memcgroups: add a document describing the resource counter abstraction
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d52aa412 24#include <linux/smp.h>
8a9f3ccd 25#include <linux/page-flags.h>
66e1707b 26#include <linux/backing-dev.h>
8a9f3ccd
BS
27#include <linux/bit_spinlock.h>
28#include <linux/rcupdate.h>
66e1707b
BS
29#include <linux/swap.h>
30#include <linux/spinlock.h>
31#include <linux/fs.h>
d2ceb9b7 32#include <linux/seq_file.h>
8cdea7c0 33
8697d331
BS
34#include <asm/uaccess.h>
35
8cdea7c0 36struct cgroup_subsys mem_cgroup_subsys;
66e1707b 37static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
8cdea7c0 38
d52aa412
KH
39/*
40 * Statistics for memory cgroup.
41 */
42enum mem_cgroup_stat_index {
43 /*
44 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
45 */
46 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
47 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
48
49 MEM_CGROUP_STAT_NSTATS,
50};
51
52struct mem_cgroup_stat_cpu {
53 s64 count[MEM_CGROUP_STAT_NSTATS];
54} ____cacheline_aligned_in_smp;
55
56struct mem_cgroup_stat {
57 struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
58};
59
60/*
61 * For accounting under irq disable, no need for increment preempt count.
62 */
63static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
64 enum mem_cgroup_stat_index idx, int val)
65{
66 int cpu = smp_processor_id();
67 stat->cpustat[cpu].count[idx] += val;
68}
69
70static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
71 enum mem_cgroup_stat_index idx)
72{
73 int cpu;
74 s64 ret = 0;
75 for_each_possible_cpu(cpu)
76 ret += stat->cpustat[cpu].count[idx];
77 return ret;
78}
79
6d12e2d8
KH
80/*
81 * per-zone information in memory controller.
82 */
83
84enum mem_cgroup_zstat_index {
85 MEM_CGROUP_ZSTAT_ACTIVE,
86 MEM_CGROUP_ZSTAT_INACTIVE,
87
88 NR_MEM_CGROUP_ZSTAT,
89};
90
91struct mem_cgroup_per_zone {
072c56c1
KH
92 /*
93 * spin_lock to protect the per cgroup LRU
94 */
95 spinlock_t lru_lock;
1ecaab2b
KH
96 struct list_head active_list;
97 struct list_head inactive_list;
6d12e2d8
KH
98 unsigned long count[NR_MEM_CGROUP_ZSTAT];
99};
100/* Macro for accessing counter */
101#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
102
103struct mem_cgroup_per_node {
104 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
105};
106
107struct mem_cgroup_lru_info {
108 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
109};
110
8cdea7c0
BS
111/*
112 * The memory controller data structure. The memory controller controls both
113 * page cache and RSS per cgroup. We would eventually like to provide
114 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
115 * to help the administrator determine what knobs to tune.
116 *
117 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
118 * we hit the water mark. May be even add a low water mark, such that
119 * no reclaim occurs from a cgroup at it's low water mark, this is
120 * a feature that will be implemented much later in the future.
8cdea7c0
BS
121 */
122struct mem_cgroup {
123 struct cgroup_subsys_state css;
124 /*
125 * the counter to account for memory usage
126 */
127 struct res_counter res;
78fb7466
PE
128 /*
129 * Per cgroup active and inactive list, similar to the
130 * per zone LRU lists.
78fb7466 131 */
6d12e2d8 132 struct mem_cgroup_lru_info info;
072c56c1 133
6c48a1d0 134 int prev_priority; /* for recording reclaim priority */
d52aa412
KH
135 /*
136 * statistics.
137 */
138 struct mem_cgroup_stat stat;
8cdea7c0 139};
8869b8f6 140static struct mem_cgroup init_mem_cgroup;
8cdea7c0 141
8a9f3ccd
BS
142/*
143 * We use the lower bit of the page->page_cgroup pointer as a bit spin
9442ec9d
HD
144 * lock. We need to ensure that page->page_cgroup is at least two
145 * byte aligned (based on comments from Nick Piggin). But since
146 * bit_spin_lock doesn't actually set that lock bit in a non-debug
147 * uniprocessor kernel, we should avoid setting it here too.
8a9f3ccd
BS
148 */
149#define PAGE_CGROUP_LOCK_BIT 0x0
9442ec9d
HD
150#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
151#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
152#else
153#define PAGE_CGROUP_LOCK 0x0
154#endif
8a9f3ccd 155
8cdea7c0
BS
156/*
157 * A page_cgroup page is associated with every page descriptor. The
158 * page_cgroup helps us identify information about the cgroup
159 */
160struct page_cgroup {
161 struct list_head lru; /* per cgroup LRU list */
162 struct page *page;
163 struct mem_cgroup *mem_cgroup;
b9c565d5 164 int ref_cnt; /* cached, mapped, migrating */
8869b8f6 165 int flags;
8cdea7c0 166};
217bc319 167#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
3564c7c4 168#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
8cdea7c0 169
d5b69e38 170static int page_cgroup_nid(struct page_cgroup *pc)
c0149530
KH
171{
172 return page_to_nid(pc->page);
173}
174
d5b69e38 175static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
c0149530
KH
176{
177 return page_zonenum(pc->page);
178}
179
217bc319
KH
180enum charge_type {
181 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
182 MEM_CGROUP_CHARGE_TYPE_MAPPED,
183};
184
d52aa412
KH
185/*
186 * Always modified under lru lock. Then, not necessary to preempt_disable()
187 */
188static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
189 bool charge)
190{
191 int val = (charge)? 1 : -1;
192 struct mem_cgroup_stat *stat = &mem->stat;
d52aa412 193
8869b8f6 194 VM_BUG_ON(!irqs_disabled());
d52aa412 195 if (flags & PAGE_CGROUP_FLAG_CACHE)
8869b8f6 196 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
d52aa412
KH
197 else
198 __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
6d12e2d8
KH
199}
200
d5b69e38 201static struct mem_cgroup_per_zone *
6d12e2d8
KH
202mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
203{
6d12e2d8
KH
204 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
205}
206
d5b69e38 207static struct mem_cgroup_per_zone *
6d12e2d8
KH
208page_cgroup_zoneinfo(struct page_cgroup *pc)
209{
210 struct mem_cgroup *mem = pc->mem_cgroup;
211 int nid = page_cgroup_nid(pc);
212 int zid = page_cgroup_zid(pc);
d52aa412 213
6d12e2d8
KH
214 return mem_cgroup_zoneinfo(mem, nid, zid);
215}
216
217static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
218 enum mem_cgroup_zstat_index idx)
219{
220 int nid, zid;
221 struct mem_cgroup_per_zone *mz;
222 u64 total = 0;
223
224 for_each_online_node(nid)
225 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
226 mz = mem_cgroup_zoneinfo(mem, nid, zid);
227 total += MEM_CGROUP_ZSTAT(mz, idx);
228 }
229 return total;
d52aa412
KH
230}
231
d5b69e38 232static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
233{
234 return container_of(cgroup_subsys_state(cont,
235 mem_cgroup_subsys_id), struct mem_cgroup,
236 css);
237}
238
cf475ad2 239struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466
PE
240{
241 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
242 struct mem_cgroup, css);
243}
244
8a9f3ccd
BS
245static inline int page_cgroup_locked(struct page *page)
246{
8869b8f6 247 return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
8a9f3ccd
BS
248}
249
9442ec9d 250static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
78fb7466 251{
9442ec9d
HD
252 VM_BUG_ON(!page_cgroup_locked(page));
253 page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
78fb7466
PE
254}
255
256struct page_cgroup *page_get_page_cgroup(struct page *page)
257{
8869b8f6 258 return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
8a9f3ccd
BS
259}
260
d5b69e38 261static void lock_page_cgroup(struct page *page)
8a9f3ccd
BS
262{
263 bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
8a9f3ccd
BS
264}
265
2680eed7
HD
266static int try_lock_page_cgroup(struct page *page)
267{
268 return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
269}
270
d5b69e38 271static void unlock_page_cgroup(struct page *page)
8a9f3ccd
BS
272{
273 bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
274}
275
6d12e2d8
KH
276static void __mem_cgroup_remove_list(struct page_cgroup *pc)
277{
278 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
279 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
280
281 if (from)
282 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
283 else
284 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
285
286 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
287 list_del_init(&pc->lru);
288}
289
290static void __mem_cgroup_add_list(struct page_cgroup *pc)
291{
292 int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
293 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
294
295 if (!to) {
296 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
1ecaab2b 297 list_add(&pc->lru, &mz->inactive_list);
6d12e2d8
KH
298 } else {
299 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
1ecaab2b 300 list_add(&pc->lru, &mz->active_list);
6d12e2d8
KH
301 }
302 mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
303}
304
8697d331 305static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
66e1707b 306{
6d12e2d8
KH
307 int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
308 struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
309
310 if (from)
311 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
312 else
313 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
314
3564c7c4 315 if (active) {
6d12e2d8 316 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
3564c7c4 317 pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 318 list_move(&pc->lru, &mz->active_list);
3564c7c4 319 } else {
6d12e2d8 320 MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
3564c7c4 321 pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
1ecaab2b 322 list_move(&pc->lru, &mz->inactive_list);
3564c7c4 323 }
66e1707b
BS
324}
325
4c4a2214
DR
326int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
327{
328 int ret;
329
330 task_lock(task);
bd845e38 331 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
332 task_unlock(task);
333 return ret;
334}
335
66e1707b
BS
336/*
337 * This routine assumes that the appropriate zone's lru lock is already held
338 */
427d5416 339void mem_cgroup_move_lists(struct page *page, bool active)
66e1707b 340{
427d5416 341 struct page_cgroup *pc;
072c56c1
KH
342 struct mem_cgroup_per_zone *mz;
343 unsigned long flags;
344
2680eed7
HD
345 /*
346 * We cannot lock_page_cgroup while holding zone's lru_lock,
347 * because other holders of lock_page_cgroup can be interrupted
348 * with an attempt to rotate_reclaimable_page. But we cannot
349 * safely get to page_cgroup without it, so just try_lock it:
350 * mem_cgroup_isolate_pages allows for page left on wrong list.
351 */
352 if (!try_lock_page_cgroup(page))
66e1707b
BS
353 return;
354
2680eed7
HD
355 pc = page_get_page_cgroup(page);
356 if (pc) {
2680eed7 357 mz = page_cgroup_zoneinfo(pc);
2680eed7 358 spin_lock_irqsave(&mz->lru_lock, flags);
9b3c0a07 359 __mem_cgroup_move_lists(pc, active);
2680eed7 360 spin_unlock_irqrestore(&mz->lru_lock, flags);
9b3c0a07
HT
361 }
362 unlock_page_cgroup(page);
66e1707b
BS
363}
364
58ae83db
KH
365/*
366 * Calculate mapped_ratio under memory controller. This will be used in
367 * vmscan.c for deteremining we have to reclaim mapped pages.
368 */
369int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
370{
371 long total, rss;
372
373 /*
374 * usage is recorded in bytes. But, here, we assume the number of
375 * physical pages can be represented by "long" on any arch.
376 */
377 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
378 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
379 return (int)((rss * 100L) / total);
380}
8869b8f6 381
5932f367
KH
382/*
383 * This function is called from vmscan.c. In page reclaiming loop. balance
384 * between active and inactive list is calculated. For memory controller
385 * page reclaiming, we should use using mem_cgroup's imbalance rather than
386 * zone's global lru imbalance.
387 */
388long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
389{
390 unsigned long active, inactive;
391 /* active and inactive are the number of pages. 'long' is ok.*/
392 active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
393 inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
394 return (long) (active / (inactive + 1));
395}
58ae83db 396
6c48a1d0
KH
397/*
398 * prev_priority control...this will be used in memory reclaim path.
399 */
400int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
401{
402 return mem->prev_priority;
403}
404
405void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
406{
407 if (priority < mem->prev_priority)
408 mem->prev_priority = priority;
409}
410
411void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
412{
413 mem->prev_priority = priority;
414}
415
cc38108e
KH
416/*
417 * Calculate # of pages to be scanned in this priority/zone.
418 * See also vmscan.c
419 *
420 * priority starts from "DEF_PRIORITY" and decremented in each loop.
421 * (see include/linux/mmzone.h)
422 */
423
424long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
425 struct zone *zone, int priority)
426{
427 long nr_active;
428 int nid = zone->zone_pgdat->node_id;
429 int zid = zone_idx(zone);
430 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
431
432 nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
433 return (nr_active >> priority);
434}
435
436long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
437 struct zone *zone, int priority)
438{
439 long nr_inactive;
440 int nid = zone->zone_pgdat->node_id;
441 int zid = zone_idx(zone);
442 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
443
444 nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
cc38108e
KH
445 return (nr_inactive >> priority);
446}
447
66e1707b
BS
448unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
449 struct list_head *dst,
450 unsigned long *scanned, int order,
451 int mode, struct zone *z,
452 struct mem_cgroup *mem_cont,
453 int active)
454{
455 unsigned long nr_taken = 0;
456 struct page *page;
457 unsigned long scan;
458 LIST_HEAD(pc_list);
459 struct list_head *src;
ff7283fa 460 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
461 int nid = z->zone_pgdat->node_id;
462 int zid = zone_idx(z);
463 struct mem_cgroup_per_zone *mz;
66e1707b 464
cf475ad2 465 BUG_ON(!mem_cont);
1ecaab2b 466 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
66e1707b 467 if (active)
1ecaab2b 468 src = &mz->active_list;
66e1707b 469 else
1ecaab2b
KH
470 src = &mz->inactive_list;
471
66e1707b 472
072c56c1 473 spin_lock(&mz->lru_lock);
ff7283fa
KH
474 scan = 0;
475 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 476 if (scan >= nr_to_scan)
ff7283fa 477 break;
66e1707b 478 page = pc->page;
66e1707b 479
436c6541 480 if (unlikely(!PageLRU(page)))
ff7283fa 481 continue;
ff7283fa 482
66e1707b
BS
483 if (PageActive(page) && !active) {
484 __mem_cgroup_move_lists(pc, true);
66e1707b
BS
485 continue;
486 }
487 if (!PageActive(page) && active) {
488 __mem_cgroup_move_lists(pc, false);
66e1707b
BS
489 continue;
490 }
491
436c6541
HD
492 scan++;
493 list_move(&pc->lru, &pc_list);
66e1707b
BS
494
495 if (__isolate_lru_page(page, mode) == 0) {
496 list_move(&page->lru, dst);
497 nr_taken++;
498 }
499 }
500
501 list_splice(&pc_list, src);
072c56c1 502 spin_unlock(&mz->lru_lock);
66e1707b
BS
503
504 *scanned = scan;
505 return nr_taken;
506}
507
8a9f3ccd
BS
508/*
509 * Charge the memory controller for page usage.
510 * Return
511 * 0 if the charge was successful
512 * < 0 if the cgroup is over its limit
513 */
217bc319
KH
514static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
515 gfp_t gfp_mask, enum charge_type ctype)
8a9f3ccd
BS
516{
517 struct mem_cgroup *mem;
9175e031 518 struct page_cgroup *pc;
66e1707b
BS
519 unsigned long flags;
520 unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
072c56c1 521 struct mem_cgroup_per_zone *mz;
8a9f3ccd 522
4077960e
BS
523 if (mem_cgroup_subsys.disabled)
524 return 0;
525
8a9f3ccd
BS
526 /*
527 * Should page_cgroup's go to their own slab?
528 * One could optimize the performance of the charging routine
529 * by saving a bit in the page_flags and using it as a lock
530 * to see if the cgroup page already has a page_cgroup associated
531 * with it
532 */
66e1707b 533retry:
7e924aaf
HD
534 lock_page_cgroup(page);
535 pc = page_get_page_cgroup(page);
536 /*
537 * The page_cgroup exists and
538 * the page has already been accounted.
539 */
540 if (pc) {
b9c565d5
HD
541 VM_BUG_ON(pc->page != page);
542 VM_BUG_ON(pc->ref_cnt <= 0);
543
544 pc->ref_cnt++;
545 unlock_page_cgroup(page);
546 goto done;
8a9f3ccd 547 }
7e924aaf 548 unlock_page_cgroup(page);
8a9f3ccd 549
e1a1cd59 550 pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
8a9f3ccd
BS
551 if (pc == NULL)
552 goto err;
553
8a9f3ccd 554 /*
3be91277
HD
555 * We always charge the cgroup the mm_struct belongs to.
556 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
557 * thread group leader migrates. It's possible that mm is not
558 * set, if so charge the init_mm (happens for pagecache usage).
559 */
560 if (!mm)
561 mm = &init_mm;
562
3be91277 563 rcu_read_lock();
cf475ad2 564 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
8a9f3ccd 565 /*
8869b8f6 566 * For every charge from the cgroup, increment reference count
8a9f3ccd
BS
567 */
568 css_get(&mem->css);
569 rcu_read_unlock();
570
0eea1030 571 while (res_counter_charge(&mem->res, PAGE_SIZE)) {
3be91277
HD
572 if (!(gfp_mask & __GFP_WAIT))
573 goto out;
e1a1cd59
BS
574
575 if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
66e1707b
BS
576 continue;
577
578 /*
8869b8f6
HD
579 * try_to_free_mem_cgroup_pages() might not give us a full
580 * picture of reclaim. Some pages are reclaimed and might be
581 * moved to swap cache or just unmapped from the cgroup.
582 * Check the limit again to see if the reclaim reduced the
583 * current usage of the cgroup before giving up
584 */
66e1707b
BS
585 if (res_counter_check_under_limit(&mem->res))
586 continue;
3be91277
HD
587
588 if (!nr_retries--) {
589 mem_cgroup_out_of_memory(mem, gfp_mask);
590 goto out;
66e1707b 591 }
3be91277 592 congestion_wait(WRITE, HZ/10);
8a9f3ccd
BS
593 }
594
b9c565d5 595 pc->ref_cnt = 1;
8a9f3ccd
BS
596 pc->mem_cgroup = mem;
597 pc->page = page;
3564c7c4 598 pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
217bc319
KH
599 if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
600 pc->flags |= PAGE_CGROUP_FLAG_CACHE;
3be91277 601
7e924aaf
HD
602 lock_page_cgroup(page);
603 if (page_get_page_cgroup(page)) {
604 unlock_page_cgroup(page);
9175e031 605 /*
3be91277
HD
606 * Another charge has been added to this page already.
607 * We take lock_page_cgroup(page) again and read
9175e031
KH
608 * page->cgroup, increment refcnt.... just retry is OK.
609 */
610 res_counter_uncharge(&mem->res, PAGE_SIZE);
611 css_put(&mem->css);
612 kfree(pc);
613 goto retry;
614 }
7e924aaf 615 page_assign_page_cgroup(page, pc);
8a9f3ccd 616
072c56c1
KH
617 mz = page_cgroup_zoneinfo(pc);
618 spin_lock_irqsave(&mz->lru_lock, flags);
6d12e2d8 619 __mem_cgroup_add_list(pc);
072c56c1 620 spin_unlock_irqrestore(&mz->lru_lock, flags);
66e1707b 621
fb59e9f1 622 unlock_page_cgroup(page);
8a9f3ccd 623done:
8a9f3ccd 624 return 0;
3be91277
HD
625out:
626 css_put(&mem->css);
8a9f3ccd 627 kfree(pc);
8a9f3ccd 628err:
8a9f3ccd
BS
629 return -ENOMEM;
630}
631
8869b8f6 632int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
217bc319
KH
633{
634 return mem_cgroup_charge_common(page, mm, gfp_mask,
8869b8f6 635 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
636}
637
e1a1cd59
BS
638int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
639 gfp_t gfp_mask)
8697d331 640{
8697d331
BS
641 if (!mm)
642 mm = &init_mm;
8869b8f6 643 return mem_cgroup_charge_common(page, mm, gfp_mask,
217bc319 644 MEM_CGROUP_CHARGE_TYPE_CACHE);
8697d331
BS
645}
646
8a9f3ccd
BS
647/*
648 * Uncharging is always a welcome operation, we never complain, simply
8289546e 649 * uncharge.
8a9f3ccd 650 */
8289546e 651void mem_cgroup_uncharge_page(struct page *page)
8a9f3ccd 652{
8289546e 653 struct page_cgroup *pc;
8a9f3ccd 654 struct mem_cgroup *mem;
072c56c1 655 struct mem_cgroup_per_zone *mz;
66e1707b 656 unsigned long flags;
8a9f3ccd 657
4077960e
BS
658 if (mem_cgroup_subsys.disabled)
659 return;
660
8697d331 661 /*
3c541e14 662 * Check if our page_cgroup is valid
8697d331 663 */
8289546e
HD
664 lock_page_cgroup(page);
665 pc = page_get_page_cgroup(page);
8a9f3ccd 666 if (!pc)
8289546e 667 goto unlock;
8a9f3ccd 668
b9c565d5
HD
669 VM_BUG_ON(pc->page != page);
670 VM_BUG_ON(pc->ref_cnt <= 0);
671
672 if (--(pc->ref_cnt) == 0) {
b9c565d5
HD
673 mz = page_cgroup_zoneinfo(pc);
674 spin_lock_irqsave(&mz->lru_lock, flags);
675 __mem_cgroup_remove_list(pc);
676 spin_unlock_irqrestore(&mz->lru_lock, flags);
677
fb59e9f1
HD
678 page_assign_page_cgroup(page, NULL);
679 unlock_page_cgroup(page);
680
6d48ff8b
HD
681 mem = pc->mem_cgroup;
682 res_counter_uncharge(&mem->res, PAGE_SIZE);
683 css_put(&mem->css);
684
b9c565d5
HD
685 kfree(pc);
686 return;
8a9f3ccd 687 }
6d12e2d8 688
8289546e 689unlock:
3c541e14
BS
690 unlock_page_cgroup(page);
691}
692
ae41be37
KH
693/*
694 * Returns non-zero if a page (under migration) has valid page_cgroup member.
695 * Refcnt of page_cgroup is incremented.
696 */
ae41be37
KH
697int mem_cgroup_prepare_migration(struct page *page)
698{
699 struct page_cgroup *pc;
8869b8f6 700
4077960e
BS
701 if (mem_cgroup_subsys.disabled)
702 return 0;
703
ae41be37
KH
704 lock_page_cgroup(page);
705 pc = page_get_page_cgroup(page);
b9c565d5
HD
706 if (pc)
707 pc->ref_cnt++;
ae41be37 708 unlock_page_cgroup(page);
b9c565d5 709 return pc != NULL;
ae41be37
KH
710}
711
712void mem_cgroup_end_migration(struct page *page)
713{
8289546e 714 mem_cgroup_uncharge_page(page);
ae41be37 715}
8869b8f6 716
ae41be37 717/*
8869b8f6 718 * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
ae41be37
KH
719 * And no race with uncharge() routines because page_cgroup for *page*
720 * has extra one reference by mem_cgroup_prepare_migration.
721 */
ae41be37
KH
722void mem_cgroup_page_migration(struct page *page, struct page *newpage)
723{
724 struct page_cgroup *pc;
072c56c1 725 struct mem_cgroup_per_zone *mz;
d5b69e38 726 unsigned long flags;
8869b8f6 727
b9c565d5 728 lock_page_cgroup(page);
ae41be37 729 pc = page_get_page_cgroup(page);
b9c565d5
HD
730 if (!pc) {
731 unlock_page_cgroup(page);
ae41be37 732 return;
b9c565d5 733 }
8869b8f6 734
b9c565d5 735 mz = page_cgroup_zoneinfo(pc);
8869b8f6 736 spin_lock_irqsave(&mz->lru_lock, flags);
6d12e2d8 737 __mem_cgroup_remove_list(pc);
072c56c1
KH
738 spin_unlock_irqrestore(&mz->lru_lock, flags);
739
fb59e9f1
HD
740 page_assign_page_cgroup(page, NULL);
741 unlock_page_cgroup(page);
742
ae41be37
KH
743 pc->page = newpage;
744 lock_page_cgroup(newpage);
745 page_assign_page_cgroup(newpage, pc);
6d12e2d8 746
072c56c1
KH
747 mz = page_cgroup_zoneinfo(pc);
748 spin_lock_irqsave(&mz->lru_lock, flags);
749 __mem_cgroup_add_list(pc);
750 spin_unlock_irqrestore(&mz->lru_lock, flags);
fb59e9f1
HD
751
752 unlock_page_cgroup(newpage);
ae41be37 753}
78fb7466 754
cc847582
KH
755/*
756 * This routine traverse page_cgroup in given list and drop them all.
757 * This routine ignores page_cgroup->ref_cnt.
758 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
759 */
760#define FORCE_UNCHARGE_BATCH (128)
8869b8f6 761static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
072c56c1
KH
762 struct mem_cgroup_per_zone *mz,
763 int active)
cc847582
KH
764{
765 struct page_cgroup *pc;
766 struct page *page;
9b3c0a07 767 int count = FORCE_UNCHARGE_BATCH;
cc847582 768 unsigned long flags;
072c56c1
KH
769 struct list_head *list;
770
771 if (active)
772 list = &mz->active_list;
773 else
774 list = &mz->inactive_list;
cc847582 775
072c56c1 776 spin_lock_irqsave(&mz->lru_lock, flags);
9b3c0a07 777 while (!list_empty(list)) {
cc847582
KH
778 pc = list_entry(list->prev, struct page_cgroup, lru);
779 page = pc->page;
9b3c0a07
HT
780 get_page(page);
781 spin_unlock_irqrestore(&mz->lru_lock, flags);
782 mem_cgroup_uncharge_page(page);
783 put_page(page);
784 if (--count <= 0) {
785 count = FORCE_UNCHARGE_BATCH;
786 cond_resched();
b9c565d5 787 }
9b3c0a07 788 spin_lock_irqsave(&mz->lru_lock, flags);
cc847582 789 }
072c56c1 790 spin_unlock_irqrestore(&mz->lru_lock, flags);
cc847582
KH
791}
792
793/*
794 * make mem_cgroup's charge to be 0 if there is no task.
795 * This enables deleting this mem_cgroup.
796 */
d5b69e38 797static int mem_cgroup_force_empty(struct mem_cgroup *mem)
cc847582
KH
798{
799 int ret = -EBUSY;
1ecaab2b 800 int node, zid;
8869b8f6 801
4077960e
BS
802 if (mem_cgroup_subsys.disabled)
803 return 0;
804
cc847582
KH
805 css_get(&mem->css);
806 /*
807 * page reclaim code (kswapd etc..) will move pages between
8869b8f6 808 * active_list <-> inactive_list while we don't take a lock.
cc847582
KH
809 * So, we have to do loop here until all lists are empty.
810 */
1ecaab2b 811 while (mem->res.usage > 0) {
cc847582
KH
812 if (atomic_read(&mem->css.cgroup->count) > 0)
813 goto out;
1ecaab2b
KH
814 for_each_node_state(node, N_POSSIBLE)
815 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
816 struct mem_cgroup_per_zone *mz;
817 mz = mem_cgroup_zoneinfo(mem, node, zid);
818 /* drop all page_cgroup in active_list */
072c56c1 819 mem_cgroup_force_empty_list(mem, mz, 1);
1ecaab2b 820 /* drop all page_cgroup in inactive_list */
072c56c1 821 mem_cgroup_force_empty_list(mem, mz, 0);
1ecaab2b 822 }
cc847582
KH
823 }
824 ret = 0;
825out:
826 css_put(&mem->css);
827 return ret;
828}
829
d5b69e38 830static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
0eea1030
BS
831{
832 *tmp = memparse(buf, &buf);
833 if (*buf != '\0')
834 return -EINVAL;
835
836 /*
837 * Round up the value to the closest page size
838 */
839 *tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
840 return 0;
841}
842
2c3daa72 843static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 844{
2c3daa72
PM
845 return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
846 cft->private);
8cdea7c0
BS
847}
848
849static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
850 struct file *file, const char __user *userbuf,
851 size_t nbytes, loff_t *ppos)
852{
853 return res_counter_write(&mem_cgroup_from_cont(cont)->res,
0eea1030
BS
854 cft->private, userbuf, nbytes, ppos,
855 mem_cgroup_write_strategy);
8cdea7c0
BS
856}
857
c84872e1
PE
858static ssize_t mem_cgroup_max_reset(struct cgroup *cont, struct cftype *cft,
859 struct file *file, const char __user *userbuf,
860 size_t nbytes, loff_t *ppos)
861{
862 struct mem_cgroup *mem;
863
864 mem = mem_cgroup_from_cont(cont);
865 res_counter_reset_max(&mem->res);
866 return nbytes;
867}
868
cc847582
KH
869static ssize_t mem_force_empty_write(struct cgroup *cont,
870 struct cftype *cft, struct file *file,
871 const char __user *userbuf,
872 size_t nbytes, loff_t *ppos)
873{
874 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
8869b8f6 875 int ret = mem_cgroup_force_empty(mem);
cc847582
KH
876 if (!ret)
877 ret = nbytes;
878 return ret;
879}
880
d2ceb9b7
KH
881static const struct mem_cgroup_stat_desc {
882 const char *msg;
883 u64 unit;
884} mem_cgroup_stat_desc[] = {
885 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
886 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
887};
888
c64745cf
PM
889static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
890 struct cgroup_map_cb *cb)
d2ceb9b7 891{
d2ceb9b7
KH
892 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
893 struct mem_cgroup_stat *stat = &mem_cont->stat;
894 int i;
895
896 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
897 s64 val;
898
899 val = mem_cgroup_read_stat(stat, i);
900 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 901 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 902 }
6d12e2d8
KH
903 /* showing # of active pages */
904 {
905 unsigned long active, inactive;
906
907 inactive = mem_cgroup_get_all_zonestat(mem_cont,
908 MEM_CGROUP_ZSTAT_INACTIVE);
909 active = mem_cgroup_get_all_zonestat(mem_cont,
910 MEM_CGROUP_ZSTAT_ACTIVE);
c64745cf
PM
911 cb->fill(cb, "active", (active) * PAGE_SIZE);
912 cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
6d12e2d8 913 }
d2ceb9b7
KH
914 return 0;
915}
916
8cdea7c0
BS
917static struct cftype mem_cgroup_files[] = {
918 {
0eea1030 919 .name = "usage_in_bytes",
8cdea7c0 920 .private = RES_USAGE,
2c3daa72 921 .read_u64 = mem_cgroup_read,
8cdea7c0 922 },
c84872e1
PE
923 {
924 .name = "max_usage_in_bytes",
925 .private = RES_MAX_USAGE,
926 .write = mem_cgroup_max_reset,
927 .read_u64 = mem_cgroup_read,
928 },
8cdea7c0 929 {
0eea1030 930 .name = "limit_in_bytes",
8cdea7c0
BS
931 .private = RES_LIMIT,
932 .write = mem_cgroup_write,
2c3daa72 933 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
934 },
935 {
936 .name = "failcnt",
937 .private = RES_FAILCNT,
2c3daa72 938 .read_u64 = mem_cgroup_read,
8cdea7c0 939 },
cc847582
KH
940 {
941 .name = "force_empty",
942 .write = mem_force_empty_write,
cc847582 943 },
d2ceb9b7
KH
944 {
945 .name = "stat",
c64745cf 946 .read_map = mem_control_stat_show,
d2ceb9b7 947 },
8cdea7c0
BS
948};
949
6d12e2d8
KH
950static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
951{
952 struct mem_cgroup_per_node *pn;
1ecaab2b 953 struct mem_cgroup_per_zone *mz;
41e3355d 954 int zone, tmp = node;
1ecaab2b
KH
955 /*
956 * This routine is called against possible nodes.
957 * But it's BUG to call kmalloc() against offline node.
958 *
959 * TODO: this routine can waste much memory for nodes which will
960 * never be onlined. It's better to use memory hotplug callback
961 * function.
962 */
41e3355d
KH
963 if (!node_state(node, N_NORMAL_MEMORY))
964 tmp = -1;
965 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
966 if (!pn)
967 return 1;
1ecaab2b 968
6d12e2d8
KH
969 mem->info.nodeinfo[node] = pn;
970 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
971
972 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
973 mz = &pn->zoneinfo[zone];
974 INIT_LIST_HEAD(&mz->active_list);
975 INIT_LIST_HEAD(&mz->inactive_list);
072c56c1 976 spin_lock_init(&mz->lru_lock);
1ecaab2b 977 }
6d12e2d8
KH
978 return 0;
979}
980
1ecaab2b
KH
981static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
982{
983 kfree(mem->info.nodeinfo[node]);
984}
985
8cdea7c0
BS
986static struct cgroup_subsys_state *
987mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
988{
989 struct mem_cgroup *mem;
6d12e2d8 990 int node;
8cdea7c0 991
cf475ad2 992 if (unlikely((cont->parent) == NULL))
78fb7466 993 mem = &init_mem_cgroup;
cf475ad2 994 else
78fb7466
PE
995 mem = kzalloc(sizeof(struct mem_cgroup), GFP_KERNEL);
996
997 if (mem == NULL)
2dda81ca 998 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
999
1000 res_counter_init(&mem->res);
1ecaab2b 1001
6d12e2d8
KH
1002 memset(&mem->info, 0, sizeof(mem->info));
1003
1004 for_each_node_state(node, N_POSSIBLE)
1005 if (alloc_mem_cgroup_per_zone_info(mem, node))
1006 goto free_out;
1007
8cdea7c0 1008 return &mem->css;
6d12e2d8
KH
1009free_out:
1010 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1011 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8
KH
1012 if (cont->parent != NULL)
1013 kfree(mem);
2dda81ca 1014 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1015}
1016
df878fb0
KH
1017static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1018 struct cgroup *cont)
1019{
1020 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1021 mem_cgroup_force_empty(mem);
1022}
1023
8cdea7c0
BS
1024static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1025 struct cgroup *cont)
1026{
6d12e2d8
KH
1027 int node;
1028 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1029
1030 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1031 free_mem_cgroup_per_zone_info(mem, node);
6d12e2d8 1032
8cdea7c0
BS
1033 kfree(mem_cgroup_from_cont(cont));
1034}
1035
1036static int mem_cgroup_populate(struct cgroup_subsys *ss,
1037 struct cgroup *cont)
1038{
4077960e
BS
1039 if (mem_cgroup_subsys.disabled)
1040 return 0;
8cdea7c0
BS
1041 return cgroup_add_files(cont, ss, mem_cgroup_files,
1042 ARRAY_SIZE(mem_cgroup_files));
1043}
1044
67e465a7
BS
1045static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1046 struct cgroup *cont,
1047 struct cgroup *old_cont,
1048 struct task_struct *p)
1049{
1050 struct mm_struct *mm;
1051 struct mem_cgroup *mem, *old_mem;
1052
4077960e
BS
1053 if (mem_cgroup_subsys.disabled)
1054 return;
1055
67e465a7
BS
1056 mm = get_task_mm(p);
1057 if (mm == NULL)
1058 return;
1059
1060 mem = mem_cgroup_from_cont(cont);
1061 old_mem = mem_cgroup_from_cont(old_cont);
1062
1063 if (mem == old_mem)
1064 goto out;
1065
1066 /*
1067 * Only thread group leaders are allowed to migrate, the mm_struct is
1068 * in effect owned by the leader
1069 */
52ea27eb 1070 if (!thread_group_leader(p))
67e465a7
BS
1071 goto out;
1072
67e465a7
BS
1073out:
1074 mmput(mm);
67e465a7
BS
1075}
1076
8cdea7c0
BS
1077struct cgroup_subsys mem_cgroup_subsys = {
1078 .name = "memory",
1079 .subsys_id = mem_cgroup_subsys_id,
1080 .create = mem_cgroup_create,
df878fb0 1081 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1082 .destroy = mem_cgroup_destroy,
1083 .populate = mem_cgroup_populate,
67e465a7 1084 .attach = mem_cgroup_move_task,
6d12e2d8 1085 .early_init = 0,
8cdea7c0 1086};