Merge tag 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[linux-2.6-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
1da177e4 62
6952b61d 63#include <asm/io.h>
1da177e4
LT
64#include <asm/pgalloc.h>
65#include <asm/uaccess.h>
66#include <asm/tlb.h>
67#include <asm/tlbflush.h>
68#include <asm/pgtable.h>
69
42b77728
JB
70#include "internal.h"
71
90572890
PZ
72#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
73#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
74#endif
75
d41dee36 76#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
77/* use the per-pgdat data instead for discontigmem - mbligh */
78unsigned long max_mapnr;
79struct page *mem_map;
80
81EXPORT_SYMBOL(max_mapnr);
82EXPORT_SYMBOL(mem_map);
83#endif
84
1da177e4
LT
85/*
86 * A number of key systems in x86 including ioremap() rely on the assumption
87 * that high_memory defines the upper bound on direct map memory, then end
88 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
89 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90 * and ZONE_HIGHMEM.
91 */
92void * high_memory;
1da177e4 93
1da177e4 94EXPORT_SYMBOL(high_memory);
1da177e4 95
32a93233
IM
96/*
97 * Randomize the address space (stacks, mmaps, brk, etc.).
98 *
99 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100 * as ancient (libc5 based) binaries can segfault. )
101 */
102int randomize_va_space __read_mostly =
103#ifdef CONFIG_COMPAT_BRK
104 1;
105#else
106 2;
107#endif
a62eaf15
AK
108
109static int __init disable_randmaps(char *s)
110{
111 randomize_va_space = 0;
9b41046c 112 return 1;
a62eaf15
AK
113}
114__setup("norandmaps", disable_randmaps);
115
62eede62 116unsigned long zero_pfn __read_mostly;
03f6462a 117unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
118
119/*
120 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
121 */
122static int __init init_zero_pfn(void)
123{
124 zero_pfn = page_to_pfn(ZERO_PAGE(0));
125 return 0;
126}
127core_initcall(init_zero_pfn);
a62eaf15 128
d559db08 129
34e55232
KH
130#if defined(SPLIT_RSS_COUNTING)
131
ea48cf78 132void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
133{
134 int i;
135
136 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
137 if (current->rss_stat.count[i]) {
138 add_mm_counter(mm, i, current->rss_stat.count[i]);
139 current->rss_stat.count[i] = 0;
34e55232
KH
140 }
141 }
05af2e10 142 current->rss_stat.events = 0;
34e55232
KH
143}
144
145static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
146{
147 struct task_struct *task = current;
148
149 if (likely(task->mm == mm))
150 task->rss_stat.count[member] += val;
151 else
152 add_mm_counter(mm, member, val);
153}
154#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
156
157/* sync counter once per 64 page faults */
158#define TASK_RSS_EVENTS_THRESH (64)
159static void check_sync_rss_stat(struct task_struct *task)
160{
161 if (unlikely(task != current))
162 return;
163 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 164 sync_mm_rss(task->mm);
34e55232 165}
9547d01b 166#else /* SPLIT_RSS_COUNTING */
34e55232
KH
167
168#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
170
171static void check_sync_rss_stat(struct task_struct *task)
172{
173}
174
9547d01b
PZ
175#endif /* SPLIT_RSS_COUNTING */
176
177#ifdef HAVE_GENERIC_MMU_GATHER
178
179static int tlb_next_batch(struct mmu_gather *tlb)
180{
181 struct mmu_gather_batch *batch;
182
183 batch = tlb->active;
184 if (batch->next) {
185 tlb->active = batch->next;
186 return 1;
187 }
188
53a59fc6
MH
189 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190 return 0;
191
9547d01b
PZ
192 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193 if (!batch)
194 return 0;
195
53a59fc6 196 tlb->batch_count++;
9547d01b
PZ
197 batch->next = NULL;
198 batch->nr = 0;
199 batch->max = MAX_GATHER_BATCH;
200
201 tlb->active->next = batch;
202 tlb->active = batch;
203
204 return 1;
205}
206
207/* tlb_gather_mmu
208 * Called to initialize an (on-stack) mmu_gather structure for page-table
209 * tear-down from @mm. The @fullmm argument is used when @mm is without
210 * users and we're going to destroy the full address space (exit/execve).
211 */
2b047252 212void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
213{
214 tlb->mm = mm;
215
2b047252
LT
216 /* Is it from 0 to ~0? */
217 tlb->fullmm = !(start | (end+1));
1de14c3c 218 tlb->need_flush_all = 0;
2b047252
LT
219 tlb->start = start;
220 tlb->end = end;
9547d01b 221 tlb->need_flush = 0;
9547d01b
PZ
222 tlb->local.next = NULL;
223 tlb->local.nr = 0;
224 tlb->local.max = ARRAY_SIZE(tlb->__pages);
225 tlb->active = &tlb->local;
53a59fc6 226 tlb->batch_count = 0;
9547d01b
PZ
227
228#ifdef CONFIG_HAVE_RCU_TABLE_FREE
229 tlb->batch = NULL;
230#endif
231}
232
233void tlb_flush_mmu(struct mmu_gather *tlb)
234{
235 struct mmu_gather_batch *batch;
236
237 if (!tlb->need_flush)
238 return;
239 tlb->need_flush = 0;
240 tlb_flush(tlb);
241#ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 tlb_table_flush(tlb);
34e55232
KH
243#endif
244
9547d01b
PZ
245 for (batch = &tlb->local; batch; batch = batch->next) {
246 free_pages_and_swap_cache(batch->pages, batch->nr);
247 batch->nr = 0;
248 }
249 tlb->active = &tlb->local;
250}
251
252/* tlb_finish_mmu
253 * Called at the end of the shootdown operation to free up any resources
254 * that were required.
255 */
256void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257{
258 struct mmu_gather_batch *batch, *next;
259
260 tlb_flush_mmu(tlb);
261
262 /* keep the page table cache within bounds */
263 check_pgt_cache();
264
265 for (batch = tlb->local.next; batch; batch = next) {
266 next = batch->next;
267 free_pages((unsigned long)batch, 0);
268 }
269 tlb->local.next = NULL;
270}
271
272/* __tlb_remove_page
273 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
274 * handling the additional races in SMP caused by other CPUs caching valid
275 * mappings in their TLBs. Returns the number of free page slots left.
276 * When out of page slots we must call tlb_flush_mmu().
277 */
278int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
279{
280 struct mmu_gather_batch *batch;
281
f21760b1 282 VM_BUG_ON(!tlb->need_flush);
9547d01b 283
9547d01b
PZ
284 batch = tlb->active;
285 batch->pages[batch->nr++] = page;
286 if (batch->nr == batch->max) {
287 if (!tlb_next_batch(tlb))
288 return 0;
0b43c3aa 289 batch = tlb->active;
9547d01b
PZ
290 }
291 VM_BUG_ON(batch->nr > batch->max);
292
293 return batch->max - batch->nr;
294}
295
296#endif /* HAVE_GENERIC_MMU_GATHER */
297
26723911
PZ
298#ifdef CONFIG_HAVE_RCU_TABLE_FREE
299
300/*
301 * See the comment near struct mmu_table_batch.
302 */
303
304static void tlb_remove_table_smp_sync(void *arg)
305{
306 /* Simply deliver the interrupt */
307}
308
309static void tlb_remove_table_one(void *table)
310{
311 /*
312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed.
314 *
315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch.
317 */
318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 __tlb_remove_table(table);
320}
321
322static void tlb_remove_table_rcu(struct rcu_head *head)
323{
324 struct mmu_table_batch *batch;
325 int i;
326
327 batch = container_of(head, struct mmu_table_batch, rcu);
328
329 for (i = 0; i < batch->nr; i++)
330 __tlb_remove_table(batch->tables[i]);
331
332 free_page((unsigned long)batch);
333}
334
335void tlb_table_flush(struct mmu_gather *tlb)
336{
337 struct mmu_table_batch **batch = &tlb->batch;
338
339 if (*batch) {
340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 *batch = NULL;
342 }
343}
344
345void tlb_remove_table(struct mmu_gather *tlb, void *table)
346{
347 struct mmu_table_batch **batch = &tlb->batch;
348
349 tlb->need_flush = 1;
350
351 /*
352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk.
354 */
355 if (atomic_read(&tlb->mm->mm_users) < 2) {
356 __tlb_remove_table(table);
357 return;
358 }
359
360 if (*batch == NULL) {
361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 if (*batch == NULL) {
363 tlb_remove_table_one(table);
364 return;
365 }
366 (*batch)->nr = 0;
367 }
368 (*batch)->tables[(*batch)->nr++] = table;
369 if ((*batch)->nr == MAX_TABLE_BATCH)
370 tlb_table_flush(tlb);
371}
372
9547d01b 373#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 374
1da177e4
LT
375/*
376 * Note: this doesn't free the actual pages themselves. That
377 * has been handled earlier when unmapping all the memory regions.
378 */
9e1b32ca
BH
379static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
380 unsigned long addr)
1da177e4 381{
2f569afd 382 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 383 pmd_clear(pmd);
9e1b32ca 384 pte_free_tlb(tlb, token, addr);
e0da382c 385 tlb->mm->nr_ptes--;
1da177e4
LT
386}
387
e0da382c
HD
388static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
389 unsigned long addr, unsigned long end,
390 unsigned long floor, unsigned long ceiling)
1da177e4
LT
391{
392 pmd_t *pmd;
393 unsigned long next;
e0da382c 394 unsigned long start;
1da177e4 395
e0da382c 396 start = addr;
1da177e4 397 pmd = pmd_offset(pud, addr);
1da177e4
LT
398 do {
399 next = pmd_addr_end(addr, end);
400 if (pmd_none_or_clear_bad(pmd))
401 continue;
9e1b32ca 402 free_pte_range(tlb, pmd, addr);
1da177e4
LT
403 } while (pmd++, addr = next, addr != end);
404
e0da382c
HD
405 start &= PUD_MASK;
406 if (start < floor)
407 return;
408 if (ceiling) {
409 ceiling &= PUD_MASK;
410 if (!ceiling)
411 return;
1da177e4 412 }
e0da382c
HD
413 if (end - 1 > ceiling - 1)
414 return;
415
416 pmd = pmd_offset(pud, start);
417 pud_clear(pud);
9e1b32ca 418 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
419}
420
e0da382c
HD
421static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
422 unsigned long addr, unsigned long end,
423 unsigned long floor, unsigned long ceiling)
1da177e4
LT
424{
425 pud_t *pud;
426 unsigned long next;
e0da382c 427 unsigned long start;
1da177e4 428
e0da382c 429 start = addr;
1da177e4 430 pud = pud_offset(pgd, addr);
1da177e4
LT
431 do {
432 next = pud_addr_end(addr, end);
433 if (pud_none_or_clear_bad(pud))
434 continue;
e0da382c 435 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
436 } while (pud++, addr = next, addr != end);
437
e0da382c
HD
438 start &= PGDIR_MASK;
439 if (start < floor)
440 return;
441 if (ceiling) {
442 ceiling &= PGDIR_MASK;
443 if (!ceiling)
444 return;
1da177e4 445 }
e0da382c
HD
446 if (end - 1 > ceiling - 1)
447 return;
448
449 pud = pud_offset(pgd, start);
450 pgd_clear(pgd);
9e1b32ca 451 pud_free_tlb(tlb, pud, start);
1da177e4
LT
452}
453
454/*
e0da382c
HD
455 * This function frees user-level page tables of a process.
456 *
1da177e4
LT
457 * Must be called with pagetable lock held.
458 */
42b77728 459void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
460 unsigned long addr, unsigned long end,
461 unsigned long floor, unsigned long ceiling)
1da177e4
LT
462{
463 pgd_t *pgd;
464 unsigned long next;
e0da382c
HD
465
466 /*
467 * The next few lines have given us lots of grief...
468 *
469 * Why are we testing PMD* at this top level? Because often
470 * there will be no work to do at all, and we'd prefer not to
471 * go all the way down to the bottom just to discover that.
472 *
473 * Why all these "- 1"s? Because 0 represents both the bottom
474 * of the address space and the top of it (using -1 for the
475 * top wouldn't help much: the masks would do the wrong thing).
476 * The rule is that addr 0 and floor 0 refer to the bottom of
477 * the address space, but end 0 and ceiling 0 refer to the top
478 * Comparisons need to use "end - 1" and "ceiling - 1" (though
479 * that end 0 case should be mythical).
480 *
481 * Wherever addr is brought up or ceiling brought down, we must
482 * be careful to reject "the opposite 0" before it confuses the
483 * subsequent tests. But what about where end is brought down
484 * by PMD_SIZE below? no, end can't go down to 0 there.
485 *
486 * Whereas we round start (addr) and ceiling down, by different
487 * masks at different levels, in order to test whether a table
488 * now has no other vmas using it, so can be freed, we don't
489 * bother to round floor or end up - the tests don't need that.
490 */
1da177e4 491
e0da382c
HD
492 addr &= PMD_MASK;
493 if (addr < floor) {
494 addr += PMD_SIZE;
495 if (!addr)
496 return;
497 }
498 if (ceiling) {
499 ceiling &= PMD_MASK;
500 if (!ceiling)
501 return;
502 }
503 if (end - 1 > ceiling - 1)
504 end -= PMD_SIZE;
505 if (addr > end - 1)
506 return;
507
42b77728 508 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
509 do {
510 next = pgd_addr_end(addr, end);
511 if (pgd_none_or_clear_bad(pgd))
512 continue;
42b77728 513 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 514 } while (pgd++, addr = next, addr != end);
e0da382c
HD
515}
516
42b77728 517void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 518 unsigned long floor, unsigned long ceiling)
e0da382c
HD
519{
520 while (vma) {
521 struct vm_area_struct *next = vma->vm_next;
522 unsigned long addr = vma->vm_start;
523
8f4f8c16 524 /*
25d9e2d1 525 * Hide vma from rmap and truncate_pagecache before freeing
526 * pgtables
8f4f8c16 527 */
5beb4930 528 unlink_anon_vmas(vma);
8f4f8c16
HD
529 unlink_file_vma(vma);
530
9da61aef 531 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 532 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 533 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
534 } else {
535 /*
536 * Optimization: gather nearby vmas into one call down
537 */
538 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 539 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
540 vma = next;
541 next = vma->vm_next;
5beb4930 542 unlink_anon_vmas(vma);
8f4f8c16 543 unlink_file_vma(vma);
3bf5ee95
HD
544 }
545 free_pgd_range(tlb, addr, vma->vm_end,
546 floor, next? next->vm_start: ceiling);
547 }
e0da382c
HD
548 vma = next;
549 }
1da177e4
LT
550}
551
8ac1f832
AA
552int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
553 pmd_t *pmd, unsigned long address)
1da177e4 554{
2f569afd 555 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 556 int wait_split_huge_page;
1bb3630e
HD
557 if (!new)
558 return -ENOMEM;
559
362a61ad
NP
560 /*
561 * Ensure all pte setup (eg. pte page lock and page clearing) are
562 * visible before the pte is made visible to other CPUs by being
563 * put into page tables.
564 *
565 * The other side of the story is the pointer chasing in the page
566 * table walking code (when walking the page table without locking;
567 * ie. most of the time). Fortunately, these data accesses consist
568 * of a chain of data-dependent loads, meaning most CPUs (alpha
569 * being the notable exception) will already guarantee loads are
570 * seen in-order. See the alpha page table accessors for the
571 * smp_read_barrier_depends() barriers in page table walking code.
572 */
573 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
574
c74df32c 575 spin_lock(&mm->page_table_lock);
8ac1f832
AA
576 wait_split_huge_page = 0;
577 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 578 mm->nr_ptes++;
1da177e4 579 pmd_populate(mm, pmd, new);
2f569afd 580 new = NULL;
8ac1f832
AA
581 } else if (unlikely(pmd_trans_splitting(*pmd)))
582 wait_split_huge_page = 1;
c74df32c 583 spin_unlock(&mm->page_table_lock);
2f569afd
MS
584 if (new)
585 pte_free(mm, new);
8ac1f832
AA
586 if (wait_split_huge_page)
587 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 588 return 0;
1da177e4
LT
589}
590
1bb3630e 591int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 592{
1bb3630e
HD
593 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
594 if (!new)
595 return -ENOMEM;
596
362a61ad
NP
597 smp_wmb(); /* See comment in __pte_alloc */
598
1bb3630e 599 spin_lock(&init_mm.page_table_lock);
8ac1f832 600 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 601 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 602 new = NULL;
8ac1f832
AA
603 } else
604 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 605 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
606 if (new)
607 pte_free_kernel(&init_mm, new);
1bb3630e 608 return 0;
1da177e4
LT
609}
610
d559db08
KH
611static inline void init_rss_vec(int *rss)
612{
613 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
614}
615
616static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 617{
d559db08
KH
618 int i;
619
34e55232 620 if (current->mm == mm)
05af2e10 621 sync_mm_rss(mm);
d559db08
KH
622 for (i = 0; i < NR_MM_COUNTERS; i++)
623 if (rss[i])
624 add_mm_counter(mm, i, rss[i]);
ae859762
HD
625}
626
b5810039 627/*
6aab341e
LT
628 * This function is called to print an error when a bad pte
629 * is found. For example, we might have a PFN-mapped pte in
630 * a region that doesn't allow it.
b5810039
NP
631 *
632 * The calling function must still handle the error.
633 */
3dc14741
HD
634static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
635 pte_t pte, struct page *page)
b5810039 636{
3dc14741
HD
637 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
638 pud_t *pud = pud_offset(pgd, addr);
639 pmd_t *pmd = pmd_offset(pud, addr);
640 struct address_space *mapping;
641 pgoff_t index;
d936cf9b
HD
642 static unsigned long resume;
643 static unsigned long nr_shown;
644 static unsigned long nr_unshown;
645
646 /*
647 * Allow a burst of 60 reports, then keep quiet for that minute;
648 * or allow a steady drip of one report per second.
649 */
650 if (nr_shown == 60) {
651 if (time_before(jiffies, resume)) {
652 nr_unshown++;
653 return;
654 }
655 if (nr_unshown) {
1e9e6365
HD
656 printk(KERN_ALERT
657 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
658 nr_unshown);
659 nr_unshown = 0;
660 }
661 nr_shown = 0;
662 }
663 if (nr_shown++ == 0)
664 resume = jiffies + 60 * HZ;
3dc14741
HD
665
666 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
667 index = linear_page_index(vma, addr);
668
1e9e6365
HD
669 printk(KERN_ALERT
670 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
671 current->comm,
672 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
673 if (page)
674 dump_page(page);
1e9e6365 675 printk(KERN_ALERT
3dc14741
HD
676 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
677 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
678 /*
679 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
680 */
681 if (vma->vm_ops)
071361d3
JP
682 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
683 vma->vm_ops->fault);
3dc14741 684 if (vma->vm_file && vma->vm_file->f_op)
071361d3
JP
685 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
686 vma->vm_file->f_op->mmap);
b5810039 687 dump_stack();
373d4d09 688 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
689}
690
2ec74c3e 691static inline bool is_cow_mapping(vm_flags_t flags)
67121172
LT
692{
693 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
694}
695
ee498ed7 696/*
7e675137 697 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 698 *
7e675137
NP
699 * "Special" mappings do not wish to be associated with a "struct page" (either
700 * it doesn't exist, or it exists but they don't want to touch it). In this
701 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 702 *
7e675137
NP
703 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704 * pte bit, in which case this function is trivial. Secondly, an architecture
705 * may not have a spare pte bit, which requires a more complicated scheme,
706 * described below.
707 *
708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709 * special mapping (even if there are underlying and valid "struct pages").
710 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 711 *
b379d790
JH
712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715 * mapping will always honor the rule
6aab341e
LT
716 *
717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718 *
7e675137
NP
719 * And for normal mappings this is false.
720 *
721 * This restricts such mappings to be a linear translation from virtual address
722 * to pfn. To get around this restriction, we allow arbitrary mappings so long
723 * as the vma is not a COW mapping; in that case, we know that all ptes are
724 * special (because none can have been COWed).
b379d790 725 *
b379d790 726 *
7e675137 727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
728 *
729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730 * page" backing, however the difference is that _all_ pages with a struct
731 * page (that is, those where pfn_valid is true) are refcounted and considered
732 * normal pages by the VM. The disadvantage is that pages are refcounted
733 * (which can be slower and simply not an option for some PFNMAP users). The
734 * advantage is that we don't have to follow the strict linearity rule of
735 * PFNMAP mappings in order to support COWable mappings.
736 *
ee498ed7 737 */
7e675137
NP
738#ifdef __HAVE_ARCH_PTE_SPECIAL
739# define HAVE_PTE_SPECIAL 1
740#else
741# define HAVE_PTE_SPECIAL 0
742#endif
743struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744 pte_t pte)
ee498ed7 745{
22b31eec 746 unsigned long pfn = pte_pfn(pte);
7e675137
NP
747
748 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
749 if (likely(!pte_special(pte)))
750 goto check_pfn;
a13ea5b7
HD
751 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752 return NULL;
62eede62 753 if (!is_zero_pfn(pfn))
22b31eec 754 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
755 return NULL;
756 }
757
758 /* !HAVE_PTE_SPECIAL case follows: */
759
b379d790
JH
760 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761 if (vma->vm_flags & VM_MIXEDMAP) {
762 if (!pfn_valid(pfn))
763 return NULL;
764 goto out;
765 } else {
7e675137
NP
766 unsigned long off;
767 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
768 if (pfn == vma->vm_pgoff + off)
769 return NULL;
770 if (!is_cow_mapping(vma->vm_flags))
771 return NULL;
772 }
6aab341e
LT
773 }
774
62eede62
HD
775 if (is_zero_pfn(pfn))
776 return NULL;
22b31eec
HD
777check_pfn:
778 if (unlikely(pfn > highest_memmap_pfn)) {
779 print_bad_pte(vma, addr, pte, NULL);
780 return NULL;
781 }
6aab341e
LT
782
783 /*
7e675137 784 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 785 * eg. VDSO mappings can cause them to exist.
6aab341e 786 */
b379d790 787out:
6aab341e 788 return pfn_to_page(pfn);
ee498ed7
HD
789}
790
1da177e4
LT
791/*
792 * copy one vm_area from one task to the other. Assumes the page tables
793 * already present in the new task to be cleared in the whole range
794 * covered by this vma.
1da177e4
LT
795 */
796
570a335b 797static inline unsigned long
1da177e4 798copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 799 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 800 unsigned long addr, int *rss)
1da177e4 801{
b5810039 802 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
803 pte_t pte = *src_pte;
804 struct page *page;
1da177e4
LT
805
806 /* pte contains position in swap or file, so copy. */
807 if (unlikely(!pte_present(pte))) {
808 if (!pte_file(pte)) {
0697212a
CL
809 swp_entry_t entry = pte_to_swp_entry(pte);
810
570a335b
HD
811 if (swap_duplicate(entry) < 0)
812 return entry.val;
813
1da177e4
LT
814 /* make sure dst_mm is on swapoff's mmlist. */
815 if (unlikely(list_empty(&dst_mm->mmlist))) {
816 spin_lock(&mmlist_lock);
f412ac08
HD
817 if (list_empty(&dst_mm->mmlist))
818 list_add(&dst_mm->mmlist,
819 &src_mm->mmlist);
1da177e4
LT
820 spin_unlock(&mmlist_lock);
821 }
b084d435
KH
822 if (likely(!non_swap_entry(entry)))
823 rss[MM_SWAPENTS]++;
9f9f1acd
KK
824 else if (is_migration_entry(entry)) {
825 page = migration_entry_to_page(entry);
826
827 if (PageAnon(page))
828 rss[MM_ANONPAGES]++;
829 else
830 rss[MM_FILEPAGES]++;
831
832 if (is_write_migration_entry(entry) &&
833 is_cow_mapping(vm_flags)) {
834 /*
835 * COW mappings require pages in both
836 * parent and child to be set to read.
837 */
838 make_migration_entry_read(&entry);
839 pte = swp_entry_to_pte(entry);
c3d16e16
CG
840 if (pte_swp_soft_dirty(*src_pte))
841 pte = pte_swp_mksoft_dirty(pte);
9f9f1acd
KK
842 set_pte_at(src_mm, addr, src_pte, pte);
843 }
0697212a 844 }
1da177e4 845 }
ae859762 846 goto out_set_pte;
1da177e4
LT
847 }
848
1da177e4
LT
849 /*
850 * If it's a COW mapping, write protect it both
851 * in the parent and the child
852 */
67121172 853 if (is_cow_mapping(vm_flags)) {
1da177e4 854 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 855 pte = pte_wrprotect(pte);
1da177e4
LT
856 }
857
858 /*
859 * If it's a shared mapping, mark it clean in
860 * the child
861 */
862 if (vm_flags & VM_SHARED)
863 pte = pte_mkclean(pte);
864 pte = pte_mkold(pte);
6aab341e
LT
865
866 page = vm_normal_page(vma, addr, pte);
867 if (page) {
868 get_page(page);
21333b2b 869 page_dup_rmap(page);
d559db08
KH
870 if (PageAnon(page))
871 rss[MM_ANONPAGES]++;
872 else
873 rss[MM_FILEPAGES]++;
6aab341e 874 }
ae859762
HD
875
876out_set_pte:
877 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 878 return 0;
1da177e4
LT
879}
880
71e3aac0
AA
881int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
883 unsigned long addr, unsigned long end)
1da177e4 884{
c36987e2 885 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 886 pte_t *src_pte, *dst_pte;
c74df32c 887 spinlock_t *src_ptl, *dst_ptl;
e040f218 888 int progress = 0;
d559db08 889 int rss[NR_MM_COUNTERS];
570a335b 890 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
891
892again:
d559db08
KH
893 init_rss_vec(rss);
894
c74df32c 895 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
896 if (!dst_pte)
897 return -ENOMEM;
ece0e2b6 898 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 899 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 900 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
901 orig_src_pte = src_pte;
902 orig_dst_pte = dst_pte;
6606c3e0 903 arch_enter_lazy_mmu_mode();
1da177e4 904
1da177e4
LT
905 do {
906 /*
907 * We are holding two locks at this point - either of them
908 * could generate latencies in another task on another CPU.
909 */
e040f218
HD
910 if (progress >= 32) {
911 progress = 0;
912 if (need_resched() ||
95c354fe 913 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
914 break;
915 }
1da177e4
LT
916 if (pte_none(*src_pte)) {
917 progress++;
918 continue;
919 }
570a335b
HD
920 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
921 vma, addr, rss);
922 if (entry.val)
923 break;
1da177e4
LT
924 progress += 8;
925 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 926
6606c3e0 927 arch_leave_lazy_mmu_mode();
c74df32c 928 spin_unlock(src_ptl);
ece0e2b6 929 pte_unmap(orig_src_pte);
d559db08 930 add_mm_rss_vec(dst_mm, rss);
c36987e2 931 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 932 cond_resched();
570a335b
HD
933
934 if (entry.val) {
935 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
936 return -ENOMEM;
937 progress = 0;
938 }
1da177e4
LT
939 if (addr != end)
940 goto again;
941 return 0;
942}
943
944static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
946 unsigned long addr, unsigned long end)
947{
948 pmd_t *src_pmd, *dst_pmd;
949 unsigned long next;
950
951 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
952 if (!dst_pmd)
953 return -ENOMEM;
954 src_pmd = pmd_offset(src_pud, addr);
955 do {
956 next = pmd_addr_end(addr, end);
71e3aac0
AA
957 if (pmd_trans_huge(*src_pmd)) {
958 int err;
14d1a55c 959 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
960 err = copy_huge_pmd(dst_mm, src_mm,
961 dst_pmd, src_pmd, addr, vma);
962 if (err == -ENOMEM)
963 return -ENOMEM;
964 if (!err)
965 continue;
966 /* fall through */
967 }
1da177e4
LT
968 if (pmd_none_or_clear_bad(src_pmd))
969 continue;
970 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
971 vma, addr, next))
972 return -ENOMEM;
973 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
974 return 0;
975}
976
977static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
979 unsigned long addr, unsigned long end)
980{
981 pud_t *src_pud, *dst_pud;
982 unsigned long next;
983
984 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
985 if (!dst_pud)
986 return -ENOMEM;
987 src_pud = pud_offset(src_pgd, addr);
988 do {
989 next = pud_addr_end(addr, end);
990 if (pud_none_or_clear_bad(src_pud))
991 continue;
992 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
993 vma, addr, next))
994 return -ENOMEM;
995 } while (dst_pud++, src_pud++, addr = next, addr != end);
996 return 0;
997}
998
999int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 struct vm_area_struct *vma)
1001{
1002 pgd_t *src_pgd, *dst_pgd;
1003 unsigned long next;
1004 unsigned long addr = vma->vm_start;
1005 unsigned long end = vma->vm_end;
2ec74c3e
SG
1006 unsigned long mmun_start; /* For mmu_notifiers */
1007 unsigned long mmun_end; /* For mmu_notifiers */
1008 bool is_cow;
cddb8a5c 1009 int ret;
1da177e4 1010
d992895b
NP
1011 /*
1012 * Don't copy ptes where a page fault will fill them correctly.
1013 * Fork becomes much lighter when there are big shared or private
1014 * readonly mappings. The tradeoff is that copy_page_range is more
1015 * efficient than faulting.
1016 */
4b6e1e37
KK
1017 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1018 VM_PFNMAP | VM_MIXEDMAP))) {
d992895b
NP
1019 if (!vma->anon_vma)
1020 return 0;
1021 }
1022
1da177e4
LT
1023 if (is_vm_hugetlb_page(vma))
1024 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1025
b3b9c293 1026 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1027 /*
1028 * We do not free on error cases below as remove_vma
1029 * gets called on error from higher level routine
1030 */
5180da41 1031 ret = track_pfn_copy(vma);
2ab64037 1032 if (ret)
1033 return ret;
1034 }
1035
cddb8a5c
AA
1036 /*
1037 * We need to invalidate the secondary MMU mappings only when
1038 * there could be a permission downgrade on the ptes of the
1039 * parent mm. And a permission downgrade will only happen if
1040 * is_cow_mapping() returns true.
1041 */
2ec74c3e
SG
1042 is_cow = is_cow_mapping(vma->vm_flags);
1043 mmun_start = addr;
1044 mmun_end = end;
1045 if (is_cow)
1046 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1047 mmun_end);
cddb8a5c
AA
1048
1049 ret = 0;
1da177e4
LT
1050 dst_pgd = pgd_offset(dst_mm, addr);
1051 src_pgd = pgd_offset(src_mm, addr);
1052 do {
1053 next = pgd_addr_end(addr, end);
1054 if (pgd_none_or_clear_bad(src_pgd))
1055 continue;
cddb8a5c
AA
1056 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1057 vma, addr, next))) {
1058 ret = -ENOMEM;
1059 break;
1060 }
1da177e4 1061 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1062
2ec74c3e
SG
1063 if (is_cow)
1064 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1065 return ret;
1da177e4
LT
1066}
1067
51c6f666 1068static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1069 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1070 unsigned long addr, unsigned long end,
97a89413 1071 struct zap_details *details)
1da177e4 1072{
b5810039 1073 struct mm_struct *mm = tlb->mm;
d16dfc55 1074 int force_flush = 0;
d559db08 1075 int rss[NR_MM_COUNTERS];
97a89413 1076 spinlock_t *ptl;
5f1a1907 1077 pte_t *start_pte;
97a89413 1078 pte_t *pte;
d559db08 1079
d16dfc55 1080again:
e303297e 1081 init_rss_vec(rss);
5f1a1907
SR
1082 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1083 pte = start_pte;
6606c3e0 1084 arch_enter_lazy_mmu_mode();
1da177e4
LT
1085 do {
1086 pte_t ptent = *pte;
51c6f666 1087 if (pte_none(ptent)) {
1da177e4 1088 continue;
51c6f666 1089 }
6f5e6b9e 1090
1da177e4 1091 if (pte_present(ptent)) {
ee498ed7 1092 struct page *page;
51c6f666 1093
6aab341e 1094 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1095 if (unlikely(details) && page) {
1096 /*
1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages.
1100 */
1101 if (details->check_mapping &&
1102 details->check_mapping != page->mapping)
1103 continue;
1104 /*
1105 * Each page->index must be checked when
1106 * invalidating or truncating nonlinear.
1107 */
1108 if (details->nonlinear_vma &&
1109 (page->index < details->first_index ||
1110 page->index > details->last_index))
1111 continue;
1112 }
b5810039 1113 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1114 tlb->fullmm);
1da177e4
LT
1115 tlb_remove_tlb_entry(tlb, pte, addr);
1116 if (unlikely(!page))
1117 continue;
1118 if (unlikely(details) && details->nonlinear_vma
1119 && linear_page_index(details->nonlinear_vma,
41bb3476
CG
1120 addr) != page->index) {
1121 pte_t ptfile = pgoff_to_pte(page->index);
1122 if (pte_soft_dirty(ptent))
1123 pte_file_mksoft_dirty(ptfile);
1124 set_pte_at(mm, addr, pte, ptfile);
1125 }
1da177e4 1126 if (PageAnon(page))
d559db08 1127 rss[MM_ANONPAGES]--;
6237bcd9
HD
1128 else {
1129 if (pte_dirty(ptent))
1130 set_page_dirty(page);
4917e5d0 1131 if (pte_young(ptent) &&
64363aad 1132 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1133 mark_page_accessed(page);
d559db08 1134 rss[MM_FILEPAGES]--;
6237bcd9 1135 }
edc315fd 1136 page_remove_rmap(page);
3dc14741
HD
1137 if (unlikely(page_mapcount(page) < 0))
1138 print_bad_pte(vma, addr, ptent, page);
d16dfc55
PZ
1139 force_flush = !__tlb_remove_page(tlb, page);
1140 if (force_flush)
1141 break;
1da177e4
LT
1142 continue;
1143 }
1144 /*
1145 * If details->check_mapping, we leave swap entries;
1146 * if details->nonlinear_vma, we leave file entries.
1147 */
1148 if (unlikely(details))
1149 continue;
2509ef26
HD
1150 if (pte_file(ptent)) {
1151 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1152 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1153 } else {
1154 swp_entry_t entry = pte_to_swp_entry(ptent);
1155
1156 if (!non_swap_entry(entry))
1157 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1158 else if (is_migration_entry(entry)) {
1159 struct page *page;
1160
1161 page = migration_entry_to_page(entry);
1162
1163 if (PageAnon(page))
1164 rss[MM_ANONPAGES]--;
1165 else
1166 rss[MM_FILEPAGES]--;
1167 }
b084d435
KH
1168 if (unlikely(!free_swap_and_cache(entry)))
1169 print_bad_pte(vma, addr, ptent, NULL);
1170 }
9888a1ca 1171 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1172 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1173
d559db08 1174 add_mm_rss_vec(mm, rss);
6606c3e0 1175 arch_leave_lazy_mmu_mode();
5f1a1907 1176 pte_unmap_unlock(start_pte, ptl);
51c6f666 1177
d16dfc55
PZ
1178 /*
1179 * mmu_gather ran out of room to batch pages, we break out of
1180 * the PTE lock to avoid doing the potential expensive TLB invalidate
1181 * and page-free while holding it.
1182 */
1183 if (force_flush) {
2b047252
LT
1184 unsigned long old_end;
1185
d16dfc55 1186 force_flush = 0;
597e1c35 1187
2b047252
LT
1188 /*
1189 * Flush the TLB just for the previous segment,
1190 * then update the range to be the remaining
1191 * TLB range.
1192 */
1193 old_end = tlb->end;
e6c495a9 1194 tlb->end = addr;
2b047252 1195
d16dfc55 1196 tlb_flush_mmu(tlb);
2b047252
LT
1197
1198 tlb->start = addr;
1199 tlb->end = old_end;
1200
1201 if (addr != end)
d16dfc55
PZ
1202 goto again;
1203 }
1204
51c6f666 1205 return addr;
1da177e4
LT
1206}
1207
51c6f666 1208static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1209 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1210 unsigned long addr, unsigned long end,
97a89413 1211 struct zap_details *details)
1da177e4
LT
1212{
1213 pmd_t *pmd;
1214 unsigned long next;
1215
1216 pmd = pmd_offset(pud, addr);
1217 do {
1218 next = pmd_addr_end(addr, end);
71e3aac0 1219 if (pmd_trans_huge(*pmd)) {
1a5a9906 1220 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1221#ifdef CONFIG_DEBUG_VM
1222 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1223 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1224 __func__, addr, end,
1225 vma->vm_start,
1226 vma->vm_end);
1227 BUG();
1228 }
1229#endif
e180377f 1230 split_huge_page_pmd(vma, addr, pmd);
f21760b1 1231 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1232 goto next;
71e3aac0
AA
1233 /* fall through */
1234 }
1a5a9906
AA
1235 /*
1236 * Here there can be other concurrent MADV_DONTNEED or
1237 * trans huge page faults running, and if the pmd is
1238 * none or trans huge it can change under us. This is
1239 * because MADV_DONTNEED holds the mmap_sem in read
1240 * mode.
1241 */
1242 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1243 goto next;
97a89413 1244 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1245next:
97a89413
PZ
1246 cond_resched();
1247 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1248
1249 return addr;
1da177e4
LT
1250}
1251
51c6f666 1252static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1253 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1254 unsigned long addr, unsigned long end,
97a89413 1255 struct zap_details *details)
1da177e4
LT
1256{
1257 pud_t *pud;
1258 unsigned long next;
1259
1260 pud = pud_offset(pgd, addr);
1261 do {
1262 next = pud_addr_end(addr, end);
97a89413 1263 if (pud_none_or_clear_bad(pud))
1da177e4 1264 continue;
97a89413
PZ
1265 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1266 } while (pud++, addr = next, addr != end);
51c6f666
RH
1267
1268 return addr;
1da177e4
LT
1269}
1270
038c7aa1
AV
1271static void unmap_page_range(struct mmu_gather *tlb,
1272 struct vm_area_struct *vma,
1273 unsigned long addr, unsigned long end,
1274 struct zap_details *details)
1da177e4
LT
1275{
1276 pgd_t *pgd;
1277 unsigned long next;
1278
1279 if (details && !details->check_mapping && !details->nonlinear_vma)
1280 details = NULL;
1281
1282 BUG_ON(addr >= end);
569b846d 1283 mem_cgroup_uncharge_start();
1da177e4
LT
1284 tlb_start_vma(tlb, vma);
1285 pgd = pgd_offset(vma->vm_mm, addr);
1286 do {
1287 next = pgd_addr_end(addr, end);
97a89413 1288 if (pgd_none_or_clear_bad(pgd))
1da177e4 1289 continue;
97a89413
PZ
1290 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1291 } while (pgd++, addr = next, addr != end);
1da177e4 1292 tlb_end_vma(tlb, vma);
569b846d 1293 mem_cgroup_uncharge_end();
1da177e4 1294}
51c6f666 1295
f5cc4eef
AV
1296
1297static void unmap_single_vma(struct mmu_gather *tlb,
1298 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1299 unsigned long end_addr,
f5cc4eef
AV
1300 struct zap_details *details)
1301{
1302 unsigned long start = max(vma->vm_start, start_addr);
1303 unsigned long end;
1304
1305 if (start >= vma->vm_end)
1306 return;
1307 end = min(vma->vm_end, end_addr);
1308 if (end <= vma->vm_start)
1309 return;
1310
cbc91f71
SD
1311 if (vma->vm_file)
1312 uprobe_munmap(vma, start, end);
1313
b3b9c293 1314 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1315 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1316
1317 if (start != end) {
1318 if (unlikely(is_vm_hugetlb_page(vma))) {
1319 /*
1320 * It is undesirable to test vma->vm_file as it
1321 * should be non-null for valid hugetlb area.
1322 * However, vm_file will be NULL in the error
1323 * cleanup path of do_mmap_pgoff. When
1324 * hugetlbfs ->mmap method fails,
1325 * do_mmap_pgoff() nullifies vma->vm_file
1326 * before calling this function to clean up.
1327 * Since no pte has actually been setup, it is
1328 * safe to do nothing in this case.
1329 */
24669e58
AK
1330 if (vma->vm_file) {
1331 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
d833352a 1332 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
24669e58
AK
1333 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1334 }
f5cc4eef
AV
1335 } else
1336 unmap_page_range(tlb, vma, start, end, details);
1337 }
1da177e4
LT
1338}
1339
1da177e4
LT
1340/**
1341 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1342 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1343 * @vma: the starting vma
1344 * @start_addr: virtual address at which to start unmapping
1345 * @end_addr: virtual address at which to end unmapping
1da177e4 1346 *
508034a3 1347 * Unmap all pages in the vma list.
1da177e4 1348 *
1da177e4
LT
1349 * Only addresses between `start' and `end' will be unmapped.
1350 *
1351 * The VMA list must be sorted in ascending virtual address order.
1352 *
1353 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1354 * range after unmap_vmas() returns. So the only responsibility here is to
1355 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1356 * drops the lock and schedules.
1357 */
6e8bb019 1358void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1359 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1360 unsigned long end_addr)
1da177e4 1361{
cddb8a5c 1362 struct mm_struct *mm = vma->vm_mm;
1da177e4 1363
cddb8a5c 1364 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1365 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1366 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1367 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1368}
1369
1370/**
1371 * zap_page_range - remove user pages in a given range
1372 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1373 * @start: starting address of pages to zap
1da177e4
LT
1374 * @size: number of bytes to zap
1375 * @details: details of nonlinear truncation or shared cache invalidation
f5cc4eef
AV
1376 *
1377 * Caller must protect the VMA list
1da177e4 1378 */
7e027b14 1379void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1380 unsigned long size, struct zap_details *details)
1381{
1382 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1383 struct mmu_gather tlb;
7e027b14 1384 unsigned long end = start + size;
1da177e4 1385
1da177e4 1386 lru_add_drain();
2b047252 1387 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1388 update_hiwater_rss(mm);
7e027b14
LT
1389 mmu_notifier_invalidate_range_start(mm, start, end);
1390 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1391 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1392 mmu_notifier_invalidate_range_end(mm, start, end);
1393 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1394}
1395
f5cc4eef
AV
1396/**
1397 * zap_page_range_single - remove user pages in a given range
1398 * @vma: vm_area_struct holding the applicable pages
1399 * @address: starting address of pages to zap
1400 * @size: number of bytes to zap
1401 * @details: details of nonlinear truncation or shared cache invalidation
1402 *
1403 * The range must fit into one VMA.
1da177e4 1404 */
f5cc4eef 1405static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1406 unsigned long size, struct zap_details *details)
1407{
1408 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1409 struct mmu_gather tlb;
1da177e4 1410 unsigned long end = address + size;
1da177e4 1411
1da177e4 1412 lru_add_drain();
2b047252 1413 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1414 update_hiwater_rss(mm);
f5cc4eef 1415 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1416 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1417 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1418 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1419}
1420
c627f9cc
JS
1421/**
1422 * zap_vma_ptes - remove ptes mapping the vma
1423 * @vma: vm_area_struct holding ptes to be zapped
1424 * @address: starting address of pages to zap
1425 * @size: number of bytes to zap
1426 *
1427 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1428 *
1429 * The entire address range must be fully contained within the vma.
1430 *
1431 * Returns 0 if successful.
1432 */
1433int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1434 unsigned long size)
1435{
1436 if (address < vma->vm_start || address + size > vma->vm_end ||
1437 !(vma->vm_flags & VM_PFNMAP))
1438 return -1;
f5cc4eef 1439 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1440 return 0;
1441}
1442EXPORT_SYMBOL_GPL(zap_vma_ptes);
1443
142762bd 1444/**
240aadee 1445 * follow_page_mask - look up a page descriptor from a user-virtual address
142762bd
JW
1446 * @vma: vm_area_struct mapping @address
1447 * @address: virtual address to look up
1448 * @flags: flags modifying lookup behaviour
240aadee 1449 * @page_mask: on output, *page_mask is set according to the size of the page
142762bd
JW
1450 *
1451 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1452 *
1453 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1454 * an error pointer if there is a mapping to something not represented
1455 * by a page descriptor (see also vm_normal_page()).
1da177e4 1456 */
240aadee
ML
1457struct page *follow_page_mask(struct vm_area_struct *vma,
1458 unsigned long address, unsigned int flags,
1459 unsigned int *page_mask)
1da177e4
LT
1460{
1461 pgd_t *pgd;
1462 pud_t *pud;
1463 pmd_t *pmd;
1464 pte_t *ptep, pte;
deceb6cd 1465 spinlock_t *ptl;
1da177e4 1466 struct page *page;
6aab341e 1467 struct mm_struct *mm = vma->vm_mm;
1da177e4 1468
240aadee
ML
1469 *page_mask = 0;
1470
deceb6cd
HD
1471 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472 if (!IS_ERR(page)) {
1473 BUG_ON(flags & FOLL_GET);
1474 goto out;
1475 }
1da177e4 1476
deceb6cd 1477 page = NULL;
1da177e4
LT
1478 pgd = pgd_offset(mm, address);
1479 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1480 goto no_page_table;
1da177e4
LT
1481
1482 pud = pud_offset(pgd, address);
ceb86879 1483 if (pud_none(*pud))
deceb6cd 1484 goto no_page_table;
8a07651e 1485 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
e632a938
NH
1486 if (flags & FOLL_GET)
1487 goto out;
ceb86879
AK
1488 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1489 goto out;
1490 }
1491 if (unlikely(pud_bad(*pud)))
1492 goto no_page_table;
1493
1da177e4 1494 pmd = pmd_offset(pud, address);
aeed5fce 1495 if (pmd_none(*pmd))
deceb6cd 1496 goto no_page_table;
71e3aac0 1497 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd 1498 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
e632a938
NH
1499 if (flags & FOLL_GET) {
1500 /*
1501 * Refcount on tail pages are not well-defined and
1502 * shouldn't be taken. The caller should handle a NULL
1503 * return when trying to follow tail pages.
1504 */
1505 if (PageHead(page))
1506 get_page(page);
1507 else {
1508 page = NULL;
1509 goto out;
1510 }
1511 }
1da177e4 1512 goto out;
deceb6cd 1513 }
0b9d7052
AA
1514 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1515 goto no_page_table;
71e3aac0 1516 if (pmd_trans_huge(*pmd)) {
500d65d4 1517 if (flags & FOLL_SPLIT) {
e180377f 1518 split_huge_page_pmd(vma, address, pmd);
500d65d4
AA
1519 goto split_fallthrough;
1520 }
71e3aac0
AA
1521 spin_lock(&mm->page_table_lock);
1522 if (likely(pmd_trans_huge(*pmd))) {
1523 if (unlikely(pmd_trans_splitting(*pmd))) {
1524 spin_unlock(&mm->page_table_lock);
1525 wait_split_huge_page(vma->anon_vma, pmd);
1526 } else {
b676b293 1527 page = follow_trans_huge_pmd(vma, address,
71e3aac0
AA
1528 pmd, flags);
1529 spin_unlock(&mm->page_table_lock);
240aadee 1530 *page_mask = HPAGE_PMD_NR - 1;
71e3aac0
AA
1531 goto out;
1532 }
1533 } else
1534 spin_unlock(&mm->page_table_lock);
1535 /* fall through */
1536 }
500d65d4 1537split_fallthrough:
aeed5fce
HD
1538 if (unlikely(pmd_bad(*pmd)))
1539 goto no_page_table;
1540
deceb6cd 1541 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1542
1543 pte = *ptep;
5117b3b8
HD
1544 if (!pte_present(pte)) {
1545 swp_entry_t entry;
1546 /*
1547 * KSM's break_ksm() relies upon recognizing a ksm page
1548 * even while it is being migrated, so for that case we
1549 * need migration_entry_wait().
1550 */
1551 if (likely(!(flags & FOLL_MIGRATION)))
1552 goto no_page;
1553 if (pte_none(pte) || pte_file(pte))
1554 goto no_page;
1555 entry = pte_to_swp_entry(pte);
1556 if (!is_migration_entry(entry))
1557 goto no_page;
1558 pte_unmap_unlock(ptep, ptl);
1559 migration_entry_wait(mm, pmd, address);
1560 goto split_fallthrough;
1561 }
0b9d7052
AA
1562 if ((flags & FOLL_NUMA) && pte_numa(pte))
1563 goto no_page;
deceb6cd
HD
1564 if ((flags & FOLL_WRITE) && !pte_write(pte))
1565 goto unlock;
a13ea5b7 1566
6aab341e 1567 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1568 if (unlikely(!page)) {
1569 if ((flags & FOLL_DUMP) ||
62eede62 1570 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1571 goto bad_page;
1572 page = pte_page(pte);
1573 }
1da177e4 1574
deceb6cd 1575 if (flags & FOLL_GET)
70b50f94 1576 get_page_foll(page);
deceb6cd
HD
1577 if (flags & FOLL_TOUCH) {
1578 if ((flags & FOLL_WRITE) &&
1579 !pte_dirty(pte) && !PageDirty(page))
1580 set_page_dirty(page);
bd775c42
KM
1581 /*
1582 * pte_mkyoung() would be more correct here, but atomic care
1583 * is needed to avoid losing the dirty bit: it is easier to use
1584 * mark_page_accessed().
1585 */
deceb6cd
HD
1586 mark_page_accessed(page);
1587 }
a1fde08c 1588 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
110d74a9
ML
1589 /*
1590 * The preliminary mapping check is mainly to avoid the
1591 * pointless overhead of lock_page on the ZERO_PAGE
1592 * which might bounce very badly if there is contention.
1593 *
1594 * If the page is already locked, we don't need to
1595 * handle it now - vmscan will handle it later if and
1596 * when it attempts to reclaim the page.
1597 */
1598 if (page->mapping && trylock_page(page)) {
1599 lru_add_drain(); /* push cached pages to LRU */
1600 /*
e6c509f8
HD
1601 * Because we lock page here, and migration is
1602 * blocked by the pte's page reference, and we
1603 * know the page is still mapped, we don't even
1604 * need to check for file-cache page truncation.
110d74a9 1605 */
e6c509f8 1606 mlock_vma_page(page);
110d74a9
ML
1607 unlock_page(page);
1608 }
1609 }
deceb6cd
HD
1610unlock:
1611 pte_unmap_unlock(ptep, ptl);
1da177e4 1612out:
deceb6cd 1613 return page;
1da177e4 1614
89f5b7da
LT
1615bad_page:
1616 pte_unmap_unlock(ptep, ptl);
1617 return ERR_PTR(-EFAULT);
1618
1619no_page:
1620 pte_unmap_unlock(ptep, ptl);
1621 if (!pte_none(pte))
1622 return page;
8e4b9a60 1623
deceb6cd
HD
1624no_page_table:
1625 /*
1626 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1627 * has touched so far, we don't want to allocate unnecessary pages or
1628 * page tables. Return error instead of NULL to skip handle_mm_fault,
1629 * then get_dump_page() will return NULL to leave a hole in the dump.
1630 * But we can only make this optimization where a hole would surely
1631 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1632 */
8e4b9a60
HD
1633 if ((flags & FOLL_DUMP) &&
1634 (!vma->vm_ops || !vma->vm_ops->fault))
1635 return ERR_PTR(-EFAULT);
deceb6cd 1636 return page;
1da177e4
LT
1637}
1638
95042f9e
LT
1639static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1640{
a09a79f6
MP
1641 return stack_guard_page_start(vma, addr) ||
1642 stack_guard_page_end(vma, addr+PAGE_SIZE);
95042f9e
LT
1643}
1644
0014bd99
HY
1645/**
1646 * __get_user_pages() - pin user pages in memory
1647 * @tsk: task_struct of target task
1648 * @mm: mm_struct of target mm
1649 * @start: starting user address
1650 * @nr_pages: number of pages from start to pin
1651 * @gup_flags: flags modifying pin behaviour
1652 * @pages: array that receives pointers to the pages pinned.
1653 * Should be at least nr_pages long. Or NULL, if caller
1654 * only intends to ensure the pages are faulted in.
1655 * @vmas: array of pointers to vmas corresponding to each page.
1656 * Or NULL if the caller does not require them.
1657 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1658 *
1659 * Returns number of pages pinned. This may be fewer than the number
1660 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1661 * were pinned, returns -errno. Each page returned must be released
1662 * with a put_page() call when it is finished with. vmas will only
1663 * remain valid while mmap_sem is held.
1664 *
1665 * Must be called with mmap_sem held for read or write.
1666 *
1667 * __get_user_pages walks a process's page tables and takes a reference to
1668 * each struct page that each user address corresponds to at a given
1669 * instant. That is, it takes the page that would be accessed if a user
1670 * thread accesses the given user virtual address at that instant.
1671 *
1672 * This does not guarantee that the page exists in the user mappings when
1673 * __get_user_pages returns, and there may even be a completely different
1674 * page there in some cases (eg. if mmapped pagecache has been invalidated
1675 * and subsequently re faulted). However it does guarantee that the page
1676 * won't be freed completely. And mostly callers simply care that the page
1677 * contains data that was valid *at some point in time*. Typically, an IO
1678 * or similar operation cannot guarantee anything stronger anyway because
1679 * locks can't be held over the syscall boundary.
1680 *
1681 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1682 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1683 * appropriate) must be called after the page is finished with, and
1684 * before put_page is called.
1685 *
1686 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1687 * or mmap_sem contention, and if waiting is needed to pin all pages,
1688 * *@nonblocking will be set to 0.
1689 *
1690 * In most cases, get_user_pages or get_user_pages_fast should be used
1691 * instead of __get_user_pages. __get_user_pages should be used only if
1692 * you need some special @gup_flags.
1693 */
28a35716
ML
1694long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1695 unsigned long start, unsigned long nr_pages,
1696 unsigned int gup_flags, struct page **pages,
1697 struct vm_area_struct **vmas, int *nonblocking)
1da177e4 1698{
28a35716 1699 long i;
58fa879e 1700 unsigned long vm_flags;
240aadee 1701 unsigned int page_mask;
1da177e4 1702
28a35716 1703 if (!nr_pages)
900cf086 1704 return 0;
58fa879e
HD
1705
1706 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1707
1da177e4
LT
1708 /*
1709 * Require read or write permissions.
58fa879e 1710 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1711 */
58fa879e
HD
1712 vm_flags = (gup_flags & FOLL_WRITE) ?
1713 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1714 vm_flags &= (gup_flags & FOLL_FORCE) ?
1715 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
0b9d7052
AA
1716
1717 /*
1718 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1719 * would be called on PROT_NONE ranges. We must never invoke
1720 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1721 * page faults would unprotect the PROT_NONE ranges if
1722 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1723 * bitflag. So to avoid that, don't set FOLL_NUMA if
1724 * FOLL_FORCE is set.
1725 */
1726 if (!(gup_flags & FOLL_FORCE))
1727 gup_flags |= FOLL_NUMA;
1728
1da177e4
LT
1729 i = 0;
1730
1731 do {
deceb6cd 1732 struct vm_area_struct *vma;
1da177e4
LT
1733
1734 vma = find_extend_vma(mm, start);
e7f22e20 1735 if (!vma && in_gate_area(mm, start)) {
1da177e4 1736 unsigned long pg = start & PAGE_MASK;
1da177e4
LT
1737 pgd_t *pgd;
1738 pud_t *pud;
1739 pmd_t *pmd;
1740 pte_t *pte;
b291f000
NP
1741
1742 /* user gate pages are read-only */
58fa879e 1743 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1744 return i ? : -EFAULT;
1745 if (pg > TASK_SIZE)
1746 pgd = pgd_offset_k(pg);
1747 else
1748 pgd = pgd_offset_gate(mm, pg);
1749 BUG_ON(pgd_none(*pgd));
1750 pud = pud_offset(pgd, pg);
1751 BUG_ON(pud_none(*pud));
1752 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1753 if (pmd_none(*pmd))
1754 return i ? : -EFAULT;
f66055ab 1755 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1756 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1757 if (pte_none(*pte)) {
1758 pte_unmap(pte);
1759 return i ? : -EFAULT;
1760 }
95042f9e 1761 vma = get_gate_vma(mm);
1da177e4 1762 if (pages) {
de51257a
HD
1763 struct page *page;
1764
95042f9e 1765 page = vm_normal_page(vma, start, *pte);
de51257a
HD
1766 if (!page) {
1767 if (!(gup_flags & FOLL_DUMP) &&
1768 is_zero_pfn(pte_pfn(*pte)))
1769 page = pte_page(*pte);
1770 else {
1771 pte_unmap(pte);
1772 return i ? : -EFAULT;
1773 }
1774 }
6aab341e 1775 pages[i] = page;
de51257a 1776 get_page(page);
1da177e4
LT
1777 }
1778 pte_unmap(pte);
240aadee 1779 page_mask = 0;
95042f9e 1780 goto next_page;
1da177e4
LT
1781 }
1782
b291f000
NP
1783 if (!vma ||
1784 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1785 !(vm_flags & vma->vm_flags))
1da177e4
LT
1786 return i ? : -EFAULT;
1787
2a15efc9
HD
1788 if (is_vm_hugetlb_page(vma)) {
1789 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1790 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1791 continue;
1792 }
deceb6cd 1793
1da177e4 1794 do {
08ef4729 1795 struct page *page;
58fa879e 1796 unsigned int foll_flags = gup_flags;
240aadee 1797 unsigned int page_increm;
1da177e4 1798
462e00cc 1799 /*
4779280d 1800 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1801 * pages and potentially allocating memory.
462e00cc 1802 */
1c3aff1c 1803 if (unlikely(fatal_signal_pending(current)))
4779280d 1804 return i ? i : -ERESTARTSYS;
462e00cc 1805
deceb6cd 1806 cond_resched();
240aadee
ML
1807 while (!(page = follow_page_mask(vma, start,
1808 foll_flags, &page_mask))) {
deceb6cd 1809 int ret;
53a7706d
ML
1810 unsigned int fault_flags = 0;
1811
a09a79f6
MP
1812 /* For mlock, just skip the stack guard page. */
1813 if (foll_flags & FOLL_MLOCK) {
1814 if (stack_guard_page(vma, start))
1815 goto next_page;
1816 }
53a7706d
ML
1817 if (foll_flags & FOLL_WRITE)
1818 fault_flags |= FAULT_FLAG_WRITE;
1819 if (nonblocking)
1820 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1821 if (foll_flags & FOLL_NOWAIT)
1822 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1823
d26ed650 1824 ret = handle_mm_fault(mm, vma, start,
53a7706d 1825 fault_flags);
d26ed650 1826
83c54070
NP
1827 if (ret & VM_FAULT_ERROR) {
1828 if (ret & VM_FAULT_OOM)
1829 return i ? i : -ENOMEM;
69ebb83e
HY
1830 if (ret & (VM_FAULT_HWPOISON |
1831 VM_FAULT_HWPOISON_LARGE)) {
1832 if (i)
1833 return i;
1834 else if (gup_flags & FOLL_HWPOISON)
1835 return -EHWPOISON;
1836 else
1837 return -EFAULT;
1838 }
1839 if (ret & VM_FAULT_SIGBUS)
83c54070
NP
1840 return i ? i : -EFAULT;
1841 BUG();
1842 }
e7f22e20
SW
1843
1844 if (tsk) {
1845 if (ret & VM_FAULT_MAJOR)
1846 tsk->maj_flt++;
1847 else
1848 tsk->min_flt++;
1849 }
83c54070 1850
53a7706d 1851 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1852 if (nonblocking)
1853 *nonblocking = 0;
53a7706d
ML
1854 return i;
1855 }
1856
a68d2ebc 1857 /*
83c54070
NP
1858 * The VM_FAULT_WRITE bit tells us that
1859 * do_wp_page has broken COW when necessary,
1860 * even if maybe_mkwrite decided not to set
1861 * pte_write. We can thus safely do subsequent
878b63ac
HD
1862 * page lookups as if they were reads. But only
1863 * do so when looping for pte_write is futile:
1864 * in some cases userspace may also be wanting
1865 * to write to the gotten user page, which a
1866 * read fault here might prevent (a readonly
1867 * page might get reCOWed by userspace write).
a68d2ebc 1868 */
878b63ac
HD
1869 if ((ret & VM_FAULT_WRITE) &&
1870 !(vma->vm_flags & VM_WRITE))
deceb6cd 1871 foll_flags &= ~FOLL_WRITE;
83c54070 1872
7f7bbbe5 1873 cond_resched();
1da177e4 1874 }
89f5b7da
LT
1875 if (IS_ERR(page))
1876 return i ? i : PTR_ERR(page);
1da177e4 1877 if (pages) {
08ef4729 1878 pages[i] = page;
03beb076 1879
a6f36be3 1880 flush_anon_page(vma, page, start);
08ef4729 1881 flush_dcache_page(page);
240aadee 1882 page_mask = 0;
1da177e4 1883 }
95042f9e 1884next_page:
240aadee 1885 if (vmas) {
1da177e4 1886 vmas[i] = vma;
240aadee
ML
1887 page_mask = 0;
1888 }
1889 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1890 if (page_increm > nr_pages)
1891 page_increm = nr_pages;
1892 i += page_increm;
1893 start += page_increm * PAGE_SIZE;
1894 nr_pages -= page_increm;
9d73777e
PZ
1895 } while (nr_pages && start < vma->vm_end);
1896 } while (nr_pages);
1da177e4
LT
1897 return i;
1898}
0014bd99 1899EXPORT_SYMBOL(__get_user_pages);
b291f000 1900
2efaca92
BH
1901/*
1902 * fixup_user_fault() - manually resolve a user page fault
1903 * @tsk: the task_struct to use for page fault accounting, or
1904 * NULL if faults are not to be recorded.
1905 * @mm: mm_struct of target mm
1906 * @address: user address
1907 * @fault_flags:flags to pass down to handle_mm_fault()
1908 *
1909 * This is meant to be called in the specific scenario where for locking reasons
1910 * we try to access user memory in atomic context (within a pagefault_disable()
1911 * section), this returns -EFAULT, and we want to resolve the user fault before
1912 * trying again.
1913 *
1914 * Typically this is meant to be used by the futex code.
1915 *
1916 * The main difference with get_user_pages() is that this function will
1917 * unconditionally call handle_mm_fault() which will in turn perform all the
1918 * necessary SW fixup of the dirty and young bits in the PTE, while
1919 * handle_mm_fault() only guarantees to update these in the struct page.
1920 *
1921 * This is important for some architectures where those bits also gate the
1922 * access permission to the page because they are maintained in software. On
1923 * such architectures, gup() will not be enough to make a subsequent access
1924 * succeed.
1925 *
1926 * This should be called with the mm_sem held for read.
1927 */
1928int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1929 unsigned long address, unsigned int fault_flags)
1930{
1931 struct vm_area_struct *vma;
1932 int ret;
1933
1934 vma = find_extend_vma(mm, address);
1935 if (!vma || address < vma->vm_start)
1936 return -EFAULT;
1937
1938 ret = handle_mm_fault(mm, vma, address, fault_flags);
1939 if (ret & VM_FAULT_ERROR) {
1940 if (ret & VM_FAULT_OOM)
1941 return -ENOMEM;
1942 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1943 return -EHWPOISON;
1944 if (ret & VM_FAULT_SIGBUS)
1945 return -EFAULT;
1946 BUG();
1947 }
1948 if (tsk) {
1949 if (ret & VM_FAULT_MAJOR)
1950 tsk->maj_flt++;
1951 else
1952 tsk->min_flt++;
1953 }
1954 return 0;
1955}
1956
1957/*
d2bf6be8 1958 * get_user_pages() - pin user pages in memory
e7f22e20
SW
1959 * @tsk: the task_struct to use for page fault accounting, or
1960 * NULL if faults are not to be recorded.
d2bf6be8
NP
1961 * @mm: mm_struct of target mm
1962 * @start: starting user address
9d73777e 1963 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1964 * @write: whether pages will be written to by the caller
1965 * @force: whether to force write access even if user mapping is
1966 * readonly. This will result in the page being COWed even
1967 * in MAP_SHARED mappings. You do not want this.
1968 * @pages: array that receives pointers to the pages pinned.
1969 * Should be at least nr_pages long. Or NULL, if caller
1970 * only intends to ensure the pages are faulted in.
1971 * @vmas: array of pointers to vmas corresponding to each page.
1972 * Or NULL if the caller does not require them.
1973 *
1974 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1975 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1976 * were pinned, returns -errno. Each page returned must be released
1977 * with a put_page() call when it is finished with. vmas will only
1978 * remain valid while mmap_sem is held.
1979 *
1980 * Must be called with mmap_sem held for read or write.
1981 *
1982 * get_user_pages walks a process's page tables and takes a reference to
1983 * each struct page that each user address corresponds to at a given
1984 * instant. That is, it takes the page that would be accessed if a user
1985 * thread accesses the given user virtual address at that instant.
1986 *
1987 * This does not guarantee that the page exists in the user mappings when
1988 * get_user_pages returns, and there may even be a completely different
1989 * page there in some cases (eg. if mmapped pagecache has been invalidated
1990 * and subsequently re faulted). However it does guarantee that the page
1991 * won't be freed completely. And mostly callers simply care that the page
1992 * contains data that was valid *at some point in time*. Typically, an IO
1993 * or similar operation cannot guarantee anything stronger anyway because
1994 * locks can't be held over the syscall boundary.
1995 *
1996 * If write=0, the page must not be written to. If the page is written to,
1997 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1998 * after the page is finished with, and before put_page is called.
1999 *
2000 * get_user_pages is typically used for fewer-copy IO operations, to get a
2001 * handle on the memory by some means other than accesses via the user virtual
2002 * addresses. The pages may be submitted for DMA to devices or accessed via
2003 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2004 * use the correct cache flushing APIs.
2005 *
2006 * See also get_user_pages_fast, for performance critical applications.
2007 */
28a35716
ML
2008long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2009 unsigned long start, unsigned long nr_pages, int write,
2010 int force, struct page **pages, struct vm_area_struct **vmas)
b291f000 2011{
58fa879e 2012 int flags = FOLL_TOUCH;
b291f000 2013
58fa879e
HD
2014 if (pages)
2015 flags |= FOLL_GET;
b291f000 2016 if (write)
58fa879e 2017 flags |= FOLL_WRITE;
b291f000 2018 if (force)
58fa879e 2019 flags |= FOLL_FORCE;
b291f000 2020
53a7706d
ML
2021 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2022 NULL);
b291f000 2023}
1da177e4
LT
2024EXPORT_SYMBOL(get_user_pages);
2025
f3e8fccd
HD
2026/**
2027 * get_dump_page() - pin user page in memory while writing it to core dump
2028 * @addr: user address
2029 *
2030 * Returns struct page pointer of user page pinned for dump,
2031 * to be freed afterwards by page_cache_release() or put_page().
2032 *
2033 * Returns NULL on any kind of failure - a hole must then be inserted into
2034 * the corefile, to preserve alignment with its headers; and also returns
2035 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2036 * allowing a hole to be left in the corefile to save diskspace.
2037 *
2038 * Called without mmap_sem, but after all other threads have been killed.
2039 */
2040#ifdef CONFIG_ELF_CORE
2041struct page *get_dump_page(unsigned long addr)
2042{
2043 struct vm_area_struct *vma;
2044 struct page *page;
2045
2046 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
2047 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2048 NULL) < 1)
f3e8fccd 2049 return NULL;
f3e8fccd
HD
2050 flush_cache_page(vma, addr, page_to_pfn(page));
2051 return page;
2052}
2053#endif /* CONFIG_ELF_CORE */
2054
25ca1d6c 2055pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 2056 spinlock_t **ptl)
c9cfcddf
LT
2057{
2058 pgd_t * pgd = pgd_offset(mm, addr);
2059 pud_t * pud = pud_alloc(mm, pgd, addr);
2060 if (pud) {
49c91fb0 2061 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
2062 if (pmd) {
2063 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 2064 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 2065 }
c9cfcddf
LT
2066 }
2067 return NULL;
2068}
2069
238f58d8
LT
2070/*
2071 * This is the old fallback for page remapping.
2072 *
2073 * For historical reasons, it only allows reserved pages. Only
2074 * old drivers should use this, and they needed to mark their
2075 * pages reserved for the old functions anyway.
2076 */
423bad60
NP
2077static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2078 struct page *page, pgprot_t prot)
238f58d8 2079{
423bad60 2080 struct mm_struct *mm = vma->vm_mm;
238f58d8 2081 int retval;
c9cfcddf 2082 pte_t *pte;
8a9f3ccd
BS
2083 spinlock_t *ptl;
2084
238f58d8 2085 retval = -EINVAL;
a145dd41 2086 if (PageAnon(page))
5b4e655e 2087 goto out;
238f58d8
LT
2088 retval = -ENOMEM;
2089 flush_dcache_page(page);
c9cfcddf 2090 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 2091 if (!pte)
5b4e655e 2092 goto out;
238f58d8
LT
2093 retval = -EBUSY;
2094 if (!pte_none(*pte))
2095 goto out_unlock;
2096
2097 /* Ok, finally just insert the thing.. */
2098 get_page(page);
34e55232 2099 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
2100 page_add_file_rmap(page);
2101 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2102
2103 retval = 0;
8a9f3ccd
BS
2104 pte_unmap_unlock(pte, ptl);
2105 return retval;
238f58d8
LT
2106out_unlock:
2107 pte_unmap_unlock(pte, ptl);
2108out:
2109 return retval;
2110}
2111
bfa5bf6d
REB
2112/**
2113 * vm_insert_page - insert single page into user vma
2114 * @vma: user vma to map to
2115 * @addr: target user address of this page
2116 * @page: source kernel page
2117 *
a145dd41
LT
2118 * This allows drivers to insert individual pages they've allocated
2119 * into a user vma.
2120 *
2121 * The page has to be a nice clean _individual_ kernel allocation.
2122 * If you allocate a compound page, you need to have marked it as
2123 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2124 * (see split_page()).
a145dd41
LT
2125 *
2126 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2127 * took an arbitrary page protection parameter. This doesn't allow
2128 * that. Your vma protection will have to be set up correctly, which
2129 * means that if you want a shared writable mapping, you'd better
2130 * ask for a shared writable mapping!
2131 *
2132 * The page does not need to be reserved.
4b6e1e37
KK
2133 *
2134 * Usually this function is called from f_op->mmap() handler
2135 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2136 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2137 * function from other places, for example from page-fault handler.
a145dd41 2138 */
423bad60
NP
2139int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2140 struct page *page)
a145dd41
LT
2141{
2142 if (addr < vma->vm_start || addr >= vma->vm_end)
2143 return -EFAULT;
2144 if (!page_count(page))
2145 return -EINVAL;
4b6e1e37
KK
2146 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2147 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2148 BUG_ON(vma->vm_flags & VM_PFNMAP);
2149 vma->vm_flags |= VM_MIXEDMAP;
2150 }
423bad60 2151 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2152}
e3c3374f 2153EXPORT_SYMBOL(vm_insert_page);
a145dd41 2154
423bad60
NP
2155static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2156 unsigned long pfn, pgprot_t prot)
2157{
2158 struct mm_struct *mm = vma->vm_mm;
2159 int retval;
2160 pte_t *pte, entry;
2161 spinlock_t *ptl;
2162
2163 retval = -ENOMEM;
2164 pte = get_locked_pte(mm, addr, &ptl);
2165 if (!pte)
2166 goto out;
2167 retval = -EBUSY;
2168 if (!pte_none(*pte))
2169 goto out_unlock;
2170
2171 /* Ok, finally just insert the thing.. */
2172 entry = pte_mkspecial(pfn_pte(pfn, prot));
2173 set_pte_at(mm, addr, pte, entry);
4b3073e1 2174 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
2175
2176 retval = 0;
2177out_unlock:
2178 pte_unmap_unlock(pte, ptl);
2179out:
2180 return retval;
2181}
2182
e0dc0d8f
NP
2183/**
2184 * vm_insert_pfn - insert single pfn into user vma
2185 * @vma: user vma to map to
2186 * @addr: target user address of this page
2187 * @pfn: source kernel pfn
2188 *
c462f179 2189 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
2190 * they've allocated into a user vma. Same comments apply.
2191 *
2192 * This function should only be called from a vm_ops->fault handler, and
2193 * in that case the handler should return NULL.
0d71d10a
NP
2194 *
2195 * vma cannot be a COW mapping.
2196 *
2197 * As this is called only for pages that do not currently exist, we
2198 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
2199 */
2200int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 2201 unsigned long pfn)
e0dc0d8f 2202{
2ab64037 2203 int ret;
e4b866ed 2204 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
2205 /*
2206 * Technically, architectures with pte_special can avoid all these
2207 * restrictions (same for remap_pfn_range). However we would like
2208 * consistency in testing and feature parity among all, so we should
2209 * try to keep these invariants in place for everybody.
2210 */
b379d790
JH
2211 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2212 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2213 (VM_PFNMAP|VM_MIXEDMAP));
2214 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2215 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 2216
423bad60
NP
2217 if (addr < vma->vm_start || addr >= vma->vm_end)
2218 return -EFAULT;
5180da41 2219 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 2220 return -EINVAL;
2221
e4b866ed 2222 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 2223
2ab64037 2224 return ret;
423bad60
NP
2225}
2226EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 2227
423bad60
NP
2228int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2229 unsigned long pfn)
2230{
2231 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 2232
423bad60
NP
2233 if (addr < vma->vm_start || addr >= vma->vm_end)
2234 return -EFAULT;
e0dc0d8f 2235
423bad60
NP
2236 /*
2237 * If we don't have pte special, then we have to use the pfn_valid()
2238 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2239 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2240 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2241 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
2242 */
2243 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2244 struct page *page;
2245
2246 page = pfn_to_page(pfn);
2247 return insert_page(vma, addr, page, vma->vm_page_prot);
2248 }
2249 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 2250}
423bad60 2251EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 2252
1da177e4
LT
2253/*
2254 * maps a range of physical memory into the requested pages. the old
2255 * mappings are removed. any references to nonexistent pages results
2256 * in null mappings (currently treated as "copy-on-access")
2257 */
2258static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2259 unsigned long addr, unsigned long end,
2260 unsigned long pfn, pgprot_t prot)
2261{
2262 pte_t *pte;
c74df32c 2263 spinlock_t *ptl;
1da177e4 2264
c74df32c 2265 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2266 if (!pte)
2267 return -ENOMEM;
6606c3e0 2268 arch_enter_lazy_mmu_mode();
1da177e4
LT
2269 do {
2270 BUG_ON(!pte_none(*pte));
7e675137 2271 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2272 pfn++;
2273 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2274 arch_leave_lazy_mmu_mode();
c74df32c 2275 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
2276 return 0;
2277}
2278
2279static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2280 unsigned long addr, unsigned long end,
2281 unsigned long pfn, pgprot_t prot)
2282{
2283 pmd_t *pmd;
2284 unsigned long next;
2285
2286 pfn -= addr >> PAGE_SHIFT;
2287 pmd = pmd_alloc(mm, pud, addr);
2288 if (!pmd)
2289 return -ENOMEM;
f66055ab 2290 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2291 do {
2292 next = pmd_addr_end(addr, end);
2293 if (remap_pte_range(mm, pmd, addr, next,
2294 pfn + (addr >> PAGE_SHIFT), prot))
2295 return -ENOMEM;
2296 } while (pmd++, addr = next, addr != end);
2297 return 0;
2298}
2299
2300static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2301 unsigned long addr, unsigned long end,
2302 unsigned long pfn, pgprot_t prot)
2303{
2304 pud_t *pud;
2305 unsigned long next;
2306
2307 pfn -= addr >> PAGE_SHIFT;
2308 pud = pud_alloc(mm, pgd, addr);
2309 if (!pud)
2310 return -ENOMEM;
2311 do {
2312 next = pud_addr_end(addr, end);
2313 if (remap_pmd_range(mm, pud, addr, next,
2314 pfn + (addr >> PAGE_SHIFT), prot))
2315 return -ENOMEM;
2316 } while (pud++, addr = next, addr != end);
2317 return 0;
2318}
2319
bfa5bf6d
REB
2320/**
2321 * remap_pfn_range - remap kernel memory to userspace
2322 * @vma: user vma to map to
2323 * @addr: target user address to start at
2324 * @pfn: physical address of kernel memory
2325 * @size: size of map area
2326 * @prot: page protection flags for this mapping
2327 *
2328 * Note: this is only safe if the mm semaphore is held when called.
2329 */
1da177e4
LT
2330int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2331 unsigned long pfn, unsigned long size, pgprot_t prot)
2332{
2333 pgd_t *pgd;
2334 unsigned long next;
2d15cab8 2335 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2336 struct mm_struct *mm = vma->vm_mm;
2337 int err;
2338
2339 /*
2340 * Physically remapped pages are special. Tell the
2341 * rest of the world about it:
2342 * VM_IO tells people not to look at these pages
2343 * (accesses can have side effects).
6aab341e
LT
2344 * VM_PFNMAP tells the core MM that the base pages are just
2345 * raw PFN mappings, and do not have a "struct page" associated
2346 * with them.
314e51b9
KK
2347 * VM_DONTEXPAND
2348 * Disable vma merging and expanding with mremap().
2349 * VM_DONTDUMP
2350 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2351 *
2352 * There's a horrible special case to handle copy-on-write
2353 * behaviour that some programs depend on. We mark the "original"
2354 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2355 * See vm_normal_page() for details.
1da177e4 2356 */
b3b9c293
KK
2357 if (is_cow_mapping(vma->vm_flags)) {
2358 if (addr != vma->vm_start || end != vma->vm_end)
2359 return -EINVAL;
fb155c16 2360 vma->vm_pgoff = pfn;
b3b9c293
KK
2361 }
2362
2363 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2364 if (err)
3c8bb73a 2365 return -EINVAL;
fb155c16 2366
314e51b9 2367 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2368
2369 BUG_ON(addr >= end);
2370 pfn -= addr >> PAGE_SHIFT;
2371 pgd = pgd_offset(mm, addr);
2372 flush_cache_range(vma, addr, end);
1da177e4
LT
2373 do {
2374 next = pgd_addr_end(addr, end);
2375 err = remap_pud_range(mm, pgd, addr, next,
2376 pfn + (addr >> PAGE_SHIFT), prot);
2377 if (err)
2378 break;
2379 } while (pgd++, addr = next, addr != end);
2ab64037 2380
2381 if (err)
5180da41 2382 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 2383
1da177e4
LT
2384 return err;
2385}
2386EXPORT_SYMBOL(remap_pfn_range);
2387
b4cbb197
LT
2388/**
2389 * vm_iomap_memory - remap memory to userspace
2390 * @vma: user vma to map to
2391 * @start: start of area
2392 * @len: size of area
2393 *
2394 * This is a simplified io_remap_pfn_range() for common driver use. The
2395 * driver just needs to give us the physical memory range to be mapped,
2396 * we'll figure out the rest from the vma information.
2397 *
2398 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2399 * whatever write-combining details or similar.
2400 */
2401int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2402{
2403 unsigned long vm_len, pfn, pages;
2404
2405 /* Check that the physical memory area passed in looks valid */
2406 if (start + len < start)
2407 return -EINVAL;
2408 /*
2409 * You *really* shouldn't map things that aren't page-aligned,
2410 * but we've historically allowed it because IO memory might
2411 * just have smaller alignment.
2412 */
2413 len += start & ~PAGE_MASK;
2414 pfn = start >> PAGE_SHIFT;
2415 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2416 if (pfn + pages < pfn)
2417 return -EINVAL;
2418
2419 /* We start the mapping 'vm_pgoff' pages into the area */
2420 if (vma->vm_pgoff > pages)
2421 return -EINVAL;
2422 pfn += vma->vm_pgoff;
2423 pages -= vma->vm_pgoff;
2424
2425 /* Can we fit all of the mapping? */
2426 vm_len = vma->vm_end - vma->vm_start;
2427 if (vm_len >> PAGE_SHIFT > pages)
2428 return -EINVAL;
2429
2430 /* Ok, let it rip */
2431 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2432}
2433EXPORT_SYMBOL(vm_iomap_memory);
2434
aee16b3c
JF
2435static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2436 unsigned long addr, unsigned long end,
2437 pte_fn_t fn, void *data)
2438{
2439 pte_t *pte;
2440 int err;
2f569afd 2441 pgtable_t token;
94909914 2442 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2443
2444 pte = (mm == &init_mm) ?
2445 pte_alloc_kernel(pmd, addr) :
2446 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2447 if (!pte)
2448 return -ENOMEM;
2449
2450 BUG_ON(pmd_huge(*pmd));
2451
38e0edb1
JF
2452 arch_enter_lazy_mmu_mode();
2453
2f569afd 2454 token = pmd_pgtable(*pmd);
aee16b3c
JF
2455
2456 do {
c36987e2 2457 err = fn(pte++, token, addr, data);
aee16b3c
JF
2458 if (err)
2459 break;
c36987e2 2460 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2461
38e0edb1
JF
2462 arch_leave_lazy_mmu_mode();
2463
aee16b3c
JF
2464 if (mm != &init_mm)
2465 pte_unmap_unlock(pte-1, ptl);
2466 return err;
2467}
2468
2469static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2470 unsigned long addr, unsigned long end,
2471 pte_fn_t fn, void *data)
2472{
2473 pmd_t *pmd;
2474 unsigned long next;
2475 int err;
2476
ceb86879
AK
2477 BUG_ON(pud_huge(*pud));
2478
aee16b3c
JF
2479 pmd = pmd_alloc(mm, pud, addr);
2480 if (!pmd)
2481 return -ENOMEM;
2482 do {
2483 next = pmd_addr_end(addr, end);
2484 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2485 if (err)
2486 break;
2487 } while (pmd++, addr = next, addr != end);
2488 return err;
2489}
2490
2491static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2492 unsigned long addr, unsigned long end,
2493 pte_fn_t fn, void *data)
2494{
2495 pud_t *pud;
2496 unsigned long next;
2497 int err;
2498
2499 pud = pud_alloc(mm, pgd, addr);
2500 if (!pud)
2501 return -ENOMEM;
2502 do {
2503 next = pud_addr_end(addr, end);
2504 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2505 if (err)
2506 break;
2507 } while (pud++, addr = next, addr != end);
2508 return err;
2509}
2510
2511/*
2512 * Scan a region of virtual memory, filling in page tables as necessary
2513 * and calling a provided function on each leaf page table.
2514 */
2515int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2516 unsigned long size, pte_fn_t fn, void *data)
2517{
2518 pgd_t *pgd;
2519 unsigned long next;
57250a5b 2520 unsigned long end = addr + size;
aee16b3c
JF
2521 int err;
2522
2523 BUG_ON(addr >= end);
2524 pgd = pgd_offset(mm, addr);
2525 do {
2526 next = pgd_addr_end(addr, end);
2527 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2528 if (err)
2529 break;
2530 } while (pgd++, addr = next, addr != end);
57250a5b 2531
aee16b3c
JF
2532 return err;
2533}
2534EXPORT_SYMBOL_GPL(apply_to_page_range);
2535
8f4e2101
HD
2536/*
2537 * handle_pte_fault chooses page fault handler according to an entry
2538 * which was read non-atomically. Before making any commitment, on
2539 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2540 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2541 * must check under lock before unmapping the pte and proceeding
2542 * (but do_wp_page is only called after already making such a check;
a335b2e1 2543 * and do_anonymous_page can safely check later on).
8f4e2101 2544 */
4c21e2f2 2545static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2546 pte_t *page_table, pte_t orig_pte)
2547{
2548 int same = 1;
2549#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2550 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2551 spinlock_t *ptl = pte_lockptr(mm, pmd);
2552 spin_lock(ptl);
8f4e2101 2553 same = pte_same(*page_table, orig_pte);
4c21e2f2 2554 spin_unlock(ptl);
8f4e2101
HD
2555 }
2556#endif
2557 pte_unmap(page_table);
2558 return same;
2559}
2560
9de455b2 2561static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2562{
2563 /*
2564 * If the source page was a PFN mapping, we don't have
2565 * a "struct page" for it. We do a best-effort copy by
2566 * just copying from the original user address. If that
2567 * fails, we just zero-fill it. Live with it.
2568 */
2569 if (unlikely(!src)) {
9b04c5fe 2570 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2571 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2572
2573 /*
2574 * This really shouldn't fail, because the page is there
2575 * in the page tables. But it might just be unreadable,
2576 * in which case we just give up and fill the result with
2577 * zeroes.
2578 */
2579 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2580 clear_page(kaddr);
9b04c5fe 2581 kunmap_atomic(kaddr);
c4ec7b0d 2582 flush_dcache_page(dst);
0ed361de
NP
2583 } else
2584 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2585}
2586
1da177e4
LT
2587/*
2588 * This routine handles present pages, when users try to write
2589 * to a shared page. It is done by copying the page to a new address
2590 * and decrementing the shared-page counter for the old page.
2591 *
1da177e4
LT
2592 * Note that this routine assumes that the protection checks have been
2593 * done by the caller (the low-level page fault routine in most cases).
2594 * Thus we can safely just mark it writable once we've done any necessary
2595 * COW.
2596 *
2597 * We also mark the page dirty at this point even though the page will
2598 * change only once the write actually happens. This avoids a few races,
2599 * and potentially makes it more efficient.
2600 *
8f4e2101
HD
2601 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2602 * but allow concurrent faults), with pte both mapped and locked.
2603 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2604 */
65500d23
HD
2605static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2606 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2607 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2608 __releases(ptl)
1da177e4 2609{
2ec74c3e 2610 struct page *old_page, *new_page = NULL;
1da177e4 2611 pte_t entry;
b009c024 2612 int ret = 0;
a200ee18 2613 int page_mkwrite = 0;
d08b3851 2614 struct page *dirty_page = NULL;
1756954c
DR
2615 unsigned long mmun_start = 0; /* For mmu_notifiers */
2616 unsigned long mmun_end = 0; /* For mmu_notifiers */
1da177e4 2617
6aab341e 2618 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2619 if (!old_page) {
2620 /*
2621 * VM_MIXEDMAP !pfn_valid() case
2622 *
2623 * We should not cow pages in a shared writeable mapping.
2624 * Just mark the pages writable as we can't do any dirty
2625 * accounting on raw pfn maps.
2626 */
2627 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2628 (VM_WRITE|VM_SHARED))
2629 goto reuse;
6aab341e 2630 goto gotten;
251b97f5 2631 }
1da177e4 2632
d08b3851 2633 /*
ee6a6457
PZ
2634 * Take out anonymous pages first, anonymous shared vmas are
2635 * not dirty accountable.
d08b3851 2636 */
9a840895 2637 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2638 if (!trylock_page(old_page)) {
2639 page_cache_get(old_page);
2640 pte_unmap_unlock(page_table, ptl);
2641 lock_page(old_page);
2642 page_table = pte_offset_map_lock(mm, pmd, address,
2643 &ptl);
2644 if (!pte_same(*page_table, orig_pte)) {
2645 unlock_page(old_page);
ab967d86
HD
2646 goto unlock;
2647 }
2648 page_cache_release(old_page);
ee6a6457 2649 }
b009c024 2650 if (reuse_swap_page(old_page)) {
c44b6743
RR
2651 /*
2652 * The page is all ours. Move it to our anon_vma so
2653 * the rmap code will not search our parent or siblings.
2654 * Protected against the rmap code by the page lock.
2655 */
2656 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2657 unlock_page(old_page);
2658 goto reuse;
2659 }
ab967d86 2660 unlock_page(old_page);
ee6a6457 2661 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2662 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2663 /*
2664 * Only catch write-faults on shared writable pages,
2665 * read-only shared pages can get COWed by
2666 * get_user_pages(.write=1, .force=1).
2667 */
9637a5ef 2668 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2669 struct vm_fault vmf;
2670 int tmp;
2671
2672 vmf.virtual_address = (void __user *)(address &
2673 PAGE_MASK);
2674 vmf.pgoff = old_page->index;
2675 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2676 vmf.page = old_page;
2677
9637a5ef
DH
2678 /*
2679 * Notify the address space that the page is about to
2680 * become writable so that it can prohibit this or wait
2681 * for the page to get into an appropriate state.
2682 *
2683 * We do this without the lock held, so that it can
2684 * sleep if it needs to.
2685 */
2686 page_cache_get(old_page);
2687 pte_unmap_unlock(page_table, ptl);
2688
c2ec175c
NP
2689 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2690 if (unlikely(tmp &
2691 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2692 ret = tmp;
9637a5ef 2693 goto unwritable_page;
c2ec175c 2694 }
b827e496
NP
2695 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2696 lock_page(old_page);
2697 if (!old_page->mapping) {
2698 ret = 0; /* retry the fault */
2699 unlock_page(old_page);
2700 goto unwritable_page;
2701 }
2702 } else
2703 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2704
9637a5ef
DH
2705 /*
2706 * Since we dropped the lock we need to revalidate
2707 * the PTE as someone else may have changed it. If
2708 * they did, we just return, as we can count on the
2709 * MMU to tell us if they didn't also make it writable.
2710 */
2711 page_table = pte_offset_map_lock(mm, pmd, address,
2712 &ptl);
b827e496
NP
2713 if (!pte_same(*page_table, orig_pte)) {
2714 unlock_page(old_page);
9637a5ef 2715 goto unlock;
b827e496 2716 }
a200ee18
PZ
2717
2718 page_mkwrite = 1;
1da177e4 2719 }
d08b3851
PZ
2720 dirty_page = old_page;
2721 get_page(dirty_page);
9637a5ef 2722
251b97f5 2723reuse:
8c8a743c
PZ
2724 /*
2725 * Clear the pages cpupid information as the existing
2726 * information potentially belongs to a now completely
2727 * unrelated process.
2728 */
2729 if (old_page)
2730 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2731
9637a5ef
DH
2732 flush_cache_page(vma, address, pte_pfn(orig_pte));
2733 entry = pte_mkyoung(orig_pte);
2734 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2735 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2736 update_mmu_cache(vma, address, page_table);
72ddc8f7 2737 pte_unmap_unlock(page_table, ptl);
9637a5ef 2738 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2739
2740 if (!dirty_page)
2741 return ret;
2742
2743 /*
2744 * Yes, Virginia, this is actually required to prevent a race
2745 * with clear_page_dirty_for_io() from clearing the page dirty
2746 * bit after it clear all dirty ptes, but before a racing
2747 * do_wp_page installs a dirty pte.
2748 *
a335b2e1 2749 * __do_fault is protected similarly.
72ddc8f7
ML
2750 */
2751 if (!page_mkwrite) {
2752 wait_on_page_locked(dirty_page);
2753 set_page_dirty_balance(dirty_page, page_mkwrite);
41c4d25f
JK
2754 /* file_update_time outside page_lock */
2755 if (vma->vm_file)
2756 file_update_time(vma->vm_file);
72ddc8f7
ML
2757 }
2758 put_page(dirty_page);
2759 if (page_mkwrite) {
2760 struct address_space *mapping = dirty_page->mapping;
2761
2762 set_page_dirty(dirty_page);
2763 unlock_page(dirty_page);
2764 page_cache_release(dirty_page);
2765 if (mapping) {
2766 /*
2767 * Some device drivers do not set page.mapping
2768 * but still dirty their pages
2769 */
2770 balance_dirty_pages_ratelimited(mapping);
2771 }
2772 }
2773
72ddc8f7 2774 return ret;
1da177e4 2775 }
1da177e4
LT
2776
2777 /*
2778 * Ok, we need to copy. Oh, well..
2779 */
b5810039 2780 page_cache_get(old_page);
920fc356 2781gotten:
8f4e2101 2782 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2783
2784 if (unlikely(anon_vma_prepare(vma)))
65500d23 2785 goto oom;
a13ea5b7 2786
62eede62 2787 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2788 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2789 if (!new_page)
2790 goto oom;
2791 } else {
2792 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2793 if (!new_page)
2794 goto oom;
2795 cow_user_page(new_page, old_page, address, vma);
2796 }
2797 __SetPageUptodate(new_page);
2798
2c26fdd7 2799 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2800 goto oom_free_new;
2801
6bdb913f 2802 mmun_start = address & PAGE_MASK;
1756954c 2803 mmun_end = mmun_start + PAGE_SIZE;
6bdb913f
HE
2804 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2805
1da177e4
LT
2806 /*
2807 * Re-check the pte - we dropped the lock
2808 */
8f4e2101 2809 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2810 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2811 if (old_page) {
920fc356 2812 if (!PageAnon(old_page)) {
34e55232
KH
2813 dec_mm_counter_fast(mm, MM_FILEPAGES);
2814 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2815 }
2816 } else
34e55232 2817 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2818 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2819 entry = mk_pte(new_page, vma->vm_page_prot);
2820 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2821 /*
2822 * Clear the pte entry and flush it first, before updating the
2823 * pte with the new entry. This will avoid a race condition
2824 * seen in the presence of one thread doing SMC and another
2825 * thread doing COW.
2826 */
828502d3 2827 ptep_clear_flush(vma, address, page_table);
9617d95e 2828 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2829 /*
2830 * We call the notify macro here because, when using secondary
2831 * mmu page tables (such as kvm shadow page tables), we want the
2832 * new page to be mapped directly into the secondary page table.
2833 */
2834 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2835 update_mmu_cache(vma, address, page_table);
945754a1
NP
2836 if (old_page) {
2837 /*
2838 * Only after switching the pte to the new page may
2839 * we remove the mapcount here. Otherwise another
2840 * process may come and find the rmap count decremented
2841 * before the pte is switched to the new page, and
2842 * "reuse" the old page writing into it while our pte
2843 * here still points into it and can be read by other
2844 * threads.
2845 *
2846 * The critical issue is to order this
2847 * page_remove_rmap with the ptp_clear_flush above.
2848 * Those stores are ordered by (if nothing else,)
2849 * the barrier present in the atomic_add_negative
2850 * in page_remove_rmap.
2851 *
2852 * Then the TLB flush in ptep_clear_flush ensures that
2853 * no process can access the old page before the
2854 * decremented mapcount is visible. And the old page
2855 * cannot be reused until after the decremented
2856 * mapcount is visible. So transitively, TLBs to
2857 * old page will be flushed before it can be reused.
2858 */
edc315fd 2859 page_remove_rmap(old_page);
945754a1
NP
2860 }
2861
1da177e4
LT
2862 /* Free the old page.. */
2863 new_page = old_page;
f33ea7f4 2864 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2865 } else
2866 mem_cgroup_uncharge_page(new_page);
2867
6bdb913f
HE
2868 if (new_page)
2869 page_cache_release(new_page);
65500d23 2870unlock:
8f4e2101 2871 pte_unmap_unlock(page_table, ptl);
1756954c 2872 if (mmun_end > mmun_start)
6bdb913f 2873 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
e15f8c01
ML
2874 if (old_page) {
2875 /*
2876 * Don't let another task, with possibly unlocked vma,
2877 * keep the mlocked page.
2878 */
2879 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2880 lock_page(old_page); /* LRU manipulation */
2881 munlock_vma_page(old_page);
2882 unlock_page(old_page);
2883 }
2884 page_cache_release(old_page);
2885 }
f33ea7f4 2886 return ret;
8a9f3ccd 2887oom_free_new:
6dbf6d3b 2888 page_cache_release(new_page);
65500d23 2889oom:
66521d5a 2890 if (old_page)
920fc356 2891 page_cache_release(old_page);
1da177e4 2892 return VM_FAULT_OOM;
9637a5ef
DH
2893
2894unwritable_page:
2895 page_cache_release(old_page);
c2ec175c 2896 return ret;
1da177e4
LT
2897}
2898
97a89413 2899static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2900 unsigned long start_addr, unsigned long end_addr,
2901 struct zap_details *details)
2902{
f5cc4eef 2903 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2904}
2905
6b2dbba8 2906static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2907 struct zap_details *details)
2908{
2909 struct vm_area_struct *vma;
1da177e4
LT
2910 pgoff_t vba, vea, zba, zea;
2911
6b2dbba8 2912 vma_interval_tree_foreach(vma, root,
1da177e4 2913 details->first_index, details->last_index) {
1da177e4
LT
2914
2915 vba = vma->vm_pgoff;
d6e93217 2916 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2917 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2918 zba = details->first_index;
2919 if (zba < vba)
2920 zba = vba;
2921 zea = details->last_index;
2922 if (zea > vea)
2923 zea = vea;
2924
97a89413 2925 unmap_mapping_range_vma(vma,
1da177e4
LT
2926 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2927 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2928 details);
1da177e4
LT
2929 }
2930}
2931
2932static inline void unmap_mapping_range_list(struct list_head *head,
2933 struct zap_details *details)
2934{
2935 struct vm_area_struct *vma;
2936
2937 /*
2938 * In nonlinear VMAs there is no correspondence between virtual address
2939 * offset and file offset. So we must perform an exhaustive search
2940 * across *all* the pages in each nonlinear VMA, not just the pages
2941 * whose virtual address lies outside the file truncation point.
2942 */
6b2dbba8 2943 list_for_each_entry(vma, head, shared.nonlinear) {
1da177e4 2944 details->nonlinear_vma = vma;
97a89413 2945 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2946 }
2947}
2948
2949/**
72fd4a35 2950 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2951 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2952 * @holebegin: byte in first page to unmap, relative to the start of
2953 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2954 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2955 * must keep the partial page. In contrast, we must get rid of
2956 * partial pages.
2957 * @holelen: size of prospective hole in bytes. This will be rounded
2958 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2959 * end of the file.
2960 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2961 * but 0 when invalidating pagecache, don't throw away private data.
2962 */
2963void unmap_mapping_range(struct address_space *mapping,
2964 loff_t const holebegin, loff_t const holelen, int even_cows)
2965{
2966 struct zap_details details;
2967 pgoff_t hba = holebegin >> PAGE_SHIFT;
2968 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2969
2970 /* Check for overflow. */
2971 if (sizeof(holelen) > sizeof(hlen)) {
2972 long long holeend =
2973 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2974 if (holeend & ~(long long)ULONG_MAX)
2975 hlen = ULONG_MAX - hba + 1;
2976 }
2977
2978 details.check_mapping = even_cows? NULL: mapping;
2979 details.nonlinear_vma = NULL;
2980 details.first_index = hba;
2981 details.last_index = hba + hlen - 1;
2982 if (details.last_index < details.first_index)
2983 details.last_index = ULONG_MAX;
1da177e4 2984
1da177e4 2985
3d48ae45 2986 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2987 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4
LT
2988 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2989 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2990 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2991 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2992}
2993EXPORT_SYMBOL(unmap_mapping_range);
2994
1da177e4 2995/*
8f4e2101
HD
2996 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2997 * but allow concurrent faults), and pte mapped but not yet locked.
2998 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2999 */
65500d23
HD
3000static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3001 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3002 unsigned int flags, pte_t orig_pte)
1da177e4 3003{
8f4e2101 3004 spinlock_t *ptl;
56f31801 3005 struct page *page, *swapcache;
65500d23 3006 swp_entry_t entry;
1da177e4 3007 pte_t pte;
d065bd81 3008 int locked;
56039efa 3009 struct mem_cgroup *ptr;
ad8c2ee8 3010 int exclusive = 0;
83c54070 3011 int ret = 0;
1da177e4 3012
4c21e2f2 3013 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 3014 goto out;
65500d23
HD
3015
3016 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
3017 if (unlikely(non_swap_entry(entry))) {
3018 if (is_migration_entry(entry)) {
3019 migration_entry_wait(mm, pmd, address);
3020 } else if (is_hwpoison_entry(entry)) {
3021 ret = VM_FAULT_HWPOISON;
3022 } else {
3023 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3024 ret = VM_FAULT_SIGBUS;
d1737fdb 3025 }
0697212a
CL
3026 goto out;
3027 }
0ff92245 3028 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
3029 page = lookup_swap_cache(entry);
3030 if (!page) {
02098fea
HD
3031 page = swapin_readahead(entry,
3032 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
3033 if (!page) {
3034 /*
8f4e2101
HD
3035 * Back out if somebody else faulted in this pte
3036 * while we released the pte lock.
1da177e4 3037 */
8f4e2101 3038 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3039 if (likely(pte_same(*page_table, orig_pte)))
3040 ret = VM_FAULT_OOM;
0ff92245 3041 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3042 goto unlock;
1da177e4
LT
3043 }
3044
3045 /* Had to read the page from swap area: Major fault */
3046 ret = VM_FAULT_MAJOR;
f8891e5e 3047 count_vm_event(PGMAJFAULT);
456f998e 3048 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 3049 } else if (PageHWPoison(page)) {
71f72525
WF
3050 /*
3051 * hwpoisoned dirty swapcache pages are kept for killing
3052 * owner processes (which may be unknown at hwpoison time)
3053 */
d1737fdb
AK
3054 ret = VM_FAULT_HWPOISON;
3055 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 3056 swapcache = page;
4779cb31 3057 goto out_release;
1da177e4
LT
3058 }
3059
56f31801 3060 swapcache = page;
d065bd81 3061 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 3062
073e587e 3063 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3064 if (!locked) {
3065 ret |= VM_FAULT_RETRY;
3066 goto out_release;
3067 }
073e587e 3068
4969c119 3069 /*
31c4a3d3
HD
3070 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3071 * release the swapcache from under us. The page pin, and pte_same
3072 * test below, are not enough to exclude that. Even if it is still
3073 * swapcache, we need to check that the page's swap has not changed.
4969c119 3074 */
31c4a3d3 3075 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
3076 goto out_page;
3077
cbf86cfe
HD
3078 page = ksm_might_need_to_copy(page, vma, address);
3079 if (unlikely(!page)) {
3080 ret = VM_FAULT_OOM;
3081 page = swapcache;
cbf86cfe 3082 goto out_page;
5ad64688
HD
3083 }
3084
2c26fdd7 3085 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 3086 ret = VM_FAULT_OOM;
bc43f75c 3087 goto out_page;
8a9f3ccd
BS
3088 }
3089
1da177e4 3090 /*
8f4e2101 3091 * Back out if somebody else already faulted in this pte.
1da177e4 3092 */
8f4e2101 3093 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 3094 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 3095 goto out_nomap;
b8107480
KK
3096
3097 if (unlikely(!PageUptodate(page))) {
3098 ret = VM_FAULT_SIGBUS;
3099 goto out_nomap;
1da177e4
LT
3100 }
3101
8c7c6e34
KH
3102 /*
3103 * The page isn't present yet, go ahead with the fault.
3104 *
3105 * Be careful about the sequence of operations here.
3106 * To get its accounting right, reuse_swap_page() must be called
3107 * while the page is counted on swap but not yet in mapcount i.e.
3108 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3109 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
3110 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3111 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3112 * in page->private. In this case, a record in swap_cgroup is silently
3113 * discarded at swap_free().
8c7c6e34 3114 */
1da177e4 3115
34e55232 3116 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 3117 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 3118 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 3119 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 3120 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 3121 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3122 ret |= VM_FAULT_WRITE;
ad8c2ee8 3123 exclusive = 1;
1da177e4 3124 }
1da177e4 3125 flush_icache_page(vma, page);
179ef71c
CG
3126 if (pte_swp_soft_dirty(orig_pte))
3127 pte = pte_mksoft_dirty(pte);
1da177e4 3128 set_pte_at(mm, address, page_table, pte);
56f31801 3129 if (page == swapcache)
af34770e 3130 do_page_add_anon_rmap(page, vma, address, exclusive);
56f31801
HD
3131 else /* ksm created a completely new copy */
3132 page_add_new_anon_rmap(page, vma, address);
03f3c433
KH
3133 /* It's better to call commit-charge after rmap is established */
3134 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 3135
c475a8ab 3136 swap_free(entry);
b291f000 3137 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3138 try_to_free_swap(page);
c475a8ab 3139 unlock_page(page);
56f31801 3140 if (page != swapcache) {
4969c119
AA
3141 /*
3142 * Hold the lock to avoid the swap entry to be reused
3143 * until we take the PT lock for the pte_same() check
3144 * (to avoid false positives from pte_same). For
3145 * further safety release the lock after the swap_free
3146 * so that the swap count won't change under a
3147 * parallel locked swapcache.
3148 */
3149 unlock_page(swapcache);
3150 page_cache_release(swapcache);
3151 }
c475a8ab 3152
30c9f3a9 3153 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
3154 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3155 if (ret & VM_FAULT_ERROR)
3156 ret &= VM_FAULT_ERROR;
1da177e4
LT
3157 goto out;
3158 }
3159
3160 /* No need to invalidate - it was non-present before */
4b3073e1 3161 update_mmu_cache(vma, address, page_table);
65500d23 3162unlock:
8f4e2101 3163 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
3164out:
3165 return ret;
b8107480 3166out_nomap:
7a81b88c 3167 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 3168 pte_unmap_unlock(page_table, ptl);
bc43f75c 3169out_page:
b8107480 3170 unlock_page(page);
4779cb31 3171out_release:
b8107480 3172 page_cache_release(page);
56f31801 3173 if (page != swapcache) {
4969c119
AA
3174 unlock_page(swapcache);
3175 page_cache_release(swapcache);
3176 }
65500d23 3177 return ret;
1da177e4
LT
3178}
3179
320b2b8d 3180/*
8ca3eb08
LT
3181 * This is like a special single-page "expand_{down|up}wards()",
3182 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 3183 * doesn't hit another vma.
320b2b8d
LT
3184 */
3185static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3186{
3187 address &= PAGE_MASK;
3188 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
3189 struct vm_area_struct *prev = vma->vm_prev;
3190
3191 /*
3192 * Is there a mapping abutting this one below?
3193 *
3194 * That's only ok if it's the same stack mapping
3195 * that has gotten split..
3196 */
3197 if (prev && prev->vm_end == address)
3198 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 3199
d05f3169 3200 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 3201 }
8ca3eb08
LT
3202 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3203 struct vm_area_struct *next = vma->vm_next;
3204
3205 /* As VM_GROWSDOWN but s/below/above/ */
3206 if (next && next->vm_start == address + PAGE_SIZE)
3207 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3208
3209 expand_upwards(vma, address + PAGE_SIZE);
3210 }
320b2b8d
LT
3211 return 0;
3212}
3213
1da177e4 3214/*
8f4e2101
HD
3215 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3216 * but allow concurrent faults), and pte mapped but not yet locked.
3217 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3218 */
65500d23
HD
3219static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3220 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3221 unsigned int flags)
1da177e4 3222{
8f4e2101
HD
3223 struct page *page;
3224 spinlock_t *ptl;
1da177e4 3225 pte_t entry;
1da177e4 3226
11ac5524
LT
3227 pte_unmap(page_table);
3228
3229 /* Check if we need to add a guard page to the stack */
3230 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
3231 return VM_FAULT_SIGBUS;
3232
11ac5524 3233 /* Use the zero-page for reads */
62eede62
HD
3234 if (!(flags & FAULT_FLAG_WRITE)) {
3235 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3236 vma->vm_page_prot));
11ac5524 3237 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
3238 if (!pte_none(*page_table))
3239 goto unlock;
3240 goto setpte;
3241 }
3242
557ed1fa 3243 /* Allocate our own private page. */
557ed1fa
NP
3244 if (unlikely(anon_vma_prepare(vma)))
3245 goto oom;
3246 page = alloc_zeroed_user_highpage_movable(vma, address);
3247 if (!page)
3248 goto oom;
52f37629
MK
3249 /*
3250 * The memory barrier inside __SetPageUptodate makes sure that
3251 * preceeding stores to the page contents become visible before
3252 * the set_pte_at() write.
3253 */
0ed361de 3254 __SetPageUptodate(page);
8f4e2101 3255
2c26fdd7 3256 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3257 goto oom_free_page;
3258
557ed1fa 3259 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3260 if (vma->vm_flags & VM_WRITE)
3261 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3262
557ed1fa 3263 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3264 if (!pte_none(*page_table))
557ed1fa 3265 goto release;
9ba69294 3266
34e55232 3267 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3268 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3269setpte:
65500d23 3270 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3271
3272 /* No need to invalidate - it was non-present before */
4b3073e1 3273 update_mmu_cache(vma, address, page_table);
65500d23 3274unlock:
8f4e2101 3275 pte_unmap_unlock(page_table, ptl);
83c54070 3276 return 0;
8f4e2101 3277release:
8a9f3ccd 3278 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3279 page_cache_release(page);
3280 goto unlock;
8a9f3ccd 3281oom_free_page:
6dbf6d3b 3282 page_cache_release(page);
65500d23 3283oom:
1da177e4
LT
3284 return VM_FAULT_OOM;
3285}
3286
3287/*
54cb8821 3288 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 3289 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
3290 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3291 * the next page fault.
1da177e4
LT
3292 *
3293 * As this is called only for pages that do not currently exist, we
3294 * do not need to flush old virtual caches or the TLB.
3295 *
8f4e2101 3296 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 3297 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 3298 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3299 */
54cb8821 3300static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3301 unsigned long address, pmd_t *pmd,
54cb8821 3302 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3303{
16abfa08 3304 pte_t *page_table;
8f4e2101 3305 spinlock_t *ptl;
d0217ac0 3306 struct page *page;
1d65f86d 3307 struct page *cow_page;
1da177e4 3308 pte_t entry;
1da177e4 3309 int anon = 0;
d08b3851 3310 struct page *dirty_page = NULL;
d0217ac0
NP
3311 struct vm_fault vmf;
3312 int ret;
a200ee18 3313 int page_mkwrite = 0;
54cb8821 3314
1d65f86d
KH
3315 /*
3316 * If we do COW later, allocate page befor taking lock_page()
3317 * on the file cache page. This will reduce lock holding time.
3318 */
3319 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3320
3321 if (unlikely(anon_vma_prepare(vma)))
3322 return VM_FAULT_OOM;
3323
3324 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3325 if (!cow_page)
3326 return VM_FAULT_OOM;
3327
3328 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3329 page_cache_release(cow_page);
3330 return VM_FAULT_OOM;
3331 }
3332 } else
3333 cow_page = NULL;
3334
d0217ac0
NP
3335 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3336 vmf.pgoff = pgoff;
3337 vmf.flags = flags;
3338 vmf.page = NULL;
1da177e4 3339
3c18ddd1 3340 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3341 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3342 VM_FAULT_RETRY)))
1d65f86d 3343 goto uncharge_out;
1da177e4 3344
a3b947ea
AK
3345 if (unlikely(PageHWPoison(vmf.page))) {
3346 if (ret & VM_FAULT_LOCKED)
3347 unlock_page(vmf.page);
1d65f86d
KH
3348 ret = VM_FAULT_HWPOISON;
3349 goto uncharge_out;
a3b947ea
AK
3350 }
3351
d00806b1 3352 /*
d0217ac0 3353 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3354 * locked.
3355 */
83c54070 3356 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3357 lock_page(vmf.page);
54cb8821 3358 else
d0217ac0 3359 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3360
1da177e4
LT
3361 /*
3362 * Should we do an early C-O-W break?
3363 */
d0217ac0 3364 page = vmf.page;
54cb8821 3365 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3366 if (!(vma->vm_flags & VM_SHARED)) {
1d65f86d 3367 page = cow_page;
54cb8821 3368 anon = 1;
d0217ac0 3369 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3370 __SetPageUptodate(page);
9637a5ef 3371 } else {
54cb8821
NP
3372 /*
3373 * If the page will be shareable, see if the backing
9637a5ef 3374 * address space wants to know that the page is about
54cb8821
NP
3375 * to become writable
3376 */
69676147 3377 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3378 int tmp;
3379
69676147 3380 unlock_page(page);
b827e496 3381 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3382 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3383 if (unlikely(tmp &
3384 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3385 ret = tmp;
b827e496 3386 goto unwritable_page;
d0217ac0 3387 }
b827e496
NP
3388 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3389 lock_page(page);
3390 if (!page->mapping) {
3391 ret = 0; /* retry the fault */
3392 unlock_page(page);
3393 goto unwritable_page;
3394 }
3395 } else
3396 VM_BUG_ON(!PageLocked(page));
a200ee18 3397 page_mkwrite = 1;
9637a5ef
DH
3398 }
3399 }
54cb8821 3400
1da177e4
LT
3401 }
3402
8f4e2101 3403 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3404
3405 /*
3406 * This silly early PAGE_DIRTY setting removes a race
3407 * due to the bad i386 page protection. But it's valid
3408 * for other architectures too.
3409 *
30c9f3a9 3410 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3411 * an exclusive copy of the page, or this is a shared mapping,
3412 * so we can make it writable and dirty to avoid having to
3413 * handle that later.
3414 */
3415 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3416 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3417 flush_icache_page(vma, page);
3418 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3419 if (flags & FAULT_FLAG_WRITE)
1da177e4 3420 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
41bb3476
CG
3421 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3422 pte_mksoft_dirty(entry);
1da177e4 3423 if (anon) {
34e55232 3424 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3425 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3426 } else {
34e55232 3427 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3428 page_add_file_rmap(page);
54cb8821 3429 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3430 dirty_page = page;
d08b3851
PZ
3431 get_page(dirty_page);
3432 }
4294621f 3433 }
64d6519d 3434 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3435
3436 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3437 update_mmu_cache(vma, address, page_table);
1da177e4 3438 } else {
1d65f86d
KH
3439 if (cow_page)
3440 mem_cgroup_uncharge_page(cow_page);
d00806b1
NP
3441 if (anon)
3442 page_cache_release(page);
3443 else
54cb8821 3444 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3445 }
3446
8f4e2101 3447 pte_unmap_unlock(page_table, ptl);
d00806b1 3448
b827e496
NP
3449 if (dirty_page) {
3450 struct address_space *mapping = page->mapping;
41c4d25f 3451 int dirtied = 0;
8f7b3d15 3452
b827e496 3453 if (set_page_dirty(dirty_page))
41c4d25f 3454 dirtied = 1;
b827e496 3455 unlock_page(dirty_page);
d08b3851 3456 put_page(dirty_page);
41c4d25f 3457 if ((dirtied || page_mkwrite) && mapping) {
b827e496
NP
3458 /*
3459 * Some device drivers do not set page.mapping but still
3460 * dirty their pages
3461 */
3462 balance_dirty_pages_ratelimited(mapping);
3463 }
3464
3465 /* file_update_time outside page_lock */
41c4d25f 3466 if (vma->vm_file && !page_mkwrite)
b827e496
NP
3467 file_update_time(vma->vm_file);
3468 } else {
3469 unlock_page(vmf.page);
3470 if (anon)
3471 page_cache_release(vmf.page);
d08b3851 3472 }
d00806b1 3473
83c54070 3474 return ret;
b827e496
NP
3475
3476unwritable_page:
3477 page_cache_release(page);
3478 return ret;
1d65f86d
KH
3479uncharge_out:
3480 /* fs's fault handler get error */
3481 if (cow_page) {
3482 mem_cgroup_uncharge_page(cow_page);
3483 page_cache_release(cow_page);
3484 }
3485 return ret;
54cb8821 3486}
d00806b1 3487
54cb8821
NP
3488static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3489 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3490 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3491{
3492 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3493 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3494
16abfa08
HD
3495 pte_unmap(page_table);
3496 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3497}
3498
1da177e4
LT
3499/*
3500 * Fault of a previously existing named mapping. Repopulate the pte
3501 * from the encoded file_pte if possible. This enables swappable
3502 * nonlinear vmas.
8f4e2101
HD
3503 *
3504 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3505 * but allow concurrent faults), and pte mapped but not yet locked.
3506 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3507 */
d0217ac0 3508static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3509 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3510 unsigned int flags, pte_t orig_pte)
1da177e4 3511{
65500d23 3512 pgoff_t pgoff;
1da177e4 3513
30c9f3a9
LT
3514 flags |= FAULT_FLAG_NONLINEAR;
3515
4c21e2f2 3516 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3517 return 0;
1da177e4 3518
2509ef26 3519 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3520 /*
3521 * Page table corrupted: show pte and kill process.
3522 */
3dc14741 3523 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3524 return VM_FAULT_SIGBUS;
65500d23 3525 }
65500d23
HD
3526
3527 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3528 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3529}
3530
9532fec1 3531int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3532 unsigned long addr, int page_nid,
3533 int *flags)
9532fec1
MG
3534{
3535 get_page(page);
3536
3537 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3538 if (page_nid == numa_node_id()) {
9532fec1 3539 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3540 *flags |= TNF_FAULT_LOCAL;
3541 }
9532fec1
MG
3542
3543 return mpol_misplaced(page, vma, addr);
3544}
3545
d10e63f2
MG
3546int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3547 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3548{
4daae3b4 3549 struct page *page = NULL;
d10e63f2 3550 spinlock_t *ptl;
8191acbd 3551 int page_nid = -1;
90572890 3552 int last_cpupid;
cbee9f88 3553 int target_nid;
b8593bfd 3554 bool migrated = false;
6688cc05 3555 int flags = 0;
d10e63f2
MG
3556
3557 /*
3558 * The "pte" at this point cannot be used safely without
3559 * validation through pte_unmap_same(). It's of NUMA type but
3560 * the pfn may be screwed if the read is non atomic.
3561 *
3562 * ptep_modify_prot_start is not called as this is clearing
3563 * the _PAGE_NUMA bit and it is not really expected that there
3564 * would be concurrent hardware modifications to the PTE.
3565 */
3566 ptl = pte_lockptr(mm, pmd);
3567 spin_lock(ptl);
4daae3b4
MG
3568 if (unlikely(!pte_same(*ptep, pte))) {
3569 pte_unmap_unlock(ptep, ptl);
3570 goto out;
3571 }
3572
d10e63f2
MG
3573 pte = pte_mknonnuma(pte);
3574 set_pte_at(mm, addr, ptep, pte);
3575 update_mmu_cache(vma, addr, ptep);
3576
3577 page = vm_normal_page(vma, addr, pte);
3578 if (!page) {
3579 pte_unmap_unlock(ptep, ptl);
3580 return 0;
3581 }
a1a46184 3582 BUG_ON(is_zero_pfn(page_to_pfn(page)));
d10e63f2 3583
6688cc05
PZ
3584 /*
3585 * Avoid grouping on DSO/COW pages in specific and RO pages
3586 * in general, RO pages shouldn't hurt as much anyway since
3587 * they can be in shared cache state.
3588 */
3589 if (!pte_write(pte))
3590 flags |= TNF_NO_GROUP;
3591
dabe1d99
RR
3592 /*
3593 * Flag if the page is shared between multiple address spaces. This
3594 * is later used when determining whether to group tasks together
3595 */
3596 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3597 flags |= TNF_SHARED;
3598
90572890 3599 last_cpupid = page_cpupid_last(page);
8191acbd 3600 page_nid = page_to_nid(page);
04bb2f94 3601 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3602 pte_unmap_unlock(ptep, ptl);
4daae3b4 3603 if (target_nid == -1) {
4daae3b4
MG
3604 put_page(page);
3605 goto out;
3606 }
3607
3608 /* Migrate to the requested node */
1bc115d8 3609 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3610 if (migrated) {
8191acbd 3611 page_nid = target_nid;
6688cc05
PZ
3612 flags |= TNF_MIGRATED;
3613 }
4daae3b4
MG
3614
3615out:
8191acbd 3616 if (page_nid != -1)
6688cc05 3617 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3618 return 0;
3619}
3620
1da177e4
LT
3621/*
3622 * These routines also need to handle stuff like marking pages dirty
3623 * and/or accessed for architectures that don't do it in hardware (most
3624 * RISC architectures). The early dirtying is also good on the i386.
3625 *
3626 * There is also a hook called "update_mmu_cache()" that architectures
3627 * with external mmu caches can use to update those (ie the Sparc or
3628 * PowerPC hashed page tables that act as extended TLBs).
3629 *
c74df32c
HD
3630 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3631 * but allow concurrent faults), and pte mapped but not yet locked.
3632 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3633 */
c0292554 3634static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3635 struct vm_area_struct *vma, unsigned long address,
3636 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3637{
3638 pte_t entry;
8f4e2101 3639 spinlock_t *ptl;
1da177e4 3640
8dab5241 3641 entry = *pte;
1da177e4 3642 if (!pte_present(entry)) {
65500d23 3643 if (pte_none(entry)) {
f4b81804 3644 if (vma->vm_ops) {
3c18ddd1 3645 if (likely(vma->vm_ops->fault))
54cb8821 3646 return do_linear_fault(mm, vma, address,
30c9f3a9 3647 pte, pmd, flags, entry);
f4b81804
JS
3648 }
3649 return do_anonymous_page(mm, vma, address,
30c9f3a9 3650 pte, pmd, flags);
65500d23 3651 }
1da177e4 3652 if (pte_file(entry))
d0217ac0 3653 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3654 pte, pmd, flags, entry);
65500d23 3655 return do_swap_page(mm, vma, address,
30c9f3a9 3656 pte, pmd, flags, entry);
1da177e4
LT
3657 }
3658
d10e63f2
MG
3659 if (pte_numa(entry))
3660 return do_numa_page(mm, vma, address, entry, pte, pmd);
3661
4c21e2f2 3662 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3663 spin_lock(ptl);
3664 if (unlikely(!pte_same(*pte, entry)))
3665 goto unlock;
30c9f3a9 3666 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3667 if (!pte_write(entry))
8f4e2101
HD
3668 return do_wp_page(mm, vma, address,
3669 pte, pmd, ptl, entry);
1da177e4
LT
3670 entry = pte_mkdirty(entry);
3671 }
3672 entry = pte_mkyoung(entry);
30c9f3a9 3673 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3674 update_mmu_cache(vma, address, pte);
1a44e149
AA
3675 } else {
3676 /*
3677 * This is needed only for protection faults but the arch code
3678 * is not yet telling us if this is a protection fault or not.
3679 * This still avoids useless tlb flushes for .text page faults
3680 * with threads.
3681 */
30c9f3a9 3682 if (flags & FAULT_FLAG_WRITE)
61c77326 3683 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3684 }
8f4e2101
HD
3685unlock:
3686 pte_unmap_unlock(pte, ptl);
83c54070 3687 return 0;
1da177e4
LT
3688}
3689
3690/*
3691 * By the time we get here, we already hold the mm semaphore
3692 */
519e5247
JW
3693static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3694 unsigned long address, unsigned int flags)
1da177e4
LT
3695{
3696 pgd_t *pgd;
3697 pud_t *pud;
3698 pmd_t *pmd;
3699 pte_t *pte;
3700
ac9b9c66 3701 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3702 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3703
1f1d06c3 3704retry:
1da177e4 3705 pgd = pgd_offset(mm, address);
1da177e4
LT
3706 pud = pud_alloc(mm, pgd, address);
3707 if (!pud)
c74df32c 3708 return VM_FAULT_OOM;
1da177e4
LT
3709 pmd = pmd_alloc(mm, pud, address);
3710 if (!pmd)
c74df32c 3711 return VM_FAULT_OOM;
71e3aac0 3712 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
c0292554 3713 int ret = VM_FAULT_FALLBACK;
71e3aac0 3714 if (!vma->vm_ops)
c0292554
KS
3715 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3716 pmd, flags);
3717 if (!(ret & VM_FAULT_FALLBACK))
3718 return ret;
71e3aac0
AA
3719 } else {
3720 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3721 int ret;
3722
71e3aac0
AA
3723 barrier();
3724 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3725 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3726
e53289c0
LT
3727 /*
3728 * If the pmd is splitting, return and retry the
3729 * the fault. Alternative: wait until the split
3730 * is done, and goto retry.
3731 */
3732 if (pmd_trans_splitting(orig_pmd))
3733 return 0;
3734
3d59eebc 3735 if (pmd_numa(orig_pmd))
4daae3b4 3736 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3737 orig_pmd, pmd);
3738
3d59eebc 3739 if (dirty && !pmd_write(orig_pmd)) {
1f1d06c3
DR
3740 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3741 orig_pmd);
3742 /*
3743 * If COW results in an oom, the huge pmd will
3744 * have been split, so retry the fault on the
3745 * pte for a smaller charge.
3746 */
3747 if (unlikely(ret & VM_FAULT_OOM))
3748 goto retry;
3749 return ret;
a1dd450b
WD
3750 } else {
3751 huge_pmd_set_accessed(mm, vma, address, pmd,
3752 orig_pmd, dirty);
1f1d06c3 3753 }
d10e63f2 3754
71e3aac0
AA
3755 return 0;
3756 }
3757 }
3758
0f19c179
MG
3759 /* THP should already have been handled */
3760 BUG_ON(pmd_numa(*pmd));
d10e63f2 3761
71e3aac0
AA
3762 /*
3763 * Use __pte_alloc instead of pte_alloc_map, because we can't
3764 * run pte_offset_map on the pmd, if an huge pmd could
3765 * materialize from under us from a different thread.
3766 */
4fd01770
MG
3767 if (unlikely(pmd_none(*pmd)) &&
3768 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3769 return VM_FAULT_OOM;
71e3aac0
AA
3770 /* if an huge pmd materialized from under us just retry later */
3771 if (unlikely(pmd_trans_huge(*pmd)))
3772 return 0;
3773 /*
3774 * A regular pmd is established and it can't morph into a huge pmd
3775 * from under us anymore at this point because we hold the mmap_sem
3776 * read mode and khugepaged takes it in write mode. So now it's
3777 * safe to run pte_offset_map().
3778 */
3779 pte = pte_offset_map(pmd, address);
1da177e4 3780
30c9f3a9 3781 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3782}
3783
519e5247
JW
3784int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3785 unsigned long address, unsigned int flags)
3786{
3787 int ret;
3788
3789 __set_current_state(TASK_RUNNING);
3790
3791 count_vm_event(PGFAULT);
3792 mem_cgroup_count_vm_event(mm, PGFAULT);
3793
3794 /* do counter updates before entering really critical section. */
3795 check_sync_rss_stat(current);
3796
3797 /*
3798 * Enable the memcg OOM handling for faults triggered in user
3799 * space. Kernel faults are handled more gracefully.
3800 */
3801 if (flags & FAULT_FLAG_USER)
49426420 3802 mem_cgroup_oom_enable();
519e5247
JW
3803
3804 ret = __handle_mm_fault(mm, vma, address, flags);
3805
49426420
JW
3806 if (flags & FAULT_FLAG_USER) {
3807 mem_cgroup_oom_disable();
3808 /*
3809 * The task may have entered a memcg OOM situation but
3810 * if the allocation error was handled gracefully (no
3811 * VM_FAULT_OOM), there is no need to kill anything.
3812 * Just clean up the OOM state peacefully.
3813 */
3814 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3815 mem_cgroup_oom_synchronize(false);
3816 }
3812c8c8 3817
519e5247
JW
3818 return ret;
3819}
3820
1da177e4
LT
3821#ifndef __PAGETABLE_PUD_FOLDED
3822/*
3823 * Allocate page upper directory.
872fec16 3824 * We've already handled the fast-path in-line.
1da177e4 3825 */
1bb3630e 3826int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3827{
c74df32c
HD
3828 pud_t *new = pud_alloc_one(mm, address);
3829 if (!new)
1bb3630e 3830 return -ENOMEM;
1da177e4 3831
362a61ad
NP
3832 smp_wmb(); /* See comment in __pte_alloc */
3833
872fec16 3834 spin_lock(&mm->page_table_lock);
1bb3630e 3835 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3836 pud_free(mm, new);
1bb3630e
HD
3837 else
3838 pgd_populate(mm, pgd, new);
c74df32c 3839 spin_unlock(&mm->page_table_lock);
1bb3630e 3840 return 0;
1da177e4
LT
3841}
3842#endif /* __PAGETABLE_PUD_FOLDED */
3843
3844#ifndef __PAGETABLE_PMD_FOLDED
3845/*
3846 * Allocate page middle directory.
872fec16 3847 * We've already handled the fast-path in-line.
1da177e4 3848 */
1bb3630e 3849int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3850{
c74df32c
HD
3851 pmd_t *new = pmd_alloc_one(mm, address);
3852 if (!new)
1bb3630e 3853 return -ENOMEM;
1da177e4 3854
362a61ad
NP
3855 smp_wmb(); /* See comment in __pte_alloc */
3856
872fec16 3857 spin_lock(&mm->page_table_lock);
1da177e4 3858#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3859 if (pud_present(*pud)) /* Another has populated it */
5e541973 3860 pmd_free(mm, new);
1bb3630e
HD
3861 else
3862 pud_populate(mm, pud, new);
1da177e4 3863#else
1bb3630e 3864 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3865 pmd_free(mm, new);
1bb3630e
HD
3866 else
3867 pgd_populate(mm, pud, new);
1da177e4 3868#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3869 spin_unlock(&mm->page_table_lock);
1bb3630e 3870 return 0;
e0f39591 3871}
1da177e4
LT
3872#endif /* __PAGETABLE_PMD_FOLDED */
3873
1da177e4
LT
3874#if !defined(__HAVE_ARCH_GATE_AREA)
3875
3876#if defined(AT_SYSINFO_EHDR)
5ce7852c 3877static struct vm_area_struct gate_vma;
1da177e4
LT
3878
3879static int __init gate_vma_init(void)
3880{
3881 gate_vma.vm_mm = NULL;
3882 gate_vma.vm_start = FIXADDR_USER_START;
3883 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3884 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3885 gate_vma.vm_page_prot = __P101;
909af768 3886
1da177e4
LT
3887 return 0;
3888}
3889__initcall(gate_vma_init);
3890#endif
3891
31db58b3 3892struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3893{
3894#ifdef AT_SYSINFO_EHDR
3895 return &gate_vma;
3896#else
3897 return NULL;
3898#endif
3899}
3900
cae5d390 3901int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3902{
3903#ifdef AT_SYSINFO_EHDR
3904 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3905 return 1;
3906#endif
3907 return 0;
3908}
3909
3910#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3911
1b36ba81 3912static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3913 pte_t **ptepp, spinlock_t **ptlp)
3914{
3915 pgd_t *pgd;
3916 pud_t *pud;
3917 pmd_t *pmd;
3918 pte_t *ptep;
3919
3920 pgd = pgd_offset(mm, address);
3921 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3922 goto out;
3923
3924 pud = pud_offset(pgd, address);
3925 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3926 goto out;
3927
3928 pmd = pmd_offset(pud, address);
f66055ab 3929 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3930 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3931 goto out;
3932
3933 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3934 if (pmd_huge(*pmd))
3935 goto out;
3936
3937 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3938 if (!ptep)
3939 goto out;
3940 if (!pte_present(*ptep))
3941 goto unlock;
3942 *ptepp = ptep;
3943 return 0;
3944unlock:
3945 pte_unmap_unlock(ptep, *ptlp);
3946out:
3947 return -EINVAL;
3948}
3949
1b36ba81
NK
3950static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3951 pte_t **ptepp, spinlock_t **ptlp)
3952{
3953 int res;
3954
3955 /* (void) is needed to make gcc happy */
3956 (void) __cond_lock(*ptlp,
3957 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3958 return res;
3959}
3960
3b6748e2
JW
3961/**
3962 * follow_pfn - look up PFN at a user virtual address
3963 * @vma: memory mapping
3964 * @address: user virtual address
3965 * @pfn: location to store found PFN
3966 *
3967 * Only IO mappings and raw PFN mappings are allowed.
3968 *
3969 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3970 */
3971int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3972 unsigned long *pfn)
3973{
3974 int ret = -EINVAL;
3975 spinlock_t *ptl;
3976 pte_t *ptep;
3977
3978 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3979 return ret;
3980
3981 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3982 if (ret)
3983 return ret;
3984 *pfn = pte_pfn(*ptep);
3985 pte_unmap_unlock(ptep, ptl);
3986 return 0;
3987}
3988EXPORT_SYMBOL(follow_pfn);
3989
28b2ee20 3990#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3991int follow_phys(struct vm_area_struct *vma,
3992 unsigned long address, unsigned int flags,
3993 unsigned long *prot, resource_size_t *phys)
28b2ee20 3994{
03668a4d 3995 int ret = -EINVAL;
28b2ee20
RR
3996 pte_t *ptep, pte;
3997 spinlock_t *ptl;
28b2ee20 3998
d87fe660 3999 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4000 goto out;
28b2ee20 4001
03668a4d 4002 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4003 goto out;
28b2ee20 4004 pte = *ptep;
03668a4d 4005
28b2ee20
RR
4006 if ((flags & FOLL_WRITE) && !pte_write(pte))
4007 goto unlock;
28b2ee20
RR
4008
4009 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4010 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4011
03668a4d 4012 ret = 0;
28b2ee20
RR
4013unlock:
4014 pte_unmap_unlock(ptep, ptl);
4015out:
d87fe660 4016 return ret;
28b2ee20
RR
4017}
4018
4019int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4020 void *buf, int len, int write)
4021{
4022 resource_size_t phys_addr;
4023 unsigned long prot = 0;
2bc7273b 4024 void __iomem *maddr;
28b2ee20
RR
4025 int offset = addr & (PAGE_SIZE-1);
4026
d87fe660 4027 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4028 return -EINVAL;
4029
4030 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4031 if (write)
4032 memcpy_toio(maddr + offset, buf, len);
4033 else
4034 memcpy_fromio(buf, maddr + offset, len);
4035 iounmap(maddr);
4036
4037 return len;
4038}
5a73633e 4039EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4040#endif
4041
0ec76a11 4042/*
206cb636
SW
4043 * Access another process' address space as given in mm. If non-NULL, use the
4044 * given task for page fault accounting.
0ec76a11 4045 */
206cb636
SW
4046static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4047 unsigned long addr, void *buf, int len, int write)
0ec76a11 4048{
0ec76a11 4049 struct vm_area_struct *vma;
0ec76a11
DH
4050 void *old_buf = buf;
4051
0ec76a11 4052 down_read(&mm->mmap_sem);
183ff22b 4053 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4054 while (len) {
4055 int bytes, ret, offset;
4056 void *maddr;
28b2ee20 4057 struct page *page = NULL;
0ec76a11
DH
4058
4059 ret = get_user_pages(tsk, mm, addr, 1,
4060 write, 1, &page, &vma);
28b2ee20
RR
4061 if (ret <= 0) {
4062 /*
4063 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4064 * we can access using slightly different code.
4065 */
4066#ifdef CONFIG_HAVE_IOREMAP_PROT
4067 vma = find_vma(mm, addr);
fe936dfc 4068 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4069 break;
4070 if (vma->vm_ops && vma->vm_ops->access)
4071 ret = vma->vm_ops->access(vma, addr, buf,
4072 len, write);
4073 if (ret <= 0)
4074#endif
4075 break;
4076 bytes = ret;
0ec76a11 4077 } else {
28b2ee20
RR
4078 bytes = len;
4079 offset = addr & (PAGE_SIZE-1);
4080 if (bytes > PAGE_SIZE-offset)
4081 bytes = PAGE_SIZE-offset;
4082
4083 maddr = kmap(page);
4084 if (write) {
4085 copy_to_user_page(vma, page, addr,
4086 maddr + offset, buf, bytes);
4087 set_page_dirty_lock(page);
4088 } else {
4089 copy_from_user_page(vma, page, addr,
4090 buf, maddr + offset, bytes);
4091 }
4092 kunmap(page);
4093 page_cache_release(page);
0ec76a11 4094 }
0ec76a11
DH
4095 len -= bytes;
4096 buf += bytes;
4097 addr += bytes;
4098 }
4099 up_read(&mm->mmap_sem);
0ec76a11
DH
4100
4101 return buf - old_buf;
4102}
03252919 4103
5ddd36b9 4104/**
ae91dbfc 4105 * access_remote_vm - access another process' address space
5ddd36b9
SW
4106 * @mm: the mm_struct of the target address space
4107 * @addr: start address to access
4108 * @buf: source or destination buffer
4109 * @len: number of bytes to transfer
4110 * @write: whether the access is a write
4111 *
4112 * The caller must hold a reference on @mm.
4113 */
4114int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4115 void *buf, int len, int write)
4116{
4117 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4118}
4119
206cb636
SW
4120/*
4121 * Access another process' address space.
4122 * Source/target buffer must be kernel space,
4123 * Do not walk the page table directly, use get_user_pages
4124 */
4125int access_process_vm(struct task_struct *tsk, unsigned long addr,
4126 void *buf, int len, int write)
4127{
4128 struct mm_struct *mm;
4129 int ret;
4130
4131 mm = get_task_mm(tsk);
4132 if (!mm)
4133 return 0;
4134
4135 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4136 mmput(mm);
4137
4138 return ret;
4139}
4140
03252919
AK
4141/*
4142 * Print the name of a VMA.
4143 */
4144void print_vma_addr(char *prefix, unsigned long ip)
4145{
4146 struct mm_struct *mm = current->mm;
4147 struct vm_area_struct *vma;
4148
e8bff74a
IM
4149 /*
4150 * Do not print if we are in atomic
4151 * contexts (in exception stacks, etc.):
4152 */
4153 if (preempt_count())
4154 return;
4155
03252919
AK
4156 down_read(&mm->mmap_sem);
4157 vma = find_vma(mm, ip);
4158 if (vma && vma->vm_file) {
4159 struct file *f = vma->vm_file;
4160 char *buf = (char *)__get_free_page(GFP_KERNEL);
4161 if (buf) {
2fbc57c5 4162 char *p;
03252919 4163
cf28b486 4164 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
4165 if (IS_ERR(p))
4166 p = "?";
2fbc57c5 4167 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4168 vma->vm_start,
4169 vma->vm_end - vma->vm_start);
4170 free_page((unsigned long)buf);
4171 }
4172 }
51a07e50 4173 up_read(&mm->mmap_sem);
03252919 4174}
3ee1afa3 4175
662bbcb2 4176#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3ee1afa3
NP
4177void might_fault(void)
4178{
95156f00
PZ
4179 /*
4180 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4181 * holding the mmap_sem, this is safe because kernel memory doesn't
4182 * get paged out, therefore we'll never actually fault, and the
4183 * below annotations will generate false positives.
4184 */
4185 if (segment_eq(get_fs(), KERNEL_DS))
4186 return;
4187
3ee1afa3
NP
4188 /*
4189 * it would be nicer only to annotate paths which are not under
4190 * pagefault_disable, however that requires a larger audit and
4191 * providing helpers like get_user_atomic.
4192 */
662bbcb2
MT
4193 if (in_atomic())
4194 return;
4195
4196 __might_sleep(__FILE__, __LINE__, 0);
4197
4198 if (current->mm)
3ee1afa3
NP
4199 might_lock_read(&current->mm->mmap_sem);
4200}
4201EXPORT_SYMBOL(might_fault);
4202#endif
47ad8475
AA
4203
4204#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4205static void clear_gigantic_page(struct page *page,
4206 unsigned long addr,
4207 unsigned int pages_per_huge_page)
4208{
4209 int i;
4210 struct page *p = page;
4211
4212 might_sleep();
4213 for (i = 0; i < pages_per_huge_page;
4214 i++, p = mem_map_next(p, page, i)) {
4215 cond_resched();
4216 clear_user_highpage(p, addr + i * PAGE_SIZE);
4217 }
4218}
4219void clear_huge_page(struct page *page,
4220 unsigned long addr, unsigned int pages_per_huge_page)
4221{
4222 int i;
4223
4224 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4225 clear_gigantic_page(page, addr, pages_per_huge_page);
4226 return;
4227 }
4228
4229 might_sleep();
4230 for (i = 0; i < pages_per_huge_page; i++) {
4231 cond_resched();
4232 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4233 }
4234}
4235
4236static void copy_user_gigantic_page(struct page *dst, struct page *src,
4237 unsigned long addr,
4238 struct vm_area_struct *vma,
4239 unsigned int pages_per_huge_page)
4240{
4241 int i;
4242 struct page *dst_base = dst;
4243 struct page *src_base = src;
4244
4245 for (i = 0; i < pages_per_huge_page; ) {
4246 cond_resched();
4247 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4248
4249 i++;
4250 dst = mem_map_next(dst, dst_base, i);
4251 src = mem_map_next(src, src_base, i);
4252 }
4253}
4254
4255void copy_user_huge_page(struct page *dst, struct page *src,
4256 unsigned long addr, struct vm_area_struct *vma,
4257 unsigned int pages_per_huge_page)
4258{
4259 int i;
4260
4261 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4262 copy_user_gigantic_page(dst, src, addr, vma,
4263 pages_per_huge_page);
4264 return;
4265 }
4266
4267 might_sleep();
4268 for (i = 0; i < pages_per_huge_page; i++) {
4269 cond_resched();
4270 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4271 }
4272}
4273#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */