Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-block.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
e0de78df
AK
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
1c80b990
AK
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
6a46079c 38 */
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
6a46079c 43#include <linux/sched.h>
01e00f88 44#include <linux/ksm.h>
6a46079c 45#include <linux/rmap.h>
b9e15baf 46#include <linux/export.h>
6a46079c
AK
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/backing-dev.h>
facb6011
AK
50#include <linux/migrate.h>
51#include <linux/page-isolation.h>
52#include <linux/suspend.h>
5a0e3ad6 53#include <linux/slab.h>
bf998156 54#include <linux/swapops.h>
7af446a8 55#include <linux/hugetlb.h>
20d6c96b 56#include <linux/memory_hotplug.h>
5db8a73a 57#include <linux/mm_inline.h>
ea8f5fb8 58#include <linux/kfifo.h>
a5f65109 59#include <linux/ratelimit.h>
6a46079c 60#include "internal.h"
97f0b134 61#include "ras/ras_event.h"
6a46079c
AK
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
293c07e3 67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 68
27df5068
AK
69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
1bfe5feb 71u32 hwpoison_filter_enable = 0;
7c116f2b
WF
72u32 hwpoison_filter_dev_major = ~0U;
73u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
74u64 hwpoison_filter_flags_mask;
75u64 hwpoison_filter_flags_value;
1bfe5feb 76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
81
82static int hwpoison_filter_dev(struct page *p)
83{
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
1c80b990 92 * page_mapping() does not accept slab pages.
7c116f2b
WF
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110}
111
478c5ffc
WF
112static int hwpoison_filter_flags(struct page *p)
113{
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122}
123
4fd466eb
AK
124/*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
94a59fb3 134#ifdef CONFIG_MEMCG
4fd466eb
AK
135u64 hwpoison_filter_memcg;
136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137static int hwpoison_filter_task(struct page *p)
138{
4fd466eb
AK
139 if (!hwpoison_filter_memcg)
140 return 0;
141
94a59fb3 142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
143 return -EINVAL;
144
145 return 0;
146}
147#else
148static int hwpoison_filter_task(struct page *p) { return 0; }
149#endif
150
7c116f2b
WF
151int hwpoison_filter(struct page *p)
152{
1bfe5feb
HL
153 if (!hwpoison_filter_enable)
154 return 0;
155
7c116f2b
WF
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
478c5ffc
WF
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
4fd466eb
AK
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
7c116f2b
WF
165 return 0;
166}
27df5068
AK
167#else
168int hwpoison_filter(struct page *p)
169{
170 return 0;
171}
172#endif
173
7c116f2b
WF
174EXPORT_SYMBOL_GPL(hwpoison_filter);
175
6a46079c 176/*
7329bbeb
TL
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
6a46079c 180 */
7329bbeb
TL
181static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 unsigned long pfn, struct page *page, int flags)
6a46079c
AK
183{
184 struct siginfo si;
185 int ret;
186
495367c0
CY
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
6a46079c
AK
189 si.si_signo = SIGBUS;
190 si.si_errno = 0;
6a46079c
AK
191 si.si_addr = (void *)addr;
192#ifdef __ARCH_SI_TRAPNO
193 si.si_trapno = trapno;
194#endif
f9121153 195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
7329bbeb 196
a70ffcac 197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
7329bbeb 198 si.si_code = BUS_MCEERR_AR;
a70ffcac 199 ret = force_sig_info(SIGBUS, &si, current);
7329bbeb
TL
200 } else {
201 /*
202 * Don't use force here, it's convenient if the signal
203 * can be temporarily blocked.
204 * This could cause a loop when the user sets SIGBUS
205 * to SIG_IGN, but hopefully no one will do that?
206 */
207 si.si_code = BUS_MCEERR_AO;
208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
209 }
6a46079c 210 if (ret < 0)
495367c0 211 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
1170532b 212 t->comm, t->pid, ret);
6a46079c
AK
213 return ret;
214}
215
588f9ce6
AK
216/*
217 * When a unknown page type is encountered drain as many buffers as possible
218 * in the hope to turn the page into a LRU or free page, which we can handle.
219 */
facb6011 220void shake_page(struct page *p, int access)
588f9ce6
AK
221{
222 if (!PageSlab(p)) {
223 lru_add_drain_all();
224 if (PageLRU(p))
225 return;
c0554329 226 drain_all_pages(page_zone(p));
588f9ce6
AK
227 if (PageLRU(p) || is_free_buddy_page(p))
228 return;
229 }
facb6011 230
588f9ce6 231 /*
6b4f7799
JW
232 * Only call shrink_node_slabs here (which would also shrink
233 * other caches) if access is not potentially fatal.
588f9ce6 234 */
cb731d6c
VD
235 if (access)
236 drop_slab_node(page_to_nid(p));
588f9ce6
AK
237}
238EXPORT_SYMBOL_GPL(shake_page);
239
6a46079c
AK
240/*
241 * Kill all processes that have a poisoned page mapped and then isolate
242 * the page.
243 *
244 * General strategy:
245 * Find all processes having the page mapped and kill them.
246 * But we keep a page reference around so that the page is not
247 * actually freed yet.
248 * Then stash the page away
249 *
250 * There's no convenient way to get back to mapped processes
251 * from the VMAs. So do a brute-force search over all
252 * running processes.
253 *
254 * Remember that machine checks are not common (or rather
255 * if they are common you have other problems), so this shouldn't
256 * be a performance issue.
257 *
258 * Also there are some races possible while we get from the
259 * error detection to actually handle it.
260 */
261
262struct to_kill {
263 struct list_head nd;
264 struct task_struct *tsk;
265 unsigned long addr;
9033ae16 266 char addr_valid;
6a46079c
AK
267};
268
269/*
270 * Failure handling: if we can't find or can't kill a process there's
271 * not much we can do. We just print a message and ignore otherwise.
272 */
273
274/*
275 * Schedule a process for later kill.
276 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
277 * TBD would GFP_NOIO be enough?
278 */
279static void add_to_kill(struct task_struct *tsk, struct page *p,
280 struct vm_area_struct *vma,
281 struct list_head *to_kill,
282 struct to_kill **tkc)
283{
284 struct to_kill *tk;
285
286 if (*tkc) {
287 tk = *tkc;
288 *tkc = NULL;
289 } else {
290 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
291 if (!tk) {
495367c0 292 pr_err("Memory failure: Out of memory while machine check handling\n");
6a46079c
AK
293 return;
294 }
295 }
296 tk->addr = page_address_in_vma(p, vma);
297 tk->addr_valid = 1;
298
299 /*
300 * In theory we don't have to kill when the page was
301 * munmaped. But it could be also a mremap. Since that's
302 * likely very rare kill anyways just out of paranoia, but use
303 * a SIGKILL because the error is not contained anymore.
304 */
305 if (tk->addr == -EFAULT) {
495367c0 306 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
6a46079c
AK
307 page_to_pfn(p), tsk->comm);
308 tk->addr_valid = 0;
309 }
310 get_task_struct(tsk);
311 tk->tsk = tsk;
312 list_add_tail(&tk->nd, to_kill);
313}
314
315/*
316 * Kill the processes that have been collected earlier.
317 *
318 * Only do anything when DOIT is set, otherwise just free the list
319 * (this is used for clean pages which do not need killing)
320 * Also when FAIL is set do a force kill because something went
321 * wrong earlier.
322 */
6751ed65 323static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
7329bbeb
TL
324 int fail, struct page *page, unsigned long pfn,
325 int flags)
6a46079c
AK
326{
327 struct to_kill *tk, *next;
328
329 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 330 if (forcekill) {
6a46079c 331 /*
af901ca1 332 * In case something went wrong with munmapping
6a46079c
AK
333 * make sure the process doesn't catch the
334 * signal and then access the memory. Just kill it.
6a46079c
AK
335 */
336 if (fail || tk->addr_valid == 0) {
495367c0 337 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 338 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
339 force_sig(SIGKILL, tk->tsk);
340 }
341
342 /*
343 * In theory the process could have mapped
344 * something else on the address in-between. We could
345 * check for that, but we need to tell the
346 * process anyways.
347 */
7329bbeb
TL
348 else if (kill_proc(tk->tsk, tk->addr, trapno,
349 pfn, page, flags) < 0)
495367c0 350 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 351 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
352 }
353 put_task_struct(tk->tsk);
354 kfree(tk);
355 }
356}
357
3ba08129
NH
358/*
359 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
360 * on behalf of the thread group. Return task_struct of the (first found)
361 * dedicated thread if found, and return NULL otherwise.
362 *
363 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
364 * have to call rcu_read_lock/unlock() in this function.
365 */
366static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 367{
3ba08129
NH
368 struct task_struct *t;
369
370 for_each_thread(tsk, t)
371 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
372 return t;
373 return NULL;
374}
375
376/*
377 * Determine whether a given process is "early kill" process which expects
378 * to be signaled when some page under the process is hwpoisoned.
379 * Return task_struct of the dedicated thread (main thread unless explicitly
380 * specified) if the process is "early kill," and otherwise returns NULL.
381 */
382static struct task_struct *task_early_kill(struct task_struct *tsk,
383 int force_early)
384{
385 struct task_struct *t;
6a46079c 386 if (!tsk->mm)
3ba08129 387 return NULL;
74614de1 388 if (force_early)
3ba08129
NH
389 return tsk;
390 t = find_early_kill_thread(tsk);
391 if (t)
392 return t;
393 if (sysctl_memory_failure_early_kill)
394 return tsk;
395 return NULL;
6a46079c
AK
396}
397
398/*
399 * Collect processes when the error hit an anonymous page.
400 */
401static void collect_procs_anon(struct page *page, struct list_head *to_kill,
74614de1 402 struct to_kill **tkc, int force_early)
6a46079c
AK
403{
404 struct vm_area_struct *vma;
405 struct task_struct *tsk;
406 struct anon_vma *av;
bf181b9f 407 pgoff_t pgoff;
6a46079c 408
4fc3f1d6 409 av = page_lock_anon_vma_read(page);
6a46079c 410 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
411 return;
412
a0f7a756 413 pgoff = page_to_pgoff(page);
9b679320 414 read_lock(&tasklist_lock);
6a46079c 415 for_each_process (tsk) {
5beb4930 416 struct anon_vma_chain *vmac;
3ba08129 417 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 418
3ba08129 419 if (!t)
6a46079c 420 continue;
bf181b9f
ML
421 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
422 pgoff, pgoff) {
5beb4930 423 vma = vmac->vma;
6a46079c
AK
424 if (!page_mapped_in_vma(page, vma))
425 continue;
3ba08129
NH
426 if (vma->vm_mm == t->mm)
427 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
428 }
429 }
6a46079c 430 read_unlock(&tasklist_lock);
4fc3f1d6 431 page_unlock_anon_vma_read(av);
6a46079c
AK
432}
433
434/*
435 * Collect processes when the error hit a file mapped page.
436 */
437static void collect_procs_file(struct page *page, struct list_head *to_kill,
74614de1 438 struct to_kill **tkc, int force_early)
6a46079c
AK
439{
440 struct vm_area_struct *vma;
441 struct task_struct *tsk;
6a46079c
AK
442 struct address_space *mapping = page->mapping;
443
d28eb9c8 444 i_mmap_lock_read(mapping);
9b679320 445 read_lock(&tasklist_lock);
6a46079c 446 for_each_process(tsk) {
a0f7a756 447 pgoff_t pgoff = page_to_pgoff(page);
3ba08129 448 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 449
3ba08129 450 if (!t)
6a46079c 451 continue;
6b2dbba8 452 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
453 pgoff) {
454 /*
455 * Send early kill signal to tasks where a vma covers
456 * the page but the corrupted page is not necessarily
457 * mapped it in its pte.
458 * Assume applications who requested early kill want
459 * to be informed of all such data corruptions.
460 */
3ba08129
NH
461 if (vma->vm_mm == t->mm)
462 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
463 }
464 }
6a46079c 465 read_unlock(&tasklist_lock);
d28eb9c8 466 i_mmap_unlock_read(mapping);
6a46079c
AK
467}
468
469/*
470 * Collect the processes who have the corrupted page mapped to kill.
471 * This is done in two steps for locking reasons.
472 * First preallocate one tokill structure outside the spin locks,
473 * so that we can kill at least one process reasonably reliable.
474 */
74614de1
TL
475static void collect_procs(struct page *page, struct list_head *tokill,
476 int force_early)
6a46079c
AK
477{
478 struct to_kill *tk;
479
480 if (!page->mapping)
481 return;
482
483 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
484 if (!tk)
485 return;
486 if (PageAnon(page))
74614de1 487 collect_procs_anon(page, tokill, &tk, force_early);
6a46079c 488 else
74614de1 489 collect_procs_file(page, tokill, &tk, force_early);
6a46079c
AK
490 kfree(tk);
491}
492
6a46079c 493static const char *action_name[] = {
cc637b17
XX
494 [MF_IGNORED] = "Ignored",
495 [MF_FAILED] = "Failed",
496 [MF_DELAYED] = "Delayed",
497 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
498};
499
500static const char * const action_page_types[] = {
cc637b17
XX
501 [MF_MSG_KERNEL] = "reserved kernel page",
502 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
503 [MF_MSG_SLAB] = "kernel slab page",
504 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
505 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
506 [MF_MSG_HUGE] = "huge page",
507 [MF_MSG_FREE_HUGE] = "free huge page",
508 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
509 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
510 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
511 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
512 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
513 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
514 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
515 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
516 [MF_MSG_CLEAN_LRU] = "clean LRU page",
517 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
518 [MF_MSG_BUDDY] = "free buddy page",
519 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
520 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
521};
522
dc2a1cbf
WF
523/*
524 * XXX: It is possible that a page is isolated from LRU cache,
525 * and then kept in swap cache or failed to remove from page cache.
526 * The page count will stop it from being freed by unpoison.
527 * Stress tests should be aware of this memory leak problem.
528 */
529static int delete_from_lru_cache(struct page *p)
530{
531 if (!isolate_lru_page(p)) {
532 /*
533 * Clear sensible page flags, so that the buddy system won't
534 * complain when the page is unpoison-and-freed.
535 */
536 ClearPageActive(p);
537 ClearPageUnevictable(p);
538 /*
539 * drop the page count elevated by isolate_lru_page()
540 */
09cbfeaf 541 put_page(p);
dc2a1cbf
WF
542 return 0;
543 }
544 return -EIO;
545}
546
6a46079c
AK
547/*
548 * Error hit kernel page.
549 * Do nothing, try to be lucky and not touch this instead. For a few cases we
550 * could be more sophisticated.
551 */
552static int me_kernel(struct page *p, unsigned long pfn)
6a46079c 553{
cc637b17 554 return MF_IGNORED;
6a46079c
AK
555}
556
557/*
558 * Page in unknown state. Do nothing.
559 */
560static int me_unknown(struct page *p, unsigned long pfn)
561{
495367c0 562 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
cc637b17 563 return MF_FAILED;
6a46079c
AK
564}
565
6a46079c
AK
566/*
567 * Clean (or cleaned) page cache page.
568 */
569static int me_pagecache_clean(struct page *p, unsigned long pfn)
570{
571 int err;
cc637b17 572 int ret = MF_FAILED;
6a46079c
AK
573 struct address_space *mapping;
574
dc2a1cbf
WF
575 delete_from_lru_cache(p);
576
6a46079c
AK
577 /*
578 * For anonymous pages we're done the only reference left
579 * should be the one m_f() holds.
580 */
581 if (PageAnon(p))
cc637b17 582 return MF_RECOVERED;
6a46079c
AK
583
584 /*
585 * Now truncate the page in the page cache. This is really
586 * more like a "temporary hole punch"
587 * Don't do this for block devices when someone else
588 * has a reference, because it could be file system metadata
589 * and that's not safe to truncate.
590 */
591 mapping = page_mapping(p);
592 if (!mapping) {
593 /*
594 * Page has been teared down in the meanwhile
595 */
cc637b17 596 return MF_FAILED;
6a46079c
AK
597 }
598
599 /*
600 * Truncation is a bit tricky. Enable it per file system for now.
601 *
602 * Open: to take i_mutex or not for this? Right now we don't.
603 */
604 if (mapping->a_ops->error_remove_page) {
605 err = mapping->a_ops->error_remove_page(mapping, p);
606 if (err != 0) {
495367c0 607 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
1170532b 608 pfn, err);
6a46079c
AK
609 } else if (page_has_private(p) &&
610 !try_to_release_page(p, GFP_NOIO)) {
495367c0
CY
611 pr_info("Memory failure: %#lx: failed to release buffers\n",
612 pfn);
6a46079c 613 } else {
cc637b17 614 ret = MF_RECOVERED;
6a46079c
AK
615 }
616 } else {
617 /*
618 * If the file system doesn't support it just invalidate
619 * This fails on dirty or anything with private pages
620 */
621 if (invalidate_inode_page(p))
cc637b17 622 ret = MF_RECOVERED;
6a46079c 623 else
495367c0
CY
624 pr_info("Memory failure: %#lx: Failed to invalidate\n",
625 pfn);
6a46079c
AK
626 }
627 return ret;
628}
629
630/*
549543df 631 * Dirty pagecache page
6a46079c
AK
632 * Issues: when the error hit a hole page the error is not properly
633 * propagated.
634 */
635static int me_pagecache_dirty(struct page *p, unsigned long pfn)
636{
637 struct address_space *mapping = page_mapping(p);
638
639 SetPageError(p);
640 /* TBD: print more information about the file. */
641 if (mapping) {
642 /*
643 * IO error will be reported by write(), fsync(), etc.
644 * who check the mapping.
645 * This way the application knows that something went
646 * wrong with its dirty file data.
647 *
648 * There's one open issue:
649 *
650 * The EIO will be only reported on the next IO
651 * operation and then cleared through the IO map.
652 * Normally Linux has two mechanisms to pass IO error
653 * first through the AS_EIO flag in the address space
654 * and then through the PageError flag in the page.
655 * Since we drop pages on memory failure handling the
656 * only mechanism open to use is through AS_AIO.
657 *
658 * This has the disadvantage that it gets cleared on
659 * the first operation that returns an error, while
660 * the PageError bit is more sticky and only cleared
661 * when the page is reread or dropped. If an
662 * application assumes it will always get error on
663 * fsync, but does other operations on the fd before
25985edc 664 * and the page is dropped between then the error
6a46079c
AK
665 * will not be properly reported.
666 *
667 * This can already happen even without hwpoisoned
668 * pages: first on metadata IO errors (which only
669 * report through AS_EIO) or when the page is dropped
670 * at the wrong time.
671 *
672 * So right now we assume that the application DTRT on
673 * the first EIO, but we're not worse than other parts
674 * of the kernel.
675 */
676 mapping_set_error(mapping, EIO);
677 }
678
679 return me_pagecache_clean(p, pfn);
680}
681
682/*
683 * Clean and dirty swap cache.
684 *
685 * Dirty swap cache page is tricky to handle. The page could live both in page
686 * cache and swap cache(ie. page is freshly swapped in). So it could be
687 * referenced concurrently by 2 types of PTEs:
688 * normal PTEs and swap PTEs. We try to handle them consistently by calling
689 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
690 * and then
691 * - clear dirty bit to prevent IO
692 * - remove from LRU
693 * - but keep in the swap cache, so that when we return to it on
694 * a later page fault, we know the application is accessing
695 * corrupted data and shall be killed (we installed simple
696 * interception code in do_swap_page to catch it).
697 *
698 * Clean swap cache pages can be directly isolated. A later page fault will
699 * bring in the known good data from disk.
700 */
701static int me_swapcache_dirty(struct page *p, unsigned long pfn)
702{
6a46079c
AK
703 ClearPageDirty(p);
704 /* Trigger EIO in shmem: */
705 ClearPageUptodate(p);
706
dc2a1cbf 707 if (!delete_from_lru_cache(p))
cc637b17 708 return MF_DELAYED;
dc2a1cbf 709 else
cc637b17 710 return MF_FAILED;
6a46079c
AK
711}
712
713static int me_swapcache_clean(struct page *p, unsigned long pfn)
714{
6a46079c 715 delete_from_swap_cache(p);
e43c3afb 716
dc2a1cbf 717 if (!delete_from_lru_cache(p))
cc637b17 718 return MF_RECOVERED;
dc2a1cbf 719 else
cc637b17 720 return MF_FAILED;
6a46079c
AK
721}
722
723/*
724 * Huge pages. Needs work.
725 * Issues:
93f70f90
NH
726 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
727 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
728 */
729static int me_huge_page(struct page *p, unsigned long pfn)
730{
6de2b1aa 731 int res = 0;
93f70f90 732 struct page *hpage = compound_head(p);
2491ffee
NH
733
734 if (!PageHuge(hpage))
735 return MF_DELAYED;
736
93f70f90
NH
737 /*
738 * We can safely recover from error on free or reserved (i.e.
739 * not in-use) hugepage by dequeuing it from freelist.
740 * To check whether a hugepage is in-use or not, we can't use
741 * page->lru because it can be used in other hugepage operations,
742 * such as __unmap_hugepage_range() and gather_surplus_pages().
743 * So instead we use page_mapping() and PageAnon().
744 * We assume that this function is called with page lock held,
745 * so there is no race between isolation and mapping/unmapping.
746 */
747 if (!(page_mapping(hpage) || PageAnon(hpage))) {
6de2b1aa
NH
748 res = dequeue_hwpoisoned_huge_page(hpage);
749 if (!res)
cc637b17 750 return MF_RECOVERED;
93f70f90 751 }
cc637b17 752 return MF_DELAYED;
6a46079c
AK
753}
754
755/*
756 * Various page states we can handle.
757 *
758 * A page state is defined by its current page->flags bits.
759 * The table matches them in order and calls the right handler.
760 *
761 * This is quite tricky because we can access page at any time
25985edc 762 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
763 *
764 * This is not complete. More states could be added.
765 * For any missing state don't attempt recovery.
766 */
767
768#define dirty (1UL << PG_dirty)
769#define sc (1UL << PG_swapcache)
770#define unevict (1UL << PG_unevictable)
771#define mlock (1UL << PG_mlocked)
772#define writeback (1UL << PG_writeback)
773#define lru (1UL << PG_lru)
774#define swapbacked (1UL << PG_swapbacked)
775#define head (1UL << PG_head)
6a46079c 776#define slab (1UL << PG_slab)
6a46079c
AK
777#define reserved (1UL << PG_reserved)
778
779static struct page_state {
780 unsigned long mask;
781 unsigned long res;
cc637b17 782 enum mf_action_page_type type;
6a46079c
AK
783 int (*action)(struct page *p, unsigned long pfn);
784} error_states[] = {
cc637b17 785 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
786 /*
787 * free pages are specially detected outside this table:
788 * PG_buddy pages only make a small fraction of all free pages.
789 */
6a46079c
AK
790
791 /*
792 * Could in theory check if slab page is free or if we can drop
793 * currently unused objects without touching them. But just
794 * treat it as standard kernel for now.
795 */
cc637b17 796 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 797
cc637b17 798 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 799
cc637b17
XX
800 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
801 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 802
cc637b17
XX
803 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
804 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 805
cc637b17
XX
806 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
807 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 808
cc637b17
XX
809 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
810 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
811
812 /*
813 * Catchall entry: must be at end.
814 */
cc637b17 815 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
816};
817
2326c467
AK
818#undef dirty
819#undef sc
820#undef unevict
821#undef mlock
822#undef writeback
823#undef lru
824#undef swapbacked
825#undef head
2326c467
AK
826#undef slab
827#undef reserved
828
ff604cf6
NH
829/*
830 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
831 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
832 */
cc3e2af4
XX
833static void action_result(unsigned long pfn, enum mf_action_page_type type,
834 enum mf_result result)
6a46079c 835{
97f0b134
XX
836 trace_memory_failure_event(pfn, type, result);
837
495367c0 838 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
64d37a2b 839 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
840}
841
842static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 843 unsigned long pfn)
6a46079c
AK
844{
845 int result;
7456b040 846 int count;
6a46079c
AK
847
848 result = ps->action(p, pfn);
7456b040 849
bd1ce5f9 850 count = page_count(p) - 1;
cc637b17 851 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
138ce286
WF
852 count--;
853 if (count != 0) {
495367c0 854 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
64d37a2b 855 pfn, action_page_types[ps->type], count);
cc637b17 856 result = MF_FAILED;
138ce286 857 }
64d37a2b 858 action_result(pfn, ps->type, result);
6a46079c
AK
859
860 /* Could do more checks here if page looks ok */
861 /*
862 * Could adjust zone counters here to correct for the missing page.
863 */
864
cc637b17 865 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
866}
867
ead07f6a
NH
868/**
869 * get_hwpoison_page() - Get refcount for memory error handling:
870 * @page: raw error page (hit by memory error)
871 *
872 * Return: return 0 if failed to grab the refcount, otherwise true (some
873 * non-zero value.)
874 */
875int get_hwpoison_page(struct page *page)
876{
877 struct page *head = compound_head(page);
878
4e41a30c 879 if (!PageHuge(head) && PageTransHuge(head)) {
98ed2b00
NH
880 /*
881 * Non anonymous thp exists only in allocation/free time. We
882 * can't handle such a case correctly, so let's give it up.
883 * This should be better than triggering BUG_ON when kernel
884 * tries to touch the "partially handled" page.
885 */
886 if (!PageAnon(head)) {
495367c0 887 pr_err("Memory failure: %#lx: non anonymous thp\n",
98ed2b00
NH
888 page_to_pfn(page));
889 return 0;
890 }
ead07f6a
NH
891 }
892
c2e7e00b
KK
893 if (get_page_unless_zero(head)) {
894 if (head == compound_head(page))
895 return 1;
896
495367c0
CY
897 pr_info("Memory failure: %#lx cannot catch tail\n",
898 page_to_pfn(page));
c2e7e00b
KK
899 put_page(head);
900 }
901
902 return 0;
ead07f6a
NH
903}
904EXPORT_SYMBOL_GPL(get_hwpoison_page);
905
6a46079c
AK
906/*
907 * Do all that is necessary to remove user space mappings. Unmap
908 * the pages and send SIGBUS to the processes if the data was dirty.
909 */
1668bfd5 910static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
54b9dd14 911 int trapno, int flags, struct page **hpagep)
6a46079c
AK
912{
913 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
914 struct address_space *mapping;
915 LIST_HEAD(tokill);
916 int ret;
6751ed65 917 int kill = 1, forcekill;
54b9dd14 918 struct page *hpage = *hpagep;
6a46079c 919
93a9eb39
NH
920 /*
921 * Here we are interested only in user-mapped pages, so skip any
922 * other types of pages.
923 */
924 if (PageReserved(p) || PageSlab(p))
925 return SWAP_SUCCESS;
926 if (!(PageLRU(hpage) || PageHuge(p)))
1668bfd5 927 return SWAP_SUCCESS;
6a46079c 928
6a46079c
AK
929 /*
930 * This check implies we don't kill processes if their pages
931 * are in the swap cache early. Those are always late kills.
932 */
7af446a8 933 if (!page_mapped(hpage))
1668bfd5
WF
934 return SWAP_SUCCESS;
935
52089b14 936 if (PageKsm(p)) {
495367c0 937 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1668bfd5 938 return SWAP_FAIL;
52089b14 939 }
6a46079c
AK
940
941 if (PageSwapCache(p)) {
495367c0
CY
942 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
943 pfn);
6a46079c
AK
944 ttu |= TTU_IGNORE_HWPOISON;
945 }
946
947 /*
948 * Propagate the dirty bit from PTEs to struct page first, because we
949 * need this to decide if we should kill or just drop the page.
db0480b3
WF
950 * XXX: the dirty test could be racy: set_page_dirty() may not always
951 * be called inside page lock (it's recommended but not enforced).
6a46079c 952 */
7af446a8 953 mapping = page_mapping(hpage);
6751ed65 954 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
955 mapping_cap_writeback_dirty(mapping)) {
956 if (page_mkclean(hpage)) {
957 SetPageDirty(hpage);
6a46079c
AK
958 } else {
959 kill = 0;
960 ttu |= TTU_IGNORE_HWPOISON;
495367c0 961 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
962 pfn);
963 }
964 }
965
966 /*
967 * First collect all the processes that have the page
968 * mapped in dirty form. This has to be done before try_to_unmap,
969 * because ttu takes the rmap data structures down.
970 *
971 * Error handling: We ignore errors here because
972 * there's nothing that can be done.
973 */
974 if (kill)
415c64c1 975 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 976
415c64c1 977 ret = try_to_unmap(hpage, ttu);
6a46079c 978 if (ret != SWAP_SUCCESS)
495367c0 979 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1170532b 980 pfn, page_mapcount(hpage));
a6d30ddd 981
6a46079c
AK
982 /*
983 * Now that the dirty bit has been propagated to the
984 * struct page and all unmaps done we can decide if
985 * killing is needed or not. Only kill when the page
6751ed65
TL
986 * was dirty or the process is not restartable,
987 * otherwise the tokill list is merely
6a46079c
AK
988 * freed. When there was a problem unmapping earlier
989 * use a more force-full uncatchable kill to prevent
990 * any accesses to the poisoned memory.
991 */
415c64c1 992 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
6751ed65 993 kill_procs(&tokill, forcekill, trapno,
7329bbeb 994 ret != SWAP_SUCCESS, p, pfn, flags);
1668bfd5
WF
995
996 return ret;
6a46079c
AK
997}
998
7013febc
NH
999static void set_page_hwpoison_huge_page(struct page *hpage)
1000{
1001 int i;
f9121153 1002 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1003 for (i = 0; i < nr_pages; i++)
1004 SetPageHWPoison(hpage + i);
1005}
1006
1007static void clear_page_hwpoison_huge_page(struct page *hpage)
1008{
1009 int i;
f9121153 1010 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1011 for (i = 0; i < nr_pages; i++)
1012 ClearPageHWPoison(hpage + i);
1013}
1014
cd42f4a3
TL
1015/**
1016 * memory_failure - Handle memory failure of a page.
1017 * @pfn: Page Number of the corrupted page
1018 * @trapno: Trap number reported in the signal to user space.
1019 * @flags: fine tune action taken
1020 *
1021 * This function is called by the low level machine check code
1022 * of an architecture when it detects hardware memory corruption
1023 * of a page. It tries its best to recover, which includes
1024 * dropping pages, killing processes etc.
1025 *
1026 * The function is primarily of use for corruptions that
1027 * happen outside the current execution context (e.g. when
1028 * detected by a background scrubber)
1029 *
1030 * Must run in process context (e.g. a work queue) with interrupts
1031 * enabled and no spinlocks hold.
1032 */
1033int memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
1034{
1035 struct page_state *ps;
1036 struct page *p;
7af446a8 1037 struct page *hpage;
415c64c1 1038 struct page *orig_head;
6a46079c 1039 int res;
c9fbdd5f 1040 unsigned int nr_pages;
524fca1e 1041 unsigned long page_flags;
6a46079c
AK
1042
1043 if (!sysctl_memory_failure_recovery)
1044 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1045
1046 if (!pfn_valid(pfn)) {
495367c0
CY
1047 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1048 pfn);
a7560fc8 1049 return -ENXIO;
6a46079c
AK
1050 }
1051
1052 p = pfn_to_page(pfn);
415c64c1 1053 orig_head = hpage = compound_head(p);
6a46079c 1054 if (TestSetPageHWPoison(p)) {
495367c0
CY
1055 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1056 pfn);
6a46079c
AK
1057 return 0;
1058 }
1059
4db0e950
NH
1060 /*
1061 * Currently errors on hugetlbfs pages are measured in hugepage units,
1062 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1063 * transparent hugepages, they are supposed to be split and error
1064 * measurement is done in normal page units. So nr_pages should be one
1065 * in this case.
1066 */
1067 if (PageHuge(p))
1068 nr_pages = 1 << compound_order(hpage);
1069 else /* normal page or thp */
1070 nr_pages = 1;
8e30456b 1071 num_poisoned_pages_add(nr_pages);
6a46079c
AK
1072
1073 /*
1074 * We need/can do nothing about count=0 pages.
1075 * 1) it's a free page, and therefore in safe hand:
1076 * prep_new_page() will be the gate keeper.
8c6c2ecb
NH
1077 * 2) it's a free hugepage, which is also safe:
1078 * an affected hugepage will be dequeued from hugepage freelist,
1079 * so there's no concern about reusing it ever after.
1080 * 3) it's part of a non-compound high order page.
6a46079c
AK
1081 * Implies some kernel user: cannot stop them from
1082 * R/W the page; let's pray that the page has been
1083 * used and will be freed some time later.
1084 * In fact it's dangerous to directly bump up page count from 0,
1085 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1086 */
ead07f6a 1087 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
8d22ba1b 1088 if (is_free_buddy_page(p)) {
cc637b17 1089 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
8d22ba1b 1090 return 0;
8c6c2ecb
NH
1091 } else if (PageHuge(hpage)) {
1092 /*
b985194c 1093 * Check "filter hit" and "race with other subpage."
8c6c2ecb 1094 */
7eaceacc 1095 lock_page(hpage);
b985194c
CY
1096 if (PageHWPoison(hpage)) {
1097 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1098 || (p != hpage && TestSetPageHWPoison(hpage))) {
8e30456b 1099 num_poisoned_pages_sub(nr_pages);
b985194c
CY
1100 unlock_page(hpage);
1101 return 0;
1102 }
8c6c2ecb
NH
1103 }
1104 set_page_hwpoison_huge_page(hpage);
1105 res = dequeue_hwpoisoned_huge_page(hpage);
cc637b17
XX
1106 action_result(pfn, MF_MSG_FREE_HUGE,
1107 res ? MF_IGNORED : MF_DELAYED);
8c6c2ecb
NH
1108 unlock_page(hpage);
1109 return res;
8d22ba1b 1110 } else {
cc637b17 1111 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
8d22ba1b
WF
1112 return -EBUSY;
1113 }
6a46079c
AK
1114 }
1115
415c64c1 1116 if (!PageHuge(p) && PageTransHuge(hpage)) {
4d2fa965 1117 lock_page(hpage);
7f6bf39b 1118 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
4d2fa965 1119 unlock_page(hpage);
7f6bf39b 1120 if (!PageAnon(hpage))
495367c0
CY
1121 pr_err("Memory failure: %#lx: non anonymous thp\n",
1122 pfn);
7f6bf39b 1123 else
495367c0
CY
1124 pr_err("Memory failure: %#lx: thp split failed\n",
1125 pfn);
ead07f6a 1126 if (TestClearPageHWPoison(p))
8e30456b 1127 num_poisoned_pages_sub(nr_pages);
665d9da7 1128 put_hwpoison_page(p);
415c64c1
NH
1129 return -EBUSY;
1130 }
4d2fa965 1131 unlock_page(hpage);
4e41a30c
NH
1132 get_hwpoison_page(p);
1133 put_hwpoison_page(hpage);
415c64c1
NH
1134 VM_BUG_ON_PAGE(!page_count(p), p);
1135 hpage = compound_head(p);
1136 }
1137
e43c3afb
WF
1138 /*
1139 * We ignore non-LRU pages for good reasons.
1140 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1141 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1142 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1143 * The check (unnecessarily) ignores LRU pages being isolated and
1144 * walked by the page reclaim code, however that's not a big loss.
1145 */
09789e5d 1146 if (!PageHuge(p)) {
415c64c1
NH
1147 if (!PageLRU(p))
1148 shake_page(p, 0);
1149 if (!PageLRU(p)) {
af241a08
JD
1150 /*
1151 * shake_page could have turned it free.
1152 */
1153 if (is_free_buddy_page(p)) {
2d421acd 1154 if (flags & MF_COUNT_INCREASED)
cc637b17 1155 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
2d421acd 1156 else
cc637b17
XX
1157 action_result(pfn, MF_MSG_BUDDY_2ND,
1158 MF_DELAYED);
af241a08
JD
1159 return 0;
1160 }
0474a60e 1161 }
e43c3afb 1162 }
e43c3afb 1163
7eaceacc 1164 lock_page(hpage);
847ce401 1165
f37d4298
AK
1166 /*
1167 * The page could have changed compound pages during the locking.
1168 * If this happens just bail out.
1169 */
415c64c1 1170 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1171 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298
AK
1172 res = -EBUSY;
1173 goto out;
1174 }
1175
524fca1e
NH
1176 /*
1177 * We use page flags to determine what action should be taken, but
1178 * the flags can be modified by the error containment action. One
1179 * example is an mlocked page, where PG_mlocked is cleared by
1180 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1181 * correctly, we save a copy of the page flags at this time.
1182 */
1183 page_flags = p->flags;
1184
847ce401
WF
1185 /*
1186 * unpoison always clear PG_hwpoison inside page lock
1187 */
1188 if (!PageHWPoison(p)) {
495367c0 1189 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
8e30456b 1190 num_poisoned_pages_sub(nr_pages);
a09233f3 1191 unlock_page(hpage);
665d9da7 1192 put_hwpoison_page(hpage);
a09233f3 1193 return 0;
847ce401 1194 }
7c116f2b
WF
1195 if (hwpoison_filter(p)) {
1196 if (TestClearPageHWPoison(p))
8e30456b 1197 num_poisoned_pages_sub(nr_pages);
7af446a8 1198 unlock_page(hpage);
665d9da7 1199 put_hwpoison_page(hpage);
7c116f2b
WF
1200 return 0;
1201 }
847ce401 1202
0bc1f8b0
CY
1203 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1204 goto identify_page_state;
1205
7013febc
NH
1206 /*
1207 * For error on the tail page, we should set PG_hwpoison
1208 * on the head page to show that the hugepage is hwpoisoned
1209 */
a6d30ddd 1210 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
cc637b17 1211 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
7013febc 1212 unlock_page(hpage);
665d9da7 1213 put_hwpoison_page(hpage);
7013febc
NH
1214 return 0;
1215 }
1216 /*
1217 * Set PG_hwpoison on all pages in an error hugepage,
1218 * because containment is done in hugepage unit for now.
1219 * Since we have done TestSetPageHWPoison() for the head page with
1220 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1221 */
1222 if (PageHuge(p))
1223 set_page_hwpoison_huge_page(hpage);
1224
6edd6cc6
NH
1225 /*
1226 * It's very difficult to mess with pages currently under IO
1227 * and in many cases impossible, so we just avoid it here.
1228 */
6a46079c
AK
1229 wait_on_page_writeback(p);
1230
1231 /*
1232 * Now take care of user space mappings.
e64a782f 1233 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
54b9dd14
NH
1234 *
1235 * When the raw error page is thp tail page, hpage points to the raw
1236 * page after thp split.
6a46079c 1237 */
54b9dd14
NH
1238 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1239 != SWAP_SUCCESS) {
cc637b17 1240 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5
WF
1241 res = -EBUSY;
1242 goto out;
1243 }
6a46079c
AK
1244
1245 /*
1246 * Torn down by someone else?
1247 */
dc2a1cbf 1248 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1249 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1250 res = -EBUSY;
6a46079c
AK
1251 goto out;
1252 }
1253
0bc1f8b0 1254identify_page_state:
6a46079c 1255 res = -EBUSY;
524fca1e
NH
1256 /*
1257 * The first check uses the current page flags which may not have any
1258 * relevant information. The second check with the saved page flagss is
1259 * carried out only if the first check can't determine the page status.
1260 */
1261 for (ps = error_states;; ps++)
1262 if ((p->flags & ps->mask) == ps->res)
6a46079c 1263 break;
841fcc58
WL
1264
1265 page_flags |= (p->flags & (1UL << PG_dirty));
1266
524fca1e
NH
1267 if (!ps->mask)
1268 for (ps = error_states;; ps++)
1269 if ((page_flags & ps->mask) == ps->res)
1270 break;
1271 res = page_action(ps, p, pfn);
6a46079c 1272out:
7af446a8 1273 unlock_page(hpage);
6a46079c
AK
1274 return res;
1275}
cd42f4a3 1276EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1277
ea8f5fb8
HY
1278#define MEMORY_FAILURE_FIFO_ORDER 4
1279#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1280
1281struct memory_failure_entry {
1282 unsigned long pfn;
1283 int trapno;
1284 int flags;
1285};
1286
1287struct memory_failure_cpu {
1288 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1289 MEMORY_FAILURE_FIFO_SIZE);
1290 spinlock_t lock;
1291 struct work_struct work;
1292};
1293
1294static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1295
1296/**
1297 * memory_failure_queue - Schedule handling memory failure of a page.
1298 * @pfn: Page Number of the corrupted page
1299 * @trapno: Trap number reported in the signal to user space.
1300 * @flags: Flags for memory failure handling
1301 *
1302 * This function is called by the low level hardware error handler
1303 * when it detects hardware memory corruption of a page. It schedules
1304 * the recovering of error page, including dropping pages, killing
1305 * processes etc.
1306 *
1307 * The function is primarily of use for corruptions that
1308 * happen outside the current execution context (e.g. when
1309 * detected by a background scrubber)
1310 *
1311 * Can run in IRQ context.
1312 */
1313void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1314{
1315 struct memory_failure_cpu *mf_cpu;
1316 unsigned long proc_flags;
1317 struct memory_failure_entry entry = {
1318 .pfn = pfn,
1319 .trapno = trapno,
1320 .flags = flags,
1321 };
1322
1323 mf_cpu = &get_cpu_var(memory_failure_cpu);
1324 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1325 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1326 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1327 else
8e33a52f 1328 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1329 pfn);
1330 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1331 put_cpu_var(memory_failure_cpu);
1332}
1333EXPORT_SYMBOL_GPL(memory_failure_queue);
1334
1335static void memory_failure_work_func(struct work_struct *work)
1336{
1337 struct memory_failure_cpu *mf_cpu;
1338 struct memory_failure_entry entry = { 0, };
1339 unsigned long proc_flags;
1340 int gotten;
1341
7c8e0181 1342 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
ea8f5fb8
HY
1343 for (;;) {
1344 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1345 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1346 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1347 if (!gotten)
1348 break;
cf870c70
NR
1349 if (entry.flags & MF_SOFT_OFFLINE)
1350 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1351 else
1352 memory_failure(entry.pfn, entry.trapno, entry.flags);
ea8f5fb8
HY
1353 }
1354}
1355
1356static int __init memory_failure_init(void)
1357{
1358 struct memory_failure_cpu *mf_cpu;
1359 int cpu;
1360
1361 for_each_possible_cpu(cpu) {
1362 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1363 spin_lock_init(&mf_cpu->lock);
1364 INIT_KFIFO(mf_cpu->fifo);
1365 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1366 }
1367
1368 return 0;
1369}
1370core_initcall(memory_failure_init);
1371
a5f65109
NH
1372#define unpoison_pr_info(fmt, pfn, rs) \
1373({ \
1374 if (__ratelimit(rs)) \
1375 pr_info(fmt, pfn); \
1376})
1377
847ce401
WF
1378/**
1379 * unpoison_memory - Unpoison a previously poisoned page
1380 * @pfn: Page number of the to be unpoisoned page
1381 *
1382 * Software-unpoison a page that has been poisoned by
1383 * memory_failure() earlier.
1384 *
1385 * This is only done on the software-level, so it only works
1386 * for linux injected failures, not real hardware failures
1387 *
1388 * Returns 0 for success, otherwise -errno.
1389 */
1390int unpoison_memory(unsigned long pfn)
1391{
1392 struct page *page;
1393 struct page *p;
1394 int freeit = 0;
c9fbdd5f 1395 unsigned int nr_pages;
a5f65109
NH
1396 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1397 DEFAULT_RATELIMIT_BURST);
847ce401
WF
1398
1399 if (!pfn_valid(pfn))
1400 return -ENXIO;
1401
1402 p = pfn_to_page(pfn);
1403 page = compound_head(p);
1404
1405 if (!PageHWPoison(p)) {
495367c0 1406 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 1407 pfn, &unpoison_rs);
847ce401
WF
1408 return 0;
1409 }
1410
230ac719 1411 if (page_count(page) > 1) {
495367c0 1412 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 1413 pfn, &unpoison_rs);
230ac719
NH
1414 return 0;
1415 }
1416
1417 if (page_mapped(page)) {
495367c0 1418 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 1419 pfn, &unpoison_rs);
230ac719
NH
1420 return 0;
1421 }
1422
1423 if (page_mapping(page)) {
495367c0 1424 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 1425 pfn, &unpoison_rs);
230ac719
NH
1426 return 0;
1427 }
1428
0cea3fdc
WL
1429 /*
1430 * unpoison_memory() can encounter thp only when the thp is being
1431 * worked by memory_failure() and the page lock is not held yet.
1432 * In such case, we yield to memory_failure() and make unpoison fail.
1433 */
e76d30e2 1434 if (!PageHuge(page) && PageTransHuge(page)) {
495367c0 1435 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
a5f65109 1436 pfn, &unpoison_rs);
ead07f6a 1437 return 0;
0cea3fdc
WL
1438 }
1439
f9121153 1440 nr_pages = 1 << compound_order(page);
c9fbdd5f 1441
ead07f6a 1442 if (!get_hwpoison_page(p)) {
8c6c2ecb
NH
1443 /*
1444 * Since HWPoisoned hugepage should have non-zero refcount,
1445 * race between memory failure and unpoison seems to happen.
1446 * In such case unpoison fails and memory failure runs
1447 * to the end.
1448 */
1449 if (PageHuge(page)) {
495367c0 1450 unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
a5f65109 1451 pfn, &unpoison_rs);
8c6c2ecb
NH
1452 return 0;
1453 }
847ce401 1454 if (TestClearPageHWPoison(p))
8e30456b 1455 num_poisoned_pages_dec();
495367c0 1456 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
a5f65109 1457 pfn, &unpoison_rs);
847ce401
WF
1458 return 0;
1459 }
1460
7eaceacc 1461 lock_page(page);
847ce401
WF
1462 /*
1463 * This test is racy because PG_hwpoison is set outside of page lock.
1464 * That's acceptable because that won't trigger kernel panic. Instead,
1465 * the PG_hwpoison page will be caught and isolated on the entrance to
1466 * the free buddy page pool.
1467 */
c9fbdd5f 1468 if (TestClearPageHWPoison(page)) {
495367c0 1469 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
a5f65109 1470 pfn, &unpoison_rs);
8e30456b 1471 num_poisoned_pages_sub(nr_pages);
847ce401 1472 freeit = 1;
6a90181c
NH
1473 if (PageHuge(page))
1474 clear_page_hwpoison_huge_page(page);
847ce401
WF
1475 }
1476 unlock_page(page);
1477
665d9da7 1478 put_hwpoison_page(page);
3ba5eebc 1479 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
665d9da7 1480 put_hwpoison_page(page);
847ce401
WF
1481
1482 return 0;
1483}
1484EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1485
1486static struct page *new_page(struct page *p, unsigned long private, int **x)
1487{
12686d15 1488 int nid = page_to_nid(p);
d950b958
NH
1489 if (PageHuge(p))
1490 return alloc_huge_page_node(page_hstate(compound_head(p)),
1491 nid);
1492 else
96db800f 1493 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1494}
1495
1496/*
1497 * Safely get reference count of an arbitrary page.
1498 * Returns 0 for a free page, -EIO for a zero refcount page
1499 * that is not free, and 1 for any other page type.
1500 * For 1 the page is returned with increased page count, otherwise not.
1501 */
af8fae7c 1502static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1503{
1504 int ret;
1505
1506 if (flags & MF_COUNT_INCREASED)
1507 return 1;
1508
d950b958
NH
1509 /*
1510 * When the target page is a free hugepage, just remove it
1511 * from free hugepage list.
1512 */
ead07f6a 1513 if (!get_hwpoison_page(p)) {
d950b958 1514 if (PageHuge(p)) {
71dd0b8a 1515 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1516 ret = 0;
d950b958 1517 } else if (is_free_buddy_page(p)) {
71dd0b8a 1518 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1519 ret = 0;
1520 } else {
71dd0b8a
BP
1521 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1522 __func__, pfn, p->flags);
facb6011
AK
1523 ret = -EIO;
1524 }
1525 } else {
1526 /* Not a free page */
1527 ret = 1;
1528 }
facb6011
AK
1529 return ret;
1530}
1531
af8fae7c
NH
1532static int get_any_page(struct page *page, unsigned long pfn, int flags)
1533{
1534 int ret = __get_any_page(page, pfn, flags);
1535
1536 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1537 /*
1538 * Try to free it.
1539 */
665d9da7 1540 put_hwpoison_page(page);
af8fae7c
NH
1541 shake_page(page, 1);
1542
1543 /*
1544 * Did it turn free?
1545 */
1546 ret = __get_any_page(page, pfn, 0);
d96b339f 1547 if (ret == 1 && !PageLRU(page)) {
4f32be67 1548 /* Drop page reference which is from __get_any_page() */
665d9da7 1549 put_hwpoison_page(page);
af8fae7c
NH
1550 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1551 pfn, page->flags);
1552 return -EIO;
1553 }
1554 }
1555 return ret;
1556}
1557
d950b958
NH
1558static int soft_offline_huge_page(struct page *page, int flags)
1559{
1560 int ret;
1561 unsigned long pfn = page_to_pfn(page);
1562 struct page *hpage = compound_head(page);
b8ec1cee 1563 LIST_HEAD(pagelist);
d950b958 1564
af8fae7c
NH
1565 /*
1566 * This double-check of PageHWPoison is to avoid the race with
1567 * memory_failure(). See also comment in __soft_offline_page().
1568 */
1569 lock_page(hpage);
0ebff32c 1570 if (PageHWPoison(hpage)) {
af8fae7c 1571 unlock_page(hpage);
665d9da7 1572 put_hwpoison_page(hpage);
0ebff32c 1573 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1574 return -EBUSY;
0ebff32c 1575 }
af8fae7c 1576 unlock_page(hpage);
d950b958 1577
bcc54222 1578 ret = isolate_huge_page(hpage, &pagelist);
03613808
WL
1579 /*
1580 * get_any_page() and isolate_huge_page() takes a refcount each,
1581 * so need to drop one here.
1582 */
665d9da7 1583 put_hwpoison_page(hpage);
03613808 1584 if (!ret) {
bcc54222
NH
1585 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1586 return -EBUSY;
1587 }
1588
68711a74 1589 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
b8ec1cee 1590 MIGRATE_SYNC, MR_MEMORY_FAILURE);
d950b958 1591 if (ret) {
dd73e85f
DN
1592 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1593 pfn, ret, page->flags);
b8ec1cee
NH
1594 /*
1595 * We know that soft_offline_huge_page() tries to migrate
1596 * only one hugepage pointed to by hpage, so we need not
1597 * run through the pagelist here.
1598 */
1599 putback_active_hugepage(hpage);
1600 if (ret > 0)
1601 ret = -EIO;
af8fae7c 1602 } else {
a49ecbcd
JW
1603 /* overcommit hugetlb page will be freed to buddy */
1604 if (PageHuge(page)) {
1605 set_page_hwpoison_huge_page(hpage);
1606 dequeue_hwpoisoned_huge_page(hpage);
8e30456b 1607 num_poisoned_pages_add(1 << compound_order(hpage));
a49ecbcd
JW
1608 } else {
1609 SetPageHWPoison(page);
8e30456b 1610 num_poisoned_pages_inc();
a49ecbcd 1611 }
d950b958 1612 }
d950b958
NH
1613 return ret;
1614}
1615
af8fae7c
NH
1616static int __soft_offline_page(struct page *page, int flags)
1617{
1618 int ret;
1619 unsigned long pfn = page_to_pfn(page);
facb6011 1620
facb6011 1621 /*
af8fae7c
NH
1622 * Check PageHWPoison again inside page lock because PageHWPoison
1623 * is set by memory_failure() outside page lock. Note that
1624 * memory_failure() also double-checks PageHWPoison inside page lock,
1625 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1626 */
0ebff32c
XQ
1627 lock_page(page);
1628 wait_on_page_writeback(page);
af8fae7c
NH
1629 if (PageHWPoison(page)) {
1630 unlock_page(page);
665d9da7 1631 put_hwpoison_page(page);
af8fae7c
NH
1632 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1633 return -EBUSY;
1634 }
facb6011
AK
1635 /*
1636 * Try to invalidate first. This should work for
1637 * non dirty unmapped page cache pages.
1638 */
1639 ret = invalidate_inode_page(page);
1640 unlock_page(page);
facb6011 1641 /*
facb6011
AK
1642 * RED-PEN would be better to keep it isolated here, but we
1643 * would need to fix isolation locking first.
1644 */
facb6011 1645 if (ret == 1) {
665d9da7 1646 put_hwpoison_page(page);
fb46e735 1647 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c 1648 SetPageHWPoison(page);
8e30456b 1649 num_poisoned_pages_inc();
af8fae7c 1650 return 0;
facb6011
AK
1651 }
1652
1653 /*
1654 * Simple invalidation didn't work.
1655 * Try to migrate to a new page instead. migrate.c
1656 * handles a large number of cases for us.
1657 */
1658 ret = isolate_lru_page(page);
bd486285
KK
1659 /*
1660 * Drop page reference which is came from get_any_page()
1661 * successful isolate_lru_page() already took another one.
1662 */
665d9da7 1663 put_hwpoison_page(page);
facb6011
AK
1664 if (!ret) {
1665 LIST_HEAD(pagelist);
5db8a73a 1666 inc_zone_page_state(page, NR_ISOLATED_ANON +
9c620e2b 1667 page_is_file_cache(page));
facb6011 1668 list_add(&page->lru, &pagelist);
68711a74 1669 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
9c620e2b 1670 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1671 if (ret) {
59c82b70
JK
1672 if (!list_empty(&pagelist)) {
1673 list_del(&page->lru);
1674 dec_zone_page_state(page, NR_ISOLATED_ANON +
1675 page_is_file_cache(page));
1676 putback_lru_page(page);
1677 }
1678
fb46e735 1679 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
facb6011
AK
1680 pfn, ret, page->flags);
1681 if (ret > 0)
1682 ret = -EIO;
1683 }
1684 } else {
fb46e735 1685 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
dd73e85f 1686 pfn, ret, page_count(page), page->flags);
facb6011 1687 }
facb6011
AK
1688 return ret;
1689}
86e05773 1690
acc14dc4
NH
1691static int soft_offline_in_use_page(struct page *page, int flags)
1692{
1693 int ret;
1694 struct page *hpage = compound_head(page);
1695
1696 if (!PageHuge(page) && PageTransHuge(hpage)) {
1697 lock_page(hpage);
98fd1ef4
NH
1698 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1699 unlock_page(hpage);
1700 if (!PageAnon(hpage))
1701 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1702 else
1703 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1704 put_hwpoison_page(hpage);
acc14dc4
NH
1705 return -EBUSY;
1706 }
98fd1ef4 1707 unlock_page(hpage);
acc14dc4
NH
1708 get_hwpoison_page(page);
1709 put_hwpoison_page(hpage);
1710 }
1711
1712 if (PageHuge(page))
1713 ret = soft_offline_huge_page(page, flags);
1714 else
1715 ret = __soft_offline_page(page, flags);
1716
1717 return ret;
1718}
1719
1720static void soft_offline_free_page(struct page *page)
1721{
1722 if (PageHuge(page)) {
1723 struct page *hpage = compound_head(page);
1724
1725 set_page_hwpoison_huge_page(hpage);
1726 if (!dequeue_hwpoisoned_huge_page(hpage))
1727 num_poisoned_pages_add(1 << compound_order(hpage));
1728 } else {
1729 if (!TestSetPageHWPoison(page))
1730 num_poisoned_pages_inc();
1731 }
1732}
1733
86e05773
WL
1734/**
1735 * soft_offline_page - Soft offline a page.
1736 * @page: page to offline
1737 * @flags: flags. Same as memory_failure().
1738 *
1739 * Returns 0 on success, otherwise negated errno.
1740 *
1741 * Soft offline a page, by migration or invalidation,
1742 * without killing anything. This is for the case when
1743 * a page is not corrupted yet (so it's still valid to access),
1744 * but has had a number of corrected errors and is better taken
1745 * out.
1746 *
1747 * The actual policy on when to do that is maintained by
1748 * user space.
1749 *
1750 * This should never impact any application or cause data loss,
1751 * however it might take some time.
1752 *
1753 * This is not a 100% solution for all memory, but tries to be
1754 * ``good enough'' for the majority of memory.
1755 */
1756int soft_offline_page(struct page *page, int flags)
1757{
1758 int ret;
1759 unsigned long pfn = page_to_pfn(page);
86e05773
WL
1760
1761 if (PageHWPoison(page)) {
1762 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1e0e635b 1763 if (flags & MF_COUNT_INCREASED)
665d9da7 1764 put_hwpoison_page(page);
86e05773
WL
1765 return -EBUSY;
1766 }
86e05773 1767
bfc8c901 1768 get_online_mems();
86e05773 1769 ret = get_any_page(page, pfn, flags);
bfc8c901 1770 put_online_mems();
4e41a30c 1771
acc14dc4
NH
1772 if (ret > 0)
1773 ret = soft_offline_in_use_page(page, flags);
1774 else if (ret == 0)
1775 soft_offline_free_page(page);
4e41a30c 1776
86e05773
WL
1777 return ret;
1778}