Merge tag 'mm-hotfixes-stable-2025-09-17-21-10' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
c33c7948 9 *
1c80b990
AK
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
c33c7948
RR
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
1c80b990 19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
799fb82a 27 * tools/mm/page-types when running a real workload.
c33c7948 28 *
1c80b990 29 * There are several operations here with exponential complexity because
c33c7948
RR
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
1c80b990 32 * has non linear complexity with the number. But since memory corruptions
c33c7948 33 * are rare we hope to get away with this. This avoids impacting the core
1c80b990 34 * VM.
6a46079c 35 */
96f96763
KW
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
3f07c014 42#include <linux/sched/signal.h>
29930025 43#include <linux/sched/task.h>
96c84dde 44#include <linux/dax.h>
01e00f88 45#include <linux/ksm.h>
6a46079c 46#include <linux/rmap.h>
b9e15baf 47#include <linux/export.h>
6a46079c
AK
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
facb6011 51#include <linux/migrate.h>
5a0e3ad6 52#include <linux/slab.h>
bf998156 53#include <linux/swapops.h>
7af446a8 54#include <linux/hugetlb.h>
20d6c96b 55#include <linux/memory_hotplug.h>
5db8a73a 56#include <linux/mm_inline.h>
6100e34b 57#include <linux/memremap.h>
ea8f5fb8 58#include <linux/kfifo.h>
a5f65109 59#include <linux/ratelimit.h>
a3f5d80e 60#include <linux/pagewalk.h>
a7605426 61#include <linux/shmem_fs.h>
8cbc82f3 62#include <linux/sysctl.h>
014bb1de 63#include "swap.h"
6a46079c 64#include "internal.h"
97f0b134 65#include "ras/ras_event.h"
6a46079c 66
8cbc82f3 67static int sysctl_memory_failure_early_kill __read_mostly;
6a46079c 68
8cbc82f3 69static int sysctl_memory_failure_recovery __read_mostly = 1;
6a46079c 70
56374430
JY
71static int sysctl_enable_soft_offline __read_mostly = 1;
72
293c07e3 73atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 74
67f22ba7 75static bool hw_memory_failure __read_mostly = false;
76
b79f8eb4
JY
77static DEFINE_MUTEX(mf_mutex);
78
1a7d018d 79void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
80{
81 atomic_long_inc(&num_poisoned_pages);
5033091d 82 memblk_nr_poison_inc(pfn);
d027122d
NH
83}
84
1a7d018d 85void num_poisoned_pages_sub(unsigned long pfn, long i)
d027122d
NH
86{
87 atomic_long_sub(i, &num_poisoned_pages);
5033091d
NH
88 if (pfn != -1UL)
89 memblk_nr_poison_sub(pfn, i);
d027122d
NH
90}
91
44b8f8bf
JY
92/**
93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94 * @_name: name of the file in the per NUMA sysfs directory.
95 */
96#define MF_ATTR_RO(_name) \
97static ssize_t _name##_show(struct device *dev, \
98 struct device_attribute *attr, \
99 char *buf) \
100{ \
101 struct memory_failure_stats *mf_stats = \
102 &NODE_DATA(dev->id)->mf_stats; \
408a8dc6 103 return sysfs_emit(buf, "%lu\n", mf_stats->_name); \
44b8f8bf
JY
104} \
105static DEVICE_ATTR_RO(_name)
106
107MF_ATTR_RO(total);
108MF_ATTR_RO(ignored);
109MF_ATTR_RO(failed);
110MF_ATTR_RO(delayed);
111MF_ATTR_RO(recovered);
112
113static struct attribute *memory_failure_attr[] = {
114 &dev_attr_total.attr,
115 &dev_attr_ignored.attr,
116 &dev_attr_failed.attr,
117 &dev_attr_delayed.attr,
118 &dev_attr_recovered.attr,
119 NULL,
120};
121
122const struct attribute_group memory_failure_attr_group = {
123 .name = "memory_failure",
124 .attrs = memory_failure_attr,
125};
126
1751f872 127static const struct ctl_table memory_failure_table[] = {
8cbc82f3
KW
128 {
129 .procname = "memory_failure_early_kill",
130 .data = &sysctl_memory_failure_early_kill,
131 .maxlen = sizeof(sysctl_memory_failure_early_kill),
132 .mode = 0644,
133 .proc_handler = proc_dointvec_minmax,
134 .extra1 = SYSCTL_ZERO,
135 .extra2 = SYSCTL_ONE,
136 },
137 {
138 .procname = "memory_failure_recovery",
139 .data = &sysctl_memory_failure_recovery,
140 .maxlen = sizeof(sysctl_memory_failure_recovery),
141 .mode = 0644,
142 .proc_handler = proc_dointvec_minmax,
143 .extra1 = SYSCTL_ZERO,
144 .extra2 = SYSCTL_ONE,
145 },
56374430
JY
146 {
147 .procname = "enable_soft_offline",
148 .data = &sysctl_enable_soft_offline,
149 .maxlen = sizeof(sysctl_enable_soft_offline),
150 .mode = 0644,
151 .proc_handler = proc_dointvec_minmax,
152 .extra1 = SYSCTL_ZERO,
153 .extra2 = SYSCTL_ONE,
154 }
8cbc82f3
KW
155};
156
7453bf62
NH
157/*
158 * Return values:
159 * 1: the page is dissolved (if needed) and taken off from buddy,
160 * 0: the page is dissolved (if needed) and not taken off from buddy,
161 * < 0: failed to dissolve.
162 */
163static int __page_handle_poison(struct page *page)
510d25c9 164{
f87060d3 165 int ret;
510d25c9 166
1983184c
ML
167 /*
168 * zone_pcp_disable() can't be used here. It will
54fa49b2 169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
1983184c
ML
170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 * optimization is enabled. This will break current lock dependency
172 * chain and leads to deadlock.
173 * Disabling pcp before dissolving the page was a deterministic
174 * approach because we made sure that those pages cannot end up in any
175 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 * but nothing guarantees that those pages do not get back to a PCP
177 * queue if we need to refill those.
178 */
54fa49b2 179 ret = dissolve_free_hugetlb_folio(page_folio(page));
1983184c
ML
180 if (!ret) {
181 drain_all_pages(page_zone(page));
510d25c9 182 ret = take_page_off_buddy(page);
1983184c 183 }
510d25c9 184
7453bf62 185 return ret;
510d25c9
NH
186}
187
6b9a217e 188static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 189{
6b9a217e
OS
190 if (hugepage_or_freepage) {
191 /*
54fa49b2
SK
192 * Doing this check for free pages is also fine since
193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
6b9a217e 194 */
7453bf62 195 if (__page_handle_poison(page) <= 0)
6b9a217e
OS
196 /*
197 * We could fail to take off the target page from buddy
f0953a1b 198 * for example due to racy page allocation, but that's
6b9a217e
OS
199 * acceptable because soft-offlined page is not broken
200 * and if someone really want to use it, they should
201 * take it.
202 */
203 return false;
204 }
205
06be6ff3 206 SetPageHWPoison(page);
79f5f8fa
OS
207 if (release)
208 put_page(page);
06be6ff3 209 page_ref_inc(page);
a46c9304 210 num_poisoned_pages_inc(page_to_pfn(page));
6b9a217e
OS
211
212 return true;
06be6ff3
OS
213}
214
611b9fd8 215#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
27df5068 216
1bfe5feb 217u32 hwpoison_filter_enable = 0;
7c116f2b
WF
218u32 hwpoison_filter_dev_major = ~0U;
219u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
220u64 hwpoison_filter_flags_mask;
221u64 hwpoison_filter_flags_value;
1bfe5feb 222EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
223EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
225EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
227
228static int hwpoison_filter_dev(struct page *p)
229{
89f5c54b 230 struct folio *folio = page_folio(p);
7c116f2b
WF
231 struct address_space *mapping;
232 dev_t dev;
233
234 if (hwpoison_filter_dev_major == ~0U &&
235 hwpoison_filter_dev_minor == ~0U)
236 return 0;
237
89f5c54b 238 mapping = folio_mapping(folio);
7c116f2b
WF
239 if (mapping == NULL || mapping->host == NULL)
240 return -EINVAL;
241
242 dev = mapping->host->i_sb->s_dev;
243 if (hwpoison_filter_dev_major != ~0U &&
244 hwpoison_filter_dev_major != MAJOR(dev))
245 return -EINVAL;
246 if (hwpoison_filter_dev_minor != ~0U &&
247 hwpoison_filter_dev_minor != MINOR(dev))
248 return -EINVAL;
249
250 return 0;
251}
252
478c5ffc
WF
253static int hwpoison_filter_flags(struct page *p)
254{
255 if (!hwpoison_filter_flags_mask)
256 return 0;
257
258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 hwpoison_filter_flags_value)
260 return 0;
261 else
262 return -EINVAL;
263}
264
4fd466eb
AK
265/*
266 * This allows stress tests to limit test scope to a collection of tasks
267 * by putting them under some memcg. This prevents killing unrelated/important
268 * processes such as /sbin/init. Note that the target task may share clean
269 * pages with init (eg. libc text), which is harmless. If the target task
270 * share _dirty_ pages with another task B, the test scheme must make sure B
271 * is also included in the memcg. At last, due to race conditions this filter
272 * can only guarantee that the page either belongs to the memcg tasks, or is
273 * a freed page.
274 */
94a59fb3 275#ifdef CONFIG_MEMCG
4fd466eb
AK
276u64 hwpoison_filter_memcg;
277EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
278static int hwpoison_filter_task(struct page *p)
279{
4fd466eb
AK
280 if (!hwpoison_filter_memcg)
281 return 0;
282
94a59fb3 283 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
284 return -EINVAL;
285
286 return 0;
287}
288#else
289static int hwpoison_filter_task(struct page *p) { return 0; }
290#endif
291
7c116f2b
WF
292int hwpoison_filter(struct page *p)
293{
1bfe5feb
HL
294 if (!hwpoison_filter_enable)
295 return 0;
296
7c116f2b
WF
297 if (hwpoison_filter_dev(p))
298 return -EINVAL;
299
478c5ffc
WF
300 if (hwpoison_filter_flags(p))
301 return -EINVAL;
302
4fd466eb
AK
303 if (hwpoison_filter_task(p))
304 return -EINVAL;
305
7c116f2b
WF
306 return 0;
307}
5a8b01be 308EXPORT_SYMBOL_GPL(hwpoison_filter);
27df5068
AK
309#else
310int hwpoison_filter(struct page *p)
311{
312 return 0;
313}
314#endif
315
ae1139ec
DW
316/*
317 * Kill all processes that have a poisoned page mapped and then isolate
318 * the page.
319 *
320 * General strategy:
321 * Find all processes having the page mapped and kill them.
322 * But we keep a page reference around so that the page is not
323 * actually freed yet.
324 * Then stash the page away
325 *
326 * There's no convenient way to get back to mapped processes
327 * from the VMAs. So do a brute-force search over all
328 * running processes.
329 *
330 * Remember that machine checks are not common (or rather
331 * if they are common you have other problems), so this shouldn't
332 * be a performance issue.
333 *
334 * Also there are some races possible while we get from the
335 * error detection to actually handle it.
336 */
337
338struct to_kill {
339 struct list_head nd;
340 struct task_struct *tsk;
341 unsigned long addr;
342 short size_shift;
ae1139ec
DW
343};
344
6a46079c 345/*
7329bbeb
TL
346 * Send all the processes who have the page mapped a signal.
347 * ``action optional'' if they are not immediately affected by the error
348 * ``action required'' if error happened in current execution context
6a46079c 349 */
ae1139ec 350static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 351{
ae1139ec
DW
352 struct task_struct *t = tk->tsk;
353 short addr_lsb = tk->size_shift;
872e9a20 354 int ret = 0;
6a46079c 355
96f96763 356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
96e13a4e 357 pfn, t->comm, task_pid_nr(t));
7329bbeb 358
49775047
ML
359 if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 ret = force_sig_mceerr(BUS_MCEERR_AR,
361 (void __user *)tk->addr, addr_lsb);
362 else
7329bbeb 363 /*
49775047
ML
364 * Signal other processes sharing the page if they have
365 * PF_MCE_EARLY set.
7329bbeb
TL
366 * Don't use force here, it's convenient if the signal
367 * can be temporarily blocked.
7329bbeb 368 */
ae1139ec 369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
9cf28191 370 addr_lsb, t);
6a46079c 371 if (ret < 0)
96f96763 372 pr_info("Error sending signal to %s:%d: %d\n",
96e13a4e 373 t->comm, task_pid_nr(t), ret);
6a46079c
AK
374 return ret;
375}
376
588f9ce6 377/*
47e431f4 378 * Unknown page type encountered. Try to check whether it can turn PageLRU by
d0505e9f 379 * lru_add_drain_all.
588f9ce6 380 */
fed5348e 381void shake_folio(struct folio *folio)
588f9ce6 382{
fed5348e 383 if (folio_test_hugetlb(folio))
8bcb74de 384 return;
588f9ce6 385 /*
d0505e9f
YS
386 * TODO: Could shrink slab caches here if a lightweight range-based
387 * shrinker will be available.
588f9ce6 388 */
fed5348e 389 if (folio_test_slab(folio))
b7b618da
ML
390 return;
391
392 lru_add_drain_all();
588f9ce6 393}
fed5348e
MWO
394EXPORT_SYMBOL_GPL(shake_folio);
395
396static void shake_page(struct page *page)
397{
398 shake_folio(page_folio(page));
399}
588f9ce6 400
c36e2024
SR
401static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 unsigned long address)
6100e34b 403{
5c91c0e7 404 unsigned long ret = 0;
6100e34b
DW
405 pgd_t *pgd;
406 p4d_t *p4d;
407 pud_t *pud;
408 pmd_t *pmd;
409 pte_t *pte;
c33c7948 410 pte_t ptent;
6100e34b 411
a994402b 412 VM_BUG_ON_VMA(address == -EFAULT, vma);
6100e34b
DW
413 pgd = pgd_offset(vma->vm_mm, address);
414 if (!pgd_present(*pgd))
415 return 0;
416 p4d = p4d_offset(pgd, address);
417 if (!p4d_present(*p4d))
418 return 0;
419 pud = pud_offset(p4d, address);
420 if (!pud_present(*pud))
421 return 0;
38607c62 422 if (pud_trans_huge(*pud))
6100e34b
DW
423 return PUD_SHIFT;
424 pmd = pmd_offset(pud, address);
425 if (!pmd_present(*pmd))
426 return 0;
38607c62 427 if (pmd_trans_huge(*pmd))
6100e34b
DW
428 return PMD_SHIFT;
429 pte = pte_offset_map(pmd, address);
04dee9e8
HD
430 if (!pte)
431 return 0;
c33c7948 432 ptent = ptep_get(pte);
38607c62 433 if (pte_present(ptent))
5c91c0e7
QZ
434 ret = PAGE_SHIFT;
435 pte_unmap(pte);
436 return ret;
6100e34b 437}
6a46079c
AK
438
439/*
440 * Failure handling: if we can't find or can't kill a process there's
441 * not much we can do. We just print a message and ignore otherwise.
442 */
443
444/*
445 * Schedule a process for later kill.
446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
6a46079c 447 */
68158bfa 448static void __add_to_kill(struct task_struct *tsk, const struct page *p,
4f775086 449 struct vm_area_struct *vma, struct list_head *to_kill,
1c0501e8 450 unsigned long addr)
6a46079c
AK
451{
452 struct to_kill *tk;
453
996ff7a0
JC
454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 if (!tk) {
96f96763 456 pr_err("Out of memory while machine check handling\n");
996ff7a0 457 return;
6a46079c 458 }
996ff7a0 459
f2b37197 460 tk->addr = addr;
1c0501e8 461 if (is_zone_device_page(p))
c36e2024 462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
1c0501e8 463 else
68158bfa 464 tk->size_shift = folio_shift(page_folio(p));
6a46079c
AK
465
466 /*
3d7fed4a
JC
467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 * so "tk->size_shift == 0" effectively checks no mapping on
470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 * to a process' address space, it's possible not all N VMAs
472 * contain mappings for the page, but at least one VMA does.
473 * Only deliver SIGBUS with payload derived from the VMA that
474 * has a mapping for the page.
6a46079c 475 */
3d7fed4a 476 if (tk->addr == -EFAULT) {
96f96763 477 pr_info("Unable to find user space address %lx in %s\n",
6a46079c 478 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
479 } else if (tk->size_shift == 0) {
480 kfree(tk);
481 return;
6a46079c 482 }
996ff7a0 483
6a46079c
AK
484 get_task_struct(tsk);
485 tk->tsk = tsk;
486 list_add_tail(&tk->nd, to_kill);
487}
488
68158bfa 489static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
37bc2ff5
MWO
490 struct vm_area_struct *vma, struct list_head *to_kill,
491 unsigned long addr)
4f775086 492{
37bc2ff5
MWO
493 if (addr == -EFAULT)
494 return;
f2b37197 495 __add_to_kill(tsk, p, vma, to_kill, addr);
4f775086
LX
496}
497
4248d008
LX
498#ifdef CONFIG_KSM
499static bool task_in_to_kill_list(struct list_head *to_kill,
500 struct task_struct *tsk)
501{
502 struct to_kill *tk, *next;
503
504 list_for_each_entry_safe(tk, next, to_kill, nd) {
505 if (tk->tsk == tsk)
506 return true;
507 }
508
509 return false;
510}
f2b37197 511
68158bfa 512void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
4248d008 513 struct vm_area_struct *vma, struct list_head *to_kill,
1c0501e8 514 unsigned long addr)
4248d008
LX
515{
516 if (!task_in_to_kill_list(to_kill, tsk))
1c0501e8 517 __add_to_kill(tsk, p, vma, to_kill, addr);
4248d008
LX
518}
519#endif
6a46079c
AK
520/*
521 * Kill the processes that have been collected earlier.
522 *
a21c184f
ML
523 * Only do anything when FORCEKILL is set, otherwise just free the
524 * list (this is used for clean pages which do not need killing)
6a46079c 525 */
aa298fdf 526static void kill_procs(struct list_head *to_kill, int forcekill,
ae1139ec 527 unsigned long pfn, int flags)
6a46079c
AK
528{
529 struct to_kill *tk, *next;
530
54f9555d 531 list_for_each_entry_safe(tk, next, to_kill, nd) {
6751ed65 532 if (forcekill) {
aa298fdf 533 if (tk->addr == -EFAULT) {
96f96763 534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
96e13a4e 535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
6376360e
NH
536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 tk->tsk, PIDTYPE_PID);
6a46079c
AK
538 }
539
540 /*
541 * In theory the process could have mapped
542 * something else on the address in-between. We could
543 * check for that, but we need to tell the
544 * process anyways.
545 */
ae1139ec 546 else if (kill_proc(tk, pfn, flags) < 0)
96f96763 547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
96e13a4e 548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
6a46079c 549 }
54f9555d 550 list_del(&tk->nd);
6a46079c
AK
551 put_task_struct(tk->tsk);
552 kfree(tk);
553 }
554}
555
3ba08129
NH
556/*
557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558 * on behalf of the thread group. Return task_struct of the (first found)
559 * dedicated thread if found, and return NULL otherwise.
560 *
d256d1cd
TT
561 * We already hold rcu lock in the caller, so we don't have to call
562 * rcu_read_lock/unlock() in this function.
3ba08129
NH
563 */
564static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 565{
3ba08129
NH
566 struct task_struct *t;
567
4e018b45
NH
568 for_each_thread(tsk, t) {
569 if (t->flags & PF_MCE_PROCESS) {
570 if (t->flags & PF_MCE_EARLY)
571 return t;
572 } else {
573 if (sysctl_memory_failure_early_kill)
574 return t;
575 }
576 }
3ba08129
NH
577 return NULL;
578}
579
580/*
581 * Determine whether a given process is "early kill" process which expects
582 * to be signaled when some page under the process is hwpoisoned.
583 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 584 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 585 *
30c9cf49
AY
586 * Note that the above is true for Action Optional case. For Action Required
587 * case, it's only meaningful to the current thread which need to be signaled
588 * with SIGBUS, this error is Action Optional for other non current
589 * processes sharing the same error page,if the process is "early kill", the
590 * task_struct of the dedicated thread will also be returned.
3ba08129 591 */
4248d008 592struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
3ba08129 593{
6a46079c 594 if (!tsk->mm)
3ba08129 595 return NULL;
30c9cf49
AY
596 /*
597 * Comparing ->mm here because current task might represent
598 * a subthread, while tsk always points to the main thread.
599 */
600 if (force_early && tsk->mm == current->mm)
601 return current;
602
4e018b45 603 return find_early_kill_thread(tsk);
6a46079c
AK
604}
605
606/*
607 * Collect processes when the error hit an anonymous page.
608 */
68158bfa
MWO
609static void collect_procs_anon(const struct folio *folio,
610 const struct page *page, struct list_head *to_kill,
611 int force_early)
6a46079c 612{
6a46079c
AK
613 struct task_struct *tsk;
614 struct anon_vma *av;
bf181b9f 615 pgoff_t pgoff;
6a46079c 616
6d4675e6 617 av = folio_lock_anon_vma_read(folio, NULL);
6a46079c 618 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
619 return;
620
f7470591 621 pgoff = page_pgoff(folio, page);
d256d1cd 622 rcu_read_lock();
5885c6a6 623 for_each_process(tsk) {
37bc2ff5 624 struct vm_area_struct *vma;
5beb4930 625 struct anon_vma_chain *vmac;
3ba08129 626 struct task_struct *t = task_early_kill(tsk, force_early);
37bc2ff5 627 unsigned long addr;
5beb4930 628
3ba08129 629 if (!t)
6a46079c 630 continue;
bf181b9f
ML
631 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
632 pgoff, pgoff) {
5beb4930 633 vma = vmac->vma;
36537a67
ML
634 if (vma->vm_mm != t->mm)
635 continue;
37bc2ff5
MWO
636 addr = page_mapped_in_vma(page, vma);
637 add_to_kill_anon_file(t, page, vma, to_kill, addr);
6a46079c
AK
638 }
639 }
d256d1cd 640 rcu_read_unlock();
0c826c0b 641 anon_vma_unlock_read(av);
6a46079c
AK
642}
643
644/*
645 * Collect processes when the error hit a file mapped page.
646 */
68158bfa
MWO
647static void collect_procs_file(const struct folio *folio,
648 const struct page *page, struct list_head *to_kill,
649 int force_early)
6a46079c
AK
650{
651 struct vm_area_struct *vma;
652 struct task_struct *tsk;
376907f3 653 struct address_space *mapping = folio->mapping;
c43bc03d 654 pgoff_t pgoff;
6a46079c 655
d28eb9c8 656 i_mmap_lock_read(mapping);
d256d1cd 657 rcu_read_lock();
f7470591 658 pgoff = page_pgoff(folio, page);
6a46079c 659 for_each_process(tsk) {
3ba08129 660 struct task_struct *t = task_early_kill(tsk, force_early);
37bc2ff5 661 unsigned long addr;
6a46079c 662
3ba08129 663 if (!t)
6a46079c 664 continue;
6b2dbba8 665 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
666 pgoff) {
667 /*
668 * Send early kill signal to tasks where a vma covers
669 * the page but the corrupted page is not necessarily
5885c6a6 670 * mapped in its pte.
6a46079c
AK
671 * Assume applications who requested early kill want
672 * to be informed of all such data corruptions.
673 */
37bc2ff5
MWO
674 if (vma->vm_mm != t->mm)
675 continue;
713da0b3 676 addr = page_address_in_vma(folio, page, vma);
37bc2ff5 677 add_to_kill_anon_file(t, page, vma, to_kill, addr);
6a46079c
AK
678 }
679 }
d256d1cd 680 rcu_read_unlock();
d28eb9c8 681 i_mmap_unlock_read(mapping);
6a46079c
AK
682}
683
c36e2024 684#ifdef CONFIG_FS_DAX
68158bfa 685static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
4f775086
LX
686 struct vm_area_struct *vma,
687 struct list_head *to_kill, pgoff_t pgoff)
688{
1c0501e8
MWO
689 unsigned long addr = vma_address(vma, pgoff, 1);
690 __add_to_kill(tsk, p, vma, to_kill, addr);
4f775086
LX
691}
692
c36e2024
SR
693/*
694 * Collect processes when the error hit a fsdax page.
695 */
68158bfa 696static void collect_procs_fsdax(const struct page *page,
c36e2024 697 struct address_space *mapping, pgoff_t pgoff,
fa422b35 698 struct list_head *to_kill, bool pre_remove)
c36e2024
SR
699{
700 struct vm_area_struct *vma;
701 struct task_struct *tsk;
702
703 i_mmap_lock_read(mapping);
d256d1cd 704 rcu_read_lock();
c36e2024 705 for_each_process(tsk) {
fa422b35 706 struct task_struct *t = tsk;
c36e2024 707
fa422b35
SR
708 /*
709 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
710 * the current may not be the one accessing the fsdax page.
711 * Otherwise, search for the current task.
712 */
713 if (!pre_remove)
714 t = task_early_kill(tsk, true);
c36e2024
SR
715 if (!t)
716 continue;
717 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
718 if (vma->vm_mm == t->mm)
4f775086 719 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
c36e2024
SR
720 }
721 }
d256d1cd 722 rcu_read_unlock();
c36e2024
SR
723 i_mmap_unlock_read(mapping);
724}
725#endif /* CONFIG_FS_DAX */
726
6a46079c
AK
727/*
728 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 729 */
68158bfa 730static void collect_procs(const struct folio *folio, const struct page *page,
376907f3 731 struct list_head *tokill, int force_early)
6a46079c 732{
376907f3 733 if (!folio->mapping)
6a46079c 734 return;
0edb5b28 735 if (unlikely(folio_test_ksm(folio)))
b650e1d2 736 collect_procs_ksm(folio, page, tokill, force_early);
0edb5b28 737 else if (folio_test_anon(folio))
376907f3 738 collect_procs_anon(folio, page, tokill, force_early);
6a46079c 739 else
376907f3 740 collect_procs_file(folio, page, tokill, force_early);
6a46079c
AK
741}
742
6885938c 743struct hwpoison_walk {
a3f5d80e
NH
744 struct to_kill tk;
745 unsigned long pfn;
746 int flags;
747};
748
749static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
750{
751 tk->addr = addr;
752 tk->size_shift = shift;
753}
754
755static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
756 unsigned long poisoned_pfn, struct to_kill *tk)
757{
758 unsigned long pfn = 0;
759
760 if (pte_present(pte)) {
761 pfn = pte_pfn(pte);
762 } else {
763 swp_entry_t swp = pte_to_swp_entry(pte);
764
765 if (is_hwpoison_entry(swp))
0d206b5d 766 pfn = swp_offset_pfn(swp);
a3f5d80e
NH
767 }
768
769 if (!pfn || pfn != poisoned_pfn)
770 return 0;
771
772 set_to_kill(tk, addr, shift);
773 return 1;
774}
775
776#ifdef CONFIG_TRANSPARENT_HUGEPAGE
777static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
6885938c 778 struct hwpoison_walk *hwp)
a3f5d80e
NH
779{
780 pmd_t pmd = *pmdp;
781 unsigned long pfn;
782 unsigned long hwpoison_vaddr;
783
784 if (!pmd_present(pmd))
785 return 0;
786 pfn = pmd_pfn(pmd);
787 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
788 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
789 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
790 return 1;
791 }
792 return 0;
793}
794#else
795static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
6885938c 796 struct hwpoison_walk *hwp)
a3f5d80e
NH
797{
798 return 0;
799}
800#endif
801
802static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
803 unsigned long end, struct mm_walk *walk)
804{
6885938c 805 struct hwpoison_walk *hwp = walk->private;
a3f5d80e 806 int ret = 0;
ea3732f7 807 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
808 spinlock_t *ptl;
809
810 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
811 if (ptl) {
812 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
813 spin_unlock(ptl);
814 goto out;
815 }
816
ea3732f7
ML
817 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
818 addr, &ptl);
04dee9e8
HD
819 if (!ptep)
820 goto out;
821
a3f5d80e 822 for (; addr != end; ptep++, addr += PAGE_SIZE) {
c33c7948 823 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
a3f5d80e
NH
824 hwp->pfn, &hwp->tk);
825 if (ret == 1)
826 break;
827 }
ea3732f7 828 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
829out:
830 cond_resched();
831 return ret;
832}
833
834#ifdef CONFIG_HUGETLB_PAGE
835static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
836 unsigned long addr, unsigned long end,
837 struct mm_walk *walk)
838{
6885938c 839 struct hwpoison_walk *hwp = walk->private;
a3f5d80e 840 struct hstate *h = hstate_vma(walk->vma);
9109bd52
JT
841 spinlock_t *ptl;
842 pte_t pte;
843 int ret;
a3f5d80e 844
9109bd52
JT
845 ptl = huge_pte_lock(h, walk->mm, ptep);
846 pte = huge_ptep_get(walk->mm, addr, ptep);
847 ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
848 hwp->pfn, &hwp->tk);
849 spin_unlock(ptl);
850 return ret;
a3f5d80e
NH
851}
852#else
853#define hwpoison_hugetlb_range NULL
854#endif
855
2e6053fe
JT
856static int hwpoison_test_walk(unsigned long start, unsigned long end,
857 struct mm_walk *walk)
858{
859 /* We also want to consider pages mapped into VM_PFNMAP. */
860 return 0;
861}
862
6885938c 863static const struct mm_walk_ops hwpoison_walk_ops = {
a3f5d80e
NH
864 .pmd_entry = hwpoison_pte_range,
865 .hugetlb_entry = hwpoison_hugetlb_range,
2e6053fe 866 .test_walk = hwpoison_test_walk,
49b06385 867 .walk_lock = PGWALK_RDLOCK,
a3f5d80e
NH
868};
869
870/*
871 * Sends SIGBUS to the current process with error info.
872 *
873 * This function is intended to handle "Action Required" MCEs on already
874 * hardware poisoned pages. They could happen, for example, when
875 * memory_failure() failed to unmap the error page at the first call, or
876 * when multiple local machine checks happened on different CPUs.
877 *
878 * MCE handler currently has no easy access to the error virtual address,
879 * so this function walks page table to find it. The returned virtual address
880 * is proper in most cases, but it could be wrong when the application
881 * process has multiple entries mapping the error page.
882 */
883static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
884 int flags)
885{
886 int ret;
6885938c 887 struct hwpoison_walk priv = {
a3f5d80e
NH
888 .pfn = pfn,
889 };
890 priv.tk.tsk = p;
891
77677cdb
SX
892 if (!p->mm)
893 return -EFAULT;
894
a3f5d80e 895 mmap_read_lock(p->mm);
6885938c 896 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
a3f5d80e 897 (void *)&priv);
aaf99ac2
SX
898 /*
899 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
900 * succeeds or fails, then kill the process with SIGBUS.
901 * ret = 0 when poison page is a clean page and it's dropped, no
902 * SIGBUS is needed.
903 */
a3f5d80e
NH
904 if (ret == 1 && priv.tk.addr)
905 kill_proc(&priv.tk, pfn, flags);
906 mmap_read_unlock(p->mm);
aaf99ac2
SX
907
908 return ret > 0 ? -EHWPOISON : 0;
a3f5d80e
NH
909}
910
b8b9488d
JC
911/*
912 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
913 * But it could not do more to isolate the page from being accessed again,
914 * nor does it kill the process. This is extremely rare and one of the
915 * potential causes is that the page state has been changed due to
916 * underlying race condition. This is the most severe outcomes.
917 *
918 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
919 * It should have killed the process, but it can't isolate the page,
920 * due to conditions such as extra pin, unmap failure, etc. Accessing
921 * the page again may trigger another MCE and the process will be killed
922 * by the m-f() handler immediately.
923 *
924 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
925 * The page is unmapped, and is removed from the LRU or file mapping.
926 * An attempt to access the page again will trigger page fault and the
927 * PF handler will kill the process.
928 *
929 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
930 * The page has been completely isolated, that is, unmapped, taken out of
931 * the buddy system, or hole-punnched out of the file mapping.
932 */
6a46079c 933static const char *action_name[] = {
cc637b17
XX
934 [MF_IGNORED] = "Ignored",
935 [MF_FAILED] = "Failed",
936 [MF_DELAYED] = "Delayed",
937 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
938};
939
940static const char * const action_page_types[] = {
cc637b17
XX
941 [MF_MSG_KERNEL] = "reserved kernel page",
942 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
cc637b17
XX
943 [MF_MSG_HUGE] = "huge page",
944 [MF_MSG_FREE_HUGE] = "free huge page",
b8b9488d 945 [MF_MSG_GET_HWPOISON] = "get hwpoison page",
cc637b17
XX
946 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
947 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
948 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
949 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
950 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
951 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
952 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
953 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
954 [MF_MSG_CLEAN_LRU] = "clean LRU page",
955 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
956 [MF_MSG_BUDDY] = "free buddy page",
6100e34b 957 [MF_MSG_DAX] = "dax page",
5d1fd5dc 958 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
3be306cc 959 [MF_MSG_ALREADY_POISONED] = "already poisoned page",
cc637b17 960 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
961};
962
dc2a1cbf
WF
963/*
964 * XXX: It is possible that a page is isolated from LRU cache,
965 * and then kept in swap cache or failed to remove from page cache.
966 * The page count will stop it from being freed by unpoison.
967 * Stress tests should be aware of this memory leak problem.
968 */
f7092393 969static int delete_from_lru_cache(struct folio *folio)
dc2a1cbf 970{
f7092393 971 if (folio_isolate_lru(folio)) {
dc2a1cbf
WF
972 /*
973 * Clear sensible page flags, so that the buddy system won't
f7092393 974 * complain when the folio is unpoison-and-freed.
dc2a1cbf 975 */
f7092393
MWO
976 folio_clear_active(folio);
977 folio_clear_unevictable(folio);
18365225
MH
978
979 /*
980 * Poisoned page might never drop its ref count to 0 so we have
981 * to uncharge it manually from its memcg.
982 */
f7092393 983 mem_cgroup_uncharge(folio);
18365225 984
dc2a1cbf 985 /*
f7092393 986 * drop the refcount elevated by folio_isolate_lru()
dc2a1cbf 987 */
f7092393 988 folio_put(folio);
dc2a1cbf
WF
989 return 0;
990 }
991 return -EIO;
992}
993
af7628d6 994static int truncate_error_folio(struct folio *folio, unsigned long pfn,
78bb9203
NH
995 struct address_space *mapping)
996{
997 int ret = MF_FAILED;
998
af7628d6
MWO
999 if (mapping->a_ops->error_remove_folio) {
1000 int err = mapping->a_ops->error_remove_folio(mapping, folio);
78bb9203 1001
0201ebf2 1002 if (err != 0)
96f96763 1003 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
0201ebf2 1004 else if (!filemap_release_folio(folio, GFP_NOIO))
96f96763 1005 pr_info("%#lx: failed to release buffers\n", pfn);
0201ebf2 1006 else
78bb9203 1007 ret = MF_RECOVERED;
78bb9203
NH
1008 } else {
1009 /*
1010 * If the file system doesn't support it just invalidate
1011 * This fails on dirty or anything with private pages
1012 */
19369d86 1013 if (mapping_evict_folio(mapping, folio))
78bb9203
NH
1014 ret = MF_RECOVERED;
1015 else
96f96763 1016 pr_info("%#lx: Failed to invalidate\n", pfn);
78bb9203
NH
1017 }
1018
1019 return ret;
1020}
1021
dd0f230a
YS
1022struct page_state {
1023 unsigned long mask;
1024 unsigned long res;
1025 enum mf_action_page_type type;
1026
1027 /* Callback ->action() has to unlock the relevant page inside it. */
1028 int (*action)(struct page_state *ps, struct page *p);
1029};
1030
1031/*
1032 * Return true if page is still referenced by others, otherwise return
1033 * false.
1034 *
1035 * The extra_pins is true when one extra refcount is expected.
1036 */
1037static bool has_extra_refcount(struct page_state *ps, struct page *p,
1038 bool extra_pins)
1039{
1040 int count = page_count(p) - 1;
1041
1042 if (extra_pins)
19d3e221 1043 count -= folio_nr_pages(page_folio(p));
dd0f230a
YS
1044
1045 if (count > 0) {
96f96763 1046 pr_err("%#lx: %s still referenced by %d users\n",
dd0f230a
YS
1047 page_to_pfn(p), action_page_types[ps->type], count);
1048 return true;
1049 }
1050
1051 return false;
1052}
1053
6a46079c
AK
1054/*
1055 * Error hit kernel page.
1056 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1057 * could be more sophisticated.
1058 */
dd0f230a 1059static int me_kernel(struct page_state *ps, struct page *p)
6a46079c 1060{
ea6d0630 1061 unlock_page(p);
cc637b17 1062 return MF_IGNORED;
6a46079c
AK
1063}
1064
1065/*
1066 * Page in unknown state. Do nothing.
b8b9488d 1067 * This is a catch-all in case we fail to make sense of the page state.
6a46079c 1068 */
dd0f230a 1069static int me_unknown(struct page_state *ps, struct page *p)
6a46079c 1070{
96f96763 1071 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
ea6d0630 1072 unlock_page(p);
b8b9488d 1073 return MF_IGNORED;
6a46079c
AK
1074}
1075
6a46079c
AK
1076/*
1077 * Clean (or cleaned) page cache page.
1078 */
dd0f230a 1079static int me_pagecache_clean(struct page_state *ps, struct page *p)
6a46079c 1080{
3d47e317 1081 struct folio *folio = page_folio(p);
ea6d0630 1082 int ret;
6a46079c 1083 struct address_space *mapping;
a7605426 1084 bool extra_pins;
6a46079c 1085
f7092393 1086 delete_from_lru_cache(folio);
dc2a1cbf 1087
6a46079c 1088 /*
3d47e317 1089 * For anonymous folios the only reference left
6a46079c
AK
1090 * should be the one m_f() holds.
1091 */
3d47e317 1092 if (folio_test_anon(folio)) {
ea6d0630
NH
1093 ret = MF_RECOVERED;
1094 goto out;
1095 }
6a46079c
AK
1096
1097 /*
1098 * Now truncate the page in the page cache. This is really
1099 * more like a "temporary hole punch"
1100 * Don't do this for block devices when someone else
1101 * has a reference, because it could be file system metadata
1102 * and that's not safe to truncate.
1103 */
3d47e317 1104 mapping = folio_mapping(folio);
6a46079c 1105 if (!mapping) {
3d47e317 1106 /* Folio has been torn down in the meantime */
ea6d0630
NH
1107 ret = MF_FAILED;
1108 goto out;
6a46079c
AK
1109 }
1110
a7605426
YS
1111 /*
1112 * The shmem page is kept in page cache instead of truncating
1113 * so is expected to have an extra refcount after error-handling.
1114 */
1115 extra_pins = shmem_mapping(mapping);
1116
6a46079c
AK
1117 /*
1118 * Truncation is a bit tricky. Enable it per file system for now.
1119 *
9608703e 1120 * Open: to take i_rwsem or not for this? Right now we don't.
6a46079c 1121 */
af7628d6 1122 ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
a7605426
YS
1123 if (has_extra_refcount(ps, p, extra_pins))
1124 ret = MF_FAILED;
1125
ea6d0630 1126out:
3d47e317 1127 folio_unlock(folio);
dd0f230a 1128
ea6d0630 1129 return ret;
6a46079c
AK
1130}
1131
1132/*
549543df 1133 * Dirty pagecache page
6a46079c
AK
1134 * Issues: when the error hit a hole page the error is not properly
1135 * propagated.
1136 */
dd0f230a 1137static int me_pagecache_dirty(struct page_state *ps, struct page *p)
6a46079c 1138{
89f5c54b
MWO
1139 struct folio *folio = page_folio(p);
1140 struct address_space *mapping = folio_mapping(folio);
6a46079c 1141
6a46079c
AK
1142 /* TBD: print more information about the file. */
1143 if (mapping) {
1144 /*
1145 * IO error will be reported by write(), fsync(), etc.
1146 * who check the mapping.
1147 * This way the application knows that something went
1148 * wrong with its dirty file data.
6a46079c 1149 */
af21bfaf 1150 mapping_set_error(mapping, -EIO);
6a46079c
AK
1151 }
1152
dd0f230a 1153 return me_pagecache_clean(ps, p);
6a46079c
AK
1154}
1155
1156/*
1157 * Clean and dirty swap cache.
1158 *
1159 * Dirty swap cache page is tricky to handle. The page could live both in page
e5d89670 1160 * table and swap cache(ie. page is freshly swapped in). So it could be
6a46079c
AK
1161 * referenced concurrently by 2 types of PTEs:
1162 * normal PTEs and swap PTEs. We try to handle them consistently by calling
6da6b1d4 1163 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
6a46079c
AK
1164 * and then
1165 * - clear dirty bit to prevent IO
1166 * - remove from LRU
1167 * - but keep in the swap cache, so that when we return to it on
1168 * a later page fault, we know the application is accessing
1169 * corrupted data and shall be killed (we installed simple
1170 * interception code in do_swap_page to catch it).
1171 *
1172 * Clean swap cache pages can be directly isolated. A later page fault will
1173 * bring in the known good data from disk.
1174 */
dd0f230a 1175static int me_swapcache_dirty(struct page_state *ps, struct page *p)
6a46079c 1176{
6304b531 1177 struct folio *folio = page_folio(p);
ea6d0630 1178 int ret;
dd0f230a 1179 bool extra_pins = false;
ea6d0630 1180
6304b531 1181 folio_clear_dirty(folio);
6a46079c 1182 /* Trigger EIO in shmem: */
6304b531 1183 folio_clear_uptodate(folio);
6a46079c 1184
f7092393 1185 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
6304b531 1186 folio_unlock(folio);
dd0f230a
YS
1187
1188 if (ret == MF_DELAYED)
1189 extra_pins = true;
1190
1191 if (has_extra_refcount(ps, p, extra_pins))
1192 ret = MF_FAILED;
1193
ea6d0630 1194 return ret;
6a46079c
AK
1195}
1196
dd0f230a 1197static int me_swapcache_clean(struct page_state *ps, struct page *p)
6a46079c 1198{
75fa68a5 1199 struct folio *folio = page_folio(p);
ea6d0630
NH
1200 int ret;
1201
75fa68a5 1202 delete_from_swap_cache(folio);
e43c3afb 1203
f7092393 1204 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
75fa68a5 1205 folio_unlock(folio);
dd0f230a
YS
1206
1207 if (has_extra_refcount(ps, p, false))
1208 ret = MF_FAILED;
1209
ea6d0630 1210 return ret;
6a46079c
AK
1211}
1212
1213/*
1214 * Huge pages. Needs work.
1215 * Issues:
93f70f90
NH
1216 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1217 * To narrow down kill region to one page, we need to break up pmd.
6a46079c 1218 */
dd0f230a 1219static int me_huge_page(struct page_state *ps, struct page *p)
6a46079c 1220{
b6fd410c 1221 struct folio *folio = page_folio(p);
a8b2c2ce 1222 int res;
78bb9203 1223 struct address_space *mapping;
8625147c 1224 bool extra_pins = false;
2491ffee 1225
b6fd410c 1226 mapping = folio_mapping(folio);
78bb9203 1227 if (mapping) {
af7628d6 1228 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
8625147c
JH
1229 /* The page is kept in page cache. */
1230 extra_pins = true;
b6fd410c 1231 folio_unlock(folio);
78bb9203 1232 } else {
b6fd410c 1233 folio_unlock(folio);
78bb9203 1234 /*
ef526b17
ML
1235 * migration entry prevents later access on error hugepage,
1236 * so we can free and dissolve it into buddy to save healthy
1237 * subpages.
78bb9203 1238 */
b6fd410c 1239 folio_put(folio);
8cf360b9 1240 if (__page_handle_poison(p) > 0) {
a8b2c2ce
OS
1241 page_ref_inc(p);
1242 res = MF_RECOVERED;
ceaf8fbe
NH
1243 } else {
1244 res = MF_FAILED;
a8b2c2ce 1245 }
93f70f90 1246 }
78bb9203 1247
8625147c 1248 if (has_extra_refcount(ps, p, extra_pins))
dd0f230a
YS
1249 res = MF_FAILED;
1250
78bb9203 1251 return res;
6a46079c
AK
1252}
1253
1254/*
1255 * Various page states we can handle.
1256 *
1257 * A page state is defined by its current page->flags bits.
1258 * The table matches them in order and calls the right handler.
1259 *
1260 * This is quite tricky because we can access page at any time
25985edc 1261 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1262 *
1263 * This is not complete. More states could be added.
1264 * For any missing state don't attempt recovery.
1265 */
1266
1267#define dirty (1UL << PG_dirty)
6326fec1 1268#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1269#define unevict (1UL << PG_unevictable)
1270#define mlock (1UL << PG_mlocked)
6a46079c 1271#define lru (1UL << PG_lru)
6a46079c 1272#define head (1UL << PG_head)
6a46079c
AK
1273#define reserved (1UL << PG_reserved)
1274
dd0f230a 1275static struct page_state error_states[] = {
cc637b17 1276 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1277 /*
1278 * free pages are specially detected outside this table:
1279 * PG_buddy pages only make a small fraction of all free pages.
1280 */
6a46079c 1281
cc637b17 1282 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1283
cc637b17
XX
1284 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1285 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1286
cc637b17
XX
1287 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1288 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1289
cc637b17
XX
1290 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1291 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1292
cc637b17
XX
1293 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1294 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1295
1296 /*
1297 * Catchall entry: must be at end.
1298 */
cc637b17 1299 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1300};
1301
2326c467
AK
1302#undef dirty
1303#undef sc
1304#undef unevict
1305#undef mlock
2326c467 1306#undef lru
2326c467 1307#undef head
2326c467
AK
1308#undef reserved
1309
18f41fa6
JY
1310static void update_per_node_mf_stats(unsigned long pfn,
1311 enum mf_result result)
1312{
1313 int nid = MAX_NUMNODES;
1314 struct memory_failure_stats *mf_stats = NULL;
1315
1316 nid = pfn_to_nid(pfn);
1317 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1318 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1319 return;
1320 }
1321
1322 mf_stats = &NODE_DATA(nid)->mf_stats;
1323 switch (result) {
1324 case MF_IGNORED:
1325 ++mf_stats->ignored;
1326 break;
1327 case MF_FAILED:
1328 ++mf_stats->failed;
1329 break;
1330 case MF_DELAYED:
1331 ++mf_stats->delayed;
1332 break;
1333 case MF_RECOVERED:
1334 ++mf_stats->recovered;
1335 break;
1336 default:
1337 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1338 break;
1339 }
1340 ++mf_stats->total;
1341}
1342
ff604cf6
NH
1343/*
1344 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1345 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1346 */
b66d00df
KW
1347static int action_result(unsigned long pfn, enum mf_action_page_type type,
1348 enum mf_result result)
6a46079c 1349{
97f0b134
XX
1350 trace_memory_failure_event(pfn, type, result);
1351
3be306cc
KM
1352 if (type != MF_MSG_ALREADY_POISONED) {
1353 num_poisoned_pages_inc(pfn);
1354 update_per_node_mf_stats(pfn, result);
1355 }
18f41fa6 1356
96f96763 1357 pr_err("%#lx: recovery action for %s: %s\n",
64d37a2b 1358 pfn, action_page_types[type], action_name[result]);
b66d00df
KW
1359
1360 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1361}
1362
1363static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1364 unsigned long pfn)
6a46079c
AK
1365{
1366 int result;
1367
ea6d0630 1368 /* page p should be unlocked after returning from ps->action(). */
dd0f230a 1369 result = ps->action(ps, p);
7456b040 1370
6a46079c
AK
1371 /* Could do more checks here if page looks ok */
1372 /*
1373 * Could adjust zone counters here to correct for the missing page.
1374 */
1375
b66d00df 1376 return action_result(pfn, ps->type, result);
6a46079c
AK
1377}
1378
bf181c58
NH
1379static inline bool PageHWPoisonTakenOff(struct page *page)
1380{
1381 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1382}
1383
1384void SetPageHWPoisonTakenOff(struct page *page)
1385{
1386 set_page_private(page, MAGIC_HWPOISON);
1387}
1388
1389void ClearPageHWPoisonTakenOff(struct page *page)
1390{
1391 if (PageHWPoison(page))
1392 set_page_private(page, 0);
1393}
1394
25182f05
NH
1395/*
1396 * Return true if a page type of a given page is supported by hwpoison
1397 * mechanism (while handling could fail), otherwise false. This function
1398 * does not return true for hugetlb or device memory pages, so it's assumed
1399 * to be called only in the context where we never have such pages.
1400 */
bf6445bc 1401static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
25182f05 1402{
2fde9e7f
ML
1403 if (PageSlab(page))
1404 return false;
1405
d4fb4587
DH
1406 /* Soft offline could migrate movable_ops pages */
1407 if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page))
3f871370 1408 return true;
bf6445bc 1409
3f871370 1410 return PageLRU(page) || is_free_buddy_page(page);
25182f05
NH
1411}
1412
bf6445bc 1413static int __get_hwpoison_page(struct page *page, unsigned long flags)
ead07f6a 1414{
04bac040 1415 struct folio *folio = page_folio(page);
25182f05
NH
1416 int ret = 0;
1417 bool hugetlb = false;
1418
04bac040 1419 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
d31155b8
ML
1420 if (hugetlb) {
1421 /* Make sure hugetlb demotion did not happen from under us. */
1422 if (folio == page_folio(page))
1423 return ret;
1424 if (ret > 0) {
1425 folio_put(folio);
1426 folio = page_folio(page);
1427 }
1428 }
25182f05
NH
1429
1430 /*
04bac040
SK
1431 * This check prevents from calling folio_try_get() for any
1432 * unsupported type of folio in order to reduce the risk of unexpected
1433 * races caused by taking a folio refcount.
25182f05 1434 */
04bac040 1435 if (!HWPoisonHandlable(&folio->page, flags))
fcc00621 1436 return -EBUSY;
ead07f6a 1437
04bac040
SK
1438 if (folio_try_get(folio)) {
1439 if (folio == page_folio(page))
c2e7e00b
KK
1440 return 1;
1441
96f96763 1442 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
04bac040 1443 folio_put(folio);
c2e7e00b
KK
1444 }
1445
1446 return 0;
ead07f6a 1447}
ead07f6a 1448
babde186
ML
1449#define GET_PAGE_MAX_RETRY_NUM 3
1450
2f714160 1451static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1452{
2f714160
OS
1453 int ret = 0, pass = 0;
1454 bool count_increased = false;
17e395b6 1455
2f714160
OS
1456 if (flags & MF_COUNT_INCREASED)
1457 count_increased = true;
1458
1459try_again:
0ed950d1 1460 if (!count_increased) {
bf6445bc 1461 ret = __get_hwpoison_page(p, flags);
0ed950d1
NH
1462 if (!ret) {
1463 if (page_count(p)) {
1464 /* We raced with an allocation, retry. */
babde186 1465 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
0ed950d1
NH
1466 goto try_again;
1467 ret = -EBUSY;
1468 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1469 /* We raced with put_page, retry. */
babde186 1470 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
0ed950d1
NH
1471 goto try_again;
1472 ret = -EIO;
1473 }
1474 goto out;
1475 } else if (ret == -EBUSY) {
fcc00621
NH
1476 /*
1477 * We raced with (possibly temporary) unhandlable
1478 * page, retry.
1479 */
1480 if (pass++ < 3) {
d0505e9f 1481 shake_page(p);
2f714160 1482 goto try_again;
fcc00621
NH
1483 }
1484 ret = -EIO;
0ed950d1 1485 goto out;
2f714160 1486 }
0ed950d1
NH
1487 }
1488
bf6445bc 1489 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
0ed950d1 1490 ret = 1;
2f714160 1491 } else {
0ed950d1
NH
1492 /*
1493 * A page we cannot handle. Check whether we can turn
1494 * it into something we can handle.
1495 */
babde186 1496 if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
2f714160 1497 put_page(p);
d0505e9f 1498 shake_page(p);
0ed950d1
NH
1499 count_increased = false;
1500 goto try_again;
2f714160 1501 }
0ed950d1
NH
1502 put_page(p);
1503 ret = -EIO;
17e395b6 1504 }
0ed950d1 1505out:
941ca063 1506 if (ret == -EIO)
96f96763 1507 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
941ca063 1508
17e395b6
OS
1509 return ret;
1510}
1511
bf181c58
NH
1512static int __get_unpoison_page(struct page *page)
1513{
04bac040 1514 struct folio *folio = page_folio(page);
bf181c58
NH
1515 int ret = 0;
1516 bool hugetlb = false;
1517
04bac040 1518 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
d31155b8
ML
1519 if (hugetlb) {
1520 /* Make sure hugetlb demotion did not happen from under us. */
1521 if (folio == page_folio(page))
1522 return ret;
1523 if (ret > 0)
1524 folio_put(folio);
1525 }
bf181c58
NH
1526
1527 /*
1528 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1529 * but also isolated from buddy freelist, so need to identify the
1530 * state and have to cancel both operations to unpoison.
1531 */
1532 if (PageHWPoisonTakenOff(page))
1533 return -EHWPOISON;
1534
1535 return get_page_unless_zero(page) ? 1 : 0;
1536}
1537
0ed950d1
NH
1538/**
1539 * get_hwpoison_page() - Get refcount for memory error handling
1540 * @p: Raw error page (hit by memory error)
1541 * @flags: Flags controlling behavior of error handling
1542 *
1543 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1544 * error on it, after checking that the error page is in a well-defined state
0b8f0d87 1545 * (defined as a page-type we can successfully handle the memory error on it,
0ed950d1
NH
1546 * such as LRU page and hugetlb page).
1547 *
1548 * Memory error handling could be triggered at any time on any type of page,
1549 * so it's prone to race with typical memory management lifecycle (like
1550 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1551 * extra care for the error page's state (as done in __get_hwpoison_page()),
1552 * and has some retry logic in get_any_page().
1553 *
bf181c58
NH
1554 * When called from unpoison_memory(), the caller should already ensure that
1555 * the given page has PG_hwpoison. So it's never reused for other page
1556 * allocations, and __get_unpoison_page() never races with them.
1557 *
b71340ef 1558 * Return: 0 on failure or free buddy (hugetlb) page,
0ed950d1
NH
1559 * 1 on success for in-use pages in a well-defined state,
1560 * -EIO for pages on which we can not handle memory errors,
1561 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
bf181c58
NH
1562 * operations like allocation and free,
1563 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
0ed950d1
NH
1564 */
1565static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1566{
1567 int ret;
1568
1569 zone_pcp_disable(page_zone(p));
bf181c58
NH
1570 if (flags & MF_UNPOISON)
1571 ret = __get_unpoison_page(p);
1572 else
1573 ret = get_any_page(p, flags);
2f714160
OS
1574 zone_pcp_enable(page_zone(p));
1575
1576 return ret;
1577}
1578
9f1e8cd0
JT
1579/*
1580 * The caller must guarantee the folio isn't large folio, except hugetlb.
1581 * try_to_unmap() can't handle it.
1582 */
b81679b1 1583int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
16038c4f 1584{
b81679b1
MW
1585 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1586 struct address_space *mapping;
1587
1588 if (folio_test_swapcache(folio)) {
1589 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1590 ttu &= ~TTU_HWPOISON;
1591 }
1592
1593 /*
1594 * Propagate the dirty bit from PTEs to struct page first, because we
1595 * need this to decide if we should kill or just drop the page.
1596 * XXX: the dirty test could be racy: set_page_dirty() may not always
1597 * be called inside page lock (it's recommended but not enforced).
1598 */
1599 mapping = folio_mapping(folio);
1600 if (!must_kill && !folio_test_dirty(folio) && mapping &&
1601 mapping_can_writeback(mapping)) {
1602 if (folio_mkclean(folio)) {
1603 folio_set_dirty(folio);
1604 } else {
1605 ttu &= ~TTU_HWPOISON;
1606 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1607 pfn);
1608 }
1609 }
16038c4f 1610
b81679b1 1611 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
16038c4f
KW
1612 /*
1613 * For hugetlb folios in shared mappings, try_to_unmap
1614 * could potentially call huge_pmd_unshare. Because of
1615 * this, take semaphore in write mode here and set
1616 * TTU_RMAP_LOCKED to indicate we have taken the lock
1617 * at this higher level.
1618 */
1619 mapping = hugetlb_folio_mapping_lock_write(folio);
1620 if (!mapping) {
1621 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1622 folio_pfn(folio));
b81679b1 1623 return -EBUSY;
16038c4f
KW
1624 }
1625
1626 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1627 i_mmap_unlock_write(mapping);
1628 } else {
1629 try_to_unmap(folio, ttu);
1630 }
b81679b1
MW
1631
1632 return folio_mapped(folio) ? -EBUSY : 0;
16038c4f
KW
1633}
1634
6a46079c
AK
1635/*
1636 * Do all that is necessary to remove user space mappings. Unmap
1637 * the pages and send SIGBUS to the processes if the data was dirty.
1638 */
03468a0f
MWO
1639static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1640 unsigned long pfn, int flags)
6a46079c 1641{
6a46079c 1642 LIST_HEAD(tokill);
1fb08ac6 1643 bool unmap_success;
0792a4a6 1644 int forcekill;
03468a0f 1645 bool mlocked = folio_test_mlocked(folio);
6a46079c 1646
93a9eb39
NH
1647 /*
1648 * Here we are interested only in user-mapped pages, so skip any
1649 * other types of pages.
1650 */
03468a0f
MWO
1651 if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1652 folio_test_pgtable(folio) || folio_test_offline(folio))
666e5a40 1653 return true;
03468a0f 1654 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
666e5a40 1655 return true;
6a46079c 1656
6a46079c
AK
1657 /*
1658 * This check implies we don't kill processes if their pages
1659 * are in the swap cache early. Those are always late kills.
1660 */
b7c3afba 1661 if (!folio_mapped(folio))
666e5a40 1662 return true;
1668bfd5 1663
6a46079c
AK
1664 /*
1665 * First collect all the processes that have the page
1666 * mapped in dirty form. This has to be done before try_to_unmap,
1667 * because ttu takes the rmap data structures down.
6a46079c 1668 */
376907f3 1669 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1670
b81679b1 1671 unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
666e5a40 1672 if (!unmap_success)
33d844bb 1673 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
b7c3afba 1674 pfn, folio_mapcount(folio));
a6d30ddd 1675
286c469a
NH
1676 /*
1677 * try_to_unmap() might put mlocked page in lru cache, so call
1678 * shake_page() again to ensure that it's flushed.
1679 */
1680 if (mlocked)
fed5348e 1681 shake_folio(folio);
286c469a 1682
6a46079c
AK
1683 /*
1684 * Now that the dirty bit has been propagated to the
1685 * struct page and all unmaps done we can decide if
1686 * killing is needed or not. Only kill when the page
6751ed65
TL
1687 * was dirty or the process is not restartable,
1688 * otherwise the tokill list is merely
6a46079c
AK
1689 * freed. When there was a problem unmapping earlier
1690 * use a more force-full uncatchable kill to prevent
1691 * any accesses to the poisoned memory.
1692 */
03468a0f 1693 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
0792a4a6 1694 !unmap_success;
aa298fdf 1695 kill_procs(&tokill, forcekill, pfn, flags);
1668bfd5 1696
666e5a40 1697 return unmap_success;
6a46079c
AK
1698}
1699
0348d2eb
NH
1700static int identify_page_state(unsigned long pfn, struct page *p,
1701 unsigned long page_flags)
761ad8d7
NH
1702{
1703 struct page_state *ps;
0348d2eb
NH
1704
1705 /*
1706 * The first check uses the current page flags which may not have any
1707 * relevant information. The second check with the saved page flags is
1708 * carried out only if the first check can't determine the page status.
1709 */
1710 for (ps = error_states;; ps++)
1711 if ((p->flags & ps->mask) == ps->res)
1712 break;
1713
1714 page_flags |= (p->flags & (1UL << PG_dirty));
1715
1716 if (!ps->mask)
1717 for (ps = error_states;; ps++)
1718 if ((page_flags & ps->mask) == ps->res)
1719 break;
1720 return page_action(ps, p, pfn);
1721}
1722
1a3798de
JC
1723/*
1724 * When 'release' is 'false', it means that if thp split has failed,
1725 * there is still more to do, hence the page refcount we took earlier
1726 * is still needed.
1727 */
1728static int try_to_split_thp_page(struct page *page, bool release)
694bf0b0 1729{
2ace36f0
KW
1730 int ret;
1731
694bf0b0 1732 lock_page(page);
2ace36f0
KW
1733 ret = split_huge_page(page);
1734 unlock_page(page);
694bf0b0 1735
1a3798de 1736 if (ret && release)
694bf0b0 1737 put_page(page);
694bf0b0 1738
2ace36f0 1739 return ret;
694bf0b0
OS
1740}
1741
00cc790e
SR
1742static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1743 struct address_space *mapping, pgoff_t index, int flags)
1744{
1745 struct to_kill *tk;
1746 unsigned long size = 0;
1747
1748 list_for_each_entry(tk, to_kill, nd)
1749 if (tk->size_shift)
1750 size = max(size, 1UL << tk->size_shift);
1751
1752 if (size) {
1753 /*
1754 * Unmap the largest mapping to avoid breaking up device-dax
1755 * mappings which are constant size. The actual size of the
1756 * mapping being torn down is communicated in siginfo, see
1757 * kill_proc()
1758 */
39ebd6dc 1759 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
00cc790e
SR
1760
1761 unmap_mapping_range(mapping, start, size, 0);
1762 }
1763
aa298fdf 1764 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
00cc790e
SR
1765}
1766
91e79d22
MWO
1767/*
1768 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1769 * either do not claim or fails to claim a hwpoison event, or devdax.
1770 * The fsdax pages are initialized per base page, and the devdax pages
1771 * could be initialized either as base pages, or as compound pages with
1772 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1773 * hwpoison, such that, if a subpage of a compound page is poisoned,
1774 * simply mark the compound head page is by far sufficient.
1775 */
00cc790e
SR
1776static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1777 struct dev_pagemap *pgmap)
1778{
91e79d22 1779 struct folio *folio = pfn_folio(pfn);
00cc790e
SR
1780 LIST_HEAD(to_kill);
1781 dax_entry_t cookie;
1782 int rc = 0;
1783
00cc790e
SR
1784 /*
1785 * Prevent the inode from being freed while we are interrogating
1786 * the address_space, typically this would be handled by
1787 * lock_page(), but dax pages do not use the page lock. This
1788 * also prevents changes to the mapping of this pfn until
1789 * poison signaling is complete.
1790 */
91e79d22 1791 cookie = dax_lock_folio(folio);
00cc790e
SR
1792 if (!cookie)
1793 return -EBUSY;
1794
91e79d22 1795 if (hwpoison_filter(&folio->page)) {
00cc790e
SR
1796 rc = -EOPNOTSUPP;
1797 goto unlock;
1798 }
1799
1800 switch (pgmap->type) {
1801 case MEMORY_DEVICE_PRIVATE:
1802 case MEMORY_DEVICE_COHERENT:
1803 /*
1804 * TODO: Handle device pages which may need coordination
1805 * with device-side memory.
1806 */
1807 rc = -ENXIO;
1808 goto unlock;
1809 default:
1810 break;
1811 }
1812
1813 /*
1814 * Use this flag as an indication that the dax page has been
1815 * remapped UC to prevent speculative consumption of poison.
1816 */
91e79d22 1817 SetPageHWPoison(&folio->page);
00cc790e
SR
1818
1819 /*
1820 * Unlike System-RAM there is no possibility to swap in a
1821 * different physical page at a given virtual address, so all
1822 * userspace consumption of ZONE_DEVICE memory necessitates
1823 * SIGBUS (i.e. MF_MUST_KILL)
1824 */
1825 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
376907f3 1826 collect_procs(folio, &folio->page, &to_kill, true);
00cc790e 1827
91e79d22 1828 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
00cc790e 1829unlock:
91e79d22 1830 dax_unlock_folio(folio, cookie);
00cc790e
SR
1831 return rc;
1832}
1833
c36e2024
SR
1834#ifdef CONFIG_FS_DAX
1835/**
1836 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1837 * @mapping: address_space of the file in use
1838 * @index: start pgoff of the range within the file
1839 * @count: length of the range, in unit of PAGE_SIZE
1840 * @mf_flags: memory failure flags
1841 */
1842int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1843 unsigned long count, int mf_flags)
1844{
1845 LIST_HEAD(to_kill);
1846 dax_entry_t cookie;
1847 struct page *page;
1848 size_t end = index + count;
fa422b35 1849 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
c36e2024
SR
1850
1851 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1852
1853 for (; index < end; index++) {
1854 page = NULL;
1855 cookie = dax_lock_mapping_entry(mapping, index, &page);
1856 if (!cookie)
1857 return -EBUSY;
1858 if (!page)
1859 goto unlock;
1860
fa422b35
SR
1861 if (!pre_remove)
1862 SetPageHWPoison(page);
c36e2024 1863
fa422b35
SR
1864 /*
1865 * The pre_remove case is revoking access, the memory is still
1866 * good and could theoretically be put back into service.
1867 */
1868 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
c36e2024
SR
1869 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1870 index, mf_flags);
1871unlock:
1872 dax_unlock_mapping_entry(mapping, index, cookie);
1873 }
1874 return 0;
1875}
1876EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1877#endif /* CONFIG_FS_DAX */
1878
161df60e 1879#ifdef CONFIG_HUGETLB_PAGE
b79f8eb4 1880
161df60e
NH
1881/*
1882 * Struct raw_hwp_page represents information about "raw error page",
dad6a5eb 1883 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
161df60e
NH
1884 */
1885struct raw_hwp_page {
1886 struct llist_node node;
1887 struct page *page;
1888};
1889
b02e7582 1890static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
161df60e 1891{
b02e7582 1892 return (struct llist_head *)&folio->_hugetlb_hwpoison;
161df60e
NH
1893}
1894
b79f8eb4
JY
1895bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1896{
1897 struct llist_head *raw_hwp_head;
1898 struct raw_hwp_page *p;
1899 struct folio *folio = page_folio(page);
1900 bool ret = false;
1901
1902 if (!folio_test_hwpoison(folio))
1903 return false;
1904
1905 if (!folio_test_hugetlb(folio))
1906 return PageHWPoison(page);
1907
1908 /*
1909 * When RawHwpUnreliable is set, kernel lost track of which subpages
1910 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1911 */
1912 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1913 return true;
1914
1915 mutex_lock(&mf_mutex);
1916
1917 raw_hwp_head = raw_hwp_list_head(folio);
1918 llist_for_each_entry(p, raw_hwp_head->first, node) {
1919 if (page == p->page) {
1920 ret = true;
1921 break;
1922 }
1923 }
1924
1925 mutex_unlock(&mf_mutex);
1926
1927 return ret;
1928}
1929
0858b5eb 1930static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
161df60e 1931{
6379693e
ML
1932 struct llist_node *head;
1933 struct raw_hwp_page *p, *next;
ac5fcde0 1934 unsigned long count = 0;
161df60e 1935
9e130c4b 1936 head = llist_del_all(raw_hwp_list_head(folio));
6379693e 1937 llist_for_each_entry_safe(p, next, head, node) {
ac5fcde0
NH
1938 if (move_flag)
1939 SetPageHWPoison(p->page);
5033091d
NH
1940 else
1941 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
161df60e 1942 kfree(p);
ac5fcde0 1943 count++;
161df60e 1944 }
ac5fcde0 1945 return count;
161df60e
NH
1946}
1947
595dd818 1948static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
161df60e
NH
1949{
1950 struct llist_head *head;
1951 struct raw_hwp_page *raw_hwp;
1e25501d 1952 struct raw_hwp_page *p;
595dd818 1953 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
161df60e
NH
1954
1955 /*
1956 * Once the hwpoison hugepage has lost reliable raw error info,
1957 * there is little meaning to keep additional error info precisely,
1958 * so skip to add additional raw error info.
1959 */
b02e7582 1960 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1961 return -EHWPOISON;
b02e7582 1962 head = raw_hwp_list_head(folio);
1e25501d 1963 llist_for_each_entry(p, head->first, node) {
161df60e
NH
1964 if (p->page == page)
1965 return -EHWPOISON;
1966 }
1967
1968 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1969 if (raw_hwp) {
1970 raw_hwp->page = page;
1971 llist_add(&raw_hwp->node, head);
1972 /* the first error event will be counted in action_result(). */
1973 if (ret)
a46c9304 1974 num_poisoned_pages_inc(page_to_pfn(page));
161df60e
NH
1975 } else {
1976 /*
1977 * Failed to save raw error info. We no longer trace all
1978 * hwpoisoned subpages, and we need refuse to free/dissolve
1979 * this hwpoisoned hugepage.
1980 */
b02e7582 1981 folio_set_hugetlb_raw_hwp_unreliable(folio);
161df60e 1982 /*
b02e7582 1983 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
161df60e
NH
1984 * used any more, so free it.
1985 */
0858b5eb 1986 __folio_free_raw_hwp(folio, false);
161df60e
NH
1987 }
1988 return ret;
1989}
1990
9637d7df 1991static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
ac5fcde0
NH
1992{
1993 /*
9637d7df 1994 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
ac5fcde0
NH
1995 * pages for tail pages are required but they don't exist.
1996 */
9637d7df 1997 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
ac5fcde0
NH
1998 return 0;
1999
2000 /*
9637d7df 2001 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
ac5fcde0
NH
2002 * definition.
2003 */
9637d7df 2004 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
ac5fcde0
NH
2005 return 0;
2006
0858b5eb 2007 return __folio_free_raw_hwp(folio, move_flag);
ac5fcde0
NH
2008}
2009
2ff6cece 2010void folio_clear_hugetlb_hwpoison(struct folio *folio)
161df60e 2011{
2ff6cece 2012 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 2013 return;
92a025a7
ML
2014 if (folio_test_hugetlb_vmemmap_optimized(folio))
2015 return;
2ff6cece 2016 folio_clear_hwpoison(folio);
9637d7df 2017 folio_free_raw_hwp(folio, true);
161df60e
NH
2018}
2019
405ce051
NH
2020/*
2021 * Called from hugetlb code with hugetlb_lock held.
2022 *
2023 * Return values:
2024 * 0 - free hugepage
2025 * 1 - in-use hugepage
2026 * 2 - not a hugepage
2027 * -EBUSY - the hugepage is busy (try to retry)
2028 * -EHWPOISON - the hugepage is already hwpoisoned
2029 */
e591ef7d
NH
2030int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2031 bool *migratable_cleared)
405ce051
NH
2032{
2033 struct page *page = pfn_to_page(pfn);
4c110ec9 2034 struct folio *folio = page_folio(page);
405ce051
NH
2035 int ret = 2; /* fallback to normal page handling */
2036 bool count_increased = false;
2037
4c110ec9 2038 if (!folio_test_hugetlb(folio))
405ce051
NH
2039 goto out;
2040
2041 if (flags & MF_COUNT_INCREASED) {
2042 ret = 1;
2043 count_increased = true;
4c110ec9 2044 } else if (folio_test_hugetlb_freed(folio)) {
b283d983 2045 ret = 0;
4c110ec9
SK
2046 } else if (folio_test_hugetlb_migratable(folio)) {
2047 ret = folio_try_get(folio);
405ce051
NH
2048 if (ret)
2049 count_increased = true;
2050 } else {
2051 ret = -EBUSY;
38f6d293
NH
2052 if (!(flags & MF_NO_RETRY))
2053 goto out;
405ce051
NH
2054 }
2055
595dd818 2056 if (folio_set_hugetlb_hwpoison(folio, page)) {
405ce051
NH
2057 ret = -EHWPOISON;
2058 goto out;
2059 }
2060
e591ef7d 2061 /*
4c110ec9 2062 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
e591ef7d
NH
2063 * from being migrated by memory hotremove.
2064 */
4c110ec9
SK
2065 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2066 folio_clear_hugetlb_migratable(folio);
e591ef7d
NH
2067 *migratable_cleared = true;
2068 }
2069
405ce051
NH
2070 return ret;
2071out:
2072 if (count_increased)
4c110ec9 2073 folio_put(folio);
405ce051
NH
2074 return ret;
2075}
2076
405ce051
NH
2077/*
2078 * Taking refcount of hugetlb pages needs extra care about race conditions
2079 * with basic operations like hugepage allocation/free/demotion.
2080 * So some of prechecks for hwpoison (pinning, and testing/setting
2081 * PageHWPoison) should be done in single hugetlb_lock range.
2082 */
2083static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
0348d2eb 2084{
761ad8d7 2085 int res;
405ce051 2086 struct page *p = pfn_to_page(pfn);
bc1cfde1 2087 struct folio *folio;
761ad8d7 2088 unsigned long page_flags;
e591ef7d 2089 bool migratable_cleared = false;
761ad8d7 2090
405ce051
NH
2091 *hugetlb = 1;
2092retry:
e591ef7d 2093 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
405ce051
NH
2094 if (res == 2) { /* fallback to normal page handling */
2095 *hugetlb = 0;
2096 return 0;
2097 } else if (res == -EHWPOISON) {
405ce051 2098 if (flags & MF_ACTION_REQUIRED) {
bc1cfde1
SK
2099 folio = page_folio(p);
2100 res = kill_accessing_process(current, folio_pfn(folio), flags);
405ce051 2101 }
3be306cc 2102 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
405ce051
NH
2103 return res;
2104 } else if (res == -EBUSY) {
38f6d293
NH
2105 if (!(flags & MF_NO_RETRY)) {
2106 flags |= MF_NO_RETRY;
405ce051
NH
2107 goto retry;
2108 }
b8b9488d 2109 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
761ad8d7
NH
2110 }
2111
bc1cfde1
SK
2112 folio = page_folio(p);
2113 folio_lock(folio);
405ce051
NH
2114
2115 if (hwpoison_filter(p)) {
2ff6cece 2116 folio_clear_hugetlb_hwpoison(folio);
e591ef7d 2117 if (migratable_cleared)
bc1cfde1
SK
2118 folio_set_hugetlb_migratable(folio);
2119 folio_unlock(folio);
f36a5543 2120 if (res == 1)
bc1cfde1 2121 folio_put(folio);
f36a5543 2122 return -EOPNOTSUPP;
405ce051
NH
2123 }
2124
405ce051
NH
2125 /*
2126 * Handling free hugepage. The possible race with hugepage allocation
2127 * or demotion can be prevented by PageHWPoison flag.
2128 */
2129 if (res == 0) {
bc1cfde1 2130 folio_unlock(folio);
8cf360b9 2131 if (__page_handle_poison(p) > 0) {
405ce051
NH
2132 page_ref_inc(p);
2133 res = MF_RECOVERED;
ceaf8fbe
NH
2134 } else {
2135 res = MF_FAILED;
761ad8d7 2136 }
b66d00df 2137 return action_result(pfn, MF_MSG_FREE_HUGE, res);
761ad8d7
NH
2138 }
2139
bc1cfde1 2140 page_flags = folio->flags;
761ad8d7 2141
03468a0f 2142 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
bc1cfde1 2143 folio_unlock(folio);
b8b9488d 2144 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
761ad8d7
NH
2145 }
2146
ea6d0630 2147 return identify_page_state(pfn, p, page_flags);
761ad8d7 2148}
00cc790e 2149
405ce051
NH
2150#else
2151static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2152{
2153 return 0;
2154}
00cc790e 2155
9637d7df 2156static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
ac5fcde0
NH
2157{
2158 return 0;
2159}
00cc790e 2160#endif /* CONFIG_HUGETLB_PAGE */
761ad8d7 2161
b5f1fc98
KW
2162/* Drop the extra refcount in case we come from madvise() */
2163static void put_ref_page(unsigned long pfn, int flags)
2164{
b5f1fc98
KW
2165 if (!(flags & MF_COUNT_INCREASED))
2166 return;
2167
16117532 2168 put_page(pfn_to_page(pfn));
b5f1fc98
KW
2169}
2170
6100e34b
DW
2171static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2172 struct dev_pagemap *pgmap)
2173{
00cc790e 2174 int rc = -ENXIO;
6100e34b 2175
34dc45be 2176 /* device metadata space is not recoverable */
00cc790e 2177 if (!pgmap_pfn_valid(pgmap, pfn))
34dc45be 2178 goto out;
61e28cf0 2179
6100e34b 2180 /*
33a8f7f2
SR
2181 * Call driver's implementation to handle the memory failure, otherwise
2182 * fall back to generic handler.
6100e34b 2183 */
65d3440e 2184 if (pgmap_has_memory_failure(pgmap)) {
33a8f7f2 2185 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
6100e34b 2186 /*
33a8f7f2
SR
2187 * Fall back to generic handler too if operation is not
2188 * supported inside the driver/device/filesystem.
6100e34b 2189 */
33a8f7f2
SR
2190 if (rc != -EOPNOTSUPP)
2191 goto out;
6100e34b
DW
2192 }
2193
00cc790e 2194 rc = mf_generic_kill_procs(pfn, flags, pgmap);
6100e34b
DW
2195out:
2196 /* drop pgmap ref acquired in caller */
2197 put_dev_pagemap(pgmap);
80ee7cb2
ML
2198 if (rc != -EOPNOTSUPP)
2199 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
6100e34b
DW
2200 return rc;
2201}
2202
1a3798de
JC
2203/*
2204 * The calling condition is as such: thp split failed, page might have
2205 * been RDMA pinned, not much can be done for recovery.
2206 * But a SIGBUS should be delivered with vaddr provided so that the user
2207 * application has a chance to recover. Also, application processes'
2208 * election for MCE early killed will be honored.
2209 */
2210static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2211 struct folio *folio)
2212{
2213 LIST_HEAD(tokill);
2214
2215 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2216 kill_procs(&tokill, true, pfn, flags);
2217}
2218
cd42f4a3
TL
2219/**
2220 * memory_failure - Handle memory failure of a page.
2221 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
2222 * @flags: fine tune action taken
2223 *
2224 * This function is called by the low level machine check code
2225 * of an architecture when it detects hardware memory corruption
2226 * of a page. It tries its best to recover, which includes
2227 * dropping pages, killing processes etc.
2228 *
2229 * The function is primarily of use for corruptions that
2230 * happen outside the current execution context (e.g. when
2231 * detected by a background scrubber)
2232 *
2233 * Must run in process context (e.g. a work queue) with interrupts
5885c6a6 2234 * enabled and no spinlocks held.
d1fe111f 2235 *
d2734f04
SX
2236 * Return:
2237 * 0 - success,
2238 * -ENXIO - memory not managed by the kernel
2239 * -EOPNOTSUPP - hwpoison_filter() filtered the error event,
2240 * -EHWPOISON - the page was already poisoned, potentially
2241 * kill process,
2242 * other negative values - failure.
cd42f4a3 2243 */
83b57531 2244int memory_failure(unsigned long pfn, int flags)
6a46079c 2245{
6a46079c 2246 struct page *p;
5dba5c35 2247 struct folio *folio;
6100e34b 2248 struct dev_pagemap *pgmap;
171936dd 2249 int res = 0;
524fca1e 2250 unsigned long page_flags;
a8b2c2ce 2251 bool retry = true;
405ce051 2252 int hugetlb = 0;
6a46079c
AK
2253
2254 if (!sysctl_memory_failure_recovery)
83b57531 2255 panic("Memory failure on page %lx", pfn);
6a46079c 2256
03b122da
TL
2257 mutex_lock(&mf_mutex);
2258
67f22ba7 2259 if (!(flags & MF_SW_SIMULATED))
2260 hw_memory_failure = true;
2261
96c804a6
DH
2262 p = pfn_to_online_page(pfn);
2263 if (!p) {
03b122da
TL
2264 res = arch_memory_failure(pfn, flags);
2265 if (res == 0)
2266 goto unlock_mutex;
2267
96c804a6
DH
2268 if (pfn_valid(pfn)) {
2269 pgmap = get_dev_pagemap(pfn, NULL);
d51b6846 2270 put_ref_page(pfn, flags);
03b122da
TL
2271 if (pgmap) {
2272 res = memory_failure_dev_pagemap(pfn, flags,
2273 pgmap);
2274 goto unlock_mutex;
2275 }
96c804a6 2276 }
96f96763 2277 pr_err("%#lx: memory outside kernel control\n", pfn);
03b122da
TL
2278 res = -ENXIO;
2279 goto unlock_mutex;
6a46079c
AK
2280 }
2281
a8b2c2ce 2282try_again:
405ce051
NH
2283 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2284 if (hugetlb)
171936dd 2285 goto unlock_mutex;
171936dd 2286
6a46079c 2287 if (TestSetPageHWPoison(p)) {
47af12ba 2288 res = -EHWPOISON;
a3f5d80e
NH
2289 if (flags & MF_ACTION_REQUIRED)
2290 res = kill_accessing_process(current, pfn, flags);
f361e246
NH
2291 if (flags & MF_COUNT_INCREASED)
2292 put_page(p);
b8b9488d 2293 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
171936dd 2294 goto unlock_mutex;
6a46079c
AK
2295 }
2296
6a46079c
AK
2297 /*
2298 * We need/can do nothing about count=0 pages.
2299 * 1) it's a free page, and therefore in safe hand:
9cf28191 2300 * check_new_page() will be the gate keeper.
761ad8d7 2301 * 2) it's part of a non-compound high order page.
6a46079c
AK
2302 * Implies some kernel user: cannot stop them from
2303 * R/W the page; let's pray that the page has been
2304 * used and will be freed some time later.
2305 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 2306 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 2307 */
0ed950d1
NH
2308 if (!(flags & MF_COUNT_INCREASED)) {
2309 res = get_hwpoison_page(p, flags);
2310 if (!res) {
2311 if (is_free_buddy_page(p)) {
2312 if (take_page_off_buddy(p)) {
2313 page_ref_inc(p);
2314 res = MF_RECOVERED;
2315 } else {
2316 /* We lost the race, try again */
2317 if (retry) {
2318 ClearPageHWPoison(p);
0ed950d1
NH
2319 retry = false;
2320 goto try_again;
2321 }
2322 res = MF_FAILED;
a8b2c2ce 2323 }
b66d00df 2324 res = action_result(pfn, MF_MSG_BUDDY, res);
0ed950d1 2325 } else {
b66d00df 2326 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
a8b2c2ce 2327 }
0ed950d1
NH
2328 goto unlock_mutex;
2329 } else if (res < 0) {
b8b9488d 2330 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
0ed950d1 2331 goto unlock_mutex;
8d22ba1b 2332 }
6a46079c
AK
2333 }
2334
5dba5c35 2335 folio = page_folio(p);
9b0ab153
JC
2336
2337 /* filter pages that are protected from hwpoison test by users */
2338 folio_lock(folio);
2339 if (hwpoison_filter(p)) {
2340 ClearPageHWPoison(p);
2341 folio_unlock(folio);
2342 folio_put(folio);
2343 res = -EOPNOTSUPP;
2344 goto unlock_mutex;
2345 }
2346 folio_unlock(folio);
2347
5dba5c35 2348 if (folio_test_large(folio)) {
eac96c3e
YS
2349 /*
2350 * The flag must be set after the refcount is bumped
2351 * otherwise it may race with THP split.
2352 * And the flag can't be set in get_hwpoison_page() since
2353 * it is called by soft offline too and it is just called
5885c6a6 2354 * for !MF_COUNT_INCREASED. So here seems to be the best
eac96c3e
YS
2355 * place.
2356 *
2357 * Don't need care about the above error handling paths for
2358 * get_hwpoison_page() since they handle either free page
2359 * or unhandlable page. The refcount is bumped iff the
2360 * page is a valid handlable page.
2361 */
5dba5c35 2362 folio_set_has_hwpoisoned(folio);
1a3798de
JC
2363 if (try_to_split_thp_page(p, false) < 0) {
2364 res = -EHWPOISON;
2365 kill_procs_now(p, pfn, flags, folio);
2366 put_page(p);
2367 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
171936dd 2368 goto unlock_mutex;
5d1fd5dc 2369 }
415c64c1 2370 VM_BUG_ON_PAGE(!page_count(p), p);
5dba5c35 2371 folio = page_folio(p);
415c64c1
NH
2372 }
2373
e43c3afb
WF
2374 /*
2375 * We ignore non-LRU pages for good reasons.
2376 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 2377 * - to avoid races with __SetPageLocked()
e43c3afb
WF
2378 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2379 * The check (unnecessarily) ignores LRU pages being isolated and
2380 * walked by the page reclaim code, however that's not a big loss.
2381 */
5dba5c35 2382 shake_folio(folio);
e43c3afb 2383
5dba5c35 2384 folio_lock(folio);
847ce401 2385
f37d4298 2386 /*
75ee64b3 2387 * We're only intended to deal with the non-Compound page here.
8a78882d
ML
2388 * The page cannot become compound pages again as folio has been
2389 * splited and extra refcnt is held.
f37d4298 2390 */
8a78882d 2391 WARN_ON(folio_test_large(folio));
f37d4298 2392
524fca1e
NH
2393 /*
2394 * We use page flags to determine what action should be taken, but
2395 * the flags can be modified by the error containment action. One
2396 * example is an mlocked page, where PG_mlocked is cleared by
4d8f7418
DH
2397 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2398 * status correctly, we save a copy of the page flags at this time.
524fca1e 2399 */
5dba5c35 2400 page_flags = folio->flags;
524fca1e 2401
e8675d29 2402 /*
5dba5c35
MWO
2403 * __munlock_folio() may clear a writeback folio's LRU flag without
2404 * the folio lock. We need to wait for writeback completion for this
2405 * folio or it may trigger a vfs BUG while evicting inode.
e8675d29 2406 */
5dba5c35 2407 if (!folio_test_lru(folio) && !folio_test_writeback(folio))
0bc1f8b0
CY
2408 goto identify_page_state;
2409
6edd6cc6
NH
2410 /*
2411 * It's very difficult to mess with pages currently under IO
2412 * and in many cases impossible, so we just avoid it here.
2413 */
5dba5c35 2414 folio_wait_writeback(folio);
6a46079c
AK
2415
2416 /*
2417 * Now take care of user space mappings.
6ffcd825 2418 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
6a46079c 2419 */
03468a0f 2420 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
b8b9488d 2421 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
171936dd 2422 goto unlock_page;
1668bfd5 2423 }
6a46079c
AK
2424
2425 /*
2426 * Torn down by someone else?
2427 */
5dba5c35
MWO
2428 if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2429 folio->mapping == NULL) {
b66d00df 2430 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
171936dd 2431 goto unlock_page;
6a46079c
AK
2432 }
2433
0bc1f8b0 2434identify_page_state:
0348d2eb 2435 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
2436 mutex_unlock(&mf_mutex);
2437 return res;
171936dd 2438unlock_page:
5dba5c35 2439 folio_unlock(folio);
171936dd
TL
2440unlock_mutex:
2441 mutex_unlock(&mf_mutex);
6a46079c
AK
2442 return res;
2443}
cd42f4a3 2444EXPORT_SYMBOL_GPL(memory_failure);
847ce401 2445
ea8f5fb8
HY
2446#define MEMORY_FAILURE_FIFO_ORDER 4
2447#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2448
2449struct memory_failure_entry {
2450 unsigned long pfn;
ea8f5fb8
HY
2451 int flags;
2452};
2453
2454struct memory_failure_cpu {
2455 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2456 MEMORY_FAILURE_FIFO_SIZE);
d75abd0d 2457 raw_spinlock_t lock;
ea8f5fb8
HY
2458 struct work_struct work;
2459};
2460
2461static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2462
2463/**
2464 * memory_failure_queue - Schedule handling memory failure of a page.
2465 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
2466 * @flags: Flags for memory failure handling
2467 *
2468 * This function is called by the low level hardware error handler
2469 * when it detects hardware memory corruption of a page. It schedules
2470 * the recovering of error page, including dropping pages, killing
2471 * processes etc.
2472 *
2473 * The function is primarily of use for corruptions that
2474 * happen outside the current execution context (e.g. when
2475 * detected by a background scrubber)
2476 *
2477 * Can run in IRQ context.
2478 */
83b57531 2479void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
2480{
2481 struct memory_failure_cpu *mf_cpu;
2482 unsigned long proc_flags;
d75abd0d 2483 bool buffer_overflow;
ea8f5fb8
HY
2484 struct memory_failure_entry entry = {
2485 .pfn = pfn,
ea8f5fb8
HY
2486 .flags = flags,
2487 };
2488
2489 mf_cpu = &get_cpu_var(memory_failure_cpu);
d75abd0d
WL
2490 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2491 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2492 if (!buffer_overflow)
ea8f5fb8 2493 schedule_work_on(smp_processor_id(), &mf_cpu->work);
d75abd0d
WL
2494 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2495 put_cpu_var(memory_failure_cpu);
2496 if (buffer_overflow)
96f96763 2497 pr_err("buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8 2498 pfn);
ea8f5fb8
HY
2499}
2500EXPORT_SYMBOL_GPL(memory_failure_queue);
2501
2502static void memory_failure_work_func(struct work_struct *work)
2503{
2504 struct memory_failure_cpu *mf_cpu;
2505 struct memory_failure_entry entry = { 0, };
2506 unsigned long proc_flags;
2507 int gotten;
2508
06202231 2509 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8 2510 for (;;) {
d75abd0d 2511 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
ea8f5fb8 2512 gotten = kfifo_get(&mf_cpu->fifo, &entry);
d75abd0d 2513 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
ea8f5fb8
HY
2514 if (!gotten)
2515 break;
cf870c70 2516 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 2517 soft_offline_page(entry.pfn, entry.flags);
cf870c70 2518 else
83b57531 2519 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
2520 }
2521}
2522
2523static int __init memory_failure_init(void)
2524{
2525 struct memory_failure_cpu *mf_cpu;
2526 int cpu;
2527
2528 for_each_possible_cpu(cpu) {
2529 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
d75abd0d 2530 raw_spin_lock_init(&mf_cpu->lock);
ea8f5fb8
HY
2531 INIT_KFIFO(mf_cpu->fifo);
2532 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2533 }
2534
97de10a9
KW
2535 register_sysctl_init("vm", memory_failure_table);
2536
ea8f5fb8
HY
2537 return 0;
2538}
2539core_initcall(memory_failure_init);
2540
96f96763 2541#undef pr_fmt
5cea5666 2542#define pr_fmt(fmt) "Unpoison: " fmt
a5f65109
NH
2543#define unpoison_pr_info(fmt, pfn, rs) \
2544({ \
2545 if (__ratelimit(rs)) \
2546 pr_info(fmt, pfn); \
2547})
2548
847ce401
WF
2549/**
2550 * unpoison_memory - Unpoison a previously poisoned page
2551 * @pfn: Page number of the to be unpoisoned page
2552 *
2553 * Software-unpoison a page that has been poisoned by
2554 * memory_failure() earlier.
2555 *
2556 * This is only done on the software-level, so it only works
2557 * for linux injected failures, not real hardware failures
2558 *
2559 * Returns 0 for success, otherwise -errno.
2560 */
2561int unpoison_memory(unsigned long pfn)
2562{
9637d7df 2563 struct folio *folio;
847ce401 2564 struct page *p;
f29623e4 2565 int ret = -EBUSY, ghp;
4d64ab2f 2566 unsigned long count;
5033091d 2567 bool huge = false;
a5f65109
NH
2568 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2569 DEFAULT_RATELIMIT_BURST);
847ce401 2570
d613f53c
ML
2571 p = pfn_to_online_page(pfn);
2572 if (!p)
2573 return -EIO;
9637d7df 2574 folio = page_folio(p);
847ce401 2575
91d00547
NH
2576 mutex_lock(&mf_mutex);
2577
67f22ba7 2578 if (hw_memory_failure) {
5cea5666 2579 unpoison_pr_info("%#lx: disabled after HW memory failure\n",
67f22ba7 2580 pfn, &unpoison_rs);
2581 ret = -EOPNOTSUPP;
2582 goto unlock_mutex;
2583 }
2584
fe6f86f4 2585 if (is_huge_zero_folio(folio)) {
5cea5666 2586 unpoison_pr_info("%#lx: huge zero page is not supported\n",
fe6f86f4
ML
2587 pfn, &unpoison_rs);
2588 ret = -EOPNOTSUPP;
2589 goto unlock_mutex;
2590 }
2591
6c54312f 2592 if (!PageHWPoison(p)) {
5cea5666 2593 unpoison_pr_info("%#lx: page was already unpoisoned\n",
a5f65109 2594 pfn, &unpoison_rs);
91d00547 2595 goto unlock_mutex;
847ce401
WF
2596 }
2597
a6fddef4 2598 if (folio_ref_count(folio) > 1) {
5cea5666 2599 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
a5f65109 2600 pfn, &unpoison_rs);
91d00547 2601 goto unlock_mutex;
230ac719
NH
2602 }
2603
ee299e98
MWO
2604 if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2605 folio_test_reserved(folio) || folio_test_offline(folio))
faeb2ff2
ML
2606 goto unlock_mutex;
2607
a6fddef4 2608 if (folio_mapped(folio)) {
5cea5666 2609 unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
a5f65109 2610 pfn, &unpoison_rs);
91d00547 2611 goto unlock_mutex;
230ac719
NH
2612 }
2613
a6fddef4 2614 if (folio_mapping(folio)) {
5cea5666 2615 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
a5f65109 2616 pfn, &unpoison_rs);
91d00547 2617 goto unlock_mutex;
0cea3fdc
WL
2618 }
2619
f29623e4
ML
2620 ghp = get_hwpoison_page(p, MF_UNPOISON);
2621 if (!ghp) {
ee299e98 2622 if (folio_test_hugetlb(folio)) {
5033091d 2623 huge = true;
9637d7df 2624 count = folio_free_raw_hwp(folio, false);
f29623e4 2625 if (count == 0)
ac5fcde0 2626 goto unlock_mutex;
ac5fcde0 2627 }
a6fddef4 2628 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
f29623e4
ML
2629 } else if (ghp < 0) {
2630 if (ghp == -EHWPOISON) {
c8bd84f7 2631 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
f29623e4
ML
2632 } else {
2633 ret = ghp;
5cea5666 2634 unpoison_pr_info("%#lx: failed to grab page\n",
bf181c58 2635 pfn, &unpoison_rs);
f29623e4 2636 }
bf181c58 2637 } else {
ee299e98 2638 if (folio_test_hugetlb(folio)) {
5033091d 2639 huge = true;
9637d7df 2640 count = folio_free_raw_hwp(folio, false);
ac5fcde0 2641 if (count == 0) {
a6fddef4 2642 folio_put(folio);
ac5fcde0
NH
2643 goto unlock_mutex;
2644 }
2645 }
847ce401 2646
a6fddef4 2647 folio_put(folio);
e0ff4280 2648 if (TestClearPageHWPoison(p)) {
a6fddef4 2649 folio_put(folio);
bf181c58
NH
2650 ret = 0;
2651 }
2652 }
847ce401 2653
91d00547
NH
2654unlock_mutex:
2655 mutex_unlock(&mf_mutex);
e0ff4280 2656 if (!ret) {
5033091d
NH
2657 if (!huge)
2658 num_poisoned_pages_sub(pfn, 1);
5cea5666 2659 unpoison_pr_info("%#lx: software-unpoisoned page\n",
c8bd84f7 2660 page_to_pfn(p), &unpoison_rs);
2661 }
91d00547 2662 return ret;
847ce401
WF
2663}
2664EXPORT_SYMBOL(unpoison_memory);
facb6011 2665
865319f7
JY
2666#undef pr_fmt
2667#define pr_fmt(fmt) "Soft offline: " fmt
2668
6b9a217e 2669/*
48309e1f 2670 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
6b9a217e
OS
2671 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2672 * If the page is mapped, it migrates the contents over.
2673 */
48309e1f 2674static int soft_offline_in_use_page(struct page *page)
af8fae7c 2675{
d6c75dc2 2676 long ret = 0;
af8fae7c 2677 unsigned long pfn = page_to_pfn(page);
049b2604 2678 struct folio *folio = page_folio(page);
6b9a217e 2679 char const *msg_page[] = {"page", "hugepage"};
049b2604 2680 bool huge = folio_test_hugetlb(folio);
f1264e95 2681 bool isolated;
6b9a217e 2682 LIST_HEAD(pagelist);
54608759
JK
2683 struct migration_target_control mtc = {
2684 .nid = NUMA_NO_NODE,
2685 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
e42dfe4e 2686 .reason = MR_MEMORY_FAILURE,
54608759 2687 };
facb6011 2688
049b2604 2689 if (!huge && folio_test_large(folio)) {
1a3798de 2690 if (try_to_split_thp_page(page, true)) {
865319f7 2691 pr_info("%#lx: thp split failed\n", pfn);
48309e1f
KW
2692 return -EBUSY;
2693 }
049b2604 2694 folio = page_folio(page);
48309e1f
KW
2695 }
2696
049b2604 2697 folio_lock(folio);
55c7ac45 2698 if (!huge)
049b2604 2699 folio_wait_writeback(folio);
af8fae7c 2700 if (PageHWPoison(page)) {
049b2604
MWO
2701 folio_unlock(folio);
2702 folio_put(folio);
865319f7 2703 pr_info("%#lx: page already poisoned\n", pfn);
5a2ffca3 2704 return 0;
af8fae7c 2705 }
6b9a217e 2706
049b2604 2707 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
6b9a217e
OS
2708 /*
2709 * Try to invalidate first. This should work for
2710 * non dirty unmapped page cache pages.
2711 */
049b2604
MWO
2712 ret = mapping_evict_folio(folio_mapping(folio), folio);
2713 folio_unlock(folio);
6b9a217e 2714
6b9a217e 2715 if (ret) {
865319f7 2716 pr_info("%#lx: invalidated\n", pfn);
6b9a217e 2717 page_handle_poison(page, false, true);
af8fae7c 2718 return 0;
facb6011
AK
2719 }
2720
f1264e95
KW
2721 isolated = isolate_folio_to_list(folio, &pagelist);
2722
2723 /*
2724 * If we succeed to isolate the folio, we grabbed another refcount on
2725 * the folio, so we can safely drop the one we got from get_any_page().
2726 * If we failed to isolate the folio, it means that we cannot go further
2727 * and we will return an error, so drop the reference we got from
2728 * get_any_page() as well.
2729 */
2730 folio_put(folio);
2731
2732 if (isolated) {
54608759 2733 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
5ac95884 2734 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
79f5f8fa 2735 if (!ret) {
6b9a217e
OS
2736 bool release = !huge;
2737
2738 if (!page_handle_poison(page, huge, release))
2739 ret = -EBUSY;
79f5f8fa 2740 } else {
85fbe5d1
YX
2741 if (!list_empty(&pagelist))
2742 putback_movable_pages(&pagelist);
59c82b70 2743
865319f7 2744 pr_info("%#lx: %s migration failed %ld, type %pGp\n",
23efd080 2745 pfn, msg_page[huge], ret, &page->flags);
facb6011 2746 if (ret > 0)
3f4b815a 2747 ret = -EBUSY;
facb6011
AK
2748 }
2749 } else {
865319f7 2750 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
23efd080 2751 pfn, msg_page[huge], page_count(page), &page->flags);
6b9a217e 2752 ret = -EBUSY;
facb6011 2753 }
facb6011
AK
2754 return ret;
2755}
86e05773
WL
2756
2757/**
2758 * soft_offline_page - Soft offline a page.
feec24a6 2759 * @pfn: pfn to soft-offline
86e05773
WL
2760 * @flags: flags. Same as memory_failure().
2761 *
56374430
JY
2762 * Returns 0 on success,
2763 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2764 * disabled by /proc/sys/vm/enable_soft_offline,
9113eaf3 2765 * < 0 otherwise negated errno.
86e05773
WL
2766 *
2767 * Soft offline a page, by migration or invalidation,
2768 * without killing anything. This is for the case when
2769 * a page is not corrupted yet (so it's still valid to access),
2770 * but has had a number of corrected errors and is better taken
2771 * out.
2772 *
2773 * The actual policy on when to do that is maintained by
2774 * user space.
2775 *
2776 * This should never impact any application or cause data loss,
2777 * however it might take some time.
2778 *
2779 * This is not a 100% solution for all memory, but tries to be
2780 * ``good enough'' for the majority of memory.
2781 */
feec24a6 2782int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2783{
2784 int ret;
b94e0282 2785 bool try_again = true;
b5f1fc98 2786 struct page *page;
dad4e5b3 2787
183a7c5d
KW
2788 if (!pfn_valid(pfn)) {
2789 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
feec24a6 2790 return -ENXIO;
183a7c5d 2791 }
dad4e5b3 2792
feec24a6
NH
2793 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2794 page = pfn_to_online_page(pfn);
dad4e5b3 2795 if (!page) {
b5f1fc98 2796 put_ref_page(pfn, flags);
86a66810 2797 return -EIO;
dad4e5b3 2798 }
86a66810 2799
56374430
JY
2800 if (!sysctl_enable_soft_offline) {
2801 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2802 put_ref_page(pfn, flags);
2803 return -EOPNOTSUPP;
2804 }
2805
91d00547
NH
2806 mutex_lock(&mf_mutex);
2807
86e05773 2808 if (PageHWPoison(page)) {
865319f7 2809 pr_info("%#lx: page already poisoned\n", pfn);
b5f1fc98 2810 put_ref_page(pfn, flags);
91d00547 2811 mutex_unlock(&mf_mutex);
5a2ffca3 2812 return 0;
86e05773 2813 }
86e05773 2814
b94e0282 2815retry:
bfc8c901 2816 get_online_mems();
bf6445bc 2817 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
bfc8c901 2818 put_online_mems();
4e41a30c 2819
9113eaf3 2820 if (hwpoison_filter(page)) {
2821 if (ret > 0)
2822 put_page(page);
9113eaf3 2823
2824 mutex_unlock(&mf_mutex);
2825 return -EOPNOTSUPP;
2826 }
2827
8295d535 2828 if (ret > 0) {
6b9a217e 2829 ret = soft_offline_in_use_page(page);
8295d535 2830 } else if (ret == 0) {
e2c1ab07
ML
2831 if (!page_handle_poison(page, true, false)) {
2832 if (try_again) {
2833 try_again = false;
2834 flags &= ~MF_COUNT_INCREASED;
2835 goto retry;
2836 }
2837 ret = -EBUSY;
b94e0282 2838 }
8295d535 2839 }
4e41a30c 2840
91d00547
NH
2841 mutex_unlock(&mf_mutex);
2842
86e05773
WL
2843 return ret;
2844}