mm/swapfile.c: fix comment typos
[linux-2.6-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
1da177e4 62
6952b61d 63#include <asm/io.h>
1da177e4
LT
64#include <asm/pgalloc.h>
65#include <asm/uaccess.h>
66#include <asm/tlb.h>
67#include <asm/tlbflush.h>
68#include <asm/pgtable.h>
69
42b77728
JB
70#include "internal.h"
71
90572890
PZ
72#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
73#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
74#endif
75
d41dee36 76#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
77/* use the per-pgdat data instead for discontigmem - mbligh */
78unsigned long max_mapnr;
79struct page *mem_map;
80
81EXPORT_SYMBOL(max_mapnr);
82EXPORT_SYMBOL(mem_map);
83#endif
84
1da177e4
LT
85/*
86 * A number of key systems in x86 including ioremap() rely on the assumption
87 * that high_memory defines the upper bound on direct map memory, then end
88 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
89 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90 * and ZONE_HIGHMEM.
91 */
92void * high_memory;
1da177e4 93
1da177e4 94EXPORT_SYMBOL(high_memory);
1da177e4 95
32a93233
IM
96/*
97 * Randomize the address space (stacks, mmaps, brk, etc.).
98 *
99 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100 * as ancient (libc5 based) binaries can segfault. )
101 */
102int randomize_va_space __read_mostly =
103#ifdef CONFIG_COMPAT_BRK
104 1;
105#else
106 2;
107#endif
a62eaf15
AK
108
109static int __init disable_randmaps(char *s)
110{
111 randomize_va_space = 0;
9b41046c 112 return 1;
a62eaf15
AK
113}
114__setup("norandmaps", disable_randmaps);
115
62eede62 116unsigned long zero_pfn __read_mostly;
03f6462a 117unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7
HD
118
119/*
120 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
121 */
122static int __init init_zero_pfn(void)
123{
124 zero_pfn = page_to_pfn(ZERO_PAGE(0));
125 return 0;
126}
127core_initcall(init_zero_pfn);
a62eaf15 128
d559db08 129
34e55232
KH
130#if defined(SPLIT_RSS_COUNTING)
131
ea48cf78 132void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
133{
134 int i;
135
136 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
137 if (current->rss_stat.count[i]) {
138 add_mm_counter(mm, i, current->rss_stat.count[i]);
139 current->rss_stat.count[i] = 0;
34e55232
KH
140 }
141 }
05af2e10 142 current->rss_stat.events = 0;
34e55232
KH
143}
144
145static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
146{
147 struct task_struct *task = current;
148
149 if (likely(task->mm == mm))
150 task->rss_stat.count[member] += val;
151 else
152 add_mm_counter(mm, member, val);
153}
154#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
156
157/* sync counter once per 64 page faults */
158#define TASK_RSS_EVENTS_THRESH (64)
159static void check_sync_rss_stat(struct task_struct *task)
160{
161 if (unlikely(task != current))
162 return;
163 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 164 sync_mm_rss(task->mm);
34e55232 165}
9547d01b 166#else /* SPLIT_RSS_COUNTING */
34e55232
KH
167
168#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
170
171static void check_sync_rss_stat(struct task_struct *task)
172{
173}
174
9547d01b
PZ
175#endif /* SPLIT_RSS_COUNTING */
176
177#ifdef HAVE_GENERIC_MMU_GATHER
178
179static int tlb_next_batch(struct mmu_gather *tlb)
180{
181 struct mmu_gather_batch *batch;
182
183 batch = tlb->active;
184 if (batch->next) {
185 tlb->active = batch->next;
186 return 1;
187 }
188
53a59fc6
MH
189 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190 return 0;
191
9547d01b
PZ
192 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193 if (!batch)
194 return 0;
195
53a59fc6 196 tlb->batch_count++;
9547d01b
PZ
197 batch->next = NULL;
198 batch->nr = 0;
199 batch->max = MAX_GATHER_BATCH;
200
201 tlb->active->next = batch;
202 tlb->active = batch;
203
204 return 1;
205}
206
207/* tlb_gather_mmu
208 * Called to initialize an (on-stack) mmu_gather structure for page-table
209 * tear-down from @mm. The @fullmm argument is used when @mm is without
210 * users and we're going to destroy the full address space (exit/execve).
211 */
2b047252 212void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
213{
214 tlb->mm = mm;
215
2b047252
LT
216 /* Is it from 0 to ~0? */
217 tlb->fullmm = !(start | (end+1));
1de14c3c 218 tlb->need_flush_all = 0;
2b047252
LT
219 tlb->start = start;
220 tlb->end = end;
9547d01b 221 tlb->need_flush = 0;
9547d01b
PZ
222 tlb->local.next = NULL;
223 tlb->local.nr = 0;
224 tlb->local.max = ARRAY_SIZE(tlb->__pages);
225 tlb->active = &tlb->local;
53a59fc6 226 tlb->batch_count = 0;
9547d01b
PZ
227
228#ifdef CONFIG_HAVE_RCU_TABLE_FREE
229 tlb->batch = NULL;
230#endif
231}
232
233void tlb_flush_mmu(struct mmu_gather *tlb)
234{
235 struct mmu_gather_batch *batch;
236
237 if (!tlb->need_flush)
238 return;
239 tlb->need_flush = 0;
240 tlb_flush(tlb);
241#ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 tlb_table_flush(tlb);
34e55232
KH
243#endif
244
9547d01b
PZ
245 for (batch = &tlb->local; batch; batch = batch->next) {
246 free_pages_and_swap_cache(batch->pages, batch->nr);
247 batch->nr = 0;
248 }
249 tlb->active = &tlb->local;
250}
251
252/* tlb_finish_mmu
253 * Called at the end of the shootdown operation to free up any resources
254 * that were required.
255 */
256void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257{
258 struct mmu_gather_batch *batch, *next;
259
260 tlb_flush_mmu(tlb);
261
262 /* keep the page table cache within bounds */
263 check_pgt_cache();
264
265 for (batch = tlb->local.next; batch; batch = next) {
266 next = batch->next;
267 free_pages((unsigned long)batch, 0);
268 }
269 tlb->local.next = NULL;
270}
271
272/* __tlb_remove_page
273 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
274 * handling the additional races in SMP caused by other CPUs caching valid
275 * mappings in their TLBs. Returns the number of free page slots left.
276 * When out of page slots we must call tlb_flush_mmu().
277 */
278int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
279{
280 struct mmu_gather_batch *batch;
281
f21760b1 282 VM_BUG_ON(!tlb->need_flush);
9547d01b 283
9547d01b
PZ
284 batch = tlb->active;
285 batch->pages[batch->nr++] = page;
286 if (batch->nr == batch->max) {
287 if (!tlb_next_batch(tlb))
288 return 0;
0b43c3aa 289 batch = tlb->active;
9547d01b
PZ
290 }
291 VM_BUG_ON(batch->nr > batch->max);
292
293 return batch->max - batch->nr;
294}
295
296#endif /* HAVE_GENERIC_MMU_GATHER */
297
26723911
PZ
298#ifdef CONFIG_HAVE_RCU_TABLE_FREE
299
300/*
301 * See the comment near struct mmu_table_batch.
302 */
303
304static void tlb_remove_table_smp_sync(void *arg)
305{
306 /* Simply deliver the interrupt */
307}
308
309static void tlb_remove_table_one(void *table)
310{
311 /*
312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed.
314 *
315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch.
317 */
318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 __tlb_remove_table(table);
320}
321
322static void tlb_remove_table_rcu(struct rcu_head *head)
323{
324 struct mmu_table_batch *batch;
325 int i;
326
327 batch = container_of(head, struct mmu_table_batch, rcu);
328
329 for (i = 0; i < batch->nr; i++)
330 __tlb_remove_table(batch->tables[i]);
331
332 free_page((unsigned long)batch);
333}
334
335void tlb_table_flush(struct mmu_gather *tlb)
336{
337 struct mmu_table_batch **batch = &tlb->batch;
338
339 if (*batch) {
340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 *batch = NULL;
342 }
343}
344
345void tlb_remove_table(struct mmu_gather *tlb, void *table)
346{
347 struct mmu_table_batch **batch = &tlb->batch;
348
349 tlb->need_flush = 1;
350
351 /*
352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk.
354 */
355 if (atomic_read(&tlb->mm->mm_users) < 2) {
356 __tlb_remove_table(table);
357 return;
358 }
359
360 if (*batch == NULL) {
361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 if (*batch == NULL) {
363 tlb_remove_table_one(table);
364 return;
365 }
366 (*batch)->nr = 0;
367 }
368 (*batch)->tables[(*batch)->nr++] = table;
369 if ((*batch)->nr == MAX_TABLE_BATCH)
370 tlb_table_flush(tlb);
371}
372
9547d01b 373#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 374
1da177e4
LT
375/*
376 * Note: this doesn't free the actual pages themselves. That
377 * has been handled earlier when unmapping all the memory regions.
378 */
9e1b32ca
BH
379static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
380 unsigned long addr)
1da177e4 381{
2f569afd 382 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 383 pmd_clear(pmd);
9e1b32ca 384 pte_free_tlb(tlb, token, addr);
e0da382c 385 tlb->mm->nr_ptes--;
1da177e4
LT
386}
387
e0da382c
HD
388static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
389 unsigned long addr, unsigned long end,
390 unsigned long floor, unsigned long ceiling)
1da177e4
LT
391{
392 pmd_t *pmd;
393 unsigned long next;
e0da382c 394 unsigned long start;
1da177e4 395
e0da382c 396 start = addr;
1da177e4 397 pmd = pmd_offset(pud, addr);
1da177e4
LT
398 do {
399 next = pmd_addr_end(addr, end);
400 if (pmd_none_or_clear_bad(pmd))
401 continue;
9e1b32ca 402 free_pte_range(tlb, pmd, addr);
1da177e4
LT
403 } while (pmd++, addr = next, addr != end);
404
e0da382c
HD
405 start &= PUD_MASK;
406 if (start < floor)
407 return;
408 if (ceiling) {
409 ceiling &= PUD_MASK;
410 if (!ceiling)
411 return;
1da177e4 412 }
e0da382c
HD
413 if (end - 1 > ceiling - 1)
414 return;
415
416 pmd = pmd_offset(pud, start);
417 pud_clear(pud);
9e1b32ca 418 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
419}
420
e0da382c
HD
421static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
422 unsigned long addr, unsigned long end,
423 unsigned long floor, unsigned long ceiling)
1da177e4
LT
424{
425 pud_t *pud;
426 unsigned long next;
e0da382c 427 unsigned long start;
1da177e4 428
e0da382c 429 start = addr;
1da177e4 430 pud = pud_offset(pgd, addr);
1da177e4
LT
431 do {
432 next = pud_addr_end(addr, end);
433 if (pud_none_or_clear_bad(pud))
434 continue;
e0da382c 435 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
436 } while (pud++, addr = next, addr != end);
437
e0da382c
HD
438 start &= PGDIR_MASK;
439 if (start < floor)
440 return;
441 if (ceiling) {
442 ceiling &= PGDIR_MASK;
443 if (!ceiling)
444 return;
1da177e4 445 }
e0da382c
HD
446 if (end - 1 > ceiling - 1)
447 return;
448
449 pud = pud_offset(pgd, start);
450 pgd_clear(pgd);
9e1b32ca 451 pud_free_tlb(tlb, pud, start);
1da177e4
LT
452}
453
454/*
e0da382c 455 * This function frees user-level page tables of a process.
1da177e4 456 */
42b77728 457void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
458 unsigned long addr, unsigned long end,
459 unsigned long floor, unsigned long ceiling)
1da177e4
LT
460{
461 pgd_t *pgd;
462 unsigned long next;
e0da382c
HD
463
464 /*
465 * The next few lines have given us lots of grief...
466 *
467 * Why are we testing PMD* at this top level? Because often
468 * there will be no work to do at all, and we'd prefer not to
469 * go all the way down to the bottom just to discover that.
470 *
471 * Why all these "- 1"s? Because 0 represents both the bottom
472 * of the address space and the top of it (using -1 for the
473 * top wouldn't help much: the masks would do the wrong thing).
474 * The rule is that addr 0 and floor 0 refer to the bottom of
475 * the address space, but end 0 and ceiling 0 refer to the top
476 * Comparisons need to use "end - 1" and "ceiling - 1" (though
477 * that end 0 case should be mythical).
478 *
479 * Wherever addr is brought up or ceiling brought down, we must
480 * be careful to reject "the opposite 0" before it confuses the
481 * subsequent tests. But what about where end is brought down
482 * by PMD_SIZE below? no, end can't go down to 0 there.
483 *
484 * Whereas we round start (addr) and ceiling down, by different
485 * masks at different levels, in order to test whether a table
486 * now has no other vmas using it, so can be freed, we don't
487 * bother to round floor or end up - the tests don't need that.
488 */
1da177e4 489
e0da382c
HD
490 addr &= PMD_MASK;
491 if (addr < floor) {
492 addr += PMD_SIZE;
493 if (!addr)
494 return;
495 }
496 if (ceiling) {
497 ceiling &= PMD_MASK;
498 if (!ceiling)
499 return;
500 }
501 if (end - 1 > ceiling - 1)
502 end -= PMD_SIZE;
503 if (addr > end - 1)
504 return;
505
42b77728 506 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
507 do {
508 next = pgd_addr_end(addr, end);
509 if (pgd_none_or_clear_bad(pgd))
510 continue;
42b77728 511 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 512 } while (pgd++, addr = next, addr != end);
e0da382c
HD
513}
514
42b77728 515void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 516 unsigned long floor, unsigned long ceiling)
e0da382c
HD
517{
518 while (vma) {
519 struct vm_area_struct *next = vma->vm_next;
520 unsigned long addr = vma->vm_start;
521
8f4f8c16 522 /*
25d9e2d1 523 * Hide vma from rmap and truncate_pagecache before freeing
524 * pgtables
8f4f8c16 525 */
5beb4930 526 unlink_anon_vmas(vma);
8f4f8c16
HD
527 unlink_file_vma(vma);
528
9da61aef 529 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 530 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 531 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
532 } else {
533 /*
534 * Optimization: gather nearby vmas into one call down
535 */
536 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 537 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
538 vma = next;
539 next = vma->vm_next;
5beb4930 540 unlink_anon_vmas(vma);
8f4f8c16 541 unlink_file_vma(vma);
3bf5ee95
HD
542 }
543 free_pgd_range(tlb, addr, vma->vm_end,
544 floor, next? next->vm_start: ceiling);
545 }
e0da382c
HD
546 vma = next;
547 }
1da177e4
LT
548}
549
8ac1f832
AA
550int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
551 pmd_t *pmd, unsigned long address)
1da177e4 552{
2f569afd 553 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 554 int wait_split_huge_page;
1bb3630e
HD
555 if (!new)
556 return -ENOMEM;
557
362a61ad
NP
558 /*
559 * Ensure all pte setup (eg. pte page lock and page clearing) are
560 * visible before the pte is made visible to other CPUs by being
561 * put into page tables.
562 *
563 * The other side of the story is the pointer chasing in the page
564 * table walking code (when walking the page table without locking;
565 * ie. most of the time). Fortunately, these data accesses consist
566 * of a chain of data-dependent loads, meaning most CPUs (alpha
567 * being the notable exception) will already guarantee loads are
568 * seen in-order. See the alpha page table accessors for the
569 * smp_read_barrier_depends() barriers in page table walking code.
570 */
571 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
572
c74df32c 573 spin_lock(&mm->page_table_lock);
8ac1f832
AA
574 wait_split_huge_page = 0;
575 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1da177e4 576 mm->nr_ptes++;
1da177e4 577 pmd_populate(mm, pmd, new);
2f569afd 578 new = NULL;
8ac1f832
AA
579 } else if (unlikely(pmd_trans_splitting(*pmd)))
580 wait_split_huge_page = 1;
c74df32c 581 spin_unlock(&mm->page_table_lock);
2f569afd
MS
582 if (new)
583 pte_free(mm, new);
8ac1f832
AA
584 if (wait_split_huge_page)
585 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 586 return 0;
1da177e4
LT
587}
588
1bb3630e 589int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 590{
1bb3630e
HD
591 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
592 if (!new)
593 return -ENOMEM;
594
362a61ad
NP
595 smp_wmb(); /* See comment in __pte_alloc */
596
1bb3630e 597 spin_lock(&init_mm.page_table_lock);
8ac1f832 598 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 599 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 600 new = NULL;
8ac1f832
AA
601 } else
602 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 603 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
604 if (new)
605 pte_free_kernel(&init_mm, new);
1bb3630e 606 return 0;
1da177e4
LT
607}
608
d559db08
KH
609static inline void init_rss_vec(int *rss)
610{
611 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
612}
613
614static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 615{
d559db08
KH
616 int i;
617
34e55232 618 if (current->mm == mm)
05af2e10 619 sync_mm_rss(mm);
d559db08
KH
620 for (i = 0; i < NR_MM_COUNTERS; i++)
621 if (rss[i])
622 add_mm_counter(mm, i, rss[i]);
ae859762
HD
623}
624
b5810039 625/*
6aab341e
LT
626 * This function is called to print an error when a bad pte
627 * is found. For example, we might have a PFN-mapped pte in
628 * a region that doesn't allow it.
b5810039
NP
629 *
630 * The calling function must still handle the error.
631 */
3dc14741
HD
632static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
633 pte_t pte, struct page *page)
b5810039 634{
3dc14741
HD
635 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
636 pud_t *pud = pud_offset(pgd, addr);
637 pmd_t *pmd = pmd_offset(pud, addr);
638 struct address_space *mapping;
639 pgoff_t index;
d936cf9b
HD
640 static unsigned long resume;
641 static unsigned long nr_shown;
642 static unsigned long nr_unshown;
643
644 /*
645 * Allow a burst of 60 reports, then keep quiet for that minute;
646 * or allow a steady drip of one report per second.
647 */
648 if (nr_shown == 60) {
649 if (time_before(jiffies, resume)) {
650 nr_unshown++;
651 return;
652 }
653 if (nr_unshown) {
1e9e6365
HD
654 printk(KERN_ALERT
655 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
656 nr_unshown);
657 nr_unshown = 0;
658 }
659 nr_shown = 0;
660 }
661 if (nr_shown++ == 0)
662 resume = jiffies + 60 * HZ;
3dc14741
HD
663
664 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
665 index = linear_page_index(vma, addr);
666
1e9e6365
HD
667 printk(KERN_ALERT
668 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
669 current->comm,
670 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821
WF
671 if (page)
672 dump_page(page);
1e9e6365 673 printk(KERN_ALERT
3dc14741
HD
674 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
675 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
676 /*
677 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
678 */
679 if (vma->vm_ops)
071361d3
JP
680 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
681 vma->vm_ops->fault);
3dc14741 682 if (vma->vm_file && vma->vm_file->f_op)
071361d3
JP
683 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
684 vma->vm_file->f_op->mmap);
b5810039 685 dump_stack();
373d4d09 686 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
687}
688
2ec74c3e 689static inline bool is_cow_mapping(vm_flags_t flags)
67121172
LT
690{
691 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
692}
693
ee498ed7 694/*
7e675137 695 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 696 *
7e675137
NP
697 * "Special" mappings do not wish to be associated with a "struct page" (either
698 * it doesn't exist, or it exists but they don't want to touch it). In this
699 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 700 *
7e675137
NP
701 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
702 * pte bit, in which case this function is trivial. Secondly, an architecture
703 * may not have a spare pte bit, which requires a more complicated scheme,
704 * described below.
705 *
706 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
707 * special mapping (even if there are underlying and valid "struct pages").
708 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 709 *
b379d790
JH
710 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
711 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
712 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
713 * mapping will always honor the rule
6aab341e
LT
714 *
715 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
716 *
7e675137
NP
717 * And for normal mappings this is false.
718 *
719 * This restricts such mappings to be a linear translation from virtual address
720 * to pfn. To get around this restriction, we allow arbitrary mappings so long
721 * as the vma is not a COW mapping; in that case, we know that all ptes are
722 * special (because none can have been COWed).
b379d790 723 *
b379d790 724 *
7e675137 725 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
726 *
727 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
728 * page" backing, however the difference is that _all_ pages with a struct
729 * page (that is, those where pfn_valid is true) are refcounted and considered
730 * normal pages by the VM. The disadvantage is that pages are refcounted
731 * (which can be slower and simply not an option for some PFNMAP users). The
732 * advantage is that we don't have to follow the strict linearity rule of
733 * PFNMAP mappings in order to support COWable mappings.
734 *
ee498ed7 735 */
7e675137
NP
736#ifdef __HAVE_ARCH_PTE_SPECIAL
737# define HAVE_PTE_SPECIAL 1
738#else
739# define HAVE_PTE_SPECIAL 0
740#endif
741struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
742 pte_t pte)
ee498ed7 743{
22b31eec 744 unsigned long pfn = pte_pfn(pte);
7e675137
NP
745
746 if (HAVE_PTE_SPECIAL) {
22b31eec
HD
747 if (likely(!pte_special(pte)))
748 goto check_pfn;
a13ea5b7
HD
749 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
750 return NULL;
62eede62 751 if (!is_zero_pfn(pfn))
22b31eec 752 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
753 return NULL;
754 }
755
756 /* !HAVE_PTE_SPECIAL case follows: */
757
b379d790
JH
758 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
759 if (vma->vm_flags & VM_MIXEDMAP) {
760 if (!pfn_valid(pfn))
761 return NULL;
762 goto out;
763 } else {
7e675137
NP
764 unsigned long off;
765 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
766 if (pfn == vma->vm_pgoff + off)
767 return NULL;
768 if (!is_cow_mapping(vma->vm_flags))
769 return NULL;
770 }
6aab341e
LT
771 }
772
62eede62
HD
773 if (is_zero_pfn(pfn))
774 return NULL;
22b31eec
HD
775check_pfn:
776 if (unlikely(pfn > highest_memmap_pfn)) {
777 print_bad_pte(vma, addr, pte, NULL);
778 return NULL;
779 }
6aab341e
LT
780
781 /*
7e675137 782 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 783 * eg. VDSO mappings can cause them to exist.
6aab341e 784 */
b379d790 785out:
6aab341e 786 return pfn_to_page(pfn);
ee498ed7
HD
787}
788
1da177e4
LT
789/*
790 * copy one vm_area from one task to the other. Assumes the page tables
791 * already present in the new task to be cleared in the whole range
792 * covered by this vma.
1da177e4
LT
793 */
794
570a335b 795static inline unsigned long
1da177e4 796copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 797 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 798 unsigned long addr, int *rss)
1da177e4 799{
b5810039 800 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
801 pte_t pte = *src_pte;
802 struct page *page;
1da177e4
LT
803
804 /* pte contains position in swap or file, so copy. */
805 if (unlikely(!pte_present(pte))) {
806 if (!pte_file(pte)) {
0697212a
CL
807 swp_entry_t entry = pte_to_swp_entry(pte);
808
570a335b
HD
809 if (swap_duplicate(entry) < 0)
810 return entry.val;
811
1da177e4
LT
812 /* make sure dst_mm is on swapoff's mmlist. */
813 if (unlikely(list_empty(&dst_mm->mmlist))) {
814 spin_lock(&mmlist_lock);
f412ac08
HD
815 if (list_empty(&dst_mm->mmlist))
816 list_add(&dst_mm->mmlist,
817 &src_mm->mmlist);
1da177e4
LT
818 spin_unlock(&mmlist_lock);
819 }
b084d435
KH
820 if (likely(!non_swap_entry(entry)))
821 rss[MM_SWAPENTS]++;
9f9f1acd
KK
822 else if (is_migration_entry(entry)) {
823 page = migration_entry_to_page(entry);
824
825 if (PageAnon(page))
826 rss[MM_ANONPAGES]++;
827 else
828 rss[MM_FILEPAGES]++;
829
830 if (is_write_migration_entry(entry) &&
831 is_cow_mapping(vm_flags)) {
832 /*
833 * COW mappings require pages in both
834 * parent and child to be set to read.
835 */
836 make_migration_entry_read(&entry);
837 pte = swp_entry_to_pte(entry);
c3d16e16
CG
838 if (pte_swp_soft_dirty(*src_pte))
839 pte = pte_swp_mksoft_dirty(pte);
9f9f1acd
KK
840 set_pte_at(src_mm, addr, src_pte, pte);
841 }
0697212a 842 }
1da177e4 843 }
ae859762 844 goto out_set_pte;
1da177e4
LT
845 }
846
1da177e4
LT
847 /*
848 * If it's a COW mapping, write protect it both
849 * in the parent and the child
850 */
67121172 851 if (is_cow_mapping(vm_flags)) {
1da177e4 852 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 853 pte = pte_wrprotect(pte);
1da177e4
LT
854 }
855
856 /*
857 * If it's a shared mapping, mark it clean in
858 * the child
859 */
860 if (vm_flags & VM_SHARED)
861 pte = pte_mkclean(pte);
862 pte = pte_mkold(pte);
6aab341e
LT
863
864 page = vm_normal_page(vma, addr, pte);
865 if (page) {
866 get_page(page);
21333b2b 867 page_dup_rmap(page);
d559db08
KH
868 if (PageAnon(page))
869 rss[MM_ANONPAGES]++;
870 else
871 rss[MM_FILEPAGES]++;
6aab341e 872 }
ae859762
HD
873
874out_set_pte:
875 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 876 return 0;
1da177e4
LT
877}
878
71e3aac0
AA
879int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
881 unsigned long addr, unsigned long end)
1da177e4 882{
c36987e2 883 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 884 pte_t *src_pte, *dst_pte;
c74df32c 885 spinlock_t *src_ptl, *dst_ptl;
e040f218 886 int progress = 0;
d559db08 887 int rss[NR_MM_COUNTERS];
570a335b 888 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
889
890again:
d559db08
KH
891 init_rss_vec(rss);
892
c74df32c 893 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
894 if (!dst_pte)
895 return -ENOMEM;
ece0e2b6 896 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 897 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 898 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
899 orig_src_pte = src_pte;
900 orig_dst_pte = dst_pte;
6606c3e0 901 arch_enter_lazy_mmu_mode();
1da177e4 902
1da177e4
LT
903 do {
904 /*
905 * We are holding two locks at this point - either of them
906 * could generate latencies in another task on another CPU.
907 */
e040f218
HD
908 if (progress >= 32) {
909 progress = 0;
910 if (need_resched() ||
95c354fe 911 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
912 break;
913 }
1da177e4
LT
914 if (pte_none(*src_pte)) {
915 progress++;
916 continue;
917 }
570a335b
HD
918 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
919 vma, addr, rss);
920 if (entry.val)
921 break;
1da177e4
LT
922 progress += 8;
923 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 924
6606c3e0 925 arch_leave_lazy_mmu_mode();
c74df32c 926 spin_unlock(src_ptl);
ece0e2b6 927 pte_unmap(orig_src_pte);
d559db08 928 add_mm_rss_vec(dst_mm, rss);
c36987e2 929 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 930 cond_resched();
570a335b
HD
931
932 if (entry.val) {
933 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
934 return -ENOMEM;
935 progress = 0;
936 }
1da177e4
LT
937 if (addr != end)
938 goto again;
939 return 0;
940}
941
942static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
944 unsigned long addr, unsigned long end)
945{
946 pmd_t *src_pmd, *dst_pmd;
947 unsigned long next;
948
949 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
950 if (!dst_pmd)
951 return -ENOMEM;
952 src_pmd = pmd_offset(src_pud, addr);
953 do {
954 next = pmd_addr_end(addr, end);
71e3aac0
AA
955 if (pmd_trans_huge(*src_pmd)) {
956 int err;
14d1a55c 957 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
958 err = copy_huge_pmd(dst_mm, src_mm,
959 dst_pmd, src_pmd, addr, vma);
960 if (err == -ENOMEM)
961 return -ENOMEM;
962 if (!err)
963 continue;
964 /* fall through */
965 }
1da177e4
LT
966 if (pmd_none_or_clear_bad(src_pmd))
967 continue;
968 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
969 vma, addr, next))
970 return -ENOMEM;
971 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
972 return 0;
973}
974
975static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
976 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
977 unsigned long addr, unsigned long end)
978{
979 pud_t *src_pud, *dst_pud;
980 unsigned long next;
981
982 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
983 if (!dst_pud)
984 return -ENOMEM;
985 src_pud = pud_offset(src_pgd, addr);
986 do {
987 next = pud_addr_end(addr, end);
988 if (pud_none_or_clear_bad(src_pud))
989 continue;
990 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
991 vma, addr, next))
992 return -ENOMEM;
993 } while (dst_pud++, src_pud++, addr = next, addr != end);
994 return 0;
995}
996
997int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
998 struct vm_area_struct *vma)
999{
1000 pgd_t *src_pgd, *dst_pgd;
1001 unsigned long next;
1002 unsigned long addr = vma->vm_start;
1003 unsigned long end = vma->vm_end;
2ec74c3e
SG
1004 unsigned long mmun_start; /* For mmu_notifiers */
1005 unsigned long mmun_end; /* For mmu_notifiers */
1006 bool is_cow;
cddb8a5c 1007 int ret;
1da177e4 1008
d992895b
NP
1009 /*
1010 * Don't copy ptes where a page fault will fill them correctly.
1011 * Fork becomes much lighter when there are big shared or private
1012 * readonly mappings. The tradeoff is that copy_page_range is more
1013 * efficient than faulting.
1014 */
4b6e1e37
KK
1015 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1016 VM_PFNMAP | VM_MIXEDMAP))) {
d992895b
NP
1017 if (!vma->anon_vma)
1018 return 0;
1019 }
1020
1da177e4
LT
1021 if (is_vm_hugetlb_page(vma))
1022 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1023
b3b9c293 1024 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1025 /*
1026 * We do not free on error cases below as remove_vma
1027 * gets called on error from higher level routine
1028 */
5180da41 1029 ret = track_pfn_copy(vma);
2ab64037 1030 if (ret)
1031 return ret;
1032 }
1033
cddb8a5c
AA
1034 /*
1035 * We need to invalidate the secondary MMU mappings only when
1036 * there could be a permission downgrade on the ptes of the
1037 * parent mm. And a permission downgrade will only happen if
1038 * is_cow_mapping() returns true.
1039 */
2ec74c3e
SG
1040 is_cow = is_cow_mapping(vma->vm_flags);
1041 mmun_start = addr;
1042 mmun_end = end;
1043 if (is_cow)
1044 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1045 mmun_end);
cddb8a5c
AA
1046
1047 ret = 0;
1da177e4
LT
1048 dst_pgd = pgd_offset(dst_mm, addr);
1049 src_pgd = pgd_offset(src_mm, addr);
1050 do {
1051 next = pgd_addr_end(addr, end);
1052 if (pgd_none_or_clear_bad(src_pgd))
1053 continue;
cddb8a5c
AA
1054 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1055 vma, addr, next))) {
1056 ret = -ENOMEM;
1057 break;
1058 }
1da177e4 1059 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1060
2ec74c3e
SG
1061 if (is_cow)
1062 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1063 return ret;
1da177e4
LT
1064}
1065
51c6f666 1066static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1067 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1068 unsigned long addr, unsigned long end,
97a89413 1069 struct zap_details *details)
1da177e4 1070{
b5810039 1071 struct mm_struct *mm = tlb->mm;
d16dfc55 1072 int force_flush = 0;
d559db08 1073 int rss[NR_MM_COUNTERS];
97a89413 1074 spinlock_t *ptl;
5f1a1907 1075 pte_t *start_pte;
97a89413 1076 pte_t *pte;
d559db08 1077
d16dfc55 1078again:
e303297e 1079 init_rss_vec(rss);
5f1a1907
SR
1080 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1081 pte = start_pte;
6606c3e0 1082 arch_enter_lazy_mmu_mode();
1da177e4
LT
1083 do {
1084 pte_t ptent = *pte;
51c6f666 1085 if (pte_none(ptent)) {
1da177e4 1086 continue;
51c6f666 1087 }
6f5e6b9e 1088
1da177e4 1089 if (pte_present(ptent)) {
ee498ed7 1090 struct page *page;
51c6f666 1091
6aab341e 1092 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1093 if (unlikely(details) && page) {
1094 /*
1095 * unmap_shared_mapping_pages() wants to
1096 * invalidate cache without truncating:
1097 * unmap shared but keep private pages.
1098 */
1099 if (details->check_mapping &&
1100 details->check_mapping != page->mapping)
1101 continue;
1102 /*
1103 * Each page->index must be checked when
1104 * invalidating or truncating nonlinear.
1105 */
1106 if (details->nonlinear_vma &&
1107 (page->index < details->first_index ||
1108 page->index > details->last_index))
1109 continue;
1110 }
b5810039 1111 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1112 tlb->fullmm);
1da177e4
LT
1113 tlb_remove_tlb_entry(tlb, pte, addr);
1114 if (unlikely(!page))
1115 continue;
1116 if (unlikely(details) && details->nonlinear_vma
1117 && linear_page_index(details->nonlinear_vma,
41bb3476
CG
1118 addr) != page->index) {
1119 pte_t ptfile = pgoff_to_pte(page->index);
1120 if (pte_soft_dirty(ptent))
1121 pte_file_mksoft_dirty(ptfile);
1122 set_pte_at(mm, addr, pte, ptfile);
1123 }
1da177e4 1124 if (PageAnon(page))
d559db08 1125 rss[MM_ANONPAGES]--;
6237bcd9
HD
1126 else {
1127 if (pte_dirty(ptent))
1128 set_page_dirty(page);
4917e5d0 1129 if (pte_young(ptent) &&
64363aad 1130 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1131 mark_page_accessed(page);
d559db08 1132 rss[MM_FILEPAGES]--;
6237bcd9 1133 }
edc315fd 1134 page_remove_rmap(page);
3dc14741
HD
1135 if (unlikely(page_mapcount(page) < 0))
1136 print_bad_pte(vma, addr, ptent, page);
d16dfc55
PZ
1137 force_flush = !__tlb_remove_page(tlb, page);
1138 if (force_flush)
1139 break;
1da177e4
LT
1140 continue;
1141 }
1142 /*
1143 * If details->check_mapping, we leave swap entries;
1144 * if details->nonlinear_vma, we leave file entries.
1145 */
1146 if (unlikely(details))
1147 continue;
2509ef26
HD
1148 if (pte_file(ptent)) {
1149 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1150 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1151 } else {
1152 swp_entry_t entry = pte_to_swp_entry(ptent);
1153
1154 if (!non_swap_entry(entry))
1155 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1156 else if (is_migration_entry(entry)) {
1157 struct page *page;
1158
1159 page = migration_entry_to_page(entry);
1160
1161 if (PageAnon(page))
1162 rss[MM_ANONPAGES]--;
1163 else
1164 rss[MM_FILEPAGES]--;
1165 }
b084d435
KH
1166 if (unlikely(!free_swap_and_cache(entry)))
1167 print_bad_pte(vma, addr, ptent, NULL);
1168 }
9888a1ca 1169 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1170 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1171
d559db08 1172 add_mm_rss_vec(mm, rss);
6606c3e0 1173 arch_leave_lazy_mmu_mode();
5f1a1907 1174 pte_unmap_unlock(start_pte, ptl);
51c6f666 1175
d16dfc55
PZ
1176 /*
1177 * mmu_gather ran out of room to batch pages, we break out of
1178 * the PTE lock to avoid doing the potential expensive TLB invalidate
1179 * and page-free while holding it.
1180 */
1181 if (force_flush) {
2b047252
LT
1182 unsigned long old_end;
1183
d16dfc55 1184 force_flush = 0;
597e1c35 1185
2b047252
LT
1186 /*
1187 * Flush the TLB just for the previous segment,
1188 * then update the range to be the remaining
1189 * TLB range.
1190 */
1191 old_end = tlb->end;
e6c495a9 1192 tlb->end = addr;
2b047252 1193
d16dfc55 1194 tlb_flush_mmu(tlb);
2b047252
LT
1195
1196 tlb->start = addr;
1197 tlb->end = old_end;
1198
1199 if (addr != end)
d16dfc55
PZ
1200 goto again;
1201 }
1202
51c6f666 1203 return addr;
1da177e4
LT
1204}
1205
51c6f666 1206static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1207 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1208 unsigned long addr, unsigned long end,
97a89413 1209 struct zap_details *details)
1da177e4
LT
1210{
1211 pmd_t *pmd;
1212 unsigned long next;
1213
1214 pmd = pmd_offset(pud, addr);
1215 do {
1216 next = pmd_addr_end(addr, end);
71e3aac0 1217 if (pmd_trans_huge(*pmd)) {
1a5a9906 1218 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1219#ifdef CONFIG_DEBUG_VM
1220 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1221 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1222 __func__, addr, end,
1223 vma->vm_start,
1224 vma->vm_end);
1225 BUG();
1226 }
1227#endif
e180377f 1228 split_huge_page_pmd(vma, addr, pmd);
f21760b1 1229 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1230 goto next;
71e3aac0
AA
1231 /* fall through */
1232 }
1a5a9906
AA
1233 /*
1234 * Here there can be other concurrent MADV_DONTNEED or
1235 * trans huge page faults running, and if the pmd is
1236 * none or trans huge it can change under us. This is
1237 * because MADV_DONTNEED holds the mmap_sem in read
1238 * mode.
1239 */
1240 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1241 goto next;
97a89413 1242 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1243next:
97a89413
PZ
1244 cond_resched();
1245 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1246
1247 return addr;
1da177e4
LT
1248}
1249
51c6f666 1250static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1251 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1252 unsigned long addr, unsigned long end,
97a89413 1253 struct zap_details *details)
1da177e4
LT
1254{
1255 pud_t *pud;
1256 unsigned long next;
1257
1258 pud = pud_offset(pgd, addr);
1259 do {
1260 next = pud_addr_end(addr, end);
97a89413 1261 if (pud_none_or_clear_bad(pud))
1da177e4 1262 continue;
97a89413
PZ
1263 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1264 } while (pud++, addr = next, addr != end);
51c6f666
RH
1265
1266 return addr;
1da177e4
LT
1267}
1268
038c7aa1
AV
1269static void unmap_page_range(struct mmu_gather *tlb,
1270 struct vm_area_struct *vma,
1271 unsigned long addr, unsigned long end,
1272 struct zap_details *details)
1da177e4
LT
1273{
1274 pgd_t *pgd;
1275 unsigned long next;
1276
1277 if (details && !details->check_mapping && !details->nonlinear_vma)
1278 details = NULL;
1279
1280 BUG_ON(addr >= end);
569b846d 1281 mem_cgroup_uncharge_start();
1da177e4
LT
1282 tlb_start_vma(tlb, vma);
1283 pgd = pgd_offset(vma->vm_mm, addr);
1284 do {
1285 next = pgd_addr_end(addr, end);
97a89413 1286 if (pgd_none_or_clear_bad(pgd))
1da177e4 1287 continue;
97a89413
PZ
1288 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1289 } while (pgd++, addr = next, addr != end);
1da177e4 1290 tlb_end_vma(tlb, vma);
569b846d 1291 mem_cgroup_uncharge_end();
1da177e4 1292}
51c6f666 1293
f5cc4eef
AV
1294
1295static void unmap_single_vma(struct mmu_gather *tlb,
1296 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1297 unsigned long end_addr,
f5cc4eef
AV
1298 struct zap_details *details)
1299{
1300 unsigned long start = max(vma->vm_start, start_addr);
1301 unsigned long end;
1302
1303 if (start >= vma->vm_end)
1304 return;
1305 end = min(vma->vm_end, end_addr);
1306 if (end <= vma->vm_start)
1307 return;
1308
cbc91f71
SD
1309 if (vma->vm_file)
1310 uprobe_munmap(vma, start, end);
1311
b3b9c293 1312 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1313 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1314
1315 if (start != end) {
1316 if (unlikely(is_vm_hugetlb_page(vma))) {
1317 /*
1318 * It is undesirable to test vma->vm_file as it
1319 * should be non-null for valid hugetlb area.
1320 * However, vm_file will be NULL in the error
1321 * cleanup path of do_mmap_pgoff. When
1322 * hugetlbfs ->mmap method fails,
1323 * do_mmap_pgoff() nullifies vma->vm_file
1324 * before calling this function to clean up.
1325 * Since no pte has actually been setup, it is
1326 * safe to do nothing in this case.
1327 */
24669e58
AK
1328 if (vma->vm_file) {
1329 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
d833352a 1330 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
24669e58
AK
1331 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1332 }
f5cc4eef
AV
1333 } else
1334 unmap_page_range(tlb, vma, start, end, details);
1335 }
1da177e4
LT
1336}
1337
1da177e4
LT
1338/**
1339 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1340 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1341 * @vma: the starting vma
1342 * @start_addr: virtual address at which to start unmapping
1343 * @end_addr: virtual address at which to end unmapping
1da177e4 1344 *
508034a3 1345 * Unmap all pages in the vma list.
1da177e4 1346 *
1da177e4
LT
1347 * Only addresses between `start' and `end' will be unmapped.
1348 *
1349 * The VMA list must be sorted in ascending virtual address order.
1350 *
1351 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1352 * range after unmap_vmas() returns. So the only responsibility here is to
1353 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1354 * drops the lock and schedules.
1355 */
6e8bb019 1356void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1357 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1358 unsigned long end_addr)
1da177e4 1359{
cddb8a5c 1360 struct mm_struct *mm = vma->vm_mm;
1da177e4 1361
cddb8a5c 1362 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1363 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1364 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1365 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1366}
1367
1368/**
1369 * zap_page_range - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1371 * @start: starting address of pages to zap
1da177e4
LT
1372 * @size: number of bytes to zap
1373 * @details: details of nonlinear truncation or shared cache invalidation
f5cc4eef
AV
1374 *
1375 * Caller must protect the VMA list
1da177e4 1376 */
7e027b14 1377void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1378 unsigned long size, struct zap_details *details)
1379{
1380 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1381 struct mmu_gather tlb;
7e027b14 1382 unsigned long end = start + size;
1da177e4 1383
1da177e4 1384 lru_add_drain();
2b047252 1385 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1386 update_hiwater_rss(mm);
7e027b14
LT
1387 mmu_notifier_invalidate_range_start(mm, start, end);
1388 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1389 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1390 mmu_notifier_invalidate_range_end(mm, start, end);
1391 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1392}
1393
f5cc4eef
AV
1394/**
1395 * zap_page_range_single - remove user pages in a given range
1396 * @vma: vm_area_struct holding the applicable pages
1397 * @address: starting address of pages to zap
1398 * @size: number of bytes to zap
1399 * @details: details of nonlinear truncation or shared cache invalidation
1400 *
1401 * The range must fit into one VMA.
1da177e4 1402 */
f5cc4eef 1403static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1404 unsigned long size, struct zap_details *details)
1405{
1406 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1407 struct mmu_gather tlb;
1da177e4 1408 unsigned long end = address + size;
1da177e4 1409
1da177e4 1410 lru_add_drain();
2b047252 1411 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1412 update_hiwater_rss(mm);
f5cc4eef 1413 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1414 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1415 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1416 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1417}
1418
c627f9cc
JS
1419/**
1420 * zap_vma_ptes - remove ptes mapping the vma
1421 * @vma: vm_area_struct holding ptes to be zapped
1422 * @address: starting address of pages to zap
1423 * @size: number of bytes to zap
1424 *
1425 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1426 *
1427 * The entire address range must be fully contained within the vma.
1428 *
1429 * Returns 0 if successful.
1430 */
1431int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1432 unsigned long size)
1433{
1434 if (address < vma->vm_start || address + size > vma->vm_end ||
1435 !(vma->vm_flags & VM_PFNMAP))
1436 return -1;
f5cc4eef 1437 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1438 return 0;
1439}
1440EXPORT_SYMBOL_GPL(zap_vma_ptes);
1441
142762bd 1442/**
240aadee 1443 * follow_page_mask - look up a page descriptor from a user-virtual address
142762bd
JW
1444 * @vma: vm_area_struct mapping @address
1445 * @address: virtual address to look up
1446 * @flags: flags modifying lookup behaviour
240aadee 1447 * @page_mask: on output, *page_mask is set according to the size of the page
142762bd
JW
1448 *
1449 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1450 *
1451 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1452 * an error pointer if there is a mapping to something not represented
1453 * by a page descriptor (see also vm_normal_page()).
1da177e4 1454 */
240aadee
ML
1455struct page *follow_page_mask(struct vm_area_struct *vma,
1456 unsigned long address, unsigned int flags,
1457 unsigned int *page_mask)
1da177e4
LT
1458{
1459 pgd_t *pgd;
1460 pud_t *pud;
1461 pmd_t *pmd;
1462 pte_t *ptep, pte;
deceb6cd 1463 spinlock_t *ptl;
1da177e4 1464 struct page *page;
6aab341e 1465 struct mm_struct *mm = vma->vm_mm;
1da177e4 1466
240aadee
ML
1467 *page_mask = 0;
1468
deceb6cd
HD
1469 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1470 if (!IS_ERR(page)) {
1471 BUG_ON(flags & FOLL_GET);
1472 goto out;
1473 }
1da177e4 1474
deceb6cd 1475 page = NULL;
1da177e4
LT
1476 pgd = pgd_offset(mm, address);
1477 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1478 goto no_page_table;
1da177e4
LT
1479
1480 pud = pud_offset(pgd, address);
ceb86879 1481 if (pud_none(*pud))
deceb6cd 1482 goto no_page_table;
8a07651e 1483 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
e632a938
NH
1484 if (flags & FOLL_GET)
1485 goto out;
ceb86879
AK
1486 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1487 goto out;
1488 }
1489 if (unlikely(pud_bad(*pud)))
1490 goto no_page_table;
1491
1da177e4 1492 pmd = pmd_offset(pud, address);
aeed5fce 1493 if (pmd_none(*pmd))
deceb6cd 1494 goto no_page_table;
71e3aac0 1495 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
deceb6cd 1496 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
e632a938
NH
1497 if (flags & FOLL_GET) {
1498 /*
1499 * Refcount on tail pages are not well-defined and
1500 * shouldn't be taken. The caller should handle a NULL
1501 * return when trying to follow tail pages.
1502 */
1503 if (PageHead(page))
1504 get_page(page);
1505 else {
1506 page = NULL;
1507 goto out;
1508 }
1509 }
1da177e4 1510 goto out;
deceb6cd 1511 }
0b9d7052
AA
1512 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1513 goto no_page_table;
71e3aac0 1514 if (pmd_trans_huge(*pmd)) {
500d65d4 1515 if (flags & FOLL_SPLIT) {
e180377f 1516 split_huge_page_pmd(vma, address, pmd);
500d65d4
AA
1517 goto split_fallthrough;
1518 }
71e3aac0
AA
1519 spin_lock(&mm->page_table_lock);
1520 if (likely(pmd_trans_huge(*pmd))) {
1521 if (unlikely(pmd_trans_splitting(*pmd))) {
1522 spin_unlock(&mm->page_table_lock);
1523 wait_split_huge_page(vma->anon_vma, pmd);
1524 } else {
b676b293 1525 page = follow_trans_huge_pmd(vma, address,
71e3aac0
AA
1526 pmd, flags);
1527 spin_unlock(&mm->page_table_lock);
240aadee 1528 *page_mask = HPAGE_PMD_NR - 1;
71e3aac0
AA
1529 goto out;
1530 }
1531 } else
1532 spin_unlock(&mm->page_table_lock);
1533 /* fall through */
1534 }
500d65d4 1535split_fallthrough:
aeed5fce
HD
1536 if (unlikely(pmd_bad(*pmd)))
1537 goto no_page_table;
1538
deceb6cd 1539 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1540
1541 pte = *ptep;
5117b3b8
HD
1542 if (!pte_present(pte)) {
1543 swp_entry_t entry;
1544 /*
1545 * KSM's break_ksm() relies upon recognizing a ksm page
1546 * even while it is being migrated, so for that case we
1547 * need migration_entry_wait().
1548 */
1549 if (likely(!(flags & FOLL_MIGRATION)))
1550 goto no_page;
1551 if (pte_none(pte) || pte_file(pte))
1552 goto no_page;
1553 entry = pte_to_swp_entry(pte);
1554 if (!is_migration_entry(entry))
1555 goto no_page;
1556 pte_unmap_unlock(ptep, ptl);
1557 migration_entry_wait(mm, pmd, address);
1558 goto split_fallthrough;
1559 }
0b9d7052
AA
1560 if ((flags & FOLL_NUMA) && pte_numa(pte))
1561 goto no_page;
deceb6cd
HD
1562 if ((flags & FOLL_WRITE) && !pte_write(pte))
1563 goto unlock;
a13ea5b7 1564
6aab341e 1565 page = vm_normal_page(vma, address, pte);
a13ea5b7
HD
1566 if (unlikely(!page)) {
1567 if ((flags & FOLL_DUMP) ||
62eede62 1568 !is_zero_pfn(pte_pfn(pte)))
a13ea5b7
HD
1569 goto bad_page;
1570 page = pte_page(pte);
1571 }
1da177e4 1572
deceb6cd 1573 if (flags & FOLL_GET)
70b50f94 1574 get_page_foll(page);
deceb6cd
HD
1575 if (flags & FOLL_TOUCH) {
1576 if ((flags & FOLL_WRITE) &&
1577 !pte_dirty(pte) && !PageDirty(page))
1578 set_page_dirty(page);
bd775c42
KM
1579 /*
1580 * pte_mkyoung() would be more correct here, but atomic care
1581 * is needed to avoid losing the dirty bit: it is easier to use
1582 * mark_page_accessed().
1583 */
deceb6cd
HD
1584 mark_page_accessed(page);
1585 }
a1fde08c 1586 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
110d74a9
ML
1587 /*
1588 * The preliminary mapping check is mainly to avoid the
1589 * pointless overhead of lock_page on the ZERO_PAGE
1590 * which might bounce very badly if there is contention.
1591 *
1592 * If the page is already locked, we don't need to
1593 * handle it now - vmscan will handle it later if and
1594 * when it attempts to reclaim the page.
1595 */
1596 if (page->mapping && trylock_page(page)) {
1597 lru_add_drain(); /* push cached pages to LRU */
1598 /*
e6c509f8
HD
1599 * Because we lock page here, and migration is
1600 * blocked by the pte's page reference, and we
1601 * know the page is still mapped, we don't even
1602 * need to check for file-cache page truncation.
110d74a9 1603 */
e6c509f8 1604 mlock_vma_page(page);
110d74a9
ML
1605 unlock_page(page);
1606 }
1607 }
deceb6cd
HD
1608unlock:
1609 pte_unmap_unlock(ptep, ptl);
1da177e4 1610out:
deceb6cd 1611 return page;
1da177e4 1612
89f5b7da
LT
1613bad_page:
1614 pte_unmap_unlock(ptep, ptl);
1615 return ERR_PTR(-EFAULT);
1616
1617no_page:
1618 pte_unmap_unlock(ptep, ptl);
1619 if (!pte_none(pte))
1620 return page;
8e4b9a60 1621
deceb6cd
HD
1622no_page_table:
1623 /*
1624 * When core dumping an enormous anonymous area that nobody
8e4b9a60
HD
1625 * has touched so far, we don't want to allocate unnecessary pages or
1626 * page tables. Return error instead of NULL to skip handle_mm_fault,
1627 * then get_dump_page() will return NULL to leave a hole in the dump.
1628 * But we can only make this optimization where a hole would surely
1629 * be zero-filled if handle_mm_fault() actually did handle it.
deceb6cd 1630 */
8e4b9a60
HD
1631 if ((flags & FOLL_DUMP) &&
1632 (!vma->vm_ops || !vma->vm_ops->fault))
1633 return ERR_PTR(-EFAULT);
deceb6cd 1634 return page;
1da177e4
LT
1635}
1636
95042f9e
LT
1637static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1638{
a09a79f6
MP
1639 return stack_guard_page_start(vma, addr) ||
1640 stack_guard_page_end(vma, addr+PAGE_SIZE);
95042f9e
LT
1641}
1642
0014bd99
HY
1643/**
1644 * __get_user_pages() - pin user pages in memory
1645 * @tsk: task_struct of target task
1646 * @mm: mm_struct of target mm
1647 * @start: starting user address
1648 * @nr_pages: number of pages from start to pin
1649 * @gup_flags: flags modifying pin behaviour
1650 * @pages: array that receives pointers to the pages pinned.
1651 * Should be at least nr_pages long. Or NULL, if caller
1652 * only intends to ensure the pages are faulted in.
1653 * @vmas: array of pointers to vmas corresponding to each page.
1654 * Or NULL if the caller does not require them.
1655 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1656 *
1657 * Returns number of pages pinned. This may be fewer than the number
1658 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1659 * were pinned, returns -errno. Each page returned must be released
1660 * with a put_page() call when it is finished with. vmas will only
1661 * remain valid while mmap_sem is held.
1662 *
1663 * Must be called with mmap_sem held for read or write.
1664 *
1665 * __get_user_pages walks a process's page tables and takes a reference to
1666 * each struct page that each user address corresponds to at a given
1667 * instant. That is, it takes the page that would be accessed if a user
1668 * thread accesses the given user virtual address at that instant.
1669 *
1670 * This does not guarantee that the page exists in the user mappings when
1671 * __get_user_pages returns, and there may even be a completely different
1672 * page there in some cases (eg. if mmapped pagecache has been invalidated
1673 * and subsequently re faulted). However it does guarantee that the page
1674 * won't be freed completely. And mostly callers simply care that the page
1675 * contains data that was valid *at some point in time*. Typically, an IO
1676 * or similar operation cannot guarantee anything stronger anyway because
1677 * locks can't be held over the syscall boundary.
1678 *
1679 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1680 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1681 * appropriate) must be called after the page is finished with, and
1682 * before put_page is called.
1683 *
1684 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1685 * or mmap_sem contention, and if waiting is needed to pin all pages,
1686 * *@nonblocking will be set to 0.
1687 *
1688 * In most cases, get_user_pages or get_user_pages_fast should be used
1689 * instead of __get_user_pages. __get_user_pages should be used only if
1690 * you need some special @gup_flags.
1691 */
28a35716
ML
1692long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1693 unsigned long start, unsigned long nr_pages,
1694 unsigned int gup_flags, struct page **pages,
1695 struct vm_area_struct **vmas, int *nonblocking)
1da177e4 1696{
28a35716 1697 long i;
58fa879e 1698 unsigned long vm_flags;
240aadee 1699 unsigned int page_mask;
1da177e4 1700
28a35716 1701 if (!nr_pages)
900cf086 1702 return 0;
58fa879e
HD
1703
1704 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1705
1da177e4
LT
1706 /*
1707 * Require read or write permissions.
58fa879e 1708 * If FOLL_FORCE is set, we only require the "MAY" flags.
1da177e4 1709 */
58fa879e
HD
1710 vm_flags = (gup_flags & FOLL_WRITE) ?
1711 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1712 vm_flags &= (gup_flags & FOLL_FORCE) ?
1713 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
0b9d7052
AA
1714
1715 /*
1716 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1717 * would be called on PROT_NONE ranges. We must never invoke
1718 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1719 * page faults would unprotect the PROT_NONE ranges if
1720 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1721 * bitflag. So to avoid that, don't set FOLL_NUMA if
1722 * FOLL_FORCE is set.
1723 */
1724 if (!(gup_flags & FOLL_FORCE))
1725 gup_flags |= FOLL_NUMA;
1726
1da177e4
LT
1727 i = 0;
1728
1729 do {
deceb6cd 1730 struct vm_area_struct *vma;
1da177e4
LT
1731
1732 vma = find_extend_vma(mm, start);
e7f22e20 1733 if (!vma && in_gate_area(mm, start)) {
1da177e4 1734 unsigned long pg = start & PAGE_MASK;
1da177e4
LT
1735 pgd_t *pgd;
1736 pud_t *pud;
1737 pmd_t *pmd;
1738 pte_t *pte;
b291f000
NP
1739
1740 /* user gate pages are read-only */
58fa879e 1741 if (gup_flags & FOLL_WRITE)
1da177e4
LT
1742 return i ? : -EFAULT;
1743 if (pg > TASK_SIZE)
1744 pgd = pgd_offset_k(pg);
1745 else
1746 pgd = pgd_offset_gate(mm, pg);
1747 BUG_ON(pgd_none(*pgd));
1748 pud = pud_offset(pgd, pg);
1749 BUG_ON(pud_none(*pud));
1750 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1751 if (pmd_none(*pmd))
1752 return i ? : -EFAULT;
f66055ab 1753 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4 1754 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1755 if (pte_none(*pte)) {
1756 pte_unmap(pte);
1757 return i ? : -EFAULT;
1758 }
95042f9e 1759 vma = get_gate_vma(mm);
1da177e4 1760 if (pages) {
de51257a
HD
1761 struct page *page;
1762
95042f9e 1763 page = vm_normal_page(vma, start, *pte);
de51257a
HD
1764 if (!page) {
1765 if (!(gup_flags & FOLL_DUMP) &&
1766 is_zero_pfn(pte_pfn(*pte)))
1767 page = pte_page(*pte);
1768 else {
1769 pte_unmap(pte);
1770 return i ? : -EFAULT;
1771 }
1772 }
6aab341e 1773 pages[i] = page;
de51257a 1774 get_page(page);
1da177e4
LT
1775 }
1776 pte_unmap(pte);
240aadee 1777 page_mask = 0;
95042f9e 1778 goto next_page;
1da177e4
LT
1779 }
1780
b291f000
NP
1781 if (!vma ||
1782 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1c3aff1c 1783 !(vm_flags & vma->vm_flags))
1da177e4
LT
1784 return i ? : -EFAULT;
1785
2a15efc9
HD
1786 if (is_vm_hugetlb_page(vma)) {
1787 i = follow_hugetlb_page(mm, vma, pages, vmas,
58fa879e 1788 &start, &nr_pages, i, gup_flags);
2a15efc9
HD
1789 continue;
1790 }
deceb6cd 1791
1da177e4 1792 do {
08ef4729 1793 struct page *page;
58fa879e 1794 unsigned int foll_flags = gup_flags;
240aadee 1795 unsigned int page_increm;
1da177e4 1796
462e00cc 1797 /*
4779280d 1798 * If we have a pending SIGKILL, don't keep faulting
1c3aff1c 1799 * pages and potentially allocating memory.
462e00cc 1800 */
1c3aff1c 1801 if (unlikely(fatal_signal_pending(current)))
4779280d 1802 return i ? i : -ERESTARTSYS;
462e00cc 1803
deceb6cd 1804 cond_resched();
240aadee
ML
1805 while (!(page = follow_page_mask(vma, start,
1806 foll_flags, &page_mask))) {
deceb6cd 1807 int ret;
53a7706d
ML
1808 unsigned int fault_flags = 0;
1809
a09a79f6
MP
1810 /* For mlock, just skip the stack guard page. */
1811 if (foll_flags & FOLL_MLOCK) {
1812 if (stack_guard_page(vma, start))
1813 goto next_page;
1814 }
53a7706d
ML
1815 if (foll_flags & FOLL_WRITE)
1816 fault_flags |= FAULT_FLAG_WRITE;
1817 if (nonblocking)
1818 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
318b275f
GN
1819 if (foll_flags & FOLL_NOWAIT)
1820 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
d06063cc 1821
d26ed650 1822 ret = handle_mm_fault(mm, vma, start,
53a7706d 1823 fault_flags);
d26ed650 1824
83c54070
NP
1825 if (ret & VM_FAULT_ERROR) {
1826 if (ret & VM_FAULT_OOM)
1827 return i ? i : -ENOMEM;
69ebb83e
HY
1828 if (ret & (VM_FAULT_HWPOISON |
1829 VM_FAULT_HWPOISON_LARGE)) {
1830 if (i)
1831 return i;
1832 else if (gup_flags & FOLL_HWPOISON)
1833 return -EHWPOISON;
1834 else
1835 return -EFAULT;
1836 }
1837 if (ret & VM_FAULT_SIGBUS)
83c54070
NP
1838 return i ? i : -EFAULT;
1839 BUG();
1840 }
e7f22e20
SW
1841
1842 if (tsk) {
1843 if (ret & VM_FAULT_MAJOR)
1844 tsk->maj_flt++;
1845 else
1846 tsk->min_flt++;
1847 }
83c54070 1848
53a7706d 1849 if (ret & VM_FAULT_RETRY) {
318b275f
GN
1850 if (nonblocking)
1851 *nonblocking = 0;
53a7706d
ML
1852 return i;
1853 }
1854
a68d2ebc 1855 /*
83c54070
NP
1856 * The VM_FAULT_WRITE bit tells us that
1857 * do_wp_page has broken COW when necessary,
1858 * even if maybe_mkwrite decided not to set
1859 * pte_write. We can thus safely do subsequent
878b63ac
HD
1860 * page lookups as if they were reads. But only
1861 * do so when looping for pte_write is futile:
1862 * in some cases userspace may also be wanting
1863 * to write to the gotten user page, which a
1864 * read fault here might prevent (a readonly
1865 * page might get reCOWed by userspace write).
a68d2ebc 1866 */
878b63ac
HD
1867 if ((ret & VM_FAULT_WRITE) &&
1868 !(vma->vm_flags & VM_WRITE))
deceb6cd 1869 foll_flags &= ~FOLL_WRITE;
83c54070 1870
7f7bbbe5 1871 cond_resched();
1da177e4 1872 }
89f5b7da
LT
1873 if (IS_ERR(page))
1874 return i ? i : PTR_ERR(page);
1da177e4 1875 if (pages) {
08ef4729 1876 pages[i] = page;
03beb076 1877
a6f36be3 1878 flush_anon_page(vma, page, start);
08ef4729 1879 flush_dcache_page(page);
240aadee 1880 page_mask = 0;
1da177e4 1881 }
95042f9e 1882next_page:
240aadee 1883 if (vmas) {
1da177e4 1884 vmas[i] = vma;
240aadee
ML
1885 page_mask = 0;
1886 }
1887 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1888 if (page_increm > nr_pages)
1889 page_increm = nr_pages;
1890 i += page_increm;
1891 start += page_increm * PAGE_SIZE;
1892 nr_pages -= page_increm;
9d73777e
PZ
1893 } while (nr_pages && start < vma->vm_end);
1894 } while (nr_pages);
1da177e4
LT
1895 return i;
1896}
0014bd99 1897EXPORT_SYMBOL(__get_user_pages);
b291f000 1898
2efaca92
BH
1899/*
1900 * fixup_user_fault() - manually resolve a user page fault
1901 * @tsk: the task_struct to use for page fault accounting, or
1902 * NULL if faults are not to be recorded.
1903 * @mm: mm_struct of target mm
1904 * @address: user address
1905 * @fault_flags:flags to pass down to handle_mm_fault()
1906 *
1907 * This is meant to be called in the specific scenario where for locking reasons
1908 * we try to access user memory in atomic context (within a pagefault_disable()
1909 * section), this returns -EFAULT, and we want to resolve the user fault before
1910 * trying again.
1911 *
1912 * Typically this is meant to be used by the futex code.
1913 *
1914 * The main difference with get_user_pages() is that this function will
1915 * unconditionally call handle_mm_fault() which will in turn perform all the
1916 * necessary SW fixup of the dirty and young bits in the PTE, while
1917 * handle_mm_fault() only guarantees to update these in the struct page.
1918 *
1919 * This is important for some architectures where those bits also gate the
1920 * access permission to the page because they are maintained in software. On
1921 * such architectures, gup() will not be enough to make a subsequent access
1922 * succeed.
1923 *
1924 * This should be called with the mm_sem held for read.
1925 */
1926int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1927 unsigned long address, unsigned int fault_flags)
1928{
1929 struct vm_area_struct *vma;
1930 int ret;
1931
1932 vma = find_extend_vma(mm, address);
1933 if (!vma || address < vma->vm_start)
1934 return -EFAULT;
1935
1936 ret = handle_mm_fault(mm, vma, address, fault_flags);
1937 if (ret & VM_FAULT_ERROR) {
1938 if (ret & VM_FAULT_OOM)
1939 return -ENOMEM;
1940 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1941 return -EHWPOISON;
1942 if (ret & VM_FAULT_SIGBUS)
1943 return -EFAULT;
1944 BUG();
1945 }
1946 if (tsk) {
1947 if (ret & VM_FAULT_MAJOR)
1948 tsk->maj_flt++;
1949 else
1950 tsk->min_flt++;
1951 }
1952 return 0;
1953}
1954
1955/*
d2bf6be8 1956 * get_user_pages() - pin user pages in memory
e7f22e20
SW
1957 * @tsk: the task_struct to use for page fault accounting, or
1958 * NULL if faults are not to be recorded.
d2bf6be8
NP
1959 * @mm: mm_struct of target mm
1960 * @start: starting user address
9d73777e 1961 * @nr_pages: number of pages from start to pin
d2bf6be8
NP
1962 * @write: whether pages will be written to by the caller
1963 * @force: whether to force write access even if user mapping is
1964 * readonly. This will result in the page being COWed even
1965 * in MAP_SHARED mappings. You do not want this.
1966 * @pages: array that receives pointers to the pages pinned.
1967 * Should be at least nr_pages long. Or NULL, if caller
1968 * only intends to ensure the pages are faulted in.
1969 * @vmas: array of pointers to vmas corresponding to each page.
1970 * Or NULL if the caller does not require them.
1971 *
1972 * Returns number of pages pinned. This may be fewer than the number
9d73777e 1973 * requested. If nr_pages is 0 or negative, returns 0. If no pages
d2bf6be8
NP
1974 * were pinned, returns -errno. Each page returned must be released
1975 * with a put_page() call when it is finished with. vmas will only
1976 * remain valid while mmap_sem is held.
1977 *
1978 * Must be called with mmap_sem held for read or write.
1979 *
1980 * get_user_pages walks a process's page tables and takes a reference to
1981 * each struct page that each user address corresponds to at a given
1982 * instant. That is, it takes the page that would be accessed if a user
1983 * thread accesses the given user virtual address at that instant.
1984 *
1985 * This does not guarantee that the page exists in the user mappings when
1986 * get_user_pages returns, and there may even be a completely different
1987 * page there in some cases (eg. if mmapped pagecache has been invalidated
1988 * and subsequently re faulted). However it does guarantee that the page
1989 * won't be freed completely. And mostly callers simply care that the page
1990 * contains data that was valid *at some point in time*. Typically, an IO
1991 * or similar operation cannot guarantee anything stronger anyway because
1992 * locks can't be held over the syscall boundary.
1993 *
1994 * If write=0, the page must not be written to. If the page is written to,
1995 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1996 * after the page is finished with, and before put_page is called.
1997 *
1998 * get_user_pages is typically used for fewer-copy IO operations, to get a
1999 * handle on the memory by some means other than accesses via the user virtual
2000 * addresses. The pages may be submitted for DMA to devices or accessed via
2001 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2002 * use the correct cache flushing APIs.
2003 *
2004 * See also get_user_pages_fast, for performance critical applications.
2005 */
28a35716
ML
2006long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2007 unsigned long start, unsigned long nr_pages, int write,
2008 int force, struct page **pages, struct vm_area_struct **vmas)
b291f000 2009{
58fa879e 2010 int flags = FOLL_TOUCH;
b291f000 2011
58fa879e
HD
2012 if (pages)
2013 flags |= FOLL_GET;
b291f000 2014 if (write)
58fa879e 2015 flags |= FOLL_WRITE;
b291f000 2016 if (force)
58fa879e 2017 flags |= FOLL_FORCE;
b291f000 2018
53a7706d
ML
2019 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2020 NULL);
b291f000 2021}
1da177e4
LT
2022EXPORT_SYMBOL(get_user_pages);
2023
f3e8fccd
HD
2024/**
2025 * get_dump_page() - pin user page in memory while writing it to core dump
2026 * @addr: user address
2027 *
2028 * Returns struct page pointer of user page pinned for dump,
2029 * to be freed afterwards by page_cache_release() or put_page().
2030 *
2031 * Returns NULL on any kind of failure - a hole must then be inserted into
2032 * the corefile, to preserve alignment with its headers; and also returns
2033 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2034 * allowing a hole to be left in the corefile to save diskspace.
2035 *
2036 * Called without mmap_sem, but after all other threads have been killed.
2037 */
2038#ifdef CONFIG_ELF_CORE
2039struct page *get_dump_page(unsigned long addr)
2040{
2041 struct vm_area_struct *vma;
2042 struct page *page;
2043
2044 if (__get_user_pages(current, current->mm, addr, 1,
53a7706d
ML
2045 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2046 NULL) < 1)
f3e8fccd 2047 return NULL;
f3e8fccd
HD
2048 flush_cache_page(vma, addr, page_to_pfn(page));
2049 return page;
2050}
2051#endif /* CONFIG_ELF_CORE */
2052
25ca1d6c 2053pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 2054 spinlock_t **ptl)
c9cfcddf
LT
2055{
2056 pgd_t * pgd = pgd_offset(mm, addr);
2057 pud_t * pud = pud_alloc(mm, pgd, addr);
2058 if (pud) {
49c91fb0 2059 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
2060 if (pmd) {
2061 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 2062 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 2063 }
c9cfcddf
LT
2064 }
2065 return NULL;
2066}
2067
238f58d8
LT
2068/*
2069 * This is the old fallback for page remapping.
2070 *
2071 * For historical reasons, it only allows reserved pages. Only
2072 * old drivers should use this, and they needed to mark their
2073 * pages reserved for the old functions anyway.
2074 */
423bad60
NP
2075static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2076 struct page *page, pgprot_t prot)
238f58d8 2077{
423bad60 2078 struct mm_struct *mm = vma->vm_mm;
238f58d8 2079 int retval;
c9cfcddf 2080 pte_t *pte;
8a9f3ccd
BS
2081 spinlock_t *ptl;
2082
238f58d8 2083 retval = -EINVAL;
a145dd41 2084 if (PageAnon(page))
5b4e655e 2085 goto out;
238f58d8
LT
2086 retval = -ENOMEM;
2087 flush_dcache_page(page);
c9cfcddf 2088 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 2089 if (!pte)
5b4e655e 2090 goto out;
238f58d8
LT
2091 retval = -EBUSY;
2092 if (!pte_none(*pte))
2093 goto out_unlock;
2094
2095 /* Ok, finally just insert the thing.. */
2096 get_page(page);
34e55232 2097 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
2098 page_add_file_rmap(page);
2099 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2100
2101 retval = 0;
8a9f3ccd
BS
2102 pte_unmap_unlock(pte, ptl);
2103 return retval;
238f58d8
LT
2104out_unlock:
2105 pte_unmap_unlock(pte, ptl);
2106out:
2107 return retval;
2108}
2109
bfa5bf6d
REB
2110/**
2111 * vm_insert_page - insert single page into user vma
2112 * @vma: user vma to map to
2113 * @addr: target user address of this page
2114 * @page: source kernel page
2115 *
a145dd41
LT
2116 * This allows drivers to insert individual pages they've allocated
2117 * into a user vma.
2118 *
2119 * The page has to be a nice clean _individual_ kernel allocation.
2120 * If you allocate a compound page, you need to have marked it as
2121 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2122 * (see split_page()).
a145dd41
LT
2123 *
2124 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2125 * took an arbitrary page protection parameter. This doesn't allow
2126 * that. Your vma protection will have to be set up correctly, which
2127 * means that if you want a shared writable mapping, you'd better
2128 * ask for a shared writable mapping!
2129 *
2130 * The page does not need to be reserved.
4b6e1e37
KK
2131 *
2132 * Usually this function is called from f_op->mmap() handler
2133 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2134 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2135 * function from other places, for example from page-fault handler.
a145dd41 2136 */
423bad60
NP
2137int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2138 struct page *page)
a145dd41
LT
2139{
2140 if (addr < vma->vm_start || addr >= vma->vm_end)
2141 return -EFAULT;
2142 if (!page_count(page))
2143 return -EINVAL;
4b6e1e37
KK
2144 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2145 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2146 BUG_ON(vma->vm_flags & VM_PFNMAP);
2147 vma->vm_flags |= VM_MIXEDMAP;
2148 }
423bad60 2149 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2150}
e3c3374f 2151EXPORT_SYMBOL(vm_insert_page);
a145dd41 2152
423bad60
NP
2153static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2154 unsigned long pfn, pgprot_t prot)
2155{
2156 struct mm_struct *mm = vma->vm_mm;
2157 int retval;
2158 pte_t *pte, entry;
2159 spinlock_t *ptl;
2160
2161 retval = -ENOMEM;
2162 pte = get_locked_pte(mm, addr, &ptl);
2163 if (!pte)
2164 goto out;
2165 retval = -EBUSY;
2166 if (!pte_none(*pte))
2167 goto out_unlock;
2168
2169 /* Ok, finally just insert the thing.. */
2170 entry = pte_mkspecial(pfn_pte(pfn, prot));
2171 set_pte_at(mm, addr, pte, entry);
4b3073e1 2172 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
2173
2174 retval = 0;
2175out_unlock:
2176 pte_unmap_unlock(pte, ptl);
2177out:
2178 return retval;
2179}
2180
e0dc0d8f
NP
2181/**
2182 * vm_insert_pfn - insert single pfn into user vma
2183 * @vma: user vma to map to
2184 * @addr: target user address of this page
2185 * @pfn: source kernel pfn
2186 *
c462f179 2187 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
2188 * they've allocated into a user vma. Same comments apply.
2189 *
2190 * This function should only be called from a vm_ops->fault handler, and
2191 * in that case the handler should return NULL.
0d71d10a
NP
2192 *
2193 * vma cannot be a COW mapping.
2194 *
2195 * As this is called only for pages that do not currently exist, we
2196 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
2197 */
2198int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 2199 unsigned long pfn)
e0dc0d8f 2200{
2ab64037 2201 int ret;
e4b866ed 2202 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
2203 /*
2204 * Technically, architectures with pte_special can avoid all these
2205 * restrictions (same for remap_pfn_range). However we would like
2206 * consistency in testing and feature parity among all, so we should
2207 * try to keep these invariants in place for everybody.
2208 */
b379d790
JH
2209 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2210 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2211 (VM_PFNMAP|VM_MIXEDMAP));
2212 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2213 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 2214
423bad60
NP
2215 if (addr < vma->vm_start || addr >= vma->vm_end)
2216 return -EFAULT;
5180da41 2217 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 2218 return -EINVAL;
2219
e4b866ed 2220 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 2221
2ab64037 2222 return ret;
423bad60
NP
2223}
2224EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 2225
423bad60
NP
2226int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2227 unsigned long pfn)
2228{
2229 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 2230
423bad60
NP
2231 if (addr < vma->vm_start || addr >= vma->vm_end)
2232 return -EFAULT;
e0dc0d8f 2233
423bad60
NP
2234 /*
2235 * If we don't have pte special, then we have to use the pfn_valid()
2236 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2237 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2238 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2239 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
2240 */
2241 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2242 struct page *page;
2243
2244 page = pfn_to_page(pfn);
2245 return insert_page(vma, addr, page, vma->vm_page_prot);
2246 }
2247 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 2248}
423bad60 2249EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 2250
1da177e4
LT
2251/*
2252 * maps a range of physical memory into the requested pages. the old
2253 * mappings are removed. any references to nonexistent pages results
2254 * in null mappings (currently treated as "copy-on-access")
2255 */
2256static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2257 unsigned long addr, unsigned long end,
2258 unsigned long pfn, pgprot_t prot)
2259{
2260 pte_t *pte;
c74df32c 2261 spinlock_t *ptl;
1da177e4 2262
c74df32c 2263 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2264 if (!pte)
2265 return -ENOMEM;
6606c3e0 2266 arch_enter_lazy_mmu_mode();
1da177e4
LT
2267 do {
2268 BUG_ON(!pte_none(*pte));
7e675137 2269 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2270 pfn++;
2271 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2272 arch_leave_lazy_mmu_mode();
c74df32c 2273 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
2274 return 0;
2275}
2276
2277static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2278 unsigned long addr, unsigned long end,
2279 unsigned long pfn, pgprot_t prot)
2280{
2281 pmd_t *pmd;
2282 unsigned long next;
2283
2284 pfn -= addr >> PAGE_SHIFT;
2285 pmd = pmd_alloc(mm, pud, addr);
2286 if (!pmd)
2287 return -ENOMEM;
f66055ab 2288 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2289 do {
2290 next = pmd_addr_end(addr, end);
2291 if (remap_pte_range(mm, pmd, addr, next,
2292 pfn + (addr >> PAGE_SHIFT), prot))
2293 return -ENOMEM;
2294 } while (pmd++, addr = next, addr != end);
2295 return 0;
2296}
2297
2298static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2299 unsigned long addr, unsigned long end,
2300 unsigned long pfn, pgprot_t prot)
2301{
2302 pud_t *pud;
2303 unsigned long next;
2304
2305 pfn -= addr >> PAGE_SHIFT;
2306 pud = pud_alloc(mm, pgd, addr);
2307 if (!pud)
2308 return -ENOMEM;
2309 do {
2310 next = pud_addr_end(addr, end);
2311 if (remap_pmd_range(mm, pud, addr, next,
2312 pfn + (addr >> PAGE_SHIFT), prot))
2313 return -ENOMEM;
2314 } while (pud++, addr = next, addr != end);
2315 return 0;
2316}
2317
bfa5bf6d
REB
2318/**
2319 * remap_pfn_range - remap kernel memory to userspace
2320 * @vma: user vma to map to
2321 * @addr: target user address to start at
2322 * @pfn: physical address of kernel memory
2323 * @size: size of map area
2324 * @prot: page protection flags for this mapping
2325 *
2326 * Note: this is only safe if the mm semaphore is held when called.
2327 */
1da177e4
LT
2328int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2329 unsigned long pfn, unsigned long size, pgprot_t prot)
2330{
2331 pgd_t *pgd;
2332 unsigned long next;
2d15cab8 2333 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2334 struct mm_struct *mm = vma->vm_mm;
2335 int err;
2336
2337 /*
2338 * Physically remapped pages are special. Tell the
2339 * rest of the world about it:
2340 * VM_IO tells people not to look at these pages
2341 * (accesses can have side effects).
6aab341e
LT
2342 * VM_PFNMAP tells the core MM that the base pages are just
2343 * raw PFN mappings, and do not have a "struct page" associated
2344 * with them.
314e51b9
KK
2345 * VM_DONTEXPAND
2346 * Disable vma merging and expanding with mremap().
2347 * VM_DONTDUMP
2348 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2349 *
2350 * There's a horrible special case to handle copy-on-write
2351 * behaviour that some programs depend on. We mark the "original"
2352 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2353 * See vm_normal_page() for details.
1da177e4 2354 */
b3b9c293
KK
2355 if (is_cow_mapping(vma->vm_flags)) {
2356 if (addr != vma->vm_start || end != vma->vm_end)
2357 return -EINVAL;
fb155c16 2358 vma->vm_pgoff = pfn;
b3b9c293
KK
2359 }
2360
2361 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2362 if (err)
3c8bb73a 2363 return -EINVAL;
fb155c16 2364
314e51b9 2365 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2366
2367 BUG_ON(addr >= end);
2368 pfn -= addr >> PAGE_SHIFT;
2369 pgd = pgd_offset(mm, addr);
2370 flush_cache_range(vma, addr, end);
1da177e4
LT
2371 do {
2372 next = pgd_addr_end(addr, end);
2373 err = remap_pud_range(mm, pgd, addr, next,
2374 pfn + (addr >> PAGE_SHIFT), prot);
2375 if (err)
2376 break;
2377 } while (pgd++, addr = next, addr != end);
2ab64037 2378
2379 if (err)
5180da41 2380 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 2381
1da177e4
LT
2382 return err;
2383}
2384EXPORT_SYMBOL(remap_pfn_range);
2385
b4cbb197
LT
2386/**
2387 * vm_iomap_memory - remap memory to userspace
2388 * @vma: user vma to map to
2389 * @start: start of area
2390 * @len: size of area
2391 *
2392 * This is a simplified io_remap_pfn_range() for common driver use. The
2393 * driver just needs to give us the physical memory range to be mapped,
2394 * we'll figure out the rest from the vma information.
2395 *
2396 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2397 * whatever write-combining details or similar.
2398 */
2399int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2400{
2401 unsigned long vm_len, pfn, pages;
2402
2403 /* Check that the physical memory area passed in looks valid */
2404 if (start + len < start)
2405 return -EINVAL;
2406 /*
2407 * You *really* shouldn't map things that aren't page-aligned,
2408 * but we've historically allowed it because IO memory might
2409 * just have smaller alignment.
2410 */
2411 len += start & ~PAGE_MASK;
2412 pfn = start >> PAGE_SHIFT;
2413 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2414 if (pfn + pages < pfn)
2415 return -EINVAL;
2416
2417 /* We start the mapping 'vm_pgoff' pages into the area */
2418 if (vma->vm_pgoff > pages)
2419 return -EINVAL;
2420 pfn += vma->vm_pgoff;
2421 pages -= vma->vm_pgoff;
2422
2423 /* Can we fit all of the mapping? */
2424 vm_len = vma->vm_end - vma->vm_start;
2425 if (vm_len >> PAGE_SHIFT > pages)
2426 return -EINVAL;
2427
2428 /* Ok, let it rip */
2429 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2430}
2431EXPORT_SYMBOL(vm_iomap_memory);
2432
aee16b3c
JF
2433static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2434 unsigned long addr, unsigned long end,
2435 pte_fn_t fn, void *data)
2436{
2437 pte_t *pte;
2438 int err;
2f569afd 2439 pgtable_t token;
94909914 2440 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2441
2442 pte = (mm == &init_mm) ?
2443 pte_alloc_kernel(pmd, addr) :
2444 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2445 if (!pte)
2446 return -ENOMEM;
2447
2448 BUG_ON(pmd_huge(*pmd));
2449
38e0edb1
JF
2450 arch_enter_lazy_mmu_mode();
2451
2f569afd 2452 token = pmd_pgtable(*pmd);
aee16b3c
JF
2453
2454 do {
c36987e2 2455 err = fn(pte++, token, addr, data);
aee16b3c
JF
2456 if (err)
2457 break;
c36987e2 2458 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2459
38e0edb1
JF
2460 arch_leave_lazy_mmu_mode();
2461
aee16b3c
JF
2462 if (mm != &init_mm)
2463 pte_unmap_unlock(pte-1, ptl);
2464 return err;
2465}
2466
2467static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2468 unsigned long addr, unsigned long end,
2469 pte_fn_t fn, void *data)
2470{
2471 pmd_t *pmd;
2472 unsigned long next;
2473 int err;
2474
ceb86879
AK
2475 BUG_ON(pud_huge(*pud));
2476
aee16b3c
JF
2477 pmd = pmd_alloc(mm, pud, addr);
2478 if (!pmd)
2479 return -ENOMEM;
2480 do {
2481 next = pmd_addr_end(addr, end);
2482 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2483 if (err)
2484 break;
2485 } while (pmd++, addr = next, addr != end);
2486 return err;
2487}
2488
2489static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2490 unsigned long addr, unsigned long end,
2491 pte_fn_t fn, void *data)
2492{
2493 pud_t *pud;
2494 unsigned long next;
2495 int err;
2496
2497 pud = pud_alloc(mm, pgd, addr);
2498 if (!pud)
2499 return -ENOMEM;
2500 do {
2501 next = pud_addr_end(addr, end);
2502 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2503 if (err)
2504 break;
2505 } while (pud++, addr = next, addr != end);
2506 return err;
2507}
2508
2509/*
2510 * Scan a region of virtual memory, filling in page tables as necessary
2511 * and calling a provided function on each leaf page table.
2512 */
2513int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2514 unsigned long size, pte_fn_t fn, void *data)
2515{
2516 pgd_t *pgd;
2517 unsigned long next;
57250a5b 2518 unsigned long end = addr + size;
aee16b3c
JF
2519 int err;
2520
2521 BUG_ON(addr >= end);
2522 pgd = pgd_offset(mm, addr);
2523 do {
2524 next = pgd_addr_end(addr, end);
2525 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2526 if (err)
2527 break;
2528 } while (pgd++, addr = next, addr != end);
57250a5b 2529
aee16b3c
JF
2530 return err;
2531}
2532EXPORT_SYMBOL_GPL(apply_to_page_range);
2533
8f4e2101
HD
2534/*
2535 * handle_pte_fault chooses page fault handler according to an entry
2536 * which was read non-atomically. Before making any commitment, on
2537 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 2538 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
2539 * must check under lock before unmapping the pte and proceeding
2540 * (but do_wp_page is only called after already making such a check;
a335b2e1 2541 * and do_anonymous_page can safely check later on).
8f4e2101 2542 */
4c21e2f2 2543static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2544 pte_t *page_table, pte_t orig_pte)
2545{
2546 int same = 1;
2547#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2548 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2549 spinlock_t *ptl = pte_lockptr(mm, pmd);
2550 spin_lock(ptl);
8f4e2101 2551 same = pte_same(*page_table, orig_pte);
4c21e2f2 2552 spin_unlock(ptl);
8f4e2101
HD
2553 }
2554#endif
2555 pte_unmap(page_table);
2556 return same;
2557}
2558
9de455b2 2559static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
2560{
2561 /*
2562 * If the source page was a PFN mapping, we don't have
2563 * a "struct page" for it. We do a best-effort copy by
2564 * just copying from the original user address. If that
2565 * fails, we just zero-fill it. Live with it.
2566 */
2567 if (unlikely(!src)) {
9b04c5fe 2568 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2569 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2570
2571 /*
2572 * This really shouldn't fail, because the page is there
2573 * in the page tables. But it might just be unreadable,
2574 * in which case we just give up and fill the result with
2575 * zeroes.
2576 */
2577 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2578 clear_page(kaddr);
9b04c5fe 2579 kunmap_atomic(kaddr);
c4ec7b0d 2580 flush_dcache_page(dst);
0ed361de
NP
2581 } else
2582 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2583}
2584
1da177e4
LT
2585/*
2586 * This routine handles present pages, when users try to write
2587 * to a shared page. It is done by copying the page to a new address
2588 * and decrementing the shared-page counter for the old page.
2589 *
1da177e4
LT
2590 * Note that this routine assumes that the protection checks have been
2591 * done by the caller (the low-level page fault routine in most cases).
2592 * Thus we can safely just mark it writable once we've done any necessary
2593 * COW.
2594 *
2595 * We also mark the page dirty at this point even though the page will
2596 * change only once the write actually happens. This avoids a few races,
2597 * and potentially makes it more efficient.
2598 *
8f4e2101
HD
2599 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2600 * but allow concurrent faults), with pte both mapped and locked.
2601 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2602 */
65500d23
HD
2603static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2604 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2605 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2606 __releases(ptl)
1da177e4 2607{
2ec74c3e 2608 struct page *old_page, *new_page = NULL;
1da177e4 2609 pte_t entry;
b009c024 2610 int ret = 0;
a200ee18 2611 int page_mkwrite = 0;
d08b3851 2612 struct page *dirty_page = NULL;
1756954c
DR
2613 unsigned long mmun_start = 0; /* For mmu_notifiers */
2614 unsigned long mmun_end = 0; /* For mmu_notifiers */
1da177e4 2615
6aab341e 2616 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2617 if (!old_page) {
2618 /*
2619 * VM_MIXEDMAP !pfn_valid() case
2620 *
2621 * We should not cow pages in a shared writeable mapping.
2622 * Just mark the pages writable as we can't do any dirty
2623 * accounting on raw pfn maps.
2624 */
2625 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2626 (VM_WRITE|VM_SHARED))
2627 goto reuse;
6aab341e 2628 goto gotten;
251b97f5 2629 }
1da177e4 2630
d08b3851 2631 /*
ee6a6457
PZ
2632 * Take out anonymous pages first, anonymous shared vmas are
2633 * not dirty accountable.
d08b3851 2634 */
9a840895 2635 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2636 if (!trylock_page(old_page)) {
2637 page_cache_get(old_page);
2638 pte_unmap_unlock(page_table, ptl);
2639 lock_page(old_page);
2640 page_table = pte_offset_map_lock(mm, pmd, address,
2641 &ptl);
2642 if (!pte_same(*page_table, orig_pte)) {
2643 unlock_page(old_page);
ab967d86
HD
2644 goto unlock;
2645 }
2646 page_cache_release(old_page);
ee6a6457 2647 }
b009c024 2648 if (reuse_swap_page(old_page)) {
c44b6743
RR
2649 /*
2650 * The page is all ours. Move it to our anon_vma so
2651 * the rmap code will not search our parent or siblings.
2652 * Protected against the rmap code by the page lock.
2653 */
2654 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2655 unlock_page(old_page);
2656 goto reuse;
2657 }
ab967d86 2658 unlock_page(old_page);
ee6a6457 2659 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2660 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2661 /*
2662 * Only catch write-faults on shared writable pages,
2663 * read-only shared pages can get COWed by
2664 * get_user_pages(.write=1, .force=1).
2665 */
9637a5ef 2666 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c
NP
2667 struct vm_fault vmf;
2668 int tmp;
2669
2670 vmf.virtual_address = (void __user *)(address &
2671 PAGE_MASK);
2672 vmf.pgoff = old_page->index;
2673 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2674 vmf.page = old_page;
2675
9637a5ef
DH
2676 /*
2677 * Notify the address space that the page is about to
2678 * become writable so that it can prohibit this or wait
2679 * for the page to get into an appropriate state.
2680 *
2681 * We do this without the lock held, so that it can
2682 * sleep if it needs to.
2683 */
2684 page_cache_get(old_page);
2685 pte_unmap_unlock(page_table, ptl);
2686
c2ec175c
NP
2687 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2688 if (unlikely(tmp &
2689 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2690 ret = tmp;
9637a5ef 2691 goto unwritable_page;
c2ec175c 2692 }
b827e496
NP
2693 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2694 lock_page(old_page);
2695 if (!old_page->mapping) {
2696 ret = 0; /* retry the fault */
2697 unlock_page(old_page);
2698 goto unwritable_page;
2699 }
2700 } else
2701 VM_BUG_ON(!PageLocked(old_page));
9637a5ef 2702
9637a5ef
DH
2703 /*
2704 * Since we dropped the lock we need to revalidate
2705 * the PTE as someone else may have changed it. If
2706 * they did, we just return, as we can count on the
2707 * MMU to tell us if they didn't also make it writable.
2708 */
2709 page_table = pte_offset_map_lock(mm, pmd, address,
2710 &ptl);
b827e496
NP
2711 if (!pte_same(*page_table, orig_pte)) {
2712 unlock_page(old_page);
9637a5ef 2713 goto unlock;
b827e496 2714 }
a200ee18
PZ
2715
2716 page_mkwrite = 1;
1da177e4 2717 }
d08b3851
PZ
2718 dirty_page = old_page;
2719 get_page(dirty_page);
9637a5ef 2720
251b97f5 2721reuse:
8c8a743c
PZ
2722 /*
2723 * Clear the pages cpupid information as the existing
2724 * information potentially belongs to a now completely
2725 * unrelated process.
2726 */
2727 if (old_page)
2728 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2729
9637a5ef
DH
2730 flush_cache_page(vma, address, pte_pfn(orig_pte));
2731 entry = pte_mkyoung(orig_pte);
2732 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2733 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2734 update_mmu_cache(vma, address, page_table);
72ddc8f7 2735 pte_unmap_unlock(page_table, ptl);
9637a5ef 2736 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2737
2738 if (!dirty_page)
2739 return ret;
2740
2741 /*
2742 * Yes, Virginia, this is actually required to prevent a race
2743 * with clear_page_dirty_for_io() from clearing the page dirty
2744 * bit after it clear all dirty ptes, but before a racing
2745 * do_wp_page installs a dirty pte.
2746 *
a335b2e1 2747 * __do_fault is protected similarly.
72ddc8f7
ML
2748 */
2749 if (!page_mkwrite) {
2750 wait_on_page_locked(dirty_page);
2751 set_page_dirty_balance(dirty_page, page_mkwrite);
41c4d25f
JK
2752 /* file_update_time outside page_lock */
2753 if (vma->vm_file)
2754 file_update_time(vma->vm_file);
72ddc8f7
ML
2755 }
2756 put_page(dirty_page);
2757 if (page_mkwrite) {
2758 struct address_space *mapping = dirty_page->mapping;
2759
2760 set_page_dirty(dirty_page);
2761 unlock_page(dirty_page);
2762 page_cache_release(dirty_page);
2763 if (mapping) {
2764 /*
2765 * Some device drivers do not set page.mapping
2766 * but still dirty their pages
2767 */
2768 balance_dirty_pages_ratelimited(mapping);
2769 }
2770 }
2771
72ddc8f7 2772 return ret;
1da177e4 2773 }
1da177e4
LT
2774
2775 /*
2776 * Ok, we need to copy. Oh, well..
2777 */
b5810039 2778 page_cache_get(old_page);
920fc356 2779gotten:
8f4e2101 2780 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2781
2782 if (unlikely(anon_vma_prepare(vma)))
65500d23 2783 goto oom;
a13ea5b7 2784
62eede62 2785 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2786 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2787 if (!new_page)
2788 goto oom;
2789 } else {
2790 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2791 if (!new_page)
2792 goto oom;
2793 cow_user_page(new_page, old_page, address, vma);
2794 }
2795 __SetPageUptodate(new_page);
2796
2c26fdd7 2797 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
2798 goto oom_free_new;
2799
6bdb913f 2800 mmun_start = address & PAGE_MASK;
1756954c 2801 mmun_end = mmun_start + PAGE_SIZE;
6bdb913f
HE
2802 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2803
1da177e4
LT
2804 /*
2805 * Re-check the pte - we dropped the lock
2806 */
8f4e2101 2807 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2808 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2809 if (old_page) {
920fc356 2810 if (!PageAnon(old_page)) {
34e55232
KH
2811 dec_mm_counter_fast(mm, MM_FILEPAGES);
2812 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2813 }
2814 } else
34e55232 2815 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2816 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2817 entry = mk_pte(new_page, vma->vm_page_prot);
2818 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2819 /*
2820 * Clear the pte entry and flush it first, before updating the
2821 * pte with the new entry. This will avoid a race condition
2822 * seen in the presence of one thread doing SMC and another
2823 * thread doing COW.
2824 */
828502d3 2825 ptep_clear_flush(vma, address, page_table);
9617d95e 2826 page_add_new_anon_rmap(new_page, vma, address);
828502d3
IE
2827 /*
2828 * We call the notify macro here because, when using secondary
2829 * mmu page tables (such as kvm shadow page tables), we want the
2830 * new page to be mapped directly into the secondary page table.
2831 */
2832 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2833 update_mmu_cache(vma, address, page_table);
945754a1
NP
2834 if (old_page) {
2835 /*
2836 * Only after switching the pte to the new page may
2837 * we remove the mapcount here. Otherwise another
2838 * process may come and find the rmap count decremented
2839 * before the pte is switched to the new page, and
2840 * "reuse" the old page writing into it while our pte
2841 * here still points into it and can be read by other
2842 * threads.
2843 *
2844 * The critical issue is to order this
2845 * page_remove_rmap with the ptp_clear_flush above.
2846 * Those stores are ordered by (if nothing else,)
2847 * the barrier present in the atomic_add_negative
2848 * in page_remove_rmap.
2849 *
2850 * Then the TLB flush in ptep_clear_flush ensures that
2851 * no process can access the old page before the
2852 * decremented mapcount is visible. And the old page
2853 * cannot be reused until after the decremented
2854 * mapcount is visible. So transitively, TLBs to
2855 * old page will be flushed before it can be reused.
2856 */
edc315fd 2857 page_remove_rmap(old_page);
945754a1
NP
2858 }
2859
1da177e4
LT
2860 /* Free the old page.. */
2861 new_page = old_page;
f33ea7f4 2862 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
2863 } else
2864 mem_cgroup_uncharge_page(new_page);
2865
6bdb913f
HE
2866 if (new_page)
2867 page_cache_release(new_page);
65500d23 2868unlock:
8f4e2101 2869 pte_unmap_unlock(page_table, ptl);
1756954c 2870 if (mmun_end > mmun_start)
6bdb913f 2871 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
e15f8c01
ML
2872 if (old_page) {
2873 /*
2874 * Don't let another task, with possibly unlocked vma,
2875 * keep the mlocked page.
2876 */
2877 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2878 lock_page(old_page); /* LRU manipulation */
2879 munlock_vma_page(old_page);
2880 unlock_page(old_page);
2881 }
2882 page_cache_release(old_page);
2883 }
f33ea7f4 2884 return ret;
8a9f3ccd 2885oom_free_new:
6dbf6d3b 2886 page_cache_release(new_page);
65500d23 2887oom:
66521d5a 2888 if (old_page)
920fc356 2889 page_cache_release(old_page);
1da177e4 2890 return VM_FAULT_OOM;
9637a5ef
DH
2891
2892unwritable_page:
2893 page_cache_release(old_page);
c2ec175c 2894 return ret;
1da177e4
LT
2895}
2896
97a89413 2897static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2898 unsigned long start_addr, unsigned long end_addr,
2899 struct zap_details *details)
2900{
f5cc4eef 2901 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2902}
2903
6b2dbba8 2904static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2905 struct zap_details *details)
2906{
2907 struct vm_area_struct *vma;
1da177e4
LT
2908 pgoff_t vba, vea, zba, zea;
2909
6b2dbba8 2910 vma_interval_tree_foreach(vma, root,
1da177e4 2911 details->first_index, details->last_index) {
1da177e4
LT
2912
2913 vba = vma->vm_pgoff;
d6e93217 2914 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2915 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2916 zba = details->first_index;
2917 if (zba < vba)
2918 zba = vba;
2919 zea = details->last_index;
2920 if (zea > vea)
2921 zea = vea;
2922
97a89413 2923 unmap_mapping_range_vma(vma,
1da177e4
LT
2924 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2925 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2926 details);
1da177e4
LT
2927 }
2928}
2929
2930static inline void unmap_mapping_range_list(struct list_head *head,
2931 struct zap_details *details)
2932{
2933 struct vm_area_struct *vma;
2934
2935 /*
2936 * In nonlinear VMAs there is no correspondence between virtual address
2937 * offset and file offset. So we must perform an exhaustive search
2938 * across *all* the pages in each nonlinear VMA, not just the pages
2939 * whose virtual address lies outside the file truncation point.
2940 */
6b2dbba8 2941 list_for_each_entry(vma, head, shared.nonlinear) {
1da177e4 2942 details->nonlinear_vma = vma;
97a89413 2943 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2944 }
2945}
2946
2947/**
72fd4a35 2948 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2949 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2950 * @holebegin: byte in first page to unmap, relative to the start of
2951 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2952 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2953 * must keep the partial page. In contrast, we must get rid of
2954 * partial pages.
2955 * @holelen: size of prospective hole in bytes. This will be rounded
2956 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2957 * end of the file.
2958 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2959 * but 0 when invalidating pagecache, don't throw away private data.
2960 */
2961void unmap_mapping_range(struct address_space *mapping,
2962 loff_t const holebegin, loff_t const holelen, int even_cows)
2963{
2964 struct zap_details details;
2965 pgoff_t hba = holebegin >> PAGE_SHIFT;
2966 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2967
2968 /* Check for overflow. */
2969 if (sizeof(holelen) > sizeof(hlen)) {
2970 long long holeend =
2971 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2972 if (holeend & ~(long long)ULONG_MAX)
2973 hlen = ULONG_MAX - hba + 1;
2974 }
2975
2976 details.check_mapping = even_cows? NULL: mapping;
2977 details.nonlinear_vma = NULL;
2978 details.first_index = hba;
2979 details.last_index = hba + hlen - 1;
2980 if (details.last_index < details.first_index)
2981 details.last_index = ULONG_MAX;
1da177e4 2982
1da177e4 2983
3d48ae45 2984 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2985 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4
LT
2986 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2987 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2988 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2989 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2990}
2991EXPORT_SYMBOL(unmap_mapping_range);
2992
1da177e4 2993/*
8f4e2101
HD
2994 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2995 * but allow concurrent faults), and pte mapped but not yet locked.
2996 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2997 */
65500d23
HD
2998static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2999 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3000 unsigned int flags, pte_t orig_pte)
1da177e4 3001{
8f4e2101 3002 spinlock_t *ptl;
56f31801 3003 struct page *page, *swapcache;
65500d23 3004 swp_entry_t entry;
1da177e4 3005 pte_t pte;
d065bd81 3006 int locked;
56039efa 3007 struct mem_cgroup *ptr;
ad8c2ee8 3008 int exclusive = 0;
83c54070 3009 int ret = 0;
1da177e4 3010
4c21e2f2 3011 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 3012 goto out;
65500d23
HD
3013
3014 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
3015 if (unlikely(non_swap_entry(entry))) {
3016 if (is_migration_entry(entry)) {
3017 migration_entry_wait(mm, pmd, address);
3018 } else if (is_hwpoison_entry(entry)) {
3019 ret = VM_FAULT_HWPOISON;
3020 } else {
3021 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3022 ret = VM_FAULT_SIGBUS;
d1737fdb 3023 }
0697212a
CL
3024 goto out;
3025 }
0ff92245 3026 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
3027 page = lookup_swap_cache(entry);
3028 if (!page) {
02098fea
HD
3029 page = swapin_readahead(entry,
3030 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
3031 if (!page) {
3032 /*
8f4e2101
HD
3033 * Back out if somebody else faulted in this pte
3034 * while we released the pte lock.
1da177e4 3035 */
8f4e2101 3036 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3037 if (likely(pte_same(*page_table, orig_pte)))
3038 ret = VM_FAULT_OOM;
0ff92245 3039 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3040 goto unlock;
1da177e4
LT
3041 }
3042
3043 /* Had to read the page from swap area: Major fault */
3044 ret = VM_FAULT_MAJOR;
f8891e5e 3045 count_vm_event(PGMAJFAULT);
456f998e 3046 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 3047 } else if (PageHWPoison(page)) {
71f72525
WF
3048 /*
3049 * hwpoisoned dirty swapcache pages are kept for killing
3050 * owner processes (which may be unknown at hwpoison time)
3051 */
d1737fdb
AK
3052 ret = VM_FAULT_HWPOISON;
3053 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 3054 swapcache = page;
4779cb31 3055 goto out_release;
1da177e4
LT
3056 }
3057
56f31801 3058 swapcache = page;
d065bd81 3059 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 3060
073e587e 3061 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3062 if (!locked) {
3063 ret |= VM_FAULT_RETRY;
3064 goto out_release;
3065 }
073e587e 3066
4969c119 3067 /*
31c4a3d3
HD
3068 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3069 * release the swapcache from under us. The page pin, and pte_same
3070 * test below, are not enough to exclude that. Even if it is still
3071 * swapcache, we need to check that the page's swap has not changed.
4969c119 3072 */
31c4a3d3 3073 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
3074 goto out_page;
3075
cbf86cfe
HD
3076 page = ksm_might_need_to_copy(page, vma, address);
3077 if (unlikely(!page)) {
3078 ret = VM_FAULT_OOM;
3079 page = swapcache;
cbf86cfe 3080 goto out_page;
5ad64688
HD
3081 }
3082
2c26fdd7 3083 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
8a9f3ccd 3084 ret = VM_FAULT_OOM;
bc43f75c 3085 goto out_page;
8a9f3ccd
BS
3086 }
3087
1da177e4 3088 /*
8f4e2101 3089 * Back out if somebody else already faulted in this pte.
1da177e4 3090 */
8f4e2101 3091 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 3092 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 3093 goto out_nomap;
b8107480
KK
3094
3095 if (unlikely(!PageUptodate(page))) {
3096 ret = VM_FAULT_SIGBUS;
3097 goto out_nomap;
1da177e4
LT
3098 }
3099
8c7c6e34
KH
3100 /*
3101 * The page isn't present yet, go ahead with the fault.
3102 *
3103 * Be careful about the sequence of operations here.
3104 * To get its accounting right, reuse_swap_page() must be called
3105 * while the page is counted on swap but not yet in mapcount i.e.
3106 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3107 * must be called after the swap_free(), or it will never succeed.
03f3c433
KH
3108 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3109 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3110 * in page->private. In this case, a record in swap_cgroup is silently
3111 * discarded at swap_free().
8c7c6e34 3112 */
1da177e4 3113
34e55232 3114 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 3115 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 3116 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 3117 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 3118 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 3119 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3120 ret |= VM_FAULT_WRITE;
ad8c2ee8 3121 exclusive = 1;
1da177e4 3122 }
1da177e4 3123 flush_icache_page(vma, page);
179ef71c
CG
3124 if (pte_swp_soft_dirty(orig_pte))
3125 pte = pte_mksoft_dirty(pte);
1da177e4 3126 set_pte_at(mm, address, page_table, pte);
56f31801 3127 if (page == swapcache)
af34770e 3128 do_page_add_anon_rmap(page, vma, address, exclusive);
56f31801
HD
3129 else /* ksm created a completely new copy */
3130 page_add_new_anon_rmap(page, vma, address);
03f3c433
KH
3131 /* It's better to call commit-charge after rmap is established */
3132 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4 3133
c475a8ab 3134 swap_free(entry);
b291f000 3135 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3136 try_to_free_swap(page);
c475a8ab 3137 unlock_page(page);
56f31801 3138 if (page != swapcache) {
4969c119
AA
3139 /*
3140 * Hold the lock to avoid the swap entry to be reused
3141 * until we take the PT lock for the pte_same() check
3142 * (to avoid false positives from pte_same). For
3143 * further safety release the lock after the swap_free
3144 * so that the swap count won't change under a
3145 * parallel locked swapcache.
3146 */
3147 unlock_page(swapcache);
3148 page_cache_release(swapcache);
3149 }
c475a8ab 3150
30c9f3a9 3151 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
3152 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3153 if (ret & VM_FAULT_ERROR)
3154 ret &= VM_FAULT_ERROR;
1da177e4
LT
3155 goto out;
3156 }
3157
3158 /* No need to invalidate - it was non-present before */
4b3073e1 3159 update_mmu_cache(vma, address, page_table);
65500d23 3160unlock:
8f4e2101 3161 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
3162out:
3163 return ret;
b8107480 3164out_nomap:
7a81b88c 3165 mem_cgroup_cancel_charge_swapin(ptr);
8f4e2101 3166 pte_unmap_unlock(page_table, ptl);
bc43f75c 3167out_page:
b8107480 3168 unlock_page(page);
4779cb31 3169out_release:
b8107480 3170 page_cache_release(page);
56f31801 3171 if (page != swapcache) {
4969c119
AA
3172 unlock_page(swapcache);
3173 page_cache_release(swapcache);
3174 }
65500d23 3175 return ret;
1da177e4
LT
3176}
3177
320b2b8d 3178/*
8ca3eb08
LT
3179 * This is like a special single-page "expand_{down|up}wards()",
3180 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 3181 * doesn't hit another vma.
320b2b8d
LT
3182 */
3183static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3184{
3185 address &= PAGE_MASK;
3186 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
3187 struct vm_area_struct *prev = vma->vm_prev;
3188
3189 /*
3190 * Is there a mapping abutting this one below?
3191 *
3192 * That's only ok if it's the same stack mapping
3193 * that has gotten split..
3194 */
3195 if (prev && prev->vm_end == address)
3196 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 3197
d05f3169 3198 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 3199 }
8ca3eb08
LT
3200 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3201 struct vm_area_struct *next = vma->vm_next;
3202
3203 /* As VM_GROWSDOWN but s/below/above/ */
3204 if (next && next->vm_start == address + PAGE_SIZE)
3205 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3206
3207 expand_upwards(vma, address + PAGE_SIZE);
3208 }
320b2b8d
LT
3209 return 0;
3210}
3211
1da177e4 3212/*
8f4e2101
HD
3213 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3214 * but allow concurrent faults), and pte mapped but not yet locked.
3215 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3216 */
65500d23
HD
3217static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3218 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3219 unsigned int flags)
1da177e4 3220{
8f4e2101
HD
3221 struct page *page;
3222 spinlock_t *ptl;
1da177e4 3223 pte_t entry;
1da177e4 3224
11ac5524
LT
3225 pte_unmap(page_table);
3226
3227 /* Check if we need to add a guard page to the stack */
3228 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
3229 return VM_FAULT_SIGBUS;
3230
11ac5524 3231 /* Use the zero-page for reads */
62eede62
HD
3232 if (!(flags & FAULT_FLAG_WRITE)) {
3233 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3234 vma->vm_page_prot));
11ac5524 3235 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
3236 if (!pte_none(*page_table))
3237 goto unlock;
3238 goto setpte;
3239 }
3240
557ed1fa 3241 /* Allocate our own private page. */
557ed1fa
NP
3242 if (unlikely(anon_vma_prepare(vma)))
3243 goto oom;
3244 page = alloc_zeroed_user_highpage_movable(vma, address);
3245 if (!page)
3246 goto oom;
52f37629
MK
3247 /*
3248 * The memory barrier inside __SetPageUptodate makes sure that
3249 * preceeding stores to the page contents become visible before
3250 * the set_pte_at() write.
3251 */
0ed361de 3252 __SetPageUptodate(page);
8f4e2101 3253
2c26fdd7 3254 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
3255 goto oom_free_page;
3256
557ed1fa 3257 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3258 if (vma->vm_flags & VM_WRITE)
3259 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3260
557ed1fa 3261 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 3262 if (!pte_none(*page_table))
557ed1fa 3263 goto release;
9ba69294 3264
34e55232 3265 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 3266 page_add_new_anon_rmap(page, vma, address);
a13ea5b7 3267setpte:
65500d23 3268 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
3269
3270 /* No need to invalidate - it was non-present before */
4b3073e1 3271 update_mmu_cache(vma, address, page_table);
65500d23 3272unlock:
8f4e2101 3273 pte_unmap_unlock(page_table, ptl);
83c54070 3274 return 0;
8f4e2101 3275release:
8a9f3ccd 3276 mem_cgroup_uncharge_page(page);
8f4e2101
HD
3277 page_cache_release(page);
3278 goto unlock;
8a9f3ccd 3279oom_free_page:
6dbf6d3b 3280 page_cache_release(page);
65500d23 3281oom:
1da177e4
LT
3282 return VM_FAULT_OOM;
3283}
3284
3285/*
54cb8821 3286 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 3287 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
3288 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3289 * the next page fault.
1da177e4
LT
3290 *
3291 * As this is called only for pages that do not currently exist, we
3292 * do not need to flush old virtual caches or the TLB.
3293 *
8f4e2101 3294 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 3295 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 3296 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3297 */
54cb8821 3298static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 3299 unsigned long address, pmd_t *pmd,
54cb8821 3300 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 3301{
16abfa08 3302 pte_t *page_table;
8f4e2101 3303 spinlock_t *ptl;
d0217ac0 3304 struct page *page;
1d65f86d 3305 struct page *cow_page;
1da177e4 3306 pte_t entry;
1da177e4 3307 int anon = 0;
d08b3851 3308 struct page *dirty_page = NULL;
d0217ac0
NP
3309 struct vm_fault vmf;
3310 int ret;
a200ee18 3311 int page_mkwrite = 0;
54cb8821 3312
1d65f86d
KH
3313 /*
3314 * If we do COW later, allocate page befor taking lock_page()
3315 * on the file cache page. This will reduce lock holding time.
3316 */
3317 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3318
3319 if (unlikely(anon_vma_prepare(vma)))
3320 return VM_FAULT_OOM;
3321
3322 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3323 if (!cow_page)
3324 return VM_FAULT_OOM;
3325
3326 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3327 page_cache_release(cow_page);
3328 return VM_FAULT_OOM;
3329 }
3330 } else
3331 cow_page = NULL;
3332
d0217ac0
NP
3333 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3334 vmf.pgoff = pgoff;
3335 vmf.flags = flags;
3336 vmf.page = NULL;
1da177e4 3337
3c18ddd1 3338 ret = vma->vm_ops->fault(vma, &vmf);
d065bd81
ML
3339 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3340 VM_FAULT_RETRY)))
1d65f86d 3341 goto uncharge_out;
1da177e4 3342
a3b947ea
AK
3343 if (unlikely(PageHWPoison(vmf.page))) {
3344 if (ret & VM_FAULT_LOCKED)
3345 unlock_page(vmf.page);
1d65f86d
KH
3346 ret = VM_FAULT_HWPOISON;
3347 goto uncharge_out;
a3b947ea
AK
3348 }
3349
d00806b1 3350 /*
d0217ac0 3351 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
3352 * locked.
3353 */
83c54070 3354 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 3355 lock_page(vmf.page);
54cb8821 3356 else
d0217ac0 3357 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 3358
1da177e4
LT
3359 /*
3360 * Should we do an early C-O-W break?
3361 */
d0217ac0 3362 page = vmf.page;
54cb8821 3363 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 3364 if (!(vma->vm_flags & VM_SHARED)) {
1d65f86d 3365 page = cow_page;
54cb8821 3366 anon = 1;
d0217ac0 3367 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 3368 __SetPageUptodate(page);
9637a5ef 3369 } else {
54cb8821
NP
3370 /*
3371 * If the page will be shareable, see if the backing
9637a5ef 3372 * address space wants to know that the page is about
54cb8821
NP
3373 * to become writable
3374 */
69676147 3375 if (vma->vm_ops->page_mkwrite) {
c2ec175c
NP
3376 int tmp;
3377
69676147 3378 unlock_page(page);
b827e496 3379 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c2ec175c
NP
3380 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3381 if (unlikely(tmp &
3382 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3383 ret = tmp;
b827e496 3384 goto unwritable_page;
d0217ac0 3385 }
b827e496
NP
3386 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3387 lock_page(page);
3388 if (!page->mapping) {
3389 ret = 0; /* retry the fault */
3390 unlock_page(page);
3391 goto unwritable_page;
3392 }
3393 } else
3394 VM_BUG_ON(!PageLocked(page));
a200ee18 3395 page_mkwrite = 1;
9637a5ef
DH
3396 }
3397 }
54cb8821 3398
1da177e4
LT
3399 }
3400
8f4e2101 3401 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
3402
3403 /*
3404 * This silly early PAGE_DIRTY setting removes a race
3405 * due to the bad i386 page protection. But it's valid
3406 * for other architectures too.
3407 *
30c9f3a9 3408 * Note that if FAULT_FLAG_WRITE is set, we either now have
1da177e4
LT
3409 * an exclusive copy of the page, or this is a shared mapping,
3410 * so we can make it writable and dirty to avoid having to
3411 * handle that later.
3412 */
3413 /* Only go through if we didn't race with anybody else... */
1c2fb7a4 3414 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
3415 flush_icache_page(vma, page);
3416 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 3417 if (flags & FAULT_FLAG_WRITE)
1da177e4 3418 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
41bb3476
CG
3419 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3420 pte_mksoft_dirty(entry);
1da177e4 3421 if (anon) {
34e55232 3422 inc_mm_counter_fast(mm, MM_ANONPAGES);
64d6519d 3423 page_add_new_anon_rmap(page, vma, address);
f57e88a8 3424 } else {
34e55232 3425 inc_mm_counter_fast(mm, MM_FILEPAGES);
d00806b1 3426 page_add_file_rmap(page);
54cb8821 3427 if (flags & FAULT_FLAG_WRITE) {
d00806b1 3428 dirty_page = page;
d08b3851
PZ
3429 get_page(dirty_page);
3430 }
4294621f 3431 }
64d6519d 3432 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
3433
3434 /* no need to invalidate: a not-present page won't be cached */
4b3073e1 3435 update_mmu_cache(vma, address, page_table);
1da177e4 3436 } else {
1d65f86d
KH
3437 if (cow_page)
3438 mem_cgroup_uncharge_page(cow_page);
d00806b1
NP
3439 if (anon)
3440 page_cache_release(page);
3441 else
54cb8821 3442 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
3443 }
3444
8f4e2101 3445 pte_unmap_unlock(page_table, ptl);
d00806b1 3446
b827e496
NP
3447 if (dirty_page) {
3448 struct address_space *mapping = page->mapping;
41c4d25f 3449 int dirtied = 0;
8f7b3d15 3450
b827e496 3451 if (set_page_dirty(dirty_page))
41c4d25f 3452 dirtied = 1;
b827e496 3453 unlock_page(dirty_page);
d08b3851 3454 put_page(dirty_page);
41c4d25f 3455 if ((dirtied || page_mkwrite) && mapping) {
b827e496
NP
3456 /*
3457 * Some device drivers do not set page.mapping but still
3458 * dirty their pages
3459 */
3460 balance_dirty_pages_ratelimited(mapping);
3461 }
3462
3463 /* file_update_time outside page_lock */
41c4d25f 3464 if (vma->vm_file && !page_mkwrite)
b827e496
NP
3465 file_update_time(vma->vm_file);
3466 } else {
3467 unlock_page(vmf.page);
3468 if (anon)
3469 page_cache_release(vmf.page);
d08b3851 3470 }
d00806b1 3471
83c54070 3472 return ret;
b827e496
NP
3473
3474unwritable_page:
3475 page_cache_release(page);
3476 return ret;
1d65f86d
KH
3477uncharge_out:
3478 /* fs's fault handler get error */
3479 if (cow_page) {
3480 mem_cgroup_uncharge_page(cow_page);
3481 page_cache_release(cow_page);
3482 }
3483 return ret;
54cb8821 3484}
d00806b1 3485
54cb8821
NP
3486static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3487 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3488 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3489{
3490 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3491 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3492
16abfa08
HD
3493 pte_unmap(page_table);
3494 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3495}
3496
1da177e4
LT
3497/*
3498 * Fault of a previously existing named mapping. Repopulate the pte
3499 * from the encoded file_pte if possible. This enables swappable
3500 * nonlinear vmas.
8f4e2101
HD
3501 *
3502 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3503 * but allow concurrent faults), and pte mapped but not yet locked.
3504 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3505 */
d0217ac0 3506static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3507 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3508 unsigned int flags, pte_t orig_pte)
1da177e4 3509{
65500d23 3510 pgoff_t pgoff;
1da177e4 3511
30c9f3a9
LT
3512 flags |= FAULT_FLAG_NONLINEAR;
3513
4c21e2f2 3514 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3515 return 0;
1da177e4 3516
2509ef26 3517 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3518 /*
3519 * Page table corrupted: show pte and kill process.
3520 */
3dc14741 3521 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3522 return VM_FAULT_SIGBUS;
65500d23 3523 }
65500d23
HD
3524
3525 pgoff = pte_to_pgoff(orig_pte);
16abfa08 3526 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3527}
3528
9532fec1 3529int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3530 unsigned long addr, int page_nid,
3531 int *flags)
9532fec1
MG
3532{
3533 get_page(page);
3534
3535 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3536 if (page_nid == numa_node_id()) {
9532fec1 3537 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3538 *flags |= TNF_FAULT_LOCAL;
3539 }
9532fec1
MG
3540
3541 return mpol_misplaced(page, vma, addr);
3542}
3543
d10e63f2
MG
3544int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3545 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3546{
4daae3b4 3547 struct page *page = NULL;
d10e63f2 3548 spinlock_t *ptl;
8191acbd 3549 int page_nid = -1;
90572890 3550 int last_cpupid;
cbee9f88 3551 int target_nid;
b8593bfd 3552 bool migrated = false;
6688cc05 3553 int flags = 0;
d10e63f2
MG
3554
3555 /*
3556 * The "pte" at this point cannot be used safely without
3557 * validation through pte_unmap_same(). It's of NUMA type but
3558 * the pfn may be screwed if the read is non atomic.
3559 *
3560 * ptep_modify_prot_start is not called as this is clearing
3561 * the _PAGE_NUMA bit and it is not really expected that there
3562 * would be concurrent hardware modifications to the PTE.
3563 */
3564 ptl = pte_lockptr(mm, pmd);
3565 spin_lock(ptl);
4daae3b4
MG
3566 if (unlikely(!pte_same(*ptep, pte))) {
3567 pte_unmap_unlock(ptep, ptl);
3568 goto out;
3569 }
3570
d10e63f2
MG
3571 pte = pte_mknonnuma(pte);
3572 set_pte_at(mm, addr, ptep, pte);
3573 update_mmu_cache(vma, addr, ptep);
3574
3575 page = vm_normal_page(vma, addr, pte);
3576 if (!page) {
3577 pte_unmap_unlock(ptep, ptl);
3578 return 0;
3579 }
a1a46184 3580 BUG_ON(is_zero_pfn(page_to_pfn(page)));
d10e63f2 3581
6688cc05
PZ
3582 /*
3583 * Avoid grouping on DSO/COW pages in specific and RO pages
3584 * in general, RO pages shouldn't hurt as much anyway since
3585 * they can be in shared cache state.
3586 */
3587 if (!pte_write(pte))
3588 flags |= TNF_NO_GROUP;
3589
dabe1d99
RR
3590 /*
3591 * Flag if the page is shared between multiple address spaces. This
3592 * is later used when determining whether to group tasks together
3593 */
3594 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3595 flags |= TNF_SHARED;
3596
90572890 3597 last_cpupid = page_cpupid_last(page);
8191acbd 3598 page_nid = page_to_nid(page);
04bb2f94 3599 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3600 pte_unmap_unlock(ptep, ptl);
4daae3b4 3601 if (target_nid == -1) {
4daae3b4
MG
3602 put_page(page);
3603 goto out;
3604 }
3605
3606 /* Migrate to the requested node */
1bc115d8 3607 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3608 if (migrated) {
8191acbd 3609 page_nid = target_nid;
6688cc05
PZ
3610 flags |= TNF_MIGRATED;
3611 }
4daae3b4
MG
3612
3613out:
8191acbd 3614 if (page_nid != -1)
6688cc05 3615 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3616 return 0;
3617}
3618
1da177e4
LT
3619/*
3620 * These routines also need to handle stuff like marking pages dirty
3621 * and/or accessed for architectures that don't do it in hardware (most
3622 * RISC architectures). The early dirtying is also good on the i386.
3623 *
3624 * There is also a hook called "update_mmu_cache()" that architectures
3625 * with external mmu caches can use to update those (ie the Sparc or
3626 * PowerPC hashed page tables that act as extended TLBs).
3627 *
c74df32c
HD
3628 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3629 * but allow concurrent faults), and pte mapped but not yet locked.
3630 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3631 */
c0292554 3632static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3633 struct vm_area_struct *vma, unsigned long address,
3634 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3635{
3636 pte_t entry;
8f4e2101 3637 spinlock_t *ptl;
1da177e4 3638
8dab5241 3639 entry = *pte;
1da177e4 3640 if (!pte_present(entry)) {
65500d23 3641 if (pte_none(entry)) {
f4b81804 3642 if (vma->vm_ops) {
3c18ddd1 3643 if (likely(vma->vm_ops->fault))
54cb8821 3644 return do_linear_fault(mm, vma, address,
30c9f3a9 3645 pte, pmd, flags, entry);
f4b81804
JS
3646 }
3647 return do_anonymous_page(mm, vma, address,
30c9f3a9 3648 pte, pmd, flags);
65500d23 3649 }
1da177e4 3650 if (pte_file(entry))
d0217ac0 3651 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3652 pte, pmd, flags, entry);
65500d23 3653 return do_swap_page(mm, vma, address,
30c9f3a9 3654 pte, pmd, flags, entry);
1da177e4
LT
3655 }
3656
d10e63f2
MG
3657 if (pte_numa(entry))
3658 return do_numa_page(mm, vma, address, entry, pte, pmd);
3659
4c21e2f2 3660 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3661 spin_lock(ptl);
3662 if (unlikely(!pte_same(*pte, entry)))
3663 goto unlock;
30c9f3a9 3664 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3665 if (!pte_write(entry))
8f4e2101
HD
3666 return do_wp_page(mm, vma, address,
3667 pte, pmd, ptl, entry);
1da177e4
LT
3668 entry = pte_mkdirty(entry);
3669 }
3670 entry = pte_mkyoung(entry);
30c9f3a9 3671 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3672 update_mmu_cache(vma, address, pte);
1a44e149
AA
3673 } else {
3674 /*
3675 * This is needed only for protection faults but the arch code
3676 * is not yet telling us if this is a protection fault or not.
3677 * This still avoids useless tlb flushes for .text page faults
3678 * with threads.
3679 */
30c9f3a9 3680 if (flags & FAULT_FLAG_WRITE)
61c77326 3681 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3682 }
8f4e2101
HD
3683unlock:
3684 pte_unmap_unlock(pte, ptl);
83c54070 3685 return 0;
1da177e4
LT
3686}
3687
3688/*
3689 * By the time we get here, we already hold the mm semaphore
3690 */
519e5247
JW
3691static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3692 unsigned long address, unsigned int flags)
1da177e4
LT
3693{
3694 pgd_t *pgd;
3695 pud_t *pud;
3696 pmd_t *pmd;
3697 pte_t *pte;
3698
ac9b9c66 3699 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3700 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3701
1f1d06c3 3702retry:
1da177e4 3703 pgd = pgd_offset(mm, address);
1da177e4
LT
3704 pud = pud_alloc(mm, pgd, address);
3705 if (!pud)
c74df32c 3706 return VM_FAULT_OOM;
1da177e4
LT
3707 pmd = pmd_alloc(mm, pud, address);
3708 if (!pmd)
c74df32c 3709 return VM_FAULT_OOM;
71e3aac0 3710 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
c0292554 3711 int ret = VM_FAULT_FALLBACK;
71e3aac0 3712 if (!vma->vm_ops)
c0292554
KS
3713 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3714 pmd, flags);
3715 if (!(ret & VM_FAULT_FALLBACK))
3716 return ret;
71e3aac0
AA
3717 } else {
3718 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3719 int ret;
3720
71e3aac0
AA
3721 barrier();
3722 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3723 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3724
e53289c0
LT
3725 /*
3726 * If the pmd is splitting, return and retry the
3727 * the fault. Alternative: wait until the split
3728 * is done, and goto retry.
3729 */
3730 if (pmd_trans_splitting(orig_pmd))
3731 return 0;
3732
3d59eebc 3733 if (pmd_numa(orig_pmd))
4daae3b4 3734 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3735 orig_pmd, pmd);
3736
3d59eebc 3737 if (dirty && !pmd_write(orig_pmd)) {
1f1d06c3
DR
3738 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3739 orig_pmd);
3740 /*
3741 * If COW results in an oom, the huge pmd will
3742 * have been split, so retry the fault on the
3743 * pte for a smaller charge.
3744 */
3745 if (unlikely(ret & VM_FAULT_OOM))
3746 goto retry;
3747 return ret;
a1dd450b
WD
3748 } else {
3749 huge_pmd_set_accessed(mm, vma, address, pmd,
3750 orig_pmd, dirty);
1f1d06c3 3751 }
d10e63f2 3752
71e3aac0
AA
3753 return 0;
3754 }
3755 }
3756
0f19c179
MG
3757 /* THP should already have been handled */
3758 BUG_ON(pmd_numa(*pmd));
d10e63f2 3759
71e3aac0
AA
3760 /*
3761 * Use __pte_alloc instead of pte_alloc_map, because we can't
3762 * run pte_offset_map on the pmd, if an huge pmd could
3763 * materialize from under us from a different thread.
3764 */
4fd01770
MG
3765 if (unlikely(pmd_none(*pmd)) &&
3766 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3767 return VM_FAULT_OOM;
71e3aac0
AA
3768 /* if an huge pmd materialized from under us just retry later */
3769 if (unlikely(pmd_trans_huge(*pmd)))
3770 return 0;
3771 /*
3772 * A regular pmd is established and it can't morph into a huge pmd
3773 * from under us anymore at this point because we hold the mmap_sem
3774 * read mode and khugepaged takes it in write mode. So now it's
3775 * safe to run pte_offset_map().
3776 */
3777 pte = pte_offset_map(pmd, address);
1da177e4 3778
30c9f3a9 3779 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3780}
3781
519e5247
JW
3782int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3783 unsigned long address, unsigned int flags)
3784{
3785 int ret;
3786
3787 __set_current_state(TASK_RUNNING);
3788
3789 count_vm_event(PGFAULT);
3790 mem_cgroup_count_vm_event(mm, PGFAULT);
3791
3792 /* do counter updates before entering really critical section. */
3793 check_sync_rss_stat(current);
3794
3795 /*
3796 * Enable the memcg OOM handling for faults triggered in user
3797 * space. Kernel faults are handled more gracefully.
3798 */
3799 if (flags & FAULT_FLAG_USER)
49426420 3800 mem_cgroup_oom_enable();
519e5247
JW
3801
3802 ret = __handle_mm_fault(mm, vma, address, flags);
3803
49426420
JW
3804 if (flags & FAULT_FLAG_USER) {
3805 mem_cgroup_oom_disable();
3806 /*
3807 * The task may have entered a memcg OOM situation but
3808 * if the allocation error was handled gracefully (no
3809 * VM_FAULT_OOM), there is no need to kill anything.
3810 * Just clean up the OOM state peacefully.
3811 */
3812 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3813 mem_cgroup_oom_synchronize(false);
3814 }
3812c8c8 3815
519e5247
JW
3816 return ret;
3817}
3818
1da177e4
LT
3819#ifndef __PAGETABLE_PUD_FOLDED
3820/*
3821 * Allocate page upper directory.
872fec16 3822 * We've already handled the fast-path in-line.
1da177e4 3823 */
1bb3630e 3824int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3825{
c74df32c
HD
3826 pud_t *new = pud_alloc_one(mm, address);
3827 if (!new)
1bb3630e 3828 return -ENOMEM;
1da177e4 3829
362a61ad
NP
3830 smp_wmb(); /* See comment in __pte_alloc */
3831
872fec16 3832 spin_lock(&mm->page_table_lock);
1bb3630e 3833 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3834 pud_free(mm, new);
1bb3630e
HD
3835 else
3836 pgd_populate(mm, pgd, new);
c74df32c 3837 spin_unlock(&mm->page_table_lock);
1bb3630e 3838 return 0;
1da177e4
LT
3839}
3840#endif /* __PAGETABLE_PUD_FOLDED */
3841
3842#ifndef __PAGETABLE_PMD_FOLDED
3843/*
3844 * Allocate page middle directory.
872fec16 3845 * We've already handled the fast-path in-line.
1da177e4 3846 */
1bb3630e 3847int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3848{
c74df32c
HD
3849 pmd_t *new = pmd_alloc_one(mm, address);
3850 if (!new)
1bb3630e 3851 return -ENOMEM;
1da177e4 3852
362a61ad
NP
3853 smp_wmb(); /* See comment in __pte_alloc */
3854
872fec16 3855 spin_lock(&mm->page_table_lock);
1da177e4 3856#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3857 if (pud_present(*pud)) /* Another has populated it */
5e541973 3858 pmd_free(mm, new);
1bb3630e
HD
3859 else
3860 pud_populate(mm, pud, new);
1da177e4 3861#else
1bb3630e 3862 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3863 pmd_free(mm, new);
1bb3630e
HD
3864 else
3865 pgd_populate(mm, pud, new);
1da177e4 3866#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3867 spin_unlock(&mm->page_table_lock);
1bb3630e 3868 return 0;
e0f39591 3869}
1da177e4
LT
3870#endif /* __PAGETABLE_PMD_FOLDED */
3871
1da177e4
LT
3872#if !defined(__HAVE_ARCH_GATE_AREA)
3873
3874#if defined(AT_SYSINFO_EHDR)
5ce7852c 3875static struct vm_area_struct gate_vma;
1da177e4
LT
3876
3877static int __init gate_vma_init(void)
3878{
3879 gate_vma.vm_mm = NULL;
3880 gate_vma.vm_start = FIXADDR_USER_START;
3881 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
3882 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3883 gate_vma.vm_page_prot = __P101;
909af768 3884
1da177e4
LT
3885 return 0;
3886}
3887__initcall(gate_vma_init);
3888#endif
3889
31db58b3 3890struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1da177e4
LT
3891{
3892#ifdef AT_SYSINFO_EHDR
3893 return &gate_vma;
3894#else
3895 return NULL;
3896#endif
3897}
3898
cae5d390 3899int in_gate_area_no_mm(unsigned long addr)
1da177e4
LT
3900{
3901#ifdef AT_SYSINFO_EHDR
3902 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3903 return 1;
3904#endif
3905 return 0;
3906}
3907
3908#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 3909
1b36ba81 3910static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3911 pte_t **ptepp, spinlock_t **ptlp)
3912{
3913 pgd_t *pgd;
3914 pud_t *pud;
3915 pmd_t *pmd;
3916 pte_t *ptep;
3917
3918 pgd = pgd_offset(mm, address);
3919 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3920 goto out;
3921
3922 pud = pud_offset(pgd, address);
3923 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3924 goto out;
3925
3926 pmd = pmd_offset(pud, address);
f66055ab 3927 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3928 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3929 goto out;
3930
3931 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3932 if (pmd_huge(*pmd))
3933 goto out;
3934
3935 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3936 if (!ptep)
3937 goto out;
3938 if (!pte_present(*ptep))
3939 goto unlock;
3940 *ptepp = ptep;
3941 return 0;
3942unlock:
3943 pte_unmap_unlock(ptep, *ptlp);
3944out:
3945 return -EINVAL;
3946}
3947
1b36ba81
NK
3948static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3949 pte_t **ptepp, spinlock_t **ptlp)
3950{
3951 int res;
3952
3953 /* (void) is needed to make gcc happy */
3954 (void) __cond_lock(*ptlp,
3955 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3956 return res;
3957}
3958
3b6748e2
JW
3959/**
3960 * follow_pfn - look up PFN at a user virtual address
3961 * @vma: memory mapping
3962 * @address: user virtual address
3963 * @pfn: location to store found PFN
3964 *
3965 * Only IO mappings and raw PFN mappings are allowed.
3966 *
3967 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3968 */
3969int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3970 unsigned long *pfn)
3971{
3972 int ret = -EINVAL;
3973 spinlock_t *ptl;
3974 pte_t *ptep;
3975
3976 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3977 return ret;
3978
3979 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3980 if (ret)
3981 return ret;
3982 *pfn = pte_pfn(*ptep);
3983 pte_unmap_unlock(ptep, ptl);
3984 return 0;
3985}
3986EXPORT_SYMBOL(follow_pfn);
3987
28b2ee20 3988#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3989int follow_phys(struct vm_area_struct *vma,
3990 unsigned long address, unsigned int flags,
3991 unsigned long *prot, resource_size_t *phys)
28b2ee20 3992{
03668a4d 3993 int ret = -EINVAL;
28b2ee20
RR
3994 pte_t *ptep, pte;
3995 spinlock_t *ptl;
28b2ee20 3996
d87fe660 3997 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3998 goto out;
28b2ee20 3999
03668a4d 4000 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4001 goto out;
28b2ee20 4002 pte = *ptep;
03668a4d 4003
28b2ee20
RR
4004 if ((flags & FOLL_WRITE) && !pte_write(pte))
4005 goto unlock;
28b2ee20
RR
4006
4007 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4008 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4009
03668a4d 4010 ret = 0;
28b2ee20
RR
4011unlock:
4012 pte_unmap_unlock(ptep, ptl);
4013out:
d87fe660 4014 return ret;
28b2ee20
RR
4015}
4016
4017int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4018 void *buf, int len, int write)
4019{
4020 resource_size_t phys_addr;
4021 unsigned long prot = 0;
2bc7273b 4022 void __iomem *maddr;
28b2ee20
RR
4023 int offset = addr & (PAGE_SIZE-1);
4024
d87fe660 4025 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4026 return -EINVAL;
4027
4028 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4029 if (write)
4030 memcpy_toio(maddr + offset, buf, len);
4031 else
4032 memcpy_fromio(buf, maddr + offset, len);
4033 iounmap(maddr);
4034
4035 return len;
4036}
5a73633e 4037EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4038#endif
4039
0ec76a11 4040/*
206cb636
SW
4041 * Access another process' address space as given in mm. If non-NULL, use the
4042 * given task for page fault accounting.
0ec76a11 4043 */
206cb636
SW
4044static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4045 unsigned long addr, void *buf, int len, int write)
0ec76a11 4046{
0ec76a11 4047 struct vm_area_struct *vma;
0ec76a11
DH
4048 void *old_buf = buf;
4049
0ec76a11 4050 down_read(&mm->mmap_sem);
183ff22b 4051 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4052 while (len) {
4053 int bytes, ret, offset;
4054 void *maddr;
28b2ee20 4055 struct page *page = NULL;
0ec76a11
DH
4056
4057 ret = get_user_pages(tsk, mm, addr, 1,
4058 write, 1, &page, &vma);
28b2ee20
RR
4059 if (ret <= 0) {
4060 /*
4061 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4062 * we can access using slightly different code.
4063 */
4064#ifdef CONFIG_HAVE_IOREMAP_PROT
4065 vma = find_vma(mm, addr);
fe936dfc 4066 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4067 break;
4068 if (vma->vm_ops && vma->vm_ops->access)
4069 ret = vma->vm_ops->access(vma, addr, buf,
4070 len, write);
4071 if (ret <= 0)
4072#endif
4073 break;
4074 bytes = ret;
0ec76a11 4075 } else {
28b2ee20
RR
4076 bytes = len;
4077 offset = addr & (PAGE_SIZE-1);
4078 if (bytes > PAGE_SIZE-offset)
4079 bytes = PAGE_SIZE-offset;
4080
4081 maddr = kmap(page);
4082 if (write) {
4083 copy_to_user_page(vma, page, addr,
4084 maddr + offset, buf, bytes);
4085 set_page_dirty_lock(page);
4086 } else {
4087 copy_from_user_page(vma, page, addr,
4088 buf, maddr + offset, bytes);
4089 }
4090 kunmap(page);
4091 page_cache_release(page);
0ec76a11 4092 }
0ec76a11
DH
4093 len -= bytes;
4094 buf += bytes;
4095 addr += bytes;
4096 }
4097 up_read(&mm->mmap_sem);
0ec76a11
DH
4098
4099 return buf - old_buf;
4100}
03252919 4101
5ddd36b9 4102/**
ae91dbfc 4103 * access_remote_vm - access another process' address space
5ddd36b9
SW
4104 * @mm: the mm_struct of the target address space
4105 * @addr: start address to access
4106 * @buf: source or destination buffer
4107 * @len: number of bytes to transfer
4108 * @write: whether the access is a write
4109 *
4110 * The caller must hold a reference on @mm.
4111 */
4112int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4113 void *buf, int len, int write)
4114{
4115 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4116}
4117
206cb636
SW
4118/*
4119 * Access another process' address space.
4120 * Source/target buffer must be kernel space,
4121 * Do not walk the page table directly, use get_user_pages
4122 */
4123int access_process_vm(struct task_struct *tsk, unsigned long addr,
4124 void *buf, int len, int write)
4125{
4126 struct mm_struct *mm;
4127 int ret;
4128
4129 mm = get_task_mm(tsk);
4130 if (!mm)
4131 return 0;
4132
4133 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4134 mmput(mm);
4135
4136 return ret;
4137}
4138
03252919
AK
4139/*
4140 * Print the name of a VMA.
4141 */
4142void print_vma_addr(char *prefix, unsigned long ip)
4143{
4144 struct mm_struct *mm = current->mm;
4145 struct vm_area_struct *vma;
4146
e8bff74a
IM
4147 /*
4148 * Do not print if we are in atomic
4149 * contexts (in exception stacks, etc.):
4150 */
4151 if (preempt_count())
4152 return;
4153
03252919
AK
4154 down_read(&mm->mmap_sem);
4155 vma = find_vma(mm, ip);
4156 if (vma && vma->vm_file) {
4157 struct file *f = vma->vm_file;
4158 char *buf = (char *)__get_free_page(GFP_KERNEL);
4159 if (buf) {
2fbc57c5 4160 char *p;
03252919 4161
cf28b486 4162 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
4163 if (IS_ERR(p))
4164 p = "?";
2fbc57c5 4165 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4166 vma->vm_start,
4167 vma->vm_end - vma->vm_start);
4168 free_page((unsigned long)buf);
4169 }
4170 }
51a07e50 4171 up_read(&mm->mmap_sem);
03252919 4172}
3ee1afa3 4173
662bbcb2 4174#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3ee1afa3
NP
4175void might_fault(void)
4176{
95156f00
PZ
4177 /*
4178 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4179 * holding the mmap_sem, this is safe because kernel memory doesn't
4180 * get paged out, therefore we'll never actually fault, and the
4181 * below annotations will generate false positives.
4182 */
4183 if (segment_eq(get_fs(), KERNEL_DS))
4184 return;
4185
3ee1afa3
NP
4186 /*
4187 * it would be nicer only to annotate paths which are not under
4188 * pagefault_disable, however that requires a larger audit and
4189 * providing helpers like get_user_atomic.
4190 */
662bbcb2
MT
4191 if (in_atomic())
4192 return;
4193
4194 __might_sleep(__FILE__, __LINE__, 0);
4195
4196 if (current->mm)
3ee1afa3
NP
4197 might_lock_read(&current->mm->mmap_sem);
4198}
4199EXPORT_SYMBOL(might_fault);
4200#endif
47ad8475
AA
4201
4202#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4203static void clear_gigantic_page(struct page *page,
4204 unsigned long addr,
4205 unsigned int pages_per_huge_page)
4206{
4207 int i;
4208 struct page *p = page;
4209
4210 might_sleep();
4211 for (i = 0; i < pages_per_huge_page;
4212 i++, p = mem_map_next(p, page, i)) {
4213 cond_resched();
4214 clear_user_highpage(p, addr + i * PAGE_SIZE);
4215 }
4216}
4217void clear_huge_page(struct page *page,
4218 unsigned long addr, unsigned int pages_per_huge_page)
4219{
4220 int i;
4221
4222 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4223 clear_gigantic_page(page, addr, pages_per_huge_page);
4224 return;
4225 }
4226
4227 might_sleep();
4228 for (i = 0; i < pages_per_huge_page; i++) {
4229 cond_resched();
4230 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4231 }
4232}
4233
4234static void copy_user_gigantic_page(struct page *dst, struct page *src,
4235 unsigned long addr,
4236 struct vm_area_struct *vma,
4237 unsigned int pages_per_huge_page)
4238{
4239 int i;
4240 struct page *dst_base = dst;
4241 struct page *src_base = src;
4242
4243 for (i = 0; i < pages_per_huge_page; ) {
4244 cond_resched();
4245 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4246
4247 i++;
4248 dst = mem_map_next(dst, dst_base, i);
4249 src = mem_map_next(src, src_base, i);
4250 }
4251}
4252
4253void copy_user_huge_page(struct page *dst, struct page *src,
4254 unsigned long addr, struct vm_area_struct *vma,
4255 unsigned int pages_per_huge_page)
4256{
4257 int i;
4258
4259 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4260 copy_user_gigantic_page(dst, src, addr, vma,
4261 pages_per_huge_page);
4262 return;
4263 }
4264
4265 might_sleep();
4266 for (i = 0; i < pages_per_huge_page; i++) {
4267 cond_resched();
4268 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4269 }
4270}
4271#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */