Merge tag 'loongarch-fixes-6.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
c33c7948 9 *
1c80b990
AK
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
c33c7948
RR
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
1c80b990 19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
799fb82a 27 * tools/mm/page-types when running a real workload.
c33c7948 28 *
1c80b990 29 * There are several operations here with exponential complexity because
c33c7948
RR
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
1c80b990 32 * has non linear complexity with the number. But since memory corruptions
c33c7948 33 * are rare we hope to get away with this. This avoids impacting the core
1c80b990 34 * VM.
6a46079c 35 */
96f96763
KW
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
3f07c014 42#include <linux/sched/signal.h>
29930025 43#include <linux/sched/task.h>
96c84dde 44#include <linux/dax.h>
01e00f88 45#include <linux/ksm.h>
6a46079c 46#include <linux/rmap.h>
b9e15baf 47#include <linux/export.h>
6a46079c
AK
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
facb6011 51#include <linux/migrate.h>
5a0e3ad6 52#include <linux/slab.h>
bf998156 53#include <linux/swapops.h>
7af446a8 54#include <linux/hugetlb.h>
20d6c96b 55#include <linux/memory_hotplug.h>
5db8a73a 56#include <linux/mm_inline.h>
6100e34b 57#include <linux/memremap.h>
ea8f5fb8 58#include <linux/kfifo.h>
a5f65109 59#include <linux/ratelimit.h>
a3f5d80e 60#include <linux/pagewalk.h>
a7605426 61#include <linux/shmem_fs.h>
8cbc82f3 62#include <linux/sysctl.h>
014bb1de 63#include "swap.h"
6a46079c 64#include "internal.h"
97f0b134 65#include "ras/ras_event.h"
6a46079c 66
8cbc82f3 67static int sysctl_memory_failure_early_kill __read_mostly;
6a46079c 68
8cbc82f3 69static int sysctl_memory_failure_recovery __read_mostly = 1;
6a46079c 70
293c07e3 71atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 72
67f22ba7 73static bool hw_memory_failure __read_mostly = false;
74
b79f8eb4
JY
75static DEFINE_MUTEX(mf_mutex);
76
1a7d018d 77void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
78{
79 atomic_long_inc(&num_poisoned_pages);
5033091d 80 memblk_nr_poison_inc(pfn);
d027122d
NH
81}
82
1a7d018d 83void num_poisoned_pages_sub(unsigned long pfn, long i)
d027122d
NH
84{
85 atomic_long_sub(i, &num_poisoned_pages);
5033091d
NH
86 if (pfn != -1UL)
87 memblk_nr_poison_sub(pfn, i);
d027122d
NH
88}
89
44b8f8bf
JY
90/**
91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92 * @_name: name of the file in the per NUMA sysfs directory.
93 */
94#define MF_ATTR_RO(_name) \
95static ssize_t _name##_show(struct device *dev, \
96 struct device_attribute *attr, \
97 char *buf) \
98{ \
99 struct memory_failure_stats *mf_stats = \
100 &NODE_DATA(dev->id)->mf_stats; \
101 return sprintf(buf, "%lu\n", mf_stats->_name); \
102} \
103static DEVICE_ATTR_RO(_name)
104
105MF_ATTR_RO(total);
106MF_ATTR_RO(ignored);
107MF_ATTR_RO(failed);
108MF_ATTR_RO(delayed);
109MF_ATTR_RO(recovered);
110
111static struct attribute *memory_failure_attr[] = {
112 &dev_attr_total.attr,
113 &dev_attr_ignored.attr,
114 &dev_attr_failed.attr,
115 &dev_attr_delayed.attr,
116 &dev_attr_recovered.attr,
117 NULL,
118};
119
120const struct attribute_group memory_failure_attr_group = {
121 .name = "memory_failure",
122 .attrs = memory_failure_attr,
123};
124
8cbc82f3
KW
125static struct ctl_table memory_failure_table[] = {
126 {
127 .procname = "memory_failure_early_kill",
128 .data = &sysctl_memory_failure_early_kill,
129 .maxlen = sizeof(sysctl_memory_failure_early_kill),
130 .mode = 0644,
131 .proc_handler = proc_dointvec_minmax,
132 .extra1 = SYSCTL_ZERO,
133 .extra2 = SYSCTL_ONE,
134 },
135 {
136 .procname = "memory_failure_recovery",
137 .data = &sysctl_memory_failure_recovery,
138 .maxlen = sizeof(sysctl_memory_failure_recovery),
139 .mode = 0644,
140 .proc_handler = proc_dointvec_minmax,
141 .extra1 = SYSCTL_ZERO,
142 .extra2 = SYSCTL_ONE,
143 },
8cbc82f3
KW
144};
145
7453bf62
NH
146/*
147 * Return values:
148 * 1: the page is dissolved (if needed) and taken off from buddy,
149 * 0: the page is dissolved (if needed) and not taken off from buddy,
150 * < 0: failed to dissolve.
151 */
152static int __page_handle_poison(struct page *page)
510d25c9 153{
f87060d3 154 int ret;
510d25c9 155
1983184c
ML
156 /*
157 * zone_pcp_disable() can't be used here. It will
54fa49b2 158 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
1983184c
ML
159 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
160 * optimization is enabled. This will break current lock dependency
161 * chain and leads to deadlock.
162 * Disabling pcp before dissolving the page was a deterministic
163 * approach because we made sure that those pages cannot end up in any
164 * PCP list. Draining PCP lists expels those pages to the buddy system,
165 * but nothing guarantees that those pages do not get back to a PCP
166 * queue if we need to refill those.
167 */
54fa49b2 168 ret = dissolve_free_hugetlb_folio(page_folio(page));
1983184c
ML
169 if (!ret) {
170 drain_all_pages(page_zone(page));
510d25c9 171 ret = take_page_off_buddy(page);
1983184c 172 }
510d25c9 173
7453bf62 174 return ret;
510d25c9
NH
175}
176
6b9a217e 177static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 178{
6b9a217e
OS
179 if (hugepage_or_freepage) {
180 /*
54fa49b2
SK
181 * Doing this check for free pages is also fine since
182 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
6b9a217e 183 */
7453bf62 184 if (__page_handle_poison(page) <= 0)
6b9a217e
OS
185 /*
186 * We could fail to take off the target page from buddy
f0953a1b 187 * for example due to racy page allocation, but that's
6b9a217e
OS
188 * acceptable because soft-offlined page is not broken
189 * and if someone really want to use it, they should
190 * take it.
191 */
192 return false;
193 }
194
06be6ff3 195 SetPageHWPoison(page);
79f5f8fa
OS
196 if (release)
197 put_page(page);
06be6ff3 198 page_ref_inc(page);
a46c9304 199 num_poisoned_pages_inc(page_to_pfn(page));
6b9a217e
OS
200
201 return true;
06be6ff3
OS
202}
203
611b9fd8 204#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
27df5068 205
1bfe5feb 206u32 hwpoison_filter_enable = 0;
7c116f2b
WF
207u32 hwpoison_filter_dev_major = ~0U;
208u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
209u64 hwpoison_filter_flags_mask;
210u64 hwpoison_filter_flags_value;
1bfe5feb 211EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
212EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
213EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
214EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
215EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
216
217static int hwpoison_filter_dev(struct page *p)
218{
89f5c54b 219 struct folio *folio = page_folio(p);
7c116f2b
WF
220 struct address_space *mapping;
221 dev_t dev;
222
223 if (hwpoison_filter_dev_major == ~0U &&
224 hwpoison_filter_dev_minor == ~0U)
225 return 0;
226
89f5c54b 227 mapping = folio_mapping(folio);
7c116f2b
WF
228 if (mapping == NULL || mapping->host == NULL)
229 return -EINVAL;
230
231 dev = mapping->host->i_sb->s_dev;
232 if (hwpoison_filter_dev_major != ~0U &&
233 hwpoison_filter_dev_major != MAJOR(dev))
234 return -EINVAL;
235 if (hwpoison_filter_dev_minor != ~0U &&
236 hwpoison_filter_dev_minor != MINOR(dev))
237 return -EINVAL;
238
239 return 0;
240}
241
478c5ffc
WF
242static int hwpoison_filter_flags(struct page *p)
243{
244 if (!hwpoison_filter_flags_mask)
245 return 0;
246
247 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
248 hwpoison_filter_flags_value)
249 return 0;
250 else
251 return -EINVAL;
252}
253
4fd466eb
AK
254/*
255 * This allows stress tests to limit test scope to a collection of tasks
256 * by putting them under some memcg. This prevents killing unrelated/important
257 * processes such as /sbin/init. Note that the target task may share clean
258 * pages with init (eg. libc text), which is harmless. If the target task
259 * share _dirty_ pages with another task B, the test scheme must make sure B
260 * is also included in the memcg. At last, due to race conditions this filter
261 * can only guarantee that the page either belongs to the memcg tasks, or is
262 * a freed page.
263 */
94a59fb3 264#ifdef CONFIG_MEMCG
4fd466eb
AK
265u64 hwpoison_filter_memcg;
266EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
267static int hwpoison_filter_task(struct page *p)
268{
4fd466eb
AK
269 if (!hwpoison_filter_memcg)
270 return 0;
271
94a59fb3 272 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
273 return -EINVAL;
274
275 return 0;
276}
277#else
278static int hwpoison_filter_task(struct page *p) { return 0; }
279#endif
280
7c116f2b
WF
281int hwpoison_filter(struct page *p)
282{
1bfe5feb
HL
283 if (!hwpoison_filter_enable)
284 return 0;
285
7c116f2b
WF
286 if (hwpoison_filter_dev(p))
287 return -EINVAL;
288
478c5ffc
WF
289 if (hwpoison_filter_flags(p))
290 return -EINVAL;
291
4fd466eb
AK
292 if (hwpoison_filter_task(p))
293 return -EINVAL;
294
7c116f2b
WF
295 return 0;
296}
27df5068
AK
297#else
298int hwpoison_filter(struct page *p)
299{
300 return 0;
301}
302#endif
303
7c116f2b
WF
304EXPORT_SYMBOL_GPL(hwpoison_filter);
305
ae1139ec
DW
306/*
307 * Kill all processes that have a poisoned page mapped and then isolate
308 * the page.
309 *
310 * General strategy:
311 * Find all processes having the page mapped and kill them.
312 * But we keep a page reference around so that the page is not
313 * actually freed yet.
314 * Then stash the page away
315 *
316 * There's no convenient way to get back to mapped processes
317 * from the VMAs. So do a brute-force search over all
318 * running processes.
319 *
320 * Remember that machine checks are not common (or rather
321 * if they are common you have other problems), so this shouldn't
322 * be a performance issue.
323 *
324 * Also there are some races possible while we get from the
325 * error detection to actually handle it.
326 */
327
328struct to_kill {
329 struct list_head nd;
330 struct task_struct *tsk;
331 unsigned long addr;
332 short size_shift;
ae1139ec
DW
333};
334
6a46079c 335/*
7329bbeb
TL
336 * Send all the processes who have the page mapped a signal.
337 * ``action optional'' if they are not immediately affected by the error
338 * ``action required'' if error happened in current execution context
6a46079c 339 */
ae1139ec 340static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 341{
ae1139ec
DW
342 struct task_struct *t = tk->tsk;
343 short addr_lsb = tk->size_shift;
872e9a20 344 int ret = 0;
6a46079c 345
96f96763 346 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
872e9a20 347 pfn, t->comm, t->pid);
7329bbeb 348
49775047
ML
349 if ((flags & MF_ACTION_REQUIRED) && (t == current))
350 ret = force_sig_mceerr(BUS_MCEERR_AR,
351 (void __user *)tk->addr, addr_lsb);
352 else
7329bbeb 353 /*
49775047
ML
354 * Signal other processes sharing the page if they have
355 * PF_MCE_EARLY set.
7329bbeb
TL
356 * Don't use force here, it's convenient if the signal
357 * can be temporarily blocked.
358 * This could cause a loop when the user sets SIGBUS
359 * to SIG_IGN, but hopefully no one will do that?
360 */
ae1139ec 361 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
9cf28191 362 addr_lsb, t);
6a46079c 363 if (ret < 0)
96f96763 364 pr_info("Error sending signal to %s:%d: %d\n",
1170532b 365 t->comm, t->pid, ret);
6a46079c
AK
366 return ret;
367}
368
588f9ce6 369/*
47e431f4 370 * Unknown page type encountered. Try to check whether it can turn PageLRU by
d0505e9f 371 * lru_add_drain_all.
588f9ce6 372 */
fed5348e 373void shake_folio(struct folio *folio)
588f9ce6 374{
fed5348e 375 if (folio_test_hugetlb(folio))
8bcb74de 376 return;
588f9ce6 377 /*
d0505e9f
YS
378 * TODO: Could shrink slab caches here if a lightweight range-based
379 * shrinker will be available.
588f9ce6 380 */
fed5348e 381 if (folio_test_slab(folio))
b7b618da
ML
382 return;
383
384 lru_add_drain_all();
588f9ce6 385}
fed5348e
MWO
386EXPORT_SYMBOL_GPL(shake_folio);
387
388static void shake_page(struct page *page)
389{
390 shake_folio(page_folio(page));
391}
588f9ce6 392
c36e2024
SR
393static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
394 unsigned long address)
6100e34b 395{
5c91c0e7 396 unsigned long ret = 0;
6100e34b
DW
397 pgd_t *pgd;
398 p4d_t *p4d;
399 pud_t *pud;
400 pmd_t *pmd;
401 pte_t *pte;
c33c7948 402 pte_t ptent;
6100e34b 403
a994402b 404 VM_BUG_ON_VMA(address == -EFAULT, vma);
6100e34b
DW
405 pgd = pgd_offset(vma->vm_mm, address);
406 if (!pgd_present(*pgd))
407 return 0;
408 p4d = p4d_offset(pgd, address);
409 if (!p4d_present(*p4d))
410 return 0;
411 pud = pud_offset(p4d, address);
412 if (!pud_present(*pud))
413 return 0;
414 if (pud_devmap(*pud))
415 return PUD_SHIFT;
416 pmd = pmd_offset(pud, address);
417 if (!pmd_present(*pmd))
418 return 0;
419 if (pmd_devmap(*pmd))
420 return PMD_SHIFT;
421 pte = pte_offset_map(pmd, address);
04dee9e8
HD
422 if (!pte)
423 return 0;
c33c7948
RR
424 ptent = ptep_get(pte);
425 if (pte_present(ptent) && pte_devmap(ptent))
5c91c0e7
QZ
426 ret = PAGE_SHIFT;
427 pte_unmap(pte);
428 return ret;
6100e34b 429}
6a46079c
AK
430
431/*
432 * Failure handling: if we can't find or can't kill a process there's
433 * not much we can do. We just print a message and ignore otherwise.
434 */
435
436/*
437 * Schedule a process for later kill.
438 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
6a46079c 439 */
4f775086
LX
440static void __add_to_kill(struct task_struct *tsk, struct page *p,
441 struct vm_area_struct *vma, struct list_head *to_kill,
1c0501e8 442 unsigned long addr)
6a46079c
AK
443{
444 struct to_kill *tk;
445
996ff7a0
JC
446 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
447 if (!tk) {
96f96763 448 pr_err("Out of memory while machine check handling\n");
996ff7a0 449 return;
6a46079c 450 }
996ff7a0 451
f2b37197 452 tk->addr = addr;
1c0501e8 453 if (is_zone_device_page(p))
c36e2024 454 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
1c0501e8 455 else
75068518 456 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
457
458 /*
3d7fed4a
JC
459 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
460 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
461 * so "tk->size_shift == 0" effectively checks no mapping on
462 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
463 * to a process' address space, it's possible not all N VMAs
464 * contain mappings for the page, but at least one VMA does.
465 * Only deliver SIGBUS with payload derived from the VMA that
466 * has a mapping for the page.
6a46079c 467 */
3d7fed4a 468 if (tk->addr == -EFAULT) {
96f96763 469 pr_info("Unable to find user space address %lx in %s\n",
6a46079c 470 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
471 } else if (tk->size_shift == 0) {
472 kfree(tk);
473 return;
6a46079c 474 }
996ff7a0 475
6a46079c
AK
476 get_task_struct(tsk);
477 tk->tsk = tsk;
478 list_add_tail(&tk->nd, to_kill);
479}
480
4f775086 481static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
37bc2ff5
MWO
482 struct vm_area_struct *vma, struct list_head *to_kill,
483 unsigned long addr)
4f775086 484{
37bc2ff5
MWO
485 if (addr == -EFAULT)
486 return;
f2b37197 487 __add_to_kill(tsk, p, vma, to_kill, addr);
4f775086
LX
488}
489
4248d008
LX
490#ifdef CONFIG_KSM
491static bool task_in_to_kill_list(struct list_head *to_kill,
492 struct task_struct *tsk)
493{
494 struct to_kill *tk, *next;
495
496 list_for_each_entry_safe(tk, next, to_kill, nd) {
497 if (tk->tsk == tsk)
498 return true;
499 }
500
501 return false;
502}
f2b37197 503
4248d008
LX
504void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
505 struct vm_area_struct *vma, struct list_head *to_kill,
1c0501e8 506 unsigned long addr)
4248d008
LX
507{
508 if (!task_in_to_kill_list(to_kill, tsk))
1c0501e8 509 __add_to_kill(tsk, p, vma, to_kill, addr);
4248d008
LX
510}
511#endif
6a46079c
AK
512/*
513 * Kill the processes that have been collected earlier.
514 *
a21c184f
ML
515 * Only do anything when FORCEKILL is set, otherwise just free the
516 * list (this is used for clean pages which do not need killing)
6a46079c
AK
517 * Also when FAIL is set do a force kill because something went
518 * wrong earlier.
519 */
ae1139ec
DW
520static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
521 unsigned long pfn, int flags)
6a46079c
AK
522{
523 struct to_kill *tk, *next;
524
54f9555d 525 list_for_each_entry_safe(tk, next, to_kill, nd) {
6751ed65 526 if (forcekill) {
6a46079c 527 /*
af901ca1 528 * In case something went wrong with munmapping
6a46079c
AK
529 * make sure the process doesn't catch the
530 * signal and then access the memory. Just kill it.
6a46079c 531 */
3d7fed4a 532 if (fail || tk->addr == -EFAULT) {
96f96763 533 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 534 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
535 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
536 tk->tsk, PIDTYPE_PID);
6a46079c
AK
537 }
538
539 /*
540 * In theory the process could have mapped
541 * something else on the address in-between. We could
542 * check for that, but we need to tell the
543 * process anyways.
544 */
ae1139ec 545 else if (kill_proc(tk, pfn, flags) < 0)
96f96763 546 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 547 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c 548 }
54f9555d 549 list_del(&tk->nd);
6a46079c
AK
550 put_task_struct(tk->tsk);
551 kfree(tk);
552 }
553}
554
3ba08129
NH
555/*
556 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
557 * on behalf of the thread group. Return task_struct of the (first found)
558 * dedicated thread if found, and return NULL otherwise.
559 *
d256d1cd
TT
560 * We already hold rcu lock in the caller, so we don't have to call
561 * rcu_read_lock/unlock() in this function.
3ba08129
NH
562 */
563static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 564{
3ba08129
NH
565 struct task_struct *t;
566
4e018b45
NH
567 for_each_thread(tsk, t) {
568 if (t->flags & PF_MCE_PROCESS) {
569 if (t->flags & PF_MCE_EARLY)
570 return t;
571 } else {
572 if (sysctl_memory_failure_early_kill)
573 return t;
574 }
575 }
3ba08129
NH
576 return NULL;
577}
578
579/*
580 * Determine whether a given process is "early kill" process which expects
581 * to be signaled when some page under the process is hwpoisoned.
582 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 583 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 584 *
30c9cf49
AY
585 * Note that the above is true for Action Optional case. For Action Required
586 * case, it's only meaningful to the current thread which need to be signaled
587 * with SIGBUS, this error is Action Optional for other non current
588 * processes sharing the same error page,if the process is "early kill", the
589 * task_struct of the dedicated thread will also be returned.
3ba08129 590 */
4248d008 591struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
3ba08129 592{
6a46079c 593 if (!tsk->mm)
3ba08129 594 return NULL;
30c9cf49
AY
595 /*
596 * Comparing ->mm here because current task might represent
597 * a subthread, while tsk always points to the main thread.
598 */
599 if (force_early && tsk->mm == current->mm)
600 return current;
601
4e018b45 602 return find_early_kill_thread(tsk);
6a46079c
AK
603}
604
605/*
606 * Collect processes when the error hit an anonymous page.
607 */
376907f3
MWO
608static void collect_procs_anon(struct folio *folio, struct page *page,
609 struct list_head *to_kill, int force_early)
6a46079c 610{
6a46079c
AK
611 struct task_struct *tsk;
612 struct anon_vma *av;
bf181b9f 613 pgoff_t pgoff;
6a46079c 614
6d4675e6 615 av = folio_lock_anon_vma_read(folio, NULL);
6a46079c 616 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
617 return;
618
a0f7a756 619 pgoff = page_to_pgoff(page);
d256d1cd 620 rcu_read_lock();
5885c6a6 621 for_each_process(tsk) {
37bc2ff5 622 struct vm_area_struct *vma;
5beb4930 623 struct anon_vma_chain *vmac;
3ba08129 624 struct task_struct *t = task_early_kill(tsk, force_early);
37bc2ff5 625 unsigned long addr;
5beb4930 626
3ba08129 627 if (!t)
6a46079c 628 continue;
bf181b9f
ML
629 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
630 pgoff, pgoff) {
5beb4930 631 vma = vmac->vma;
36537a67
ML
632 if (vma->vm_mm != t->mm)
633 continue;
37bc2ff5
MWO
634 addr = page_mapped_in_vma(page, vma);
635 add_to_kill_anon_file(t, page, vma, to_kill, addr);
6a46079c
AK
636 }
637 }
d256d1cd 638 rcu_read_unlock();
0c826c0b 639 anon_vma_unlock_read(av);
6a46079c
AK
640}
641
642/*
643 * Collect processes when the error hit a file mapped page.
644 */
376907f3
MWO
645static void collect_procs_file(struct folio *folio, struct page *page,
646 struct list_head *to_kill, int force_early)
6a46079c
AK
647{
648 struct vm_area_struct *vma;
649 struct task_struct *tsk;
376907f3 650 struct address_space *mapping = folio->mapping;
c43bc03d 651 pgoff_t pgoff;
6a46079c 652
d28eb9c8 653 i_mmap_lock_read(mapping);
d256d1cd 654 rcu_read_lock();
c43bc03d 655 pgoff = page_to_pgoff(page);
6a46079c 656 for_each_process(tsk) {
3ba08129 657 struct task_struct *t = task_early_kill(tsk, force_early);
37bc2ff5 658 unsigned long addr;
6a46079c 659
3ba08129 660 if (!t)
6a46079c 661 continue;
6b2dbba8 662 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
663 pgoff) {
664 /*
665 * Send early kill signal to tasks where a vma covers
666 * the page but the corrupted page is not necessarily
5885c6a6 667 * mapped in its pte.
6a46079c
AK
668 * Assume applications who requested early kill want
669 * to be informed of all such data corruptions.
670 */
37bc2ff5
MWO
671 if (vma->vm_mm != t->mm)
672 continue;
673 addr = page_address_in_vma(page, vma);
674 add_to_kill_anon_file(t, page, vma, to_kill, addr);
6a46079c
AK
675 }
676 }
d256d1cd 677 rcu_read_unlock();
d28eb9c8 678 i_mmap_unlock_read(mapping);
6a46079c
AK
679}
680
c36e2024 681#ifdef CONFIG_FS_DAX
4f775086
LX
682static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
683 struct vm_area_struct *vma,
684 struct list_head *to_kill, pgoff_t pgoff)
685{
1c0501e8
MWO
686 unsigned long addr = vma_address(vma, pgoff, 1);
687 __add_to_kill(tsk, p, vma, to_kill, addr);
4f775086
LX
688}
689
c36e2024
SR
690/*
691 * Collect processes when the error hit a fsdax page.
692 */
693static void collect_procs_fsdax(struct page *page,
694 struct address_space *mapping, pgoff_t pgoff,
fa422b35 695 struct list_head *to_kill, bool pre_remove)
c36e2024
SR
696{
697 struct vm_area_struct *vma;
698 struct task_struct *tsk;
699
700 i_mmap_lock_read(mapping);
d256d1cd 701 rcu_read_lock();
c36e2024 702 for_each_process(tsk) {
fa422b35 703 struct task_struct *t = tsk;
c36e2024 704
fa422b35
SR
705 /*
706 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
707 * the current may not be the one accessing the fsdax page.
708 * Otherwise, search for the current task.
709 */
710 if (!pre_remove)
711 t = task_early_kill(tsk, true);
c36e2024
SR
712 if (!t)
713 continue;
714 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
715 if (vma->vm_mm == t->mm)
4f775086 716 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
c36e2024
SR
717 }
718 }
d256d1cd 719 rcu_read_unlock();
c36e2024
SR
720 i_mmap_unlock_read(mapping);
721}
722#endif /* CONFIG_FS_DAX */
723
6a46079c
AK
724/*
725 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 726 */
376907f3
MWO
727static void collect_procs(struct folio *folio, struct page *page,
728 struct list_head *tokill, int force_early)
6a46079c 729{
376907f3 730 if (!folio->mapping)
6a46079c 731 return;
0edb5b28 732 if (unlikely(folio_test_ksm(folio)))
b650e1d2 733 collect_procs_ksm(folio, page, tokill, force_early);
0edb5b28 734 else if (folio_test_anon(folio))
376907f3 735 collect_procs_anon(folio, page, tokill, force_early);
6a46079c 736 else
376907f3 737 collect_procs_file(folio, page, tokill, force_early);
6a46079c
AK
738}
739
6885938c 740struct hwpoison_walk {
a3f5d80e
NH
741 struct to_kill tk;
742 unsigned long pfn;
743 int flags;
744};
745
746static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
747{
748 tk->addr = addr;
749 tk->size_shift = shift;
750}
751
752static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
753 unsigned long poisoned_pfn, struct to_kill *tk)
754{
755 unsigned long pfn = 0;
756
757 if (pte_present(pte)) {
758 pfn = pte_pfn(pte);
759 } else {
760 swp_entry_t swp = pte_to_swp_entry(pte);
761
762 if (is_hwpoison_entry(swp))
0d206b5d 763 pfn = swp_offset_pfn(swp);
a3f5d80e
NH
764 }
765
766 if (!pfn || pfn != poisoned_pfn)
767 return 0;
768
769 set_to_kill(tk, addr, shift);
770 return 1;
771}
772
773#ifdef CONFIG_TRANSPARENT_HUGEPAGE
774static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
6885938c 775 struct hwpoison_walk *hwp)
a3f5d80e
NH
776{
777 pmd_t pmd = *pmdp;
778 unsigned long pfn;
779 unsigned long hwpoison_vaddr;
780
781 if (!pmd_present(pmd))
782 return 0;
783 pfn = pmd_pfn(pmd);
784 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
785 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
786 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
787 return 1;
788 }
789 return 0;
790}
791#else
792static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
6885938c 793 struct hwpoison_walk *hwp)
a3f5d80e
NH
794{
795 return 0;
796}
797#endif
798
799static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
800 unsigned long end, struct mm_walk *walk)
801{
6885938c 802 struct hwpoison_walk *hwp = walk->private;
a3f5d80e 803 int ret = 0;
ea3732f7 804 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
805 spinlock_t *ptl;
806
807 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
808 if (ptl) {
809 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
810 spin_unlock(ptl);
811 goto out;
812 }
813
ea3732f7
ML
814 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
815 addr, &ptl);
04dee9e8
HD
816 if (!ptep)
817 goto out;
818
a3f5d80e 819 for (; addr != end; ptep++, addr += PAGE_SIZE) {
c33c7948 820 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
a3f5d80e
NH
821 hwp->pfn, &hwp->tk);
822 if (ret == 1)
823 break;
824 }
ea3732f7 825 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
826out:
827 cond_resched();
828 return ret;
829}
830
831#ifdef CONFIG_HUGETLB_PAGE
832static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
833 unsigned long addr, unsigned long end,
834 struct mm_walk *walk)
835{
6885938c 836 struct hwpoison_walk *hwp = walk->private;
a3f5d80e
NH
837 pte_t pte = huge_ptep_get(ptep);
838 struct hstate *h = hstate_vma(walk->vma);
839
840 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
841 hwp->pfn, &hwp->tk);
842}
843#else
844#define hwpoison_hugetlb_range NULL
845#endif
846
6885938c 847static const struct mm_walk_ops hwpoison_walk_ops = {
a3f5d80e
NH
848 .pmd_entry = hwpoison_pte_range,
849 .hugetlb_entry = hwpoison_hugetlb_range,
49b06385 850 .walk_lock = PGWALK_RDLOCK,
a3f5d80e
NH
851};
852
853/*
854 * Sends SIGBUS to the current process with error info.
855 *
856 * This function is intended to handle "Action Required" MCEs on already
857 * hardware poisoned pages. They could happen, for example, when
858 * memory_failure() failed to unmap the error page at the first call, or
859 * when multiple local machine checks happened on different CPUs.
860 *
861 * MCE handler currently has no easy access to the error virtual address,
862 * so this function walks page table to find it. The returned virtual address
863 * is proper in most cases, but it could be wrong when the application
864 * process has multiple entries mapping the error page.
865 */
866static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
867 int flags)
868{
869 int ret;
6885938c 870 struct hwpoison_walk priv = {
a3f5d80e
NH
871 .pfn = pfn,
872 };
873 priv.tk.tsk = p;
874
77677cdb
SX
875 if (!p->mm)
876 return -EFAULT;
877
a3f5d80e 878 mmap_read_lock(p->mm);
6885938c 879 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
a3f5d80e
NH
880 (void *)&priv);
881 if (ret == 1 && priv.tk.addr)
882 kill_proc(&priv.tk, pfn, flags);
046545a6
NH
883 else
884 ret = 0;
a3f5d80e 885 mmap_read_unlock(p->mm);
046545a6 886 return ret > 0 ? -EHWPOISON : -EFAULT;
a3f5d80e
NH
887}
888
6a46079c 889static const char *action_name[] = {
cc637b17
XX
890 [MF_IGNORED] = "Ignored",
891 [MF_FAILED] = "Failed",
892 [MF_DELAYED] = "Delayed",
893 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
894};
895
896static const char * const action_page_types[] = {
cc637b17
XX
897 [MF_MSG_KERNEL] = "reserved kernel page",
898 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
899 [MF_MSG_SLAB] = "kernel slab page",
900 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
cc637b17
XX
901 [MF_MSG_HUGE] = "huge page",
902 [MF_MSG_FREE_HUGE] = "free huge page",
903 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
904 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
905 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
906 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
907 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
908 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
909 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
910 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
911 [MF_MSG_CLEAN_LRU] = "clean LRU page",
912 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
913 [MF_MSG_BUDDY] = "free buddy page",
6100e34b 914 [MF_MSG_DAX] = "dax page",
5d1fd5dc 915 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
cc637b17 916 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
917};
918
dc2a1cbf
WF
919/*
920 * XXX: It is possible that a page is isolated from LRU cache,
921 * and then kept in swap cache or failed to remove from page cache.
922 * The page count will stop it from being freed by unpoison.
923 * Stress tests should be aware of this memory leak problem.
924 */
f7092393 925static int delete_from_lru_cache(struct folio *folio)
dc2a1cbf 926{
f7092393 927 if (folio_isolate_lru(folio)) {
dc2a1cbf
WF
928 /*
929 * Clear sensible page flags, so that the buddy system won't
f7092393 930 * complain when the folio is unpoison-and-freed.
dc2a1cbf 931 */
f7092393
MWO
932 folio_clear_active(folio);
933 folio_clear_unevictable(folio);
18365225
MH
934
935 /*
936 * Poisoned page might never drop its ref count to 0 so we have
937 * to uncharge it manually from its memcg.
938 */
f7092393 939 mem_cgroup_uncharge(folio);
18365225 940
dc2a1cbf 941 /*
f7092393 942 * drop the refcount elevated by folio_isolate_lru()
dc2a1cbf 943 */
f7092393 944 folio_put(folio);
dc2a1cbf
WF
945 return 0;
946 }
947 return -EIO;
948}
949
af7628d6 950static int truncate_error_folio(struct folio *folio, unsigned long pfn,
78bb9203
NH
951 struct address_space *mapping)
952{
953 int ret = MF_FAILED;
954
af7628d6
MWO
955 if (mapping->a_ops->error_remove_folio) {
956 int err = mapping->a_ops->error_remove_folio(mapping, folio);
78bb9203 957
0201ebf2 958 if (err != 0)
96f96763 959 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
0201ebf2 960 else if (!filemap_release_folio(folio, GFP_NOIO))
96f96763 961 pr_info("%#lx: failed to release buffers\n", pfn);
0201ebf2 962 else
78bb9203 963 ret = MF_RECOVERED;
78bb9203
NH
964 } else {
965 /*
966 * If the file system doesn't support it just invalidate
967 * This fails on dirty or anything with private pages
968 */
19369d86 969 if (mapping_evict_folio(mapping, folio))
78bb9203
NH
970 ret = MF_RECOVERED;
971 else
96f96763 972 pr_info("%#lx: Failed to invalidate\n", pfn);
78bb9203
NH
973 }
974
975 return ret;
976}
977
dd0f230a
YS
978struct page_state {
979 unsigned long mask;
980 unsigned long res;
981 enum mf_action_page_type type;
982
983 /* Callback ->action() has to unlock the relevant page inside it. */
984 int (*action)(struct page_state *ps, struct page *p);
985};
986
987/*
988 * Return true if page is still referenced by others, otherwise return
989 * false.
990 *
991 * The extra_pins is true when one extra refcount is expected.
992 */
993static bool has_extra_refcount(struct page_state *ps, struct page *p,
994 bool extra_pins)
995{
996 int count = page_count(p) - 1;
997
998 if (extra_pins)
19d3e221 999 count -= folio_nr_pages(page_folio(p));
dd0f230a
YS
1000
1001 if (count > 0) {
96f96763 1002 pr_err("%#lx: %s still referenced by %d users\n",
dd0f230a
YS
1003 page_to_pfn(p), action_page_types[ps->type], count);
1004 return true;
1005 }
1006
1007 return false;
1008}
1009
6a46079c
AK
1010/*
1011 * Error hit kernel page.
1012 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1013 * could be more sophisticated.
1014 */
dd0f230a 1015static int me_kernel(struct page_state *ps, struct page *p)
6a46079c 1016{
ea6d0630 1017 unlock_page(p);
cc637b17 1018 return MF_IGNORED;
6a46079c
AK
1019}
1020
1021/*
1022 * Page in unknown state. Do nothing.
1023 */
dd0f230a 1024static int me_unknown(struct page_state *ps, struct page *p)
6a46079c 1025{
96f96763 1026 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
ea6d0630 1027 unlock_page(p);
cc637b17 1028 return MF_FAILED;
6a46079c
AK
1029}
1030
6a46079c
AK
1031/*
1032 * Clean (or cleaned) page cache page.
1033 */
dd0f230a 1034static int me_pagecache_clean(struct page_state *ps, struct page *p)
6a46079c 1035{
3d47e317 1036 struct folio *folio = page_folio(p);
ea6d0630 1037 int ret;
6a46079c 1038 struct address_space *mapping;
a7605426 1039 bool extra_pins;
6a46079c 1040
f7092393 1041 delete_from_lru_cache(folio);
dc2a1cbf 1042
6a46079c 1043 /*
3d47e317 1044 * For anonymous folios the only reference left
6a46079c
AK
1045 * should be the one m_f() holds.
1046 */
3d47e317 1047 if (folio_test_anon(folio)) {
ea6d0630
NH
1048 ret = MF_RECOVERED;
1049 goto out;
1050 }
6a46079c
AK
1051
1052 /*
1053 * Now truncate the page in the page cache. This is really
1054 * more like a "temporary hole punch"
1055 * Don't do this for block devices when someone else
1056 * has a reference, because it could be file system metadata
1057 * and that's not safe to truncate.
1058 */
3d47e317 1059 mapping = folio_mapping(folio);
6a46079c 1060 if (!mapping) {
3d47e317 1061 /* Folio has been torn down in the meantime */
ea6d0630
NH
1062 ret = MF_FAILED;
1063 goto out;
6a46079c
AK
1064 }
1065
a7605426
YS
1066 /*
1067 * The shmem page is kept in page cache instead of truncating
1068 * so is expected to have an extra refcount after error-handling.
1069 */
1070 extra_pins = shmem_mapping(mapping);
1071
6a46079c
AK
1072 /*
1073 * Truncation is a bit tricky. Enable it per file system for now.
1074 *
9608703e 1075 * Open: to take i_rwsem or not for this? Right now we don't.
6a46079c 1076 */
af7628d6 1077 ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
a7605426
YS
1078 if (has_extra_refcount(ps, p, extra_pins))
1079 ret = MF_FAILED;
1080
ea6d0630 1081out:
3d47e317 1082 folio_unlock(folio);
dd0f230a 1083
ea6d0630 1084 return ret;
6a46079c
AK
1085}
1086
1087/*
549543df 1088 * Dirty pagecache page
6a46079c
AK
1089 * Issues: when the error hit a hole page the error is not properly
1090 * propagated.
1091 */
dd0f230a 1092static int me_pagecache_dirty(struct page_state *ps, struct page *p)
6a46079c 1093{
89f5c54b
MWO
1094 struct folio *folio = page_folio(p);
1095 struct address_space *mapping = folio_mapping(folio);
6a46079c
AK
1096
1097 SetPageError(p);
1098 /* TBD: print more information about the file. */
1099 if (mapping) {
1100 /*
1101 * IO error will be reported by write(), fsync(), etc.
1102 * who check the mapping.
1103 * This way the application knows that something went
1104 * wrong with its dirty file data.
1105 *
1106 * There's one open issue:
1107 *
1108 * The EIO will be only reported on the next IO
1109 * operation and then cleared through the IO map.
1110 * Normally Linux has two mechanisms to pass IO error
1111 * first through the AS_EIO flag in the address space
1112 * and then through the PageError flag in the page.
1113 * Since we drop pages on memory failure handling the
1114 * only mechanism open to use is through AS_AIO.
1115 *
1116 * This has the disadvantage that it gets cleared on
1117 * the first operation that returns an error, while
1118 * the PageError bit is more sticky and only cleared
1119 * when the page is reread or dropped. If an
1120 * application assumes it will always get error on
1121 * fsync, but does other operations on the fd before
25985edc 1122 * and the page is dropped between then the error
6a46079c
AK
1123 * will not be properly reported.
1124 *
1125 * This can already happen even without hwpoisoned
1126 * pages: first on metadata IO errors (which only
1127 * report through AS_EIO) or when the page is dropped
1128 * at the wrong time.
1129 *
1130 * So right now we assume that the application DTRT on
1131 * the first EIO, but we're not worse than other parts
1132 * of the kernel.
1133 */
af21bfaf 1134 mapping_set_error(mapping, -EIO);
6a46079c
AK
1135 }
1136
dd0f230a 1137 return me_pagecache_clean(ps, p);
6a46079c
AK
1138}
1139
1140/*
1141 * Clean and dirty swap cache.
1142 *
1143 * Dirty swap cache page is tricky to handle. The page could live both in page
1144 * cache and swap cache(ie. page is freshly swapped in). So it could be
1145 * referenced concurrently by 2 types of PTEs:
1146 * normal PTEs and swap PTEs. We try to handle them consistently by calling
6da6b1d4 1147 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
6a46079c
AK
1148 * and then
1149 * - clear dirty bit to prevent IO
1150 * - remove from LRU
1151 * - but keep in the swap cache, so that when we return to it on
1152 * a later page fault, we know the application is accessing
1153 * corrupted data and shall be killed (we installed simple
1154 * interception code in do_swap_page to catch it).
1155 *
1156 * Clean swap cache pages can be directly isolated. A later page fault will
1157 * bring in the known good data from disk.
1158 */
dd0f230a 1159static int me_swapcache_dirty(struct page_state *ps, struct page *p)
6a46079c 1160{
6304b531 1161 struct folio *folio = page_folio(p);
ea6d0630 1162 int ret;
dd0f230a 1163 bool extra_pins = false;
ea6d0630 1164
6304b531 1165 folio_clear_dirty(folio);
6a46079c 1166 /* Trigger EIO in shmem: */
6304b531 1167 folio_clear_uptodate(folio);
6a46079c 1168
f7092393 1169 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
6304b531 1170 folio_unlock(folio);
dd0f230a
YS
1171
1172 if (ret == MF_DELAYED)
1173 extra_pins = true;
1174
1175 if (has_extra_refcount(ps, p, extra_pins))
1176 ret = MF_FAILED;
1177
ea6d0630 1178 return ret;
6a46079c
AK
1179}
1180
dd0f230a 1181static int me_swapcache_clean(struct page_state *ps, struct page *p)
6a46079c 1182{
75fa68a5 1183 struct folio *folio = page_folio(p);
ea6d0630
NH
1184 int ret;
1185
75fa68a5 1186 delete_from_swap_cache(folio);
e43c3afb 1187
f7092393 1188 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
75fa68a5 1189 folio_unlock(folio);
dd0f230a
YS
1190
1191 if (has_extra_refcount(ps, p, false))
1192 ret = MF_FAILED;
1193
ea6d0630 1194 return ret;
6a46079c
AK
1195}
1196
1197/*
1198 * Huge pages. Needs work.
1199 * Issues:
93f70f90
NH
1200 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1201 * To narrow down kill region to one page, we need to break up pmd.
6a46079c 1202 */
dd0f230a 1203static int me_huge_page(struct page_state *ps, struct page *p)
6a46079c 1204{
b6fd410c 1205 struct folio *folio = page_folio(p);
a8b2c2ce 1206 int res;
78bb9203 1207 struct address_space *mapping;
8625147c 1208 bool extra_pins = false;
2491ffee 1209
b6fd410c 1210 mapping = folio_mapping(folio);
78bb9203 1211 if (mapping) {
af7628d6 1212 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
8625147c
JH
1213 /* The page is kept in page cache. */
1214 extra_pins = true;
b6fd410c 1215 folio_unlock(folio);
78bb9203 1216 } else {
b6fd410c 1217 folio_unlock(folio);
78bb9203 1218 /*
ef526b17
ML
1219 * migration entry prevents later access on error hugepage,
1220 * so we can free and dissolve it into buddy to save healthy
1221 * subpages.
78bb9203 1222 */
b6fd410c 1223 folio_put(folio);
8cf360b9 1224 if (__page_handle_poison(p) > 0) {
a8b2c2ce
OS
1225 page_ref_inc(p);
1226 res = MF_RECOVERED;
ceaf8fbe
NH
1227 } else {
1228 res = MF_FAILED;
a8b2c2ce 1229 }
93f70f90 1230 }
78bb9203 1231
8625147c 1232 if (has_extra_refcount(ps, p, extra_pins))
dd0f230a
YS
1233 res = MF_FAILED;
1234
78bb9203 1235 return res;
6a46079c
AK
1236}
1237
1238/*
1239 * Various page states we can handle.
1240 *
1241 * A page state is defined by its current page->flags bits.
1242 * The table matches them in order and calls the right handler.
1243 *
1244 * This is quite tricky because we can access page at any time
25985edc 1245 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1246 *
1247 * This is not complete. More states could be added.
1248 * For any missing state don't attempt recovery.
1249 */
1250
1251#define dirty (1UL << PG_dirty)
6326fec1 1252#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1253#define unevict (1UL << PG_unevictable)
1254#define mlock (1UL << PG_mlocked)
6a46079c 1255#define lru (1UL << PG_lru)
6a46079c 1256#define head (1UL << PG_head)
6a46079c
AK
1257#define reserved (1UL << PG_reserved)
1258
dd0f230a 1259static struct page_state error_states[] = {
cc637b17 1260 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1261 /*
1262 * free pages are specially detected outside this table:
1263 * PG_buddy pages only make a small fraction of all free pages.
1264 */
6a46079c 1265
cc637b17 1266 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1267
cc637b17
XX
1268 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1269 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1270
cc637b17
XX
1271 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1272 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1273
cc637b17
XX
1274 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1275 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1276
cc637b17
XX
1277 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1278 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1279
1280 /*
1281 * Catchall entry: must be at end.
1282 */
cc637b17 1283 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1284};
1285
2326c467
AK
1286#undef dirty
1287#undef sc
1288#undef unevict
1289#undef mlock
2326c467 1290#undef lru
2326c467 1291#undef head
2326c467
AK
1292#undef reserved
1293
18f41fa6
JY
1294static void update_per_node_mf_stats(unsigned long pfn,
1295 enum mf_result result)
1296{
1297 int nid = MAX_NUMNODES;
1298 struct memory_failure_stats *mf_stats = NULL;
1299
1300 nid = pfn_to_nid(pfn);
1301 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1302 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1303 return;
1304 }
1305
1306 mf_stats = &NODE_DATA(nid)->mf_stats;
1307 switch (result) {
1308 case MF_IGNORED:
1309 ++mf_stats->ignored;
1310 break;
1311 case MF_FAILED:
1312 ++mf_stats->failed;
1313 break;
1314 case MF_DELAYED:
1315 ++mf_stats->delayed;
1316 break;
1317 case MF_RECOVERED:
1318 ++mf_stats->recovered;
1319 break;
1320 default:
1321 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1322 break;
1323 }
1324 ++mf_stats->total;
1325}
1326
ff604cf6
NH
1327/*
1328 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1329 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1330 */
b66d00df
KW
1331static int action_result(unsigned long pfn, enum mf_action_page_type type,
1332 enum mf_result result)
6a46079c 1333{
97f0b134
XX
1334 trace_memory_failure_event(pfn, type, result);
1335
a46c9304 1336 num_poisoned_pages_inc(pfn);
18f41fa6
JY
1337
1338 update_per_node_mf_stats(pfn, result);
1339
96f96763 1340 pr_err("%#lx: recovery action for %s: %s\n",
64d37a2b 1341 pfn, action_page_types[type], action_name[result]);
b66d00df
KW
1342
1343 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1344}
1345
1346static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1347 unsigned long pfn)
6a46079c
AK
1348{
1349 int result;
1350
ea6d0630 1351 /* page p should be unlocked after returning from ps->action(). */
dd0f230a 1352 result = ps->action(ps, p);
7456b040 1353
6a46079c
AK
1354 /* Could do more checks here if page looks ok */
1355 /*
1356 * Could adjust zone counters here to correct for the missing page.
1357 */
1358
b66d00df 1359 return action_result(pfn, ps->type, result);
6a46079c
AK
1360}
1361
bf181c58
NH
1362static inline bool PageHWPoisonTakenOff(struct page *page)
1363{
1364 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1365}
1366
1367void SetPageHWPoisonTakenOff(struct page *page)
1368{
1369 set_page_private(page, MAGIC_HWPOISON);
1370}
1371
1372void ClearPageHWPoisonTakenOff(struct page *page)
1373{
1374 if (PageHWPoison(page))
1375 set_page_private(page, 0);
1376}
1377
25182f05
NH
1378/*
1379 * Return true if a page type of a given page is supported by hwpoison
1380 * mechanism (while handling could fail), otherwise false. This function
1381 * does not return true for hugetlb or device memory pages, so it's assumed
1382 * to be called only in the context where we never have such pages.
1383 */
bf6445bc 1384static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
25182f05 1385{
2fde9e7f
ML
1386 if (PageSlab(page))
1387 return false;
1388
3f871370 1389 /* Soft offline could migrate non-LRU movable pages */
bf6445bc 1390 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
3f871370 1391 return true;
bf6445bc 1392
3f871370 1393 return PageLRU(page) || is_free_buddy_page(page);
25182f05
NH
1394}
1395
bf6445bc 1396static int __get_hwpoison_page(struct page *page, unsigned long flags)
ead07f6a 1397{
04bac040 1398 struct folio *folio = page_folio(page);
25182f05
NH
1399 int ret = 0;
1400 bool hugetlb = false;
1401
04bac040 1402 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
d31155b8
ML
1403 if (hugetlb) {
1404 /* Make sure hugetlb demotion did not happen from under us. */
1405 if (folio == page_folio(page))
1406 return ret;
1407 if (ret > 0) {
1408 folio_put(folio);
1409 folio = page_folio(page);
1410 }
1411 }
25182f05
NH
1412
1413 /*
04bac040
SK
1414 * This check prevents from calling folio_try_get() for any
1415 * unsupported type of folio in order to reduce the risk of unexpected
1416 * races caused by taking a folio refcount.
25182f05 1417 */
04bac040 1418 if (!HWPoisonHandlable(&folio->page, flags))
fcc00621 1419 return -EBUSY;
ead07f6a 1420
04bac040
SK
1421 if (folio_try_get(folio)) {
1422 if (folio == page_folio(page))
c2e7e00b
KK
1423 return 1;
1424
96f96763 1425 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
04bac040 1426 folio_put(folio);
c2e7e00b
KK
1427 }
1428
1429 return 0;
ead07f6a 1430}
ead07f6a 1431
2f714160 1432static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1433{
2f714160
OS
1434 int ret = 0, pass = 0;
1435 bool count_increased = false;
17e395b6 1436
2f714160
OS
1437 if (flags & MF_COUNT_INCREASED)
1438 count_increased = true;
1439
1440try_again:
0ed950d1 1441 if (!count_increased) {
bf6445bc 1442 ret = __get_hwpoison_page(p, flags);
0ed950d1
NH
1443 if (!ret) {
1444 if (page_count(p)) {
1445 /* We raced with an allocation, retry. */
1446 if (pass++ < 3)
1447 goto try_again;
1448 ret = -EBUSY;
1449 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1450 /* We raced with put_page, retry. */
1451 if (pass++ < 3)
1452 goto try_again;
1453 ret = -EIO;
1454 }
1455 goto out;
1456 } else if (ret == -EBUSY) {
fcc00621
NH
1457 /*
1458 * We raced with (possibly temporary) unhandlable
1459 * page, retry.
1460 */
1461 if (pass++ < 3) {
d0505e9f 1462 shake_page(p);
2f714160 1463 goto try_again;
fcc00621
NH
1464 }
1465 ret = -EIO;
0ed950d1 1466 goto out;
2f714160 1467 }
0ed950d1
NH
1468 }
1469
bf6445bc 1470 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
0ed950d1 1471 ret = 1;
2f714160 1472 } else {
0ed950d1
NH
1473 /*
1474 * A page we cannot handle. Check whether we can turn
1475 * it into something we can handle.
1476 */
1477 if (pass++ < 3) {
2f714160 1478 put_page(p);
d0505e9f 1479 shake_page(p);
0ed950d1
NH
1480 count_increased = false;
1481 goto try_again;
2f714160 1482 }
0ed950d1
NH
1483 put_page(p);
1484 ret = -EIO;
17e395b6 1485 }
0ed950d1 1486out:
941ca063 1487 if (ret == -EIO)
96f96763 1488 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
941ca063 1489
17e395b6
OS
1490 return ret;
1491}
1492
bf181c58
NH
1493static int __get_unpoison_page(struct page *page)
1494{
04bac040 1495 struct folio *folio = page_folio(page);
bf181c58
NH
1496 int ret = 0;
1497 bool hugetlb = false;
1498
04bac040 1499 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
d31155b8
ML
1500 if (hugetlb) {
1501 /* Make sure hugetlb demotion did not happen from under us. */
1502 if (folio == page_folio(page))
1503 return ret;
1504 if (ret > 0)
1505 folio_put(folio);
1506 }
bf181c58
NH
1507
1508 /*
1509 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1510 * but also isolated from buddy freelist, so need to identify the
1511 * state and have to cancel both operations to unpoison.
1512 */
1513 if (PageHWPoisonTakenOff(page))
1514 return -EHWPOISON;
1515
1516 return get_page_unless_zero(page) ? 1 : 0;
1517}
1518
0ed950d1
NH
1519/**
1520 * get_hwpoison_page() - Get refcount for memory error handling
1521 * @p: Raw error page (hit by memory error)
1522 * @flags: Flags controlling behavior of error handling
1523 *
1524 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1525 * error on it, after checking that the error page is in a well-defined state
0b8f0d87 1526 * (defined as a page-type we can successfully handle the memory error on it,
0ed950d1
NH
1527 * such as LRU page and hugetlb page).
1528 *
1529 * Memory error handling could be triggered at any time on any type of page,
1530 * so it's prone to race with typical memory management lifecycle (like
1531 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1532 * extra care for the error page's state (as done in __get_hwpoison_page()),
1533 * and has some retry logic in get_any_page().
1534 *
bf181c58
NH
1535 * When called from unpoison_memory(), the caller should already ensure that
1536 * the given page has PG_hwpoison. So it's never reused for other page
1537 * allocations, and __get_unpoison_page() never races with them.
1538 *
0ed950d1
NH
1539 * Return: 0 on failure,
1540 * 1 on success for in-use pages in a well-defined state,
1541 * -EIO for pages on which we can not handle memory errors,
1542 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
bf181c58
NH
1543 * operations like allocation and free,
1544 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
0ed950d1
NH
1545 */
1546static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1547{
1548 int ret;
1549
1550 zone_pcp_disable(page_zone(p));
bf181c58
NH
1551 if (flags & MF_UNPOISON)
1552 ret = __get_unpoison_page(p);
1553 else
1554 ret = get_any_page(p, flags);
2f714160
OS
1555 zone_pcp_enable(page_zone(p));
1556
1557 return ret;
1558}
1559
6a46079c
AK
1560/*
1561 * Do all that is necessary to remove user space mappings. Unmap
1562 * the pages and send SIGBUS to the processes if the data was dirty.
1563 */
03468a0f
MWO
1564static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1565 unsigned long pfn, int flags)
6a46079c 1566{
6da6b1d4 1567 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
6a46079c
AK
1568 struct address_space *mapping;
1569 LIST_HEAD(tokill);
1fb08ac6 1570 bool unmap_success;
0792a4a6 1571 int forcekill;
03468a0f 1572 bool mlocked = folio_test_mlocked(folio);
6a46079c 1573
93a9eb39
NH
1574 /*
1575 * Here we are interested only in user-mapped pages, so skip any
1576 * other types of pages.
1577 */
03468a0f
MWO
1578 if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1579 folio_test_pgtable(folio) || folio_test_offline(folio))
666e5a40 1580 return true;
03468a0f 1581 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
666e5a40 1582 return true;
6a46079c 1583
6a46079c
AK
1584 /*
1585 * This check implies we don't kill processes if their pages
1586 * are in the swap cache early. Those are always late kills.
1587 */
c79c5a0a 1588 if (!page_mapped(p))
666e5a40 1589 return true;
1668bfd5 1590
03468a0f 1591 if (folio_test_swapcache(folio)) {
96f96763 1592 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
6da6b1d4 1593 ttu &= ~TTU_HWPOISON;
6a46079c
AK
1594 }
1595
1596 /*
1597 * Propagate the dirty bit from PTEs to struct page first, because we
1598 * need this to decide if we should kill or just drop the page.
db0480b3
WF
1599 * XXX: the dirty test could be racy: set_page_dirty() may not always
1600 * be called inside page lock (it's recommended but not enforced).
6a46079c 1601 */
03468a0f
MWO
1602 mapping = folio_mapping(folio);
1603 if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping &&
f56753ac 1604 mapping_can_writeback(mapping)) {
03468a0f
MWO
1605 if (folio_mkclean(folio)) {
1606 folio_set_dirty(folio);
6a46079c 1607 } else {
6da6b1d4 1608 ttu &= ~TTU_HWPOISON;
96f96763 1609 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1610 pfn);
1611 }
1612 }
1613
1614 /*
1615 * First collect all the processes that have the page
1616 * mapped in dirty form. This has to be done before try_to_unmap,
1617 * because ttu takes the rmap data structures down.
6a46079c 1618 */
376907f3 1619 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1620
03468a0f 1621 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
357670f7
ML
1622 /*
1623 * For hugetlb pages in shared mappings, try_to_unmap
1624 * could potentially call huge_pmd_unshare. Because of
1625 * this, take semaphore in write mode here and set
1626 * TTU_RMAP_LOCKED to indicate we have taken the lock
1627 * at this higher level.
1628 */
6e8cda4c 1629 mapping = hugetlb_folio_mapping_lock_write(folio);
357670f7 1630 if (mapping) {
9030fb0b 1631 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
357670f7
ML
1632 i_mmap_unlock_write(mapping);
1633 } else
96f96763 1634 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
c0d0381a 1635 } else {
9030fb0b 1636 try_to_unmap(folio, ttu);
c0d0381a 1637 }
1fb08ac6 1638
c79c5a0a 1639 unmap_success = !page_mapped(p);
666e5a40 1640 if (!unmap_success)
33d844bb
DH
1641 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1642 pfn, folio_mapcount(page_folio(p)));
a6d30ddd 1643
286c469a
NH
1644 /*
1645 * try_to_unmap() might put mlocked page in lru cache, so call
1646 * shake_page() again to ensure that it's flushed.
1647 */
1648 if (mlocked)
fed5348e 1649 shake_folio(folio);
286c469a 1650
6a46079c
AK
1651 /*
1652 * Now that the dirty bit has been propagated to the
1653 * struct page and all unmaps done we can decide if
1654 * killing is needed or not. Only kill when the page
6751ed65
TL
1655 * was dirty or the process is not restartable,
1656 * otherwise the tokill list is merely
6a46079c
AK
1657 * freed. When there was a problem unmapping earlier
1658 * use a more force-full uncatchable kill to prevent
1659 * any accesses to the poisoned memory.
1660 */
03468a0f 1661 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
0792a4a6 1662 !unmap_success;
ae1139ec 1663 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1664
666e5a40 1665 return unmap_success;
6a46079c
AK
1666}
1667
0348d2eb
NH
1668static int identify_page_state(unsigned long pfn, struct page *p,
1669 unsigned long page_flags)
761ad8d7
NH
1670{
1671 struct page_state *ps;
0348d2eb
NH
1672
1673 /*
1674 * The first check uses the current page flags which may not have any
1675 * relevant information. The second check with the saved page flags is
1676 * carried out only if the first check can't determine the page status.
1677 */
1678 for (ps = error_states;; ps++)
1679 if ((p->flags & ps->mask) == ps->res)
1680 break;
1681
1682 page_flags |= (p->flags & (1UL << PG_dirty));
1683
1684 if (!ps->mask)
1685 for (ps = error_states;; ps++)
1686 if ((page_flags & ps->mask) == ps->res)
1687 break;
1688 return page_action(ps, p, pfn);
1689}
1690
2ace36f0 1691static int try_to_split_thp_page(struct page *page)
694bf0b0 1692{
2ace36f0
KW
1693 int ret;
1694
694bf0b0 1695 lock_page(page);
2ace36f0
KW
1696 ret = split_huge_page(page);
1697 unlock_page(page);
694bf0b0 1698
2ace36f0 1699 if (unlikely(ret))
694bf0b0 1700 put_page(page);
694bf0b0 1701
2ace36f0 1702 return ret;
694bf0b0
OS
1703}
1704
00cc790e
SR
1705static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1706 struct address_space *mapping, pgoff_t index, int flags)
1707{
1708 struct to_kill *tk;
1709 unsigned long size = 0;
1710
1711 list_for_each_entry(tk, to_kill, nd)
1712 if (tk->size_shift)
1713 size = max(size, 1UL << tk->size_shift);
1714
1715 if (size) {
1716 /*
1717 * Unmap the largest mapping to avoid breaking up device-dax
1718 * mappings which are constant size. The actual size of the
1719 * mapping being torn down is communicated in siginfo, see
1720 * kill_proc()
1721 */
39ebd6dc 1722 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
00cc790e
SR
1723
1724 unmap_mapping_range(mapping, start, size, 0);
1725 }
1726
1727 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1728}
1729
91e79d22
MWO
1730/*
1731 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1732 * either do not claim or fails to claim a hwpoison event, or devdax.
1733 * The fsdax pages are initialized per base page, and the devdax pages
1734 * could be initialized either as base pages, or as compound pages with
1735 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1736 * hwpoison, such that, if a subpage of a compound page is poisoned,
1737 * simply mark the compound head page is by far sufficient.
1738 */
00cc790e
SR
1739static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1740 struct dev_pagemap *pgmap)
1741{
91e79d22 1742 struct folio *folio = pfn_folio(pfn);
00cc790e
SR
1743 LIST_HEAD(to_kill);
1744 dax_entry_t cookie;
1745 int rc = 0;
1746
00cc790e
SR
1747 /*
1748 * Prevent the inode from being freed while we are interrogating
1749 * the address_space, typically this would be handled by
1750 * lock_page(), but dax pages do not use the page lock. This
1751 * also prevents changes to the mapping of this pfn until
1752 * poison signaling is complete.
1753 */
91e79d22 1754 cookie = dax_lock_folio(folio);
00cc790e
SR
1755 if (!cookie)
1756 return -EBUSY;
1757
91e79d22 1758 if (hwpoison_filter(&folio->page)) {
00cc790e
SR
1759 rc = -EOPNOTSUPP;
1760 goto unlock;
1761 }
1762
1763 switch (pgmap->type) {
1764 case MEMORY_DEVICE_PRIVATE:
1765 case MEMORY_DEVICE_COHERENT:
1766 /*
1767 * TODO: Handle device pages which may need coordination
1768 * with device-side memory.
1769 */
1770 rc = -ENXIO;
1771 goto unlock;
1772 default:
1773 break;
1774 }
1775
1776 /*
1777 * Use this flag as an indication that the dax page has been
1778 * remapped UC to prevent speculative consumption of poison.
1779 */
91e79d22 1780 SetPageHWPoison(&folio->page);
00cc790e
SR
1781
1782 /*
1783 * Unlike System-RAM there is no possibility to swap in a
1784 * different physical page at a given virtual address, so all
1785 * userspace consumption of ZONE_DEVICE memory necessitates
1786 * SIGBUS (i.e. MF_MUST_KILL)
1787 */
1788 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
376907f3 1789 collect_procs(folio, &folio->page, &to_kill, true);
00cc790e 1790
91e79d22 1791 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
00cc790e 1792unlock:
91e79d22 1793 dax_unlock_folio(folio, cookie);
00cc790e
SR
1794 return rc;
1795}
1796
c36e2024
SR
1797#ifdef CONFIG_FS_DAX
1798/**
1799 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1800 * @mapping: address_space of the file in use
1801 * @index: start pgoff of the range within the file
1802 * @count: length of the range, in unit of PAGE_SIZE
1803 * @mf_flags: memory failure flags
1804 */
1805int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1806 unsigned long count, int mf_flags)
1807{
1808 LIST_HEAD(to_kill);
1809 dax_entry_t cookie;
1810 struct page *page;
1811 size_t end = index + count;
fa422b35 1812 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
c36e2024
SR
1813
1814 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1815
1816 for (; index < end; index++) {
1817 page = NULL;
1818 cookie = dax_lock_mapping_entry(mapping, index, &page);
1819 if (!cookie)
1820 return -EBUSY;
1821 if (!page)
1822 goto unlock;
1823
fa422b35
SR
1824 if (!pre_remove)
1825 SetPageHWPoison(page);
c36e2024 1826
fa422b35
SR
1827 /*
1828 * The pre_remove case is revoking access, the memory is still
1829 * good and could theoretically be put back into service.
1830 */
1831 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
c36e2024
SR
1832 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1833 index, mf_flags);
1834unlock:
1835 dax_unlock_mapping_entry(mapping, index, cookie);
1836 }
1837 return 0;
1838}
1839EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1840#endif /* CONFIG_FS_DAX */
1841
161df60e 1842#ifdef CONFIG_HUGETLB_PAGE
b79f8eb4 1843
161df60e
NH
1844/*
1845 * Struct raw_hwp_page represents information about "raw error page",
dad6a5eb 1846 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
161df60e
NH
1847 */
1848struct raw_hwp_page {
1849 struct llist_node node;
1850 struct page *page;
1851};
1852
b02e7582 1853static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
161df60e 1854{
b02e7582 1855 return (struct llist_head *)&folio->_hugetlb_hwpoison;
161df60e
NH
1856}
1857
b79f8eb4
JY
1858bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1859{
1860 struct llist_head *raw_hwp_head;
1861 struct raw_hwp_page *p;
1862 struct folio *folio = page_folio(page);
1863 bool ret = false;
1864
1865 if (!folio_test_hwpoison(folio))
1866 return false;
1867
1868 if (!folio_test_hugetlb(folio))
1869 return PageHWPoison(page);
1870
1871 /*
1872 * When RawHwpUnreliable is set, kernel lost track of which subpages
1873 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1874 */
1875 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1876 return true;
1877
1878 mutex_lock(&mf_mutex);
1879
1880 raw_hwp_head = raw_hwp_list_head(folio);
1881 llist_for_each_entry(p, raw_hwp_head->first, node) {
1882 if (page == p->page) {
1883 ret = true;
1884 break;
1885 }
1886 }
1887
1888 mutex_unlock(&mf_mutex);
1889
1890 return ret;
1891}
1892
0858b5eb 1893static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
161df60e 1894{
6379693e
ML
1895 struct llist_node *head;
1896 struct raw_hwp_page *p, *next;
ac5fcde0 1897 unsigned long count = 0;
161df60e 1898
9e130c4b 1899 head = llist_del_all(raw_hwp_list_head(folio));
6379693e 1900 llist_for_each_entry_safe(p, next, head, node) {
ac5fcde0
NH
1901 if (move_flag)
1902 SetPageHWPoison(p->page);
5033091d
NH
1903 else
1904 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
161df60e 1905 kfree(p);
ac5fcde0 1906 count++;
161df60e 1907 }
ac5fcde0 1908 return count;
161df60e
NH
1909}
1910
595dd818 1911static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
161df60e
NH
1912{
1913 struct llist_head *head;
1914 struct raw_hwp_page *raw_hwp;
6379693e 1915 struct raw_hwp_page *p, *next;
595dd818 1916 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
161df60e
NH
1917
1918 /*
1919 * Once the hwpoison hugepage has lost reliable raw error info,
1920 * there is little meaning to keep additional error info precisely,
1921 * so skip to add additional raw error info.
1922 */
b02e7582 1923 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1924 return -EHWPOISON;
b02e7582 1925 head = raw_hwp_list_head(folio);
6379693e 1926 llist_for_each_entry_safe(p, next, head->first, node) {
161df60e
NH
1927 if (p->page == page)
1928 return -EHWPOISON;
1929 }
1930
1931 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1932 if (raw_hwp) {
1933 raw_hwp->page = page;
1934 llist_add(&raw_hwp->node, head);
1935 /* the first error event will be counted in action_result(). */
1936 if (ret)
a46c9304 1937 num_poisoned_pages_inc(page_to_pfn(page));
161df60e
NH
1938 } else {
1939 /*
1940 * Failed to save raw error info. We no longer trace all
1941 * hwpoisoned subpages, and we need refuse to free/dissolve
1942 * this hwpoisoned hugepage.
1943 */
b02e7582 1944 folio_set_hugetlb_raw_hwp_unreliable(folio);
161df60e 1945 /*
b02e7582 1946 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
161df60e
NH
1947 * used any more, so free it.
1948 */
0858b5eb 1949 __folio_free_raw_hwp(folio, false);
161df60e
NH
1950 }
1951 return ret;
1952}
1953
9637d7df 1954static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
ac5fcde0
NH
1955{
1956 /*
9637d7df 1957 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
ac5fcde0
NH
1958 * pages for tail pages are required but they don't exist.
1959 */
9637d7df 1960 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
ac5fcde0
NH
1961 return 0;
1962
1963 /*
9637d7df 1964 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
ac5fcde0
NH
1965 * definition.
1966 */
9637d7df 1967 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
ac5fcde0
NH
1968 return 0;
1969
0858b5eb 1970 return __folio_free_raw_hwp(folio, move_flag);
ac5fcde0
NH
1971}
1972
2ff6cece 1973void folio_clear_hugetlb_hwpoison(struct folio *folio)
161df60e 1974{
2ff6cece 1975 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1976 return;
92a025a7
ML
1977 if (folio_test_hugetlb_vmemmap_optimized(folio))
1978 return;
2ff6cece 1979 folio_clear_hwpoison(folio);
9637d7df 1980 folio_free_raw_hwp(folio, true);
161df60e
NH
1981}
1982
405ce051
NH
1983/*
1984 * Called from hugetlb code with hugetlb_lock held.
1985 *
1986 * Return values:
1987 * 0 - free hugepage
1988 * 1 - in-use hugepage
1989 * 2 - not a hugepage
1990 * -EBUSY - the hugepage is busy (try to retry)
1991 * -EHWPOISON - the hugepage is already hwpoisoned
1992 */
e591ef7d
NH
1993int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1994 bool *migratable_cleared)
405ce051
NH
1995{
1996 struct page *page = pfn_to_page(pfn);
4c110ec9 1997 struct folio *folio = page_folio(page);
405ce051
NH
1998 int ret = 2; /* fallback to normal page handling */
1999 bool count_increased = false;
2000
4c110ec9 2001 if (!folio_test_hugetlb(folio))
405ce051
NH
2002 goto out;
2003
2004 if (flags & MF_COUNT_INCREASED) {
2005 ret = 1;
2006 count_increased = true;
4c110ec9 2007 } else if (folio_test_hugetlb_freed(folio)) {
b283d983 2008 ret = 0;
4c110ec9
SK
2009 } else if (folio_test_hugetlb_migratable(folio)) {
2010 ret = folio_try_get(folio);
405ce051
NH
2011 if (ret)
2012 count_increased = true;
2013 } else {
2014 ret = -EBUSY;
38f6d293
NH
2015 if (!(flags & MF_NO_RETRY))
2016 goto out;
405ce051
NH
2017 }
2018
595dd818 2019 if (folio_set_hugetlb_hwpoison(folio, page)) {
405ce051
NH
2020 ret = -EHWPOISON;
2021 goto out;
2022 }
2023
e591ef7d 2024 /*
4c110ec9 2025 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
e591ef7d
NH
2026 * from being migrated by memory hotremove.
2027 */
4c110ec9
SK
2028 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2029 folio_clear_hugetlb_migratable(folio);
e591ef7d
NH
2030 *migratable_cleared = true;
2031 }
2032
405ce051
NH
2033 return ret;
2034out:
2035 if (count_increased)
4c110ec9 2036 folio_put(folio);
405ce051
NH
2037 return ret;
2038}
2039
405ce051
NH
2040/*
2041 * Taking refcount of hugetlb pages needs extra care about race conditions
2042 * with basic operations like hugepage allocation/free/demotion.
2043 * So some of prechecks for hwpoison (pinning, and testing/setting
2044 * PageHWPoison) should be done in single hugetlb_lock range.
2045 */
2046static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
0348d2eb 2047{
761ad8d7 2048 int res;
405ce051 2049 struct page *p = pfn_to_page(pfn);
bc1cfde1 2050 struct folio *folio;
761ad8d7 2051 unsigned long page_flags;
e591ef7d 2052 bool migratable_cleared = false;
761ad8d7 2053
405ce051
NH
2054 *hugetlb = 1;
2055retry:
e591ef7d 2056 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
405ce051
NH
2057 if (res == 2) { /* fallback to normal page handling */
2058 *hugetlb = 0;
2059 return 0;
2060 } else if (res == -EHWPOISON) {
96f96763 2061 pr_err("%#lx: already hardware poisoned\n", pfn);
405ce051 2062 if (flags & MF_ACTION_REQUIRED) {
bc1cfde1
SK
2063 folio = page_folio(p);
2064 res = kill_accessing_process(current, folio_pfn(folio), flags);
405ce051
NH
2065 }
2066 return res;
2067 } else if (res == -EBUSY) {
38f6d293
NH
2068 if (!(flags & MF_NO_RETRY)) {
2069 flags |= MF_NO_RETRY;
405ce051
NH
2070 goto retry;
2071 }
b66d00df 2072 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
761ad8d7
NH
2073 }
2074
bc1cfde1
SK
2075 folio = page_folio(p);
2076 folio_lock(folio);
405ce051
NH
2077
2078 if (hwpoison_filter(p)) {
2ff6cece 2079 folio_clear_hugetlb_hwpoison(folio);
e591ef7d 2080 if (migratable_cleared)
bc1cfde1
SK
2081 folio_set_hugetlb_migratable(folio);
2082 folio_unlock(folio);
f36a5543 2083 if (res == 1)
bc1cfde1 2084 folio_put(folio);
f36a5543 2085 return -EOPNOTSUPP;
405ce051
NH
2086 }
2087
405ce051
NH
2088 /*
2089 * Handling free hugepage. The possible race with hugepage allocation
2090 * or demotion can be prevented by PageHWPoison flag.
2091 */
2092 if (res == 0) {
bc1cfde1 2093 folio_unlock(folio);
8cf360b9 2094 if (__page_handle_poison(p) > 0) {
405ce051
NH
2095 page_ref_inc(p);
2096 res = MF_RECOVERED;
ceaf8fbe
NH
2097 } else {
2098 res = MF_FAILED;
761ad8d7 2099 }
b66d00df 2100 return action_result(pfn, MF_MSG_FREE_HUGE, res);
761ad8d7
NH
2101 }
2102
bc1cfde1 2103 page_flags = folio->flags;
761ad8d7 2104
03468a0f 2105 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
bc1cfde1 2106 folio_unlock(folio);
b66d00df 2107 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
761ad8d7
NH
2108 }
2109
ea6d0630 2110 return identify_page_state(pfn, p, page_flags);
761ad8d7 2111}
00cc790e 2112
405ce051
NH
2113#else
2114static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2115{
2116 return 0;
2117}
00cc790e 2118
9637d7df 2119static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
ac5fcde0
NH
2120{
2121 return 0;
2122}
00cc790e 2123#endif /* CONFIG_HUGETLB_PAGE */
761ad8d7 2124
b5f1fc98
KW
2125/* Drop the extra refcount in case we come from madvise() */
2126static void put_ref_page(unsigned long pfn, int flags)
2127{
2128 struct page *page;
2129
2130 if (!(flags & MF_COUNT_INCREASED))
2131 return;
2132
2133 page = pfn_to_page(pfn);
2134 if (page)
2135 put_page(page);
2136}
2137
6100e34b
DW
2138static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2139 struct dev_pagemap *pgmap)
2140{
00cc790e 2141 int rc = -ENXIO;
6100e34b 2142
34dc45be 2143 /* device metadata space is not recoverable */
00cc790e 2144 if (!pgmap_pfn_valid(pgmap, pfn))
34dc45be 2145 goto out;
61e28cf0 2146
6100e34b 2147 /*
33a8f7f2
SR
2148 * Call driver's implementation to handle the memory failure, otherwise
2149 * fall back to generic handler.
6100e34b 2150 */
65d3440e 2151 if (pgmap_has_memory_failure(pgmap)) {
33a8f7f2 2152 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
6100e34b 2153 /*
33a8f7f2
SR
2154 * Fall back to generic handler too if operation is not
2155 * supported inside the driver/device/filesystem.
6100e34b 2156 */
33a8f7f2
SR
2157 if (rc != -EOPNOTSUPP)
2158 goto out;
6100e34b
DW
2159 }
2160
00cc790e 2161 rc = mf_generic_kill_procs(pfn, flags, pgmap);
6100e34b
DW
2162out:
2163 /* drop pgmap ref acquired in caller */
2164 put_dev_pagemap(pgmap);
80ee7cb2
ML
2165 if (rc != -EOPNOTSUPP)
2166 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
6100e34b
DW
2167 return rc;
2168}
2169
cd42f4a3
TL
2170/**
2171 * memory_failure - Handle memory failure of a page.
2172 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
2173 * @flags: fine tune action taken
2174 *
2175 * This function is called by the low level machine check code
2176 * of an architecture when it detects hardware memory corruption
2177 * of a page. It tries its best to recover, which includes
2178 * dropping pages, killing processes etc.
2179 *
2180 * The function is primarily of use for corruptions that
2181 * happen outside the current execution context (e.g. when
2182 * detected by a background scrubber)
2183 *
2184 * Must run in process context (e.g. a work queue) with interrupts
5885c6a6 2185 * enabled and no spinlocks held.
d1fe111f 2186 *
2187 * Return: 0 for successfully handled the memory error,
9113eaf3 2188 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
d1fe111f 2189 * < 0(except -EOPNOTSUPP) on failure.
cd42f4a3 2190 */
83b57531 2191int memory_failure(unsigned long pfn, int flags)
6a46079c 2192{
6a46079c 2193 struct page *p;
5dba5c35 2194 struct folio *folio;
6100e34b 2195 struct dev_pagemap *pgmap;
171936dd 2196 int res = 0;
524fca1e 2197 unsigned long page_flags;
a8b2c2ce 2198 bool retry = true;
405ce051 2199 int hugetlb = 0;
6a46079c
AK
2200
2201 if (!sysctl_memory_failure_recovery)
83b57531 2202 panic("Memory failure on page %lx", pfn);
6a46079c 2203
03b122da
TL
2204 mutex_lock(&mf_mutex);
2205
67f22ba7 2206 if (!(flags & MF_SW_SIMULATED))
2207 hw_memory_failure = true;
2208
96c804a6
DH
2209 p = pfn_to_online_page(pfn);
2210 if (!p) {
03b122da
TL
2211 res = arch_memory_failure(pfn, flags);
2212 if (res == 0)
2213 goto unlock_mutex;
2214
96c804a6
DH
2215 if (pfn_valid(pfn)) {
2216 pgmap = get_dev_pagemap(pfn, NULL);
d51b6846 2217 put_ref_page(pfn, flags);
03b122da
TL
2218 if (pgmap) {
2219 res = memory_failure_dev_pagemap(pfn, flags,
2220 pgmap);
2221 goto unlock_mutex;
2222 }
96c804a6 2223 }
96f96763 2224 pr_err("%#lx: memory outside kernel control\n", pfn);
03b122da
TL
2225 res = -ENXIO;
2226 goto unlock_mutex;
6a46079c
AK
2227 }
2228
a8b2c2ce 2229try_again:
405ce051
NH
2230 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2231 if (hugetlb)
171936dd 2232 goto unlock_mutex;
171936dd 2233
6a46079c 2234 if (TestSetPageHWPoison(p)) {
96f96763 2235 pr_err("%#lx: already hardware poisoned\n", pfn);
47af12ba 2236 res = -EHWPOISON;
a3f5d80e
NH
2237 if (flags & MF_ACTION_REQUIRED)
2238 res = kill_accessing_process(current, pfn, flags);
f361e246
NH
2239 if (flags & MF_COUNT_INCREASED)
2240 put_page(p);
171936dd 2241 goto unlock_mutex;
6a46079c
AK
2242 }
2243
6a46079c
AK
2244 /*
2245 * We need/can do nothing about count=0 pages.
2246 * 1) it's a free page, and therefore in safe hand:
9cf28191 2247 * check_new_page() will be the gate keeper.
761ad8d7 2248 * 2) it's part of a non-compound high order page.
6a46079c
AK
2249 * Implies some kernel user: cannot stop them from
2250 * R/W the page; let's pray that the page has been
2251 * used and will be freed some time later.
2252 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 2253 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 2254 */
0ed950d1
NH
2255 if (!(flags & MF_COUNT_INCREASED)) {
2256 res = get_hwpoison_page(p, flags);
2257 if (!res) {
2258 if (is_free_buddy_page(p)) {
2259 if (take_page_off_buddy(p)) {
2260 page_ref_inc(p);
2261 res = MF_RECOVERED;
2262 } else {
2263 /* We lost the race, try again */
2264 if (retry) {
2265 ClearPageHWPoison(p);
0ed950d1
NH
2266 retry = false;
2267 goto try_again;
2268 }
2269 res = MF_FAILED;
a8b2c2ce 2270 }
b66d00df 2271 res = action_result(pfn, MF_MSG_BUDDY, res);
0ed950d1 2272 } else {
b66d00df 2273 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
a8b2c2ce 2274 }
0ed950d1
NH
2275 goto unlock_mutex;
2276 } else if (res < 0) {
b66d00df 2277 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
0ed950d1 2278 goto unlock_mutex;
8d22ba1b 2279 }
6a46079c
AK
2280 }
2281
5dba5c35
MWO
2282 folio = page_folio(p);
2283 if (folio_test_large(folio)) {
eac96c3e
YS
2284 /*
2285 * The flag must be set after the refcount is bumped
2286 * otherwise it may race with THP split.
2287 * And the flag can't be set in get_hwpoison_page() since
2288 * it is called by soft offline too and it is just called
5885c6a6 2289 * for !MF_COUNT_INCREASED. So here seems to be the best
eac96c3e
YS
2290 * place.
2291 *
2292 * Don't need care about the above error handling paths for
2293 * get_hwpoison_page() since they handle either free page
2294 * or unhandlable page. The refcount is bumped iff the
2295 * page is a valid handlable page.
2296 */
5dba5c35 2297 folio_set_has_hwpoisoned(folio);
2ace36f0 2298 if (try_to_split_thp_page(p) < 0) {
b66d00df 2299 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
171936dd 2300 goto unlock_mutex;
5d1fd5dc 2301 }
415c64c1 2302 VM_BUG_ON_PAGE(!page_count(p), p);
5dba5c35 2303 folio = page_folio(p);
415c64c1
NH
2304 }
2305
e43c3afb
WF
2306 /*
2307 * We ignore non-LRU pages for good reasons.
2308 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 2309 * - to avoid races with __SetPageLocked()
e43c3afb
WF
2310 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2311 * The check (unnecessarily) ignores LRU pages being isolated and
2312 * walked by the page reclaim code, however that's not a big loss.
2313 */
5dba5c35 2314 shake_folio(folio);
e43c3afb 2315
5dba5c35 2316 folio_lock(folio);
847ce401 2317
f37d4298 2318 /*
75ee64b3
ML
2319 * We're only intended to deal with the non-Compound page here.
2320 * However, the page could have changed compound pages due to
2321 * race window. If this happens, we could try again to hopefully
2322 * handle the page next round.
f37d4298 2323 */
5dba5c35 2324 if (folio_test_large(folio)) {
75ee64b3 2325 if (retry) {
e240ac52 2326 ClearPageHWPoison(p);
5dba5c35
MWO
2327 folio_unlock(folio);
2328 folio_put(folio);
75ee64b3
ML
2329 flags &= ~MF_COUNT_INCREASED;
2330 retry = false;
2331 goto try_again;
2332 }
b66d00df 2333 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
171936dd 2334 goto unlock_page;
f37d4298
AK
2335 }
2336
524fca1e
NH
2337 /*
2338 * We use page flags to determine what action should be taken, but
2339 * the flags can be modified by the error containment action. One
2340 * example is an mlocked page, where PG_mlocked is cleared by
4d8f7418
DH
2341 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2342 * status correctly, we save a copy of the page flags at this time.
524fca1e 2343 */
5dba5c35 2344 page_flags = folio->flags;
524fca1e 2345
7c116f2b 2346 if (hwpoison_filter(p)) {
2fe62e22 2347 ClearPageHWPoison(p);
5dba5c35
MWO
2348 folio_unlock(folio);
2349 folio_put(folio);
d1fe111f 2350 res = -EOPNOTSUPP;
171936dd 2351 goto unlock_mutex;
7c116f2b 2352 }
847ce401 2353
e8675d29 2354 /*
5dba5c35
MWO
2355 * __munlock_folio() may clear a writeback folio's LRU flag without
2356 * the folio lock. We need to wait for writeback completion for this
2357 * folio or it may trigger a vfs BUG while evicting inode.
e8675d29 2358 */
5dba5c35 2359 if (!folio_test_lru(folio) && !folio_test_writeback(folio))
0bc1f8b0
CY
2360 goto identify_page_state;
2361
6edd6cc6
NH
2362 /*
2363 * It's very difficult to mess with pages currently under IO
2364 * and in many cases impossible, so we just avoid it here.
2365 */
5dba5c35 2366 folio_wait_writeback(folio);
6a46079c
AK
2367
2368 /*
2369 * Now take care of user space mappings.
6ffcd825 2370 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
6a46079c 2371 */
03468a0f 2372 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
b66d00df 2373 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
171936dd 2374 goto unlock_page;
1668bfd5 2375 }
6a46079c
AK
2376
2377 /*
2378 * Torn down by someone else?
2379 */
5dba5c35
MWO
2380 if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2381 folio->mapping == NULL) {
b66d00df 2382 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
171936dd 2383 goto unlock_page;
6a46079c
AK
2384 }
2385
0bc1f8b0 2386identify_page_state:
0348d2eb 2387 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
2388 mutex_unlock(&mf_mutex);
2389 return res;
171936dd 2390unlock_page:
5dba5c35 2391 folio_unlock(folio);
171936dd
TL
2392unlock_mutex:
2393 mutex_unlock(&mf_mutex);
6a46079c
AK
2394 return res;
2395}
cd42f4a3 2396EXPORT_SYMBOL_GPL(memory_failure);
847ce401 2397
ea8f5fb8
HY
2398#define MEMORY_FAILURE_FIFO_ORDER 4
2399#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2400
2401struct memory_failure_entry {
2402 unsigned long pfn;
ea8f5fb8
HY
2403 int flags;
2404};
2405
2406struct memory_failure_cpu {
2407 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2408 MEMORY_FAILURE_FIFO_SIZE);
2409 spinlock_t lock;
2410 struct work_struct work;
2411};
2412
2413static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2414
2415/**
2416 * memory_failure_queue - Schedule handling memory failure of a page.
2417 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
2418 * @flags: Flags for memory failure handling
2419 *
2420 * This function is called by the low level hardware error handler
2421 * when it detects hardware memory corruption of a page. It schedules
2422 * the recovering of error page, including dropping pages, killing
2423 * processes etc.
2424 *
2425 * The function is primarily of use for corruptions that
2426 * happen outside the current execution context (e.g. when
2427 * detected by a background scrubber)
2428 *
2429 * Can run in IRQ context.
2430 */
83b57531 2431void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
2432{
2433 struct memory_failure_cpu *mf_cpu;
2434 unsigned long proc_flags;
2435 struct memory_failure_entry entry = {
2436 .pfn = pfn,
ea8f5fb8
HY
2437 .flags = flags,
2438 };
2439
2440 mf_cpu = &get_cpu_var(memory_failure_cpu);
2441 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 2442 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
2443 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2444 else
96f96763 2445 pr_err("buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
2446 pfn);
2447 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2448 put_cpu_var(memory_failure_cpu);
2449}
2450EXPORT_SYMBOL_GPL(memory_failure_queue);
2451
2452static void memory_failure_work_func(struct work_struct *work)
2453{
2454 struct memory_failure_cpu *mf_cpu;
2455 struct memory_failure_entry entry = { 0, };
2456 unsigned long proc_flags;
2457 int gotten;
2458
06202231 2459 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8
HY
2460 for (;;) {
2461 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2462 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2463 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2464 if (!gotten)
2465 break;
cf870c70 2466 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 2467 soft_offline_page(entry.pfn, entry.flags);
cf870c70 2468 else
83b57531 2469 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
2470 }
2471}
2472
06202231
JM
2473/*
2474 * Process memory_failure work queued on the specified CPU.
2475 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2476 */
2477void memory_failure_queue_kick(int cpu)
2478{
2479 struct memory_failure_cpu *mf_cpu;
2480
2481 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2482 cancel_work_sync(&mf_cpu->work);
2483 memory_failure_work_func(&mf_cpu->work);
2484}
2485
ea8f5fb8
HY
2486static int __init memory_failure_init(void)
2487{
2488 struct memory_failure_cpu *mf_cpu;
2489 int cpu;
2490
2491 for_each_possible_cpu(cpu) {
2492 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2493 spin_lock_init(&mf_cpu->lock);
2494 INIT_KFIFO(mf_cpu->fifo);
2495 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2496 }
2497
97de10a9
KW
2498 register_sysctl_init("vm", memory_failure_table);
2499
ea8f5fb8
HY
2500 return 0;
2501}
2502core_initcall(memory_failure_init);
2503
96f96763
KW
2504#undef pr_fmt
2505#define pr_fmt(fmt) "" fmt
a5f65109
NH
2506#define unpoison_pr_info(fmt, pfn, rs) \
2507({ \
2508 if (__ratelimit(rs)) \
2509 pr_info(fmt, pfn); \
2510})
2511
847ce401
WF
2512/**
2513 * unpoison_memory - Unpoison a previously poisoned page
2514 * @pfn: Page number of the to be unpoisoned page
2515 *
2516 * Software-unpoison a page that has been poisoned by
2517 * memory_failure() earlier.
2518 *
2519 * This is only done on the software-level, so it only works
2520 * for linux injected failures, not real hardware failures
2521 *
2522 * Returns 0 for success, otherwise -errno.
2523 */
2524int unpoison_memory(unsigned long pfn)
2525{
9637d7df 2526 struct folio *folio;
847ce401 2527 struct page *p;
f29623e4 2528 int ret = -EBUSY, ghp;
ac5fcde0 2529 unsigned long count = 1;
5033091d 2530 bool huge = false;
a5f65109
NH
2531 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2532 DEFAULT_RATELIMIT_BURST);
847ce401
WF
2533
2534 if (!pfn_valid(pfn))
2535 return -ENXIO;
2536
2537 p = pfn_to_page(pfn);
9637d7df 2538 folio = page_folio(p);
847ce401 2539
91d00547
NH
2540 mutex_lock(&mf_mutex);
2541
67f22ba7 2542 if (hw_memory_failure) {
2543 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2544 pfn, &unpoison_rs);
2545 ret = -EOPNOTSUPP;
2546 goto unlock_mutex;
2547 }
2548
fe6f86f4
ML
2549 if (is_huge_zero_folio(folio)) {
2550 unpoison_pr_info("Unpoison: huge zero page is not supported %#lx\n",
2551 pfn, &unpoison_rs);
2552 ret = -EOPNOTSUPP;
2553 goto unlock_mutex;
2554 }
2555
6c54312f 2556 if (!PageHWPoison(p)) {
495367c0 2557 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 2558 pfn, &unpoison_rs);
91d00547 2559 goto unlock_mutex;
847ce401
WF
2560 }
2561
a6fddef4 2562 if (folio_ref_count(folio) > 1) {
495367c0 2563 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 2564 pfn, &unpoison_rs);
91d00547 2565 goto unlock_mutex;
230ac719
NH
2566 }
2567
ee299e98
MWO
2568 if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2569 folio_test_reserved(folio) || folio_test_offline(folio))
faeb2ff2
ML
2570 goto unlock_mutex;
2571
2572 /*
2573 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2574 * in folio_mapped() has to be done after folio_test_slab() is checked.
2575 */
a6fddef4 2576 if (folio_mapped(folio)) {
495367c0 2577 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 2578 pfn, &unpoison_rs);
91d00547 2579 goto unlock_mutex;
230ac719
NH
2580 }
2581
a6fddef4 2582 if (folio_mapping(folio)) {
495367c0 2583 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 2584 pfn, &unpoison_rs);
91d00547 2585 goto unlock_mutex;
0cea3fdc
WL
2586 }
2587
f29623e4
ML
2588 ghp = get_hwpoison_page(p, MF_UNPOISON);
2589 if (!ghp) {
ee299e98 2590 if (folio_test_hugetlb(folio)) {
5033091d 2591 huge = true;
9637d7df 2592 count = folio_free_raw_hwp(folio, false);
f29623e4 2593 if (count == 0)
ac5fcde0 2594 goto unlock_mutex;
ac5fcde0 2595 }
a6fddef4 2596 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
f29623e4
ML
2597 } else if (ghp < 0) {
2598 if (ghp == -EHWPOISON) {
c8bd84f7 2599 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
f29623e4
ML
2600 } else {
2601 ret = ghp;
bf181c58
NH
2602 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2603 pfn, &unpoison_rs);
f29623e4 2604 }
bf181c58 2605 } else {
ee299e98 2606 if (folio_test_hugetlb(folio)) {
5033091d 2607 huge = true;
9637d7df 2608 count = folio_free_raw_hwp(folio, false);
ac5fcde0 2609 if (count == 0) {
a6fddef4 2610 folio_put(folio);
ac5fcde0
NH
2611 goto unlock_mutex;
2612 }
2613 }
847ce401 2614
a6fddef4 2615 folio_put(folio);
e0ff4280 2616 if (TestClearPageHWPoison(p)) {
a6fddef4 2617 folio_put(folio);
bf181c58
NH
2618 ret = 0;
2619 }
2620 }
847ce401 2621
91d00547
NH
2622unlock_mutex:
2623 mutex_unlock(&mf_mutex);
e0ff4280 2624 if (!ret) {
5033091d
NH
2625 if (!huge)
2626 num_poisoned_pages_sub(pfn, 1);
c8bd84f7 2627 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2628 page_to_pfn(p), &unpoison_rs);
2629 }
91d00547 2630 return ret;
847ce401
WF
2631}
2632EXPORT_SYMBOL(unpoison_memory);
facb6011 2633
761d79fb 2634static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist)
d950b958 2635{
6b9a217e 2636 bool isolated = false;
d950b958 2637
761d79fb
MWO
2638 if (folio_test_hugetlb(folio)) {
2639 isolated = isolate_hugetlb(folio, pagelist);
6b9a217e 2640 } else {
761d79fb 2641 bool lru = !__folio_test_movable(folio);
da294991 2642
6b9a217e 2643 if (lru)
761d79fb 2644 isolated = folio_isolate_lru(folio);
6b9a217e 2645 else
761d79fb 2646 isolated = isolate_movable_page(&folio->page,
cd775580 2647 ISOLATE_UNEVICTABLE);
6b9a217e 2648
da294991 2649 if (isolated) {
761d79fb 2650 list_add(&folio->lru, pagelist);
da294991 2651 if (lru)
761d79fb
MWO
2652 node_stat_add_folio(folio, NR_ISOLATED_ANON +
2653 folio_is_file_lru(folio));
da294991 2654 }
0ebff32c 2655 }
d950b958 2656
03613808 2657 /*
761d79fb
MWO
2658 * If we succeed to isolate the folio, we grabbed another refcount on
2659 * the folio, so we can safely drop the one we got from get_any_page().
2660 * If we failed to isolate the folio, it means that we cannot go further
6b9a217e 2661 * and we will return an error, so drop the reference we got from
5885c6a6 2662 * get_any_page() as well.
03613808 2663 */
761d79fb 2664 folio_put(folio);
6b9a217e 2665 return isolated;
d950b958
NH
2666}
2667
6b9a217e 2668/*
48309e1f 2669 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
6b9a217e
OS
2670 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2671 * If the page is mapped, it migrates the contents over.
2672 */
48309e1f 2673static int soft_offline_in_use_page(struct page *page)
af8fae7c 2674{
d6c75dc2 2675 long ret = 0;
af8fae7c 2676 unsigned long pfn = page_to_pfn(page);
049b2604 2677 struct folio *folio = page_folio(page);
6b9a217e 2678 char const *msg_page[] = {"page", "hugepage"};
049b2604 2679 bool huge = folio_test_hugetlb(folio);
6b9a217e 2680 LIST_HEAD(pagelist);
54608759
JK
2681 struct migration_target_control mtc = {
2682 .nid = NUMA_NO_NODE,
2683 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
e42dfe4e 2684 .reason = MR_MEMORY_FAILURE,
54608759 2685 };
facb6011 2686
049b2604 2687 if (!huge && folio_test_large(folio)) {
48309e1f
KW
2688 if (try_to_split_thp_page(page)) {
2689 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2690 return -EBUSY;
2691 }
049b2604 2692 folio = page_folio(page);
48309e1f
KW
2693 }
2694
049b2604 2695 folio_lock(folio);
55c7ac45 2696 if (!huge)
049b2604 2697 folio_wait_writeback(folio);
af8fae7c 2698 if (PageHWPoison(page)) {
049b2604
MWO
2699 folio_unlock(folio);
2700 folio_put(folio);
af8fae7c 2701 pr_info("soft offline: %#lx page already poisoned\n", pfn);
5a2ffca3 2702 return 0;
af8fae7c 2703 }
6b9a217e 2704
049b2604 2705 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
6b9a217e
OS
2706 /*
2707 * Try to invalidate first. This should work for
2708 * non dirty unmapped page cache pages.
2709 */
049b2604
MWO
2710 ret = mapping_evict_folio(folio_mapping(folio), folio);
2711 folio_unlock(folio);
6b9a217e 2712
6b9a217e 2713 if (ret) {
fb46e735 2714 pr_info("soft_offline: %#lx: invalidated\n", pfn);
6b9a217e 2715 page_handle_poison(page, false, true);
af8fae7c 2716 return 0;
facb6011
AK
2717 }
2718
761d79fb 2719 if (mf_isolate_folio(folio, &pagelist)) {
54608759 2720 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
5ac95884 2721 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
79f5f8fa 2722 if (!ret) {
6b9a217e
OS
2723 bool release = !huge;
2724
2725 if (!page_handle_poison(page, huge, release))
2726 ret = -EBUSY;
79f5f8fa 2727 } else {
85fbe5d1
YX
2728 if (!list_empty(&pagelist))
2729 putback_movable_pages(&pagelist);
59c82b70 2730
d6c75dc2 2731 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
23efd080 2732 pfn, msg_page[huge], ret, &page->flags);
facb6011 2733 if (ret > 0)
3f4b815a 2734 ret = -EBUSY;
facb6011
AK
2735 }
2736 } else {
23efd080
MWO
2737 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2738 pfn, msg_page[huge], page_count(page), &page->flags);
6b9a217e 2739 ret = -EBUSY;
facb6011 2740 }
facb6011
AK
2741 return ret;
2742}
86e05773
WL
2743
2744/**
2745 * soft_offline_page - Soft offline a page.
feec24a6 2746 * @pfn: pfn to soft-offline
86e05773
WL
2747 * @flags: flags. Same as memory_failure().
2748 *
9113eaf3 2749 * Returns 0 on success
2750 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2751 * < 0 otherwise negated errno.
86e05773
WL
2752 *
2753 * Soft offline a page, by migration or invalidation,
2754 * without killing anything. This is for the case when
2755 * a page is not corrupted yet (so it's still valid to access),
2756 * but has had a number of corrected errors and is better taken
2757 * out.
2758 *
2759 * The actual policy on when to do that is maintained by
2760 * user space.
2761 *
2762 * This should never impact any application or cause data loss,
2763 * however it might take some time.
2764 *
2765 * This is not a 100% solution for all memory, but tries to be
2766 * ``good enough'' for the majority of memory.
2767 */
feec24a6 2768int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2769{
2770 int ret;
b94e0282 2771 bool try_again = true;
b5f1fc98 2772 struct page *page;
dad4e5b3 2773
183a7c5d
KW
2774 if (!pfn_valid(pfn)) {
2775 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
feec24a6 2776 return -ENXIO;
183a7c5d 2777 }
dad4e5b3 2778
feec24a6
NH
2779 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2780 page = pfn_to_online_page(pfn);
dad4e5b3 2781 if (!page) {
b5f1fc98 2782 put_ref_page(pfn, flags);
86a66810 2783 return -EIO;
dad4e5b3 2784 }
86a66810 2785
91d00547
NH
2786 mutex_lock(&mf_mutex);
2787
86e05773 2788 if (PageHWPoison(page)) {
8295d535 2789 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
b5f1fc98 2790 put_ref_page(pfn, flags);
91d00547 2791 mutex_unlock(&mf_mutex);
5a2ffca3 2792 return 0;
86e05773 2793 }
86e05773 2794
b94e0282 2795retry:
bfc8c901 2796 get_online_mems();
bf6445bc 2797 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
bfc8c901 2798 put_online_mems();
4e41a30c 2799
9113eaf3 2800 if (hwpoison_filter(page)) {
2801 if (ret > 0)
2802 put_page(page);
9113eaf3 2803
2804 mutex_unlock(&mf_mutex);
2805 return -EOPNOTSUPP;
2806 }
2807
8295d535 2808 if (ret > 0) {
6b9a217e 2809 ret = soft_offline_in_use_page(page);
8295d535 2810 } else if (ret == 0) {
e2c1ab07
ML
2811 if (!page_handle_poison(page, true, false)) {
2812 if (try_again) {
2813 try_again = false;
2814 flags &= ~MF_COUNT_INCREASED;
2815 goto retry;
2816 }
2817 ret = -EBUSY;
b94e0282 2818 }
8295d535 2819 }
4e41a30c 2820
91d00547
NH
2821 mutex_unlock(&mf_mutex);
2822
86e05773
WL
2823 return ret;
2824}