Merge tag 'hwmon-for-linus-v4.2-rc6' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-block.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
e0de78df
AK
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
1c80b990
AK
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
6a46079c 38 */
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
6a46079c 43#include <linux/sched.h>
01e00f88 44#include <linux/ksm.h>
6a46079c 45#include <linux/rmap.h>
b9e15baf 46#include <linux/export.h>
6a46079c
AK
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/backing-dev.h>
facb6011
AK
50#include <linux/migrate.h>
51#include <linux/page-isolation.h>
52#include <linux/suspend.h>
5a0e3ad6 53#include <linux/slab.h>
bf998156 54#include <linux/swapops.h>
7af446a8 55#include <linux/hugetlb.h>
20d6c96b 56#include <linux/memory_hotplug.h>
5db8a73a 57#include <linux/mm_inline.h>
ea8f5fb8 58#include <linux/kfifo.h>
6a46079c 59#include "internal.h"
97f0b134 60#include "ras/ras_event.h"
6a46079c
AK
61
62int sysctl_memory_failure_early_kill __read_mostly = 0;
63
64int sysctl_memory_failure_recovery __read_mostly = 1;
65
293c07e3 66atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 67
27df5068
AK
68#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69
1bfe5feb 70u32 hwpoison_filter_enable = 0;
7c116f2b
WF
71u32 hwpoison_filter_dev_major = ~0U;
72u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
73u64 hwpoison_filter_flags_mask;
74u64 hwpoison_filter_flags_value;
1bfe5feb 75EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
76EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
78EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
80
81static int hwpoison_filter_dev(struct page *p)
82{
83 struct address_space *mapping;
84 dev_t dev;
85
86 if (hwpoison_filter_dev_major == ~0U &&
87 hwpoison_filter_dev_minor == ~0U)
88 return 0;
89
90 /*
1c80b990 91 * page_mapping() does not accept slab pages.
7c116f2b
WF
92 */
93 if (PageSlab(p))
94 return -EINVAL;
95
96 mapping = page_mapping(p);
97 if (mapping == NULL || mapping->host == NULL)
98 return -EINVAL;
99
100 dev = mapping->host->i_sb->s_dev;
101 if (hwpoison_filter_dev_major != ~0U &&
102 hwpoison_filter_dev_major != MAJOR(dev))
103 return -EINVAL;
104 if (hwpoison_filter_dev_minor != ~0U &&
105 hwpoison_filter_dev_minor != MINOR(dev))
106 return -EINVAL;
107
108 return 0;
109}
110
478c5ffc
WF
111static int hwpoison_filter_flags(struct page *p)
112{
113 if (!hwpoison_filter_flags_mask)
114 return 0;
115
116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 hwpoison_filter_flags_value)
118 return 0;
119 else
120 return -EINVAL;
121}
122
4fd466eb
AK
123/*
124 * This allows stress tests to limit test scope to a collection of tasks
125 * by putting them under some memcg. This prevents killing unrelated/important
126 * processes such as /sbin/init. Note that the target task may share clean
127 * pages with init (eg. libc text), which is harmless. If the target task
128 * share _dirty_ pages with another task B, the test scheme must make sure B
129 * is also included in the memcg. At last, due to race conditions this filter
130 * can only guarantee that the page either belongs to the memcg tasks, or is
131 * a freed page.
132 */
c255a458 133#ifdef CONFIG_MEMCG_SWAP
4fd466eb
AK
134u64 hwpoison_filter_memcg;
135EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136static int hwpoison_filter_task(struct page *p)
137{
138 struct mem_cgroup *mem;
139 struct cgroup_subsys_state *css;
140 unsigned long ino;
141
142 if (!hwpoison_filter_memcg)
143 return 0;
144
145 mem = try_get_mem_cgroup_from_page(p);
146 if (!mem)
147 return -EINVAL;
148
149 css = mem_cgroup_css(mem);
b1664924 150 ino = cgroup_ino(css->cgroup);
4fd466eb
AK
151 css_put(css);
152
f29374b1 153 if (ino != hwpoison_filter_memcg)
4fd466eb
AK
154 return -EINVAL;
155
156 return 0;
157}
158#else
159static int hwpoison_filter_task(struct page *p) { return 0; }
160#endif
161
7c116f2b
WF
162int hwpoison_filter(struct page *p)
163{
1bfe5feb
HL
164 if (!hwpoison_filter_enable)
165 return 0;
166
7c116f2b
WF
167 if (hwpoison_filter_dev(p))
168 return -EINVAL;
169
478c5ffc
WF
170 if (hwpoison_filter_flags(p))
171 return -EINVAL;
172
4fd466eb
AK
173 if (hwpoison_filter_task(p))
174 return -EINVAL;
175
7c116f2b
WF
176 return 0;
177}
27df5068
AK
178#else
179int hwpoison_filter(struct page *p)
180{
181 return 0;
182}
183#endif
184
7c116f2b
WF
185EXPORT_SYMBOL_GPL(hwpoison_filter);
186
6a46079c 187/*
7329bbeb
TL
188 * Send all the processes who have the page mapped a signal.
189 * ``action optional'' if they are not immediately affected by the error
190 * ``action required'' if error happened in current execution context
6a46079c 191 */
7329bbeb
TL
192static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
193 unsigned long pfn, struct page *page, int flags)
6a46079c
AK
194{
195 struct siginfo si;
196 int ret;
197
198 printk(KERN_ERR
7329bbeb 199 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
6a46079c
AK
200 pfn, t->comm, t->pid);
201 si.si_signo = SIGBUS;
202 si.si_errno = 0;
6a46079c
AK
203 si.si_addr = (void *)addr;
204#ifdef __ARCH_SI_TRAPNO
205 si.si_trapno = trapno;
206#endif
f9121153 207 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
7329bbeb 208
a70ffcac 209 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
7329bbeb 210 si.si_code = BUS_MCEERR_AR;
a70ffcac 211 ret = force_sig_info(SIGBUS, &si, current);
7329bbeb
TL
212 } else {
213 /*
214 * Don't use force here, it's convenient if the signal
215 * can be temporarily blocked.
216 * This could cause a loop when the user sets SIGBUS
217 * to SIG_IGN, but hopefully no one will do that?
218 */
219 si.si_code = BUS_MCEERR_AO;
220 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
221 }
6a46079c
AK
222 if (ret < 0)
223 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
224 t->comm, t->pid, ret);
225 return ret;
226}
227
588f9ce6
AK
228/*
229 * When a unknown page type is encountered drain as many buffers as possible
230 * in the hope to turn the page into a LRU or free page, which we can handle.
231 */
facb6011 232void shake_page(struct page *p, int access)
588f9ce6
AK
233{
234 if (!PageSlab(p)) {
235 lru_add_drain_all();
236 if (PageLRU(p))
237 return;
c0554329 238 drain_all_pages(page_zone(p));
588f9ce6
AK
239 if (PageLRU(p) || is_free_buddy_page(p))
240 return;
241 }
facb6011 242
588f9ce6 243 /*
6b4f7799
JW
244 * Only call shrink_node_slabs here (which would also shrink
245 * other caches) if access is not potentially fatal.
588f9ce6 246 */
cb731d6c
VD
247 if (access)
248 drop_slab_node(page_to_nid(p));
588f9ce6
AK
249}
250EXPORT_SYMBOL_GPL(shake_page);
251
6a46079c
AK
252/*
253 * Kill all processes that have a poisoned page mapped and then isolate
254 * the page.
255 *
256 * General strategy:
257 * Find all processes having the page mapped and kill them.
258 * But we keep a page reference around so that the page is not
259 * actually freed yet.
260 * Then stash the page away
261 *
262 * There's no convenient way to get back to mapped processes
263 * from the VMAs. So do a brute-force search over all
264 * running processes.
265 *
266 * Remember that machine checks are not common (or rather
267 * if they are common you have other problems), so this shouldn't
268 * be a performance issue.
269 *
270 * Also there are some races possible while we get from the
271 * error detection to actually handle it.
272 */
273
274struct to_kill {
275 struct list_head nd;
276 struct task_struct *tsk;
277 unsigned long addr;
9033ae16 278 char addr_valid;
6a46079c
AK
279};
280
281/*
282 * Failure handling: if we can't find or can't kill a process there's
283 * not much we can do. We just print a message and ignore otherwise.
284 */
285
286/*
287 * Schedule a process for later kill.
288 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
289 * TBD would GFP_NOIO be enough?
290 */
291static void add_to_kill(struct task_struct *tsk, struct page *p,
292 struct vm_area_struct *vma,
293 struct list_head *to_kill,
294 struct to_kill **tkc)
295{
296 struct to_kill *tk;
297
298 if (*tkc) {
299 tk = *tkc;
300 *tkc = NULL;
301 } else {
302 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
303 if (!tk) {
304 printk(KERN_ERR
305 "MCE: Out of memory while machine check handling\n");
306 return;
307 }
308 }
309 tk->addr = page_address_in_vma(p, vma);
310 tk->addr_valid = 1;
311
312 /*
313 * In theory we don't have to kill when the page was
314 * munmaped. But it could be also a mremap. Since that's
315 * likely very rare kill anyways just out of paranoia, but use
316 * a SIGKILL because the error is not contained anymore.
317 */
318 if (tk->addr == -EFAULT) {
fb46e735 319 pr_info("MCE: Unable to find user space address %lx in %s\n",
6a46079c
AK
320 page_to_pfn(p), tsk->comm);
321 tk->addr_valid = 0;
322 }
323 get_task_struct(tsk);
324 tk->tsk = tsk;
325 list_add_tail(&tk->nd, to_kill);
326}
327
328/*
329 * Kill the processes that have been collected earlier.
330 *
331 * Only do anything when DOIT is set, otherwise just free the list
332 * (this is used for clean pages which do not need killing)
333 * Also when FAIL is set do a force kill because something went
334 * wrong earlier.
335 */
6751ed65 336static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
7329bbeb
TL
337 int fail, struct page *page, unsigned long pfn,
338 int flags)
6a46079c
AK
339{
340 struct to_kill *tk, *next;
341
342 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 343 if (forcekill) {
6a46079c 344 /*
af901ca1 345 * In case something went wrong with munmapping
6a46079c
AK
346 * make sure the process doesn't catch the
347 * signal and then access the memory. Just kill it.
6a46079c
AK
348 */
349 if (fail || tk->addr_valid == 0) {
350 printk(KERN_ERR
351 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
352 pfn, tk->tsk->comm, tk->tsk->pid);
353 force_sig(SIGKILL, tk->tsk);
354 }
355
356 /*
357 * In theory the process could have mapped
358 * something else on the address in-between. We could
359 * check for that, but we need to tell the
360 * process anyways.
361 */
7329bbeb
TL
362 else if (kill_proc(tk->tsk, tk->addr, trapno,
363 pfn, page, flags) < 0)
6a46079c
AK
364 printk(KERN_ERR
365 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
366 pfn, tk->tsk->comm, tk->tsk->pid);
367 }
368 put_task_struct(tk->tsk);
369 kfree(tk);
370 }
371}
372
3ba08129
NH
373/*
374 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
375 * on behalf of the thread group. Return task_struct of the (first found)
376 * dedicated thread if found, and return NULL otherwise.
377 *
378 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
379 * have to call rcu_read_lock/unlock() in this function.
380 */
381static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 382{
3ba08129
NH
383 struct task_struct *t;
384
385 for_each_thread(tsk, t)
386 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
387 return t;
388 return NULL;
389}
390
391/*
392 * Determine whether a given process is "early kill" process which expects
393 * to be signaled when some page under the process is hwpoisoned.
394 * Return task_struct of the dedicated thread (main thread unless explicitly
395 * specified) if the process is "early kill," and otherwise returns NULL.
396 */
397static struct task_struct *task_early_kill(struct task_struct *tsk,
398 int force_early)
399{
400 struct task_struct *t;
6a46079c 401 if (!tsk->mm)
3ba08129 402 return NULL;
74614de1 403 if (force_early)
3ba08129
NH
404 return tsk;
405 t = find_early_kill_thread(tsk);
406 if (t)
407 return t;
408 if (sysctl_memory_failure_early_kill)
409 return tsk;
410 return NULL;
6a46079c
AK
411}
412
413/*
414 * Collect processes when the error hit an anonymous page.
415 */
416static void collect_procs_anon(struct page *page, struct list_head *to_kill,
74614de1 417 struct to_kill **tkc, int force_early)
6a46079c
AK
418{
419 struct vm_area_struct *vma;
420 struct task_struct *tsk;
421 struct anon_vma *av;
bf181b9f 422 pgoff_t pgoff;
6a46079c 423
4fc3f1d6 424 av = page_lock_anon_vma_read(page);
6a46079c 425 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
426 return;
427
a0f7a756 428 pgoff = page_to_pgoff(page);
9b679320 429 read_lock(&tasklist_lock);
6a46079c 430 for_each_process (tsk) {
5beb4930 431 struct anon_vma_chain *vmac;
3ba08129 432 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 433
3ba08129 434 if (!t)
6a46079c 435 continue;
bf181b9f
ML
436 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
437 pgoff, pgoff) {
5beb4930 438 vma = vmac->vma;
6a46079c
AK
439 if (!page_mapped_in_vma(page, vma))
440 continue;
3ba08129
NH
441 if (vma->vm_mm == t->mm)
442 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
443 }
444 }
6a46079c 445 read_unlock(&tasklist_lock);
4fc3f1d6 446 page_unlock_anon_vma_read(av);
6a46079c
AK
447}
448
449/*
450 * Collect processes when the error hit a file mapped page.
451 */
452static void collect_procs_file(struct page *page, struct list_head *to_kill,
74614de1 453 struct to_kill **tkc, int force_early)
6a46079c
AK
454{
455 struct vm_area_struct *vma;
456 struct task_struct *tsk;
6a46079c
AK
457 struct address_space *mapping = page->mapping;
458
d28eb9c8 459 i_mmap_lock_read(mapping);
9b679320 460 read_lock(&tasklist_lock);
6a46079c 461 for_each_process(tsk) {
a0f7a756 462 pgoff_t pgoff = page_to_pgoff(page);
3ba08129 463 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 464
3ba08129 465 if (!t)
6a46079c 466 continue;
6b2dbba8 467 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
468 pgoff) {
469 /*
470 * Send early kill signal to tasks where a vma covers
471 * the page but the corrupted page is not necessarily
472 * mapped it in its pte.
473 * Assume applications who requested early kill want
474 * to be informed of all such data corruptions.
475 */
3ba08129
NH
476 if (vma->vm_mm == t->mm)
477 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
478 }
479 }
6a46079c 480 read_unlock(&tasklist_lock);
d28eb9c8 481 i_mmap_unlock_read(mapping);
6a46079c
AK
482}
483
484/*
485 * Collect the processes who have the corrupted page mapped to kill.
486 * This is done in two steps for locking reasons.
487 * First preallocate one tokill structure outside the spin locks,
488 * so that we can kill at least one process reasonably reliable.
489 */
74614de1
TL
490static void collect_procs(struct page *page, struct list_head *tokill,
491 int force_early)
6a46079c
AK
492{
493 struct to_kill *tk;
494
495 if (!page->mapping)
496 return;
497
498 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
499 if (!tk)
500 return;
501 if (PageAnon(page))
74614de1 502 collect_procs_anon(page, tokill, &tk, force_early);
6a46079c 503 else
74614de1 504 collect_procs_file(page, tokill, &tk, force_early);
6a46079c
AK
505 kfree(tk);
506}
507
6a46079c 508static const char *action_name[] = {
cc637b17
XX
509 [MF_IGNORED] = "Ignored",
510 [MF_FAILED] = "Failed",
511 [MF_DELAYED] = "Delayed",
512 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
513};
514
515static const char * const action_page_types[] = {
cc637b17
XX
516 [MF_MSG_KERNEL] = "reserved kernel page",
517 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
518 [MF_MSG_SLAB] = "kernel slab page",
519 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
520 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
521 [MF_MSG_HUGE] = "huge page",
522 [MF_MSG_FREE_HUGE] = "free huge page",
523 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
524 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
525 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
526 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
527 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
528 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
529 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
530 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
531 [MF_MSG_CLEAN_LRU] = "clean LRU page",
532 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
533 [MF_MSG_BUDDY] = "free buddy page",
534 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
535 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
536};
537
dc2a1cbf
WF
538/*
539 * XXX: It is possible that a page is isolated from LRU cache,
540 * and then kept in swap cache or failed to remove from page cache.
541 * The page count will stop it from being freed by unpoison.
542 * Stress tests should be aware of this memory leak problem.
543 */
544static int delete_from_lru_cache(struct page *p)
545{
546 if (!isolate_lru_page(p)) {
547 /*
548 * Clear sensible page flags, so that the buddy system won't
549 * complain when the page is unpoison-and-freed.
550 */
551 ClearPageActive(p);
552 ClearPageUnevictable(p);
553 /*
554 * drop the page count elevated by isolate_lru_page()
555 */
556 page_cache_release(p);
557 return 0;
558 }
559 return -EIO;
560}
561
6a46079c
AK
562/*
563 * Error hit kernel page.
564 * Do nothing, try to be lucky and not touch this instead. For a few cases we
565 * could be more sophisticated.
566 */
567static int me_kernel(struct page *p, unsigned long pfn)
6a46079c 568{
cc637b17 569 return MF_IGNORED;
6a46079c
AK
570}
571
572/*
573 * Page in unknown state. Do nothing.
574 */
575static int me_unknown(struct page *p, unsigned long pfn)
576{
577 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
cc637b17 578 return MF_FAILED;
6a46079c
AK
579}
580
6a46079c
AK
581/*
582 * Clean (or cleaned) page cache page.
583 */
584static int me_pagecache_clean(struct page *p, unsigned long pfn)
585{
586 int err;
cc637b17 587 int ret = MF_FAILED;
6a46079c
AK
588 struct address_space *mapping;
589
dc2a1cbf
WF
590 delete_from_lru_cache(p);
591
6a46079c
AK
592 /*
593 * For anonymous pages we're done the only reference left
594 * should be the one m_f() holds.
595 */
596 if (PageAnon(p))
cc637b17 597 return MF_RECOVERED;
6a46079c
AK
598
599 /*
600 * Now truncate the page in the page cache. This is really
601 * more like a "temporary hole punch"
602 * Don't do this for block devices when someone else
603 * has a reference, because it could be file system metadata
604 * and that's not safe to truncate.
605 */
606 mapping = page_mapping(p);
607 if (!mapping) {
608 /*
609 * Page has been teared down in the meanwhile
610 */
cc637b17 611 return MF_FAILED;
6a46079c
AK
612 }
613
614 /*
615 * Truncation is a bit tricky. Enable it per file system for now.
616 *
617 * Open: to take i_mutex or not for this? Right now we don't.
618 */
619 if (mapping->a_ops->error_remove_page) {
620 err = mapping->a_ops->error_remove_page(mapping, p);
621 if (err != 0) {
622 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
623 pfn, err);
624 } else if (page_has_private(p) &&
625 !try_to_release_page(p, GFP_NOIO)) {
fb46e735 626 pr_info("MCE %#lx: failed to release buffers\n", pfn);
6a46079c 627 } else {
cc637b17 628 ret = MF_RECOVERED;
6a46079c
AK
629 }
630 } else {
631 /*
632 * If the file system doesn't support it just invalidate
633 * This fails on dirty or anything with private pages
634 */
635 if (invalidate_inode_page(p))
cc637b17 636 ret = MF_RECOVERED;
6a46079c
AK
637 else
638 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
639 pfn);
640 }
641 return ret;
642}
643
644/*
549543df 645 * Dirty pagecache page
6a46079c
AK
646 * Issues: when the error hit a hole page the error is not properly
647 * propagated.
648 */
649static int me_pagecache_dirty(struct page *p, unsigned long pfn)
650{
651 struct address_space *mapping = page_mapping(p);
652
653 SetPageError(p);
654 /* TBD: print more information about the file. */
655 if (mapping) {
656 /*
657 * IO error will be reported by write(), fsync(), etc.
658 * who check the mapping.
659 * This way the application knows that something went
660 * wrong with its dirty file data.
661 *
662 * There's one open issue:
663 *
664 * The EIO will be only reported on the next IO
665 * operation and then cleared through the IO map.
666 * Normally Linux has two mechanisms to pass IO error
667 * first through the AS_EIO flag in the address space
668 * and then through the PageError flag in the page.
669 * Since we drop pages on memory failure handling the
670 * only mechanism open to use is through AS_AIO.
671 *
672 * This has the disadvantage that it gets cleared on
673 * the first operation that returns an error, while
674 * the PageError bit is more sticky and only cleared
675 * when the page is reread or dropped. If an
676 * application assumes it will always get error on
677 * fsync, but does other operations on the fd before
25985edc 678 * and the page is dropped between then the error
6a46079c
AK
679 * will not be properly reported.
680 *
681 * This can already happen even without hwpoisoned
682 * pages: first on metadata IO errors (which only
683 * report through AS_EIO) or when the page is dropped
684 * at the wrong time.
685 *
686 * So right now we assume that the application DTRT on
687 * the first EIO, but we're not worse than other parts
688 * of the kernel.
689 */
690 mapping_set_error(mapping, EIO);
691 }
692
693 return me_pagecache_clean(p, pfn);
694}
695
696/*
697 * Clean and dirty swap cache.
698 *
699 * Dirty swap cache page is tricky to handle. The page could live both in page
700 * cache and swap cache(ie. page is freshly swapped in). So it could be
701 * referenced concurrently by 2 types of PTEs:
702 * normal PTEs and swap PTEs. We try to handle them consistently by calling
703 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
704 * and then
705 * - clear dirty bit to prevent IO
706 * - remove from LRU
707 * - but keep in the swap cache, so that when we return to it on
708 * a later page fault, we know the application is accessing
709 * corrupted data and shall be killed (we installed simple
710 * interception code in do_swap_page to catch it).
711 *
712 * Clean swap cache pages can be directly isolated. A later page fault will
713 * bring in the known good data from disk.
714 */
715static int me_swapcache_dirty(struct page *p, unsigned long pfn)
716{
6a46079c
AK
717 ClearPageDirty(p);
718 /* Trigger EIO in shmem: */
719 ClearPageUptodate(p);
720
dc2a1cbf 721 if (!delete_from_lru_cache(p))
cc637b17 722 return MF_DELAYED;
dc2a1cbf 723 else
cc637b17 724 return MF_FAILED;
6a46079c
AK
725}
726
727static int me_swapcache_clean(struct page *p, unsigned long pfn)
728{
6a46079c 729 delete_from_swap_cache(p);
e43c3afb 730
dc2a1cbf 731 if (!delete_from_lru_cache(p))
cc637b17 732 return MF_RECOVERED;
dc2a1cbf 733 else
cc637b17 734 return MF_FAILED;
6a46079c
AK
735}
736
737/*
738 * Huge pages. Needs work.
739 * Issues:
93f70f90
NH
740 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
741 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
742 */
743static int me_huge_page(struct page *p, unsigned long pfn)
744{
6de2b1aa 745 int res = 0;
93f70f90 746 struct page *hpage = compound_head(p);
2491ffee
NH
747
748 if (!PageHuge(hpage))
749 return MF_DELAYED;
750
93f70f90
NH
751 /*
752 * We can safely recover from error on free or reserved (i.e.
753 * not in-use) hugepage by dequeuing it from freelist.
754 * To check whether a hugepage is in-use or not, we can't use
755 * page->lru because it can be used in other hugepage operations,
756 * such as __unmap_hugepage_range() and gather_surplus_pages().
757 * So instead we use page_mapping() and PageAnon().
758 * We assume that this function is called with page lock held,
759 * so there is no race between isolation and mapping/unmapping.
760 */
761 if (!(page_mapping(hpage) || PageAnon(hpage))) {
6de2b1aa
NH
762 res = dequeue_hwpoisoned_huge_page(hpage);
763 if (!res)
cc637b17 764 return MF_RECOVERED;
93f70f90 765 }
cc637b17 766 return MF_DELAYED;
6a46079c
AK
767}
768
769/*
770 * Various page states we can handle.
771 *
772 * A page state is defined by its current page->flags bits.
773 * The table matches them in order and calls the right handler.
774 *
775 * This is quite tricky because we can access page at any time
25985edc 776 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
777 *
778 * This is not complete. More states could be added.
779 * For any missing state don't attempt recovery.
780 */
781
782#define dirty (1UL << PG_dirty)
783#define sc (1UL << PG_swapcache)
784#define unevict (1UL << PG_unevictable)
785#define mlock (1UL << PG_mlocked)
786#define writeback (1UL << PG_writeback)
787#define lru (1UL << PG_lru)
788#define swapbacked (1UL << PG_swapbacked)
789#define head (1UL << PG_head)
790#define tail (1UL << PG_tail)
791#define compound (1UL << PG_compound)
792#define slab (1UL << PG_slab)
6a46079c
AK
793#define reserved (1UL << PG_reserved)
794
795static struct page_state {
796 unsigned long mask;
797 unsigned long res;
cc637b17 798 enum mf_action_page_type type;
6a46079c
AK
799 int (*action)(struct page *p, unsigned long pfn);
800} error_states[] = {
cc637b17 801 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
802 /*
803 * free pages are specially detected outside this table:
804 * PG_buddy pages only make a small fraction of all free pages.
805 */
6a46079c
AK
806
807 /*
808 * Could in theory check if slab page is free or if we can drop
809 * currently unused objects without touching them. But just
810 * treat it as standard kernel for now.
811 */
cc637b17 812 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c
AK
813
814#ifdef CONFIG_PAGEFLAGS_EXTENDED
cc637b17
XX
815 { head, head, MF_MSG_HUGE, me_huge_page },
816 { tail, tail, MF_MSG_HUGE, me_huge_page },
6a46079c 817#else
cc637b17 818 { compound, compound, MF_MSG_HUGE, me_huge_page },
6a46079c
AK
819#endif
820
cc637b17
XX
821 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
822 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 823
cc637b17
XX
824 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
825 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 826
cc637b17
XX
827 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
828 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 829
cc637b17
XX
830 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
831 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
832
833 /*
834 * Catchall entry: must be at end.
835 */
cc637b17 836 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
837};
838
2326c467
AK
839#undef dirty
840#undef sc
841#undef unevict
842#undef mlock
843#undef writeback
844#undef lru
845#undef swapbacked
846#undef head
847#undef tail
848#undef compound
849#undef slab
850#undef reserved
851
ff604cf6
NH
852/*
853 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
854 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
855 */
cc3e2af4
XX
856static void action_result(unsigned long pfn, enum mf_action_page_type type,
857 enum mf_result result)
6a46079c 858{
97f0b134
XX
859 trace_memory_failure_event(pfn, type, result);
860
64d37a2b
NH
861 pr_err("MCE %#lx: recovery action for %s: %s\n",
862 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
863}
864
865static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 866 unsigned long pfn)
6a46079c
AK
867{
868 int result;
7456b040 869 int count;
6a46079c
AK
870
871 result = ps->action(p, pfn);
7456b040 872
bd1ce5f9 873 count = page_count(p) - 1;
cc637b17 874 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
138ce286
WF
875 count--;
876 if (count != 0) {
6a46079c 877 printk(KERN_ERR
64d37a2b
NH
878 "MCE %#lx: %s still referenced by %d users\n",
879 pfn, action_page_types[ps->type], count);
cc637b17 880 result = MF_FAILED;
138ce286 881 }
64d37a2b 882 action_result(pfn, ps->type, result);
6a46079c
AK
883
884 /* Could do more checks here if page looks ok */
885 /*
886 * Could adjust zone counters here to correct for the missing page.
887 */
888
cc637b17 889 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
890}
891
ead07f6a
NH
892/**
893 * get_hwpoison_page() - Get refcount for memory error handling:
894 * @page: raw error page (hit by memory error)
895 *
896 * Return: return 0 if failed to grab the refcount, otherwise true (some
897 * non-zero value.)
898 */
899int get_hwpoison_page(struct page *page)
900{
901 struct page *head = compound_head(page);
902
903 if (PageHuge(head))
904 return get_page_unless_zero(head);
905
906 /*
907 * Thp tail page has special refcounting rule (refcount of tail pages
908 * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
909 * directly for tail pages.
910 */
911 if (PageTransHuge(head)) {
98ed2b00
NH
912 /*
913 * Non anonymous thp exists only in allocation/free time. We
914 * can't handle such a case correctly, so let's give it up.
915 * This should be better than triggering BUG_ON when kernel
916 * tries to touch the "partially handled" page.
917 */
918 if (!PageAnon(head)) {
919 pr_err("MCE: %#lx: non anonymous thp\n",
920 page_to_pfn(page));
921 return 0;
922 }
923
ead07f6a
NH
924 if (get_page_unless_zero(head)) {
925 if (PageTail(page))
926 get_page(page);
927 return 1;
928 } else {
929 return 0;
930 }
931 }
932
933 return get_page_unless_zero(page);
934}
935EXPORT_SYMBOL_GPL(get_hwpoison_page);
936
6a46079c
AK
937/*
938 * Do all that is necessary to remove user space mappings. Unmap
939 * the pages and send SIGBUS to the processes if the data was dirty.
940 */
1668bfd5 941static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
54b9dd14 942 int trapno, int flags, struct page **hpagep)
6a46079c
AK
943{
944 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
945 struct address_space *mapping;
946 LIST_HEAD(tokill);
947 int ret;
6751ed65 948 int kill = 1, forcekill;
54b9dd14 949 struct page *hpage = *hpagep;
6a46079c 950
93a9eb39
NH
951 /*
952 * Here we are interested only in user-mapped pages, so skip any
953 * other types of pages.
954 */
955 if (PageReserved(p) || PageSlab(p))
956 return SWAP_SUCCESS;
957 if (!(PageLRU(hpage) || PageHuge(p)))
1668bfd5 958 return SWAP_SUCCESS;
6a46079c 959
6a46079c
AK
960 /*
961 * This check implies we don't kill processes if their pages
962 * are in the swap cache early. Those are always late kills.
963 */
7af446a8 964 if (!page_mapped(hpage))
1668bfd5
WF
965 return SWAP_SUCCESS;
966
52089b14
NH
967 if (PageKsm(p)) {
968 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
1668bfd5 969 return SWAP_FAIL;
52089b14 970 }
6a46079c
AK
971
972 if (PageSwapCache(p)) {
973 printk(KERN_ERR
974 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
975 ttu |= TTU_IGNORE_HWPOISON;
976 }
977
978 /*
979 * Propagate the dirty bit from PTEs to struct page first, because we
980 * need this to decide if we should kill or just drop the page.
db0480b3
WF
981 * XXX: the dirty test could be racy: set_page_dirty() may not always
982 * be called inside page lock (it's recommended but not enforced).
6a46079c 983 */
7af446a8 984 mapping = page_mapping(hpage);
6751ed65 985 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
986 mapping_cap_writeback_dirty(mapping)) {
987 if (page_mkclean(hpage)) {
988 SetPageDirty(hpage);
6a46079c
AK
989 } else {
990 kill = 0;
991 ttu |= TTU_IGNORE_HWPOISON;
992 printk(KERN_INFO
993 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
994 pfn);
995 }
996 }
997
998 /*
999 * First collect all the processes that have the page
1000 * mapped in dirty form. This has to be done before try_to_unmap,
1001 * because ttu takes the rmap data structures down.
1002 *
1003 * Error handling: We ignore errors here because
1004 * there's nothing that can be done.
1005 */
1006 if (kill)
415c64c1 1007 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1008
415c64c1 1009 ret = try_to_unmap(hpage, ttu);
6a46079c
AK
1010 if (ret != SWAP_SUCCESS)
1011 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
415c64c1 1012 pfn, page_mapcount(hpage));
a6d30ddd 1013
6a46079c
AK
1014 /*
1015 * Now that the dirty bit has been propagated to the
1016 * struct page and all unmaps done we can decide if
1017 * killing is needed or not. Only kill when the page
6751ed65
TL
1018 * was dirty or the process is not restartable,
1019 * otherwise the tokill list is merely
6a46079c
AK
1020 * freed. When there was a problem unmapping earlier
1021 * use a more force-full uncatchable kill to prevent
1022 * any accesses to the poisoned memory.
1023 */
415c64c1 1024 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
6751ed65 1025 kill_procs(&tokill, forcekill, trapno,
7329bbeb 1026 ret != SWAP_SUCCESS, p, pfn, flags);
1668bfd5
WF
1027
1028 return ret;
6a46079c
AK
1029}
1030
7013febc
NH
1031static void set_page_hwpoison_huge_page(struct page *hpage)
1032{
1033 int i;
f9121153 1034 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1035 for (i = 0; i < nr_pages; i++)
1036 SetPageHWPoison(hpage + i);
1037}
1038
1039static void clear_page_hwpoison_huge_page(struct page *hpage)
1040{
1041 int i;
f9121153 1042 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1043 for (i = 0; i < nr_pages; i++)
1044 ClearPageHWPoison(hpage + i);
1045}
1046
cd42f4a3
TL
1047/**
1048 * memory_failure - Handle memory failure of a page.
1049 * @pfn: Page Number of the corrupted page
1050 * @trapno: Trap number reported in the signal to user space.
1051 * @flags: fine tune action taken
1052 *
1053 * This function is called by the low level machine check code
1054 * of an architecture when it detects hardware memory corruption
1055 * of a page. It tries its best to recover, which includes
1056 * dropping pages, killing processes etc.
1057 *
1058 * The function is primarily of use for corruptions that
1059 * happen outside the current execution context (e.g. when
1060 * detected by a background scrubber)
1061 *
1062 * Must run in process context (e.g. a work queue) with interrupts
1063 * enabled and no spinlocks hold.
1064 */
1065int memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
1066{
1067 struct page_state *ps;
1068 struct page *p;
7af446a8 1069 struct page *hpage;
415c64c1 1070 struct page *orig_head;
6a46079c 1071 int res;
c9fbdd5f 1072 unsigned int nr_pages;
524fca1e 1073 unsigned long page_flags;
6a46079c
AK
1074
1075 if (!sysctl_memory_failure_recovery)
1076 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1077
1078 if (!pfn_valid(pfn)) {
a7560fc8
WF
1079 printk(KERN_ERR
1080 "MCE %#lx: memory outside kernel control\n",
1081 pfn);
1082 return -ENXIO;
6a46079c
AK
1083 }
1084
1085 p = pfn_to_page(pfn);
415c64c1 1086 orig_head = hpage = compound_head(p);
6a46079c 1087 if (TestSetPageHWPoison(p)) {
d95ea51e 1088 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
6a46079c
AK
1089 return 0;
1090 }
1091
4db0e950
NH
1092 /*
1093 * Currently errors on hugetlbfs pages are measured in hugepage units,
1094 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1095 * transparent hugepages, they are supposed to be split and error
1096 * measurement is done in normal page units. So nr_pages should be one
1097 * in this case.
1098 */
1099 if (PageHuge(p))
1100 nr_pages = 1 << compound_order(hpage);
1101 else /* normal page or thp */
1102 nr_pages = 1;
293c07e3 1103 atomic_long_add(nr_pages, &num_poisoned_pages);
6a46079c
AK
1104
1105 /*
1106 * We need/can do nothing about count=0 pages.
1107 * 1) it's a free page, and therefore in safe hand:
1108 * prep_new_page() will be the gate keeper.
8c6c2ecb
NH
1109 * 2) it's a free hugepage, which is also safe:
1110 * an affected hugepage will be dequeued from hugepage freelist,
1111 * so there's no concern about reusing it ever after.
1112 * 3) it's part of a non-compound high order page.
6a46079c
AK
1113 * Implies some kernel user: cannot stop them from
1114 * R/W the page; let's pray that the page has been
1115 * used and will be freed some time later.
1116 * In fact it's dangerous to directly bump up page count from 0,
1117 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1118 */
ead07f6a 1119 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
8d22ba1b 1120 if (is_free_buddy_page(p)) {
cc637b17 1121 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
8d22ba1b 1122 return 0;
8c6c2ecb
NH
1123 } else if (PageHuge(hpage)) {
1124 /*
b985194c 1125 * Check "filter hit" and "race with other subpage."
8c6c2ecb 1126 */
7eaceacc 1127 lock_page(hpage);
b985194c
CY
1128 if (PageHWPoison(hpage)) {
1129 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1130 || (p != hpage && TestSetPageHWPoison(hpage))) {
1131 atomic_long_sub(nr_pages, &num_poisoned_pages);
1132 unlock_page(hpage);
1133 return 0;
1134 }
8c6c2ecb
NH
1135 }
1136 set_page_hwpoison_huge_page(hpage);
1137 res = dequeue_hwpoisoned_huge_page(hpage);
cc637b17
XX
1138 action_result(pfn, MF_MSG_FREE_HUGE,
1139 res ? MF_IGNORED : MF_DELAYED);
8c6c2ecb
NH
1140 unlock_page(hpage);
1141 return res;
8d22ba1b 1142 } else {
cc637b17 1143 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
8d22ba1b
WF
1144 return -EBUSY;
1145 }
6a46079c
AK
1146 }
1147
415c64c1 1148 if (!PageHuge(p) && PageTransHuge(hpage)) {
415c64c1
NH
1149 if (unlikely(split_huge_page(hpage))) {
1150 pr_err("MCE: %#lx: thp split failed\n", pfn);
ead07f6a
NH
1151 if (TestClearPageHWPoison(p))
1152 atomic_long_sub(nr_pages, &num_poisoned_pages);
415c64c1 1153 put_page(p);
ead07f6a
NH
1154 if (p != hpage)
1155 put_page(hpage);
415c64c1
NH
1156 return -EBUSY;
1157 }
1158 VM_BUG_ON_PAGE(!page_count(p), p);
1159 hpage = compound_head(p);
1160 }
1161
e43c3afb
WF
1162 /*
1163 * We ignore non-LRU pages for good reasons.
1164 * - PG_locked is only well defined for LRU pages and a few others
1165 * - to avoid races with __set_page_locked()
1166 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1167 * The check (unnecessarily) ignores LRU pages being isolated and
1168 * walked by the page reclaim code, however that's not a big loss.
1169 */
09789e5d 1170 if (!PageHuge(p)) {
415c64c1
NH
1171 if (!PageLRU(p))
1172 shake_page(p, 0);
1173 if (!PageLRU(p)) {
af241a08
JD
1174 /*
1175 * shake_page could have turned it free.
1176 */
1177 if (is_free_buddy_page(p)) {
2d421acd 1178 if (flags & MF_COUNT_INCREASED)
cc637b17 1179 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
2d421acd 1180 else
cc637b17
XX
1181 action_result(pfn, MF_MSG_BUDDY_2ND,
1182 MF_DELAYED);
af241a08
JD
1183 return 0;
1184 }
0474a60e 1185 }
e43c3afb 1186 }
e43c3afb 1187
7eaceacc 1188 lock_page(hpage);
847ce401 1189
f37d4298
AK
1190 /*
1191 * The page could have changed compound pages during the locking.
1192 * If this happens just bail out.
1193 */
415c64c1 1194 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1195 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298
AK
1196 res = -EBUSY;
1197 goto out;
1198 }
1199
524fca1e
NH
1200 /*
1201 * We use page flags to determine what action should be taken, but
1202 * the flags can be modified by the error containment action. One
1203 * example is an mlocked page, where PG_mlocked is cleared by
1204 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1205 * correctly, we save a copy of the page flags at this time.
1206 */
1207 page_flags = p->flags;
1208
847ce401
WF
1209 /*
1210 * unpoison always clear PG_hwpoison inside page lock
1211 */
1212 if (!PageHWPoison(p)) {
d95ea51e 1213 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
3e030ecc 1214 atomic_long_sub(nr_pages, &num_poisoned_pages);
a09233f3 1215 unlock_page(hpage);
3e030ecc 1216 put_page(hpage);
a09233f3 1217 return 0;
847ce401 1218 }
7c116f2b
WF
1219 if (hwpoison_filter(p)) {
1220 if (TestClearPageHWPoison(p))
293c07e3 1221 atomic_long_sub(nr_pages, &num_poisoned_pages);
7af446a8
NH
1222 unlock_page(hpage);
1223 put_page(hpage);
7c116f2b
WF
1224 return 0;
1225 }
847ce401 1226
0bc1f8b0
CY
1227 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1228 goto identify_page_state;
1229
7013febc
NH
1230 /*
1231 * For error on the tail page, we should set PG_hwpoison
1232 * on the head page to show that the hugepage is hwpoisoned
1233 */
a6d30ddd 1234 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
cc637b17 1235 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
7013febc
NH
1236 unlock_page(hpage);
1237 put_page(hpage);
1238 return 0;
1239 }
1240 /*
1241 * Set PG_hwpoison on all pages in an error hugepage,
1242 * because containment is done in hugepage unit for now.
1243 * Since we have done TestSetPageHWPoison() for the head page with
1244 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1245 */
1246 if (PageHuge(p))
1247 set_page_hwpoison_huge_page(hpage);
1248
6edd6cc6
NH
1249 /*
1250 * It's very difficult to mess with pages currently under IO
1251 * and in many cases impossible, so we just avoid it here.
1252 */
6a46079c
AK
1253 wait_on_page_writeback(p);
1254
1255 /*
1256 * Now take care of user space mappings.
e64a782f 1257 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
54b9dd14
NH
1258 *
1259 * When the raw error page is thp tail page, hpage points to the raw
1260 * page after thp split.
6a46079c 1261 */
54b9dd14
NH
1262 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1263 != SWAP_SUCCESS) {
cc637b17 1264 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5
WF
1265 res = -EBUSY;
1266 goto out;
1267 }
6a46079c
AK
1268
1269 /*
1270 * Torn down by someone else?
1271 */
dc2a1cbf 1272 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1273 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1274 res = -EBUSY;
6a46079c
AK
1275 goto out;
1276 }
1277
0bc1f8b0 1278identify_page_state:
6a46079c 1279 res = -EBUSY;
524fca1e
NH
1280 /*
1281 * The first check uses the current page flags which may not have any
1282 * relevant information. The second check with the saved page flagss is
1283 * carried out only if the first check can't determine the page status.
1284 */
1285 for (ps = error_states;; ps++)
1286 if ((p->flags & ps->mask) == ps->res)
6a46079c 1287 break;
841fcc58
WL
1288
1289 page_flags |= (p->flags & (1UL << PG_dirty));
1290
524fca1e
NH
1291 if (!ps->mask)
1292 for (ps = error_states;; ps++)
1293 if ((page_flags & ps->mask) == ps->res)
1294 break;
1295 res = page_action(ps, p, pfn);
6a46079c 1296out:
7af446a8 1297 unlock_page(hpage);
6a46079c
AK
1298 return res;
1299}
cd42f4a3 1300EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1301
ea8f5fb8
HY
1302#define MEMORY_FAILURE_FIFO_ORDER 4
1303#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1304
1305struct memory_failure_entry {
1306 unsigned long pfn;
1307 int trapno;
1308 int flags;
1309};
1310
1311struct memory_failure_cpu {
1312 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1313 MEMORY_FAILURE_FIFO_SIZE);
1314 spinlock_t lock;
1315 struct work_struct work;
1316};
1317
1318static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1319
1320/**
1321 * memory_failure_queue - Schedule handling memory failure of a page.
1322 * @pfn: Page Number of the corrupted page
1323 * @trapno: Trap number reported in the signal to user space.
1324 * @flags: Flags for memory failure handling
1325 *
1326 * This function is called by the low level hardware error handler
1327 * when it detects hardware memory corruption of a page. It schedules
1328 * the recovering of error page, including dropping pages, killing
1329 * processes etc.
1330 *
1331 * The function is primarily of use for corruptions that
1332 * happen outside the current execution context (e.g. when
1333 * detected by a background scrubber)
1334 *
1335 * Can run in IRQ context.
1336 */
1337void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1338{
1339 struct memory_failure_cpu *mf_cpu;
1340 unsigned long proc_flags;
1341 struct memory_failure_entry entry = {
1342 .pfn = pfn,
1343 .trapno = trapno,
1344 .flags = flags,
1345 };
1346
1347 mf_cpu = &get_cpu_var(memory_failure_cpu);
1348 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1349 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1350 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1351 else
8e33a52f 1352 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1353 pfn);
1354 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1355 put_cpu_var(memory_failure_cpu);
1356}
1357EXPORT_SYMBOL_GPL(memory_failure_queue);
1358
1359static void memory_failure_work_func(struct work_struct *work)
1360{
1361 struct memory_failure_cpu *mf_cpu;
1362 struct memory_failure_entry entry = { 0, };
1363 unsigned long proc_flags;
1364 int gotten;
1365
7c8e0181 1366 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
ea8f5fb8
HY
1367 for (;;) {
1368 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1369 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1370 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1371 if (!gotten)
1372 break;
cf870c70
NR
1373 if (entry.flags & MF_SOFT_OFFLINE)
1374 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1375 else
1376 memory_failure(entry.pfn, entry.trapno, entry.flags);
ea8f5fb8
HY
1377 }
1378}
1379
1380static int __init memory_failure_init(void)
1381{
1382 struct memory_failure_cpu *mf_cpu;
1383 int cpu;
1384
1385 for_each_possible_cpu(cpu) {
1386 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1387 spin_lock_init(&mf_cpu->lock);
1388 INIT_KFIFO(mf_cpu->fifo);
1389 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1390 }
1391
1392 return 0;
1393}
1394core_initcall(memory_failure_init);
1395
847ce401
WF
1396/**
1397 * unpoison_memory - Unpoison a previously poisoned page
1398 * @pfn: Page number of the to be unpoisoned page
1399 *
1400 * Software-unpoison a page that has been poisoned by
1401 * memory_failure() earlier.
1402 *
1403 * This is only done on the software-level, so it only works
1404 * for linux injected failures, not real hardware failures
1405 *
1406 * Returns 0 for success, otherwise -errno.
1407 */
1408int unpoison_memory(unsigned long pfn)
1409{
1410 struct page *page;
1411 struct page *p;
1412 int freeit = 0;
c9fbdd5f 1413 unsigned int nr_pages;
847ce401
WF
1414
1415 if (!pfn_valid(pfn))
1416 return -ENXIO;
1417
1418 p = pfn_to_page(pfn);
1419 page = compound_head(p);
1420
1421 if (!PageHWPoison(p)) {
fb46e735 1422 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
847ce401
WF
1423 return 0;
1424 }
1425
0cea3fdc
WL
1426 /*
1427 * unpoison_memory() can encounter thp only when the thp is being
1428 * worked by memory_failure() and the page lock is not held yet.
1429 * In such case, we yield to memory_failure() and make unpoison fail.
1430 */
e76d30e2 1431 if (!PageHuge(page) && PageTransHuge(page)) {
0cea3fdc 1432 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
ead07f6a 1433 return 0;
0cea3fdc
WL
1434 }
1435
f9121153 1436 nr_pages = 1 << compound_order(page);
c9fbdd5f 1437
ead07f6a 1438 if (!get_hwpoison_page(p)) {
8c6c2ecb
NH
1439 /*
1440 * Since HWPoisoned hugepage should have non-zero refcount,
1441 * race between memory failure and unpoison seems to happen.
1442 * In such case unpoison fails and memory failure runs
1443 * to the end.
1444 */
1445 if (PageHuge(page)) {
dd73e85f 1446 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
8c6c2ecb
NH
1447 return 0;
1448 }
847ce401 1449 if (TestClearPageHWPoison(p))
dd9538a5 1450 atomic_long_dec(&num_poisoned_pages);
fb46e735 1451 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
847ce401
WF
1452 return 0;
1453 }
1454
7eaceacc 1455 lock_page(page);
847ce401
WF
1456 /*
1457 * This test is racy because PG_hwpoison is set outside of page lock.
1458 * That's acceptable because that won't trigger kernel panic. Instead,
1459 * the PG_hwpoison page will be caught and isolated on the entrance to
1460 * the free buddy page pool.
1461 */
c9fbdd5f 1462 if (TestClearPageHWPoison(page)) {
fb46e735 1463 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
293c07e3 1464 atomic_long_sub(nr_pages, &num_poisoned_pages);
847ce401 1465 freeit = 1;
6a90181c
NH
1466 if (PageHuge(page))
1467 clear_page_hwpoison_huge_page(page);
847ce401
WF
1468 }
1469 unlock_page(page);
1470
1471 put_page(page);
3ba5eebc 1472 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
847ce401
WF
1473 put_page(page);
1474
1475 return 0;
1476}
1477EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1478
1479static struct page *new_page(struct page *p, unsigned long private, int **x)
1480{
12686d15 1481 int nid = page_to_nid(p);
d950b958
NH
1482 if (PageHuge(p))
1483 return alloc_huge_page_node(page_hstate(compound_head(p)),
1484 nid);
1485 else
1486 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1487}
1488
1489/*
1490 * Safely get reference count of an arbitrary page.
1491 * Returns 0 for a free page, -EIO for a zero refcount page
1492 * that is not free, and 1 for any other page type.
1493 * For 1 the page is returned with increased page count, otherwise not.
1494 */
af8fae7c 1495static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1496{
1497 int ret;
1498
1499 if (flags & MF_COUNT_INCREASED)
1500 return 1;
1501
d950b958
NH
1502 /*
1503 * When the target page is a free hugepage, just remove it
1504 * from free hugepage list.
1505 */
ead07f6a 1506 if (!get_hwpoison_page(p)) {
d950b958 1507 if (PageHuge(p)) {
71dd0b8a 1508 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1509 ret = 0;
d950b958 1510 } else if (is_free_buddy_page(p)) {
71dd0b8a 1511 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1512 ret = 0;
1513 } else {
71dd0b8a
BP
1514 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1515 __func__, pfn, p->flags);
facb6011
AK
1516 ret = -EIO;
1517 }
1518 } else {
1519 /* Not a free page */
1520 ret = 1;
1521 }
facb6011
AK
1522 return ret;
1523}
1524
af8fae7c
NH
1525static int get_any_page(struct page *page, unsigned long pfn, int flags)
1526{
1527 int ret = __get_any_page(page, pfn, flags);
1528
1529 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1530 /*
1531 * Try to free it.
1532 */
1533 put_page(page);
1534 shake_page(page, 1);
1535
1536 /*
1537 * Did it turn free?
1538 */
1539 ret = __get_any_page(page, pfn, 0);
1540 if (!PageLRU(page)) {
1541 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1542 pfn, page->flags);
1543 return -EIO;
1544 }
1545 }
1546 return ret;
1547}
1548
d950b958
NH
1549static int soft_offline_huge_page(struct page *page, int flags)
1550{
1551 int ret;
1552 unsigned long pfn = page_to_pfn(page);
1553 struct page *hpage = compound_head(page);
b8ec1cee 1554 LIST_HEAD(pagelist);
d950b958 1555
af8fae7c
NH
1556 /*
1557 * This double-check of PageHWPoison is to avoid the race with
1558 * memory_failure(). See also comment in __soft_offline_page().
1559 */
1560 lock_page(hpage);
0ebff32c 1561 if (PageHWPoison(hpage)) {
af8fae7c
NH
1562 unlock_page(hpage);
1563 put_page(hpage);
0ebff32c 1564 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1565 return -EBUSY;
0ebff32c 1566 }
af8fae7c 1567 unlock_page(hpage);
d950b958 1568
bcc54222
NH
1569 ret = isolate_huge_page(hpage, &pagelist);
1570 if (ret) {
1571 /*
1572 * get_any_page() and isolate_huge_page() takes a refcount each,
1573 * so need to drop one here.
1574 */
1575 put_page(hpage);
1576 } else {
1577 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1578 return -EBUSY;
1579 }
1580
68711a74 1581 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
b8ec1cee 1582 MIGRATE_SYNC, MR_MEMORY_FAILURE);
d950b958 1583 if (ret) {
dd73e85f
DN
1584 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1585 pfn, ret, page->flags);
b8ec1cee
NH
1586 /*
1587 * We know that soft_offline_huge_page() tries to migrate
1588 * only one hugepage pointed to by hpage, so we need not
1589 * run through the pagelist here.
1590 */
1591 putback_active_hugepage(hpage);
1592 if (ret > 0)
1593 ret = -EIO;
af8fae7c 1594 } else {
a49ecbcd
JW
1595 /* overcommit hugetlb page will be freed to buddy */
1596 if (PageHuge(page)) {
1597 set_page_hwpoison_huge_page(hpage);
1598 dequeue_hwpoisoned_huge_page(hpage);
1599 atomic_long_add(1 << compound_order(hpage),
1600 &num_poisoned_pages);
1601 } else {
1602 SetPageHWPoison(page);
1603 atomic_long_inc(&num_poisoned_pages);
1604 }
d950b958 1605 }
d950b958
NH
1606 return ret;
1607}
1608
af8fae7c
NH
1609static int __soft_offline_page(struct page *page, int flags)
1610{
1611 int ret;
1612 unsigned long pfn = page_to_pfn(page);
facb6011 1613
facb6011 1614 /*
af8fae7c
NH
1615 * Check PageHWPoison again inside page lock because PageHWPoison
1616 * is set by memory_failure() outside page lock. Note that
1617 * memory_failure() also double-checks PageHWPoison inside page lock,
1618 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1619 */
0ebff32c
XQ
1620 lock_page(page);
1621 wait_on_page_writeback(page);
af8fae7c
NH
1622 if (PageHWPoison(page)) {
1623 unlock_page(page);
1624 put_page(page);
1625 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1626 return -EBUSY;
1627 }
facb6011
AK
1628 /*
1629 * Try to invalidate first. This should work for
1630 * non dirty unmapped page cache pages.
1631 */
1632 ret = invalidate_inode_page(page);
1633 unlock_page(page);
facb6011 1634 /*
facb6011
AK
1635 * RED-PEN would be better to keep it isolated here, but we
1636 * would need to fix isolation locking first.
1637 */
facb6011 1638 if (ret == 1) {
bd486285 1639 put_page(page);
fb46e735 1640 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c
NH
1641 SetPageHWPoison(page);
1642 atomic_long_inc(&num_poisoned_pages);
1643 return 0;
facb6011
AK
1644 }
1645
1646 /*
1647 * Simple invalidation didn't work.
1648 * Try to migrate to a new page instead. migrate.c
1649 * handles a large number of cases for us.
1650 */
1651 ret = isolate_lru_page(page);
bd486285
KK
1652 /*
1653 * Drop page reference which is came from get_any_page()
1654 * successful isolate_lru_page() already took another one.
1655 */
1656 put_page(page);
facb6011
AK
1657 if (!ret) {
1658 LIST_HEAD(pagelist);
5db8a73a 1659 inc_zone_page_state(page, NR_ISOLATED_ANON +
9c620e2b 1660 page_is_file_cache(page));
facb6011 1661 list_add(&page->lru, &pagelist);
4491f712
NH
1662 if (!TestSetPageHWPoison(page))
1663 atomic_long_inc(&num_poisoned_pages);
68711a74 1664 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
9c620e2b 1665 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1666 if (ret) {
59c82b70
JK
1667 if (!list_empty(&pagelist)) {
1668 list_del(&page->lru);
1669 dec_zone_page_state(page, NR_ISOLATED_ANON +
1670 page_is_file_cache(page));
1671 putback_lru_page(page);
1672 }
1673
fb46e735 1674 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
facb6011
AK
1675 pfn, ret, page->flags);
1676 if (ret > 0)
1677 ret = -EIO;
4491f712
NH
1678 if (TestClearPageHWPoison(page))
1679 atomic_long_dec(&num_poisoned_pages);
facb6011
AK
1680 }
1681 } else {
fb46e735 1682 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
dd73e85f 1683 pfn, ret, page_count(page), page->flags);
facb6011 1684 }
facb6011
AK
1685 return ret;
1686}
86e05773
WL
1687
1688/**
1689 * soft_offline_page - Soft offline a page.
1690 * @page: page to offline
1691 * @flags: flags. Same as memory_failure().
1692 *
1693 * Returns 0 on success, otherwise negated errno.
1694 *
1695 * Soft offline a page, by migration or invalidation,
1696 * without killing anything. This is for the case when
1697 * a page is not corrupted yet (so it's still valid to access),
1698 * but has had a number of corrected errors and is better taken
1699 * out.
1700 *
1701 * The actual policy on when to do that is maintained by
1702 * user space.
1703 *
1704 * This should never impact any application or cause data loss,
1705 * however it might take some time.
1706 *
1707 * This is not a 100% solution for all memory, but tries to be
1708 * ``good enough'' for the majority of memory.
1709 */
1710int soft_offline_page(struct page *page, int flags)
1711{
1712 int ret;
1713 unsigned long pfn = page_to_pfn(page);
668f9abb 1714 struct page *hpage = compound_head(page);
86e05773
WL
1715
1716 if (PageHWPoison(page)) {
1717 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1718 return -EBUSY;
1719 }
1720 if (!PageHuge(page) && PageTransHuge(hpage)) {
1721 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1722 pr_info("soft offline: %#lx: failed to split THP\n",
1723 pfn);
1724 return -EBUSY;
1725 }
1726 }
1727
bfc8c901 1728 get_online_mems();
03b61ff3 1729
86e05773 1730 ret = get_any_page(page, pfn, flags);
bfc8c901 1731 put_online_mems();
03b61ff3 1732 if (ret > 0) { /* for in-use pages */
86e05773
WL
1733 if (PageHuge(page))
1734 ret = soft_offline_huge_page(page, flags);
1735 else
1736 ret = __soft_offline_page(page, flags);
03b61ff3 1737 } else if (ret == 0) { /* for free pages */
86e05773
WL
1738 if (PageHuge(page)) {
1739 set_page_hwpoison_huge_page(hpage);
602498f9
NH
1740 if (!dequeue_hwpoisoned_huge_page(hpage))
1741 atomic_long_add(1 << compound_order(hpage),
86e05773
WL
1742 &num_poisoned_pages);
1743 } else {
602498f9
NH
1744 if (!TestSetPageHWPoison(page))
1745 atomic_long_inc(&num_poisoned_pages);
86e05773
WL
1746 }
1747 }
86e05773
WL
1748 return ret;
1749}