014 0, vma, src_mm, addr, end);
ac46d4f3
JG
1015 mmu_notifier_invalidate_range_start(&range);
1016 }
cddb8a5c
AA
1017
1018 ret = 0;
1da177e4
LT
1019 dst_pgd = pgd_offset(dst_mm, addr);
1020 src_pgd = pgd_offset(src_mm, addr);
1021 do {
1022 next = pgd_addr_end(addr, end);
1023 if (pgd_none_or_clear_bad(src_pgd))
1024 continue;
c2febafc 1025 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1026 vma, addr, next))) {
1027 ret = -ENOMEM;
1028 break;
1029 }
1da177e4 1030 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1031
2ec74c3e 1032 if (is_cow)
ac46d4f3 1033 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1034 return ret;
1da177e4
LT
1035}
1036
51c6f666 1037static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1038 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1039 unsigned long addr, unsigned long end,
97a89413 1040 struct zap_details *details)
1da177e4 1041{
b5810039 1042 struct mm_struct *mm = tlb->mm;
d16dfc55 1043 int force_flush = 0;
d559db08 1044 int rss[NR_MM_COUNTERS];
97a89413 1045 spinlock_t *ptl;
5f1a1907 1046 pte_t *start_pte;
97a89413 1047 pte_t *pte;
8a5f14a2 1048 swp_entry_t entry;
d559db08 1049
ed6a7935 1050 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1051again:
e303297e 1052 init_rss_vec(rss);
5f1a1907
SR
1053 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1054 pte = start_pte;
3ea27719 1055 flush_tlb_batched_pending(mm);
6606c3e0 1056 arch_enter_lazy_mmu_mode();
1da177e4
LT
1057 do {
1058 pte_t ptent = *pte;
166f61b9 1059 if (pte_none(ptent))
1da177e4 1060 continue;
6f5e6b9e 1061
1da177e4 1062 if (pte_present(ptent)) {
ee498ed7 1063 struct page *page;
51c6f666 1064
df6ad698 1065 page = _vm_normal_page(vma, addr, ptent, true);
1da177e4
LT
1066 if (unlikely(details) && page) {
1067 /*
1068 * unmap_shared_mapping_pages() wants to
1069 * invalidate cache without truncating:
1070 * unmap shared but keep private pages.
1071 */
1072 if (details->check_mapping &&
800d8c63 1073 details->check_mapping != page_rmapping(page))
1da177e4 1074 continue;
1da177e4 1075 }
b5810039 1076 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1077 tlb->fullmm);
1da177e4
LT
1078 tlb_remove_tlb_entry(tlb, pte, addr);
1079 if (unlikely(!page))
1080 continue;
eca56ff9
JM
1081
1082 if (!PageAnon(page)) {
1cf35d47
LT
1083 if (pte_dirty(ptent)) {
1084 force_flush = 1;
6237bcd9 1085 set_page_dirty(page);
1cf35d47 1086 }
4917e5d0 1087 if (pte_young(ptent) &&
64363aad 1088 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1089 mark_page_accessed(page);
6237bcd9 1090 }
eca56ff9 1091 rss[mm_counter(page)]--;
d281ee61 1092 page_remove_rmap(page, false);
3dc14741
HD
1093 if (unlikely(page_mapcount(page) < 0))
1094 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1095 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1096 force_flush = 1;
ce9ec37b 1097 addr += PAGE_SIZE;
d16dfc55 1098 break;
1cf35d47 1099 }
1da177e4
LT
1100 continue;
1101 }
5042db43
JG
1102
1103 entry = pte_to_swp_entry(ptent);
1104 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1105 struct page *page = device_private_entry_to_page(entry);
1106
1107 if (unlikely(details && details->check_mapping)) {
1108 /*
1109 * unmap_shared_mapping_pages() wants to
1110 * invalidate cache without truncating:
1111 * unmap shared but keep private pages.
1112 */
1113 if (details->check_mapping !=
1114 page_rmapping(page))
1115 continue;
1116 }
1117
1118 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1119 rss[mm_counter(page)]--;
1120 page_remove_rmap(page, false);
1121 put_page(page);
1122 continue;
1123 }
1124
3e8715fd
KS
1125 /* If details->check_mapping, we leave swap entries. */
1126 if (unlikely(details))
1da177e4 1127 continue;
b084d435 1128
8a5f14a2
KS
1129 entry = pte_to_swp_entry(ptent);
1130 if (!non_swap_entry(entry))
1131 rss[MM_SWAPENTS]--;
1132 else if (is_migration_entry(entry)) {
1133 struct page *page;
9f9f1acd 1134
8a5f14a2 1135 page = migration_entry_to_page(entry);
eca56ff9 1136 rss[mm_counter(page)]--;
b084d435 1137 }
8a5f14a2
KS
1138 if (unlikely(!free_swap_and_cache(entry)))
1139 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1140 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1141 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1142
d559db08 1143 add_mm_rss_vec(mm, rss);
6606c3e0 1144 arch_leave_lazy_mmu_mode();
51c6f666 1145
1cf35d47 1146 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1147 if (force_flush)
1cf35d47 1148 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1149 pte_unmap_unlock(start_pte, ptl);
1150
1151 /*
1152 * If we forced a TLB flush (either due to running out of
1153 * batch buffers or because we needed to flush dirty TLB
1154 * entries before releasing the ptl), free the batched
1155 * memory too. Restart if we didn't do everything.
1156 */
1157 if (force_flush) {
1158 force_flush = 0;
fa0aafb8 1159 tlb_flush_mmu(tlb);
2b047252 1160 if (addr != end)
d16dfc55
PZ
1161 goto again;
1162 }
1163
51c6f666 1164 return addr;
1da177e4
LT
1165}
1166
51c6f666 1167static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1168 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1169 unsigned long addr, unsigned long end,
97a89413 1170 struct zap_details *details)
1da177e4
LT
1171{
1172 pmd_t *pmd;
1173 unsigned long next;
1174
1175 pmd = pmd_offset(pud, addr);
1176 do {
1177 next = pmd_addr_end(addr, end);
84c3fc4e 1178 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1179 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1180 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1181 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1182 goto next;
71e3aac0
AA
1183 /* fall through */
1184 }
1a5a9906
AA
1185 /*
1186 * Here there can be other concurrent MADV_DONTNEED or
1187 * trans huge page faults running, and if the pmd is
1188 * none or trans huge it can change under us. This is
1189 * because MADV_DONTNEED holds the mmap_sem in read
1190 * mode.
1191 */
1192 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1193 goto next;
97a89413 1194 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1195next:
97a89413
PZ
1196 cond_resched();
1197 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1198
1199 return addr;
1da177e4
LT
1200}
1201
51c6f666 1202static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1203 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1204 unsigned long addr, unsigned long end,
97a89413 1205 struct zap_details *details)
1da177e4
LT
1206{
1207 pud_t *pud;
1208 unsigned long next;
1209
c2febafc 1210 pud = pud_offset(p4d, addr);
1da177e4
LT
1211 do {
1212 next = pud_addr_end(addr, end);
a00cc7d9
MW
1213 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1214 if (next - addr != HPAGE_PUD_SIZE) {
1215 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1216 split_huge_pud(vma, pud, addr);
1217 } else if (zap_huge_pud(tlb, vma, pud, addr))
1218 goto next;
1219 /* fall through */
1220 }
97a89413 1221 if (pud_none_or_clear_bad(pud))
1da177e4 1222 continue;
97a89413 1223 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1224next:
1225 cond_resched();
97a89413 1226 } while (pud++, addr = next, addr != end);
51c6f666
RH
1227
1228 return addr;
1da177e4
LT
1229}
1230
c2febafc
KS
1231static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1232 struct vm_area_struct *vma, pgd_t *pgd,
1233 unsigned long addr, unsigned long end,
1234 struct zap_details *details)
1235{
1236 p4d_t *p4d;
1237 unsigned long next;
1238
1239 p4d = p4d_offset(pgd, addr);
1240 do {
1241 next = p4d_addr_end(addr, end);
1242 if (p4d_none_or_clear_bad(p4d))
1243 continue;
1244 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1245 } while (p4d++, addr = next, addr != end);
1246
1247 return addr;
1248}
1249
aac45363 1250void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1251 struct vm_area_struct *vma,
1252 unsigned long addr, unsigned long end,
1253 struct zap_details *details)
1da177e4
LT
1254{
1255 pgd_t *pgd;
1256 unsigned long next;
1257
1da177e4
LT
1258 BUG_ON(addr >= end);
1259 tlb_start_vma(tlb, vma);
1260 pgd = pgd_offset(vma->vm_mm, addr);
1261 do {
1262 next = pgd_addr_end(addr, end);
97a89413 1263 if (pgd_none_or_clear_bad(pgd))
1da177e4 1264 continue;
c2febafc 1265 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1266 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1267 tlb_end_vma(tlb, vma);
1268}
51c6f666 1269
f5cc4eef
AV
1270
1271static void unmap_single_vma(struct mmu_gather *tlb,
1272 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1273 unsigned long end_addr,
f5cc4eef
AV
1274 struct zap_details *details)
1275{
1276 unsigned long start = max(vma->vm_start, start_addr);
1277 unsigned long end;
1278
1279 if (start >= vma->vm_end)
1280 return;
1281 end = min(vma->vm_end, end_addr);
1282 if (end <= vma->vm_start)
1283 return;
1284
cbc91f71
SD
1285 if (vma->vm_file)
1286 uprobe_munmap(vma, start, end);
1287
b3b9c293 1288 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1289 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1290
1291 if (start != end) {
1292 if (unlikely(is_vm_hugetlb_page(vma))) {
1293 /*
1294 * It is undesirable to test vma->vm_file as it
1295 * should be non-null for valid hugetlb area.
1296 * However, vm_file will be NULL in the error
7aa6b4ad 1297 * cleanup path of mmap_region. When
f5cc4eef 1298 * hugetlbfs ->mmap method fails,
7aa6b4ad 1299 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1300 * before calling this function to clean up.
1301 * Since no pte has actually been setup, it is
1302 * safe to do nothing in this case.
1303 */
24669e58 1304 if (vma->vm_file) {
83cde9e8 1305 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1306 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1307 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1308 }
f5cc4eef
AV
1309 } else
1310 unmap_page_range(tlb, vma, start, end, details);
1311 }
1da177e4
LT
1312}
1313
1da177e4
LT
1314/**
1315 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1316 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1317 * @vma: the starting vma
1318 * @start_addr: virtual address at which to start unmapping
1319 * @end_addr: virtual address at which to end unmapping
1da177e4 1320 *
508034a3 1321 * Unmap all pages in the vma list.
1da177e4 1322 *
1da177e4
LT
1323 * Only addresses between `start' and `end' will be unmapped.
1324 *
1325 * The VMA list must be sorted in ascending virtual address order.
1326 *
1327 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328 * range after unmap_vmas() returns. So the only responsibility here is to
1329 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330 * drops the lock and schedules.
1331 */
6e8bb019 1332void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1333 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1334 unsigned long end_addr)
1da177e4 1335{
ac46d4f3 1336 struct mmu_notifier_range range;
1da177e4 1337
6f4f13e8
JG
1338 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1339 start_addr, end_addr);
ac46d4f3 1340 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1341 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1342 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1343 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1344}
1345
1346/**
1347 * zap_page_range - remove user pages in a given range
1348 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1349 * @start: starting address of pages to zap
1da177e4 1350 * @size: number of bytes to zap
f5cc4eef
AV
1351 *
1352 * Caller must protect the VMA list
1da177e4 1353 */
7e027b14 1354void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1355 unsigned long size)
1da177e4 1356{
ac46d4f3 1357 struct mmu_notifier_range range;
d16dfc55 1358 struct mmu_gather tlb;
1da177e4 1359
1da177e4 1360 lru_add_drain();
7269f999 1361 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1362 start, start + size);
ac46d4f3
JG
1363 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1364 update_hiwater_rss(vma->vm_mm);
1365 mmu_notifier_invalidate_range_start(&range);
1366 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1367 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1368 mmu_notifier_invalidate_range_end(&range);
1369 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1370}
1371
f5cc4eef
AV
1372/**
1373 * zap_page_range_single - remove user pages in a given range
1374 * @vma: vm_area_struct holding the applicable pages
1375 * @address: starting address of pages to zap
1376 * @size: number of bytes to zap
8a5f14a2 1377 * @details: details of shared cache invalidation
f5cc4eef
AV
1378 *
1379 * The range must fit into one VMA.
1da177e4 1380 */
f5cc4eef 1381static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1382 unsigned long size, struct zap_details *details)
1383{
ac46d4f3 1384 struct mmu_notifier_range range;
d16dfc55 1385 struct mmu_gather tlb;
1da177e4 1386
1da177e4 1387 lru_add_drain();
7269f999 1388 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1389 address, address + size);
ac46d4f3
JG
1390 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1391 update_hiwater_rss(vma->vm_mm);
1392 mmu_notifier_invalidate_range_start(&range);
1393 unmap_single_vma(&tlb, vma, address, range.end, details);
1394 mmu_notifier_invalidate_range_end(&range);
1395 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1396}
1397
c627f9cc
JS
1398/**
1399 * zap_vma_ptes - remove ptes mapping the vma
1400 * @vma: vm_area_struct holding ptes to be zapped
1401 * @address: starting address of pages to zap
1402 * @size: number of bytes to zap
1403 *
1404 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1405 *
1406 * The entire address range must be fully contained within the vma.
1407 *
c627f9cc 1408 */
27d036e3 1409void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1410 unsigned long size)
1411{
1412 if (address < vma->vm_start || address + size > vma->vm_end ||
1413 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1414 return;
1415
f5cc4eef 1416 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1417}
1418EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419
25ca1d6c 1420pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1421 spinlock_t **ptl)
c9cfcddf 1422{
c2febafc
KS
1423 pgd_t *pgd;
1424 p4d_t *p4d;
1425 pud_t *pud;
1426 pmd_t *pmd;
1427
1428 pgd = pgd_offset(mm, addr);
1429 p4d = p4d_alloc(mm, pgd, addr);
1430 if (!p4d)
1431 return NULL;
1432 pud = pud_alloc(mm, p4d, addr);
1433 if (!pud)
1434 return NULL;
1435 pmd = pmd_alloc(mm, pud, addr);
1436 if (!pmd)
1437 return NULL;
1438
1439 VM_BUG_ON(pmd_trans_huge(*pmd));
1440 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1441}
1442
238f58d8
LT
1443/*
1444 * This is the old fallback for page remapping.
1445 *
1446 * For historical reasons, it only allows reserved pages. Only
1447 * old drivers should use this, and they needed to mark their
1448 * pages reserved for the old functions anyway.
1449 */
423bad60
NP
1450static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1451 struct page *page, pgprot_t prot)
238f58d8 1452{
423bad60 1453 struct mm_struct *mm = vma->vm_mm;
238f58d8 1454 int retval;
c9cfcddf 1455 pte_t *pte;
8a9f3ccd
BS
1456 spinlock_t *ptl;
1457
238f58d8 1458 retval = -EINVAL;
0ee930e6 1459 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
5b4e655e 1460 goto out;
238f58d8
LT
1461 retval = -ENOMEM;
1462 flush_dcache_page(page);
c9cfcddf 1463 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1464 if (!pte)
5b4e655e 1465 goto out;
238f58d8
LT
1466 retval = -EBUSY;
1467 if (!pte_none(*pte))
1468 goto out_unlock;
1469
1470 /* Ok, finally just insert the thing.. */
1471 get_page(page);
eca56ff9 1472 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1473 page_add_file_rmap(page, false);
238f58d8
LT
1474 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1475
1476 retval = 0;
8a9f3ccd
BS
1477 pte_unmap_unlock(pte, ptl);
1478 return retval;
238f58d8
LT
1479out_unlock:
1480 pte_unmap_unlock(pte, ptl);
1481out:
1482 return retval;
1483}
1484
bfa5bf6d
REB
1485/**
1486 * vm_insert_page - insert single page into user vma
1487 * @vma: user vma to map to
1488 * @addr: target user address of this page
1489 * @page: source kernel page
1490 *
a145dd41
LT
1491 * This allows drivers to insert individual pages they've allocated
1492 * into a user vma.
1493 *
1494 * The page has to be a nice clean _individual_ kernel allocation.
1495 * If you allocate a compound page, you need to have marked it as
1496 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1497 * (see split_page()).
a145dd41
LT
1498 *
1499 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1500 * took an arbitrary page protection parameter. This doesn't allow
1501 * that. Your vma protection will have to be set up correctly, which
1502 * means that if you want a shared writable mapping, you'd better
1503 * ask for a shared writable mapping!
1504 *
1505 * The page does not need to be reserved.
4b6e1e37
KK
1506 *
1507 * Usually this function is called from f_op->mmap() handler
1508 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1509 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1510 * function from other places, for example from page-fault handler.
a862f68a
MR
1511 *
1512 * Return: %0 on success, negative error code otherwise.
a145dd41 1513 */
423bad60
NP
1514int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1515 struct page *page)
a145dd41
LT
1516{
1517 if (addr < vma->vm_start || addr >= vma->vm_end)
1518 return -EFAULT;
1519 if (!page_count(page))
1520 return -EINVAL;
4b6e1e37
KK
1521 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1522 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1523 BUG_ON(vma->vm_flags & VM_PFNMAP);
1524 vma->vm_flags |= VM_MIXEDMAP;
1525 }
423bad60 1526 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1527}
e3c3374f 1528EXPORT_SYMBOL(vm_insert_page);
a145dd41 1529
a667d745
SJ
1530/*
1531 * __vm_map_pages - maps range of kernel pages into user vma
1532 * @vma: user vma to map to
1533 * @pages: pointer to array of source kernel pages
1534 * @num: number of pages in page array
1535 * @offset: user's requested vm_pgoff
1536 *
1537 * This allows drivers to map range of kernel pages into a user vma.
1538 *
1539 * Return: 0 on success and error code otherwise.
1540 */
1541static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1542 unsigned long num, unsigned long offset)
1543{
1544 unsigned long count = vma_pages(vma);
1545 unsigned long uaddr = vma->vm_start;
1546 int ret, i;
1547
1548 /* Fail if the user requested offset is beyond the end of the object */
1549 if (offset > num)
1550 return -ENXIO;
1551
1552 /* Fail if the user requested size exceeds available object size */
1553 if (count > num - offset)
1554 return -ENXIO;
1555
1556 for (i = 0; i < count; i++) {
1557 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1558 if (ret < 0)
1559 return ret;
1560 uaddr += PAGE_SIZE;
1561 }
1562
1563 return 0;
1564}
1565
1566/**
1567 * vm_map_pages - maps range of kernel pages starts with non zero offset
1568 * @vma: user vma to map to
1569 * @pages: pointer to array of source kernel pages
1570 * @num: number of pages in page array
1571 *
1572 * Maps an object consisting of @num pages, catering for the user's
1573 * requested vm_pgoff
1574 *
1575 * If we fail to insert any page into the vma, the function will return
1576 * immediately leaving any previously inserted pages present. Callers
1577 * from the mmap handler may immediately return the error as their caller
1578 * will destroy the vma, removing any successfully inserted pages. Other
1579 * callers should make their own arrangements for calling unmap_region().
1580 *
1581 * Context: Process context. Called by mmap handlers.
1582 * Return: 0 on success and error code otherwise.
1583 */
1584int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1585 unsigned long num)
1586{
1587 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1588}
1589EXPORT_SYMBOL(vm_map_pages);
1590
1591/**
1592 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1593 * @vma: user vma to map to
1594 * @pages: pointer to array of source kernel pages
1595 * @num: number of pages in page array
1596 *
1597 * Similar to vm_map_pages(), except that it explicitly sets the offset
1598 * to 0. This function is intended for the drivers that did not consider
1599 * vm_pgoff.
1600 *
1601 * Context: Process context. Called by mmap handlers.
1602 * Return: 0 on success and error code otherwise.
1603 */
1604int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1605 unsigned long num)
1606{
1607 return __vm_map_pages(vma, pages, num, 0);
1608}
1609EXPORT_SYMBOL(vm_map_pages_zero);
1610
9b5a8e00 1611static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1612 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1613{
1614 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1615 pte_t *pte, entry;
1616 spinlock_t *ptl;
1617
423bad60
NP
1618 pte = get_locked_pte(mm, addr, &ptl);
1619 if (!pte)
9b5a8e00 1620 return VM_FAULT_OOM;
b2770da6
RZ
1621 if (!pte_none(*pte)) {
1622 if (mkwrite) {
1623 /*
1624 * For read faults on private mappings the PFN passed
1625 * in may not match the PFN we have mapped if the
1626 * mapped PFN is a writeable COW page. In the mkwrite
1627 * case we are creating a writable PTE for a shared
f2c57d91
JK
1628 * mapping and we expect the PFNs to match. If they
1629 * don't match, we are likely racing with block
1630 * allocation and mapping invalidation so just skip the
1631 * update.
b2770da6 1632 */
f2c57d91
JK
1633 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1634 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1635 goto out_unlock;
f2c57d91 1636 }
cae85cb8
JK
1637 entry = pte_mkyoung(*pte);
1638 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1639 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1640 update_mmu_cache(vma, addr, pte);
1641 }
1642 goto out_unlock;
b2770da6 1643 }
423bad60
NP
1644
1645 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1646 if (pfn_t_devmap(pfn))
1647 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1648 else
1649 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1650
b2770da6
RZ
1651 if (mkwrite) {
1652 entry = pte_mkyoung(entry);
1653 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1654 }
1655
423bad60 1656 set_pte_at(mm, addr, pte, entry);
4b3073e1 1657 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1658
423bad60
NP
1659out_unlock:
1660 pte_unmap_unlock(pte, ptl);
9b5a8e00 1661 return VM_FAULT_NOPAGE;
423bad60
NP
1662}
1663
f5e6d1d5
MW
1664/**
1665 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1666 * @vma: user vma to map to
1667 * @addr: target user address of this page
1668 * @pfn: source kernel pfn
1669 * @pgprot: pgprot flags for the inserted page
1670 *
1671 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1672 * to override pgprot on a per-page basis.
1673 *
1674 * This only makes sense for IO mappings, and it makes no sense for
1675 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1676 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1677 * impractical.
1678 *
ae2b01f3 1679 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1680 * Return: vm_fault_t value.
1681 */
1682vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1683 unsigned long pfn, pgprot_t pgprot)
1684{
6d958546
MW
1685 /*
1686 * Technically, architectures with pte_special can avoid all these
1687 * restrictions (same for remap_pfn_range). However we would like
1688 * consistency in testing and feature parity among all, so we should
1689 * try to keep these invariants in place for everybody.
1690 */
1691 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1692 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1693 (VM_PFNMAP|VM_MIXEDMAP));
1694 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1695 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1696
1697 if (addr < vma->vm_start || addr >= vma->vm_end)
1698 return VM_FAULT_SIGBUS;
1699
1700 if (!pfn_modify_allowed(pfn, pgprot))
1701 return VM_FAULT_SIGBUS;
1702
1703 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1704
9b5a8e00 1705 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1706 false);
f5e6d1d5
MW
1707}
1708EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1709
ae2b01f3
MW
1710/**
1711 * vmf_insert_pfn - insert single pfn into user vma
1712 * @vma: user vma to map to
1713 * @addr: target user address of this page
1714 * @pfn: source kernel pfn
1715 *
1716 * Similar to vm_insert_page, this allows drivers to insert individual pages
1717 * they've allocated into a user vma. Same comments apply.
1718 *
1719 * This function should only be called from a vm_ops->fault handler, and
1720 * in that case the handler should return the result of this function.
1721 *
1722 * vma cannot be a COW mapping.
1723 *
1724 * As this is called only for pages that do not currently exist, we
1725 * do not need to flush old virtual caches or the TLB.
1726 *
1727 * Context: Process context. May allocate using %GFP_KERNEL.
1728 * Return: vm_fault_t value.
1729 */
1730vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1731 unsigned long pfn)
1732{
1733 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1734}
1735EXPORT_SYMBOL(vmf_insert_pfn);
1736
785a3fab
DW
1737static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1738{
1739 /* these checks mirror the abort conditions in vm_normal_page */
1740 if (vma->vm_flags & VM_MIXEDMAP)
1741 return true;
1742 if (pfn_t_devmap(pfn))
1743 return true;
1744 if (pfn_t_special(pfn))
1745 return true;
1746 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1747 return true;
1748 return false;
1749}
1750
79f3aa5b
MW
1751static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1752 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 1753{
87744ab3 1754 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 1755 int err;
87744ab3 1756
785a3fab 1757 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1758
423bad60 1759 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1760 return VM_FAULT_SIGBUS;
308a047c
BP
1761
1762 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1763
42e4089c 1764 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1765 return VM_FAULT_SIGBUS;
42e4089c 1766
423bad60
NP
1767 /*
1768 * If we don't have pte special, then we have to use the pfn_valid()
1769 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1770 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1771 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1772 * without pte special, it would there be refcounted as a normal page.
423bad60 1773 */
00b3a331
LD
1774 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1775 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1776 struct page *page;
1777
03fc2da6
DW
1778 /*
1779 * At this point we are committed to insert_page()
1780 * regardless of whether the caller specified flags that
1781 * result in pfn_t_has_page() == false.
1782 */
1783 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1784 err = insert_page(vma, addr, page, pgprot);
1785 } else {
9b5a8e00 1786 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1787 }
b2770da6 1788
5d747637
MW
1789 if (err == -ENOMEM)
1790 return VM_FAULT_OOM;
1791 if (err < 0 && err != -EBUSY)
1792 return VM_FAULT_SIGBUS;
1793
1794 return VM_FAULT_NOPAGE;
e0dc0d8f 1795}
79f3aa5b
MW
1796
1797vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1798 pfn_t pfn)
1799{
1800 return __vm_insert_mixed(vma, addr, pfn, false);
1801}
5d747637 1802EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1803
ab77dab4
SJ
1804/*
1805 * If the insertion of PTE failed because someone else already added a
1806 * different entry in the mean time, we treat that as success as we assume
1807 * the same entry was actually inserted.
1808 */
ab77dab4
SJ
1809vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1810 unsigned long addr, pfn_t pfn)
b2770da6 1811{
79f3aa5b 1812 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 1813}
ab77dab4 1814EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1815
1da177e4
LT
1816/*
1817 * maps a range of physical memory into the requested pages. the old
1818 * mappings are removed. any references to nonexistent pages results
1819 * in null mappings (currently treated as "copy-on-access")
1820 */
1821static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1822 unsigned long addr, unsigned long end,
1823 unsigned long pfn, pgprot_t prot)
1824{
1825 pte_t *pte;
c74df32c 1826 spinlock_t *ptl;
42e4089c 1827 int err = 0;
1da177e4 1828
c74df32c 1829 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1830 if (!pte)
1831 return -ENOMEM;
6606c3e0 1832 arch_enter_lazy_mmu_mode();
1da177e4
LT
1833 do {
1834 BUG_ON(!pte_none(*pte));
42e4089c
AK
1835 if (!pfn_modify_allowed(pfn, prot)) {
1836 err = -EACCES;
1837 break;
1838 }
7e675137 1839 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1840 pfn++;
1841 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1842 arch_leave_lazy_mmu_mode();
c74df32c 1843 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1844 return err;
1da177e4
LT
1845}
1846
1847static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1848 unsigned long addr, unsigned long end,
1849 unsigned long pfn, pgprot_t prot)
1850{
1851 pmd_t *pmd;
1852 unsigned long next;
42e4089c 1853 int err;
1da177e4
LT
1854
1855 pfn -= addr >> PAGE_SHIFT;
1856 pmd = pmd_alloc(mm, pud, addr);
1857 if (!pmd)
1858 return -ENOMEM;
f66055ab 1859 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1860 do {
1861 next = pmd_addr_end(addr, end);
42e4089c
AK
1862 err = remap_pte_range(mm, pmd, addr, next,
1863 pfn + (addr >> PAGE_SHIFT), prot);
1864 if (err)
1865 return err;
1da177e4
LT
1866 } while (pmd++, addr = next, addr != end);
1867 return 0;
1868}
1869
c2febafc 1870static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1871 unsigned long addr, unsigned long end,
1872 unsigned long pfn, pgprot_t prot)
1873{
1874 pud_t *pud;
1875 unsigned long next;
42e4089c 1876 int err;
1da177e4
LT
1877
1878 pfn -= addr >> PAGE_SHIFT;
c2febafc 1879 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1880 if (!pud)
1881 return -ENOMEM;
1882 do {
1883 next = pud_addr_end(addr, end);
42e4089c
AK
1884 err = remap_pmd_range(mm, pud, addr, next,
1885 pfn + (addr >> PAGE_SHIFT), prot);
1886 if (err)
1887 return err;
1da177e4
LT
1888 } while (pud++, addr = next, addr != end);
1889 return 0;
1890}
1891
c2febafc
KS
1892static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1893 unsigned long addr, unsigned long end,
1894 unsigned long pfn, pgprot_t prot)
1895{
1896 p4d_t *p4d;
1897 unsigned long next;
42e4089c 1898 int err;
c2febafc
KS
1899
1900 pfn -= addr >> PAGE_SHIFT;
1901 p4d = p4d_alloc(mm, pgd, addr);
1902 if (!p4d)
1903 return -ENOMEM;
1904 do {
1905 next = p4d_addr_end(addr, end);
42e4089c
AK
1906 err = remap_pud_range(mm, p4d, addr, next,
1907 pfn + (addr >> PAGE_SHIFT), prot);
1908 if (err)
1909 return err;
c2febafc
KS
1910 } while (p4d++, addr = next, addr != end);
1911 return 0;
1912}
1913
bfa5bf6d
REB
1914/**
1915 * remap_pfn_range - remap kernel memory to userspace
1916 * @vma: user vma to map to
1917 * @addr: target user address to start at
1918 * @pfn: physical address of kernel memory
1919 * @size: size of map area
1920 * @prot: page protection flags for this mapping
1921 *
a862f68a
MR
1922 * Note: this is only safe if the mm semaphore is held when called.
1923 *
1924 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 1925 */
1da177e4
LT
1926int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1927 unsigned long pfn, unsigned long size, pgprot_t prot)
1928{
1929 pgd_t *pgd;
1930 unsigned long next;
2d15cab8 1931 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1932 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1933 unsigned long remap_pfn = pfn;
1da177e4
LT
1934 int err;
1935
1936 /*
1937 * Physically remapped pages are special. Tell the
1938 * rest of the world about it:
1939 * VM_IO tells people not to look at these pages
1940 * (accesses can have side effects).
6aab341e
LT
1941 * VM_PFNMAP tells the core MM that the base pages are just
1942 * raw PFN mappings, and do not have a "struct page" associated
1943 * with them.
314e51b9
KK
1944 * VM_DONTEXPAND
1945 * Disable vma merging and expanding with mremap().
1946 * VM_DONTDUMP
1947 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1948 *
1949 * There's a horrible special case to handle copy-on-write
1950 * behaviour that some programs depend on. We mark the "original"
1951 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1952 * See vm_normal_page() for details.
1da177e4 1953 */
b3b9c293
KK
1954 if (is_cow_mapping(vma->vm_flags)) {
1955 if (addr != vma->vm_start || end != vma->vm_end)
1956 return -EINVAL;
fb155c16 1957 vma->vm_pgoff = pfn;
b3b9c293
KK
1958 }
1959
d5957d2f 1960 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1961 if (err)
3c8bb73a 1962 return -EINVAL;
fb155c16 1963
314e51b9 1964 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1965
1966 BUG_ON(addr >= end);
1967 pfn -= addr >> PAGE_SHIFT;
1968 pgd = pgd_offset(mm, addr);
1969 flush_cache_range(vma, addr, end);
1da177e4
LT
1970 do {
1971 next = pgd_addr_end(addr, end);
c2febafc 1972 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1973 pfn + (addr >> PAGE_SHIFT), prot);
1974 if (err)
1975 break;
1976 } while (pgd++, addr = next, addr != end);
2ab64037 1977
1978 if (err)
d5957d2f 1979 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1980
1da177e4
LT
1981 return err;
1982}
1983EXPORT_SYMBOL(remap_pfn_range);
1984
b4cbb197
LT
1985/**
1986 * vm_iomap_memory - remap memory to userspace
1987 * @vma: user vma to map to
1988 * @start: start of area
1989 * @len: size of area
1990 *
1991 * This is a simplified io_remap_pfn_range() for common driver use. The
1992 * driver just needs to give us the physical memory range to be mapped,
1993 * we'll figure out the rest from the vma information.
1994 *
1995 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1996 * whatever write-combining details or similar.
a862f68a
MR
1997 *
1998 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
1999 */
2000int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2001{
2002 unsigned long vm_len, pfn, pages;
2003
2004 /* Check that the physical memory area passed in looks valid */
2005 if (start + len < start)
2006 return -EINVAL;
2007 /*
2008 * You *really* shouldn't map things that aren't page-aligned,
2009 * but we've historically allowed it because IO memory might
2010 * just have smaller alignment.
2011 */
2012 len += start & ~PAGE_MASK;
2013 pfn = start >> PAGE_SHIFT;
2014 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2015 if (pfn + pages < pfn)
2016 return -EINVAL;
2017
2018 /* We start the mapping 'vm_pgoff' pages into the area */
2019 if (vma->vm_pgoff > pages)
2020 return -EINVAL;
2021 pfn += vma->vm_pgoff;
2022 pages -= vma->vm_pgoff;
2023
2024 /* Can we fit all of the mapping? */
2025 vm_len = vma->vm_end - vma->vm_start;
2026 if (vm_len >> PAGE_SHIFT > pages)
2027 return -EINVAL;
2028
2029 /* Ok, let it rip */
2030 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2031}
2032EXPORT_SYMBOL(vm_iomap_memory);
2033
aee16b3c
JF
2034static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2035 unsigned long addr, unsigned long end,
2036 pte_fn_t fn, void *data)
2037{
2038 pte_t *pte;
2039 int err;
2f569afd 2040 pgtable_t token;
94909914 2041 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2042
2043 pte = (mm == &init_mm) ?
2044 pte_alloc_kernel(pmd, addr) :
2045 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2046 if (!pte)
2047 return -ENOMEM;
2048
2049 BUG_ON(pmd_huge(*pmd));
2050
38e0edb1
JF
2051 arch_enter_lazy_mmu_mode();
2052
2f569afd 2053 token = pmd_pgtable(*pmd);
aee16b3c
JF
2054
2055 do {
c36987e2 2056 err = fn(pte++, token, addr, data);
aee16b3c
JF
2057 if (err)
2058 break;
c36987e2 2059 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2060
38e0edb1
JF
2061 arch_leave_lazy_mmu_mode();
2062
aee16b3c
JF
2063 if (mm != &init_mm)
2064 pte_unmap_unlock(pte-1, ptl);
2065 return err;
2066}
2067
2068static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2069 unsigned long addr, unsigned long end,
2070 pte_fn_t fn, void *data)
2071{
2072 pmd_t *pmd;
2073 unsigned long next;
2074 int err;
2075
ceb86879
AK
2076 BUG_ON(pud_huge(*pud));
2077
aee16b3c
JF
2078 pmd = pmd_alloc(mm, pud, addr);
2079 if (!pmd)
2080 return -ENOMEM;
2081 do {
2082 next = pmd_addr_end(addr, end);
2083 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2084 if (err)
2085 break;
2086 } while (pmd++, addr = next, addr != end);
2087 return err;
2088}
2089
c2febafc 2090static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2091 unsigned long addr, unsigned long end,
2092 pte_fn_t fn, void *data)
2093{
2094 pud_t *pud;
2095 unsigned long next;
2096 int err;
2097
c2febafc 2098 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2099 if (!pud)
2100 return -ENOMEM;
2101 do {
2102 next = pud_addr_end(addr, end);
2103 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2104 if (err)
2105 break;
2106 } while (pud++, addr = next, addr != end);
2107 return err;
2108}
2109
c2febafc
KS
2110static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2111 unsigned long addr, unsigned long end,
2112 pte_fn_t fn, void *data)
2113{
2114 p4d_t *p4d;
2115 unsigned long next;
2116 int err;
2117
2118 p4d = p4d_alloc(mm, pgd, addr);
2119 if (!p4d)
2120 return -ENOMEM;
2121 do {
2122 next = p4d_addr_end(addr, end);
2123 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2124 if (err)
2125 break;
2126 } while (p4d++, addr = next, addr != end);
2127 return err;
2128}
2129
aee16b3c
JF
2130/*
2131 * Scan a region of virtual memory, filling in page tables as necessary
2132 * and calling a provided function on each leaf page table.
2133 */
2134int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2135 unsigned long size, pte_fn_t fn, void *data)
2136{
2137 pgd_t *pgd;
2138 unsigned long next;
57250a5b 2139 unsigned long end = addr + size;
aee16b3c
JF
2140 int err;
2141
9cb65bc3
MP
2142 if (WARN_ON(addr >= end))
2143 return -EINVAL;
2144
aee16b3c
JF
2145 pgd = pgd_offset(mm, addr);
2146 do {
2147 next = pgd_addr_end(addr, end);
c2febafc 2148 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2149 if (err)
2150 break;
2151 } while (pgd++, addr = next, addr != end);
57250a5b 2152
aee16b3c
JF
2153 return err;
2154}
2155EXPORT_SYMBOL_GPL(apply_to_page_range);
2156
8f4e2101 2157/*
9b4bdd2f
KS
2158 * handle_pte_fault chooses page fault handler according to an entry which was
2159 * read non-atomically. Before making any commitment, on those architectures
2160 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2161 * parts, do_swap_page must check under lock before unmapping the pte and
2162 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2163 * and do_anonymous_page can safely check later on).
8f4e2101 2164 */
4c21e2f2 2165static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2166 pte_t *page_table, pte_t orig_pte)
2167{
2168 int same = 1;
2169#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2170 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2171 spinlock_t *ptl = pte_lockptr(mm, pmd);
2172 spin_lock(ptl);
8f4e2101 2173 same = pte_same(*page_table, orig_pte);
4c21e2f2 2174 spin_unlock(ptl);
8f4e2101
HD
2175 }
2176#endif
2177 pte_unmap(page_table);
2178 return same;
2179}
2180
9de455b2 2181static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2182{
0abdd7a8
DW
2183 debug_dma_assert_idle(src);
2184
6aab341e
LT
2185 /*
2186 * If the source page was a PFN mapping, we don't have
2187 * a "struct page" for it. We do a best-effort copy by
2188 * just copying from the original user address. If that
2189 * fails, we just zero-fill it. Live with it.
2190 */
2191 if (unlikely(!src)) {
9b04c5fe 2192 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2193 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2194
2195 /*
2196 * This really shouldn't fail, because the page is there
2197 * in the page tables. But it might just be unreadable,
2198 * in which case we just give up and fill the result with
2199 * zeroes.
2200 */
2201 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2202 clear_page(kaddr);
9b04c5fe 2203 kunmap_atomic(kaddr);
c4ec7b0d 2204 flush_dcache_page(dst);
0ed361de
NP
2205 } else
2206 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2207}
2208
c20cd45e
MH
2209static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2210{
2211 struct file *vm_file = vma->vm_file;
2212
2213 if (vm_file)
2214 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2215
2216 /*
2217 * Special mappings (e.g. VDSO) do not have any file so fake
2218 * a default GFP_KERNEL for them.
2219 */
2220 return GFP_KERNEL;
2221}
2222
fb09a464
KS
2223/*
2224 * Notify the address space that the page is about to become writable so that
2225 * it can prohibit this or wait for the page to get into an appropriate state.
2226 *
2227 * We do this without the lock held, so that it can sleep if it needs to.
2228 */
2b740303 2229static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2230{
2b740303 2231 vm_fault_t ret;
38b8cb7f
JK
2232 struct page *page = vmf->page;
2233 unsigned int old_flags = vmf->flags;
fb09a464 2234
38b8cb7f 2235 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2236
11bac800 2237 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2238 /* Restore original flags so that caller is not surprised */
2239 vmf->flags = old_flags;
fb09a464
KS
2240 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2241 return ret;
2242 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2243 lock_page(page);
2244 if (!page->mapping) {
2245 unlock_page(page);
2246 return 0; /* retry */
2247 }
2248 ret |= VM_FAULT_LOCKED;
2249 } else
2250 VM_BUG_ON_PAGE(!PageLocked(page), page);
2251 return ret;
2252}
2253
97ba0c2b
JK
2254/*
2255 * Handle dirtying of a page in shared file mapping on a write fault.
2256 *
2257 * The function expects the page to be locked and unlocks it.
2258 */
2259static void fault_dirty_shared_page(struct vm_area_struct *vma,
2260 struct page *page)
2261{
2262 struct address_space *mapping;
2263 bool dirtied;
2264 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2265
2266 dirtied = set_page_dirty(page);
2267 VM_BUG_ON_PAGE(PageAnon(page), page);
2268 /*
2269 * Take a local copy of the address_space - page.mapping may be zeroed
2270 * by truncate after unlock_page(). The address_space itself remains
2271 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2272 * release semantics to prevent the compiler from undoing this copying.
2273 */
2274 mapping = page_rmapping(page);
2275 unlock_page(page);
2276
2277 if ((dirtied || page_mkwrite) && mapping) {
2278 /*
2279 * Some device drivers do not set page.mapping
2280 * but still dirty their pages
2281 */
2282 balance_dirty_pages_ratelimited(mapping);
2283 }
2284
2285 if (!page_mkwrite)
2286 file_update_time(vma->vm_file);
2287}
2288
4e047f89
SR
2289/*
2290 * Handle write page faults for pages that can be reused in the current vma
2291 *
2292 * This can happen either due to the mapping being with the VM_SHARED flag,
2293 * or due to us being the last reference standing to the page. In either
2294 * case, all we need to do here is to mark the page as writable and update
2295 * any related book-keeping.
2296 */
997dd98d 2297static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2298 __releases(vmf->ptl)
4e047f89 2299{
82b0f8c3 2300 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2301 struct page *page = vmf->page;
4e047f89
SR
2302 pte_t entry;
2303 /*
2304 * Clear the pages cpupid information as the existing
2305 * information potentially belongs to a now completely
2306 * unrelated process.
2307 */
2308 if (page)
2309 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2310
2994302b
JK
2311 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2312 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2313 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2314 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2315 update_mmu_cache(vma, vmf->address, vmf->pte);
2316 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2317}
2318
2f38ab2c
SR
2319/*
2320 * Handle the case of a page which we actually need to copy to a new page.
2321 *
2322 * Called with mmap_sem locked and the old page referenced, but
2323 * without the ptl held.
2324 *
2325 * High level logic flow:
2326 *
2327 * - Allocate a page, copy the content of the old page to the new one.
2328 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2329 * - Take the PTL. If the pte changed, bail out and release the allocated page
2330 * - If the pte is still the way we remember it, update the page table and all
2331 * relevant references. This includes dropping the reference the page-table
2332 * held to the old page, as well as updating the rmap.
2333 * - In any case, unlock the PTL and drop the reference we took to the old page.
2334 */
2b740303 2335static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2336{
82b0f8c3 2337 struct vm_area_struct *vma = vmf->vma;
bae473a4 2338 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2339 struct page *old_page = vmf->page;
2f38ab2c 2340 struct page *new_page = NULL;
2f38ab2c
SR
2341 pte_t entry;
2342 int page_copied = 0;
2f38ab2c 2343 struct mem_cgroup *memcg;
ac46d4f3 2344 struct mmu_notifier_range range;
2f38ab2c
SR
2345
2346 if (unlikely(anon_vma_prepare(vma)))
2347 goto oom;
2348
2994302b 2349 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2350 new_page = alloc_zeroed_user_highpage_movable(vma,
2351 vmf->address);
2f38ab2c
SR
2352 if (!new_page)
2353 goto oom;
2354 } else {
bae473a4 2355 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2356 vmf->address);
2f38ab2c
SR
2357 if (!new_page)
2358 goto oom;
82b0f8c3 2359 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2360 }
2f38ab2c 2361
2cf85583 2362 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2363 goto oom_free_new;
2364
eb3c24f3
MG
2365 __SetPageUptodate(new_page);
2366
7269f999 2367 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2368 vmf->address & PAGE_MASK,
ac46d4f3
JG
2369 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2370 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2371
2372 /*
2373 * Re-check the pte - we dropped the lock
2374 */
82b0f8c3 2375 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2376 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2377 if (old_page) {
2378 if (!PageAnon(old_page)) {
eca56ff9
JM
2379 dec_mm_counter_fast(mm,
2380 mm_counter_file(old_page));
2f38ab2c
SR
2381 inc_mm_counter_fast(mm, MM_ANONPAGES);
2382 }
2383 } else {
2384 inc_mm_counter_fast(mm, MM_ANONPAGES);
2385 }
2994302b 2386 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2387 entry = mk_pte(new_page, vma->vm_page_prot);
2388 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2389 /*
2390 * Clear the pte entry and flush it first, before updating the
2391 * pte with the new entry. This will avoid a race condition
2392 * seen in the presence of one thread doing SMC and another
2393 * thread doing COW.
2394 */
82b0f8c3
JK
2395 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2396 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2397 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2398 lru_cache_add_active_or_unevictable(new_page, vma);
2399 /*
2400 * We call the notify macro here because, when using secondary
2401 * mmu page tables (such as kvm shadow page tables), we want the
2402 * new page to be mapped directly into the secondary page table.
2403 */
82b0f8c3
JK
2404 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2405 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2406 if (old_page) {
2407 /*
2408 * Only after switching the pte to the new page may
2409 * we remove the mapcount here. Otherwise another
2410 * process may come and find the rmap count decremented
2411 * before the pte is switched to the new page, and
2412 * "reuse" the old page writing into it while our pte
2413 * here still points into it and can be read by other
2414 * threads.
2415 *
2416 * The critical issue is to order this
2417 * page_remove_rmap with the ptp_clear_flush above.
2418 * Those stores are ordered by (if nothing else,)
2419 * the barrier present in the atomic_add_negative
2420 * in page_remove_rmap.
2421 *
2422 * Then the TLB flush in ptep_clear_flush ensures that
2423 * no process can access the old page before the
2424 * decremented mapcount is visible. And the old page
2425 * cannot be reused until after the decremented
2426 * mapcount is visible. So transitively, TLBs to
2427 * old page will be flushed before it can be reused.
2428 */
d281ee61 2429 page_remove_rmap(old_page, false);
2f38ab2c
SR
2430 }
2431
2432 /* Free the old page.. */
2433 new_page = old_page;
2434 page_copied = 1;
2435 } else {
f627c2f5 2436 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2437 }
2438
2439 if (new_page)
09cbfeaf 2440 put_page(new_page);
2f38ab2c 2441
82b0f8c3 2442 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2443 /*
2444 * No need to double call mmu_notifier->invalidate_range() callback as
2445 * the above ptep_clear_flush_notify() did already call it.
2446 */
ac46d4f3 2447 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2448 if (old_page) {
2449 /*
2450 * Don't let another task, with possibly unlocked vma,
2451 * keep the mlocked page.
2452 */
2453 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2454 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2455 if (PageMlocked(old_page))
2456 munlock_vma_page(old_page);
2f38ab2c
SR
2457 unlock_page(old_page);
2458 }
09cbfeaf 2459 put_page(old_page);
2f38ab2c
SR
2460 }
2461 return page_copied ? VM_FAULT_WRITE : 0;
2462oom_free_new:
09cbfeaf 2463 put_page(new_page);
2f38ab2c
SR
2464oom:
2465 if (old_page)
09cbfeaf 2466 put_page(old_page);
2f38ab2c
SR
2467 return VM_FAULT_OOM;
2468}
2469
66a6197c
JK
2470/**
2471 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2472 * writeable once the page is prepared
2473 *
2474 * @vmf: structure describing the fault
2475 *
2476 * This function handles all that is needed to finish a write page fault in a
2477 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2478 * It handles locking of PTE and modifying it.
66a6197c
JK
2479 *
2480 * The function expects the page to be locked or other protection against
2481 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2482 *
2483 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2484 * we acquired PTE lock.
66a6197c 2485 */
2b740303 2486vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2487{
2488 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2489 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2490 &vmf->ptl);
2491 /*
2492 * We might have raced with another page fault while we released the
2493 * pte_offset_map_lock.
2494 */
2495 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2496 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2497 return VM_FAULT_NOPAGE;
66a6197c
JK
2498 }
2499 wp_page_reuse(vmf);
a19e2553 2500 return 0;
66a6197c
JK
2501}
2502
dd906184
BH
2503/*
2504 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2505 * mapping
2506 */
2b740303 2507static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2508{
82b0f8c3 2509 struct vm_area_struct *vma = vmf->vma;
bae473a4 2510
dd906184 2511 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2512 vm_fault_t ret;
dd906184 2513
82b0f8c3 2514 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2515 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2516 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2517 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2518 return ret;
66a6197c 2519 return finish_mkwrite_fault(vmf);
dd906184 2520 }
997dd98d
JK
2521 wp_page_reuse(vmf);
2522 return VM_FAULT_WRITE;
dd906184
BH
2523}
2524
2b740303 2525static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2526 __releases(vmf->ptl)
93e478d4 2527{
82b0f8c3 2528 struct vm_area_struct *vma = vmf->vma;
93e478d4 2529
a41b70d6 2530 get_page(vmf->page);
93e478d4 2531
93e478d4 2532 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2533 vm_fault_t tmp;
93e478d4 2534
82b0f8c3 2535 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2536 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2537 if (unlikely(!tmp || (tmp &
2538 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2539 put_page(vmf->page);
93e478d4
SR
2540 return tmp;
2541 }
66a6197c 2542 tmp = finish_mkwrite_fault(vmf);
a19e2553 2543 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2544 unlock_page(vmf->page);
a41b70d6 2545 put_page(vmf->page);
66a6197c 2546 return tmp;
93e478d4 2547 }
66a6197c
JK
2548 } else {
2549 wp_page_reuse(vmf);
997dd98d 2550 lock_page(vmf->page);
93e478d4 2551 }
997dd98d
JK
2552 fault_dirty_shared_page(vma, vmf->page);
2553 put_page(vmf->page);
93e478d4 2554
997dd98d 2555 return VM_FAULT_WRITE;
93e478d4
SR
2556}
2557
1da177e4
LT
2558/*
2559 * This routine handles present pages, when users try to write
2560 * to a shared page. It is done by copying the page to a new address
2561 * and decrementing the shared-page counter for the old page.
2562 *
1da177e4
LT
2563 * Note that this routine assumes that the protection checks have been
2564 * done by the caller (the low-level page fault routine in most cases).
2565 * Thus we can safely just mark it writable once we've done any necessary
2566 * COW.
2567 *
2568 * We also mark the page dirty at this point even though the page will
2569 * change only once the write actually happens. This avoids a few races,
2570 * and potentially makes it more efficient.
2571 *
8f4e2101
HD
2572 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2573 * but allow concurrent faults), with pte both mapped and locked.
2574 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2575 */
2b740303 2576static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2577 __releases(vmf->ptl)
1da177e4 2578{
82b0f8c3 2579 struct vm_area_struct *vma = vmf->vma;
1da177e4 2580
a41b70d6
JK
2581 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2582 if (!vmf->page) {
251b97f5 2583 /*
64e45507
PF
2584 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2585 * VM_PFNMAP VMA.
251b97f5
PZ
2586 *
2587 * We should not cow pages in a shared writeable mapping.
dd906184 2588 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2589 */
2590 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2591 (VM_WRITE|VM_SHARED))
2994302b 2592 return wp_pfn_shared(vmf);
2f38ab2c 2593
82b0f8c3 2594 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2595 return wp_page_copy(vmf);
251b97f5 2596 }
1da177e4 2597
d08b3851 2598 /*
ee6a6457
PZ
2599 * Take out anonymous pages first, anonymous shared vmas are
2600 * not dirty accountable.
d08b3851 2601 */
52d1e606 2602 if (PageAnon(vmf->page)) {
ba3c4ce6 2603 int total_map_swapcount;
52d1e606
KT
2604 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2605 page_count(vmf->page) != 1))
2606 goto copy;
a41b70d6
JK
2607 if (!trylock_page(vmf->page)) {
2608 get_page(vmf->page);
82b0f8c3 2609 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2610 lock_page(vmf->page);
82b0f8c3
JK
2611 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2612 vmf->address, &vmf->ptl);
2994302b 2613 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2614 unlock_page(vmf->page);
82b0f8c3 2615 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2616 put_page(vmf->page);
28766805 2617 return 0;
ab967d86 2618 }
a41b70d6 2619 put_page(vmf->page);
ee6a6457 2620 }
52d1e606
KT
2621 if (PageKsm(vmf->page)) {
2622 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2623 vmf->address);
2624 unlock_page(vmf->page);
2625 if (!reused)
2626 goto copy;
2627 wp_page_reuse(vmf);
2628 return VM_FAULT_WRITE;
2629 }
ba3c4ce6
HY
2630 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2631 if (total_map_swapcount == 1) {
6d0a07ed
AA
2632 /*
2633 * The page is all ours. Move it to
2634 * our anon_vma so the rmap code will
2635 * not search our parent or siblings.
2636 * Protected against the rmap code by
2637 * the page lock.
2638 */
a41b70d6 2639 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2640 }
a41b70d6 2641 unlock_page(vmf->page);
997dd98d
JK
2642 wp_page_reuse(vmf);
2643 return VM_FAULT_WRITE;
b009c024 2644 }
a41b70d6 2645 unlock_page(vmf->page);
ee6a6457 2646 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2647 (VM_WRITE|VM_SHARED))) {
a41b70d6 2648 return wp_page_shared(vmf);
1da177e4 2649 }
52d1e606 2650copy:
1da177e4
LT
2651 /*
2652 * Ok, we need to copy. Oh, well..
2653 */
a41b70d6 2654 get_page(vmf->page);
28766805 2655
82b0f8c3 2656 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2657 return wp_page_copy(vmf);
1da177e4
LT
2658}
2659
97a89413 2660static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2661 unsigned long start_addr, unsigned long end_addr,
2662 struct zap_details *details)
2663{
f5cc4eef 2664 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2665}
2666
f808c13f 2667static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2668 struct zap_details *details)
2669{
2670 struct vm_area_struct *vma;
1da177e4
LT
2671 pgoff_t vba, vea, zba, zea;
2672
6b2dbba8 2673 vma_interval_tree_foreach(vma, root,
1da177e4 2674 details->first_index, details->last_index) {
1da177e4
LT
2675
2676 vba = vma->vm_pgoff;
d6e93217 2677 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2678 zba = details->first_index;
2679 if (zba < vba)
2680 zba = vba;
2681 zea = details->last_index;
2682 if (zea > vea)
2683 zea = vea;
2684
97a89413 2685 unmap_mapping_range_vma(vma,
1da177e4
LT
2686 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2687 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2688 details);
1da177e4
LT
2689 }
2690}
2691
977fbdcd
MW
2692/**
2693 * unmap_mapping_pages() - Unmap pages from processes.
2694 * @mapping: The address space containing pages to be unmapped.
2695 * @start: Index of first page to be unmapped.
2696 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2697 * @even_cows: Whether to unmap even private COWed pages.
2698 *
2699 * Unmap the pages in this address space from any userspace process which
2700 * has them mmaped. Generally, you want to remove COWed pages as well when
2701 * a file is being truncated, but not when invalidating pages from the page
2702 * cache.
2703 */
2704void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2705 pgoff_t nr, bool even_cows)
2706{
2707 struct zap_details details = { };
2708
2709 details.check_mapping = even_cows ? NULL : mapping;
2710 details.first_index = start;
2711 details.last_index = start + nr - 1;
2712 if (details.last_index < details.first_index)
2713 details.last_index = ULONG_MAX;
2714
2715 i_mmap_lock_write(mapping);
2716 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2717 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2718 i_mmap_unlock_write(mapping);
2719}
2720
1da177e4 2721/**
8a5f14a2 2722 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2723 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2724 * file.
2725 *
3d41088f 2726 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2727 * @holebegin: byte in first page to unmap, relative to the start of
2728 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2729 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2730 * must keep the partial page. In contrast, we must get rid of
2731 * partial pages.
2732 * @holelen: size of prospective hole in bytes. This will be rounded
2733 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2734 * end of the file.
2735 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2736 * but 0 when invalidating pagecache, don't throw away private data.
2737 */
2738void unmap_mapping_range(struct address_space *mapping,
2739 loff_t const holebegin, loff_t const holelen, int even_cows)
2740{
1da177e4
LT
2741 pgoff_t hba = holebegin >> PAGE_SHIFT;
2742 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2743
2744 /* Check for overflow. */
2745 if (sizeof(holelen) > sizeof(hlen)) {
2746 long long holeend =
2747 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2748 if (holeend & ~(long long)ULONG_MAX)
2749 hlen = ULONG_MAX - hba + 1;
2750 }
2751
977fbdcd 2752 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2753}
2754EXPORT_SYMBOL(unmap_mapping_range);
2755
1da177e4 2756/*
8f4e2101
HD
2757 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2758 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2759 * We return with pte unmapped and unlocked.
2760 *
2761 * We return with the mmap_sem locked or unlocked in the same cases
2762 * as does filemap_fault().
1da177e4 2763 */
2b740303 2764vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2765{
82b0f8c3 2766 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2767 struct page *page = NULL, *swapcache;
00501b53 2768 struct mem_cgroup *memcg;
65500d23 2769 swp_entry_t entry;
1da177e4 2770 pte_t pte;
d065bd81 2771 int locked;
ad8c2ee8 2772 int exclusive = 0;
2b740303 2773 vm_fault_t ret = 0;
1da177e4 2774
eaf649eb 2775 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2776 goto out;
65500d23 2777
2994302b 2778 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2779 if (unlikely(non_swap_entry(entry))) {
2780 if (is_migration_entry(entry)) {
82b0f8c3
JK
2781 migration_entry_wait(vma->vm_mm, vmf->pmd,
2782 vmf->address);
5042db43
JG
2783 } else if (is_device_private_entry(entry)) {
2784 /*
2785 * For un-addressable device memory we call the pgmap
2786 * fault handler callback. The callback must migrate
2787 * the page back to some CPU accessible page.
2788 */
2789 ret = device_private_entry_fault(vma, vmf->address, entry,
2790 vmf->flags, vmf->pmd);
d1737fdb
AK
2791 } else if (is_hwpoison_entry(entry)) {
2792 ret = VM_FAULT_HWPOISON;
2793 } else {
2994302b 2794 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2795 ret = VM_FAULT_SIGBUS;
d1737fdb 2796 }
0697212a
CL
2797 goto out;
2798 }
0bcac06f
MK
2799
2800
0ff92245 2801 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2802 page = lookup_swap_cache(entry, vma, vmf->address);
2803 swapcache = page;
f8020772 2804
1da177e4 2805 if (!page) {
0bcac06f
MK
2806 struct swap_info_struct *si = swp_swap_info(entry);
2807
aa8d22a1
MK
2808 if (si->flags & SWP_SYNCHRONOUS_IO &&
2809 __swap_count(si, entry) == 1) {
0bcac06f 2810 /* skip swapcache */
e9e9b7ec
MK
2811 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2812 vmf->address);
0bcac06f
MK
2813 if (page) {
2814 __SetPageLocked(page);
2815 __SetPageSwapBacked(page);
2816 set_page_private(page, entry.val);
2817 lru_cache_add_anon(page);
2818 swap_readpage(page, true);
2819 }
aa8d22a1 2820 } else {
e9e9b7ec
MK
2821 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2822 vmf);
aa8d22a1 2823 swapcache = page;
0bcac06f
MK
2824 }
2825
1da177e4
LT
2826 if (!page) {
2827 /*
8f4e2101
HD
2828 * Back out if somebody else faulted in this pte
2829 * while we released the pte lock.
1da177e4 2830 */
82b0f8c3
JK
2831 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2832 vmf->address, &vmf->ptl);
2994302b 2833 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2834 ret = VM_FAULT_OOM;
0ff92245 2835 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2836 goto unlock;
1da177e4
LT
2837 }
2838
2839 /* Had to read the page from swap area: Major fault */
2840 ret = VM_FAULT_MAJOR;
f8891e5e 2841 count_vm_event(PGMAJFAULT);
2262185c 2842 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2843 } else if (PageHWPoison(page)) {
71f72525
WF
2844 /*
2845 * hwpoisoned dirty swapcache pages are kept for killing
2846 * owner processes (which may be unknown at hwpoison time)
2847 */
d1737fdb
AK
2848 ret = VM_FAULT_HWPOISON;
2849 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2850 goto out_release;
1da177e4
LT
2851 }
2852
82b0f8c3 2853 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2854
073e587e 2855 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2856 if (!locked) {
2857 ret |= VM_FAULT_RETRY;
2858 goto out_release;
2859 }
073e587e 2860
4969c119 2861 /*
31c4a3d3
HD
2862 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2863 * release the swapcache from under us. The page pin, and pte_same
2864 * test below, are not enough to exclude that. Even if it is still
2865 * swapcache, we need to check that the page's swap has not changed.
4969c119 2866 */
0bcac06f
MK
2867 if (unlikely((!PageSwapCache(page) ||
2868 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2869 goto out_page;
2870
82b0f8c3 2871 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2872 if (unlikely(!page)) {
2873 ret = VM_FAULT_OOM;
2874 page = swapcache;
cbf86cfe 2875 goto out_page;
5ad64688
HD
2876 }
2877
2cf85583
TH
2878 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2879 &memcg, false)) {
8a9f3ccd 2880 ret = VM_FAULT_OOM;
bc43f75c 2881 goto out_page;
8a9f3ccd
BS
2882 }
2883
1da177e4 2884 /*
8f4e2101 2885 * Back out if somebody else already faulted in this pte.
1da177e4 2886 */
82b0f8c3
JK
2887 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2888 &vmf->ptl);
2994302b 2889 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2890 goto out_nomap;
b8107480
KK
2891
2892 if (unlikely(!PageUptodate(page))) {
2893 ret = VM_FAULT_SIGBUS;
2894 goto out_nomap;
1da177e4
LT
2895 }
2896
8c7c6e34
KH
2897 /*
2898 * The page isn't present yet, go ahead with the fault.
2899 *
2900 * Be careful about the sequence of operations here.
2901 * To get its accounting right, reuse_swap_page() must be called
2902 * while the page is counted on swap but not yet in mapcount i.e.
2903 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2904 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2905 */
1da177e4 2906
bae473a4
KS
2907 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2908 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2909 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2910 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2911 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2912 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2913 ret |= VM_FAULT_WRITE;
d281ee61 2914 exclusive = RMAP_EXCLUSIVE;
1da177e4 2915 }
1da177e4 2916 flush_icache_page(vma, page);
2994302b 2917 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2918 pte = pte_mksoft_dirty(pte);
82b0f8c3 2919 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 2920 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 2921 vmf->orig_pte = pte;
0bcac06f
MK
2922
2923 /* ksm created a completely new copy */
2924 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 2925 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2926 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2927 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
2928 } else {
2929 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2930 mem_cgroup_commit_charge(page, memcg, true, false);
2931 activate_page(page);
00501b53 2932 }
1da177e4 2933
c475a8ab 2934 swap_free(entry);
5ccc5aba
VD
2935 if (mem_cgroup_swap_full(page) ||
2936 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2937 try_to_free_swap(page);
c475a8ab 2938 unlock_page(page);
0bcac06f 2939 if (page != swapcache && swapcache) {
4969c119
AA
2940 /*
2941 * Hold the lock to avoid the swap entry to be reused
2942 * until we take the PT lock for the pte_same() check
2943 * (to avoid false positives from pte_same). For
2944 * further safety release the lock after the swap_free
2945 * so that the swap count won't change under a
2946 * parallel locked swapcache.
2947 */
2948 unlock_page(swapcache);
09cbfeaf 2949 put_page(swapcache);
4969c119 2950 }
c475a8ab 2951
82b0f8c3 2952 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2953 ret |= do_wp_page(vmf);
61469f1d
HD
2954 if (ret & VM_FAULT_ERROR)
2955 ret &= VM_FAULT_ERROR;
1da177e4
LT
2956 goto out;
2957 }
2958
2959 /* No need to invalidate - it was non-present before */
82b0f8c3 2960 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2961unlock:
82b0f8c3 2962 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2963out:
2964 return ret;
b8107480 2965out_nomap:
f627c2f5 2966 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2967 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2968out_page:
b8107480 2969 unlock_page(page);
4779cb31 2970out_release:
09cbfeaf 2971 put_page(page);
0bcac06f 2972 if (page != swapcache && swapcache) {
4969c119 2973 unlock_page(swapcache);
09cbfeaf 2974 put_page(swapcache);
4969c119 2975 }
65500d23 2976 return ret;
1da177e4
LT
2977}
2978
2979/*
8f4e2101
HD
2980 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2981 * but allow concurrent faults), and pte mapped but not yet locked.
2982 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2983 */
2b740303 2984static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 2985{
82b0f8c3 2986 struct vm_area_struct *vma = vmf->vma;
00501b53 2987 struct mem_cgroup *memcg;
8f4e2101 2988 struct page *page;
2b740303 2989 vm_fault_t ret = 0;
1da177e4 2990 pte_t entry;
1da177e4 2991
6b7339f4
KS
2992 /* File mapping without ->vm_ops ? */
2993 if (vma->vm_flags & VM_SHARED)
2994 return VM_FAULT_SIGBUS;
2995
7267ec00
KS
2996 /*
2997 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2998 * pte_offset_map() on pmds where a huge pmd might be created
2999 * from a different thread.
3000 *
3001 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3002 * parallel threads are excluded by other means.
3003 *
3004 * Here we only have down_read(mmap_sem).
3005 */
4cf58924 3006 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3007 return VM_FAULT_OOM;
3008
3009 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3010 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3011 return 0;
3012
11ac5524 3013 /* Use the zero-page for reads */
82b0f8c3 3014 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3015 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3016 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3017 vma->vm_page_prot));
82b0f8c3
JK
3018 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3019 vmf->address, &vmf->ptl);
3020 if (!pte_none(*vmf->pte))
a13ea5b7 3021 goto unlock;
6b31d595
MH
3022 ret = check_stable_address_space(vma->vm_mm);
3023 if (ret)
3024 goto unlock;
6b251fc9
AA
3025 /* Deliver the page fault to userland, check inside PT lock */
3026 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3027 pte_unmap_unlock(vmf->pte, vmf->ptl);
3028 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3029 }
a13ea5b7
HD
3030 goto setpte;
3031 }
3032
557ed1fa 3033 /* Allocate our own private page. */
557ed1fa
NP
3034 if (unlikely(anon_vma_prepare(vma)))
3035 goto oom;
82b0f8c3 3036 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3037 if (!page)
3038 goto oom;
eb3c24f3 3039
2cf85583
TH
3040 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3041 false))
eb3c24f3
MG
3042 goto oom_free_page;
3043
52f37629
MK
3044 /*
3045 * The memory barrier inside __SetPageUptodate makes sure that
3046 * preceeding stores to the page contents become visible before
3047 * the set_pte_at() write.
3048 */
0ed361de 3049 __SetPageUptodate(page);
8f4e2101 3050
557ed1fa 3051 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3052 if (vma->vm_flags & VM_WRITE)
3053 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3054
82b0f8c3
JK
3055 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3056 &vmf->ptl);
3057 if (!pte_none(*vmf->pte))
557ed1fa 3058 goto release;
9ba69294 3059
6b31d595
MH
3060 ret = check_stable_address_space(vma->vm_mm);
3061 if (ret)
3062 goto release;
3063
6b251fc9
AA
3064 /* Deliver the page fault to userland, check inside PT lock */
3065 if (userfaultfd_missing(vma)) {
82b0f8c3 3066 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3067 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3068 put_page(page);
82b0f8c3 3069 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3070 }
3071
bae473a4 3072 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3073 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3074 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3075 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3076setpte:
82b0f8c3 3077 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3078
3079 /* No need to invalidate - it was non-present before */
82b0f8c3 3080 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3081unlock:
82b0f8c3 3082 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3083 return ret;
8f4e2101 3084release:
f627c2f5 3085 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3086 put_page(page);
8f4e2101 3087 goto unlock;
8a9f3ccd 3088oom_free_page:
09cbfeaf 3089 put_page(page);
65500d23 3090oom:
1da177e4
LT
3091 return VM_FAULT_OOM;
3092}
3093
9a95f3cf
PC
3094/*
3095 * The mmap_sem must have been held on entry, and may have been
3096 * released depending on flags and vma->vm_ops->fault() return value.
3097 * See filemap_fault() and __lock_page_retry().
3098 */
2b740303 3099static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3100{
82b0f8c3 3101 struct vm_area_struct *vma = vmf->vma;
2b740303 3102 vm_fault_t ret;
7eae74af 3103
63f3655f
MH
3104 /*
3105 * Preallocate pte before we take page_lock because this might lead to
3106 * deadlocks for memcg reclaim which waits for pages under writeback:
3107 * lock_page(A)
3108 * SetPageWriteback(A)
3109 * unlock_page(A)
3110 * lock_page(B)
3111 * lock_page(B)
3112 * pte_alloc_pne
3113 * shrink_page_list
3114 * wait_on_page_writeback(A)
3115 * SetPageWriteback(B)
3116 * unlock_page(B)
3117 * # flush A, B to clear the writeback
3118 */
3119 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3120 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3121 if (!vmf->prealloc_pte)
3122 return VM_FAULT_OOM;
3123 smp_wmb(); /* See comment in __pte_alloc() */
3124 }
3125
11bac800 3126 ret = vma->vm_ops->fault(vmf);
3917048d 3127 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3128 VM_FAULT_DONE_COW)))
bc2466e4 3129 return ret;
7eae74af 3130
667240e0 3131 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3132 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3133 unlock_page(vmf->page);
3134 put_page(vmf->page);
936ca80d 3135 vmf->page = NULL;
7eae74af
KS
3136 return VM_FAULT_HWPOISON;
3137 }
3138
3139 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3140 lock_page(vmf->page);
7eae74af 3141 else
667240e0 3142 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3143
7eae74af
KS
3144 return ret;
3145}
3146
d0f0931d
RZ
3147/*
3148 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3149 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3150 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3151 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3152 */
3153static int pmd_devmap_trans_unstable(pmd_t *pmd)
3154{
3155 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3156}
3157
2b740303 3158static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3159{
82b0f8c3 3160 struct vm_area_struct *vma = vmf->vma;
7267ec00 3161
82b0f8c3 3162 if (!pmd_none(*vmf->pmd))
7267ec00 3163 goto map_pte;
82b0f8c3
JK
3164 if (vmf->prealloc_pte) {
3165 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3166 if (unlikely(!pmd_none(*vmf->pmd))) {
3167 spin_unlock(vmf->ptl);
7267ec00
KS
3168 goto map_pte;
3169 }
3170
c4812909 3171 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3172 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3173 spin_unlock(vmf->ptl);
7f2b6ce8 3174 vmf->prealloc_pte = NULL;
4cf58924 3175 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3176 return VM_FAULT_OOM;
3177 }
3178map_pte:
3179 /*
3180 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3181 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3182 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3183 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3184 * running immediately after a huge pmd fault in a different thread of
3185 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3186 * All we have to ensure is that it is a regular pmd that we can walk
3187 * with pte_offset_map() and we can do that through an atomic read in
3188 * C, which is what pmd_trans_unstable() provides.
7267ec00 3189 */
d0f0931d 3190 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3191 return VM_FAULT_NOPAGE;
3192
d0f0931d
RZ
3193 /*
3194 * At this point we know that our vmf->pmd points to a page of ptes
3195 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3196 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3197 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3198 * be valid and we will re-check to make sure the vmf->pte isn't
3199 * pte_none() under vmf->ptl protection when we return to
3200 * alloc_set_pte().
3201 */
82b0f8c3
JK
3202 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3203 &vmf->ptl);
7267ec00
KS
3204 return 0;
3205}
3206
e496cf3d 3207#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3208
3209#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3210static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3211 unsigned long haddr)
3212{
3213 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3214 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3215 return false;
3216 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3217 return false;
3218 return true;
3219}
3220
82b0f8c3 3221static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3222{
82b0f8c3 3223 struct vm_area_struct *vma = vmf->vma;
953c66c2 3224
82b0f8c3 3225 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3226 /*
3227 * We are going to consume the prealloc table,
3228 * count that as nr_ptes.
3229 */
c4812909 3230 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3231 vmf->prealloc_pte = NULL;
953c66c2
AK
3232}
3233
2b740303 3234static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3235{
82b0f8c3
JK
3236 struct vm_area_struct *vma = vmf->vma;
3237 bool write = vmf->flags & FAULT_FLAG_WRITE;
3238 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3239 pmd_t entry;
2b740303
SJ
3240 int i;
3241 vm_fault_t ret;
10102459
KS
3242
3243 if (!transhuge_vma_suitable(vma, haddr))
3244 return VM_FAULT_FALLBACK;
3245
3246 ret = VM_FAULT_FALLBACK;
3247 page = compound_head(page);
3248
953c66c2
AK
3249 /*
3250 * Archs like ppc64 need additonal space to store information
3251 * related to pte entry. Use the preallocated table for that.
3252 */
82b0f8c3 3253 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3254 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3255 if (!vmf->prealloc_pte)
953c66c2
AK
3256 return VM_FAULT_OOM;
3257 smp_wmb(); /* See comment in __pte_alloc() */
3258 }
3259
82b0f8c3
JK
3260 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3261 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3262 goto out;
3263
3264 for (i = 0; i < HPAGE_PMD_NR; i++)
3265 flush_icache_page(vma, page + i);
3266
3267 entry = mk_huge_pmd(page, vma->vm_page_prot);
3268 if (write)
f55e1014 3269 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3270
fadae295 3271 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3272 page_add_file_rmap(page, true);
953c66c2
AK
3273 /*
3274 * deposit and withdraw with pmd lock held
3275 */
3276 if (arch_needs_pgtable_deposit())
82b0f8c3 3277 deposit_prealloc_pte(vmf);
10102459 3278
82b0f8c3 3279 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3280
82b0f8c3 3281 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3282
3283 /* fault is handled */
3284 ret = 0;
95ecedcd 3285 count_vm_event(THP_FILE_MAPPED);
10102459 3286out:
82b0f8c3 3287 spin_unlock(vmf->ptl);
10102459
KS
3288 return ret;
3289}
3290#else
2b740303 3291static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3292{
3293 BUILD_BUG();
3294 return 0;
3295}
3296#endif
3297
8c6e50b0 3298/**
7267ec00
KS
3299 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3300 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3301 *
82b0f8c3 3302 * @vmf: fault environment
7267ec00 3303 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3304 * @page: page to map
8c6e50b0 3305 *
82b0f8c3
JK
3306 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3307 * return.
8c6e50b0
KS
3308 *
3309 * Target users are page handler itself and implementations of
3310 * vm_ops->map_pages.
a862f68a
MR
3311 *
3312 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3313 */
2b740303 3314vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3315 struct page *page)
3bb97794 3316{
82b0f8c3
JK
3317 struct vm_area_struct *vma = vmf->vma;
3318 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3319 pte_t entry;
2b740303 3320 vm_fault_t ret;
10102459 3321
82b0f8c3 3322 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3323 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3324 /* THP on COW? */
3325 VM_BUG_ON_PAGE(memcg, page);
3326
82b0f8c3 3327 ret = do_set_pmd(vmf, page);
10102459 3328 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3329 return ret;
10102459 3330 }
3bb97794 3331
82b0f8c3
JK
3332 if (!vmf->pte) {
3333 ret = pte_alloc_one_map(vmf);
7267ec00 3334 if (ret)
b0b9b3df 3335 return ret;
7267ec00
KS
3336 }
3337
3338 /* Re-check under ptl */
b0b9b3df
HD
3339 if (unlikely(!pte_none(*vmf->pte)))
3340 return VM_FAULT_NOPAGE;
7267ec00 3341
3bb97794
KS
3342 flush_icache_page(vma, page);
3343 entry = mk_pte(page, vma->vm_page_prot);
3344 if (write)
3345 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3346 /* copy-on-write page */
3347 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3348 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3349 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3350 mem_cgroup_commit_charge(page, memcg, false, false);
3351 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3352 } else {
eca56ff9 3353 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3354 page_add_file_rmap(page, false);
3bb97794 3355 }
82b0f8c3 3356 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3357
3358 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3359 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3360
b0b9b3df 3361 return 0;
3bb97794
KS
3362}
3363
9118c0cb
JK
3364
3365/**
3366 * finish_fault - finish page fault once we have prepared the page to fault
3367 *
3368 * @vmf: structure describing the fault
3369 *
3370 * This function handles all that is needed to finish a page fault once the
3371 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3372 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3373 * addition.
9118c0cb
JK
3374 *
3375 * The function expects the page to be locked and on success it consumes a
3376 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3377 *
3378 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3379 */
2b740303 3380vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3381{
3382 struct page *page;
2b740303 3383 vm_fault_t ret = 0;
9118c0cb
JK
3384
3385 /* Did we COW the page? */
3386 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3387 !(vmf->vma->vm_flags & VM_SHARED))
3388 page = vmf->cow_page;
3389 else
3390 page = vmf->page;
6b31d595
MH
3391
3392 /*
3393 * check even for read faults because we might have lost our CoWed
3394 * page
3395 */
3396 if (!(vmf->vma->vm_flags & VM_SHARED))
3397 ret = check_stable_address_space(vmf->vma->vm_mm);
3398 if (!ret)
3399 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3400 if (vmf->pte)
3401 pte_unmap_unlock(vmf->pte, vmf->ptl);
3402 return ret;
3403}
3404
3a91053a
KS
3405static unsigned long fault_around_bytes __read_mostly =
3406 rounddown_pow_of_two(65536);
a9b0f861 3407
a9b0f861
KS
3408#ifdef CONFIG_DEBUG_FS
3409static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3410{
a9b0f861 3411 *val = fault_around_bytes;
1592eef0
KS
3412 return 0;
3413}
3414
b4903d6e 3415/*
da391d64
WK
3416 * fault_around_bytes must be rounded down to the nearest page order as it's
3417 * what do_fault_around() expects to see.
b4903d6e 3418 */
a9b0f861 3419static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3420{
a9b0f861 3421 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3422 return -EINVAL;
b4903d6e
AR
3423 if (val > PAGE_SIZE)
3424 fault_around_bytes = rounddown_pow_of_two(val);
3425 else
3426 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3427 return 0;
3428}
0a1345f8 3429DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3430 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3431
3432static int __init fault_around_debugfs(void)
3433{
d9f7979c
GKH
3434 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3435 &fault_around_bytes_fops);
1592eef0
KS
3436 return 0;
3437}
3438late_initcall(fault_around_debugfs);
1592eef0 3439#endif
8c6e50b0 3440
1fdb412b
KS
3441/*
3442 * do_fault_around() tries to map few pages around the fault address. The hope
3443 * is that the pages will be needed soon and this will lower the number of
3444 * faults to handle.
3445 *
3446 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3447 * not ready to be mapped: not up-to-date, locked, etc.
3448 *
3449 * This function is called with the page table lock taken. In the split ptlock
3450 * case the page table lock only protects only those entries which belong to
3451 * the page table corresponding to the fault address.
3452 *
3453 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3454 * only once.
3455 *
da391d64
WK
3456 * fault_around_bytes defines how many bytes we'll try to map.
3457 * do_fault_around() expects it to be set to a power of two less than or equal
3458 * to PTRS_PER_PTE.
1fdb412b 3459 *
da391d64
WK
3460 * The virtual address of the area that we map is naturally aligned to
3461 * fault_around_bytes rounded down to the machine page size
3462 * (and therefore to page order). This way it's easier to guarantee
3463 * that we don't cross page table boundaries.
1fdb412b 3464 */
2b740303 3465static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3466{
82b0f8c3 3467 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3468 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3469 pgoff_t end_pgoff;
2b740303
SJ
3470 int off;
3471 vm_fault_t ret = 0;
8c6e50b0 3472
4db0c3c2 3473 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3474 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3475
82b0f8c3
JK
3476 vmf->address = max(address & mask, vmf->vma->vm_start);
3477 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3478 start_pgoff -= off;
8c6e50b0
KS
3479
3480 /*
da391d64
WK
3481 * end_pgoff is either the end of the page table, the end of
3482 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3483 */
bae473a4 3484 end_pgoff = start_pgoff -
82b0f8c3 3485 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3486 PTRS_PER_PTE - 1;
82b0f8c3 3487 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3488 start_pgoff + nr_pages - 1);
8c6e50b0 3489
82b0f8c3 3490 if (pmd_none(*vmf->pmd)) {
4cf58924 3491 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3492 if (!vmf->prealloc_pte)
c5f88bd2 3493 goto out;
7267ec00 3494 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3495 }
3496
82b0f8c3 3497 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3498
7267ec00 3499 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3500 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3501 ret = VM_FAULT_NOPAGE;
3502 goto out;
3503 }
3504
3505 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3506 if (!vmf->pte)
7267ec00
KS
3507 goto out;
3508
3509 /* check if the page fault is solved */
82b0f8c3
JK
3510 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3511 if (!pte_none(*vmf->pte))
7267ec00 3512 ret = VM_FAULT_NOPAGE;
82b0f8c3 3513 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3514out:
82b0f8c3
JK
3515 vmf->address = address;
3516 vmf->pte = NULL;
7267ec00 3517 return ret;
8c6e50b0
KS
3518}
3519
2b740303 3520static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3521{
82b0f8c3 3522 struct vm_area_struct *vma = vmf->vma;
2b740303 3523 vm_fault_t ret = 0;
8c6e50b0
KS
3524
3525 /*
3526 * Let's call ->map_pages() first and use ->fault() as fallback
3527 * if page by the offset is not ready to be mapped (cold cache or
3528 * something).
3529 */
9b4bdd2f 3530 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3531 ret = do_fault_around(vmf);
7267ec00
KS
3532 if (ret)
3533 return ret;
8c6e50b0 3534 }
e655fb29 3535
936ca80d 3536 ret = __do_fault(vmf);
e655fb29
KS
3537 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3538 return ret;
3539
9118c0cb 3540 ret |= finish_fault(vmf);
936ca80d 3541 unlock_page(vmf->page);
7267ec00 3542 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3543 put_page(vmf->page);
e655fb29
KS
3544 return ret;
3545}
3546
2b740303 3547static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3548{
82b0f8c3 3549 struct vm_area_struct *vma = vmf->vma;
2b740303 3550 vm_fault_t ret;
ec47c3b9
KS
3551
3552 if (unlikely(anon_vma_prepare(vma)))
3553 return VM_FAULT_OOM;
3554
936ca80d
JK
3555 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3556 if (!vmf->cow_page)
ec47c3b9
KS
3557 return VM_FAULT_OOM;
3558
2cf85583 3559 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3560 &vmf->memcg, false)) {
936ca80d 3561 put_page(vmf->cow_page);
ec47c3b9
KS
3562 return VM_FAULT_OOM;
3563 }
3564
936ca80d 3565 ret = __do_fault(vmf);
ec47c3b9
KS
3566 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3567 goto uncharge_out;
3917048d
JK
3568 if (ret & VM_FAULT_DONE_COW)
3569 return ret;
ec47c3b9 3570
b1aa812b 3571 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3572 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3573
9118c0cb 3574 ret |= finish_fault(vmf);
b1aa812b
JK
3575 unlock_page(vmf->page);
3576 put_page(vmf->page);
7267ec00
KS
3577 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3578 goto uncharge_out;
ec47c3b9
KS
3579 return ret;
3580uncharge_out:
3917048d 3581 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3582 put_page(vmf->cow_page);
ec47c3b9
KS
3583 return ret;
3584}
3585
2b740303 3586static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3587{
82b0f8c3 3588 struct vm_area_struct *vma = vmf->vma;
2b740303 3589 vm_fault_t ret, tmp;
1d65f86d 3590
936ca80d 3591 ret = __do_fault(vmf);
7eae74af 3592 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3593 return ret;
1da177e4
LT
3594
3595 /*
f0c6d4d2
KS
3596 * Check if the backing address space wants to know that the page is
3597 * about to become writable
1da177e4 3598 */
fb09a464 3599 if (vma->vm_ops->page_mkwrite) {
936ca80d 3600 unlock_page(vmf->page);
38b8cb7f 3601 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3602 if (unlikely(!tmp ||
3603 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3604 put_page(vmf->page);
fb09a464 3605 return tmp;
4294621f 3606 }
fb09a464
KS
3607 }
3608
9118c0cb 3609 ret |= finish_fault(vmf);
7267ec00
KS
3610 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3611 VM_FAULT_RETRY))) {
936ca80d
JK
3612 unlock_page(vmf->page);
3613 put_page(vmf->page);
f0c6d4d2 3614 return ret;
1da177e4 3615 }
b827e496 3616
97ba0c2b 3617 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3618 return ret;
54cb8821 3619}
d00806b1 3620
9a95f3cf
PC
3621/*
3622 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3623 * but allow concurrent faults).
3624 * The mmap_sem may have been released depending on flags and our
3625 * return value. See filemap_fault() and __lock_page_or_retry().
fc8efd2d
JS
3626 * If mmap_sem is released, vma may become invalid (for example
3627 * by other thread calling munmap()).
9a95f3cf 3628 */
2b740303 3629static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3630{
82b0f8c3 3631 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3632 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3633 vm_fault_t ret;
54cb8821 3634
ff09d7ec
AK
3635 /*
3636 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3637 */
3638 if (!vma->vm_ops->fault) {
3639 /*
3640 * If we find a migration pmd entry or a none pmd entry, which
3641 * should never happen, return SIGBUS
3642 */
3643 if (unlikely(!pmd_present(*vmf->pmd)))
3644 ret = VM_FAULT_SIGBUS;
3645 else {
3646 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3647 vmf->pmd,
3648 vmf->address,
3649 &vmf->ptl);
3650 /*
3651 * Make sure this is not a temporary clearing of pte
3652 * by holding ptl and checking again. A R/M/W update
3653 * of pte involves: take ptl, clearing the pte so that
3654 * we don't have concurrent modification by hardware
3655 * followed by an update.
3656 */
3657 if (unlikely(pte_none(*vmf->pte)))
3658 ret = VM_FAULT_SIGBUS;
3659 else
3660 ret = VM_FAULT_NOPAGE;
3661
3662 pte_unmap_unlock(vmf->pte, vmf->ptl);
3663 }
3664 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3665 ret = do_read_fault(vmf);
3666 else if (!(vma->vm_flags & VM_SHARED))
3667 ret = do_cow_fault(vmf);
3668 else
3669 ret = do_shared_fault(vmf);
3670
3671 /* preallocated pagetable is unused: free it */
3672 if (vmf->prealloc_pte) {
fc8efd2d 3673 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3674 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3675 }
3676 return ret;
54cb8821
NP
3677}
3678
b19a9939 3679static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3680 unsigned long addr, int page_nid,
3681 int *flags)
9532fec1
MG
3682{
3683 get_page(page);
3684
3685 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3686 if (page_nid == numa_node_id()) {
9532fec1 3687 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3688 *flags |= TNF_FAULT_LOCAL;
3689 }
9532fec1
MG
3690
3691 return mpol_misplaced(page, vma, addr);
3692}
3693
2b740303 3694static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3695{
82b0f8c3 3696 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3697 struct page *page = NULL;
98fa15f3 3698 int page_nid = NUMA_NO_NODE;
90572890 3699 int last_cpupid;
cbee9f88 3700 int target_nid;
b8593bfd 3701 bool migrated = false;
04a86453 3702 pte_t pte, old_pte;
288bc549 3703 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3704 int flags = 0;
d10e63f2
MG
3705
3706 /*
166f61b9
TH
3707 * The "pte" at this point cannot be used safely without
3708 * validation through pte_unmap_same(). It's of NUMA type but
3709 * the pfn may be screwed if the read is non atomic.
166f61b9 3710 */
82b0f8c3
JK
3711 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3712 spin_lock(vmf->ptl);
cee216a6 3713 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3714 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3715 goto out;
3716 }
3717
cee216a6
AK
3718 /*
3719 * Make it present again, Depending on how arch implementes non
3720 * accessible ptes, some can allow access by kernel mode.
3721 */
04a86453
AK
3722 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3723 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 3724 pte = pte_mkyoung(pte);
b191f9b1
MG
3725 if (was_writable)
3726 pte = pte_mkwrite(pte);
04a86453 3727 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 3728 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3729
82b0f8c3 3730 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3731 if (!page) {
82b0f8c3 3732 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3733 return 0;
3734 }
3735
e81c4802
KS
3736 /* TODO: handle PTE-mapped THP */
3737 if (PageCompound(page)) {
82b0f8c3 3738 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3739 return 0;
3740 }
3741
6688cc05 3742 /*
bea66fbd
MG
3743 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3744 * much anyway since they can be in shared cache state. This misses
3745 * the case where a mapping is writable but the process never writes
3746 * to it but pte_write gets cleared during protection updates and
3747 * pte_dirty has unpredictable behaviour between PTE scan updates,
3748 * background writeback, dirty balancing and application behaviour.
6688cc05 3749 */
d59dc7bc 3750 if (!pte_write(pte))
6688cc05
PZ
3751 flags |= TNF_NO_GROUP;
3752
dabe1d99
RR
3753 /*
3754 * Flag if the page is shared between multiple address spaces. This
3755 * is later used when determining whether to group tasks together
3756 */
3757 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3758 flags |= TNF_SHARED;
3759
90572890 3760 last_cpupid = page_cpupid_last(page);
8191acbd 3761 page_nid = page_to_nid(page);
82b0f8c3 3762 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3763 &flags);
82b0f8c3 3764 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 3765 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
3766 put_page(page);
3767 goto out;
3768 }
3769
3770 /* Migrate to the requested node */
1bc115d8 3771 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3772 if (migrated) {
8191acbd 3773 page_nid = target_nid;
6688cc05 3774 flags |= TNF_MIGRATED;
074c2381
MG
3775 } else
3776 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3777
3778out:
98fa15f3 3779 if (page_nid != NUMA_NO_NODE)
6688cc05 3780 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3781 return 0;
3782}
3783
2b740303 3784static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3785{
f4200391 3786 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3787 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3788 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3789 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3790 return VM_FAULT_FALLBACK;
3791}
3792
183f24aa 3793/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3794static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3795{
82b0f8c3
JK
3796 if (vma_is_anonymous(vmf->vma))
3797 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3798 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3799 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3800
3801 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3802 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3803 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3804
b96375f7
MW
3805 return VM_FAULT_FALLBACK;
3806}
3807
38e08854
LS
3808static inline bool vma_is_accessible(struct vm_area_struct *vma)
3809{
3810 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3811}
3812
2b740303 3813static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3814{
3815#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3816 /* No support for anonymous transparent PUD pages yet */
3817 if (vma_is_anonymous(vmf->vma))
3818 return VM_FAULT_FALLBACK;
3819 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3820 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3821#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3822 return VM_FAULT_FALLBACK;
3823}
3824
2b740303 3825static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3826{
3827#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3828 /* No support for anonymous transparent PUD pages yet */
3829 if (vma_is_anonymous(vmf->vma))
3830 return VM_FAULT_FALLBACK;
3831 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3832 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3833#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3834 return VM_FAULT_FALLBACK;
3835}
3836
1da177e4
LT
3837/*
3838 * These routines also need to handle stuff like marking pages dirty
3839 * and/or accessed for architectures that don't do it in hardware (most
3840 * RISC architectures). The early dirtying is also good on the i386.
3841 *
3842 * There is also a hook called "update_mmu_cache()" that architectures
3843 * with external mmu caches can use to update those (ie the Sparc or
3844 * PowerPC hashed page tables that act as extended TLBs).
3845 *
7267ec00
KS
3846 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3847 * concurrent faults).
9a95f3cf 3848 *
7267ec00
KS
3849 * The mmap_sem may have been released depending on flags and our return value.
3850 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3851 */
2b740303 3852static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3853{
3854 pte_t entry;
3855
82b0f8c3 3856 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3857 /*
3858 * Leave __pte_alloc() until later: because vm_ops->fault may
3859 * want to allocate huge page, and if we expose page table
3860 * for an instant, it will be difficult to retract from
3861 * concurrent faults and from rmap lookups.
3862 */
82b0f8c3 3863 vmf->pte = NULL;
7267ec00
KS
3864 } else {
3865 /* See comment in pte_alloc_one_map() */
d0f0931d 3866 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3867 return 0;
3868 /*
3869 * A regular pmd is established and it can't morph into a huge
3870 * pmd from under us anymore at this point because we hold the
3871 * mmap_sem read mode and khugepaged takes it in write mode.
3872 * So now it's safe to run pte_offset_map().
3873 */
82b0f8c3 3874 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3875 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3876
3877 /*
3878 * some architectures can have larger ptes than wordsize,
3879 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3880 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3881 * accesses. The code below just needs a consistent view
3882 * for the ifs and we later double check anyway with the
7267ec00
KS
3883 * ptl lock held. So here a barrier will do.
3884 */
3885 barrier();
2994302b 3886 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3887 pte_unmap(vmf->pte);
3888 vmf->pte = NULL;
65500d23 3889 }
1da177e4
LT
3890 }
3891
82b0f8c3
JK
3892 if (!vmf->pte) {
3893 if (vma_is_anonymous(vmf->vma))
3894 return do_anonymous_page(vmf);
7267ec00 3895 else
82b0f8c3 3896 return do_fault(vmf);
7267ec00
KS
3897 }
3898
2994302b
JK
3899 if (!pte_present(vmf->orig_pte))
3900 return do_swap_page(vmf);
7267ec00 3901
2994302b
JK
3902 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3903 return do_numa_page(vmf);
d10e63f2 3904
82b0f8c3
JK
3905 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3906 spin_lock(vmf->ptl);
2994302b 3907 entry = vmf->orig_pte;
82b0f8c3 3908 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3909 goto unlock;
82b0f8c3 3910 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3911 if (!pte_write(entry))
2994302b 3912 return do_wp_page(vmf);
1da177e4
LT
3913 entry = pte_mkdirty(entry);
3914 }
3915 entry = pte_mkyoung(entry);
82b0f8c3
JK
3916 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3917 vmf->flags & FAULT_FLAG_WRITE)) {
3918 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3919 } else {
3920 /*
3921 * This is needed only for protection faults but the arch code
3922 * is not yet telling us if this is a protection fault or not.
3923 * This still avoids useless tlb flushes for .text page faults
3924 * with threads.
3925 */
82b0f8c3
JK
3926 if (vmf->flags & FAULT_FLAG_WRITE)
3927 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3928 }
8f4e2101 3929unlock:
82b0f8c3 3930 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3931 return 0;
1da177e4
LT
3932}
3933
3934/*
3935 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3936 *
3937 * The mmap_sem may have been released depending on flags and our
3938 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3939 */
2b740303
SJ
3940static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3941 unsigned long address, unsigned int flags)
1da177e4 3942{
82b0f8c3 3943 struct vm_fault vmf = {
bae473a4 3944 .vma = vma,
1a29d85e 3945 .address = address & PAGE_MASK,
bae473a4 3946 .flags = flags,
0721ec8b 3947 .pgoff = linear_page_index(vma, address),
667240e0 3948 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3949 };
fde26bed 3950 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 3951 struct mm_struct *mm = vma->vm_mm;
1da177e4 3952 pgd_t *pgd;
c2febafc 3953 p4d_t *p4d;
2b740303 3954 vm_fault_t ret;
1da177e4 3955
1da177e4 3956 pgd = pgd_offset(mm, address);
c2febafc
KS
3957 p4d = p4d_alloc(mm, pgd, address);
3958 if (!p4d)
3959 return VM_FAULT_OOM;
a00cc7d9 3960
c2febafc 3961 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3962 if (!vmf.pud)
c74df32c 3963 return VM_FAULT_OOM;
7635d9cb 3964 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3965 ret = create_huge_pud(&vmf);
3966 if (!(ret & VM_FAULT_FALLBACK))
3967 return ret;
3968 } else {
3969 pud_t orig_pud = *vmf.pud;
3970
3971 barrier();
3972 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 3973
a00cc7d9
MW
3974 /* NUMA case for anonymous PUDs would go here */
3975
f6f37321 3976 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
3977 ret = wp_huge_pud(&vmf, orig_pud);
3978 if (!(ret & VM_FAULT_FALLBACK))
3979 return ret;
3980 } else {
3981 huge_pud_set_accessed(&vmf, orig_pud);
3982 return 0;
3983 }
3984 }
3985 }
3986
3987 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3988 if (!vmf.pmd)
c74df32c 3989 return VM_FAULT_OOM;
7635d9cb 3990 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 3991 ret = create_huge_pmd(&vmf);
c0292554
KS
3992 if (!(ret & VM_FAULT_FALLBACK))
3993 return ret;
71e3aac0 3994 } else {
82b0f8c3 3995 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3996
71e3aac0 3997 barrier();
84c3fc4e
ZY
3998 if (unlikely(is_swap_pmd(orig_pmd))) {
3999 VM_BUG_ON(thp_migration_supported() &&
4000 !is_pmd_migration_entry(orig_pmd));
4001 if (is_pmd_migration_entry(orig_pmd))
4002 pmd_migration_entry_wait(mm, vmf.pmd);
4003 return 0;
4004 }
5c7fb56e 4005 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4006 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4007 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4008
f6f37321 4009 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4010 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4011 if (!(ret & VM_FAULT_FALLBACK))
4012 return ret;
a1dd450b 4013 } else {
82b0f8c3 4014 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4015 return 0;
1f1d06c3 4016 }
71e3aac0
AA
4017 }
4018 }
4019
82b0f8c3 4020 return handle_pte_fault(&vmf);
1da177e4
LT
4021}
4022
9a95f3cf
PC
4023/*
4024 * By the time we get here, we already hold the mm semaphore
4025 *
4026 * The mmap_sem may have been released depending on flags and our
4027 * return value. See filemap_fault() and __lock_page_or_retry().
4028 */
2b740303 4029vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 4030 unsigned int flags)
519e5247 4031{
2b740303 4032 vm_fault_t ret;
519e5247
JW
4033
4034 __set_current_state(TASK_RUNNING);
4035
4036 count_vm_event(PGFAULT);
2262185c 4037 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4038
4039 /* do counter updates before entering really critical section. */
4040 check_sync_rss_stat(current);
4041
de0c799b
LD
4042 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4043 flags & FAULT_FLAG_INSTRUCTION,
4044 flags & FAULT_FLAG_REMOTE))
4045 return VM_FAULT_SIGSEGV;
4046
519e5247
JW
4047 /*
4048 * Enable the memcg OOM handling for faults triggered in user
4049 * space. Kernel faults are handled more gracefully.
4050 */
4051 if (flags & FAULT_FLAG_USER)
29ef680a 4052 mem_cgroup_enter_user_fault();
519e5247 4053
bae473a4
KS
4054 if (unlikely(is_vm_hugetlb_page(vma)))
4055 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4056 else
4057 ret = __handle_mm_fault(vma, address, flags);
519e5247 4058
49426420 4059 if (flags & FAULT_FLAG_USER) {
29ef680a 4060 mem_cgroup_exit_user_fault();
166f61b9
TH
4061 /*
4062 * The task may have entered a memcg OOM situation but
4063 * if the allocation error was handled gracefully (no
4064 * VM_FAULT_OOM), there is no need to kill anything.
4065 * Just clean up the OOM state peacefully.
4066 */
4067 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4068 mem_cgroup_oom_synchronize(false);
49426420 4069 }
3812c8c8 4070
519e5247
JW
4071 return ret;
4072}
e1d6d01a 4073EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4074
90eceff1
KS
4075#ifndef __PAGETABLE_P4D_FOLDED
4076/*
4077 * Allocate p4d page table.
4078 * We've already handled the fast-path in-line.
4079 */
4080int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4081{
4082 p4d_t *new = p4d_alloc_one(mm, address);
4083 if (!new)
4084 return -ENOMEM;
4085
4086 smp_wmb(); /* See comment in __pte_alloc */
4087
4088 spin_lock(&mm->page_table_lock);
4089 if (pgd_present(*pgd)) /* Another has populated it */
4090 p4d_free(mm, new);
4091 else
4092 pgd_populate(mm, pgd, new);
4093 spin_unlock(&mm->page_table_lock);
4094 return 0;
4095}
4096#endif /* __PAGETABLE_P4D_FOLDED */
4097
1da177e4
LT
4098#ifndef __PAGETABLE_PUD_FOLDED
4099/*
4100 * Allocate page upper directory.
872fec16 4101 * We've already handled the fast-path in-line.
1da177e4 4102 */
c2febafc 4103int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4104{
c74df32c
HD
4105 pud_t *new = pud_alloc_one(mm, address);
4106 if (!new)
1bb3630e 4107 return -ENOMEM;
1da177e4 4108
362a61ad
NP
4109 smp_wmb(); /* See comment in __pte_alloc */
4110
872fec16 4111 spin_lock(&mm->page_table_lock);
c2febafc 4112#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4113 if (!p4d_present(*p4d)) {
4114 mm_inc_nr_puds(mm);
c2febafc 4115 p4d_populate(mm, p4d, new);
b4e98d9a 4116 } else /* Another has populated it */
5e541973 4117 pud_free(mm, new);
b4e98d9a
KS
4118#else
4119 if (!pgd_present(*p4d)) {
4120 mm_inc_nr_puds(mm);
c2febafc 4121 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4122 } else /* Another has populated it */
4123 pud_free(mm, new);
c2febafc 4124#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4125 spin_unlock(&mm->page_table_lock);
1bb3630e 4126 return 0;
1da177e4
LT
4127}
4128#endif /* __PAGETABLE_PUD_FOLDED */
4129
4130#ifndef __PAGETABLE_PMD_FOLDED
4131/*
4132 * Allocate page middle directory.
872fec16 4133 * We've already handled the fast-path in-line.
1da177e4 4134 */
1bb3630e 4135int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4136{
a00cc7d9 4137 spinlock_t *ptl;
c74df32c
HD
4138 pmd_t *new = pmd_alloc_one(mm, address);
4139 if (!new)
1bb3630e 4140 return -ENOMEM;
1da177e4 4141
362a61ad
NP
4142 smp_wmb(); /* See comment in __pte_alloc */
4143
a00cc7d9 4144 ptl = pud_lock(mm, pud);
1da177e4 4145#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4146 if (!pud_present(*pud)) {
4147 mm_inc_nr_pmds(mm);
1bb3630e 4148 pud_populate(mm, pud, new);
dc6c9a35 4149 } else /* Another has populated it */
5e541973 4150 pmd_free(mm, new);
dc6c9a35
KS
4151#else
4152 if (!pgd_present(*pud)) {
4153 mm_inc_nr_pmds(mm);
1bb3630e 4154 pgd_populate(mm, pud, new);
dc6c9a35
KS
4155 } else /* Another has populated it */
4156 pmd_free(mm, new);
1da177e4 4157#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4158 spin_unlock(ptl);
1bb3630e 4159 return 0;
e0f39591 4160}
1da177e4
LT
4161#endif /* __PAGETABLE_PMD_FOLDED */
4162
09796395 4163static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4164 struct mmu_notifier_range *range,
a4d1a885 4165 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4166{
4167 pgd_t *pgd;
c2febafc 4168 p4d_t *p4d;
f8ad0f49
JW
4169 pud_t *pud;
4170 pmd_t *pmd;
4171 pte_t *ptep;
4172
4173 pgd = pgd_offset(mm, address);
4174 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4175 goto out;
4176
c2febafc
KS
4177 p4d = p4d_offset(pgd, address);
4178 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4179 goto out;
4180
4181 pud = pud_offset(p4d, address);
f8ad0f49
JW
4182 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4183 goto out;
4184
4185 pmd = pmd_offset(pud, address);
f66055ab 4186 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4187
09796395
RZ
4188 if (pmd_huge(*pmd)) {
4189 if (!pmdpp)
4190 goto out;
4191
ac46d4f3 4192 if (range) {
7269f999 4193 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4194 NULL, mm, address & PMD_MASK,
4195 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4196 mmu_notifier_invalidate_range_start(range);
a4d1a885 4197 }
09796395
RZ
4198 *ptlp = pmd_lock(mm, pmd);
4199 if (pmd_huge(*pmd)) {
4200 *pmdpp = pmd;
4201 return 0;
4202 }
4203 spin_unlock(*ptlp);
ac46d4f3
JG
4204 if (range)
4205 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4206 }
4207
4208 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4209 goto out;
4210
ac46d4f3 4211 if (range) {
7269f999 4212 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4213 address & PAGE_MASK,
4214 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4215 mmu_notifier_invalidate_range_start(range);
a4d1a885 4216 }
f8ad0f49 4217 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4218 if (!pte_present(*ptep))
4219 goto unlock;
4220 *ptepp = ptep;
4221 return 0;
4222unlock:
4223 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4224 if (range)
4225 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4226out:
4227 return -EINVAL;
4228}
4229
f729c8c9
RZ
4230static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4231 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4232{
4233 int res;
4234
4235 /* (void) is needed to make gcc happy */
4236 (void) __cond_lock(*ptlp,
ac46d4f3 4237 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4238 ptepp, NULL, ptlp)));
09796395
RZ
4239 return res;
4240}
4241
4242int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4243 struct mmu_notifier_range *range,
4244 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4245{
4246 int res;
4247
4248 /* (void) is needed to make gcc happy */
4249 (void) __cond_lock(*ptlp,
ac46d4f3 4250 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4251 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4252 return res;
4253}
09796395 4254EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4255
3b6748e2
JW
4256/**
4257 * follow_pfn - look up PFN at a user virtual address
4258 * @vma: memory mapping
4259 * @address: user virtual address
4260 * @pfn: location to store found PFN
4261 *
4262 * Only IO mappings and raw PFN mappings are allowed.
4263 *
a862f68a 4264 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4265 */
4266int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4267 unsigned long *pfn)
4268{
4269 int ret = -EINVAL;
4270 spinlock_t *ptl;
4271 pte_t *ptep;
4272
4273 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4274 return ret;
4275
4276 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4277 if (ret)
4278 return ret;
4279 *pfn = pte_pfn(*ptep);
4280 pte_unmap_unlock(ptep, ptl);
4281 return 0;
4282}
4283EXPORT_SYMBOL(follow_pfn);
4284
28b2ee20 4285#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4286int follow_phys(struct vm_area_struct *vma,
4287 unsigned long address, unsigned int flags,
4288 unsigned long *prot, resource_size_t *phys)
28b2ee20 4289{
03668a4d 4290 int ret = -EINVAL;
28b2ee20
RR
4291 pte_t *ptep, pte;
4292 spinlock_t *ptl;
28b2ee20 4293
d87fe660 4294 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4295 goto out;
28b2ee20 4296
03668a4d 4297 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4298 goto out;
28b2ee20 4299 pte = *ptep;
03668a4d 4300
f6f37321 4301 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4302 goto unlock;
28b2ee20
RR
4303
4304 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4305 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4306
03668a4d 4307 ret = 0;
28b2ee20
RR
4308unlock:
4309 pte_unmap_unlock(ptep, ptl);
4310out:
d87fe660 4311 return ret;
28b2ee20
RR
4312}
4313
4314int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4315 void *buf, int len, int write)
4316{
4317 resource_size_t phys_addr;
4318 unsigned long prot = 0;
2bc7273b 4319 void __iomem *maddr;
28b2ee20
RR
4320 int offset = addr & (PAGE_SIZE-1);
4321
d87fe660 4322 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4323 return -EINVAL;
4324
9cb12d7b 4325 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4326 if (!maddr)
4327 return -ENOMEM;
4328
28b2ee20
RR
4329 if (write)
4330 memcpy_toio(maddr + offset, buf, len);
4331 else
4332 memcpy_fromio(buf, maddr + offset, len);
4333 iounmap(maddr);
4334
4335 return len;
4336}
5a73633e 4337EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4338#endif
4339
0ec76a11 4340/*
206cb636
SW
4341 * Access another process' address space as given in mm. If non-NULL, use the
4342 * given task for page fault accounting.
0ec76a11 4343 */
84d77d3f 4344int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4345 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4346{
0ec76a11 4347 struct vm_area_struct *vma;
0ec76a11 4348 void *old_buf = buf;
442486ec 4349 int write = gup_flags & FOLL_WRITE;
0ec76a11 4350
0ec76a11 4351 down_read(&mm->mmap_sem);
183ff22b 4352 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4353 while (len) {
4354 int bytes, ret, offset;
4355 void *maddr;
28b2ee20 4356 struct page *page = NULL;
0ec76a11 4357
1e987790 4358 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4359 gup_flags, &page, &vma, NULL);
28b2ee20 4360 if (ret <= 0) {
dbffcd03
RR
4361#ifndef CONFIG_HAVE_IOREMAP_PROT
4362 break;
4363#else
28b2ee20
RR
4364 /*
4365 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4366 * we can access using slightly different code.
4367 */
28b2ee20 4368 vma = find_vma(mm, addr);
fe936dfc 4369 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4370 break;
4371 if (vma->vm_ops && vma->vm_ops->access)
4372 ret = vma->vm_ops->access(vma, addr, buf,
4373 len, write);
4374 if (ret <= 0)
28b2ee20
RR
4375 break;
4376 bytes = ret;
dbffcd03 4377#endif
0ec76a11 4378 } else {
28b2ee20
RR
4379 bytes = len;
4380 offset = addr & (PAGE_SIZE-1);
4381 if (bytes > PAGE_SIZE-offset)
4382 bytes = PAGE_SIZE-offset;
4383
4384 maddr = kmap(page);
4385 if (write) {
4386 copy_to_user_page(vma, page, addr,
4387 maddr + offset, buf, bytes);
4388 set_page_dirty_lock(page);
4389 } else {
4390 copy_from_user_page(vma, page, addr,
4391 buf, maddr + offset, bytes);
4392 }
4393 kunmap(page);
09cbfeaf 4394 put_page(page);
0ec76a11 4395 }
0ec76a11
DH
4396 len -= bytes;
4397 buf += bytes;
4398 addr += bytes;
4399 }
4400 up_read(&mm->mmap_sem);
0ec76a11
DH
4401
4402 return buf - old_buf;
4403}
03252919 4404
5ddd36b9 4405/**
ae91dbfc 4406 * access_remote_vm - access another process' address space
5ddd36b9
SW
4407 * @mm: the mm_struct of the target address space
4408 * @addr: start address to access
4409 * @buf: source or destination buffer
4410 * @len: number of bytes to transfer
6347e8d5 4411 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4412 *
4413 * The caller must hold a reference on @mm.
a862f68a
MR
4414 *
4415 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4416 */
4417int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4418 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4419{
6347e8d5 4420 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4421}
4422
206cb636
SW
4423/*
4424 * Access another process' address space.
4425 * Source/target buffer must be kernel space,
4426 * Do not walk the page table directly, use get_user_pages
4427 */
4428int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4429 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4430{
4431 struct mm_struct *mm;
4432 int ret;
4433
4434 mm = get_task_mm(tsk);
4435 if (!mm)
4436 return 0;
4437
f307ab6d 4438 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4439
206cb636
SW
4440 mmput(mm);
4441
4442 return ret;
4443}
fcd35857 4444EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4445
03252919
AK
4446/*
4447 * Print the name of a VMA.
4448 */
4449void print_vma_addr(char *prefix, unsigned long ip)
4450{
4451 struct mm_struct *mm = current->mm;
4452 struct vm_area_struct *vma;
4453
e8bff74a 4454 /*
0a7f682d 4455 * we might be running from an atomic context so we cannot sleep
e8bff74a 4456 */
0a7f682d 4457 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4458 return;
4459
03252919
AK
4460 vma = find_vma(mm, ip);
4461 if (vma && vma->vm_file) {
4462 struct file *f = vma->vm_file;
0a7f682d 4463 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4464 if (buf) {
2fbc57c5 4465 char *p;
03252919 4466
9bf39ab2 4467 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4468 if (IS_ERR(p))
4469 p = "?";
2fbc57c5 4470 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4471 vma->vm_start,
4472 vma->vm_end - vma->vm_start);
4473 free_page((unsigned long)buf);
4474 }
4475 }
51a07e50 4476 up_read(&mm->mmap_sem);
03252919 4477}
3ee1afa3 4478
662bbcb2 4479#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4480void __might_fault(const char *file, int line)
3ee1afa3 4481{
95156f00
PZ
4482 /*
4483 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4484 * holding the mmap_sem, this is safe because kernel memory doesn't
4485 * get paged out, therefore we'll never actually fault, and the
4486 * below annotations will generate false positives.
4487 */
db68ce10 4488 if (uaccess_kernel())
95156f00 4489 return;
9ec23531 4490 if (pagefault_disabled())
662bbcb2 4491 return;
9ec23531
DH
4492 __might_sleep(file, line, 0);
4493#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4494 if (current->mm)
3ee1afa3 4495 might_lock_read(&current->mm->mmap_sem);
9ec23531 4496#endif
3ee1afa3 4497}
9ec23531 4498EXPORT_SYMBOL(__might_fault);
3ee1afa3 4499#endif
47ad8475
AA
4500
4501#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4502/*
4503 * Process all subpages of the specified huge page with the specified
4504 * operation. The target subpage will be processed last to keep its
4505 * cache lines hot.
4506 */
4507static inline void process_huge_page(
4508 unsigned long addr_hint, unsigned int pages_per_huge_page,
4509 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4510 void *arg)
47ad8475 4511{
c79b57e4
HY
4512 int i, n, base, l;
4513 unsigned long addr = addr_hint &
4514 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4515
c6ddfb6c 4516 /* Process target subpage last to keep its cache lines hot */
47ad8475 4517 might_sleep();
c79b57e4
HY
4518 n = (addr_hint - addr) / PAGE_SIZE;
4519 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4520 /* If target subpage in first half of huge page */
c79b57e4
HY
4521 base = 0;
4522 l = n;
c6ddfb6c 4523 /* Process subpages at the end of huge page */
c79b57e4
HY
4524 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4525 cond_resched();
c6ddfb6c 4526 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4527 }
4528 } else {
c6ddfb6c 4529 /* If target subpage in second half of huge page */
c79b57e4
HY
4530 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4531 l = pages_per_huge_page - n;
c6ddfb6c 4532 /* Process subpages at the begin of huge page */
c79b57e4
HY
4533 for (i = 0; i < base; i++) {
4534 cond_resched();
c6ddfb6c 4535 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4536 }
4537 }
4538 /*
c6ddfb6c
HY
4539 * Process remaining subpages in left-right-left-right pattern
4540 * towards the target subpage
c79b57e4
HY
4541 */
4542 for (i = 0; i < l; i++) {
4543 int left_idx = base + i;
4544 int right_idx = base + 2 * l - 1 - i;
4545
4546 cond_resched();
c6ddfb6c 4547 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4548 cond_resched();
c6ddfb6c 4549 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4550 }
4551}
4552
c6ddfb6c
HY
4553static void clear_gigantic_page(struct page *page,
4554 unsigned long addr,
4555 unsigned int pages_per_huge_page)
4556{
4557 int i;
4558 struct page *p = page;
4559
4560 might_sleep();
4561 for (i = 0; i < pages_per_huge_page;
4562 i++, p = mem_map_next(p, page, i)) {
4563 cond_resched();
4564 clear_user_highpage(p, addr + i * PAGE_SIZE);
4565 }
4566}
4567
4568static void clear_subpage(unsigned long addr, int idx, void *arg)
4569{
4570 struct page *page = arg;
4571
4572 clear_user_highpage(page + idx, addr);
4573}
4574
4575void clear_huge_page(struct page *page,
4576 unsigned long addr_hint, unsigned int pages_per_huge_page)
4577{
4578 unsigned long addr = addr_hint &
4579 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4580
4581 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4582 clear_gigantic_page(page, addr, pages_per_huge_page);
4583 return;
4584 }
4585
4586 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4587}
4588
47ad8475
AA
4589static void copy_user_gigantic_page(struct page *dst, struct page *src,
4590 unsigned long addr,
4591 struct vm_area_struct *vma,
4592 unsigned int pages_per_huge_page)
4593{
4594 int i;
4595 struct page *dst_base = dst;
4596 struct page *src_base = src;
4597
4598 for (i = 0; i < pages_per_huge_page; ) {
4599 cond_resched();
4600 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4601
4602 i++;
4603 dst = mem_map_next(dst, dst_base, i);
4604 src = mem_map_next(src, src_base, i);
4605 }
4606}
4607
c9f4cd71
HY
4608struct copy_subpage_arg {
4609 struct page *dst;
4610 struct page *src;
4611 struct vm_area_struct *vma;
4612};
4613
4614static void copy_subpage(unsigned long addr, int idx, void *arg)
4615{
4616 struct copy_subpage_arg *copy_arg = arg;
4617
4618 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4619 addr, copy_arg->vma);
4620}
4621
47ad8475 4622void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4623 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4624 unsigned int pages_per_huge_page)
4625{
c9f4cd71
HY
4626 unsigned long addr = addr_hint &
4627 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4628 struct copy_subpage_arg arg = {
4629 .dst = dst,
4630 .src = src,
4631 .vma = vma,
4632 };
47ad8475
AA
4633
4634 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4635 copy_user_gigantic_page(dst, src, addr, vma,
4636 pages_per_huge_page);
4637 return;
4638 }
4639
c9f4cd71 4640 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4641}
fa4d75c1
MK
4642
4643long copy_huge_page_from_user(struct page *dst_page,
4644 const void __user *usr_src,
810a56b9
MK
4645 unsigned int pages_per_huge_page,
4646 bool allow_pagefault)
fa4d75c1
MK
4647{
4648 void *src = (void *)usr_src;
4649 void *page_kaddr;
4650 unsigned long i, rc = 0;
4651 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4652
4653 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4654 if (allow_pagefault)
4655 page_kaddr = kmap(dst_page + i);
4656 else
4657 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4658 rc = copy_from_user(page_kaddr,
4659 (const void __user *)(src + i * PAGE_SIZE),
4660 PAGE_SIZE);
810a56b9
MK
4661 if (allow_pagefault)
4662 kunmap(dst_page + i);
4663 else
4664 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4665
4666 ret_val -= (PAGE_SIZE - rc);
4667 if (rc)
4668 break;
4669
4670 cond_resched();
4671 }
4672 return ret_val;
4673}
47ad8475 4674#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4675
40b64acd 4676#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4677
4678static struct kmem_cache *page_ptl_cachep;
4679
4680void __init ptlock_cache_init(void)
4681{
4682 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4683 SLAB_PANIC, NULL);
4684}
4685
539edb58 4686bool ptlock_alloc(struct page *page)
49076ec2
KS
4687{
4688 spinlock_t *ptl;
4689
b35f1819 4690 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4691 if (!ptl)
4692 return false;
539edb58 4693 page->ptl = ptl;
49076ec2
KS
4694 return true;
4695}
4696
539edb58 4697void ptlock_free(struct page *page)
49076ec2 4698{
b35f1819 4699 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4700}
4701#endif