mm: make get_scan_ratio() safe for memcg
[linux-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
54
d52aa412
KH
55/*
56 * Statistics for memory cgroup.
57 */
58enum mem_cgroup_stat_index {
59 /*
60 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
61 */
62 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
63 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
64 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
65 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
66
67 MEM_CGROUP_STAT_NSTATS,
68};
69
70struct mem_cgroup_stat_cpu {
71 s64 count[MEM_CGROUP_STAT_NSTATS];
72} ____cacheline_aligned_in_smp;
73
74struct mem_cgroup_stat {
c8dad2bb 75 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
76};
77
78/*
79 * For accounting under irq disable, no need for increment preempt count.
80 */
addb9efe 81static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
82 enum mem_cgroup_stat_index idx, int val)
83{
addb9efe 84 stat->count[idx] += val;
d52aa412
KH
85}
86
87static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88 enum mem_cgroup_stat_index idx)
89{
90 int cpu;
91 s64 ret = 0;
92 for_each_possible_cpu(cpu)
93 ret += stat->cpustat[cpu].count[idx];
94 return ret;
95}
96
6d12e2d8
KH
97/*
98 * per-zone information in memory controller.
99 */
6d12e2d8 100struct mem_cgroup_per_zone {
072c56c1
KH
101 /*
102 * spin_lock to protect the per cgroup LRU
103 */
b69408e8
CL
104 struct list_head lists[NR_LRU_LISTS];
105 unsigned long count[NR_LRU_LISTS];
6d12e2d8
KH
106};
107/* Macro for accessing counter */
108#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
109
110struct mem_cgroup_per_node {
111 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
112};
113
114struct mem_cgroup_lru_info {
115 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
116};
117
8cdea7c0
BS
118/*
119 * The memory controller data structure. The memory controller controls both
120 * page cache and RSS per cgroup. We would eventually like to provide
121 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
122 * to help the administrator determine what knobs to tune.
123 *
124 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
125 * we hit the water mark. May be even add a low water mark, such that
126 * no reclaim occurs from a cgroup at it's low water mark, this is
127 * a feature that will be implemented much later in the future.
8cdea7c0
BS
128 */
129struct mem_cgroup {
130 struct cgroup_subsys_state css;
131 /*
132 * the counter to account for memory usage
133 */
134 struct res_counter res;
8c7c6e34
KH
135 /*
136 * the counter to account for mem+swap usage.
137 */
138 struct res_counter memsw;
78fb7466
PE
139 /*
140 * Per cgroup active and inactive list, similar to the
141 * per zone LRU lists.
78fb7466 142 */
6d12e2d8 143 struct mem_cgroup_lru_info info;
072c56c1 144
6c48a1d0 145 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
146
147 /*
148 * While reclaiming in a hiearchy, we cache the last child we
149 * reclaimed from. Protected by cgroup_lock()
150 */
151 struct mem_cgroup *last_scanned_child;
18f59ea7
BS
152 /*
153 * Should the accounting and control be hierarchical, per subtree?
154 */
155 bool use_hierarchy;
a636b327 156 unsigned long last_oom_jiffies;
8c7c6e34
KH
157 int obsolete;
158 atomic_t refcnt;
d52aa412 159 /*
c8dad2bb 160 * statistics. This must be placed at the end of memcg.
d52aa412
KH
161 */
162 struct mem_cgroup_stat stat;
8cdea7c0
BS
163};
164
217bc319
KH
165enum charge_type {
166 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
167 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 168 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 169 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 170 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
171 NR_CHARGE_TYPE,
172};
173
52d4b9ac
KH
174/* only for here (for easy reading.) */
175#define PCGF_CACHE (1UL << PCG_CACHE)
176#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 177#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
178static const unsigned long
179pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
180 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
181 PCGF_USED | PCGF_LOCK, /* Anon */
182 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 183 0, /* FORCE */
217bc319
KH
184};
185
8c7c6e34
KH
186
187/* for encoding cft->private value on file */
188#define _MEM (0)
189#define _MEMSWAP (1)
190#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
191#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
192#define MEMFILE_ATTR(val) ((val) & 0xffff)
193
194static void mem_cgroup_get(struct mem_cgroup *mem);
195static void mem_cgroup_put(struct mem_cgroup *mem);
196
c05555b5
KH
197static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
198 struct page_cgroup *pc,
199 bool charge)
d52aa412
KH
200{
201 int val = (charge)? 1 : -1;
202 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 203 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 204 int cpu = get_cpu();
d52aa412 205
08e552c6 206 cpustat = &stat->cpustat[cpu];
c05555b5 207 if (PageCgroupCache(pc))
addb9efe 208 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 209 else
addb9efe 210 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
211
212 if (charge)
addb9efe 213 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
214 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
215 else
addb9efe 216 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 217 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 218 put_cpu();
6d12e2d8
KH
219}
220
d5b69e38 221static struct mem_cgroup_per_zone *
6d12e2d8
KH
222mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
223{
6d12e2d8
KH
224 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
225}
226
d5b69e38 227static struct mem_cgroup_per_zone *
6d12e2d8
KH
228page_cgroup_zoneinfo(struct page_cgroup *pc)
229{
230 struct mem_cgroup *mem = pc->mem_cgroup;
231 int nid = page_cgroup_nid(pc);
232 int zid = page_cgroup_zid(pc);
d52aa412 233
6d12e2d8
KH
234 return mem_cgroup_zoneinfo(mem, nid, zid);
235}
236
237static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 238 enum lru_list idx)
6d12e2d8
KH
239{
240 int nid, zid;
241 struct mem_cgroup_per_zone *mz;
242 u64 total = 0;
243
244 for_each_online_node(nid)
245 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
246 mz = mem_cgroup_zoneinfo(mem, nid, zid);
247 total += MEM_CGROUP_ZSTAT(mz, idx);
248 }
249 return total;
d52aa412
KH
250}
251
d5b69e38 252static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
253{
254 return container_of(cgroup_subsys_state(cont,
255 mem_cgroup_subsys_id), struct mem_cgroup,
256 css);
257}
258
cf475ad2 259struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 260{
31a78f23
BS
261 /*
262 * mm_update_next_owner() may clear mm->owner to NULL
263 * if it races with swapoff, page migration, etc.
264 * So this can be called with p == NULL.
265 */
266 if (unlikely(!p))
267 return NULL;
268
78fb7466
PE
269 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
270 struct mem_cgroup, css);
271}
272
08e552c6
KH
273/*
274 * Following LRU functions are allowed to be used without PCG_LOCK.
275 * Operations are called by routine of global LRU independently from memcg.
276 * What we have to take care of here is validness of pc->mem_cgroup.
277 *
278 * Changes to pc->mem_cgroup happens when
279 * 1. charge
280 * 2. moving account
281 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
282 * It is added to LRU before charge.
283 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
284 * When moving account, the page is not on LRU. It's isolated.
285 */
4f98a2fe 286
08e552c6
KH
287void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
288{
289 struct page_cgroup *pc;
290 struct mem_cgroup *mem;
291 struct mem_cgroup_per_zone *mz;
6d12e2d8 292
f8d66542 293 if (mem_cgroup_disabled())
08e552c6
KH
294 return;
295 pc = lookup_page_cgroup(page);
296 /* can happen while we handle swapcache. */
297 if (list_empty(&pc->lru))
298 return;
299 mz = page_cgroup_zoneinfo(pc);
300 mem = pc->mem_cgroup;
b69408e8 301 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
302 list_del_init(&pc->lru);
303 return;
6d12e2d8
KH
304}
305
08e552c6 306void mem_cgroup_del_lru(struct page *page)
6d12e2d8 307{
08e552c6
KH
308 mem_cgroup_del_lru_list(page, page_lru(page));
309}
b69408e8 310
08e552c6
KH
311void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
312{
313 struct mem_cgroup_per_zone *mz;
314 struct page_cgroup *pc;
b69408e8 315
f8d66542 316 if (mem_cgroup_disabled())
08e552c6 317 return;
6d12e2d8 318
08e552c6
KH
319 pc = lookup_page_cgroup(page);
320 smp_rmb();
321 /* unused page is not rotated. */
322 if (!PageCgroupUsed(pc))
323 return;
324 mz = page_cgroup_zoneinfo(pc);
325 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
326}
327
08e552c6 328void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 329{
08e552c6
KH
330 struct page_cgroup *pc;
331 struct mem_cgroup_per_zone *mz;
6d12e2d8 332
f8d66542 333 if (mem_cgroup_disabled())
08e552c6
KH
334 return;
335 pc = lookup_page_cgroup(page);
336 /* barrier to sync with "charge" */
337 smp_rmb();
338 if (!PageCgroupUsed(pc))
894bc310 339 return;
b69408e8 340
08e552c6 341 mz = page_cgroup_zoneinfo(pc);
b69408e8 342 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
343 list_add(&pc->lru, &mz->lists[lru]);
344}
345/*
346 * To add swapcache into LRU. Be careful to all this function.
347 * zone->lru_lock shouldn't be held and irq must not be disabled.
348 */
349static void mem_cgroup_lru_fixup(struct page *page)
350{
351 if (!isolate_lru_page(page))
352 putback_lru_page(page);
353}
354
355void mem_cgroup_move_lists(struct page *page,
356 enum lru_list from, enum lru_list to)
357{
f8d66542 358 if (mem_cgroup_disabled())
08e552c6
KH
359 return;
360 mem_cgroup_del_lru_list(page, from);
361 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
362}
363
4c4a2214
DR
364int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
365{
366 int ret;
367
368 task_lock(task);
bd845e38 369 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
370 task_unlock(task);
371 return ret;
372}
373
58ae83db
KH
374/*
375 * Calculate mapped_ratio under memory controller. This will be used in
376 * vmscan.c for deteremining we have to reclaim mapped pages.
377 */
378int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
379{
380 long total, rss;
381
382 /*
383 * usage is recorded in bytes. But, here, we assume the number of
384 * physical pages can be represented by "long" on any arch.
385 */
386 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
387 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
388 return (int)((rss * 100L) / total);
389}
8869b8f6 390
6c48a1d0
KH
391/*
392 * prev_priority control...this will be used in memory reclaim path.
393 */
394int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
395{
396 return mem->prev_priority;
397}
398
399void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
400{
401 if (priority < mem->prev_priority)
402 mem->prev_priority = priority;
403}
404
405void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
406{
407 mem->prev_priority = priority;
408}
409
cc38108e
KH
410/*
411 * Calculate # of pages to be scanned in this priority/zone.
412 * See also vmscan.c
413 *
414 * priority starts from "DEF_PRIORITY" and decremented in each loop.
415 * (see include/linux/mmzone.h)
416 */
417
b69408e8
CL
418long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
419 int priority, enum lru_list lru)
cc38108e 420{
b69408e8 421 long nr_pages;
cc38108e
KH
422 int nid = zone->zone_pgdat->node_id;
423 int zid = zone_idx(zone);
424 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
425
b69408e8 426 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
cc38108e 427
b69408e8 428 return (nr_pages >> priority);
cc38108e
KH
429}
430
66e1707b
BS
431unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
432 struct list_head *dst,
433 unsigned long *scanned, int order,
434 int mode, struct zone *z,
435 struct mem_cgroup *mem_cont,
4f98a2fe 436 int active, int file)
66e1707b
BS
437{
438 unsigned long nr_taken = 0;
439 struct page *page;
440 unsigned long scan;
441 LIST_HEAD(pc_list);
442 struct list_head *src;
ff7283fa 443 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
444 int nid = z->zone_pgdat->node_id;
445 int zid = zone_idx(z);
446 struct mem_cgroup_per_zone *mz;
4f98a2fe 447 int lru = LRU_FILE * !!file + !!active;
66e1707b 448
cf475ad2 449 BUG_ON(!mem_cont);
1ecaab2b 450 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 451 src = &mz->lists[lru];
66e1707b 452
ff7283fa
KH
453 scan = 0;
454 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 455 if (scan >= nr_to_scan)
ff7283fa 456 break;
08e552c6
KH
457
458 page = pc->page;
52d4b9ac
KH
459 if (unlikely(!PageCgroupUsed(pc)))
460 continue;
436c6541 461 if (unlikely(!PageLRU(page)))
ff7283fa 462 continue;
ff7283fa 463
436c6541 464 scan++;
4f98a2fe 465 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
466 list_move(&page->lru, dst);
467 nr_taken++;
468 }
469 }
470
66e1707b
BS
471 *scanned = scan;
472 return nr_taken;
473}
474
6d61ef40
BS
475#define mem_cgroup_from_res_counter(counter, member) \
476 container_of(counter, struct mem_cgroup, member)
477
478/*
479 * This routine finds the DFS walk successor. This routine should be
480 * called with cgroup_mutex held
481 */
482static struct mem_cgroup *
483mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
484{
485 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
486
487 curr_cgroup = curr->css.cgroup;
488 root_cgroup = root_mem->css.cgroup;
489
490 if (!list_empty(&curr_cgroup->children)) {
491 /*
492 * Walk down to children
493 */
494 mem_cgroup_put(curr);
495 cgroup = list_entry(curr_cgroup->children.next,
496 struct cgroup, sibling);
497 curr = mem_cgroup_from_cont(cgroup);
498 mem_cgroup_get(curr);
499 goto done;
500 }
501
502visit_parent:
503 if (curr_cgroup == root_cgroup) {
504 mem_cgroup_put(curr);
505 curr = root_mem;
506 mem_cgroup_get(curr);
507 goto done;
508 }
509
510 /*
511 * Goto next sibling
512 */
513 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
514 mem_cgroup_put(curr);
515 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
516 sibling);
517 curr = mem_cgroup_from_cont(cgroup);
518 mem_cgroup_get(curr);
519 goto done;
520 }
521
522 /*
523 * Go up to next parent and next parent's sibling if need be
524 */
525 curr_cgroup = curr_cgroup->parent;
526 goto visit_parent;
527
528done:
529 root_mem->last_scanned_child = curr;
530 return curr;
531}
532
533/*
534 * Visit the first child (need not be the first child as per the ordering
535 * of the cgroup list, since we track last_scanned_child) of @mem and use
536 * that to reclaim free pages from.
537 */
538static struct mem_cgroup *
539mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
540{
541 struct cgroup *cgroup;
542 struct mem_cgroup *ret;
543 bool obsolete = (root_mem->last_scanned_child &&
544 root_mem->last_scanned_child->obsolete);
545
546 /*
547 * Scan all children under the mem_cgroup mem
548 */
549 cgroup_lock();
550 if (list_empty(&root_mem->css.cgroup->children)) {
551 ret = root_mem;
552 goto done;
553 }
554
555 if (!root_mem->last_scanned_child || obsolete) {
556
557 if (obsolete)
558 mem_cgroup_put(root_mem->last_scanned_child);
559
560 cgroup = list_first_entry(&root_mem->css.cgroup->children,
561 struct cgroup, sibling);
562 ret = mem_cgroup_from_cont(cgroup);
563 mem_cgroup_get(ret);
564 } else
565 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
566 root_mem);
567
568done:
569 root_mem->last_scanned_child = ret;
570 cgroup_unlock();
571 return ret;
572}
573
b85a96c0
DN
574static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
575{
576 if (do_swap_account) {
577 if (res_counter_check_under_limit(&mem->res) &&
578 res_counter_check_under_limit(&mem->memsw))
579 return true;
580 } else
581 if (res_counter_check_under_limit(&mem->res))
582 return true;
583 return false;
584}
585
6d61ef40
BS
586/*
587 * Dance down the hierarchy if needed to reclaim memory. We remember the
588 * last child we reclaimed from, so that we don't end up penalizing
589 * one child extensively based on its position in the children list.
590 *
591 * root_mem is the original ancestor that we've been reclaim from.
592 */
593static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
594 gfp_t gfp_mask, bool noswap)
595{
596 struct mem_cgroup *next_mem;
597 int ret = 0;
598
599 /*
600 * Reclaim unconditionally and don't check for return value.
601 * We need to reclaim in the current group and down the tree.
602 * One might think about checking for children before reclaiming,
603 * but there might be left over accounting, even after children
604 * have left.
605 */
606 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap);
b85a96c0 607 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40 608 return 0;
670ec2f1
DN
609 if (!root_mem->use_hierarchy)
610 return ret;
6d61ef40
BS
611
612 next_mem = mem_cgroup_get_first_node(root_mem);
613
614 while (next_mem != root_mem) {
615 if (next_mem->obsolete) {
616 mem_cgroup_put(next_mem);
617 cgroup_lock();
618 next_mem = mem_cgroup_get_first_node(root_mem);
619 cgroup_unlock();
620 continue;
621 }
622 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap);
b85a96c0 623 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40
BS
624 return 0;
625 cgroup_lock();
626 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
627 cgroup_unlock();
628 }
629 return ret;
630}
631
a636b327
KH
632bool mem_cgroup_oom_called(struct task_struct *task)
633{
634 bool ret = false;
635 struct mem_cgroup *mem;
636 struct mm_struct *mm;
637
638 rcu_read_lock();
639 mm = task->mm;
640 if (!mm)
641 mm = &init_mm;
642 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
643 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
644 ret = true;
645 rcu_read_unlock();
646 return ret;
647}
f817ed48
KH
648/*
649 * Unlike exported interface, "oom" parameter is added. if oom==true,
650 * oom-killer can be invoked.
8a9f3ccd 651 */
f817ed48 652static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
653 gfp_t gfp_mask, struct mem_cgroup **memcg,
654 bool oom)
8a9f3ccd 655{
6d61ef40 656 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 657 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 658 struct res_counter *fail_res;
a636b327
KH
659
660 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
661 /* Don't account this! */
662 *memcg = NULL;
663 return 0;
664 }
665
8a9f3ccd 666 /*
3be91277
HD
667 * We always charge the cgroup the mm_struct belongs to.
668 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
669 * thread group leader migrates. It's possible that mm is not
670 * set, if so charge the init_mm (happens for pagecache usage).
671 */
7a81b88c 672 if (likely(!*memcg)) {
e8589cc1
KH
673 rcu_read_lock();
674 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
675 if (unlikely(!mem)) {
676 rcu_read_unlock();
31a78f23
BS
677 return 0;
678 }
e8589cc1
KH
679 /*
680 * For every charge from the cgroup, increment reference count
681 */
682 css_get(&mem->css);
7a81b88c 683 *memcg = mem;
e8589cc1
KH
684 rcu_read_unlock();
685 } else {
7a81b88c
KH
686 mem = *memcg;
687 css_get(&mem->css);
e8589cc1 688 }
8a9f3ccd 689
8c7c6e34
KH
690 while (1) {
691 int ret;
692 bool noswap = false;
7a81b88c 693
28dbc4b6 694 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
695 if (likely(!ret)) {
696 if (!do_swap_account)
697 break;
28dbc4b6
BS
698 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
699 &fail_res);
8c7c6e34
KH
700 if (likely(!ret))
701 break;
702 /* mem+swap counter fails */
703 res_counter_uncharge(&mem->res, PAGE_SIZE);
704 noswap = true;
6d61ef40
BS
705 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
706 memsw);
707 } else
708 /* mem counter fails */
709 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
710 res);
711
3be91277 712 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 713 goto nomem;
e1a1cd59 714
6d61ef40
BS
715 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
716 noswap);
66e1707b
BS
717
718 /*
8869b8f6
HD
719 * try_to_free_mem_cgroup_pages() might not give us a full
720 * picture of reclaim. Some pages are reclaimed and might be
721 * moved to swap cache or just unmapped from the cgroup.
722 * Check the limit again to see if the reclaim reduced the
723 * current usage of the cgroup before giving up
8c7c6e34 724 *
8869b8f6 725 */
b85a96c0
DN
726 if (mem_cgroup_check_under_limit(mem_over_limit))
727 continue;
3be91277
HD
728
729 if (!nr_retries--) {
a636b327 730 if (oom) {
88700756
KH
731 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
732 mem_over_limit->last_oom_jiffies = jiffies;
a636b327 733 }
7a81b88c 734 goto nomem;
66e1707b 735 }
8a9f3ccd 736 }
7a81b88c
KH
737 return 0;
738nomem:
739 css_put(&mem->css);
740 return -ENOMEM;
741}
8a9f3ccd 742
f817ed48
KH
743/**
744 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
745 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
746 * @gfp_mask: gfp_mask for reclaim.
747 * @memcg: a pointer to memory cgroup which is charged against.
748 *
749 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
750 * memory cgroup from @mm is got and stored in *memcg.
751 *
752 * Returns 0 if success. -ENOMEM at failure.
753 * This call can invoke OOM-Killer.
754 */
755
756int mem_cgroup_try_charge(struct mm_struct *mm,
757 gfp_t mask, struct mem_cgroup **memcg)
758{
759 return __mem_cgroup_try_charge(mm, mask, memcg, true);
760}
761
7a81b88c
KH
762/*
763 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
764 * USED state. If already USED, uncharge and return.
765 */
766
767static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
768 struct page_cgroup *pc,
769 enum charge_type ctype)
770{
7a81b88c
KH
771 /* try_charge() can return NULL to *memcg, taking care of it. */
772 if (!mem)
773 return;
52d4b9ac
KH
774
775 lock_page_cgroup(pc);
776 if (unlikely(PageCgroupUsed(pc))) {
777 unlock_page_cgroup(pc);
778 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
779 if (do_swap_account)
780 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 781 css_put(&mem->css);
7a81b88c 782 return;
52d4b9ac 783 }
8a9f3ccd 784 pc->mem_cgroup = mem;
08e552c6 785 smp_wmb();
c05555b5 786 pc->flags = pcg_default_flags[ctype];
3be91277 787
08e552c6 788 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 789
52d4b9ac 790 unlock_page_cgroup(pc);
7a81b88c 791}
66e1707b 792
f817ed48
KH
793/**
794 * mem_cgroup_move_account - move account of the page
795 * @pc: page_cgroup of the page.
796 * @from: mem_cgroup which the page is moved from.
797 * @to: mem_cgroup which the page is moved to. @from != @to.
798 *
799 * The caller must confirm following.
08e552c6 800 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
801 *
802 * returns 0 at success,
803 * returns -EBUSY when lock is busy or "pc" is unstable.
804 *
805 * This function does "uncharge" from old cgroup but doesn't do "charge" to
806 * new cgroup. It should be done by a caller.
807 */
808
809static int mem_cgroup_move_account(struct page_cgroup *pc,
810 struct mem_cgroup *from, struct mem_cgroup *to)
811{
812 struct mem_cgroup_per_zone *from_mz, *to_mz;
813 int nid, zid;
814 int ret = -EBUSY;
815
f817ed48 816 VM_BUG_ON(from == to);
08e552c6 817 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
818
819 nid = page_cgroup_nid(pc);
820 zid = page_cgroup_zid(pc);
821 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
822 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
823
f817ed48
KH
824 if (!trylock_page_cgroup(pc))
825 return ret;
826
827 if (!PageCgroupUsed(pc))
828 goto out;
829
830 if (pc->mem_cgroup != from)
831 goto out;
832
08e552c6
KH
833 css_put(&from->css);
834 res_counter_uncharge(&from->res, PAGE_SIZE);
835 mem_cgroup_charge_statistics(from, pc, false);
836 if (do_swap_account)
837 res_counter_uncharge(&from->memsw, PAGE_SIZE);
838 pc->mem_cgroup = to;
839 mem_cgroup_charge_statistics(to, pc, true);
840 css_get(&to->css);
841 ret = 0;
f817ed48
KH
842out:
843 unlock_page_cgroup(pc);
844 return ret;
845}
846
847/*
848 * move charges to its parent.
849 */
850
851static int mem_cgroup_move_parent(struct page_cgroup *pc,
852 struct mem_cgroup *child,
853 gfp_t gfp_mask)
854{
08e552c6 855 struct page *page = pc->page;
f817ed48
KH
856 struct cgroup *cg = child->css.cgroup;
857 struct cgroup *pcg = cg->parent;
858 struct mem_cgroup *parent;
f817ed48
KH
859 int ret;
860
861 /* Is ROOT ? */
862 if (!pcg)
863 return -EINVAL;
864
08e552c6 865
f817ed48
KH
866 parent = mem_cgroup_from_cont(pcg);
867
08e552c6 868
f817ed48 869 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 870 if (ret || !parent)
f817ed48
KH
871 return ret;
872
08e552c6
KH
873 if (!get_page_unless_zero(page))
874 return -EBUSY;
875
876 ret = isolate_lru_page(page);
877
878 if (ret)
879 goto cancel;
f817ed48 880
f817ed48 881 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 882
08e552c6 883 /* drop extra refcnt by try_charge() (move_account increment one) */
f817ed48 884 css_put(&parent->css);
08e552c6
KH
885 putback_lru_page(page);
886 if (!ret) {
887 put_page(page);
888 return 0;
8c7c6e34 889 }
08e552c6
KH
890 /* uncharge if move fails */
891cancel:
892 res_counter_uncharge(&parent->res, PAGE_SIZE);
893 if (do_swap_account)
894 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
895 put_page(page);
f817ed48
KH
896 return ret;
897}
898
7a81b88c
KH
899/*
900 * Charge the memory controller for page usage.
901 * Return
902 * 0 if the charge was successful
903 * < 0 if the cgroup is over its limit
904 */
905static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
906 gfp_t gfp_mask, enum charge_type ctype,
907 struct mem_cgroup *memcg)
908{
909 struct mem_cgroup *mem;
910 struct page_cgroup *pc;
911 int ret;
912
913 pc = lookup_page_cgroup(page);
914 /* can happen at boot */
915 if (unlikely(!pc))
916 return 0;
917 prefetchw(pc);
918
919 mem = memcg;
f817ed48 920 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 921 if (ret || !mem)
7a81b88c
KH
922 return ret;
923
924 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 925 return 0;
8a9f3ccd
BS
926}
927
7a81b88c
KH
928int mem_cgroup_newpage_charge(struct page *page,
929 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 930{
f8d66542 931 if (mem_cgroup_disabled())
cede86ac 932 return 0;
52d4b9ac
KH
933 if (PageCompound(page))
934 return 0;
69029cd5
KH
935 /*
936 * If already mapped, we don't have to account.
937 * If page cache, page->mapping has address_space.
938 * But page->mapping may have out-of-use anon_vma pointer,
939 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
940 * is NULL.
941 */
942 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
943 return 0;
944 if (unlikely(!mm))
945 mm = &init_mm;
217bc319 946 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 947 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
948}
949
e1a1cd59
BS
950int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
951 gfp_t gfp_mask)
8697d331 952{
f8d66542 953 if (mem_cgroup_disabled())
cede86ac 954 return 0;
52d4b9ac
KH
955 if (PageCompound(page))
956 return 0;
accf163e
KH
957 /*
958 * Corner case handling. This is called from add_to_page_cache()
959 * in usual. But some FS (shmem) precharges this page before calling it
960 * and call add_to_page_cache() with GFP_NOWAIT.
961 *
962 * For GFP_NOWAIT case, the page may be pre-charged before calling
963 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
964 * charge twice. (It works but has to pay a bit larger cost.)
965 */
966 if (!(gfp_mask & __GFP_WAIT)) {
967 struct page_cgroup *pc;
968
52d4b9ac
KH
969
970 pc = lookup_page_cgroup(page);
971 if (!pc)
972 return 0;
973 lock_page_cgroup(pc);
974 if (PageCgroupUsed(pc)) {
975 unlock_page_cgroup(pc);
accf163e
KH
976 return 0;
977 }
52d4b9ac 978 unlock_page_cgroup(pc);
accf163e
KH
979 }
980
69029cd5 981 if (unlikely(!mm))
8697d331 982 mm = &init_mm;
accf163e 983
c05555b5
KH
984 if (page_is_file_cache(page))
985 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 986 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
987 else
988 return mem_cgroup_charge_common(page, mm, gfp_mask,
989 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
990}
991
8c7c6e34
KH
992int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
993 struct page *page,
994 gfp_t mask, struct mem_cgroup **ptr)
995{
996 struct mem_cgroup *mem;
997 swp_entry_t ent;
998
f8d66542 999 if (mem_cgroup_disabled())
8c7c6e34
KH
1000 return 0;
1001
1002 if (!do_swap_account)
1003 goto charge_cur_mm;
1004
1005 /*
1006 * A racing thread's fault, or swapoff, may have already updated
1007 * the pte, and even removed page from swap cache: return success
1008 * to go on to do_swap_page()'s pte_same() test, which should fail.
1009 */
1010 if (!PageSwapCache(page))
1011 return 0;
1012
1013 ent.val = page_private(page);
1014
1015 mem = lookup_swap_cgroup(ent);
1016 if (!mem || mem->obsolete)
1017 goto charge_cur_mm;
1018 *ptr = mem;
1019 return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1020charge_cur_mm:
1021 if (unlikely(!mm))
1022 mm = &init_mm;
1023 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1024}
1025
d13d1443 1026#ifdef CONFIG_SWAP
8c7c6e34 1027
d13d1443
KH
1028int mem_cgroup_cache_charge_swapin(struct page *page,
1029 struct mm_struct *mm, gfp_t mask, bool locked)
1030{
1031 int ret = 0;
1032
f8d66542 1033 if (mem_cgroup_disabled())
d13d1443
KH
1034 return 0;
1035 if (unlikely(!mm))
1036 mm = &init_mm;
1037 if (!locked)
1038 lock_page(page);
1039 /*
1040 * If not locked, the page can be dropped from SwapCache until
1041 * we reach here.
1042 */
1043 if (PageSwapCache(page)) {
8c7c6e34
KH
1044 struct mem_cgroup *mem = NULL;
1045 swp_entry_t ent;
1046
1047 ent.val = page_private(page);
1048 if (do_swap_account) {
1049 mem = lookup_swap_cgroup(ent);
1050 if (mem && mem->obsolete)
1051 mem = NULL;
1052 if (mem)
1053 mm = NULL;
1054 }
d13d1443 1055 ret = mem_cgroup_charge_common(page, mm, mask,
8c7c6e34
KH
1056 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1057
1058 if (!ret && do_swap_account) {
1059 /* avoid double counting */
1060 mem = swap_cgroup_record(ent, NULL);
1061 if (mem) {
1062 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1063 mem_cgroup_put(mem);
1064 }
1065 }
d13d1443
KH
1066 }
1067 if (!locked)
1068 unlock_page(page);
08e552c6
KH
1069 /* add this page(page_cgroup) to the LRU we want. */
1070 mem_cgroup_lru_fixup(page);
d13d1443
KH
1071
1072 return ret;
1073}
1074#endif
1075
7a81b88c
KH
1076void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1077{
1078 struct page_cgroup *pc;
1079
f8d66542 1080 if (mem_cgroup_disabled())
7a81b88c
KH
1081 return;
1082 if (!ptr)
1083 return;
1084 pc = lookup_page_cgroup(page);
1085 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
8c7c6e34
KH
1086 /*
1087 * Now swap is on-memory. This means this page may be
1088 * counted both as mem and swap....double count.
1089 * Fix it by uncharging from memsw. This SwapCache is stable
1090 * because we're still under lock_page().
1091 */
1092 if (do_swap_account) {
1093 swp_entry_t ent = {.val = page_private(page)};
1094 struct mem_cgroup *memcg;
1095 memcg = swap_cgroup_record(ent, NULL);
1096 if (memcg) {
1097 /* If memcg is obsolete, memcg can be != ptr */
1098 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1099 mem_cgroup_put(memcg);
1100 }
1101
1102 }
08e552c6
KH
1103 /* add this page(page_cgroup) to the LRU we want. */
1104 mem_cgroup_lru_fixup(page);
7a81b88c
KH
1105}
1106
1107void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1108{
f8d66542 1109 if (mem_cgroup_disabled())
7a81b88c
KH
1110 return;
1111 if (!mem)
1112 return;
1113 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1114 if (do_swap_account)
1115 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1116 css_put(&mem->css);
1117}
1118
1119
8a9f3ccd 1120/*
69029cd5 1121 * uncharge if !page_mapped(page)
8a9f3ccd 1122 */
8c7c6e34 1123static struct mem_cgroup *
69029cd5 1124__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1125{
8289546e 1126 struct page_cgroup *pc;
8c7c6e34 1127 struct mem_cgroup *mem = NULL;
072c56c1 1128 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1129
f8d66542 1130 if (mem_cgroup_disabled())
8c7c6e34 1131 return NULL;
4077960e 1132
d13d1443 1133 if (PageSwapCache(page))
8c7c6e34 1134 return NULL;
d13d1443 1135
8697d331 1136 /*
3c541e14 1137 * Check if our page_cgroup is valid
8697d331 1138 */
52d4b9ac
KH
1139 pc = lookup_page_cgroup(page);
1140 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1141 return NULL;
b9c565d5 1142
52d4b9ac 1143 lock_page_cgroup(pc);
d13d1443 1144
8c7c6e34
KH
1145 mem = pc->mem_cgroup;
1146
d13d1443
KH
1147 if (!PageCgroupUsed(pc))
1148 goto unlock_out;
1149
1150 switch (ctype) {
1151 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1152 if (page_mapped(page))
1153 goto unlock_out;
1154 break;
1155 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1156 if (!PageAnon(page)) { /* Shared memory */
1157 if (page->mapping && !page_is_file_cache(page))
1158 goto unlock_out;
1159 } else if (page_mapped(page)) /* Anon */
1160 goto unlock_out;
1161 break;
1162 default:
1163 break;
52d4b9ac 1164 }
d13d1443 1165
8c7c6e34
KH
1166 res_counter_uncharge(&mem->res, PAGE_SIZE);
1167 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1168 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1169
08e552c6 1170 mem_cgroup_charge_statistics(mem, pc, false);
52d4b9ac 1171 ClearPageCgroupUsed(pc);
b9c565d5 1172
69029cd5 1173 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1174 unlock_page_cgroup(pc);
fb59e9f1 1175
a7fe942e
KH
1176 /* at swapout, this memcg will be accessed to record to swap */
1177 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1178 css_put(&mem->css);
6d12e2d8 1179
8c7c6e34 1180 return mem;
d13d1443
KH
1181
1182unlock_out:
1183 unlock_page_cgroup(pc);
8c7c6e34 1184 return NULL;
3c541e14
BS
1185}
1186
69029cd5
KH
1187void mem_cgroup_uncharge_page(struct page *page)
1188{
52d4b9ac
KH
1189 /* early check. */
1190 if (page_mapped(page))
1191 return;
1192 if (page->mapping && !PageAnon(page))
1193 return;
69029cd5
KH
1194 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1195}
1196
1197void mem_cgroup_uncharge_cache_page(struct page *page)
1198{
1199 VM_BUG_ON(page_mapped(page));
b7abea96 1200 VM_BUG_ON(page->mapping);
69029cd5
KH
1201 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1202}
1203
8c7c6e34
KH
1204/*
1205 * called from __delete_from_swap_cache() and drop "page" account.
1206 * memcg information is recorded to swap_cgroup of "ent"
1207 */
1208void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1209{
1210 struct mem_cgroup *memcg;
1211
1212 memcg = __mem_cgroup_uncharge_common(page,
1213 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1214 /* record memcg information */
1215 if (do_swap_account && memcg) {
1216 swap_cgroup_record(ent, memcg);
1217 mem_cgroup_get(memcg);
1218 }
a7fe942e
KH
1219 if (memcg)
1220 css_put(&memcg->css);
8c7c6e34
KH
1221}
1222
1223#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1224/*
1225 * called from swap_entry_free(). remove record in swap_cgroup and
1226 * uncharge "memsw" account.
1227 */
1228void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1229{
8c7c6e34
KH
1230 struct mem_cgroup *memcg;
1231
1232 if (!do_swap_account)
1233 return;
1234
1235 memcg = swap_cgroup_record(ent, NULL);
1236 if (memcg) {
1237 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1238 mem_cgroup_put(memcg);
1239 }
d13d1443 1240}
8c7c6e34 1241#endif
d13d1443 1242
ae41be37 1243/*
01b1ae63
KH
1244 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1245 * page belongs to.
ae41be37 1246 */
01b1ae63 1247int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1248{
1249 struct page_cgroup *pc;
e8589cc1 1250 struct mem_cgroup *mem = NULL;
e8589cc1 1251 int ret = 0;
8869b8f6 1252
f8d66542 1253 if (mem_cgroup_disabled())
4077960e
BS
1254 return 0;
1255
52d4b9ac
KH
1256 pc = lookup_page_cgroup(page);
1257 lock_page_cgroup(pc);
1258 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1259 mem = pc->mem_cgroup;
1260 css_get(&mem->css);
e8589cc1 1261 }
52d4b9ac 1262 unlock_page_cgroup(pc);
01b1ae63 1263
e8589cc1 1264 if (mem) {
2c26fdd7 1265 ret = mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem);
e8589cc1
KH
1266 css_put(&mem->css);
1267 }
01b1ae63 1268 *ptr = mem;
e8589cc1 1269 return ret;
ae41be37 1270}
8869b8f6 1271
69029cd5 1272/* remove redundant charge if migration failed*/
01b1ae63
KH
1273void mem_cgroup_end_migration(struct mem_cgroup *mem,
1274 struct page *oldpage, struct page *newpage)
ae41be37 1275{
01b1ae63
KH
1276 struct page *target, *unused;
1277 struct page_cgroup *pc;
1278 enum charge_type ctype;
1279
1280 if (!mem)
1281 return;
1282
1283 /* at migration success, oldpage->mapping is NULL. */
1284 if (oldpage->mapping) {
1285 target = oldpage;
1286 unused = NULL;
1287 } else {
1288 target = newpage;
1289 unused = oldpage;
1290 }
1291
1292 if (PageAnon(target))
1293 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1294 else if (page_is_file_cache(target))
1295 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1296 else
1297 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1298
1299 /* unused page is not on radix-tree now. */
d13d1443 1300 if (unused)
01b1ae63
KH
1301 __mem_cgroup_uncharge_common(unused, ctype);
1302
1303 pc = lookup_page_cgroup(target);
69029cd5 1304 /*
01b1ae63
KH
1305 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1306 * So, double-counting is effectively avoided.
1307 */
1308 __mem_cgroup_commit_charge(mem, pc, ctype);
1309
1310 /*
1311 * Both of oldpage and newpage are still under lock_page().
1312 * Then, we don't have to care about race in radix-tree.
1313 * But we have to be careful that this page is unmapped or not.
1314 *
1315 * There is a case for !page_mapped(). At the start of
1316 * migration, oldpage was mapped. But now, it's zapped.
1317 * But we know *target* page is not freed/reused under us.
1318 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1319 */
01b1ae63
KH
1320 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1321 mem_cgroup_uncharge_page(target);
ae41be37 1322}
78fb7466 1323
c9b0ed51
KH
1324/*
1325 * A call to try to shrink memory usage under specified resource controller.
1326 * This is typically used for page reclaiming for shmem for reducing side
1327 * effect of page allocation from shmem, which is used by some mem_cgroup.
1328 */
1329int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1330{
1331 struct mem_cgroup *mem;
1332 int progress = 0;
1333 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1334
f8d66542 1335 if (mem_cgroup_disabled())
cede86ac 1336 return 0;
9623e078
HD
1337 if (!mm)
1338 return 0;
cede86ac 1339
c9b0ed51
KH
1340 rcu_read_lock();
1341 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
1342 if (unlikely(!mem)) {
1343 rcu_read_unlock();
1344 return 0;
1345 }
c9b0ed51
KH
1346 css_get(&mem->css);
1347 rcu_read_unlock();
1348
1349 do {
8c7c6e34 1350 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true);
b85a96c0 1351 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1352 } while (!progress && --retry);
1353
1354 css_put(&mem->css);
1355 if (!retry)
1356 return -ENOMEM;
1357 return 0;
1358}
1359
8c7c6e34
KH
1360static DEFINE_MUTEX(set_limit_mutex);
1361
d38d2a75 1362static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1363 unsigned long long val)
628f4235
KH
1364{
1365
1366 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1367 int progress;
8c7c6e34 1368 u64 memswlimit;
628f4235
KH
1369 int ret = 0;
1370
8c7c6e34 1371 while (retry_count) {
628f4235
KH
1372 if (signal_pending(current)) {
1373 ret = -EINTR;
1374 break;
1375 }
8c7c6e34
KH
1376 /*
1377 * Rather than hide all in some function, I do this in
1378 * open coded manner. You see what this really does.
1379 * We have to guarantee mem->res.limit < mem->memsw.limit.
1380 */
1381 mutex_lock(&set_limit_mutex);
1382 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1383 if (memswlimit < val) {
1384 ret = -EINVAL;
1385 mutex_unlock(&set_limit_mutex);
628f4235
KH
1386 break;
1387 }
8c7c6e34
KH
1388 ret = res_counter_set_limit(&memcg->res, val);
1389 mutex_unlock(&set_limit_mutex);
1390
1391 if (!ret)
1392 break;
1393
bced0520 1394 progress = try_to_free_mem_cgroup_pages(memcg,
2c26fdd7 1395 GFP_KERNEL, false);
8c7c6e34
KH
1396 if (!progress) retry_count--;
1397 }
1398 return ret;
1399}
1400
1401int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1402 unsigned long long val)
1403{
1404 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1405 u64 memlimit, oldusage, curusage;
1406 int ret;
1407
1408 if (!do_swap_account)
1409 return -EINVAL;
1410
1411 while (retry_count) {
1412 if (signal_pending(current)) {
1413 ret = -EINTR;
1414 break;
1415 }
1416 /*
1417 * Rather than hide all in some function, I do this in
1418 * open coded manner. You see what this really does.
1419 * We have to guarantee mem->res.limit < mem->memsw.limit.
1420 */
1421 mutex_lock(&set_limit_mutex);
1422 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1423 if (memlimit > val) {
1424 ret = -EINVAL;
1425 mutex_unlock(&set_limit_mutex);
1426 break;
1427 }
1428 ret = res_counter_set_limit(&memcg->memsw, val);
1429 mutex_unlock(&set_limit_mutex);
1430
1431 if (!ret)
1432 break;
1433
1434 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2c26fdd7 1435 try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, true);
8c7c6e34
KH
1436 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1437 if (curusage >= oldusage)
628f4235
KH
1438 retry_count--;
1439 }
1440 return ret;
1441}
1442
cc847582
KH
1443/*
1444 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1445 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1446 */
f817ed48 1447static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1448 int node, int zid, enum lru_list lru)
cc847582 1449{
08e552c6
KH
1450 struct zone *zone;
1451 struct mem_cgroup_per_zone *mz;
f817ed48 1452 struct page_cgroup *pc, *busy;
08e552c6 1453 unsigned long flags, loop;
072c56c1 1454 struct list_head *list;
f817ed48 1455 int ret = 0;
072c56c1 1456
08e552c6
KH
1457 zone = &NODE_DATA(node)->node_zones[zid];
1458 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1459 list = &mz->lists[lru];
cc847582 1460
f817ed48
KH
1461 loop = MEM_CGROUP_ZSTAT(mz, lru);
1462 /* give some margin against EBUSY etc...*/
1463 loop += 256;
1464 busy = NULL;
1465 while (loop--) {
1466 ret = 0;
08e552c6 1467 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1468 if (list_empty(list)) {
08e552c6 1469 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1470 break;
f817ed48
KH
1471 }
1472 pc = list_entry(list->prev, struct page_cgroup, lru);
1473 if (busy == pc) {
1474 list_move(&pc->lru, list);
1475 busy = 0;
08e552c6 1476 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1477 continue;
1478 }
08e552c6 1479 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1480
2c26fdd7 1481 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1482 if (ret == -ENOMEM)
52d4b9ac 1483 break;
f817ed48
KH
1484
1485 if (ret == -EBUSY || ret == -EINVAL) {
1486 /* found lock contention or "pc" is obsolete. */
1487 busy = pc;
1488 cond_resched();
1489 } else
1490 busy = NULL;
cc847582 1491 }
08e552c6 1492
f817ed48
KH
1493 if (!ret && !list_empty(list))
1494 return -EBUSY;
1495 return ret;
cc847582
KH
1496}
1497
1498/*
1499 * make mem_cgroup's charge to be 0 if there is no task.
1500 * This enables deleting this mem_cgroup.
1501 */
c1e862c1 1502static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1503{
f817ed48
KH
1504 int ret;
1505 int node, zid, shrink;
1506 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1507 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1508
cc847582 1509 css_get(&mem->css);
f817ed48
KH
1510
1511 shrink = 0;
c1e862c1
KH
1512 /* should free all ? */
1513 if (free_all)
1514 goto try_to_free;
f817ed48 1515move_account:
1ecaab2b 1516 while (mem->res.usage > 0) {
f817ed48 1517 ret = -EBUSY;
c1e862c1
KH
1518 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1519 goto out;
1520 ret = -EINTR;
1521 if (signal_pending(current))
cc847582 1522 goto out;
52d4b9ac
KH
1523 /* This is for making all *used* pages to be on LRU. */
1524 lru_add_drain_all();
f817ed48
KH
1525 ret = 0;
1526 for_each_node_state(node, N_POSSIBLE) {
1527 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1528 enum lru_list l;
f817ed48
KH
1529 for_each_lru(l) {
1530 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1531 node, zid, l);
f817ed48
KH
1532 if (ret)
1533 break;
1534 }
1ecaab2b 1535 }
f817ed48
KH
1536 if (ret)
1537 break;
1538 }
1539 /* it seems parent cgroup doesn't have enough mem */
1540 if (ret == -ENOMEM)
1541 goto try_to_free;
52d4b9ac 1542 cond_resched();
cc847582
KH
1543 }
1544 ret = 0;
1545out:
1546 css_put(&mem->css);
1547 return ret;
f817ed48
KH
1548
1549try_to_free:
c1e862c1
KH
1550 /* returns EBUSY if there is a task or if we come here twice. */
1551 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1552 ret = -EBUSY;
1553 goto out;
1554 }
c1e862c1
KH
1555 /* we call try-to-free pages for make this cgroup empty */
1556 lru_add_drain_all();
f817ed48
KH
1557 /* try to free all pages in this cgroup */
1558 shrink = 1;
1559 while (nr_retries && mem->res.usage > 0) {
1560 int progress;
c1e862c1
KH
1561
1562 if (signal_pending(current)) {
1563 ret = -EINTR;
1564 goto out;
1565 }
f817ed48 1566 progress = try_to_free_mem_cgroup_pages(mem,
2c26fdd7 1567 GFP_KERNEL, false);
c1e862c1 1568 if (!progress) {
f817ed48 1569 nr_retries--;
c1e862c1
KH
1570 /* maybe some writeback is necessary */
1571 congestion_wait(WRITE, HZ/10);
1572 }
f817ed48
KH
1573
1574 }
08e552c6 1575 lru_add_drain();
f817ed48
KH
1576 /* try move_account...there may be some *locked* pages. */
1577 if (mem->res.usage)
1578 goto move_account;
1579 ret = 0;
1580 goto out;
cc847582
KH
1581}
1582
c1e862c1
KH
1583int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1584{
1585 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1586}
1587
1588
18f59ea7
BS
1589static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1590{
1591 return mem_cgroup_from_cont(cont)->use_hierarchy;
1592}
1593
1594static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1595 u64 val)
1596{
1597 int retval = 0;
1598 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1599 struct cgroup *parent = cont->parent;
1600 struct mem_cgroup *parent_mem = NULL;
1601
1602 if (parent)
1603 parent_mem = mem_cgroup_from_cont(parent);
1604
1605 cgroup_lock();
1606 /*
1607 * If parent's use_hiearchy is set, we can't make any modifications
1608 * in the child subtrees. If it is unset, then the change can
1609 * occur, provided the current cgroup has no children.
1610 *
1611 * For the root cgroup, parent_mem is NULL, we allow value to be
1612 * set if there are no children.
1613 */
1614 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1615 (val == 1 || val == 0)) {
1616 if (list_empty(&cont->children))
1617 mem->use_hierarchy = val;
1618 else
1619 retval = -EBUSY;
1620 } else
1621 retval = -EINVAL;
1622 cgroup_unlock();
1623
1624 return retval;
1625}
1626
2c3daa72 1627static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1628{
8c7c6e34
KH
1629 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1630 u64 val = 0;
1631 int type, name;
1632
1633 type = MEMFILE_TYPE(cft->private);
1634 name = MEMFILE_ATTR(cft->private);
1635 switch (type) {
1636 case _MEM:
1637 val = res_counter_read_u64(&mem->res, name);
1638 break;
1639 case _MEMSWAP:
1640 if (do_swap_account)
1641 val = res_counter_read_u64(&mem->memsw, name);
1642 break;
1643 default:
1644 BUG();
1645 break;
1646 }
1647 return val;
8cdea7c0 1648}
628f4235
KH
1649/*
1650 * The user of this function is...
1651 * RES_LIMIT.
1652 */
856c13aa
PM
1653static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1654 const char *buffer)
8cdea7c0 1655{
628f4235 1656 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1657 int type, name;
628f4235
KH
1658 unsigned long long val;
1659 int ret;
1660
8c7c6e34
KH
1661 type = MEMFILE_TYPE(cft->private);
1662 name = MEMFILE_ATTR(cft->private);
1663 switch (name) {
628f4235
KH
1664 case RES_LIMIT:
1665 /* This function does all necessary parse...reuse it */
1666 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1667 if (ret)
1668 break;
1669 if (type == _MEM)
628f4235 1670 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1671 else
1672 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1673 break;
1674 default:
1675 ret = -EINVAL; /* should be BUG() ? */
1676 break;
1677 }
1678 return ret;
8cdea7c0
BS
1679}
1680
29f2a4da 1681static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1682{
1683 struct mem_cgroup *mem;
8c7c6e34 1684 int type, name;
c84872e1
PE
1685
1686 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1687 type = MEMFILE_TYPE(event);
1688 name = MEMFILE_ATTR(event);
1689 switch (name) {
29f2a4da 1690 case RES_MAX_USAGE:
8c7c6e34
KH
1691 if (type == _MEM)
1692 res_counter_reset_max(&mem->res);
1693 else
1694 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1695 break;
1696 case RES_FAILCNT:
8c7c6e34
KH
1697 if (type == _MEM)
1698 res_counter_reset_failcnt(&mem->res);
1699 else
1700 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1701 break;
1702 }
85cc59db 1703 return 0;
c84872e1
PE
1704}
1705
d2ceb9b7
KH
1706static const struct mem_cgroup_stat_desc {
1707 const char *msg;
1708 u64 unit;
1709} mem_cgroup_stat_desc[] = {
1710 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1711 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1712 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1713 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1714};
1715
c64745cf
PM
1716static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1717 struct cgroup_map_cb *cb)
d2ceb9b7 1718{
d2ceb9b7
KH
1719 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1720 struct mem_cgroup_stat *stat = &mem_cont->stat;
1721 int i;
1722
1723 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1724 s64 val;
1725
1726 val = mem_cgroup_read_stat(stat, i);
1727 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1728 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1729 }
6d12e2d8
KH
1730 /* showing # of active pages */
1731 {
4f98a2fe
RR
1732 unsigned long active_anon, inactive_anon;
1733 unsigned long active_file, inactive_file;
7b854121 1734 unsigned long unevictable;
4f98a2fe
RR
1735
1736 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1737 LRU_INACTIVE_ANON);
1738 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1739 LRU_ACTIVE_ANON);
1740 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1741 LRU_INACTIVE_FILE);
1742 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1743 LRU_ACTIVE_FILE);
7b854121
LS
1744 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1745 LRU_UNEVICTABLE);
1746
4f98a2fe
RR
1747 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1748 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1749 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1750 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1751 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1752
6d12e2d8 1753 }
d2ceb9b7
KH
1754 return 0;
1755}
1756
c1e862c1 1757
8cdea7c0
BS
1758static struct cftype mem_cgroup_files[] = {
1759 {
0eea1030 1760 .name = "usage_in_bytes",
8c7c6e34 1761 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 1762 .read_u64 = mem_cgroup_read,
8cdea7c0 1763 },
c84872e1
PE
1764 {
1765 .name = "max_usage_in_bytes",
8c7c6e34 1766 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 1767 .trigger = mem_cgroup_reset,
c84872e1
PE
1768 .read_u64 = mem_cgroup_read,
1769 },
8cdea7c0 1770 {
0eea1030 1771 .name = "limit_in_bytes",
8c7c6e34 1772 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 1773 .write_string = mem_cgroup_write,
2c3daa72 1774 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1775 },
1776 {
1777 .name = "failcnt",
8c7c6e34 1778 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 1779 .trigger = mem_cgroup_reset,
2c3daa72 1780 .read_u64 = mem_cgroup_read,
8cdea7c0 1781 },
d2ceb9b7
KH
1782 {
1783 .name = "stat",
c64745cf 1784 .read_map = mem_control_stat_show,
d2ceb9b7 1785 },
c1e862c1
KH
1786 {
1787 .name = "force_empty",
1788 .trigger = mem_cgroup_force_empty_write,
1789 },
18f59ea7
BS
1790 {
1791 .name = "use_hierarchy",
1792 .write_u64 = mem_cgroup_hierarchy_write,
1793 .read_u64 = mem_cgroup_hierarchy_read,
1794 },
8cdea7c0
BS
1795};
1796
8c7c6e34
KH
1797#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1798static struct cftype memsw_cgroup_files[] = {
1799 {
1800 .name = "memsw.usage_in_bytes",
1801 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1802 .read_u64 = mem_cgroup_read,
1803 },
1804 {
1805 .name = "memsw.max_usage_in_bytes",
1806 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1807 .trigger = mem_cgroup_reset,
1808 .read_u64 = mem_cgroup_read,
1809 },
1810 {
1811 .name = "memsw.limit_in_bytes",
1812 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1813 .write_string = mem_cgroup_write,
1814 .read_u64 = mem_cgroup_read,
1815 },
1816 {
1817 .name = "memsw.failcnt",
1818 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
1819 .trigger = mem_cgroup_reset,
1820 .read_u64 = mem_cgroup_read,
1821 },
1822};
1823
1824static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1825{
1826 if (!do_swap_account)
1827 return 0;
1828 return cgroup_add_files(cont, ss, memsw_cgroup_files,
1829 ARRAY_SIZE(memsw_cgroup_files));
1830};
1831#else
1832static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1833{
1834 return 0;
1835}
1836#endif
1837
6d12e2d8
KH
1838static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1839{
1840 struct mem_cgroup_per_node *pn;
1ecaab2b 1841 struct mem_cgroup_per_zone *mz;
b69408e8 1842 enum lru_list l;
41e3355d 1843 int zone, tmp = node;
1ecaab2b
KH
1844 /*
1845 * This routine is called against possible nodes.
1846 * But it's BUG to call kmalloc() against offline node.
1847 *
1848 * TODO: this routine can waste much memory for nodes which will
1849 * never be onlined. It's better to use memory hotplug callback
1850 * function.
1851 */
41e3355d
KH
1852 if (!node_state(node, N_NORMAL_MEMORY))
1853 tmp = -1;
1854 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
1855 if (!pn)
1856 return 1;
1ecaab2b 1857
6d12e2d8
KH
1858 mem->info.nodeinfo[node] = pn;
1859 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1860
1861 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1862 mz = &pn->zoneinfo[zone];
b69408e8
CL
1863 for_each_lru(l)
1864 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 1865 }
6d12e2d8
KH
1866 return 0;
1867}
1868
1ecaab2b
KH
1869static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1870{
1871 kfree(mem->info.nodeinfo[node]);
1872}
1873
c8dad2bb
JB
1874static int mem_cgroup_size(void)
1875{
1876 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
1877 return sizeof(struct mem_cgroup) + cpustat_size;
1878}
1879
33327948
KH
1880static struct mem_cgroup *mem_cgroup_alloc(void)
1881{
1882 struct mem_cgroup *mem;
c8dad2bb 1883 int size = mem_cgroup_size();
33327948 1884
c8dad2bb
JB
1885 if (size < PAGE_SIZE)
1886 mem = kmalloc(size, GFP_KERNEL);
33327948 1887 else
c8dad2bb 1888 mem = vmalloc(size);
33327948
KH
1889
1890 if (mem)
c8dad2bb 1891 memset(mem, 0, size);
33327948
KH
1892 return mem;
1893}
1894
8c7c6e34
KH
1895/*
1896 * At destroying mem_cgroup, references from swap_cgroup can remain.
1897 * (scanning all at force_empty is too costly...)
1898 *
1899 * Instead of clearing all references at force_empty, we remember
1900 * the number of reference from swap_cgroup and free mem_cgroup when
1901 * it goes down to 0.
1902 *
1903 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
1904 * entry which points to this memcg will be ignore at swapin.
1905 *
1906 * Removal of cgroup itself succeeds regardless of refs from swap.
1907 */
1908
33327948
KH
1909static void mem_cgroup_free(struct mem_cgroup *mem)
1910{
08e552c6
KH
1911 int node;
1912
8c7c6e34
KH
1913 if (atomic_read(&mem->refcnt) > 0)
1914 return;
08e552c6
KH
1915
1916
1917 for_each_node_state(node, N_POSSIBLE)
1918 free_mem_cgroup_per_zone_info(mem, node);
1919
c8dad2bb 1920 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
1921 kfree(mem);
1922 else
1923 vfree(mem);
1924}
1925
8c7c6e34
KH
1926static void mem_cgroup_get(struct mem_cgroup *mem)
1927{
1928 atomic_inc(&mem->refcnt);
1929}
1930
1931static void mem_cgroup_put(struct mem_cgroup *mem)
1932{
1933 if (atomic_dec_and_test(&mem->refcnt)) {
1934 if (!mem->obsolete)
1935 return;
1936 mem_cgroup_free(mem);
1937 }
1938}
1939
33327948 1940
c077719b
KH
1941#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1942static void __init enable_swap_cgroup(void)
1943{
f8d66542 1944 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
1945 do_swap_account = 1;
1946}
1947#else
1948static void __init enable_swap_cgroup(void)
1949{
1950}
1951#endif
1952
8cdea7c0
BS
1953static struct cgroup_subsys_state *
1954mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1955{
28dbc4b6 1956 struct mem_cgroup *mem, *parent;
6d12e2d8 1957 int node;
8cdea7c0 1958
c8dad2bb
JB
1959 mem = mem_cgroup_alloc();
1960 if (!mem)
1961 return ERR_PTR(-ENOMEM);
78fb7466 1962
6d12e2d8
KH
1963 for_each_node_state(node, N_POSSIBLE)
1964 if (alloc_mem_cgroup_per_zone_info(mem, node))
1965 goto free_out;
c077719b 1966 /* root ? */
28dbc4b6 1967 if (cont->parent == NULL) {
c077719b 1968 enable_swap_cgroup();
28dbc4b6 1969 parent = NULL;
18f59ea7 1970 } else {
28dbc4b6 1971 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
1972 mem->use_hierarchy = parent->use_hierarchy;
1973 }
28dbc4b6 1974
18f59ea7
BS
1975 if (parent && parent->use_hierarchy) {
1976 res_counter_init(&mem->res, &parent->res);
1977 res_counter_init(&mem->memsw, &parent->memsw);
1978 } else {
1979 res_counter_init(&mem->res, NULL);
1980 res_counter_init(&mem->memsw, NULL);
1981 }
6d12e2d8 1982
6d61ef40
BS
1983 mem->last_scanned_child = NULL;
1984
8cdea7c0 1985 return &mem->css;
6d12e2d8
KH
1986free_out:
1987 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1988 free_mem_cgroup_per_zone_info(mem, node);
c8dad2bb 1989 mem_cgroup_free(mem);
2dda81ca 1990 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1991}
1992
df878fb0
KH
1993static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1994 struct cgroup *cont)
1995{
1996 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
8c7c6e34 1997 mem->obsolete = 1;
c1e862c1 1998 mem_cgroup_force_empty(mem, false);
df878fb0
KH
1999}
2000
8cdea7c0
BS
2001static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2002 struct cgroup *cont)
2003{
33327948 2004 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
2005}
2006
2007static int mem_cgroup_populate(struct cgroup_subsys *ss,
2008 struct cgroup *cont)
2009{
8c7c6e34
KH
2010 int ret;
2011
2012 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2013 ARRAY_SIZE(mem_cgroup_files));
2014
2015 if (!ret)
2016 ret = register_memsw_files(cont, ss);
2017 return ret;
8cdea7c0
BS
2018}
2019
67e465a7
BS
2020static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2021 struct cgroup *cont,
2022 struct cgroup *old_cont,
2023 struct task_struct *p)
2024{
67e465a7 2025 /*
f9717d28
NK
2026 * FIXME: It's better to move charges of this process from old
2027 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2028 */
67e465a7
BS
2029}
2030
8cdea7c0
BS
2031struct cgroup_subsys mem_cgroup_subsys = {
2032 .name = "memory",
2033 .subsys_id = mem_cgroup_subsys_id,
2034 .create = mem_cgroup_create,
df878fb0 2035 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2036 .destroy = mem_cgroup_destroy,
2037 .populate = mem_cgroup_populate,
67e465a7 2038 .attach = mem_cgroup_move_task,
6d12e2d8 2039 .early_init = 0,
8cdea7c0 2040};
c077719b
KH
2041
2042#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2043
2044static int __init disable_swap_account(char *s)
2045{
2046 really_do_swap_account = 0;
2047 return 1;
2048}
2049__setup("noswapaccount", disable_swap_account);
2050#endif