mm: memcontrol: take a css reference for each charged page
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
3812c8c8 303 atomic_t oom_wakeups;
79dfdacc 304
1f4c025b 305 int swappiness;
3c11ecf4
KH
306 /* OOM-Killer disable */
307 int oom_kill_disable;
a7885eb8 308
2e72b634
KS
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds thresholds;
907860ed 314
2e72b634 315 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 316 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 317
9490ff27
KH
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
185efc0f 320
7dc74be0
DN
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
f894ffa8 325 unsigned long move_charge_at_immigrate;
619d094b
KH
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
312734c0
KH
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
d52aa412 332 /*
c62b1a3b 333 * percpu counter.
d52aa412 334 */
3a7951b4 335 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
d1a4c0b3 342
4bd2c1ee 343#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 344 struct cg_proto tcp_mem;
d1a4c0b3 345#endif
2633d7a0 346#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
2633d7a0 349 struct list_head memcg_slab_caches;
2633d7a0
GC
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352#endif
45cf7ebd
GC
353
354 int last_scanned_node;
355#if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359#endif
70ddf637 360
fba94807
TH
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
510fc4e1
GC
369/* internal only representation about the status of kmem accounting. */
370enum {
6de64beb 371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 372 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
373};
374
510fc4e1
GC
375#ifdef CONFIG_MEMCG_KMEM
376static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
377{
378 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
379}
7de37682
GC
380
381static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
382{
383 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
384}
385
386static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
387{
10d5ebf4
LZ
388 /*
389 * Our caller must use css_get() first, because memcg_uncharge_kmem()
390 * will call css_put() if it sees the memcg is dead.
391 */
392 smp_wmb();
7de37682
GC
393 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
394 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
395}
396
397static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
398{
399 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
400 &memcg->kmem_account_flags);
401}
510fc4e1
GC
402#endif
403
7dc74be0
DN
404/* Stuffs for move charges at task migration. */
405/*
ee5e8472
GC
406 * Types of charges to be moved. "move_charge_at_immitgrate" and
407 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
408 */
409enum move_type {
4ffef5fe 410 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 411 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
412 NR_MOVE_TYPE,
413};
414
4ffef5fe
DN
415/* "mc" and its members are protected by cgroup_mutex */
416static struct move_charge_struct {
b1dd693e 417 spinlock_t lock; /* for from, to */
4ffef5fe
DN
418 struct mem_cgroup *from;
419 struct mem_cgroup *to;
ee5e8472 420 unsigned long immigrate_flags;
4ffef5fe 421 unsigned long precharge;
854ffa8d 422 unsigned long moved_charge;
483c30b5 423 unsigned long moved_swap;
8033b97c
DN
424 struct task_struct *moving_task; /* a task moving charges */
425 wait_queue_head_t waitq; /* a waitq for other context */
426} mc = {
2bd9bb20 427 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
428 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
429};
4ffef5fe 430
90254a65
DN
431static bool move_anon(void)
432{
ee5e8472 433 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
434}
435
87946a72
DN
436static bool move_file(void)
437{
ee5e8472 438 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
439}
440
4e416953
BS
441/*
442 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
443 * limit reclaim to prevent infinite loops, if they ever occur.
444 */
a0db00fc 445#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 446#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 447
217bc319
KH
448enum charge_type {
449 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 450 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 451 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 452 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
453 NR_CHARGE_TYPE,
454};
455
8c7c6e34 456/* for encoding cft->private value on file */
86ae53e1
GC
457enum res_type {
458 _MEM,
459 _MEMSWAP,
460 _OOM_TYPE,
510fc4e1 461 _KMEM,
86ae53e1
GC
462};
463
a0db00fc
KS
464#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
465#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 466#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
467/* Used for OOM nofiier */
468#define OOM_CONTROL (0)
8c7c6e34 469
0999821b
GC
470/*
471 * The memcg_create_mutex will be held whenever a new cgroup is created.
472 * As a consequence, any change that needs to protect against new child cgroups
473 * appearing has to hold it as well.
474 */
475static DEFINE_MUTEX(memcg_create_mutex);
476
b2145145
WL
477struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
478{
a7c6d554 479 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
480}
481
70ddf637
AV
482/* Some nice accessors for the vmpressure. */
483struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
484{
485 if (!memcg)
486 memcg = root_mem_cgroup;
487 return &memcg->vmpressure;
488}
489
490struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
491{
492 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
493}
494
7ffc0edc
MH
495static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
496{
497 return (memcg == root_mem_cgroup);
498}
499
4219b2da
LZ
500/*
501 * We restrict the id in the range of [1, 65535], so it can fit into
502 * an unsigned short.
503 */
504#define MEM_CGROUP_ID_MAX USHRT_MAX
505
34c00c31
LZ
506static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
507{
15a4c835 508 return memcg->css.id;
34c00c31
LZ
509}
510
511static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
512{
513 struct cgroup_subsys_state *css;
514
7d699ddb 515 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
516 return mem_cgroup_from_css(css);
517}
518
e1aab161 519/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 520#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 521
e1aab161
GC
522void sock_update_memcg(struct sock *sk)
523{
376be5ff 524 if (mem_cgroup_sockets_enabled) {
e1aab161 525 struct mem_cgroup *memcg;
3f134619 526 struct cg_proto *cg_proto;
e1aab161
GC
527
528 BUG_ON(!sk->sk_prot->proto_cgroup);
529
f3f511e1
GC
530 /* Socket cloning can throw us here with sk_cgrp already
531 * filled. It won't however, necessarily happen from
532 * process context. So the test for root memcg given
533 * the current task's memcg won't help us in this case.
534 *
535 * Respecting the original socket's memcg is a better
536 * decision in this case.
537 */
538 if (sk->sk_cgrp) {
539 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 540 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
541 return;
542 }
543
e1aab161
GC
544 rcu_read_lock();
545 memcg = mem_cgroup_from_task(current);
3f134619 546 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 547 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
548 memcg_proto_active(cg_proto) &&
549 css_tryget_online(&memcg->css)) {
3f134619 550 sk->sk_cgrp = cg_proto;
e1aab161
GC
551 }
552 rcu_read_unlock();
553 }
554}
555EXPORT_SYMBOL(sock_update_memcg);
556
557void sock_release_memcg(struct sock *sk)
558{
376be5ff 559 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
560 struct mem_cgroup *memcg;
561 WARN_ON(!sk->sk_cgrp->memcg);
562 memcg = sk->sk_cgrp->memcg;
5347e5ae 563 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
564 }
565}
d1a4c0b3
GC
566
567struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
568{
569 if (!memcg || mem_cgroup_is_root(memcg))
570 return NULL;
571
2e685cad 572 return &memcg->tcp_mem;
d1a4c0b3
GC
573}
574EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 575
3f134619
GC
576static void disarm_sock_keys(struct mem_cgroup *memcg)
577{
2e685cad 578 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
579 return;
580 static_key_slow_dec(&memcg_socket_limit_enabled);
581}
582#else
583static void disarm_sock_keys(struct mem_cgroup *memcg)
584{
585}
586#endif
587
a8964b9b 588#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
589/*
590 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
591 * The main reason for not using cgroup id for this:
592 * this works better in sparse environments, where we have a lot of memcgs,
593 * but only a few kmem-limited. Or also, if we have, for instance, 200
594 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
595 * 200 entry array for that.
55007d84
GC
596 *
597 * The current size of the caches array is stored in
598 * memcg_limited_groups_array_size. It will double each time we have to
599 * increase it.
600 */
601static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
602int memcg_limited_groups_array_size;
603
55007d84
GC
604/*
605 * MIN_SIZE is different than 1, because we would like to avoid going through
606 * the alloc/free process all the time. In a small machine, 4 kmem-limited
607 * cgroups is a reasonable guess. In the future, it could be a parameter or
608 * tunable, but that is strictly not necessary.
609 *
b8627835 610 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
611 * this constant directly from cgroup, but it is understandable that this is
612 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 613 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
614 * increase ours as well if it increases.
615 */
616#define MEMCG_CACHES_MIN_SIZE 4
b8627835 617#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 618
d7f25f8a
GC
619/*
620 * A lot of the calls to the cache allocation functions are expected to be
621 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
622 * conditional to this static branch, we'll have to allow modules that does
623 * kmem_cache_alloc and the such to see this symbol as well
624 */
a8964b9b 625struct static_key memcg_kmem_enabled_key;
d7f25f8a 626EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 627
f3bb3043
VD
628static void memcg_free_cache_id(int id);
629
a8964b9b
GC
630static void disarm_kmem_keys(struct mem_cgroup *memcg)
631{
55007d84 632 if (memcg_kmem_is_active(memcg)) {
a8964b9b 633 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 634 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 635 }
bea207c8
GC
636 /*
637 * This check can't live in kmem destruction function,
638 * since the charges will outlive the cgroup
639 */
3e32cb2e 640 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
641}
642#else
643static void disarm_kmem_keys(struct mem_cgroup *memcg)
644{
645}
646#endif /* CONFIG_MEMCG_KMEM */
647
648static void disarm_static_keys(struct mem_cgroup *memcg)
649{
650 disarm_sock_keys(memcg);
651 disarm_kmem_keys(memcg);
652}
653
c0ff4b85 654static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 655
f64c3f54 656static struct mem_cgroup_per_zone *
e231875b 657mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 658{
e231875b
JZ
659 int nid = zone_to_nid(zone);
660 int zid = zone_idx(zone);
661
54f72fe0 662 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
663}
664
c0ff4b85 665struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 666{
c0ff4b85 667 return &memcg->css;
d324236b
WF
668}
669
f64c3f54 670static struct mem_cgroup_per_zone *
e231875b 671mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 672{
97a6c37b
JW
673 int nid = page_to_nid(page);
674 int zid = page_zonenum(page);
f64c3f54 675
e231875b 676 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
677}
678
bb4cc1a8
AM
679static struct mem_cgroup_tree_per_zone *
680soft_limit_tree_node_zone(int nid, int zid)
681{
682 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
683}
684
685static struct mem_cgroup_tree_per_zone *
686soft_limit_tree_from_page(struct page *page)
687{
688 int nid = page_to_nid(page);
689 int zid = page_zonenum(page);
690
691 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
692}
693
cf2c8127
JW
694static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
695 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 696 unsigned long new_usage_in_excess)
bb4cc1a8
AM
697{
698 struct rb_node **p = &mctz->rb_root.rb_node;
699 struct rb_node *parent = NULL;
700 struct mem_cgroup_per_zone *mz_node;
701
702 if (mz->on_tree)
703 return;
704
705 mz->usage_in_excess = new_usage_in_excess;
706 if (!mz->usage_in_excess)
707 return;
708 while (*p) {
709 parent = *p;
710 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
711 tree_node);
712 if (mz->usage_in_excess < mz_node->usage_in_excess)
713 p = &(*p)->rb_left;
714 /*
715 * We can't avoid mem cgroups that are over their soft
716 * limit by the same amount
717 */
718 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
719 p = &(*p)->rb_right;
720 }
721 rb_link_node(&mz->tree_node, parent, p);
722 rb_insert_color(&mz->tree_node, &mctz->rb_root);
723 mz->on_tree = true;
724}
725
cf2c8127
JW
726static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
727 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
728{
729 if (!mz->on_tree)
730 return;
731 rb_erase(&mz->tree_node, &mctz->rb_root);
732 mz->on_tree = false;
733}
734
cf2c8127
JW
735static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
736 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 737{
0a31bc97
JW
738 unsigned long flags;
739
740 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 741 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 742 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
743}
744
3e32cb2e
JW
745static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
746{
747 unsigned long nr_pages = page_counter_read(&memcg->memory);
748 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
749 unsigned long excess = 0;
750
751 if (nr_pages > soft_limit)
752 excess = nr_pages - soft_limit;
753
754 return excess;
755}
bb4cc1a8
AM
756
757static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
758{
3e32cb2e 759 unsigned long excess;
bb4cc1a8
AM
760 struct mem_cgroup_per_zone *mz;
761 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 762
e231875b 763 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
764 /*
765 * Necessary to update all ancestors when hierarchy is used.
766 * because their event counter is not touched.
767 */
768 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 769 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 770 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
771 /*
772 * We have to update the tree if mz is on RB-tree or
773 * mem is over its softlimit.
774 */
775 if (excess || mz->on_tree) {
0a31bc97
JW
776 unsigned long flags;
777
778 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
779 /* if on-tree, remove it */
780 if (mz->on_tree)
cf2c8127 781 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
782 /*
783 * Insert again. mz->usage_in_excess will be updated.
784 * If excess is 0, no tree ops.
785 */
cf2c8127 786 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 787 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
788 }
789 }
790}
791
792static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
793{
bb4cc1a8 794 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
795 struct mem_cgroup_per_zone *mz;
796 int nid, zid;
bb4cc1a8 797
e231875b
JZ
798 for_each_node(nid) {
799 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
800 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
801 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 802 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
803 }
804 }
805}
806
807static struct mem_cgroup_per_zone *
808__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
809{
810 struct rb_node *rightmost = NULL;
811 struct mem_cgroup_per_zone *mz;
812
813retry:
814 mz = NULL;
815 rightmost = rb_last(&mctz->rb_root);
816 if (!rightmost)
817 goto done; /* Nothing to reclaim from */
818
819 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
820 /*
821 * Remove the node now but someone else can add it back,
822 * we will to add it back at the end of reclaim to its correct
823 * position in the tree.
824 */
cf2c8127 825 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 826 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 827 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
828 goto retry;
829done:
830 return mz;
831}
832
833static struct mem_cgroup_per_zone *
834mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
835{
836 struct mem_cgroup_per_zone *mz;
837
0a31bc97 838 spin_lock_irq(&mctz->lock);
bb4cc1a8 839 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 840 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
841 return mz;
842}
843
711d3d2c
KH
844/*
845 * Implementation Note: reading percpu statistics for memcg.
846 *
847 * Both of vmstat[] and percpu_counter has threshold and do periodic
848 * synchronization to implement "quick" read. There are trade-off between
849 * reading cost and precision of value. Then, we may have a chance to implement
850 * a periodic synchronizion of counter in memcg's counter.
851 *
852 * But this _read() function is used for user interface now. The user accounts
853 * memory usage by memory cgroup and he _always_ requires exact value because
854 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
855 * have to visit all online cpus and make sum. So, for now, unnecessary
856 * synchronization is not implemented. (just implemented for cpu hotplug)
857 *
858 * If there are kernel internal actions which can make use of some not-exact
859 * value, and reading all cpu value can be performance bottleneck in some
860 * common workload, threashold and synchonization as vmstat[] should be
861 * implemented.
862 */
c0ff4b85 863static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 864 enum mem_cgroup_stat_index idx)
c62b1a3b 865{
7a159cc9 866 long val = 0;
c62b1a3b 867 int cpu;
c62b1a3b 868
711d3d2c
KH
869 get_online_cpus();
870 for_each_online_cpu(cpu)
c0ff4b85 871 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 872#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
873 spin_lock(&memcg->pcp_counter_lock);
874 val += memcg->nocpu_base.count[idx];
875 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
876#endif
877 put_online_cpus();
c62b1a3b
KH
878 return val;
879}
880
c0ff4b85 881static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
882 enum mem_cgroup_events_index idx)
883{
884 unsigned long val = 0;
885 int cpu;
886
9c567512 887 get_online_cpus();
e9f8974f 888 for_each_online_cpu(cpu)
c0ff4b85 889 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 890#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
891 spin_lock(&memcg->pcp_counter_lock);
892 val += memcg->nocpu_base.events[idx];
893 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 894#endif
9c567512 895 put_online_cpus();
e9f8974f
JW
896 return val;
897}
898
c0ff4b85 899static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 900 struct page *page,
0a31bc97 901 int nr_pages)
d52aa412 902{
b2402857
KH
903 /*
904 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
905 * counted as CACHE even if it's on ANON LRU.
906 */
0a31bc97 907 if (PageAnon(page))
b2402857 908 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 909 nr_pages);
d52aa412 910 else
b2402857 911 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 912 nr_pages);
55e462b0 913
b070e65c
DR
914 if (PageTransHuge(page))
915 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
916 nr_pages);
917
e401f176
KH
918 /* pagein of a big page is an event. So, ignore page size */
919 if (nr_pages > 0)
c0ff4b85 920 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 921 else {
c0ff4b85 922 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
923 nr_pages = -nr_pages; /* for event */
924 }
e401f176 925
13114716 926 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
927}
928
e231875b 929unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
930{
931 struct mem_cgroup_per_zone *mz;
932
933 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
934 return mz->lru_size[lru];
935}
936
e231875b
JZ
937static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
938 int nid,
939 unsigned int lru_mask)
bb2a0de9 940{
e231875b 941 unsigned long nr = 0;
889976db
YH
942 int zid;
943
e231875b 944 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 945
e231875b
JZ
946 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
947 struct mem_cgroup_per_zone *mz;
948 enum lru_list lru;
949
950 for_each_lru(lru) {
951 if (!(BIT(lru) & lru_mask))
952 continue;
953 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
954 nr += mz->lru_size[lru];
955 }
956 }
957 return nr;
889976db 958}
bb2a0de9 959
c0ff4b85 960static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 961 unsigned int lru_mask)
6d12e2d8 962{
e231875b 963 unsigned long nr = 0;
889976db 964 int nid;
6d12e2d8 965
31aaea4a 966 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
967 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
968 return nr;
d52aa412
KH
969}
970
f53d7ce3
JW
971static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
972 enum mem_cgroup_events_target target)
7a159cc9
JW
973{
974 unsigned long val, next;
975
13114716 976 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 977 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 978 /* from time_after() in jiffies.h */
f53d7ce3
JW
979 if ((long)next - (long)val < 0) {
980 switch (target) {
981 case MEM_CGROUP_TARGET_THRESH:
982 next = val + THRESHOLDS_EVENTS_TARGET;
983 break;
bb4cc1a8
AM
984 case MEM_CGROUP_TARGET_SOFTLIMIT:
985 next = val + SOFTLIMIT_EVENTS_TARGET;
986 break;
f53d7ce3
JW
987 case MEM_CGROUP_TARGET_NUMAINFO:
988 next = val + NUMAINFO_EVENTS_TARGET;
989 break;
990 default:
991 break;
992 }
993 __this_cpu_write(memcg->stat->targets[target], next);
994 return true;
7a159cc9 995 }
f53d7ce3 996 return false;
d2265e6f
KH
997}
998
999/*
1000 * Check events in order.
1001 *
1002 */
c0ff4b85 1003static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
1004{
1005 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1006 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1007 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1008 bool do_softlimit;
82b3f2a7 1009 bool do_numainfo __maybe_unused;
f53d7ce3 1010
bb4cc1a8
AM
1011 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1012 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1013#if MAX_NUMNODES > 1
1014 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1015 MEM_CGROUP_TARGET_NUMAINFO);
1016#endif
c0ff4b85 1017 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1018 if (unlikely(do_softlimit))
1019 mem_cgroup_update_tree(memcg, page);
453a9bf3 1020#if MAX_NUMNODES > 1
f53d7ce3 1021 if (unlikely(do_numainfo))
c0ff4b85 1022 atomic_inc(&memcg->numainfo_events);
453a9bf3 1023#endif
0a31bc97 1024 }
d2265e6f
KH
1025}
1026
cf475ad2 1027struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1028{
31a78f23
BS
1029 /*
1030 * mm_update_next_owner() may clear mm->owner to NULL
1031 * if it races with swapoff, page migration, etc.
1032 * So this can be called with p == NULL.
1033 */
1034 if (unlikely(!p))
1035 return NULL;
1036
073219e9 1037 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1038}
1039
df381975 1040static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1041{
c0ff4b85 1042 struct mem_cgroup *memcg = NULL;
0b7f569e 1043
54595fe2
KH
1044 rcu_read_lock();
1045 do {
6f6acb00
MH
1046 /*
1047 * Page cache insertions can happen withou an
1048 * actual mm context, e.g. during disk probing
1049 * on boot, loopback IO, acct() writes etc.
1050 */
1051 if (unlikely(!mm))
df381975 1052 memcg = root_mem_cgroup;
6f6acb00
MH
1053 else {
1054 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1055 if (unlikely(!memcg))
1056 memcg = root_mem_cgroup;
1057 }
ec903c0c 1058 } while (!css_tryget_online(&memcg->css));
54595fe2 1059 rcu_read_unlock();
c0ff4b85 1060 return memcg;
54595fe2
KH
1061}
1062
5660048c
JW
1063/**
1064 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1065 * @root: hierarchy root
1066 * @prev: previously returned memcg, NULL on first invocation
1067 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1068 *
1069 * Returns references to children of the hierarchy below @root, or
1070 * @root itself, or %NULL after a full round-trip.
1071 *
1072 * Caller must pass the return value in @prev on subsequent
1073 * invocations for reference counting, or use mem_cgroup_iter_break()
1074 * to cancel a hierarchy walk before the round-trip is complete.
1075 *
1076 * Reclaimers can specify a zone and a priority level in @reclaim to
1077 * divide up the memcgs in the hierarchy among all concurrent
1078 * reclaimers operating on the same zone and priority.
1079 */
694fbc0f 1080struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1081 struct mem_cgroup *prev,
694fbc0f 1082 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1083{
5ac8fb31
JW
1084 struct reclaim_iter *uninitialized_var(iter);
1085 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1086 struct mem_cgroup *memcg = NULL;
5ac8fb31 1087 struct mem_cgroup *pos = NULL;
711d3d2c 1088
694fbc0f
AM
1089 if (mem_cgroup_disabled())
1090 return NULL;
5660048c 1091
9f3a0d09
JW
1092 if (!root)
1093 root = root_mem_cgroup;
7d74b06f 1094
9f3a0d09 1095 if (prev && !reclaim)
5ac8fb31 1096 pos = prev;
14067bb3 1097
9f3a0d09
JW
1098 if (!root->use_hierarchy && root != root_mem_cgroup) {
1099 if (prev)
5ac8fb31 1100 goto out;
694fbc0f 1101 return root;
9f3a0d09 1102 }
14067bb3 1103
542f85f9 1104 rcu_read_lock();
5f578161 1105
5ac8fb31
JW
1106 if (reclaim) {
1107 struct mem_cgroup_per_zone *mz;
1108
1109 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1110 iter = &mz->iter[reclaim->priority];
1111
1112 if (prev && reclaim->generation != iter->generation)
1113 goto out_unlock;
1114
1115 do {
1116 pos = ACCESS_ONCE(iter->position);
1117 /*
1118 * A racing update may change the position and
1119 * put the last reference, hence css_tryget(),
1120 * or retry to see the updated position.
1121 */
1122 } while (pos && !css_tryget(&pos->css));
1123 }
1124
1125 if (pos)
1126 css = &pos->css;
1127
1128 for (;;) {
1129 css = css_next_descendant_pre(css, &root->css);
1130 if (!css) {
1131 /*
1132 * Reclaimers share the hierarchy walk, and a
1133 * new one might jump in right at the end of
1134 * the hierarchy - make sure they see at least
1135 * one group and restart from the beginning.
1136 */
1137 if (!prev)
1138 continue;
1139 break;
527a5ec9 1140 }
7d74b06f 1141
5ac8fb31
JW
1142 /*
1143 * Verify the css and acquire a reference. The root
1144 * is provided by the caller, so we know it's alive
1145 * and kicking, and don't take an extra reference.
1146 */
1147 memcg = mem_cgroup_from_css(css);
14067bb3 1148
5ac8fb31
JW
1149 if (css == &root->css)
1150 break;
542f85f9 1151
5ac8fb31
JW
1152 if (css_tryget_online(css)) {
1153 /*
1154 * Make sure the memcg is initialized:
1155 * mem_cgroup_css_online() orders the the
1156 * initialization against setting the flag.
1157 */
1158 if (smp_load_acquire(&memcg->initialized))
1159 break;
1160
1161 css_put(css);
527a5ec9 1162 }
9f3a0d09 1163
5ac8fb31
JW
1164 memcg = NULL;
1165 }
1166
1167 if (reclaim) {
1168 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1169 if (memcg)
1170 css_get(&memcg->css);
1171 if (pos)
1172 css_put(&pos->css);
1173 }
1174
1175 /*
1176 * pairs with css_tryget when dereferencing iter->position
1177 * above.
1178 */
1179 if (pos)
1180 css_put(&pos->css);
1181
1182 if (!memcg)
1183 iter->generation++;
1184 else if (!prev)
1185 reclaim->generation = iter->generation;
9f3a0d09 1186 }
5ac8fb31 1187
542f85f9
MH
1188out_unlock:
1189 rcu_read_unlock();
5ac8fb31 1190out:
c40046f3
MH
1191 if (prev && prev != root)
1192 css_put(&prev->css);
1193
9f3a0d09 1194 return memcg;
14067bb3 1195}
7d74b06f 1196
5660048c
JW
1197/**
1198 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1199 * @root: hierarchy root
1200 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1201 */
1202void mem_cgroup_iter_break(struct mem_cgroup *root,
1203 struct mem_cgroup *prev)
9f3a0d09
JW
1204{
1205 if (!root)
1206 root = root_mem_cgroup;
1207 if (prev && prev != root)
1208 css_put(&prev->css);
1209}
7d74b06f 1210
9f3a0d09
JW
1211/*
1212 * Iteration constructs for visiting all cgroups (under a tree). If
1213 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1214 * be used for reference counting.
1215 */
1216#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1217 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1218 iter != NULL; \
527a5ec9 1219 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1220
9f3a0d09 1221#define for_each_mem_cgroup(iter) \
527a5ec9 1222 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1223 iter != NULL; \
527a5ec9 1224 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1225
68ae564b 1226void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1227{
c0ff4b85 1228 struct mem_cgroup *memcg;
456f998e 1229
456f998e 1230 rcu_read_lock();
c0ff4b85
R
1231 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1232 if (unlikely(!memcg))
456f998e
YH
1233 goto out;
1234
1235 switch (idx) {
456f998e 1236 case PGFAULT:
0e574a93
JW
1237 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1238 break;
1239 case PGMAJFAULT:
1240 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1241 break;
1242 default:
1243 BUG();
1244 }
1245out:
1246 rcu_read_unlock();
1247}
68ae564b 1248EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1249
925b7673
JW
1250/**
1251 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1252 * @zone: zone of the wanted lruvec
fa9add64 1253 * @memcg: memcg of the wanted lruvec
925b7673
JW
1254 *
1255 * Returns the lru list vector holding pages for the given @zone and
1256 * @mem. This can be the global zone lruvec, if the memory controller
1257 * is disabled.
1258 */
1259struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1260 struct mem_cgroup *memcg)
1261{
1262 struct mem_cgroup_per_zone *mz;
bea8c150 1263 struct lruvec *lruvec;
925b7673 1264
bea8c150
HD
1265 if (mem_cgroup_disabled()) {
1266 lruvec = &zone->lruvec;
1267 goto out;
1268 }
925b7673 1269
e231875b 1270 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1271 lruvec = &mz->lruvec;
1272out:
1273 /*
1274 * Since a node can be onlined after the mem_cgroup was created,
1275 * we have to be prepared to initialize lruvec->zone here;
1276 * and if offlined then reonlined, we need to reinitialize it.
1277 */
1278 if (unlikely(lruvec->zone != zone))
1279 lruvec->zone = zone;
1280 return lruvec;
925b7673
JW
1281}
1282
925b7673 1283/**
fa9add64 1284 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1285 * @page: the page
fa9add64 1286 * @zone: zone of the page
925b7673 1287 */
fa9add64 1288struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1289{
08e552c6 1290 struct mem_cgroup_per_zone *mz;
925b7673
JW
1291 struct mem_cgroup *memcg;
1292 struct page_cgroup *pc;
bea8c150 1293 struct lruvec *lruvec;
6d12e2d8 1294
bea8c150
HD
1295 if (mem_cgroup_disabled()) {
1296 lruvec = &zone->lruvec;
1297 goto out;
1298 }
925b7673 1299
08e552c6 1300 pc = lookup_page_cgroup(page);
38c5d72f 1301 memcg = pc->mem_cgroup;
7512102c
HD
1302
1303 /*
fa9add64 1304 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1305 * an uncharged page off lru does nothing to secure
1306 * its former mem_cgroup from sudden removal.
1307 *
1308 * Our caller holds lru_lock, and PageCgroupUsed is updated
1309 * under page_cgroup lock: between them, they make all uses
1310 * of pc->mem_cgroup safe.
1311 */
fa9add64 1312 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1313 pc->mem_cgroup = memcg = root_mem_cgroup;
1314
e231875b 1315 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1316 lruvec = &mz->lruvec;
1317out:
1318 /*
1319 * Since a node can be onlined after the mem_cgroup was created,
1320 * we have to be prepared to initialize lruvec->zone here;
1321 * and if offlined then reonlined, we need to reinitialize it.
1322 */
1323 if (unlikely(lruvec->zone != zone))
1324 lruvec->zone = zone;
1325 return lruvec;
08e552c6 1326}
b69408e8 1327
925b7673 1328/**
fa9add64
HD
1329 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1330 * @lruvec: mem_cgroup per zone lru vector
1331 * @lru: index of lru list the page is sitting on
1332 * @nr_pages: positive when adding or negative when removing
925b7673 1333 *
fa9add64
HD
1334 * This function must be called when a page is added to or removed from an
1335 * lru list.
3f58a829 1336 */
fa9add64
HD
1337void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1338 int nr_pages)
3f58a829
MK
1339{
1340 struct mem_cgroup_per_zone *mz;
fa9add64 1341 unsigned long *lru_size;
3f58a829
MK
1342
1343 if (mem_cgroup_disabled())
1344 return;
1345
fa9add64
HD
1346 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1347 lru_size = mz->lru_size + lru;
1348 *lru_size += nr_pages;
1349 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1350}
544122e5 1351
3e92041d 1352/*
c0ff4b85 1353 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1354 * hierarchy subtree
1355 */
c3ac9a8a
JW
1356bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1357 struct mem_cgroup *memcg)
3e92041d 1358{
91c63734
JW
1359 if (root_memcg == memcg)
1360 return true;
3a981f48 1361 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1362 return false;
b47f77b5 1363 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1364}
1365
1366static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1367 struct mem_cgroup *memcg)
1368{
1369 bool ret;
1370
91c63734 1371 rcu_read_lock();
c3ac9a8a 1372 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1373 rcu_read_unlock();
1374 return ret;
3e92041d
MH
1375}
1376
ffbdccf5
DR
1377bool task_in_mem_cgroup(struct task_struct *task,
1378 const struct mem_cgroup *memcg)
4c4a2214 1379{
0b7f569e 1380 struct mem_cgroup *curr = NULL;
158e0a2d 1381 struct task_struct *p;
ffbdccf5 1382 bool ret;
4c4a2214 1383
158e0a2d 1384 p = find_lock_task_mm(task);
de077d22 1385 if (p) {
df381975 1386 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1387 task_unlock(p);
1388 } else {
1389 /*
1390 * All threads may have already detached their mm's, but the oom
1391 * killer still needs to detect if they have already been oom
1392 * killed to prevent needlessly killing additional tasks.
1393 */
ffbdccf5 1394 rcu_read_lock();
de077d22
DR
1395 curr = mem_cgroup_from_task(task);
1396 if (curr)
1397 css_get(&curr->css);
ffbdccf5 1398 rcu_read_unlock();
de077d22 1399 }
d31f56db 1400 /*
c0ff4b85 1401 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1402 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1403 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1404 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1405 */
c0ff4b85 1406 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1407 css_put(&curr->css);
4c4a2214
DR
1408 return ret;
1409}
1410
c56d5c7d 1411int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1412{
9b272977 1413 unsigned long inactive_ratio;
14797e23 1414 unsigned long inactive;
9b272977 1415 unsigned long active;
c772be93 1416 unsigned long gb;
14797e23 1417
4d7dcca2
HD
1418 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1419 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1420
c772be93
KM
1421 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1422 if (gb)
1423 inactive_ratio = int_sqrt(10 * gb);
1424 else
1425 inactive_ratio = 1;
1426
9b272977 1427 return inactive * inactive_ratio < active;
14797e23
KM
1428}
1429
3e32cb2e 1430#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1431 container_of(counter, struct mem_cgroup, member)
1432
19942822 1433/**
9d11ea9f 1434 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1435 * @memcg: the memory cgroup
19942822 1436 *
9d11ea9f 1437 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1438 * pages.
19942822 1439 */
c0ff4b85 1440static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1441{
3e32cb2e
JW
1442 unsigned long margin = 0;
1443 unsigned long count;
1444 unsigned long limit;
9d11ea9f 1445
3e32cb2e
JW
1446 count = page_counter_read(&memcg->memory);
1447 limit = ACCESS_ONCE(memcg->memory.limit);
1448 if (count < limit)
1449 margin = limit - count;
1450
1451 if (do_swap_account) {
1452 count = page_counter_read(&memcg->memsw);
1453 limit = ACCESS_ONCE(memcg->memsw.limit);
1454 if (count <= limit)
1455 margin = min(margin, limit - count);
1456 }
1457
1458 return margin;
19942822
JW
1459}
1460
1f4c025b 1461int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1462{
a7885eb8 1463 /* root ? */
14208b0e 1464 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1465 return vm_swappiness;
1466
bf1ff263 1467 return memcg->swappiness;
a7885eb8
KM
1468}
1469
619d094b
KH
1470/*
1471 * memcg->moving_account is used for checking possibility that some thread is
1472 * calling move_account(). When a thread on CPU-A starts moving pages under
1473 * a memcg, other threads should check memcg->moving_account under
1474 * rcu_read_lock(), like this:
1475 *
1476 * CPU-A CPU-B
1477 * rcu_read_lock()
1478 * memcg->moving_account+1 if (memcg->mocing_account)
1479 * take heavy locks.
1480 * synchronize_rcu() update something.
1481 * rcu_read_unlock()
1482 * start move here.
1483 */
4331f7d3 1484
c0ff4b85 1485static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1486{
619d094b 1487 atomic_inc(&memcg->moving_account);
32047e2a
KH
1488 synchronize_rcu();
1489}
1490
c0ff4b85 1491static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1492{
619d094b
KH
1493 /*
1494 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1495 * We check NULL in callee rather than caller.
1496 */
d7365e78 1497 if (memcg)
619d094b 1498 atomic_dec(&memcg->moving_account);
32047e2a 1499}
619d094b 1500
32047e2a 1501/*
bdcbb659 1502 * A routine for checking "mem" is under move_account() or not.
32047e2a 1503 *
bdcbb659
QH
1504 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1505 * moving cgroups. This is for waiting at high-memory pressure
1506 * caused by "move".
32047e2a 1507 */
c0ff4b85 1508static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1509{
2bd9bb20
KH
1510 struct mem_cgroup *from;
1511 struct mem_cgroup *to;
4b534334 1512 bool ret = false;
2bd9bb20
KH
1513 /*
1514 * Unlike task_move routines, we access mc.to, mc.from not under
1515 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1516 */
1517 spin_lock(&mc.lock);
1518 from = mc.from;
1519 to = mc.to;
1520 if (!from)
1521 goto unlock;
3e92041d 1522
c0ff4b85
R
1523 ret = mem_cgroup_same_or_subtree(memcg, from)
1524 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1525unlock:
1526 spin_unlock(&mc.lock);
4b534334
KH
1527 return ret;
1528}
1529
c0ff4b85 1530static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1531{
1532 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1533 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1534 DEFINE_WAIT(wait);
1535 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1536 /* moving charge context might have finished. */
1537 if (mc.moving_task)
1538 schedule();
1539 finish_wait(&mc.waitq, &wait);
1540 return true;
1541 }
1542 }
1543 return false;
1544}
1545
312734c0
KH
1546/*
1547 * Take this lock when
1548 * - a code tries to modify page's memcg while it's USED.
1549 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1550 */
1551static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1552 unsigned long *flags)
1553{
1554 spin_lock_irqsave(&memcg->move_lock, *flags);
1555}
1556
1557static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1558 unsigned long *flags)
1559{
1560 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1561}
1562
58cf188e 1563#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1564/**
58cf188e 1565 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1566 * @memcg: The memory cgroup that went over limit
1567 * @p: Task that is going to be killed
1568 *
1569 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1570 * enabled
1571 */
1572void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1573{
e61734c5 1574 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1575 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1576 struct mem_cgroup *iter;
1577 unsigned int i;
e222432b 1578
58cf188e 1579 if (!p)
e222432b
BS
1580 return;
1581
08088cb9 1582 mutex_lock(&oom_info_lock);
e222432b
BS
1583 rcu_read_lock();
1584
e61734c5
TH
1585 pr_info("Task in ");
1586 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1587 pr_info(" killed as a result of limit of ");
1588 pr_cont_cgroup_path(memcg->css.cgroup);
1589 pr_info("\n");
e222432b 1590
e222432b
BS
1591 rcu_read_unlock();
1592
3e32cb2e
JW
1593 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1594 K((u64)page_counter_read(&memcg->memory)),
1595 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1596 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1597 K((u64)page_counter_read(&memcg->memsw)),
1598 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1599 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1600 K((u64)page_counter_read(&memcg->kmem)),
1601 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1602
1603 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1604 pr_info("Memory cgroup stats for ");
1605 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1606 pr_cont(":");
1607
1608 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1609 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1610 continue;
1611 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1612 K(mem_cgroup_read_stat(iter, i)));
1613 }
1614
1615 for (i = 0; i < NR_LRU_LISTS; i++)
1616 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1617 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1618
1619 pr_cont("\n");
1620 }
08088cb9 1621 mutex_unlock(&oom_info_lock);
e222432b
BS
1622}
1623
81d39c20
KH
1624/*
1625 * This function returns the number of memcg under hierarchy tree. Returns
1626 * 1(self count) if no children.
1627 */
c0ff4b85 1628static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1629{
1630 int num = 0;
7d74b06f
KH
1631 struct mem_cgroup *iter;
1632
c0ff4b85 1633 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1634 num++;
81d39c20
KH
1635 return num;
1636}
1637
a63d83f4
DR
1638/*
1639 * Return the memory (and swap, if configured) limit for a memcg.
1640 */
3e32cb2e 1641static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1642{
3e32cb2e 1643 unsigned long limit;
a63d83f4 1644
3e32cb2e 1645 limit = memcg->memory.limit;
9a5a8f19 1646 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1647 unsigned long memsw_limit;
9a5a8f19 1648
3e32cb2e
JW
1649 memsw_limit = memcg->memsw.limit;
1650 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1651 }
9a5a8f19 1652 return limit;
a63d83f4
DR
1653}
1654
19965460
DR
1655static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1656 int order)
9cbb78bb
DR
1657{
1658 struct mem_cgroup *iter;
1659 unsigned long chosen_points = 0;
1660 unsigned long totalpages;
1661 unsigned int points = 0;
1662 struct task_struct *chosen = NULL;
1663
876aafbf 1664 /*
465adcf1
DR
1665 * If current has a pending SIGKILL or is exiting, then automatically
1666 * select it. The goal is to allow it to allocate so that it may
1667 * quickly exit and free its memory.
876aafbf 1668 */
465adcf1 1669 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1670 set_thread_flag(TIF_MEMDIE);
1671 return;
1672 }
1673
1674 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1675 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1676 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1677 struct css_task_iter it;
9cbb78bb
DR
1678 struct task_struct *task;
1679
72ec7029
TH
1680 css_task_iter_start(&iter->css, &it);
1681 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1682 switch (oom_scan_process_thread(task, totalpages, NULL,
1683 false)) {
1684 case OOM_SCAN_SELECT:
1685 if (chosen)
1686 put_task_struct(chosen);
1687 chosen = task;
1688 chosen_points = ULONG_MAX;
1689 get_task_struct(chosen);
1690 /* fall through */
1691 case OOM_SCAN_CONTINUE:
1692 continue;
1693 case OOM_SCAN_ABORT:
72ec7029 1694 css_task_iter_end(&it);
9cbb78bb
DR
1695 mem_cgroup_iter_break(memcg, iter);
1696 if (chosen)
1697 put_task_struct(chosen);
1698 return;
1699 case OOM_SCAN_OK:
1700 break;
1701 };
1702 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1703 if (!points || points < chosen_points)
1704 continue;
1705 /* Prefer thread group leaders for display purposes */
1706 if (points == chosen_points &&
1707 thread_group_leader(chosen))
1708 continue;
1709
1710 if (chosen)
1711 put_task_struct(chosen);
1712 chosen = task;
1713 chosen_points = points;
1714 get_task_struct(chosen);
9cbb78bb 1715 }
72ec7029 1716 css_task_iter_end(&it);
9cbb78bb
DR
1717 }
1718
1719 if (!chosen)
1720 return;
1721 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1722 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1723 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1724}
1725
4d0c066d
KH
1726/**
1727 * test_mem_cgroup_node_reclaimable
dad7557e 1728 * @memcg: the target memcg
4d0c066d
KH
1729 * @nid: the node ID to be checked.
1730 * @noswap : specify true here if the user wants flle only information.
1731 *
1732 * This function returns whether the specified memcg contains any
1733 * reclaimable pages on a node. Returns true if there are any reclaimable
1734 * pages in the node.
1735 */
c0ff4b85 1736static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1737 int nid, bool noswap)
1738{
c0ff4b85 1739 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1740 return true;
1741 if (noswap || !total_swap_pages)
1742 return false;
c0ff4b85 1743 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1744 return true;
1745 return false;
1746
1747}
bb4cc1a8 1748#if MAX_NUMNODES > 1
889976db
YH
1749
1750/*
1751 * Always updating the nodemask is not very good - even if we have an empty
1752 * list or the wrong list here, we can start from some node and traverse all
1753 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1754 *
1755 */
c0ff4b85 1756static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1757{
1758 int nid;
453a9bf3
KH
1759 /*
1760 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1761 * pagein/pageout changes since the last update.
1762 */
c0ff4b85 1763 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1764 return;
c0ff4b85 1765 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1766 return;
1767
889976db 1768 /* make a nodemask where this memcg uses memory from */
31aaea4a 1769 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1770
31aaea4a 1771 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1772
c0ff4b85
R
1773 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1774 node_clear(nid, memcg->scan_nodes);
889976db 1775 }
453a9bf3 1776
c0ff4b85
R
1777 atomic_set(&memcg->numainfo_events, 0);
1778 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1779}
1780
1781/*
1782 * Selecting a node where we start reclaim from. Because what we need is just
1783 * reducing usage counter, start from anywhere is O,K. Considering
1784 * memory reclaim from current node, there are pros. and cons.
1785 *
1786 * Freeing memory from current node means freeing memory from a node which
1787 * we'll use or we've used. So, it may make LRU bad. And if several threads
1788 * hit limits, it will see a contention on a node. But freeing from remote
1789 * node means more costs for memory reclaim because of memory latency.
1790 *
1791 * Now, we use round-robin. Better algorithm is welcomed.
1792 */
c0ff4b85 1793int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1794{
1795 int node;
1796
c0ff4b85
R
1797 mem_cgroup_may_update_nodemask(memcg);
1798 node = memcg->last_scanned_node;
889976db 1799
c0ff4b85 1800 node = next_node(node, memcg->scan_nodes);
889976db 1801 if (node == MAX_NUMNODES)
c0ff4b85 1802 node = first_node(memcg->scan_nodes);
889976db
YH
1803 /*
1804 * We call this when we hit limit, not when pages are added to LRU.
1805 * No LRU may hold pages because all pages are UNEVICTABLE or
1806 * memcg is too small and all pages are not on LRU. In that case,
1807 * we use curret node.
1808 */
1809 if (unlikely(node == MAX_NUMNODES))
1810 node = numa_node_id();
1811
c0ff4b85 1812 memcg->last_scanned_node = node;
889976db
YH
1813 return node;
1814}
1815
bb4cc1a8
AM
1816/*
1817 * Check all nodes whether it contains reclaimable pages or not.
1818 * For quick scan, we make use of scan_nodes. This will allow us to skip
1819 * unused nodes. But scan_nodes is lazily updated and may not cotain
1820 * enough new information. We need to do double check.
1821 */
1822static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1823{
1824 int nid;
1825
1826 /*
1827 * quick check...making use of scan_node.
1828 * We can skip unused nodes.
1829 */
1830 if (!nodes_empty(memcg->scan_nodes)) {
1831 for (nid = first_node(memcg->scan_nodes);
1832 nid < MAX_NUMNODES;
1833 nid = next_node(nid, memcg->scan_nodes)) {
1834
1835 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1836 return true;
1837 }
1838 }
1839 /*
1840 * Check rest of nodes.
1841 */
1842 for_each_node_state(nid, N_MEMORY) {
1843 if (node_isset(nid, memcg->scan_nodes))
1844 continue;
1845 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1846 return true;
1847 }
1848 return false;
1849}
1850
889976db 1851#else
c0ff4b85 1852int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1853{
1854 return 0;
1855}
4d0c066d 1856
bb4cc1a8
AM
1857static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1858{
1859 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1860}
889976db
YH
1861#endif
1862
0608f43d
AM
1863static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1864 struct zone *zone,
1865 gfp_t gfp_mask,
1866 unsigned long *total_scanned)
1867{
1868 struct mem_cgroup *victim = NULL;
1869 int total = 0;
1870 int loop = 0;
1871 unsigned long excess;
1872 unsigned long nr_scanned;
1873 struct mem_cgroup_reclaim_cookie reclaim = {
1874 .zone = zone,
1875 .priority = 0,
1876 };
1877
3e32cb2e 1878 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1879
1880 while (1) {
1881 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1882 if (!victim) {
1883 loop++;
1884 if (loop >= 2) {
1885 /*
1886 * If we have not been able to reclaim
1887 * anything, it might because there are
1888 * no reclaimable pages under this hierarchy
1889 */
1890 if (!total)
1891 break;
1892 /*
1893 * We want to do more targeted reclaim.
1894 * excess >> 2 is not to excessive so as to
1895 * reclaim too much, nor too less that we keep
1896 * coming back to reclaim from this cgroup
1897 */
1898 if (total >= (excess >> 2) ||
1899 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1900 break;
1901 }
1902 continue;
1903 }
1904 if (!mem_cgroup_reclaimable(victim, false))
1905 continue;
1906 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1907 zone, &nr_scanned);
1908 *total_scanned += nr_scanned;
3e32cb2e 1909 if (!soft_limit_excess(root_memcg))
0608f43d 1910 break;
6d61ef40 1911 }
0608f43d
AM
1912 mem_cgroup_iter_break(root_memcg, victim);
1913 return total;
6d61ef40
BS
1914}
1915
0056f4e6
JW
1916#ifdef CONFIG_LOCKDEP
1917static struct lockdep_map memcg_oom_lock_dep_map = {
1918 .name = "memcg_oom_lock",
1919};
1920#endif
1921
fb2a6fc5
JW
1922static DEFINE_SPINLOCK(memcg_oom_lock);
1923
867578cb
KH
1924/*
1925 * Check OOM-Killer is already running under our hierarchy.
1926 * If someone is running, return false.
1927 */
fb2a6fc5 1928static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1929{
79dfdacc 1930 struct mem_cgroup *iter, *failed = NULL;
a636b327 1931
fb2a6fc5
JW
1932 spin_lock(&memcg_oom_lock);
1933
9f3a0d09 1934 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1935 if (iter->oom_lock) {
79dfdacc
MH
1936 /*
1937 * this subtree of our hierarchy is already locked
1938 * so we cannot give a lock.
1939 */
79dfdacc 1940 failed = iter;
9f3a0d09
JW
1941 mem_cgroup_iter_break(memcg, iter);
1942 break;
23751be0
JW
1943 } else
1944 iter->oom_lock = true;
7d74b06f 1945 }
867578cb 1946
fb2a6fc5
JW
1947 if (failed) {
1948 /*
1949 * OK, we failed to lock the whole subtree so we have
1950 * to clean up what we set up to the failing subtree
1951 */
1952 for_each_mem_cgroup_tree(iter, memcg) {
1953 if (iter == failed) {
1954 mem_cgroup_iter_break(memcg, iter);
1955 break;
1956 }
1957 iter->oom_lock = false;
79dfdacc 1958 }
0056f4e6
JW
1959 } else
1960 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1961
1962 spin_unlock(&memcg_oom_lock);
1963
1964 return !failed;
a636b327 1965}
0b7f569e 1966
fb2a6fc5 1967static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1968{
7d74b06f
KH
1969 struct mem_cgroup *iter;
1970
fb2a6fc5 1971 spin_lock(&memcg_oom_lock);
0056f4e6 1972 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1973 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1974 iter->oom_lock = false;
fb2a6fc5 1975 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1976}
1977
c0ff4b85 1978static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1979{
1980 struct mem_cgroup *iter;
1981
c0ff4b85 1982 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1983 atomic_inc(&iter->under_oom);
1984}
1985
c0ff4b85 1986static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1987{
1988 struct mem_cgroup *iter;
1989
867578cb
KH
1990 /*
1991 * When a new child is created while the hierarchy is under oom,
1992 * mem_cgroup_oom_lock() may not be called. We have to use
1993 * atomic_add_unless() here.
1994 */
c0ff4b85 1995 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1996 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1997}
1998
867578cb
KH
1999static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2000
dc98df5a 2001struct oom_wait_info {
d79154bb 2002 struct mem_cgroup *memcg;
dc98df5a
KH
2003 wait_queue_t wait;
2004};
2005
2006static int memcg_oom_wake_function(wait_queue_t *wait,
2007 unsigned mode, int sync, void *arg)
2008{
d79154bb
HD
2009 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2010 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2011 struct oom_wait_info *oom_wait_info;
2012
2013 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2014 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2015
dc98df5a 2016 /*
d79154bb 2017 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2018 * Then we can use css_is_ancestor without taking care of RCU.
2019 */
c0ff4b85
R
2020 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2021 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2022 return 0;
dc98df5a
KH
2023 return autoremove_wake_function(wait, mode, sync, arg);
2024}
2025
c0ff4b85 2026static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2027{
3812c8c8 2028 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2029 /* for filtering, pass "memcg" as argument. */
2030 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2031}
2032
c0ff4b85 2033static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2034{
c0ff4b85
R
2035 if (memcg && atomic_read(&memcg->under_oom))
2036 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2037}
2038
3812c8c8 2039static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2040{
3812c8c8
JW
2041 if (!current->memcg_oom.may_oom)
2042 return;
867578cb 2043 /*
49426420
JW
2044 * We are in the middle of the charge context here, so we
2045 * don't want to block when potentially sitting on a callstack
2046 * that holds all kinds of filesystem and mm locks.
2047 *
2048 * Also, the caller may handle a failed allocation gracefully
2049 * (like optional page cache readahead) and so an OOM killer
2050 * invocation might not even be necessary.
2051 *
2052 * That's why we don't do anything here except remember the
2053 * OOM context and then deal with it at the end of the page
2054 * fault when the stack is unwound, the locks are released,
2055 * and when we know whether the fault was overall successful.
867578cb 2056 */
49426420
JW
2057 css_get(&memcg->css);
2058 current->memcg_oom.memcg = memcg;
2059 current->memcg_oom.gfp_mask = mask;
2060 current->memcg_oom.order = order;
3812c8c8
JW
2061}
2062
2063/**
2064 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2065 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2066 *
49426420
JW
2067 * This has to be called at the end of a page fault if the memcg OOM
2068 * handler was enabled.
3812c8c8 2069 *
49426420 2070 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2071 * sleep on a waitqueue until the userspace task resolves the
2072 * situation. Sleeping directly in the charge context with all kinds
2073 * of locks held is not a good idea, instead we remember an OOM state
2074 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2075 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2076 *
2077 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2078 * completed, %false otherwise.
3812c8c8 2079 */
49426420 2080bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2081{
49426420 2082 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2083 struct oom_wait_info owait;
49426420 2084 bool locked;
3812c8c8
JW
2085
2086 /* OOM is global, do not handle */
3812c8c8 2087 if (!memcg)
49426420 2088 return false;
3812c8c8 2089
49426420
JW
2090 if (!handle)
2091 goto cleanup;
3812c8c8
JW
2092
2093 owait.memcg = memcg;
2094 owait.wait.flags = 0;
2095 owait.wait.func = memcg_oom_wake_function;
2096 owait.wait.private = current;
2097 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2098
3812c8c8 2099 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2100 mem_cgroup_mark_under_oom(memcg);
2101
2102 locked = mem_cgroup_oom_trylock(memcg);
2103
2104 if (locked)
2105 mem_cgroup_oom_notify(memcg);
2106
2107 if (locked && !memcg->oom_kill_disable) {
2108 mem_cgroup_unmark_under_oom(memcg);
2109 finish_wait(&memcg_oom_waitq, &owait.wait);
2110 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2111 current->memcg_oom.order);
2112 } else {
3812c8c8 2113 schedule();
49426420
JW
2114 mem_cgroup_unmark_under_oom(memcg);
2115 finish_wait(&memcg_oom_waitq, &owait.wait);
2116 }
2117
2118 if (locked) {
fb2a6fc5
JW
2119 mem_cgroup_oom_unlock(memcg);
2120 /*
2121 * There is no guarantee that an OOM-lock contender
2122 * sees the wakeups triggered by the OOM kill
2123 * uncharges. Wake any sleepers explicitely.
2124 */
2125 memcg_oom_recover(memcg);
2126 }
49426420
JW
2127cleanup:
2128 current->memcg_oom.memcg = NULL;
3812c8c8 2129 css_put(&memcg->css);
867578cb 2130 return true;
0b7f569e
KH
2131}
2132
d7365e78
JW
2133/**
2134 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2135 * @page: page that is going to change accounted state
2136 * @locked: &memcg->move_lock slowpath was taken
2137 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 2138 *
d7365e78
JW
2139 * This function must mark the beginning of an accounted page state
2140 * change to prevent double accounting when the page is concurrently
2141 * being moved to another memcg:
32047e2a 2142 *
d7365e78
JW
2143 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2144 * if (TestClearPageState(page))
2145 * mem_cgroup_update_page_stat(memcg, state, -1);
2146 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 2147 *
d7365e78
JW
2148 * The RCU lock is held throughout the transaction. The fast path can
2149 * get away without acquiring the memcg->move_lock (@locked is false)
2150 * because page moving starts with an RCU grace period.
32047e2a 2151 *
d7365e78
JW
2152 * The RCU lock also protects the memcg from being freed when the page
2153 * state that is going to change is the only thing preventing the page
2154 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2155 * which allows migration to go ahead and uncharge the page before the
2156 * account transaction might be complete.
d69b042f 2157 */
d7365e78
JW
2158struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2159 bool *locked,
2160 unsigned long *flags)
89c06bd5
KH
2161{
2162 struct mem_cgroup *memcg;
2163 struct page_cgroup *pc;
2164
d7365e78
JW
2165 rcu_read_lock();
2166
2167 if (mem_cgroup_disabled())
2168 return NULL;
2169
89c06bd5
KH
2170 pc = lookup_page_cgroup(page);
2171again:
2172 memcg = pc->mem_cgroup;
2173 if (unlikely(!memcg || !PageCgroupUsed(pc)))
d7365e78
JW
2174 return NULL;
2175
2176 *locked = false;
bdcbb659 2177 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2178 return memcg;
89c06bd5
KH
2179
2180 move_lock_mem_cgroup(memcg, flags);
2181 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2182 move_unlock_mem_cgroup(memcg, flags);
2183 goto again;
2184 }
2185 *locked = true;
d7365e78
JW
2186
2187 return memcg;
89c06bd5
KH
2188}
2189
d7365e78
JW
2190/**
2191 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2192 * @memcg: the memcg that was accounted against
2193 * @locked: value received from mem_cgroup_begin_page_stat()
2194 * @flags: value received from mem_cgroup_begin_page_stat()
2195 */
2196void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2197 unsigned long flags)
89c06bd5 2198{
d7365e78
JW
2199 if (memcg && locked)
2200 move_unlock_mem_cgroup(memcg, &flags);
89c06bd5 2201
d7365e78 2202 rcu_read_unlock();
89c06bd5
KH
2203}
2204
d7365e78
JW
2205/**
2206 * mem_cgroup_update_page_stat - update page state statistics
2207 * @memcg: memcg to account against
2208 * @idx: page state item to account
2209 * @val: number of pages (positive or negative)
2210 *
2211 * See mem_cgroup_begin_page_stat() for locking requirements.
2212 */
2213void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2214 enum mem_cgroup_stat_index idx, int val)
d69b042f 2215{
658b72c5 2216 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2217
d7365e78
JW
2218 if (memcg)
2219 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2220}
26174efd 2221
cdec2e42
KH
2222/*
2223 * size of first charge trial. "32" comes from vmscan.c's magic value.
2224 * TODO: maybe necessary to use big numbers in big irons.
2225 */
7ec99d62 2226#define CHARGE_BATCH 32U
cdec2e42
KH
2227struct memcg_stock_pcp {
2228 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2229 unsigned int nr_pages;
cdec2e42 2230 struct work_struct work;
26fe6168 2231 unsigned long flags;
a0db00fc 2232#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2233};
2234static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2235static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2236
a0956d54
SS
2237/**
2238 * consume_stock: Try to consume stocked charge on this cpu.
2239 * @memcg: memcg to consume from.
2240 * @nr_pages: how many pages to charge.
2241 *
2242 * The charges will only happen if @memcg matches the current cpu's memcg
2243 * stock, and at least @nr_pages are available in that stock. Failure to
2244 * service an allocation will refill the stock.
2245 *
2246 * returns true if successful, false otherwise.
cdec2e42 2247 */
a0956d54 2248static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2249{
2250 struct memcg_stock_pcp *stock;
3e32cb2e 2251 bool ret = false;
cdec2e42 2252
a0956d54 2253 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2254 return ret;
a0956d54 2255
cdec2e42 2256 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2257 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2258 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2259 ret = true;
2260 }
cdec2e42
KH
2261 put_cpu_var(memcg_stock);
2262 return ret;
2263}
2264
2265/*
3e32cb2e 2266 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2267 */
2268static void drain_stock(struct memcg_stock_pcp *stock)
2269{
2270 struct mem_cgroup *old = stock->cached;
2271
11c9ea4e 2272 if (stock->nr_pages) {
3e32cb2e 2273 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2274 if (do_swap_account)
3e32cb2e 2275 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2276 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2277 stock->nr_pages = 0;
cdec2e42
KH
2278 }
2279 stock->cached = NULL;
cdec2e42
KH
2280}
2281
2282/*
2283 * This must be called under preempt disabled or must be called by
2284 * a thread which is pinned to local cpu.
2285 */
2286static void drain_local_stock(struct work_struct *dummy)
2287{
7c8e0181 2288 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2289 drain_stock(stock);
26fe6168 2290 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2291}
2292
e4777496
MH
2293static void __init memcg_stock_init(void)
2294{
2295 int cpu;
2296
2297 for_each_possible_cpu(cpu) {
2298 struct memcg_stock_pcp *stock =
2299 &per_cpu(memcg_stock, cpu);
2300 INIT_WORK(&stock->work, drain_local_stock);
2301 }
2302}
2303
cdec2e42 2304/*
3e32cb2e 2305 * Cache charges(val) to local per_cpu area.
320cc51d 2306 * This will be consumed by consume_stock() function, later.
cdec2e42 2307 */
c0ff4b85 2308static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2309{
2310 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2311
c0ff4b85 2312 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2313 drain_stock(stock);
c0ff4b85 2314 stock->cached = memcg;
cdec2e42 2315 }
11c9ea4e 2316 stock->nr_pages += nr_pages;
cdec2e42
KH
2317 put_cpu_var(memcg_stock);
2318}
2319
2320/*
c0ff4b85 2321 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2322 * of the hierarchy under it. sync flag says whether we should block
2323 * until the work is done.
cdec2e42 2324 */
c0ff4b85 2325static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2326{
26fe6168 2327 int cpu, curcpu;
d38144b7 2328
cdec2e42 2329 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2330 get_online_cpus();
5af12d0e 2331 curcpu = get_cpu();
cdec2e42
KH
2332 for_each_online_cpu(cpu) {
2333 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2334 struct mem_cgroup *memcg;
26fe6168 2335
c0ff4b85
R
2336 memcg = stock->cached;
2337 if (!memcg || !stock->nr_pages)
26fe6168 2338 continue;
c0ff4b85 2339 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2340 continue;
d1a05b69
MH
2341 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2342 if (cpu == curcpu)
2343 drain_local_stock(&stock->work);
2344 else
2345 schedule_work_on(cpu, &stock->work);
2346 }
cdec2e42 2347 }
5af12d0e 2348 put_cpu();
d38144b7
MH
2349
2350 if (!sync)
2351 goto out;
2352
2353 for_each_online_cpu(cpu) {
2354 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2355 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2356 flush_work(&stock->work);
2357 }
2358out:
f894ffa8 2359 put_online_cpus();
d38144b7
MH
2360}
2361
2362/*
2363 * Tries to drain stocked charges in other cpus. This function is asynchronous
2364 * and just put a work per cpu for draining localy on each cpu. Caller can
3e32cb2e 2365 * expects some charges will be back later but cannot wait for it.
d38144b7 2366 */
c0ff4b85 2367static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2368{
9f50fad6
MH
2369 /*
2370 * If someone calls draining, avoid adding more kworker runs.
2371 */
2372 if (!mutex_trylock(&percpu_charge_mutex))
2373 return;
c0ff4b85 2374 drain_all_stock(root_memcg, false);
9f50fad6 2375 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2376}
2377
2378/* This is a synchronous drain interface. */
c0ff4b85 2379static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2380{
2381 /* called when force_empty is called */
9f50fad6 2382 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2383 drain_all_stock(root_memcg, true);
9f50fad6 2384 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2385}
2386
711d3d2c
KH
2387/*
2388 * This function drains percpu counter value from DEAD cpu and
2389 * move it to local cpu. Note that this function can be preempted.
2390 */
c0ff4b85 2391static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2392{
2393 int i;
2394
c0ff4b85 2395 spin_lock(&memcg->pcp_counter_lock);
6104621d 2396 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2397 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2398
c0ff4b85
R
2399 per_cpu(memcg->stat->count[i], cpu) = 0;
2400 memcg->nocpu_base.count[i] += x;
711d3d2c 2401 }
e9f8974f 2402 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2403 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2404
c0ff4b85
R
2405 per_cpu(memcg->stat->events[i], cpu) = 0;
2406 memcg->nocpu_base.events[i] += x;
e9f8974f 2407 }
c0ff4b85 2408 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2409}
2410
0db0628d 2411static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2412 unsigned long action,
2413 void *hcpu)
2414{
2415 int cpu = (unsigned long)hcpu;
2416 struct memcg_stock_pcp *stock;
711d3d2c 2417 struct mem_cgroup *iter;
cdec2e42 2418
619d094b 2419 if (action == CPU_ONLINE)
1489ebad 2420 return NOTIFY_OK;
1489ebad 2421
d833049b 2422 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2423 return NOTIFY_OK;
711d3d2c 2424
9f3a0d09 2425 for_each_mem_cgroup(iter)
711d3d2c
KH
2426 mem_cgroup_drain_pcp_counter(iter, cpu);
2427
cdec2e42
KH
2428 stock = &per_cpu(memcg_stock, cpu);
2429 drain_stock(stock);
2430 return NOTIFY_OK;
2431}
2432
00501b53
JW
2433static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2434 unsigned int nr_pages)
8a9f3ccd 2435{
7ec99d62 2436 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2437 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2438 struct mem_cgroup *mem_over_limit;
3e32cb2e 2439 struct page_counter *counter;
6539cc05 2440 unsigned long nr_reclaimed;
b70a2a21
JW
2441 bool may_swap = true;
2442 bool drained = false;
05b84301 2443 int ret = 0;
a636b327 2444
ce00a967
JW
2445 if (mem_cgroup_is_root(memcg))
2446 goto done;
6539cc05 2447retry:
b6b6cc72
MH
2448 if (consume_stock(memcg, nr_pages))
2449 goto done;
8a9f3ccd 2450
3fbe7244 2451 if (!do_swap_account ||
3e32cb2e
JW
2452 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2453 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2454 goto done_restock;
3fbe7244 2455 if (do_swap_account)
3e32cb2e
JW
2456 page_counter_uncharge(&memcg->memsw, batch);
2457 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2458 } else {
3e32cb2e 2459 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2460 may_swap = false;
3fbe7244 2461 }
7a81b88c 2462
6539cc05
JW
2463 if (batch > nr_pages) {
2464 batch = nr_pages;
2465 goto retry;
2466 }
6d61ef40 2467
06b078fc
JW
2468 /*
2469 * Unlike in global OOM situations, memcg is not in a physical
2470 * memory shortage. Allow dying and OOM-killed tasks to
2471 * bypass the last charges so that they can exit quickly and
2472 * free their memory.
2473 */
2474 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2475 fatal_signal_pending(current) ||
2476 current->flags & PF_EXITING))
2477 goto bypass;
2478
2479 if (unlikely(task_in_memcg_oom(current)))
2480 goto nomem;
2481
6539cc05
JW
2482 if (!(gfp_mask & __GFP_WAIT))
2483 goto nomem;
4b534334 2484
b70a2a21
JW
2485 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2486 gfp_mask, may_swap);
6539cc05 2487
61e02c74 2488 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2489 goto retry;
28c34c29 2490
b70a2a21
JW
2491 if (!drained) {
2492 drain_all_stock_async(mem_over_limit);
2493 drained = true;
2494 goto retry;
2495 }
2496
28c34c29
JW
2497 if (gfp_mask & __GFP_NORETRY)
2498 goto nomem;
6539cc05
JW
2499 /*
2500 * Even though the limit is exceeded at this point, reclaim
2501 * may have been able to free some pages. Retry the charge
2502 * before killing the task.
2503 *
2504 * Only for regular pages, though: huge pages are rather
2505 * unlikely to succeed so close to the limit, and we fall back
2506 * to regular pages anyway in case of failure.
2507 */
61e02c74 2508 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2509 goto retry;
2510 /*
2511 * At task move, charge accounts can be doubly counted. So, it's
2512 * better to wait until the end of task_move if something is going on.
2513 */
2514 if (mem_cgroup_wait_acct_move(mem_over_limit))
2515 goto retry;
2516
9b130619
JW
2517 if (nr_retries--)
2518 goto retry;
2519
06b078fc
JW
2520 if (gfp_mask & __GFP_NOFAIL)
2521 goto bypass;
2522
6539cc05
JW
2523 if (fatal_signal_pending(current))
2524 goto bypass;
2525
61e02c74 2526 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2527nomem:
6d1fdc48 2528 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2529 return -ENOMEM;
867578cb 2530bypass:
ce00a967 2531 return -EINTR;
6539cc05
JW
2532
2533done_restock:
e8ea14cc 2534 css_get_many(&memcg->css, batch);
6539cc05
JW
2535 if (batch > nr_pages)
2536 refill_stock(memcg, batch - nr_pages);
2537done:
05b84301 2538 return ret;
7a81b88c 2539}
8a9f3ccd 2540
00501b53 2541static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2542{
ce00a967
JW
2543 if (mem_cgroup_is_root(memcg))
2544 return;
2545
3e32cb2e 2546 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2547 if (do_swap_account)
3e32cb2e 2548 page_counter_uncharge(&memcg->memsw, nr_pages);
e8ea14cc
JW
2549
2550 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2551}
2552
a3b2d692
KH
2553/*
2554 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2555 * rcu_read_lock(). The caller is responsible for calling
2556 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2557 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2558 */
2559static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2560{
a3b2d692
KH
2561 /* ID 0 is unused ID */
2562 if (!id)
2563 return NULL;
34c00c31 2564 return mem_cgroup_from_id(id);
a3b2d692
KH
2565}
2566
0a31bc97
JW
2567/*
2568 * try_get_mem_cgroup_from_page - look up page's memcg association
2569 * @page: the page
2570 *
2571 * Look up, get a css reference, and return the memcg that owns @page.
2572 *
2573 * The page must be locked to prevent racing with swap-in and page
2574 * cache charges. If coming from an unlocked page table, the caller
2575 * must ensure the page is on the LRU or this can race with charging.
2576 */
e42d9d5d 2577struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2578{
c0ff4b85 2579 struct mem_cgroup *memcg = NULL;
3c776e64 2580 struct page_cgroup *pc;
a3b2d692 2581 unsigned short id;
b5a84319
KH
2582 swp_entry_t ent;
2583
309381fe 2584 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2585
3c776e64 2586 pc = lookup_page_cgroup(page);
a3b2d692 2587 if (PageCgroupUsed(pc)) {
c0ff4b85 2588 memcg = pc->mem_cgroup;
ec903c0c 2589 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2590 memcg = NULL;
e42d9d5d 2591 } else if (PageSwapCache(page)) {
3c776e64 2592 ent.val = page_private(page);
9fb4b7cc 2593 id = lookup_swap_cgroup_id(ent);
a3b2d692 2594 rcu_read_lock();
c0ff4b85 2595 memcg = mem_cgroup_lookup(id);
ec903c0c 2596 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2597 memcg = NULL;
a3b2d692 2598 rcu_read_unlock();
3c776e64 2599 }
c0ff4b85 2600 return memcg;
b5a84319
KH
2601}
2602
0a31bc97
JW
2603static void lock_page_lru(struct page *page, int *isolated)
2604{
2605 struct zone *zone = page_zone(page);
2606
2607 spin_lock_irq(&zone->lru_lock);
2608 if (PageLRU(page)) {
2609 struct lruvec *lruvec;
2610
2611 lruvec = mem_cgroup_page_lruvec(page, zone);
2612 ClearPageLRU(page);
2613 del_page_from_lru_list(page, lruvec, page_lru(page));
2614 *isolated = 1;
2615 } else
2616 *isolated = 0;
2617}
2618
2619static void unlock_page_lru(struct page *page, int isolated)
2620{
2621 struct zone *zone = page_zone(page);
2622
2623 if (isolated) {
2624 struct lruvec *lruvec;
2625
2626 lruvec = mem_cgroup_page_lruvec(page, zone);
2627 VM_BUG_ON_PAGE(PageLRU(page), page);
2628 SetPageLRU(page);
2629 add_page_to_lru_list(page, lruvec, page_lru(page));
2630 }
2631 spin_unlock_irq(&zone->lru_lock);
2632}
2633
00501b53 2634static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2635 bool lrucare)
7a81b88c 2636{
ce587e65 2637 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2638 int isolated;
9ce70c02 2639
309381fe 2640 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2641 /*
2642 * we don't need page_cgroup_lock about tail pages, becase they are not
2643 * accessed by any other context at this point.
2644 */
9ce70c02
HD
2645
2646 /*
2647 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2648 * may already be on some other mem_cgroup's LRU. Take care of it.
2649 */
0a31bc97
JW
2650 if (lrucare)
2651 lock_page_lru(page, &isolated);
9ce70c02 2652
0a31bc97
JW
2653 /*
2654 * Nobody should be changing or seriously looking at
2655 * pc->mem_cgroup and pc->flags at this point:
2656 *
2657 * - the page is uncharged
2658 *
2659 * - the page is off-LRU
2660 *
2661 * - an anonymous fault has exclusive page access, except for
2662 * a locked page table
2663 *
2664 * - a page cache insertion, a swapin fault, or a migration
2665 * have the page locked
2666 */
c0ff4b85 2667 pc->mem_cgroup = memcg;
0a31bc97 2668 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
9ce70c02 2669
0a31bc97
JW
2670 if (lrucare)
2671 unlock_page_lru(page, isolated);
7a81b88c 2672}
66e1707b 2673
7ae1e1d0 2674#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2675/*
2676 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2677 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2678 */
2679static DEFINE_MUTEX(memcg_slab_mutex);
2680
d6441637
VD
2681static DEFINE_MUTEX(activate_kmem_mutex);
2682
1f458cbf
GC
2683/*
2684 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2685 * in the memcg_cache_params struct.
2686 */
2687static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2688{
2689 struct kmem_cache *cachep;
2690
2691 VM_BUG_ON(p->is_root_cache);
2692 cachep = p->root_cache;
7a67d7ab 2693 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2694}
2695
749c5415 2696#ifdef CONFIG_SLABINFO
2da8ca82 2697static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2698{
2da8ca82 2699 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2700 struct memcg_cache_params *params;
2701
cf2b8fbf 2702 if (!memcg_kmem_is_active(memcg))
749c5415
GC
2703 return -EIO;
2704
2705 print_slabinfo_header(m);
2706
bd673145 2707 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2708 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2709 cache_show(memcg_params_to_cache(params), m);
bd673145 2710 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2711
2712 return 0;
2713}
2714#endif
2715
3e32cb2e
JW
2716static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2717 unsigned long nr_pages)
7ae1e1d0 2718{
3e32cb2e 2719 struct page_counter *counter;
7ae1e1d0 2720 int ret = 0;
7ae1e1d0 2721
3e32cb2e
JW
2722 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2723 if (ret < 0)
7ae1e1d0
GC
2724 return ret;
2725
3e32cb2e 2726 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2727 if (ret == -EINTR) {
2728 /*
00501b53
JW
2729 * try_charge() chose to bypass to root due to OOM kill or
2730 * fatal signal. Since our only options are to either fail
2731 * the allocation or charge it to this cgroup, do it as a
2732 * temporary condition. But we can't fail. From a kmem/slab
2733 * perspective, the cache has already been selected, by
2734 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2735 * our minds.
2736 *
2737 * This condition will only trigger if the task entered
00501b53
JW
2738 * memcg_charge_kmem in a sane state, but was OOM-killed
2739 * during try_charge() above. Tasks that were already dying
2740 * when the allocation triggers should have been already
7ae1e1d0
GC
2741 * directed to the root cgroup in memcontrol.h
2742 */
3e32cb2e 2743 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2744 if (do_swap_account)
3e32cb2e 2745 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2746 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2747 ret = 0;
2748 } else if (ret)
3e32cb2e 2749 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2750
2751 return ret;
2752}
2753
3e32cb2e
JW
2754static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2755 unsigned long nr_pages)
7ae1e1d0 2756{
3e32cb2e 2757 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2758 if (do_swap_account)
3e32cb2e 2759 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682
GC
2760
2761 /* Not down to 0 */
e8ea14cc
JW
2762 if (page_counter_uncharge(&memcg->kmem, nr_pages)) {
2763 css_put_many(&memcg->css, nr_pages);
7de37682 2764 return;
e8ea14cc 2765 }
7de37682 2766
10d5ebf4
LZ
2767 /*
2768 * Releases a reference taken in kmem_cgroup_css_offline in case
2769 * this last uncharge is racing with the offlining code or it is
2770 * outliving the memcg existence.
2771 *
2772 * The memory barrier imposed by test&clear is paired with the
2773 * explicit one in memcg_kmem_mark_dead().
2774 */
7de37682 2775 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2776 css_put(&memcg->css);
e8ea14cc
JW
2777
2778 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2779}
2780
2633d7a0
GC
2781/*
2782 * helper for acessing a memcg's index. It will be used as an index in the
2783 * child cache array in kmem_cache, and also to derive its name. This function
2784 * will return -1 when this is not a kmem-limited memcg.
2785 */
2786int memcg_cache_id(struct mem_cgroup *memcg)
2787{
2788 return memcg ? memcg->kmemcg_id : -1;
2789}
2790
f3bb3043 2791static int memcg_alloc_cache_id(void)
55007d84 2792{
f3bb3043
VD
2793 int id, size;
2794 int err;
2795
2796 id = ida_simple_get(&kmem_limited_groups,
2797 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2798 if (id < 0)
2799 return id;
55007d84 2800
f3bb3043
VD
2801 if (id < memcg_limited_groups_array_size)
2802 return id;
2803
2804 /*
2805 * There's no space for the new id in memcg_caches arrays,
2806 * so we have to grow them.
2807 */
2808
2809 size = 2 * (id + 1);
55007d84
GC
2810 if (size < MEMCG_CACHES_MIN_SIZE)
2811 size = MEMCG_CACHES_MIN_SIZE;
2812 else if (size > MEMCG_CACHES_MAX_SIZE)
2813 size = MEMCG_CACHES_MAX_SIZE;
2814
f3bb3043
VD
2815 mutex_lock(&memcg_slab_mutex);
2816 err = memcg_update_all_caches(size);
2817 mutex_unlock(&memcg_slab_mutex);
2818
2819 if (err) {
2820 ida_simple_remove(&kmem_limited_groups, id);
2821 return err;
2822 }
2823 return id;
2824}
2825
2826static void memcg_free_cache_id(int id)
2827{
2828 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2829}
2830
2831/*
2832 * We should update the current array size iff all caches updates succeed. This
2833 * can only be done from the slab side. The slab mutex needs to be held when
2834 * calling this.
2835 */
2836void memcg_update_array_size(int num)
2837{
f3bb3043 2838 memcg_limited_groups_array_size = num;
55007d84
GC
2839}
2840
776ed0f0
VD
2841static void memcg_register_cache(struct mem_cgroup *memcg,
2842 struct kmem_cache *root_cache)
2633d7a0 2843{
93f39eea
VD
2844 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2845 memcg_slab_mutex */
bd673145 2846 struct kmem_cache *cachep;
d7f25f8a
GC
2847 int id;
2848
bd673145
VD
2849 lockdep_assert_held(&memcg_slab_mutex);
2850
2851 id = memcg_cache_id(memcg);
2852
2853 /*
2854 * Since per-memcg caches are created asynchronously on first
2855 * allocation (see memcg_kmem_get_cache()), several threads can try to
2856 * create the same cache, but only one of them may succeed.
2857 */
2858 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2859 return;
2860
073ee1c6 2861 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2862 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2863 /*
bd673145
VD
2864 * If we could not create a memcg cache, do not complain, because
2865 * that's not critical at all as we can always proceed with the root
2866 * cache.
2edefe11 2867 */
bd673145
VD
2868 if (!cachep)
2869 return;
2edefe11 2870
33a690c4 2871 css_get(&memcg->css);
bd673145 2872 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2873
d7f25f8a 2874 /*
959c8963
VD
2875 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2876 * barrier here to ensure nobody will see the kmem_cache partially
2877 * initialized.
d7f25f8a 2878 */
959c8963
VD
2879 smp_wmb();
2880
bd673145
VD
2881 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2882 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2883}
d7f25f8a 2884
776ed0f0 2885static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2886{
bd673145 2887 struct kmem_cache *root_cache;
1aa13254
VD
2888 struct mem_cgroup *memcg;
2889 int id;
2890
bd673145 2891 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2892
bd673145 2893 BUG_ON(is_root_cache(cachep));
2edefe11 2894
bd673145
VD
2895 root_cache = cachep->memcg_params->root_cache;
2896 memcg = cachep->memcg_params->memcg;
96403da2 2897 id = memcg_cache_id(memcg);
d7f25f8a 2898
bd673145
VD
2899 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2900 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2901
bd673145
VD
2902 list_del(&cachep->memcg_params->list);
2903
2904 kmem_cache_destroy(cachep);
33a690c4
VD
2905
2906 /* drop the reference taken in memcg_register_cache */
2907 css_put(&memcg->css);
2633d7a0
GC
2908}
2909
0e9d92f2
GC
2910/*
2911 * During the creation a new cache, we need to disable our accounting mechanism
2912 * altogether. This is true even if we are not creating, but rather just
2913 * enqueing new caches to be created.
2914 *
2915 * This is because that process will trigger allocations; some visible, like
2916 * explicit kmallocs to auxiliary data structures, name strings and internal
2917 * cache structures; some well concealed, like INIT_WORK() that can allocate
2918 * objects during debug.
2919 *
2920 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2921 * to it. This may not be a bounded recursion: since the first cache creation
2922 * failed to complete (waiting on the allocation), we'll just try to create the
2923 * cache again, failing at the same point.
2924 *
2925 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2926 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2927 * inside the following two functions.
2928 */
2929static inline void memcg_stop_kmem_account(void)
2930{
2931 VM_BUG_ON(!current->mm);
2932 current->memcg_kmem_skip_account++;
2933}
2934
2935static inline void memcg_resume_kmem_account(void)
2936{
2937 VM_BUG_ON(!current->mm);
2938 current->memcg_kmem_skip_account--;
2939}
2940
776ed0f0 2941int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2942{
2943 struct kmem_cache *c;
b8529907 2944 int i, failed = 0;
7cf27982 2945
bd673145 2946 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2947 for_each_memcg_cache_index(i) {
2948 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2949 if (!c)
2950 continue;
2951
776ed0f0 2952 memcg_unregister_cache(c);
b8529907
VD
2953
2954 if (cache_from_memcg_idx(s, i))
2955 failed++;
7cf27982 2956 }
bd673145 2957 mutex_unlock(&memcg_slab_mutex);
b8529907 2958 return failed;
7cf27982
GC
2959}
2960
776ed0f0 2961static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2962{
2963 struct kmem_cache *cachep;
bd673145 2964 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2965
2966 if (!memcg_kmem_is_active(memcg))
2967 return;
2968
bd673145
VD
2969 mutex_lock(&memcg_slab_mutex);
2970 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2971 cachep = memcg_params_to_cache(params);
bd673145
VD
2972 kmem_cache_shrink(cachep);
2973 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 2974 memcg_unregister_cache(cachep);
1f458cbf 2975 }
bd673145 2976 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2977}
2978
776ed0f0 2979struct memcg_register_cache_work {
5722d094
VD
2980 struct mem_cgroup *memcg;
2981 struct kmem_cache *cachep;
2982 struct work_struct work;
2983};
2984
776ed0f0 2985static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2986{
776ed0f0
VD
2987 struct memcg_register_cache_work *cw =
2988 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2989 struct mem_cgroup *memcg = cw->memcg;
2990 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2991
bd673145 2992 mutex_lock(&memcg_slab_mutex);
776ed0f0 2993 memcg_register_cache(memcg, cachep);
bd673145
VD
2994 mutex_unlock(&memcg_slab_mutex);
2995
5722d094 2996 css_put(&memcg->css);
d7f25f8a
GC
2997 kfree(cw);
2998}
2999
3000/*
3001 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3002 */
776ed0f0
VD
3003static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3004 struct kmem_cache *cachep)
d7f25f8a 3005{
776ed0f0 3006 struct memcg_register_cache_work *cw;
d7f25f8a 3007
776ed0f0 3008 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
3009 if (cw == NULL) {
3010 css_put(&memcg->css);
d7f25f8a
GC
3011 return;
3012 }
3013
3014 cw->memcg = memcg;
3015 cw->cachep = cachep;
3016
776ed0f0 3017 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
3018 schedule_work(&cw->work);
3019}
3020
776ed0f0
VD
3021static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3022 struct kmem_cache *cachep)
0e9d92f2
GC
3023{
3024 /*
3025 * We need to stop accounting when we kmalloc, because if the
3026 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 3027 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
3028 *
3029 * However, it is better to enclose the whole function. Depending on
3030 * the debugging options enabled, INIT_WORK(), for instance, can
3031 * trigger an allocation. This too, will make us recurse. Because at
3032 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3033 * the safest choice is to do it like this, wrapping the whole function.
3034 */
3035 memcg_stop_kmem_account();
776ed0f0 3036 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
3037 memcg_resume_kmem_account();
3038}
c67a8a68
VD
3039
3040int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3041{
3e32cb2e 3042 unsigned int nr_pages = 1 << order;
c67a8a68
VD
3043 int res;
3044
3e32cb2e 3045 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 3046 if (!res)
3e32cb2e 3047 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
3048 return res;
3049}
3050
3051void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3052{
3e32cb2e
JW
3053 unsigned int nr_pages = 1 << order;
3054
3055 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
3056 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
3057}
3058
d7f25f8a
GC
3059/*
3060 * Return the kmem_cache we're supposed to use for a slab allocation.
3061 * We try to use the current memcg's version of the cache.
3062 *
3063 * If the cache does not exist yet, if we are the first user of it,
3064 * we either create it immediately, if possible, or create it asynchronously
3065 * in a workqueue.
3066 * In the latter case, we will let the current allocation go through with
3067 * the original cache.
3068 *
3069 * Can't be called in interrupt context or from kernel threads.
3070 * This function needs to be called with rcu_read_lock() held.
3071 */
3072struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3073 gfp_t gfp)
3074{
3075 struct mem_cgroup *memcg;
959c8963 3076 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3077
3078 VM_BUG_ON(!cachep->memcg_params);
3079 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3080
0e9d92f2
GC
3081 if (!current->mm || current->memcg_kmem_skip_account)
3082 return cachep;
3083
d7f25f8a
GC
3084 rcu_read_lock();
3085 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 3086
cf2b8fbf 3087 if (!memcg_kmem_is_active(memcg))
ca0dde97 3088 goto out;
d7f25f8a 3089
959c8963
VD
3090 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3091 if (likely(memcg_cachep)) {
3092 cachep = memcg_cachep;
ca0dde97 3093 goto out;
d7f25f8a
GC
3094 }
3095
ca0dde97 3096 /* The corresponding put will be done in the workqueue. */
ec903c0c 3097 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3098 goto out;
3099 rcu_read_unlock();
3100
3101 /*
3102 * If we are in a safe context (can wait, and not in interrupt
3103 * context), we could be be predictable and return right away.
3104 * This would guarantee that the allocation being performed
3105 * already belongs in the new cache.
3106 *
3107 * However, there are some clashes that can arrive from locking.
3108 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3109 * memcg_create_kmem_cache, this means no further allocation
3110 * could happen with the slab_mutex held. So it's better to
3111 * defer everything.
ca0dde97 3112 */
776ed0f0 3113 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3114 return cachep;
3115out:
3116 rcu_read_unlock();
3117 return cachep;
d7f25f8a 3118}
d7f25f8a 3119
7ae1e1d0
GC
3120/*
3121 * We need to verify if the allocation against current->mm->owner's memcg is
3122 * possible for the given order. But the page is not allocated yet, so we'll
3123 * need a further commit step to do the final arrangements.
3124 *
3125 * It is possible for the task to switch cgroups in this mean time, so at
3126 * commit time, we can't rely on task conversion any longer. We'll then use
3127 * the handle argument to return to the caller which cgroup we should commit
3128 * against. We could also return the memcg directly and avoid the pointer
3129 * passing, but a boolean return value gives better semantics considering
3130 * the compiled-out case as well.
3131 *
3132 * Returning true means the allocation is possible.
3133 */
3134bool
3135__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3136{
3137 struct mem_cgroup *memcg;
3138 int ret;
3139
3140 *_memcg = NULL;
6d42c232
GC
3141
3142 /*
3143 * Disabling accounting is only relevant for some specific memcg
3144 * internal allocations. Therefore we would initially not have such
52383431
VD
3145 * check here, since direct calls to the page allocator that are
3146 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3147 * outside memcg core. We are mostly concerned with cache allocations,
3148 * and by having this test at memcg_kmem_get_cache, we are already able
3149 * to relay the allocation to the root cache and bypass the memcg cache
3150 * altogether.
6d42c232
GC
3151 *
3152 * There is one exception, though: the SLUB allocator does not create
3153 * large order caches, but rather service large kmallocs directly from
3154 * the page allocator. Therefore, the following sequence when backed by
3155 * the SLUB allocator:
3156 *
f894ffa8
AM
3157 * memcg_stop_kmem_account();
3158 * kmalloc(<large_number>)
3159 * memcg_resume_kmem_account();
6d42c232
GC
3160 *
3161 * would effectively ignore the fact that we should skip accounting,
3162 * since it will drive us directly to this function without passing
3163 * through the cache selector memcg_kmem_get_cache. Such large
3164 * allocations are extremely rare but can happen, for instance, for the
3165 * cache arrays. We bring this test here.
3166 */
3167 if (!current->mm || current->memcg_kmem_skip_account)
3168 return true;
3169
df381975 3170 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 3171
cf2b8fbf 3172 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
3173 css_put(&memcg->css);
3174 return true;
3175 }
3176
3e32cb2e 3177 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
3178 if (!ret)
3179 *_memcg = memcg;
7ae1e1d0
GC
3180
3181 css_put(&memcg->css);
3182 return (ret == 0);
3183}
3184
3185void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3186 int order)
3187{
3188 struct page_cgroup *pc;
3189
3190 VM_BUG_ON(mem_cgroup_is_root(memcg));
3191
3192 /* The page allocation failed. Revert */
3193 if (!page) {
3e32cb2e 3194 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
3195 return;
3196 }
a840cda6
JW
3197 /*
3198 * The page is freshly allocated and not visible to any
3199 * outside callers yet. Set up pc non-atomically.
3200 */
7ae1e1d0 3201 pc = lookup_page_cgroup(page);
7ae1e1d0 3202 pc->mem_cgroup = memcg;
a840cda6 3203 pc->flags = PCG_USED;
7ae1e1d0
GC
3204}
3205
3206void __memcg_kmem_uncharge_pages(struct page *page, int order)
3207{
3208 struct mem_cgroup *memcg = NULL;
3209 struct page_cgroup *pc;
3210
3211
3212 pc = lookup_page_cgroup(page);
7ae1e1d0
GC
3213 if (!PageCgroupUsed(pc))
3214 return;
3215
a840cda6
JW
3216 memcg = pc->mem_cgroup;
3217 pc->flags = 0;
7ae1e1d0
GC
3218
3219 /*
3220 * We trust that only if there is a memcg associated with the page, it
3221 * is a valid allocation
3222 */
3223 if (!memcg)
3224 return;
3225
309381fe 3226 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3e32cb2e 3227 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0 3228}
1f458cbf 3229#else
776ed0f0 3230static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3231{
3232}
7ae1e1d0
GC
3233#endif /* CONFIG_MEMCG_KMEM */
3234
ca3e0214
KH
3235#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3236
ca3e0214
KH
3237/*
3238 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3239 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3240 * charge/uncharge will be never happen and move_account() is done under
3241 * compound_lock(), so we don't have to take care of races.
ca3e0214 3242 */
e94c8a9c 3243void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3244{
3245 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3246 struct page_cgroup *pc;
b070e65c 3247 struct mem_cgroup *memcg;
e94c8a9c 3248 int i;
ca3e0214 3249
3d37c4a9
KH
3250 if (mem_cgroup_disabled())
3251 return;
b070e65c
DR
3252
3253 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3254 for (i = 1; i < HPAGE_PMD_NR; i++) {
3255 pc = head_pc + i;
b070e65c 3256 pc->mem_cgroup = memcg;
0a31bc97 3257 pc->flags = head_pc->flags;
e94c8a9c 3258 }
b070e65c
DR
3259 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3260 HPAGE_PMD_NR);
ca3e0214 3261}
12d27107 3262#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3263
f817ed48 3264/**
de3638d9 3265 * mem_cgroup_move_account - move account of the page
5564e88b 3266 * @page: the page
7ec99d62 3267 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3268 * @pc: page_cgroup of the page.
3269 * @from: mem_cgroup which the page is moved from.
3270 * @to: mem_cgroup which the page is moved to. @from != @to.
3271 *
3272 * The caller must confirm following.
08e552c6 3273 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3274 * - compound_lock is held when nr_pages > 1
f817ed48 3275 *
2f3479b1
KH
3276 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3277 * from old cgroup.
f817ed48 3278 */
7ec99d62
JW
3279static int mem_cgroup_move_account(struct page *page,
3280 unsigned int nr_pages,
3281 struct page_cgroup *pc,
3282 struct mem_cgroup *from,
2f3479b1 3283 struct mem_cgroup *to)
f817ed48 3284{
de3638d9
JW
3285 unsigned long flags;
3286 int ret;
987eba66 3287
f817ed48 3288 VM_BUG_ON(from == to);
309381fe 3289 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3290 /*
3291 * The page is isolated from LRU. So, collapse function
3292 * will not handle this page. But page splitting can happen.
3293 * Do this check under compound_page_lock(). The caller should
3294 * hold it.
3295 */
3296 ret = -EBUSY;
7ec99d62 3297 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3298 goto out;
3299
0a31bc97
JW
3300 /*
3301 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3302 * of its source page while we change it: page migration takes
3303 * both pages off the LRU, but page cache replacement doesn't.
3304 */
3305 if (!trylock_page(page))
3306 goto out;
de3638d9
JW
3307
3308 ret = -EINVAL;
3309 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
0a31bc97 3310 goto out_unlock;
de3638d9 3311
312734c0 3312 move_lock_mem_cgroup(from, &flags);
f817ed48 3313
0a31bc97 3314 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3315 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3316 nr_pages);
3317 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3318 nr_pages);
3319 }
3ea67d06 3320
59d1d256
JW
3321 if (PageWriteback(page)) {
3322 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3323 nr_pages);
3324 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3325 nr_pages);
3326 }
3ea67d06 3327
0a31bc97
JW
3328 /*
3329 * It is safe to change pc->mem_cgroup here because the page
3330 * is referenced, charged, and isolated - we can't race with
3331 * uncharging, charging, migration, or LRU putback.
3332 */
d69b042f 3333
854ffa8d 3334 /* caller should have done css_get */
08e552c6 3335 pc->mem_cgroup = to;
312734c0 3336 move_unlock_mem_cgroup(from, &flags);
de3638d9 3337 ret = 0;
0a31bc97
JW
3338
3339 local_irq_disable();
3340 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3341 memcg_check_events(to, page);
0a31bc97 3342 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3343 memcg_check_events(from, page);
0a31bc97
JW
3344 local_irq_enable();
3345out_unlock:
3346 unlock_page(page);
de3638d9 3347out:
f817ed48
KH
3348 return ret;
3349}
3350
2ef37d3f
MH
3351/**
3352 * mem_cgroup_move_parent - moves page to the parent group
3353 * @page: the page to move
3354 * @pc: page_cgroup of the page
3355 * @child: page's cgroup
3356 *
3357 * move charges to its parent or the root cgroup if the group has no
3358 * parent (aka use_hierarchy==0).
3359 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3360 * mem_cgroup_move_account fails) the failure is always temporary and
3361 * it signals a race with a page removal/uncharge or migration. In the
3362 * first case the page is on the way out and it will vanish from the LRU
3363 * on the next attempt and the call should be retried later.
3364 * Isolation from the LRU fails only if page has been isolated from
3365 * the LRU since we looked at it and that usually means either global
3366 * reclaim or migration going on. The page will either get back to the
3367 * LRU or vanish.
3368 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3369 * (!PageCgroupUsed) or moved to a different group. The page will
3370 * disappear in the next attempt.
f817ed48 3371 */
5564e88b
JW
3372static int mem_cgroup_move_parent(struct page *page,
3373 struct page_cgroup *pc,
6068bf01 3374 struct mem_cgroup *child)
f817ed48 3375{
f817ed48 3376 struct mem_cgroup *parent;
7ec99d62 3377 unsigned int nr_pages;
4be4489f 3378 unsigned long uninitialized_var(flags);
f817ed48
KH
3379 int ret;
3380
d8423011 3381 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3382
57f9fd7d
DN
3383 ret = -EBUSY;
3384 if (!get_page_unless_zero(page))
3385 goto out;
3386 if (isolate_lru_page(page))
3387 goto put;
52dbb905 3388
7ec99d62 3389 nr_pages = hpage_nr_pages(page);
08e552c6 3390
cc926f78
KH
3391 parent = parent_mem_cgroup(child);
3392 /*
3393 * If no parent, move charges to root cgroup.
3394 */
3395 if (!parent)
3396 parent = root_mem_cgroup;
f817ed48 3397
2ef37d3f 3398 if (nr_pages > 1) {
309381fe 3399 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3400 flags = compound_lock_irqsave(page);
2ef37d3f 3401 }
987eba66 3402
cc926f78 3403 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3404 pc, child, parent);
3e32cb2e 3405 if (!ret) {
e8ea14cc
JW
3406 if (!mem_cgroup_is_root(parent))
3407 css_get_many(&parent->css, nr_pages);
3e32cb2e
JW
3408 /* Take charge off the local counters */
3409 page_counter_cancel(&child->memory, nr_pages);
3410 if (do_swap_account)
3411 page_counter_cancel(&child->memsw, nr_pages);
e8ea14cc 3412 css_put_many(&child->css, nr_pages);
3e32cb2e 3413 }
8dba474f 3414
7ec99d62 3415 if (nr_pages > 1)
987eba66 3416 compound_unlock_irqrestore(page, flags);
08e552c6 3417 putback_lru_page(page);
57f9fd7d 3418put:
40d58138 3419 put_page(page);
57f9fd7d 3420out:
f817ed48
KH
3421 return ret;
3422}
3423
c255a458 3424#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3425static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3426 bool charge)
d13d1443 3427{
0a31bc97
JW
3428 int val = (charge) ? 1 : -1;
3429 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3430}
02491447
DN
3431
3432/**
3433 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3434 * @entry: swap entry to be moved
3435 * @from: mem_cgroup which the entry is moved from
3436 * @to: mem_cgroup which the entry is moved to
3437 *
3438 * It succeeds only when the swap_cgroup's record for this entry is the same
3439 * as the mem_cgroup's id of @from.
3440 *
3441 * Returns 0 on success, -EINVAL on failure.
3442 *
3e32cb2e 3443 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3444 * both res and memsw, and called css_get().
3445 */
3446static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3447 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3448{
3449 unsigned short old_id, new_id;
3450
34c00c31
LZ
3451 old_id = mem_cgroup_id(from);
3452 new_id = mem_cgroup_id(to);
02491447
DN
3453
3454 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3455 mem_cgroup_swap_statistics(from, false);
483c30b5 3456 mem_cgroup_swap_statistics(to, true);
02491447 3457 /*
483c30b5 3458 * This function is only called from task migration context now.
3e32cb2e 3459 * It postpones page_counter and refcount handling till the end
483c30b5 3460 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3461 * improvement. But we cannot postpone css_get(to) because if
3462 * the process that has been moved to @to does swap-in, the
3463 * refcount of @to might be decreased to 0.
3464 *
3465 * We are in attach() phase, so the cgroup is guaranteed to be
3466 * alive, so we can just call css_get().
02491447 3467 */
4050377b 3468 css_get(&to->css);
02491447
DN
3469 return 0;
3470 }
3471 return -EINVAL;
3472}
3473#else
3474static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3475 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3476{
3477 return -EINVAL;
3478}
8c7c6e34 3479#endif
d13d1443 3480
f212ad7c
DN
3481#ifdef CONFIG_DEBUG_VM
3482static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3483{
3484 struct page_cgroup *pc;
3485
3486 pc = lookup_page_cgroup(page);
cfa44946
JW
3487 /*
3488 * Can be NULL while feeding pages into the page allocator for
3489 * the first time, i.e. during boot or memory hotplug;
3490 * or when mem_cgroup_disabled().
3491 */
f212ad7c
DN
3492 if (likely(pc) && PageCgroupUsed(pc))
3493 return pc;
3494 return NULL;
3495}
3496
3497bool mem_cgroup_bad_page_check(struct page *page)
3498{
3499 if (mem_cgroup_disabled())
3500 return false;
3501
3502 return lookup_page_cgroup_used(page) != NULL;
3503}
3504
3505void mem_cgroup_print_bad_page(struct page *page)
3506{
3507 struct page_cgroup *pc;
3508
3509 pc = lookup_page_cgroup_used(page);
3510 if (pc) {
d045197f
AM
3511 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3512 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3513 }
3514}
3515#endif
3516
3e32cb2e
JW
3517static DEFINE_MUTEX(memcg_limit_mutex);
3518
d38d2a75 3519static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3520 unsigned long limit)
628f4235 3521{
3e32cb2e
JW
3522 unsigned long curusage;
3523 unsigned long oldusage;
3524 bool enlarge = false;
81d39c20 3525 int retry_count;
3e32cb2e 3526 int ret;
81d39c20
KH
3527
3528 /*
3529 * For keeping hierarchical_reclaim simple, how long we should retry
3530 * is depends on callers. We set our retry-count to be function
3531 * of # of children which we should visit in this loop.
3532 */
3e32cb2e
JW
3533 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3534 mem_cgroup_count_children(memcg);
81d39c20 3535
3e32cb2e 3536 oldusage = page_counter_read(&memcg->memory);
628f4235 3537
3e32cb2e 3538 do {
628f4235
KH
3539 if (signal_pending(current)) {
3540 ret = -EINTR;
3541 break;
3542 }
3e32cb2e
JW
3543
3544 mutex_lock(&memcg_limit_mutex);
3545 if (limit > memcg->memsw.limit) {
3546 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3547 ret = -EINVAL;
628f4235
KH
3548 break;
3549 }
3e32cb2e
JW
3550 if (limit > memcg->memory.limit)
3551 enlarge = true;
3552 ret = page_counter_limit(&memcg->memory, limit);
3553 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3554
3555 if (!ret)
3556 break;
3557
b70a2a21
JW
3558 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3559
3e32cb2e 3560 curusage = page_counter_read(&memcg->memory);
81d39c20 3561 /* Usage is reduced ? */
f894ffa8 3562 if (curusage >= oldusage)
81d39c20
KH
3563 retry_count--;
3564 else
3565 oldusage = curusage;
3e32cb2e
JW
3566 } while (retry_count);
3567
3c11ecf4
KH
3568 if (!ret && enlarge)
3569 memcg_oom_recover(memcg);
14797e23 3570
8c7c6e34
KH
3571 return ret;
3572}
3573
338c8431 3574static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3575 unsigned long limit)
8c7c6e34 3576{
3e32cb2e
JW
3577 unsigned long curusage;
3578 unsigned long oldusage;
3579 bool enlarge = false;
81d39c20 3580 int retry_count;
3e32cb2e 3581 int ret;
8c7c6e34 3582
81d39c20 3583 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3584 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3585 mem_cgroup_count_children(memcg);
3586
3587 oldusage = page_counter_read(&memcg->memsw);
3588
3589 do {
8c7c6e34
KH
3590 if (signal_pending(current)) {
3591 ret = -EINTR;
3592 break;
3593 }
3e32cb2e
JW
3594
3595 mutex_lock(&memcg_limit_mutex);
3596 if (limit < memcg->memory.limit) {
3597 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3598 ret = -EINVAL;
8c7c6e34
KH
3599 break;
3600 }
3e32cb2e
JW
3601 if (limit > memcg->memsw.limit)
3602 enlarge = true;
3603 ret = page_counter_limit(&memcg->memsw, limit);
3604 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3605
3606 if (!ret)
3607 break;
3608
b70a2a21
JW
3609 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3610
3e32cb2e 3611 curusage = page_counter_read(&memcg->memsw);
81d39c20 3612 /* Usage is reduced ? */
8c7c6e34 3613 if (curusage >= oldusage)
628f4235 3614 retry_count--;
81d39c20
KH
3615 else
3616 oldusage = curusage;
3e32cb2e
JW
3617 } while (retry_count);
3618
3c11ecf4
KH
3619 if (!ret && enlarge)
3620 memcg_oom_recover(memcg);
3e32cb2e 3621
628f4235
KH
3622 return ret;
3623}
3624
0608f43d
AM
3625unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3626 gfp_t gfp_mask,
3627 unsigned long *total_scanned)
3628{
3629 unsigned long nr_reclaimed = 0;
3630 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3631 unsigned long reclaimed;
3632 int loop = 0;
3633 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3634 unsigned long excess;
0608f43d
AM
3635 unsigned long nr_scanned;
3636
3637 if (order > 0)
3638 return 0;
3639
3640 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3641 /*
3642 * This loop can run a while, specially if mem_cgroup's continuously
3643 * keep exceeding their soft limit and putting the system under
3644 * pressure
3645 */
3646 do {
3647 if (next_mz)
3648 mz = next_mz;
3649 else
3650 mz = mem_cgroup_largest_soft_limit_node(mctz);
3651 if (!mz)
3652 break;
3653
3654 nr_scanned = 0;
3655 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3656 gfp_mask, &nr_scanned);
3657 nr_reclaimed += reclaimed;
3658 *total_scanned += nr_scanned;
0a31bc97 3659 spin_lock_irq(&mctz->lock);
0608f43d
AM
3660
3661 /*
3662 * If we failed to reclaim anything from this memory cgroup
3663 * it is time to move on to the next cgroup
3664 */
3665 next_mz = NULL;
3666 if (!reclaimed) {
3667 do {
3668 /*
3669 * Loop until we find yet another one.
3670 *
3671 * By the time we get the soft_limit lock
3672 * again, someone might have aded the
3673 * group back on the RB tree. Iterate to
3674 * make sure we get a different mem.
3675 * mem_cgroup_largest_soft_limit_node returns
3676 * NULL if no other cgroup is present on
3677 * the tree
3678 */
3679 next_mz =
3680 __mem_cgroup_largest_soft_limit_node(mctz);
3681 if (next_mz == mz)
3682 css_put(&next_mz->memcg->css);
3683 else /* next_mz == NULL or other memcg */
3684 break;
3685 } while (1);
3686 }
cf2c8127 3687 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 3688 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3689 /*
3690 * One school of thought says that we should not add
3691 * back the node to the tree if reclaim returns 0.
3692 * But our reclaim could return 0, simply because due
3693 * to priority we are exposing a smaller subset of
3694 * memory to reclaim from. Consider this as a longer
3695 * term TODO.
3696 */
3697 /* If excess == 0, no tree ops */
cf2c8127 3698 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3699 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3700 css_put(&mz->memcg->css);
3701 loop++;
3702 /*
3703 * Could not reclaim anything and there are no more
3704 * mem cgroups to try or we seem to be looping without
3705 * reclaiming anything.
3706 */
3707 if (!nr_reclaimed &&
3708 (next_mz == NULL ||
3709 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3710 break;
3711 } while (!nr_reclaimed);
3712 if (next_mz)
3713 css_put(&next_mz->memcg->css);
3714 return nr_reclaimed;
3715}
3716
2ef37d3f
MH
3717/**
3718 * mem_cgroup_force_empty_list - clears LRU of a group
3719 * @memcg: group to clear
3720 * @node: NUMA node
3721 * @zid: zone id
3722 * @lru: lru to to clear
3723 *
3c935d18 3724 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
3725 * reclaim the pages page themselves - pages are moved to the parent (or root)
3726 * group.
cc847582 3727 */
2ef37d3f 3728static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3729 int node, int zid, enum lru_list lru)
cc847582 3730{
bea8c150 3731 struct lruvec *lruvec;
2ef37d3f 3732 unsigned long flags;
072c56c1 3733 struct list_head *list;
925b7673
JW
3734 struct page *busy;
3735 struct zone *zone;
072c56c1 3736
08e552c6 3737 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
3738 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3739 list = &lruvec->lists[lru];
cc847582 3740
f817ed48 3741 busy = NULL;
2ef37d3f 3742 do {
925b7673 3743 struct page_cgroup *pc;
5564e88b
JW
3744 struct page *page;
3745
08e552c6 3746 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3747 if (list_empty(list)) {
08e552c6 3748 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3749 break;
f817ed48 3750 }
925b7673
JW
3751 page = list_entry(list->prev, struct page, lru);
3752 if (busy == page) {
3753 list_move(&page->lru, list);
648bcc77 3754 busy = NULL;
08e552c6 3755 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3756 continue;
3757 }
08e552c6 3758 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3759
925b7673 3760 pc = lookup_page_cgroup(page);
5564e88b 3761
3c935d18 3762 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3763 /* found lock contention or "pc" is obsolete. */
925b7673 3764 busy = page;
f817ed48
KH
3765 } else
3766 busy = NULL;
2a7a0e0f 3767 cond_resched();
2ef37d3f 3768 } while (!list_empty(list));
cc847582
KH
3769}
3770
3771/*
c26251f9
MH
3772 * make mem_cgroup's charge to be 0 if there is no task by moving
3773 * all the charges and pages to the parent.
cc847582 3774 * This enables deleting this mem_cgroup.
c26251f9
MH
3775 *
3776 * Caller is responsible for holding css reference on the memcg.
cc847582 3777 */
ab5196c2 3778static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 3779{
c26251f9 3780 int node, zid;
f817ed48 3781
fce66477 3782 do {
52d4b9ac
KH
3783 /* This is for making all *used* pages to be on LRU. */
3784 lru_add_drain_all();
c0ff4b85 3785 drain_all_stock_sync(memcg);
c0ff4b85 3786 mem_cgroup_start_move(memcg);
31aaea4a 3787 for_each_node_state(node, N_MEMORY) {
2ef37d3f 3788 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3789 enum lru_list lru;
3790 for_each_lru(lru) {
2ef37d3f 3791 mem_cgroup_force_empty_list(memcg,
f156ab93 3792 node, zid, lru);
f817ed48 3793 }
1ecaab2b 3794 }
f817ed48 3795 }
c0ff4b85
R
3796 mem_cgroup_end_move(memcg);
3797 memcg_oom_recover(memcg);
52d4b9ac 3798 cond_resched();
f817ed48 3799
2ef37d3f 3800 /*
bea207c8
GC
3801 * Kernel memory may not necessarily be trackable to a specific
3802 * process. So they are not migrated, and therefore we can't
3803 * expect their value to drop to 0 here.
3804 * Having res filled up with kmem only is enough.
3805 *
2ef37d3f
MH
3806 * This is a safety check because mem_cgroup_force_empty_list
3807 * could have raced with mem_cgroup_replace_page_cache callers
3808 * so the lru seemed empty but the page could have been added
3809 * right after the check. RES_USAGE should be safe as we always
3810 * charge before adding to the LRU.
3811 */
3e32cb2e
JW
3812 } while (page_counter_read(&memcg->memory) -
3813 page_counter_read(&memcg->kmem) > 0);
c26251f9
MH
3814}
3815
ea280e7b
TH
3816/*
3817 * Test whether @memcg has children, dead or alive. Note that this
3818 * function doesn't care whether @memcg has use_hierarchy enabled and
3819 * returns %true if there are child csses according to the cgroup
3820 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3821 */
b5f99b53
GC
3822static inline bool memcg_has_children(struct mem_cgroup *memcg)
3823{
ea280e7b
TH
3824 bool ret;
3825
696ac172 3826 /*
ea280e7b
TH
3827 * The lock does not prevent addition or deletion of children, but
3828 * it prevents a new child from being initialized based on this
3829 * parent in css_online(), so it's enough to decide whether
3830 * hierarchically inherited attributes can still be changed or not.
696ac172 3831 */
ea280e7b
TH
3832 lockdep_assert_held(&memcg_create_mutex);
3833
3834 rcu_read_lock();
3835 ret = css_next_child(NULL, &memcg->css);
3836 rcu_read_unlock();
3837 return ret;
b5f99b53
GC
3838}
3839
c26251f9
MH
3840/*
3841 * Reclaims as many pages from the given memcg as possible and moves
3842 * the rest to the parent.
3843 *
3844 * Caller is responsible for holding css reference for memcg.
3845 */
3846static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3847{
3848 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3849
c1e862c1
KH
3850 /* we call try-to-free pages for make this cgroup empty */
3851 lru_add_drain_all();
f817ed48 3852 /* try to free all pages in this cgroup */
3e32cb2e 3853 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3854 int progress;
c1e862c1 3855
c26251f9
MH
3856 if (signal_pending(current))
3857 return -EINTR;
3858
b70a2a21
JW
3859 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3860 GFP_KERNEL, true);
c1e862c1 3861 if (!progress) {
f817ed48 3862 nr_retries--;
c1e862c1 3863 /* maybe some writeback is necessary */
8aa7e847 3864 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3865 }
f817ed48
KH
3866
3867 }
ab5196c2
MH
3868
3869 return 0;
cc847582
KH
3870}
3871
6770c64e
TH
3872static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3873 char *buf, size_t nbytes,
3874 loff_t off)
c1e862c1 3875{
6770c64e 3876 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3877
d8423011
MH
3878 if (mem_cgroup_is_root(memcg))
3879 return -EINVAL;
6770c64e 3880 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3881}
3882
182446d0
TH
3883static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3884 struct cftype *cft)
18f59ea7 3885{
182446d0 3886 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3887}
3888
182446d0
TH
3889static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3890 struct cftype *cft, u64 val)
18f59ea7
BS
3891{
3892 int retval = 0;
182446d0 3893 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3894 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3895
0999821b 3896 mutex_lock(&memcg_create_mutex);
567fb435
GC
3897
3898 if (memcg->use_hierarchy == val)
3899 goto out;
3900
18f59ea7 3901 /*
af901ca1 3902 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3903 * in the child subtrees. If it is unset, then the change can
3904 * occur, provided the current cgroup has no children.
3905 *
3906 * For the root cgroup, parent_mem is NULL, we allow value to be
3907 * set if there are no children.
3908 */
c0ff4b85 3909 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3910 (val == 1 || val == 0)) {
ea280e7b 3911 if (!memcg_has_children(memcg))
c0ff4b85 3912 memcg->use_hierarchy = val;
18f59ea7
BS
3913 else
3914 retval = -EBUSY;
3915 } else
3916 retval = -EINVAL;
567fb435
GC
3917
3918out:
0999821b 3919 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3920
3921 return retval;
3922}
3923
3e32cb2e
JW
3924static unsigned long tree_stat(struct mem_cgroup *memcg,
3925 enum mem_cgroup_stat_index idx)
ce00a967
JW
3926{
3927 struct mem_cgroup *iter;
3928 long val = 0;
3929
3930 /* Per-cpu values can be negative, use a signed accumulator */
3931 for_each_mem_cgroup_tree(iter, memcg)
3932 val += mem_cgroup_read_stat(iter, idx);
3933
3934 if (val < 0) /* race ? */
3935 val = 0;
3936 return val;
3937}
3938
3939static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3940{
3941 u64 val;
3942
3e32cb2e
JW
3943 if (mem_cgroup_is_root(memcg)) {
3944 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3945 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3946 if (swap)
3947 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3948 } else {
ce00a967 3949 if (!swap)
3e32cb2e 3950 val = page_counter_read(&memcg->memory);
ce00a967 3951 else
3e32cb2e 3952 val = page_counter_read(&memcg->memsw);
ce00a967 3953 }
ce00a967
JW
3954 return val << PAGE_SHIFT;
3955}
3956
3e32cb2e
JW
3957enum {
3958 RES_USAGE,
3959 RES_LIMIT,
3960 RES_MAX_USAGE,
3961 RES_FAILCNT,
3962 RES_SOFT_LIMIT,
3963};
ce00a967 3964
791badbd 3965static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3966 struct cftype *cft)
8cdea7c0 3967{
182446d0 3968 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3969 struct page_counter *counter;
af36f906 3970
3e32cb2e 3971 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3972 case _MEM:
3e32cb2e
JW
3973 counter = &memcg->memory;
3974 break;
8c7c6e34 3975 case _MEMSWAP:
3e32cb2e
JW
3976 counter = &memcg->memsw;
3977 break;
510fc4e1 3978 case _KMEM:
3e32cb2e 3979 counter = &memcg->kmem;
510fc4e1 3980 break;
8c7c6e34
KH
3981 default:
3982 BUG();
8c7c6e34 3983 }
3e32cb2e
JW
3984
3985 switch (MEMFILE_ATTR(cft->private)) {
3986 case RES_USAGE:
3987 if (counter == &memcg->memory)
3988 return mem_cgroup_usage(memcg, false);
3989 if (counter == &memcg->memsw)
3990 return mem_cgroup_usage(memcg, true);
3991 return (u64)page_counter_read(counter) * PAGE_SIZE;
3992 case RES_LIMIT:
3993 return (u64)counter->limit * PAGE_SIZE;
3994 case RES_MAX_USAGE:
3995 return (u64)counter->watermark * PAGE_SIZE;
3996 case RES_FAILCNT:
3997 return counter->failcnt;
3998 case RES_SOFT_LIMIT:
3999 return (u64)memcg->soft_limit * PAGE_SIZE;
4000 default:
4001 BUG();
4002 }
8cdea7c0 4003}
510fc4e1 4004
510fc4e1 4005#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
4006/* should be called with activate_kmem_mutex held */
4007static int __memcg_activate_kmem(struct mem_cgroup *memcg,
3e32cb2e 4008 unsigned long nr_pages)
d6441637
VD
4009{
4010 int err = 0;
4011 int memcg_id;
4012
4013 if (memcg_kmem_is_active(memcg))
4014 return 0;
4015
4016 /*
4017 * We are going to allocate memory for data shared by all memory
4018 * cgroups so let's stop accounting here.
4019 */
4020 memcg_stop_kmem_account();
4021
510fc4e1
GC
4022 /*
4023 * For simplicity, we won't allow this to be disabled. It also can't
4024 * be changed if the cgroup has children already, or if tasks had
4025 * already joined.
4026 *
4027 * If tasks join before we set the limit, a person looking at
4028 * kmem.usage_in_bytes will have no way to determine when it took
4029 * place, which makes the value quite meaningless.
4030 *
4031 * After it first became limited, changes in the value of the limit are
4032 * of course permitted.
510fc4e1 4033 */
0999821b 4034 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
4035 if (cgroup_has_tasks(memcg->css.cgroup) ||
4036 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
4037 err = -EBUSY;
4038 mutex_unlock(&memcg_create_mutex);
4039 if (err)
4040 goto out;
510fc4e1 4041
f3bb3043 4042 memcg_id = memcg_alloc_cache_id();
d6441637
VD
4043 if (memcg_id < 0) {
4044 err = memcg_id;
4045 goto out;
4046 }
4047
d6441637
VD
4048 memcg->kmemcg_id = memcg_id;
4049 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
4050
4051 /*
4052 * We couldn't have accounted to this cgroup, because it hasn't got the
4053 * active bit set yet, so this should succeed.
4054 */
3e32cb2e 4055 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
4056 VM_BUG_ON(err);
4057
4058 static_key_slow_inc(&memcg_kmem_enabled_key);
4059 /*
4060 * Setting the active bit after enabling static branching will
4061 * guarantee no one starts accounting before all call sites are
4062 * patched.
4063 */
4064 memcg_kmem_set_active(memcg);
510fc4e1 4065out:
d6441637
VD
4066 memcg_resume_kmem_account();
4067 return err;
d6441637
VD
4068}
4069
4070static int memcg_activate_kmem(struct mem_cgroup *memcg,
3e32cb2e 4071 unsigned long nr_pages)
d6441637
VD
4072{
4073 int ret;
4074
4075 mutex_lock(&activate_kmem_mutex);
3e32cb2e 4076 ret = __memcg_activate_kmem(memcg, nr_pages);
d6441637
VD
4077 mutex_unlock(&activate_kmem_mutex);
4078 return ret;
4079}
4080
4081static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 4082 unsigned long limit)
d6441637
VD
4083{
4084 int ret;
4085
3e32cb2e 4086 mutex_lock(&memcg_limit_mutex);
d6441637 4087 if (!memcg_kmem_is_active(memcg))
3e32cb2e 4088 ret = memcg_activate_kmem(memcg, limit);
d6441637 4089 else
3e32cb2e
JW
4090 ret = page_counter_limit(&memcg->kmem, limit);
4091 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
4092 return ret;
4093}
4094
55007d84 4095static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4096{
55007d84 4097 int ret = 0;
510fc4e1 4098 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 4099
d6441637
VD
4100 if (!parent)
4101 return 0;
55007d84 4102
d6441637 4103 mutex_lock(&activate_kmem_mutex);
55007d84 4104 /*
d6441637
VD
4105 * If the parent cgroup is not kmem-active now, it cannot be activated
4106 * after this point, because it has at least one child already.
55007d84 4107 */
d6441637 4108 if (memcg_kmem_is_active(parent))
3e32cb2e 4109 ret = __memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
d6441637 4110 mutex_unlock(&activate_kmem_mutex);
55007d84 4111 return ret;
510fc4e1 4112}
d6441637
VD
4113#else
4114static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 4115 unsigned long limit)
d6441637
VD
4116{
4117 return -EINVAL;
4118}
6d043990 4119#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 4120
628f4235
KH
4121/*
4122 * The user of this function is...
4123 * RES_LIMIT.
4124 */
451af504
TH
4125static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4126 char *buf, size_t nbytes, loff_t off)
8cdea7c0 4127{
451af504 4128 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4129 unsigned long nr_pages;
628f4235
KH
4130 int ret;
4131
451af504 4132 buf = strstrip(buf);
3e32cb2e
JW
4133 ret = page_counter_memparse(buf, &nr_pages);
4134 if (ret)
4135 return ret;
af36f906 4136
3e32cb2e 4137 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 4138 case RES_LIMIT:
4b3bde4c
BS
4139 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4140 ret = -EINVAL;
4141 break;
4142 }
3e32cb2e
JW
4143 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4144 case _MEM:
4145 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 4146 break;
3e32cb2e
JW
4147 case _MEMSWAP:
4148 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 4149 break;
3e32cb2e
JW
4150 case _KMEM:
4151 ret = memcg_update_kmem_limit(memcg, nr_pages);
4152 break;
4153 }
296c81d8 4154 break;
3e32cb2e
JW
4155 case RES_SOFT_LIMIT:
4156 memcg->soft_limit = nr_pages;
4157 ret = 0;
628f4235
KH
4158 break;
4159 }
451af504 4160 return ret ?: nbytes;
8cdea7c0
BS
4161}
4162
6770c64e
TH
4163static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4164 size_t nbytes, loff_t off)
c84872e1 4165{
6770c64e 4166 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4167 struct page_counter *counter;
c84872e1 4168
3e32cb2e
JW
4169 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4170 case _MEM:
4171 counter = &memcg->memory;
4172 break;
4173 case _MEMSWAP:
4174 counter = &memcg->memsw;
4175 break;
4176 case _KMEM:
4177 counter = &memcg->kmem;
4178 break;
4179 default:
4180 BUG();
4181 }
af36f906 4182
3e32cb2e 4183 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 4184 case RES_MAX_USAGE:
3e32cb2e 4185 page_counter_reset_watermark(counter);
29f2a4da
PE
4186 break;
4187 case RES_FAILCNT:
3e32cb2e 4188 counter->failcnt = 0;
29f2a4da 4189 break;
3e32cb2e
JW
4190 default:
4191 BUG();
29f2a4da 4192 }
f64c3f54 4193
6770c64e 4194 return nbytes;
c84872e1
PE
4195}
4196
182446d0 4197static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
4198 struct cftype *cft)
4199{
182446d0 4200 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
4201}
4202
02491447 4203#ifdef CONFIG_MMU
182446d0 4204static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
4205 struct cftype *cft, u64 val)
4206{
182446d0 4207 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
4208
4209 if (val >= (1 << NR_MOVE_TYPE))
4210 return -EINVAL;
ee5e8472 4211
7dc74be0 4212 /*
ee5e8472
GC
4213 * No kind of locking is needed in here, because ->can_attach() will
4214 * check this value once in the beginning of the process, and then carry
4215 * on with stale data. This means that changes to this value will only
4216 * affect task migrations starting after the change.
7dc74be0 4217 */
c0ff4b85 4218 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4219 return 0;
4220}
02491447 4221#else
182446d0 4222static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4223 struct cftype *cft, u64 val)
4224{
4225 return -ENOSYS;
4226}
4227#endif
7dc74be0 4228
406eb0c9 4229#ifdef CONFIG_NUMA
2da8ca82 4230static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4231{
25485de6
GT
4232 struct numa_stat {
4233 const char *name;
4234 unsigned int lru_mask;
4235 };
4236
4237 static const struct numa_stat stats[] = {
4238 { "total", LRU_ALL },
4239 { "file", LRU_ALL_FILE },
4240 { "anon", LRU_ALL_ANON },
4241 { "unevictable", BIT(LRU_UNEVICTABLE) },
4242 };
4243 const struct numa_stat *stat;
406eb0c9 4244 int nid;
25485de6 4245 unsigned long nr;
2da8ca82 4246 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 4247
25485de6
GT
4248 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4249 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4250 seq_printf(m, "%s=%lu", stat->name, nr);
4251 for_each_node_state(nid, N_MEMORY) {
4252 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4253 stat->lru_mask);
4254 seq_printf(m, " N%d=%lu", nid, nr);
4255 }
4256 seq_putc(m, '\n');
406eb0c9 4257 }
406eb0c9 4258
071aee13
YH
4259 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4260 struct mem_cgroup *iter;
4261
4262 nr = 0;
4263 for_each_mem_cgroup_tree(iter, memcg)
4264 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4265 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4266 for_each_node_state(nid, N_MEMORY) {
4267 nr = 0;
4268 for_each_mem_cgroup_tree(iter, memcg)
4269 nr += mem_cgroup_node_nr_lru_pages(
4270 iter, nid, stat->lru_mask);
4271 seq_printf(m, " N%d=%lu", nid, nr);
4272 }
4273 seq_putc(m, '\n');
406eb0c9 4274 }
406eb0c9 4275
406eb0c9
YH
4276 return 0;
4277}
4278#endif /* CONFIG_NUMA */
4279
af7c4b0e
JW
4280static inline void mem_cgroup_lru_names_not_uptodate(void)
4281{
4282 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4283}
4284
2da8ca82 4285static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4286{
2da8ca82 4287 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 4288 unsigned long memory, memsw;
af7c4b0e
JW
4289 struct mem_cgroup *mi;
4290 unsigned int i;
406eb0c9 4291
af7c4b0e 4292 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4293 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4294 continue;
af7c4b0e
JW
4295 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4296 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4297 }
7b854121 4298
af7c4b0e
JW
4299 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4300 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4301 mem_cgroup_read_events(memcg, i));
4302
4303 for (i = 0; i < NR_LRU_LISTS; i++)
4304 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4305 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4306
14067bb3 4307 /* Hierarchical information */
3e32cb2e
JW
4308 memory = memsw = PAGE_COUNTER_MAX;
4309 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4310 memory = min(memory, mi->memory.limit);
4311 memsw = min(memsw, mi->memsw.limit);
fee7b548 4312 }
3e32cb2e
JW
4313 seq_printf(m, "hierarchical_memory_limit %llu\n",
4314 (u64)memory * PAGE_SIZE);
4315 if (do_swap_account)
4316 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4317 (u64)memsw * PAGE_SIZE);
7f016ee8 4318
af7c4b0e
JW
4319 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4320 long long val = 0;
4321
bff6bb83 4322 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4323 continue;
af7c4b0e
JW
4324 for_each_mem_cgroup_tree(mi, memcg)
4325 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4326 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4327 }
4328
4329 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4330 unsigned long long val = 0;
4331
4332 for_each_mem_cgroup_tree(mi, memcg)
4333 val += mem_cgroup_read_events(mi, i);
4334 seq_printf(m, "total_%s %llu\n",
4335 mem_cgroup_events_names[i], val);
4336 }
4337
4338 for (i = 0; i < NR_LRU_LISTS; i++) {
4339 unsigned long long val = 0;
4340
4341 for_each_mem_cgroup_tree(mi, memcg)
4342 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4343 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4344 }
14067bb3 4345
7f016ee8 4346#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4347 {
4348 int nid, zid;
4349 struct mem_cgroup_per_zone *mz;
89abfab1 4350 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4351 unsigned long recent_rotated[2] = {0, 0};
4352 unsigned long recent_scanned[2] = {0, 0};
4353
4354 for_each_online_node(nid)
4355 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 4356 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 4357 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4358
89abfab1
HD
4359 recent_rotated[0] += rstat->recent_rotated[0];
4360 recent_rotated[1] += rstat->recent_rotated[1];
4361 recent_scanned[0] += rstat->recent_scanned[0];
4362 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4363 }
78ccf5b5
JW
4364 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4365 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4366 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4367 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4368 }
4369#endif
4370
d2ceb9b7
KH
4371 return 0;
4372}
4373
182446d0
TH
4374static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4375 struct cftype *cft)
a7885eb8 4376{
182446d0 4377 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4378
1f4c025b 4379 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4380}
4381
182446d0
TH
4382static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4383 struct cftype *cft, u64 val)
a7885eb8 4384{
182446d0 4385 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4386
3dae7fec 4387 if (val > 100)
a7885eb8
KM
4388 return -EINVAL;
4389
14208b0e 4390 if (css->parent)
3dae7fec
JW
4391 memcg->swappiness = val;
4392 else
4393 vm_swappiness = val;
068b38c1 4394
a7885eb8
KM
4395 return 0;
4396}
4397
2e72b634
KS
4398static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4399{
4400 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4401 unsigned long usage;
2e72b634
KS
4402 int i;
4403
4404 rcu_read_lock();
4405 if (!swap)
2c488db2 4406 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4407 else
2c488db2 4408 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4409
4410 if (!t)
4411 goto unlock;
4412
ce00a967 4413 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4414
4415 /*
748dad36 4416 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4417 * If it's not true, a threshold was crossed after last
4418 * call of __mem_cgroup_threshold().
4419 */
5407a562 4420 i = t->current_threshold;
2e72b634
KS
4421
4422 /*
4423 * Iterate backward over array of thresholds starting from
4424 * current_threshold and check if a threshold is crossed.
4425 * If none of thresholds below usage is crossed, we read
4426 * only one element of the array here.
4427 */
4428 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4429 eventfd_signal(t->entries[i].eventfd, 1);
4430
4431 /* i = current_threshold + 1 */
4432 i++;
4433
4434 /*
4435 * Iterate forward over array of thresholds starting from
4436 * current_threshold+1 and check if a threshold is crossed.
4437 * If none of thresholds above usage is crossed, we read
4438 * only one element of the array here.
4439 */
4440 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4441 eventfd_signal(t->entries[i].eventfd, 1);
4442
4443 /* Update current_threshold */
5407a562 4444 t->current_threshold = i - 1;
2e72b634
KS
4445unlock:
4446 rcu_read_unlock();
4447}
4448
4449static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4450{
ad4ca5f4
KS
4451 while (memcg) {
4452 __mem_cgroup_threshold(memcg, false);
4453 if (do_swap_account)
4454 __mem_cgroup_threshold(memcg, true);
4455
4456 memcg = parent_mem_cgroup(memcg);
4457 }
2e72b634
KS
4458}
4459
4460static int compare_thresholds(const void *a, const void *b)
4461{
4462 const struct mem_cgroup_threshold *_a = a;
4463 const struct mem_cgroup_threshold *_b = b;
4464
2bff24a3
GT
4465 if (_a->threshold > _b->threshold)
4466 return 1;
4467
4468 if (_a->threshold < _b->threshold)
4469 return -1;
4470
4471 return 0;
2e72b634
KS
4472}
4473
c0ff4b85 4474static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4475{
4476 struct mem_cgroup_eventfd_list *ev;
4477
2bcf2e92
MH
4478 spin_lock(&memcg_oom_lock);
4479
c0ff4b85 4480 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4481 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4482
4483 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4484 return 0;
4485}
4486
c0ff4b85 4487static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4488{
7d74b06f
KH
4489 struct mem_cgroup *iter;
4490
c0ff4b85 4491 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4492 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4493}
4494
59b6f873 4495static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4496 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4497{
2c488db2
KS
4498 struct mem_cgroup_thresholds *thresholds;
4499 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4500 unsigned long threshold;
4501 unsigned long usage;
2c488db2 4502 int i, size, ret;
2e72b634 4503
3e32cb2e 4504 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
4505 if (ret)
4506 return ret;
4507
4508 mutex_lock(&memcg->thresholds_lock);
2c488db2 4509
05b84301 4510 if (type == _MEM) {
2c488db2 4511 thresholds = &memcg->thresholds;
ce00a967 4512 usage = mem_cgroup_usage(memcg, false);
05b84301 4513 } else if (type == _MEMSWAP) {
2c488db2 4514 thresholds = &memcg->memsw_thresholds;
ce00a967 4515 usage = mem_cgroup_usage(memcg, true);
05b84301 4516 } else
2e72b634
KS
4517 BUG();
4518
2e72b634 4519 /* Check if a threshold crossed before adding a new one */
2c488db2 4520 if (thresholds->primary)
2e72b634
KS
4521 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4522
2c488db2 4523 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4524
4525 /* Allocate memory for new array of thresholds */
2c488db2 4526 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4527 GFP_KERNEL);
2c488db2 4528 if (!new) {
2e72b634
KS
4529 ret = -ENOMEM;
4530 goto unlock;
4531 }
2c488db2 4532 new->size = size;
2e72b634
KS
4533
4534 /* Copy thresholds (if any) to new array */
2c488db2
KS
4535 if (thresholds->primary) {
4536 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4537 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4538 }
4539
2e72b634 4540 /* Add new threshold */
2c488db2
KS
4541 new->entries[size - 1].eventfd = eventfd;
4542 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4543
4544 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4545 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4546 compare_thresholds, NULL);
4547
4548 /* Find current threshold */
2c488db2 4549 new->current_threshold = -1;
2e72b634 4550 for (i = 0; i < size; i++) {
748dad36 4551 if (new->entries[i].threshold <= usage) {
2e72b634 4552 /*
2c488db2
KS
4553 * new->current_threshold will not be used until
4554 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4555 * it here.
4556 */
2c488db2 4557 ++new->current_threshold;
748dad36
SZ
4558 } else
4559 break;
2e72b634
KS
4560 }
4561
2c488db2
KS
4562 /* Free old spare buffer and save old primary buffer as spare */
4563 kfree(thresholds->spare);
4564 thresholds->spare = thresholds->primary;
4565
4566 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4567
907860ed 4568 /* To be sure that nobody uses thresholds */
2e72b634
KS
4569 synchronize_rcu();
4570
2e72b634
KS
4571unlock:
4572 mutex_unlock(&memcg->thresholds_lock);
4573
4574 return ret;
4575}
4576
59b6f873 4577static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4578 struct eventfd_ctx *eventfd, const char *args)
4579{
59b6f873 4580 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4581}
4582
59b6f873 4583static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4584 struct eventfd_ctx *eventfd, const char *args)
4585{
59b6f873 4586 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4587}
4588
59b6f873 4589static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4590 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4591{
2c488db2
KS
4592 struct mem_cgroup_thresholds *thresholds;
4593 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4594 unsigned long usage;
2c488db2 4595 int i, j, size;
2e72b634
KS
4596
4597 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4598
4599 if (type == _MEM) {
2c488db2 4600 thresholds = &memcg->thresholds;
ce00a967 4601 usage = mem_cgroup_usage(memcg, false);
05b84301 4602 } else if (type == _MEMSWAP) {
2c488db2 4603 thresholds = &memcg->memsw_thresholds;
ce00a967 4604 usage = mem_cgroup_usage(memcg, true);
05b84301 4605 } else
2e72b634
KS
4606 BUG();
4607
371528ca
AV
4608 if (!thresholds->primary)
4609 goto unlock;
4610
2e72b634
KS
4611 /* Check if a threshold crossed before removing */
4612 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4613
4614 /* Calculate new number of threshold */
2c488db2
KS
4615 size = 0;
4616 for (i = 0; i < thresholds->primary->size; i++) {
4617 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4618 size++;
4619 }
4620
2c488db2 4621 new = thresholds->spare;
907860ed 4622
2e72b634
KS
4623 /* Set thresholds array to NULL if we don't have thresholds */
4624 if (!size) {
2c488db2
KS
4625 kfree(new);
4626 new = NULL;
907860ed 4627 goto swap_buffers;
2e72b634
KS
4628 }
4629
2c488db2 4630 new->size = size;
2e72b634
KS
4631
4632 /* Copy thresholds and find current threshold */
2c488db2
KS
4633 new->current_threshold = -1;
4634 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4635 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4636 continue;
4637
2c488db2 4638 new->entries[j] = thresholds->primary->entries[i];
748dad36 4639 if (new->entries[j].threshold <= usage) {
2e72b634 4640 /*
2c488db2 4641 * new->current_threshold will not be used
2e72b634
KS
4642 * until rcu_assign_pointer(), so it's safe to increment
4643 * it here.
4644 */
2c488db2 4645 ++new->current_threshold;
2e72b634
KS
4646 }
4647 j++;
4648 }
4649
907860ed 4650swap_buffers:
2c488db2
KS
4651 /* Swap primary and spare array */
4652 thresholds->spare = thresholds->primary;
8c757763
SZ
4653 /* If all events are unregistered, free the spare array */
4654 if (!new) {
4655 kfree(thresholds->spare);
4656 thresholds->spare = NULL;
4657 }
4658
2c488db2 4659 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4660
907860ed 4661 /* To be sure that nobody uses thresholds */
2e72b634 4662 synchronize_rcu();
371528ca 4663unlock:
2e72b634 4664 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4665}
c1e862c1 4666
59b6f873 4667static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4668 struct eventfd_ctx *eventfd)
4669{
59b6f873 4670 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4671}
4672
59b6f873 4673static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4674 struct eventfd_ctx *eventfd)
4675{
59b6f873 4676 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4677}
4678
59b6f873 4679static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4680 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4681{
9490ff27 4682 struct mem_cgroup_eventfd_list *event;
9490ff27 4683
9490ff27
KH
4684 event = kmalloc(sizeof(*event), GFP_KERNEL);
4685 if (!event)
4686 return -ENOMEM;
4687
1af8efe9 4688 spin_lock(&memcg_oom_lock);
9490ff27
KH
4689
4690 event->eventfd = eventfd;
4691 list_add(&event->list, &memcg->oom_notify);
4692
4693 /* already in OOM ? */
79dfdacc 4694 if (atomic_read(&memcg->under_oom))
9490ff27 4695 eventfd_signal(eventfd, 1);
1af8efe9 4696 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4697
4698 return 0;
4699}
4700
59b6f873 4701static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4702 struct eventfd_ctx *eventfd)
9490ff27 4703{
9490ff27 4704 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4705
1af8efe9 4706 spin_lock(&memcg_oom_lock);
9490ff27 4707
c0ff4b85 4708 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4709 if (ev->eventfd == eventfd) {
4710 list_del(&ev->list);
4711 kfree(ev);
4712 }
4713 }
4714
1af8efe9 4715 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4716}
4717
2da8ca82 4718static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4719{
2da8ca82 4720 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4721
791badbd
TH
4722 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4723 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4724 return 0;
4725}
4726
182446d0 4727static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4728 struct cftype *cft, u64 val)
4729{
182446d0 4730 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4731
4732 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4733 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4734 return -EINVAL;
4735
c0ff4b85 4736 memcg->oom_kill_disable = val;
4d845ebf 4737 if (!val)
c0ff4b85 4738 memcg_oom_recover(memcg);
3dae7fec 4739
3c11ecf4
KH
4740 return 0;
4741}
4742
c255a458 4743#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4744static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4745{
55007d84
GC
4746 int ret;
4747
2633d7a0 4748 memcg->kmemcg_id = -1;
55007d84
GC
4749 ret = memcg_propagate_kmem(memcg);
4750 if (ret)
4751 return ret;
2633d7a0 4752
1d62e436 4753 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4754}
e5671dfa 4755
10d5ebf4 4756static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4757{
1d62e436 4758 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
4759}
4760
4761static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4762{
4763 if (!memcg_kmem_is_active(memcg))
4764 return;
4765
4766 /*
4767 * kmem charges can outlive the cgroup. In the case of slab
4768 * pages, for instance, a page contain objects from various
4769 * processes. As we prevent from taking a reference for every
4770 * such allocation we have to be careful when doing uncharge
4771 * (see memcg_uncharge_kmem) and here during offlining.
4772 *
4773 * The idea is that that only the _last_ uncharge which sees
4774 * the dead memcg will drop the last reference. An additional
4775 * reference is taken here before the group is marked dead
4776 * which is then paired with css_put during uncharge resp. here.
4777 *
4778 * Although this might sound strange as this path is called from
ec903c0c
TH
4779 * css_offline() when the referencemight have dropped down to 0 and
4780 * shouldn't be incremented anymore (css_tryget_online() would
4781 * fail) we do not have other options because of the kmem
4782 * allocations lifetime.
10d5ebf4
LZ
4783 */
4784 css_get(&memcg->css);
7de37682
GC
4785
4786 memcg_kmem_mark_dead(memcg);
4787
3e32cb2e 4788 if (page_counter_read(&memcg->kmem))
7de37682
GC
4789 return;
4790
7de37682 4791 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 4792 css_put(&memcg->css);
d1a4c0b3 4793}
e5671dfa 4794#else
cbe128e3 4795static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4796{
4797 return 0;
4798}
d1a4c0b3 4799
10d5ebf4
LZ
4800static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4801{
4802}
4803
4804static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
4805{
4806}
e5671dfa
GC
4807#endif
4808
3bc942f3
TH
4809/*
4810 * DO NOT USE IN NEW FILES.
4811 *
4812 * "cgroup.event_control" implementation.
4813 *
4814 * This is way over-engineered. It tries to support fully configurable
4815 * events for each user. Such level of flexibility is completely
4816 * unnecessary especially in the light of the planned unified hierarchy.
4817 *
4818 * Please deprecate this and replace with something simpler if at all
4819 * possible.
4820 */
4821
79bd9814
TH
4822/*
4823 * Unregister event and free resources.
4824 *
4825 * Gets called from workqueue.
4826 */
3bc942f3 4827static void memcg_event_remove(struct work_struct *work)
79bd9814 4828{
3bc942f3
TH
4829 struct mem_cgroup_event *event =
4830 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4831 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4832
4833 remove_wait_queue(event->wqh, &event->wait);
4834
59b6f873 4835 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4836
4837 /* Notify userspace the event is going away. */
4838 eventfd_signal(event->eventfd, 1);
4839
4840 eventfd_ctx_put(event->eventfd);
4841 kfree(event);
59b6f873 4842 css_put(&memcg->css);
79bd9814
TH
4843}
4844
4845/*
4846 * Gets called on POLLHUP on eventfd when user closes it.
4847 *
4848 * Called with wqh->lock held and interrupts disabled.
4849 */
3bc942f3
TH
4850static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4851 int sync, void *key)
79bd9814 4852{
3bc942f3
TH
4853 struct mem_cgroup_event *event =
4854 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4855 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4856 unsigned long flags = (unsigned long)key;
4857
4858 if (flags & POLLHUP) {
4859 /*
4860 * If the event has been detached at cgroup removal, we
4861 * can simply return knowing the other side will cleanup
4862 * for us.
4863 *
4864 * We can't race against event freeing since the other
4865 * side will require wqh->lock via remove_wait_queue(),
4866 * which we hold.
4867 */
fba94807 4868 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4869 if (!list_empty(&event->list)) {
4870 list_del_init(&event->list);
4871 /*
4872 * We are in atomic context, but cgroup_event_remove()
4873 * may sleep, so we have to call it in workqueue.
4874 */
4875 schedule_work(&event->remove);
4876 }
fba94807 4877 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4878 }
4879
4880 return 0;
4881}
4882
3bc942f3 4883static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4884 wait_queue_head_t *wqh, poll_table *pt)
4885{
3bc942f3
TH
4886 struct mem_cgroup_event *event =
4887 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4888
4889 event->wqh = wqh;
4890 add_wait_queue(wqh, &event->wait);
4891}
4892
4893/*
3bc942f3
TH
4894 * DO NOT USE IN NEW FILES.
4895 *
79bd9814
TH
4896 * Parse input and register new cgroup event handler.
4897 *
4898 * Input must be in format '<event_fd> <control_fd> <args>'.
4899 * Interpretation of args is defined by control file implementation.
4900 */
451af504
TH
4901static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4902 char *buf, size_t nbytes, loff_t off)
79bd9814 4903{
451af504 4904 struct cgroup_subsys_state *css = of_css(of);
fba94807 4905 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4906 struct mem_cgroup_event *event;
79bd9814
TH
4907 struct cgroup_subsys_state *cfile_css;
4908 unsigned int efd, cfd;
4909 struct fd efile;
4910 struct fd cfile;
fba94807 4911 const char *name;
79bd9814
TH
4912 char *endp;
4913 int ret;
4914
451af504
TH
4915 buf = strstrip(buf);
4916
4917 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4918 if (*endp != ' ')
4919 return -EINVAL;
451af504 4920 buf = endp + 1;
79bd9814 4921
451af504 4922 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4923 if ((*endp != ' ') && (*endp != '\0'))
4924 return -EINVAL;
451af504 4925 buf = endp + 1;
79bd9814
TH
4926
4927 event = kzalloc(sizeof(*event), GFP_KERNEL);
4928 if (!event)
4929 return -ENOMEM;
4930
59b6f873 4931 event->memcg = memcg;
79bd9814 4932 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4933 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4934 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4935 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4936
4937 efile = fdget(efd);
4938 if (!efile.file) {
4939 ret = -EBADF;
4940 goto out_kfree;
4941 }
4942
4943 event->eventfd = eventfd_ctx_fileget(efile.file);
4944 if (IS_ERR(event->eventfd)) {
4945 ret = PTR_ERR(event->eventfd);
4946 goto out_put_efile;
4947 }
4948
4949 cfile = fdget(cfd);
4950 if (!cfile.file) {
4951 ret = -EBADF;
4952 goto out_put_eventfd;
4953 }
4954
4955 /* the process need read permission on control file */
4956 /* AV: shouldn't we check that it's been opened for read instead? */
4957 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4958 if (ret < 0)
4959 goto out_put_cfile;
4960
fba94807
TH
4961 /*
4962 * Determine the event callbacks and set them in @event. This used
4963 * to be done via struct cftype but cgroup core no longer knows
4964 * about these events. The following is crude but the whole thing
4965 * is for compatibility anyway.
3bc942f3
TH
4966 *
4967 * DO NOT ADD NEW FILES.
fba94807
TH
4968 */
4969 name = cfile.file->f_dentry->d_name.name;
4970
4971 if (!strcmp(name, "memory.usage_in_bytes")) {
4972 event->register_event = mem_cgroup_usage_register_event;
4973 event->unregister_event = mem_cgroup_usage_unregister_event;
4974 } else if (!strcmp(name, "memory.oom_control")) {
4975 event->register_event = mem_cgroup_oom_register_event;
4976 event->unregister_event = mem_cgroup_oom_unregister_event;
4977 } else if (!strcmp(name, "memory.pressure_level")) {
4978 event->register_event = vmpressure_register_event;
4979 event->unregister_event = vmpressure_unregister_event;
4980 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4981 event->register_event = memsw_cgroup_usage_register_event;
4982 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4983 } else {
4984 ret = -EINVAL;
4985 goto out_put_cfile;
4986 }
4987
79bd9814 4988 /*
b5557c4c
TH
4989 * Verify @cfile should belong to @css. Also, remaining events are
4990 * automatically removed on cgroup destruction but the removal is
4991 * asynchronous, so take an extra ref on @css.
79bd9814 4992 */
ec903c0c
TH
4993 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4994 &memory_cgrp_subsys);
79bd9814 4995 ret = -EINVAL;
5a17f543 4996 if (IS_ERR(cfile_css))
79bd9814 4997 goto out_put_cfile;
5a17f543
TH
4998 if (cfile_css != css) {
4999 css_put(cfile_css);
79bd9814 5000 goto out_put_cfile;
5a17f543 5001 }
79bd9814 5002
451af504 5003 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
5004 if (ret)
5005 goto out_put_css;
5006
5007 efile.file->f_op->poll(efile.file, &event->pt);
5008
fba94807
TH
5009 spin_lock(&memcg->event_list_lock);
5010 list_add(&event->list, &memcg->event_list);
5011 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5012
5013 fdput(cfile);
5014 fdput(efile);
5015
451af504 5016 return nbytes;
79bd9814
TH
5017
5018out_put_css:
b5557c4c 5019 css_put(css);
79bd9814
TH
5020out_put_cfile:
5021 fdput(cfile);
5022out_put_eventfd:
5023 eventfd_ctx_put(event->eventfd);
5024out_put_efile:
5025 fdput(efile);
5026out_kfree:
5027 kfree(event);
5028
5029 return ret;
5030}
5031
8cdea7c0
BS
5032static struct cftype mem_cgroup_files[] = {
5033 {
0eea1030 5034 .name = "usage_in_bytes",
8c7c6e34 5035 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5036 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5037 },
c84872e1
PE
5038 {
5039 .name = "max_usage_in_bytes",
8c7c6e34 5040 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5041 .write = mem_cgroup_reset,
791badbd 5042 .read_u64 = mem_cgroup_read_u64,
c84872e1 5043 },
8cdea7c0 5044 {
0eea1030 5045 .name = "limit_in_bytes",
8c7c6e34 5046 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5047 .write = mem_cgroup_write,
791badbd 5048 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5049 },
296c81d8
BS
5050 {
5051 .name = "soft_limit_in_bytes",
5052 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5053 .write = mem_cgroup_write,
791badbd 5054 .read_u64 = mem_cgroup_read_u64,
296c81d8 5055 },
8cdea7c0
BS
5056 {
5057 .name = "failcnt",
8c7c6e34 5058 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5059 .write = mem_cgroup_reset,
791badbd 5060 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5061 },
d2ceb9b7
KH
5062 {
5063 .name = "stat",
2da8ca82 5064 .seq_show = memcg_stat_show,
d2ceb9b7 5065 },
c1e862c1
KH
5066 {
5067 .name = "force_empty",
6770c64e 5068 .write = mem_cgroup_force_empty_write,
c1e862c1 5069 },
18f59ea7
BS
5070 {
5071 .name = "use_hierarchy",
5072 .write_u64 = mem_cgroup_hierarchy_write,
5073 .read_u64 = mem_cgroup_hierarchy_read,
5074 },
79bd9814 5075 {
3bc942f3 5076 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5077 .write = memcg_write_event_control,
79bd9814
TH
5078 .flags = CFTYPE_NO_PREFIX,
5079 .mode = S_IWUGO,
5080 },
a7885eb8
KM
5081 {
5082 .name = "swappiness",
5083 .read_u64 = mem_cgroup_swappiness_read,
5084 .write_u64 = mem_cgroup_swappiness_write,
5085 },
7dc74be0
DN
5086 {
5087 .name = "move_charge_at_immigrate",
5088 .read_u64 = mem_cgroup_move_charge_read,
5089 .write_u64 = mem_cgroup_move_charge_write,
5090 },
9490ff27
KH
5091 {
5092 .name = "oom_control",
2da8ca82 5093 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5094 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5095 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5096 },
70ddf637
AV
5097 {
5098 .name = "pressure_level",
70ddf637 5099 },
406eb0c9
YH
5100#ifdef CONFIG_NUMA
5101 {
5102 .name = "numa_stat",
2da8ca82 5103 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5104 },
5105#endif
510fc4e1
GC
5106#ifdef CONFIG_MEMCG_KMEM
5107 {
5108 .name = "kmem.limit_in_bytes",
5109 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5110 .write = mem_cgroup_write,
791badbd 5111 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5112 },
5113 {
5114 .name = "kmem.usage_in_bytes",
5115 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5116 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5117 },
5118 {
5119 .name = "kmem.failcnt",
5120 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5121 .write = mem_cgroup_reset,
791badbd 5122 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5123 },
5124 {
5125 .name = "kmem.max_usage_in_bytes",
5126 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5127 .write = mem_cgroup_reset,
791badbd 5128 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5129 },
749c5415
GC
5130#ifdef CONFIG_SLABINFO
5131 {
5132 .name = "kmem.slabinfo",
2da8ca82 5133 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
5134 },
5135#endif
8c7c6e34 5136#endif
6bc10349 5137 { }, /* terminate */
af36f906 5138};
8c7c6e34 5139
2d11085e
MH
5140#ifdef CONFIG_MEMCG_SWAP
5141static struct cftype memsw_cgroup_files[] = {
5142 {
5143 .name = "memsw.usage_in_bytes",
5144 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 5145 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5146 },
5147 {
5148 .name = "memsw.max_usage_in_bytes",
5149 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 5150 .write = mem_cgroup_reset,
791badbd 5151 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5152 },
5153 {
5154 .name = "memsw.limit_in_bytes",
5155 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 5156 .write = mem_cgroup_write,
791badbd 5157 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5158 },
5159 {
5160 .name = "memsw.failcnt",
5161 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 5162 .write = mem_cgroup_reset,
791badbd 5163 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5164 },
5165 { }, /* terminate */
5166};
5167#endif
c0ff4b85 5168static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5169{
5170 struct mem_cgroup_per_node *pn;
1ecaab2b 5171 struct mem_cgroup_per_zone *mz;
41e3355d 5172 int zone, tmp = node;
1ecaab2b
KH
5173 /*
5174 * This routine is called against possible nodes.
5175 * But it's BUG to call kmalloc() against offline node.
5176 *
5177 * TODO: this routine can waste much memory for nodes which will
5178 * never be onlined. It's better to use memory hotplug callback
5179 * function.
5180 */
41e3355d
KH
5181 if (!node_state(node, N_NORMAL_MEMORY))
5182 tmp = -1;
17295c88 5183 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5184 if (!pn)
5185 return 1;
1ecaab2b 5186
1ecaab2b
KH
5187 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5188 mz = &pn->zoneinfo[zone];
bea8c150 5189 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
5190 mz->usage_in_excess = 0;
5191 mz->on_tree = false;
d79154bb 5192 mz->memcg = memcg;
1ecaab2b 5193 }
54f72fe0 5194 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5195 return 0;
5196}
5197
c0ff4b85 5198static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5199{
54f72fe0 5200 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
5201}
5202
33327948
KH
5203static struct mem_cgroup *mem_cgroup_alloc(void)
5204{
d79154bb 5205 struct mem_cgroup *memcg;
8ff69e2c 5206 size_t size;
33327948 5207
8ff69e2c
VD
5208 size = sizeof(struct mem_cgroup);
5209 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 5210
8ff69e2c 5211 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 5212 if (!memcg)
e7bbcdf3
DC
5213 return NULL;
5214
d79154bb
HD
5215 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5216 if (!memcg->stat)
d2e61b8d 5217 goto out_free;
d79154bb
HD
5218 spin_lock_init(&memcg->pcp_counter_lock);
5219 return memcg;
d2e61b8d
DC
5220
5221out_free:
8ff69e2c 5222 kfree(memcg);
d2e61b8d 5223 return NULL;
33327948
KH
5224}
5225
59927fb9 5226/*
c8b2a36f
GC
5227 * At destroying mem_cgroup, references from swap_cgroup can remain.
5228 * (scanning all at force_empty is too costly...)
5229 *
5230 * Instead of clearing all references at force_empty, we remember
5231 * the number of reference from swap_cgroup and free mem_cgroup when
5232 * it goes down to 0.
5233 *
5234 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5235 */
c8b2a36f
GC
5236
5237static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5238{
c8b2a36f 5239 int node;
59927fb9 5240
bb4cc1a8 5241 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
5242
5243 for_each_node(node)
5244 free_mem_cgroup_per_zone_info(memcg, node);
5245
5246 free_percpu(memcg->stat);
5247
3f134619
GC
5248 /*
5249 * We need to make sure that (at least for now), the jump label
5250 * destruction code runs outside of the cgroup lock. This is because
5251 * get_online_cpus(), which is called from the static_branch update,
5252 * can't be called inside the cgroup_lock. cpusets are the ones
5253 * enforcing this dependency, so if they ever change, we might as well.
5254 *
5255 * schedule_work() will guarantee this happens. Be careful if you need
5256 * to move this code around, and make sure it is outside
5257 * the cgroup_lock.
5258 */
a8964b9b 5259 disarm_static_keys(memcg);
8ff69e2c 5260 kfree(memcg);
59927fb9 5261}
3afe36b1 5262
7bcc1bb1
DN
5263/*
5264 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5265 */
e1aab161 5266struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5267{
3e32cb2e 5268 if (!memcg->memory.parent)
7bcc1bb1 5269 return NULL;
3e32cb2e 5270 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 5271}
e1aab161 5272EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5273
bb4cc1a8
AM
5274static void __init mem_cgroup_soft_limit_tree_init(void)
5275{
5276 struct mem_cgroup_tree_per_node *rtpn;
5277 struct mem_cgroup_tree_per_zone *rtpz;
5278 int tmp, node, zone;
5279
5280 for_each_node(node) {
5281 tmp = node;
5282 if (!node_state(node, N_NORMAL_MEMORY))
5283 tmp = -1;
5284 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5285 BUG_ON(!rtpn);
5286
5287 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5288
5289 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5290 rtpz = &rtpn->rb_tree_per_zone[zone];
5291 rtpz->rb_root = RB_ROOT;
5292 spin_lock_init(&rtpz->lock);
5293 }
5294 }
5295}
5296
0eb253e2 5297static struct cgroup_subsys_state * __ref
eb95419b 5298mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 5299{
d142e3e6 5300 struct mem_cgroup *memcg;
04046e1a 5301 long error = -ENOMEM;
6d12e2d8 5302 int node;
8cdea7c0 5303
c0ff4b85
R
5304 memcg = mem_cgroup_alloc();
5305 if (!memcg)
04046e1a 5306 return ERR_PTR(error);
78fb7466 5307
3ed28fa1 5308 for_each_node(node)
c0ff4b85 5309 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5310 goto free_out;
f64c3f54 5311
c077719b 5312 /* root ? */
eb95419b 5313 if (parent_css == NULL) {
a41c58a6 5314 root_mem_cgroup = memcg;
3e32cb2e
JW
5315 page_counter_init(&memcg->memory, NULL);
5316 page_counter_init(&memcg->memsw, NULL);
5317 page_counter_init(&memcg->kmem, NULL);
18f59ea7 5318 }
28dbc4b6 5319
d142e3e6
GC
5320 memcg->last_scanned_node = MAX_NUMNODES;
5321 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5322 memcg->move_charge_at_immigrate = 0;
5323 mutex_init(&memcg->thresholds_lock);
5324 spin_lock_init(&memcg->move_lock);
70ddf637 5325 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5326 INIT_LIST_HEAD(&memcg->event_list);
5327 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
5328
5329 return &memcg->css;
5330
5331free_out:
5332 __mem_cgroup_free(memcg);
5333 return ERR_PTR(error);
5334}
5335
5336static int
eb95419b 5337mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 5338{
eb95419b 5339 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 5340 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 5341 int ret;
d142e3e6 5342
15a4c835 5343 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
5344 return -ENOSPC;
5345
63876986 5346 if (!parent)
d142e3e6
GC
5347 return 0;
5348
0999821b 5349 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
5350
5351 memcg->use_hierarchy = parent->use_hierarchy;
5352 memcg->oom_kill_disable = parent->oom_kill_disable;
5353 memcg->swappiness = mem_cgroup_swappiness(parent);
5354
5355 if (parent->use_hierarchy) {
3e32cb2e
JW
5356 page_counter_init(&memcg->memory, &parent->memory);
5357 page_counter_init(&memcg->memsw, &parent->memsw);
5358 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5359
7bcc1bb1 5360 /*
8d76a979
LZ
5361 * No need to take a reference to the parent because cgroup
5362 * core guarantees its existence.
7bcc1bb1 5363 */
18f59ea7 5364 } else {
3e32cb2e
JW
5365 page_counter_init(&memcg->memory, NULL);
5366 page_counter_init(&memcg->memsw, NULL);
5367 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5368 /*
5369 * Deeper hierachy with use_hierarchy == false doesn't make
5370 * much sense so let cgroup subsystem know about this
5371 * unfortunate state in our controller.
5372 */
d142e3e6 5373 if (parent != root_mem_cgroup)
073219e9 5374 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5375 }
0999821b 5376 mutex_unlock(&memcg_create_mutex);
d6441637 5377
2f7dd7a4
JW
5378 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5379 if (ret)
5380 return ret;
5381
5382 /*
5383 * Make sure the memcg is initialized: mem_cgroup_iter()
5384 * orders reading memcg->initialized against its callers
5385 * reading the memcg members.
5386 */
5387 smp_store_release(&memcg->initialized, 1);
5388
5389 return 0;
8cdea7c0
BS
5390}
5391
eb95419b 5392static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5393{
eb95419b 5394 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5395 struct mem_cgroup_event *event, *tmp;
4fb1a86f 5396 struct cgroup_subsys_state *iter;
79bd9814
TH
5397
5398 /*
5399 * Unregister events and notify userspace.
5400 * Notify userspace about cgroup removing only after rmdir of cgroup
5401 * directory to avoid race between userspace and kernelspace.
5402 */
fba94807
TH
5403 spin_lock(&memcg->event_list_lock);
5404 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5405 list_del_init(&event->list);
5406 schedule_work(&event->remove);
5407 }
fba94807 5408 spin_unlock(&memcg->event_list_lock);
ec64f515 5409
10d5ebf4
LZ
5410 kmem_cgroup_css_offline(memcg);
5411
4fb1a86f
FB
5412 /*
5413 * This requires that offlining is serialized. Right now that is
5414 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5415 */
5416 css_for_each_descendant_post(iter, css)
5417 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5418
776ed0f0 5419 memcg_unregister_all_caches(memcg);
33cb876e 5420 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
5421}
5422
eb95419b 5423static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5424{
eb95419b 5425 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
5426 /*
5427 * XXX: css_offline() would be where we should reparent all
5428 * memory to prepare the cgroup for destruction. However,
3e32cb2e 5429 * memcg does not do css_tryget_online() and page_counter charging
96f1c58d
JW
5430 * under the same RCU lock region, which means that charging
5431 * could race with offlining. Offlining only happens to
5432 * cgroups with no tasks in them but charges can show up
5433 * without any tasks from the swapin path when the target
5434 * memcg is looked up from the swapout record and not from the
5435 * current task as it usually is. A race like this can leak
5436 * charges and put pages with stale cgroup pointers into
5437 * circulation:
5438 *
5439 * #0 #1
5440 * lookup_swap_cgroup_id()
5441 * rcu_read_lock()
5442 * mem_cgroup_lookup()
ec903c0c 5443 * css_tryget_online()
96f1c58d 5444 * rcu_read_unlock()
ec903c0c 5445 * disable css_tryget_online()
96f1c58d
JW
5446 * call_rcu()
5447 * offline_css()
5448 * reparent_charges()
3e32cb2e 5449 * page_counter_try_charge()
96f1c58d
JW
5450 * css_put()
5451 * css_free()
5452 * pc->mem_cgroup = dead memcg
5453 * add page to lru
5454 *
5455 * The bulk of the charges are still moved in offline_css() to
5456 * avoid pinning a lot of pages in case a long-term reference
5457 * like a swapout record is deferring the css_free() to long
5458 * after offlining. But this makes sure we catch any charges
5459 * made after offlining:
5460 */
5461 mem_cgroup_reparent_charges(memcg);
c268e994 5462
10d5ebf4 5463 memcg_destroy_kmem(memcg);
465939a1 5464 __mem_cgroup_free(memcg);
8cdea7c0
BS
5465}
5466
1ced953b
TH
5467/**
5468 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5469 * @css: the target css
5470 *
5471 * Reset the states of the mem_cgroup associated with @css. This is
5472 * invoked when the userland requests disabling on the default hierarchy
5473 * but the memcg is pinned through dependency. The memcg should stop
5474 * applying policies and should revert to the vanilla state as it may be
5475 * made visible again.
5476 *
5477 * The current implementation only resets the essential configurations.
5478 * This needs to be expanded to cover all the visible parts.
5479 */
5480static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5481{
5482 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483
3e32cb2e
JW
5484 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
5485 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5486 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5487 memcg->soft_limit = 0;
1ced953b
TH
5488}
5489
02491447 5490#ifdef CONFIG_MMU
7dc74be0 5491/* Handlers for move charge at task migration. */
854ffa8d 5492static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5493{
05b84301 5494 int ret;
9476db97
JW
5495
5496 /* Try a single bulk charge without reclaim first */
00501b53 5497 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5498 if (!ret) {
854ffa8d 5499 mc.precharge += count;
854ffa8d
DN
5500 return ret;
5501 }
692e7c45 5502 if (ret == -EINTR) {
00501b53 5503 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5504 return ret;
5505 }
9476db97
JW
5506
5507 /* Try charges one by one with reclaim */
854ffa8d 5508 while (count--) {
00501b53 5509 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5510 /*
5511 * In case of failure, any residual charges against
5512 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5513 * later on. However, cancel any charges that are
5514 * bypassed to root right away or they'll be lost.
9476db97 5515 */
692e7c45 5516 if (ret == -EINTR)
00501b53 5517 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5518 if (ret)
38c5d72f 5519 return ret;
854ffa8d 5520 mc.precharge++;
9476db97 5521 cond_resched();
854ffa8d 5522 }
9476db97 5523 return 0;
4ffef5fe
DN
5524}
5525
5526/**
8d32ff84 5527 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5528 * @vma: the vma the pte to be checked belongs
5529 * @addr: the address corresponding to the pte to be checked
5530 * @ptent: the pte to be checked
02491447 5531 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5532 *
5533 * Returns
5534 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5535 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5536 * move charge. if @target is not NULL, the page is stored in target->page
5537 * with extra refcnt got(Callers should handle it).
02491447
DN
5538 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5539 * target for charge migration. if @target is not NULL, the entry is stored
5540 * in target->ent.
4ffef5fe
DN
5541 *
5542 * Called with pte lock held.
5543 */
4ffef5fe
DN
5544union mc_target {
5545 struct page *page;
02491447 5546 swp_entry_t ent;
4ffef5fe
DN
5547};
5548
4ffef5fe 5549enum mc_target_type {
8d32ff84 5550 MC_TARGET_NONE = 0,
4ffef5fe 5551 MC_TARGET_PAGE,
02491447 5552 MC_TARGET_SWAP,
4ffef5fe
DN
5553};
5554
90254a65
DN
5555static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5556 unsigned long addr, pte_t ptent)
4ffef5fe 5557{
90254a65 5558 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5559
90254a65
DN
5560 if (!page || !page_mapped(page))
5561 return NULL;
5562 if (PageAnon(page)) {
5563 /* we don't move shared anon */
4b91355e 5564 if (!move_anon())
90254a65 5565 return NULL;
87946a72
DN
5566 } else if (!move_file())
5567 /* we ignore mapcount for file pages */
90254a65
DN
5568 return NULL;
5569 if (!get_page_unless_zero(page))
5570 return NULL;
5571
5572 return page;
5573}
5574
4b91355e 5575#ifdef CONFIG_SWAP
90254a65
DN
5576static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5577 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5578{
90254a65
DN
5579 struct page *page = NULL;
5580 swp_entry_t ent = pte_to_swp_entry(ptent);
5581
5582 if (!move_anon() || non_swap_entry(ent))
5583 return NULL;
4b91355e
KH
5584 /*
5585 * Because lookup_swap_cache() updates some statistics counter,
5586 * we call find_get_page() with swapper_space directly.
5587 */
33806f06 5588 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5589 if (do_swap_account)
5590 entry->val = ent.val;
5591
5592 return page;
5593}
4b91355e
KH
5594#else
5595static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5596 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5597{
5598 return NULL;
5599}
5600#endif
90254a65 5601
87946a72
DN
5602static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5603 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5604{
5605 struct page *page = NULL;
87946a72
DN
5606 struct address_space *mapping;
5607 pgoff_t pgoff;
5608
5609 if (!vma->vm_file) /* anonymous vma */
5610 return NULL;
5611 if (!move_file())
5612 return NULL;
5613
87946a72
DN
5614 mapping = vma->vm_file->f_mapping;
5615 if (pte_none(ptent))
5616 pgoff = linear_page_index(vma, addr);
5617 else /* pte_file(ptent) is true */
5618 pgoff = pte_to_pgoff(ptent);
5619
5620 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5621#ifdef CONFIG_SWAP
5622 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5623 if (shmem_mapping(mapping)) {
5624 page = find_get_entry(mapping, pgoff);
5625 if (radix_tree_exceptional_entry(page)) {
5626 swp_entry_t swp = radix_to_swp_entry(page);
5627 if (do_swap_account)
5628 *entry = swp;
5629 page = find_get_page(swap_address_space(swp), swp.val);
5630 }
5631 } else
5632 page = find_get_page(mapping, pgoff);
5633#else
5634 page = find_get_page(mapping, pgoff);
aa3b1895 5635#endif
87946a72
DN
5636 return page;
5637}
5638
8d32ff84 5639static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5640 unsigned long addr, pte_t ptent, union mc_target *target)
5641{
5642 struct page *page = NULL;
5643 struct page_cgroup *pc;
8d32ff84 5644 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5645 swp_entry_t ent = { .val = 0 };
5646
5647 if (pte_present(ptent))
5648 page = mc_handle_present_pte(vma, addr, ptent);
5649 else if (is_swap_pte(ptent))
5650 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5651 else if (pte_none(ptent) || pte_file(ptent))
5652 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5653
5654 if (!page && !ent.val)
8d32ff84 5655 return ret;
02491447
DN
5656 if (page) {
5657 pc = lookup_page_cgroup(page);
5658 /*
0a31bc97
JW
5659 * Do only loose check w/o serialization.
5660 * mem_cgroup_move_account() checks the pc is valid or
5661 * not under LRU exclusion.
02491447
DN
5662 */
5663 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5664 ret = MC_TARGET_PAGE;
5665 if (target)
5666 target->page = page;
5667 }
5668 if (!ret || !target)
5669 put_page(page);
5670 }
90254a65
DN
5671 /* There is a swap entry and a page doesn't exist or isn't charged */
5672 if (ent.val && !ret &&
34c00c31 5673 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5674 ret = MC_TARGET_SWAP;
5675 if (target)
5676 target->ent = ent;
4ffef5fe 5677 }
4ffef5fe
DN
5678 return ret;
5679}
5680
12724850
NH
5681#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5682/*
5683 * We don't consider swapping or file mapped pages because THP does not
5684 * support them for now.
5685 * Caller should make sure that pmd_trans_huge(pmd) is true.
5686 */
5687static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5688 unsigned long addr, pmd_t pmd, union mc_target *target)
5689{
5690 struct page *page = NULL;
5691 struct page_cgroup *pc;
5692 enum mc_target_type ret = MC_TARGET_NONE;
5693
5694 page = pmd_page(pmd);
309381fe 5695 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5696 if (!move_anon())
5697 return ret;
5698 pc = lookup_page_cgroup(page);
5699 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5700 ret = MC_TARGET_PAGE;
5701 if (target) {
5702 get_page(page);
5703 target->page = page;
5704 }
5705 }
5706 return ret;
5707}
5708#else
5709static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5710 unsigned long addr, pmd_t pmd, union mc_target *target)
5711{
5712 return MC_TARGET_NONE;
5713}
5714#endif
5715
4ffef5fe
DN
5716static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5717 unsigned long addr, unsigned long end,
5718 struct mm_walk *walk)
5719{
5720 struct vm_area_struct *vma = walk->private;
5721 pte_t *pte;
5722 spinlock_t *ptl;
5723
bf929152 5724 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5725 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5726 mc.precharge += HPAGE_PMD_NR;
bf929152 5727 spin_unlock(ptl);
1a5a9906 5728 return 0;
12724850 5729 }
03319327 5730
45f83cef
AA
5731 if (pmd_trans_unstable(pmd))
5732 return 0;
4ffef5fe
DN
5733 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5734 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5735 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5736 mc.precharge++; /* increment precharge temporarily */
5737 pte_unmap_unlock(pte - 1, ptl);
5738 cond_resched();
5739
7dc74be0
DN
5740 return 0;
5741}
5742
4ffef5fe
DN
5743static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5744{
5745 unsigned long precharge;
5746 struct vm_area_struct *vma;
5747
dfe076b0 5748 down_read(&mm->mmap_sem);
4ffef5fe
DN
5749 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5750 struct mm_walk mem_cgroup_count_precharge_walk = {
5751 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5752 .mm = mm,
5753 .private = vma,
5754 };
5755 if (is_vm_hugetlb_page(vma))
5756 continue;
4ffef5fe
DN
5757 walk_page_range(vma->vm_start, vma->vm_end,
5758 &mem_cgroup_count_precharge_walk);
5759 }
dfe076b0 5760 up_read(&mm->mmap_sem);
4ffef5fe
DN
5761
5762 precharge = mc.precharge;
5763 mc.precharge = 0;
5764
5765 return precharge;
5766}
5767
4ffef5fe
DN
5768static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5769{
dfe076b0
DN
5770 unsigned long precharge = mem_cgroup_count_precharge(mm);
5771
5772 VM_BUG_ON(mc.moving_task);
5773 mc.moving_task = current;
5774 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5775}
5776
dfe076b0
DN
5777/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5778static void __mem_cgroup_clear_mc(void)
4ffef5fe 5779{
2bd9bb20
KH
5780 struct mem_cgroup *from = mc.from;
5781 struct mem_cgroup *to = mc.to;
5782
4ffef5fe 5783 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5784 if (mc.precharge) {
00501b53 5785 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5786 mc.precharge = 0;
5787 }
5788 /*
5789 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5790 * we must uncharge here.
5791 */
5792 if (mc.moved_charge) {
00501b53 5793 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5794 mc.moved_charge = 0;
4ffef5fe 5795 }
483c30b5
DN
5796 /* we must fixup refcnts and charges */
5797 if (mc.moved_swap) {
483c30b5 5798 /* uncharge swap account from the old cgroup */
ce00a967 5799 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5800 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5801
05b84301 5802 /*
3e32cb2e
JW
5803 * we charged both to->memory and to->memsw, so we
5804 * should uncharge to->memory.
05b84301 5805 */
ce00a967 5806 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5807 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5808
e8ea14cc 5809 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5810
4050377b 5811 /* we've already done css_get(mc.to) */
483c30b5
DN
5812 mc.moved_swap = 0;
5813 }
dfe076b0
DN
5814 memcg_oom_recover(from);
5815 memcg_oom_recover(to);
5816 wake_up_all(&mc.waitq);
5817}
5818
5819static void mem_cgroup_clear_mc(void)
5820{
5821 struct mem_cgroup *from = mc.from;
5822
5823 /*
5824 * we must clear moving_task before waking up waiters at the end of
5825 * task migration.
5826 */
5827 mc.moving_task = NULL;
5828 __mem_cgroup_clear_mc();
2bd9bb20 5829 spin_lock(&mc.lock);
4ffef5fe
DN
5830 mc.from = NULL;
5831 mc.to = NULL;
2bd9bb20 5832 spin_unlock(&mc.lock);
32047e2a 5833 mem_cgroup_end_move(from);
4ffef5fe
DN
5834}
5835
eb95419b 5836static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5837 struct cgroup_taskset *tset)
7dc74be0 5838{
2f7ee569 5839 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5840 int ret = 0;
eb95419b 5841 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5842 unsigned long move_charge_at_immigrate;
7dc74be0 5843
ee5e8472
GC
5844 /*
5845 * We are now commited to this value whatever it is. Changes in this
5846 * tunable will only affect upcoming migrations, not the current one.
5847 * So we need to save it, and keep it going.
5848 */
5849 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5850 if (move_charge_at_immigrate) {
7dc74be0
DN
5851 struct mm_struct *mm;
5852 struct mem_cgroup *from = mem_cgroup_from_task(p);
5853
c0ff4b85 5854 VM_BUG_ON(from == memcg);
7dc74be0
DN
5855
5856 mm = get_task_mm(p);
5857 if (!mm)
5858 return 0;
7dc74be0 5859 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5860 if (mm->owner == p) {
5861 VM_BUG_ON(mc.from);
5862 VM_BUG_ON(mc.to);
5863 VM_BUG_ON(mc.precharge);
854ffa8d 5864 VM_BUG_ON(mc.moved_charge);
483c30b5 5865 VM_BUG_ON(mc.moved_swap);
32047e2a 5866 mem_cgroup_start_move(from);
2bd9bb20 5867 spin_lock(&mc.lock);
4ffef5fe 5868 mc.from = from;
c0ff4b85 5869 mc.to = memcg;
ee5e8472 5870 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5871 spin_unlock(&mc.lock);
dfe076b0 5872 /* We set mc.moving_task later */
4ffef5fe
DN
5873
5874 ret = mem_cgroup_precharge_mc(mm);
5875 if (ret)
5876 mem_cgroup_clear_mc();
dfe076b0
DN
5877 }
5878 mmput(mm);
7dc74be0
DN
5879 }
5880 return ret;
5881}
5882
eb95419b 5883static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5884 struct cgroup_taskset *tset)
7dc74be0 5885{
4ffef5fe 5886 mem_cgroup_clear_mc();
7dc74be0
DN
5887}
5888
4ffef5fe
DN
5889static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5890 unsigned long addr, unsigned long end,
5891 struct mm_walk *walk)
7dc74be0 5892{
4ffef5fe
DN
5893 int ret = 0;
5894 struct vm_area_struct *vma = walk->private;
5895 pte_t *pte;
5896 spinlock_t *ptl;
12724850
NH
5897 enum mc_target_type target_type;
5898 union mc_target target;
5899 struct page *page;
5900 struct page_cgroup *pc;
4ffef5fe 5901
12724850
NH
5902 /*
5903 * We don't take compound_lock() here but no race with splitting thp
5904 * happens because:
5905 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5906 * under splitting, which means there's no concurrent thp split,
5907 * - if another thread runs into split_huge_page() just after we
5908 * entered this if-block, the thread must wait for page table lock
5909 * to be unlocked in __split_huge_page_splitting(), where the main
5910 * part of thp split is not executed yet.
5911 */
bf929152 5912 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5913 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5914 spin_unlock(ptl);
12724850
NH
5915 return 0;
5916 }
5917 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5918 if (target_type == MC_TARGET_PAGE) {
5919 page = target.page;
5920 if (!isolate_lru_page(page)) {
5921 pc = lookup_page_cgroup(page);
5922 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5923 pc, mc.from, mc.to)) {
12724850
NH
5924 mc.precharge -= HPAGE_PMD_NR;
5925 mc.moved_charge += HPAGE_PMD_NR;
5926 }
5927 putback_lru_page(page);
5928 }
5929 put_page(page);
5930 }
bf929152 5931 spin_unlock(ptl);
1a5a9906 5932 return 0;
12724850
NH
5933 }
5934
45f83cef
AA
5935 if (pmd_trans_unstable(pmd))
5936 return 0;
4ffef5fe
DN
5937retry:
5938 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5939 for (; addr != end; addr += PAGE_SIZE) {
5940 pte_t ptent = *(pte++);
02491447 5941 swp_entry_t ent;
4ffef5fe
DN
5942
5943 if (!mc.precharge)
5944 break;
5945
8d32ff84 5946 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5947 case MC_TARGET_PAGE:
5948 page = target.page;
5949 if (isolate_lru_page(page))
5950 goto put;
5951 pc = lookup_page_cgroup(page);
7ec99d62 5952 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5953 mc.from, mc.to)) {
4ffef5fe 5954 mc.precharge--;
854ffa8d
DN
5955 /* we uncharge from mc.from later. */
5956 mc.moved_charge++;
4ffef5fe
DN
5957 }
5958 putback_lru_page(page);
8d32ff84 5959put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5960 put_page(page);
5961 break;
02491447
DN
5962 case MC_TARGET_SWAP:
5963 ent = target.ent;
e91cbb42 5964 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5965 mc.precharge--;
483c30b5
DN
5966 /* we fixup refcnts and charges later. */
5967 mc.moved_swap++;
5968 }
02491447 5969 break;
4ffef5fe
DN
5970 default:
5971 break;
5972 }
5973 }
5974 pte_unmap_unlock(pte - 1, ptl);
5975 cond_resched();
5976
5977 if (addr != end) {
5978 /*
5979 * We have consumed all precharges we got in can_attach().
5980 * We try charge one by one, but don't do any additional
5981 * charges to mc.to if we have failed in charge once in attach()
5982 * phase.
5983 */
854ffa8d 5984 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5985 if (!ret)
5986 goto retry;
5987 }
5988
5989 return ret;
5990}
5991
5992static void mem_cgroup_move_charge(struct mm_struct *mm)
5993{
5994 struct vm_area_struct *vma;
5995
5996 lru_add_drain_all();
dfe076b0
DN
5997retry:
5998 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5999 /*
6000 * Someone who are holding the mmap_sem might be waiting in
6001 * waitq. So we cancel all extra charges, wake up all waiters,
6002 * and retry. Because we cancel precharges, we might not be able
6003 * to move enough charges, but moving charge is a best-effort
6004 * feature anyway, so it wouldn't be a big problem.
6005 */
6006 __mem_cgroup_clear_mc();
6007 cond_resched();
6008 goto retry;
6009 }
4ffef5fe
DN
6010 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6011 int ret;
6012 struct mm_walk mem_cgroup_move_charge_walk = {
6013 .pmd_entry = mem_cgroup_move_charge_pte_range,
6014 .mm = mm,
6015 .private = vma,
6016 };
6017 if (is_vm_hugetlb_page(vma))
6018 continue;
4ffef5fe
DN
6019 ret = walk_page_range(vma->vm_start, vma->vm_end,
6020 &mem_cgroup_move_charge_walk);
6021 if (ret)
6022 /*
6023 * means we have consumed all precharges and failed in
6024 * doing additional charge. Just abandon here.
6025 */
6026 break;
6027 }
dfe076b0 6028 up_read(&mm->mmap_sem);
7dc74be0
DN
6029}
6030
eb95419b 6031static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6032 struct cgroup_taskset *tset)
67e465a7 6033{
2f7ee569 6034 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6035 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6036
dfe076b0 6037 if (mm) {
a433658c
KM
6038 if (mc.to)
6039 mem_cgroup_move_charge(mm);
dfe076b0
DN
6040 mmput(mm);
6041 }
a433658c
KM
6042 if (mc.to)
6043 mem_cgroup_clear_mc();
67e465a7 6044}
5cfb80a7 6045#else /* !CONFIG_MMU */
eb95419b 6046static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6047 struct cgroup_taskset *tset)
5cfb80a7
DN
6048{
6049 return 0;
6050}
eb95419b 6051static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6052 struct cgroup_taskset *tset)
5cfb80a7
DN
6053{
6054}
eb95419b 6055static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6056 struct cgroup_taskset *tset)
5cfb80a7
DN
6057{
6058}
6059#endif
67e465a7 6060
f00baae7
TH
6061/*
6062 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6063 * to verify whether we're attached to the default hierarchy on each mount
6064 * attempt.
f00baae7 6065 */
eb95419b 6066static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6067{
6068 /*
aa6ec29b 6069 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6070 * guarantees that @root doesn't have any children, so turning it
6071 * on for the root memcg is enough.
6072 */
aa6ec29b 6073 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 6074 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6075}
6076
073219e9 6077struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6078 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6079 .css_online = mem_cgroup_css_online,
92fb9748
TH
6080 .css_offline = mem_cgroup_css_offline,
6081 .css_free = mem_cgroup_css_free,
1ced953b 6082 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6083 .can_attach = mem_cgroup_can_attach,
6084 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6085 .attach = mem_cgroup_move_task,
f00baae7 6086 .bind = mem_cgroup_bind,
5577964e 6087 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 6088 .early_init = 0,
8cdea7c0 6089};
c077719b 6090
c255a458 6091#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6092static int __init enable_swap_account(char *s)
6093{
a2c8990a 6094 if (!strcmp(s, "1"))
a42c390c 6095 really_do_swap_account = 1;
a2c8990a 6096 else if (!strcmp(s, "0"))
a42c390c
MH
6097 really_do_swap_account = 0;
6098 return 1;
6099}
a2c8990a 6100__setup("swapaccount=", enable_swap_account);
c077719b 6101
2d11085e
MH
6102static void __init memsw_file_init(void)
6103{
2cf669a5
TH
6104 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6105 memsw_cgroup_files));
6acc8b02
MH
6106}
6107
6108static void __init enable_swap_cgroup(void)
6109{
6110 if (!mem_cgroup_disabled() && really_do_swap_account) {
6111 do_swap_account = 1;
6112 memsw_file_init();
6113 }
2d11085e 6114}
6acc8b02 6115
2d11085e 6116#else
6acc8b02 6117static void __init enable_swap_cgroup(void)
2d11085e
MH
6118{
6119}
c077719b 6120#endif
2d11085e 6121
0a31bc97
JW
6122#ifdef CONFIG_MEMCG_SWAP
6123/**
6124 * mem_cgroup_swapout - transfer a memsw charge to swap
6125 * @page: page whose memsw charge to transfer
6126 * @entry: swap entry to move the charge to
6127 *
6128 * Transfer the memsw charge of @page to @entry.
6129 */
6130void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6131{
6132 struct page_cgroup *pc;
6133 unsigned short oldid;
6134
6135 VM_BUG_ON_PAGE(PageLRU(page), page);
6136 VM_BUG_ON_PAGE(page_count(page), page);
6137
6138 if (!do_swap_account)
6139 return;
6140
6141 pc = lookup_page_cgroup(page);
6142
6143 /* Readahead page, never charged */
6144 if (!PageCgroupUsed(pc))
6145 return;
6146
6147 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6148
6149 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6150 VM_BUG_ON_PAGE(oldid, page);
6151
6152 pc->flags &= ~PCG_MEMSW;
6153 css_get(&pc->mem_cgroup->css);
6154 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6155}
6156
6157/**
6158 * mem_cgroup_uncharge_swap - uncharge a swap entry
6159 * @entry: swap entry to uncharge
6160 *
6161 * Drop the memsw charge associated with @entry.
6162 */
6163void mem_cgroup_uncharge_swap(swp_entry_t entry)
6164{
6165 struct mem_cgroup *memcg;
6166 unsigned short id;
6167
6168 if (!do_swap_account)
6169 return;
6170
6171 id = swap_cgroup_record(entry, 0);
6172 rcu_read_lock();
6173 memcg = mem_cgroup_lookup(id);
6174 if (memcg) {
ce00a967 6175 if (!mem_cgroup_is_root(memcg))
3e32cb2e 6176 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
6177 mem_cgroup_swap_statistics(memcg, false);
6178 css_put(&memcg->css);
6179 }
6180 rcu_read_unlock();
6181}
6182#endif
6183
00501b53
JW
6184/**
6185 * mem_cgroup_try_charge - try charging a page
6186 * @page: page to charge
6187 * @mm: mm context of the victim
6188 * @gfp_mask: reclaim mode
6189 * @memcgp: charged memcg return
6190 *
6191 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6192 * pages according to @gfp_mask if necessary.
6193 *
6194 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6195 * Otherwise, an error code is returned.
6196 *
6197 * After page->mapping has been set up, the caller must finalize the
6198 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6199 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6200 */
6201int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6202 gfp_t gfp_mask, struct mem_cgroup **memcgp)
6203{
6204 struct mem_cgroup *memcg = NULL;
6205 unsigned int nr_pages = 1;
6206 int ret = 0;
6207
6208 if (mem_cgroup_disabled())
6209 goto out;
6210
6211 if (PageSwapCache(page)) {
6212 struct page_cgroup *pc = lookup_page_cgroup(page);
6213 /*
6214 * Every swap fault against a single page tries to charge the
6215 * page, bail as early as possible. shmem_unuse() encounters
6216 * already charged pages, too. The USED bit is protected by
6217 * the page lock, which serializes swap cache removal, which
6218 * in turn serializes uncharging.
6219 */
6220 if (PageCgroupUsed(pc))
6221 goto out;
6222 }
6223
6224 if (PageTransHuge(page)) {
6225 nr_pages <<= compound_order(page);
6226 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6227 }
6228
6229 if (do_swap_account && PageSwapCache(page))
6230 memcg = try_get_mem_cgroup_from_page(page);
6231 if (!memcg)
6232 memcg = get_mem_cgroup_from_mm(mm);
6233
6234 ret = try_charge(memcg, gfp_mask, nr_pages);
6235
6236 css_put(&memcg->css);
6237
6238 if (ret == -EINTR) {
6239 memcg = root_mem_cgroup;
6240 ret = 0;
6241 }
6242out:
6243 *memcgp = memcg;
6244 return ret;
6245}
6246
6247/**
6248 * mem_cgroup_commit_charge - commit a page charge
6249 * @page: page to charge
6250 * @memcg: memcg to charge the page to
6251 * @lrucare: page might be on LRU already
6252 *
6253 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6254 * after page->mapping has been set up. This must happen atomically
6255 * as part of the page instantiation, i.e. under the page table lock
6256 * for anonymous pages, under the page lock for page and swap cache.
6257 *
6258 * In addition, the page must not be on the LRU during the commit, to
6259 * prevent racing with task migration. If it might be, use @lrucare.
6260 *
6261 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6262 */
6263void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6264 bool lrucare)
6265{
6266 unsigned int nr_pages = 1;
6267
6268 VM_BUG_ON_PAGE(!page->mapping, page);
6269 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6270
6271 if (mem_cgroup_disabled())
6272 return;
6273 /*
6274 * Swap faults will attempt to charge the same page multiple
6275 * times. But reuse_swap_page() might have removed the page
6276 * from swapcache already, so we can't check PageSwapCache().
6277 */
6278 if (!memcg)
6279 return;
6280
6abb5a86
JW
6281 commit_charge(page, memcg, lrucare);
6282
00501b53
JW
6283 if (PageTransHuge(page)) {
6284 nr_pages <<= compound_order(page);
6285 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6286 }
6287
6abb5a86
JW
6288 local_irq_disable();
6289 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6290 memcg_check_events(memcg, page);
6291 local_irq_enable();
00501b53
JW
6292
6293 if (do_swap_account && PageSwapCache(page)) {
6294 swp_entry_t entry = { .val = page_private(page) };
6295 /*
6296 * The swap entry might not get freed for a long time,
6297 * let's not wait for it. The page already received a
6298 * memory+swap charge, drop the swap entry duplicate.
6299 */
6300 mem_cgroup_uncharge_swap(entry);
6301 }
6302}
6303
6304/**
6305 * mem_cgroup_cancel_charge - cancel a page charge
6306 * @page: page to charge
6307 * @memcg: memcg to charge the page to
6308 *
6309 * Cancel a charge transaction started by mem_cgroup_try_charge().
6310 */
6311void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6312{
6313 unsigned int nr_pages = 1;
6314
6315 if (mem_cgroup_disabled())
6316 return;
6317 /*
6318 * Swap faults will attempt to charge the same page multiple
6319 * times. But reuse_swap_page() might have removed the page
6320 * from swapcache already, so we can't check PageSwapCache().
6321 */
6322 if (!memcg)
6323 return;
6324
6325 if (PageTransHuge(page)) {
6326 nr_pages <<= compound_order(page);
6327 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6328 }
6329
6330 cancel_charge(memcg, nr_pages);
6331}
6332
747db954
JW
6333static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6334 unsigned long nr_mem, unsigned long nr_memsw,
6335 unsigned long nr_anon, unsigned long nr_file,
6336 unsigned long nr_huge, struct page *dummy_page)
6337{
6338 unsigned long flags;
6339
ce00a967
JW
6340 if (!mem_cgroup_is_root(memcg)) {
6341 if (nr_mem)
3e32cb2e 6342 page_counter_uncharge(&memcg->memory, nr_mem);
ce00a967 6343 if (nr_memsw)
3e32cb2e 6344 page_counter_uncharge(&memcg->memsw, nr_memsw);
ce00a967
JW
6345 memcg_oom_recover(memcg);
6346 }
747db954
JW
6347
6348 local_irq_save(flags);
6349 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6350 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6351 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6352 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6353 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6354 memcg_check_events(memcg, dummy_page);
6355 local_irq_restore(flags);
e8ea14cc
JW
6356
6357 if (!mem_cgroup_is_root(memcg))
6358 css_put_many(&memcg->css, max(nr_mem, nr_memsw));
747db954
JW
6359}
6360
6361static void uncharge_list(struct list_head *page_list)
6362{
6363 struct mem_cgroup *memcg = NULL;
6364 unsigned long nr_memsw = 0;
6365 unsigned long nr_anon = 0;
6366 unsigned long nr_file = 0;
6367 unsigned long nr_huge = 0;
6368 unsigned long pgpgout = 0;
6369 unsigned long nr_mem = 0;
6370 struct list_head *next;
6371 struct page *page;
6372
6373 next = page_list->next;
6374 do {
6375 unsigned int nr_pages = 1;
6376 struct page_cgroup *pc;
6377
6378 page = list_entry(next, struct page, lru);
6379 next = page->lru.next;
6380
6381 VM_BUG_ON_PAGE(PageLRU(page), page);
6382 VM_BUG_ON_PAGE(page_count(page), page);
6383
6384 pc = lookup_page_cgroup(page);
6385 if (!PageCgroupUsed(pc))
6386 continue;
6387
6388 /*
6389 * Nobody should be changing or seriously looking at
6390 * pc->mem_cgroup and pc->flags at this point, we have
6391 * fully exclusive access to the page.
6392 */
6393
6394 if (memcg != pc->mem_cgroup) {
6395 if (memcg) {
6396 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6397 nr_anon, nr_file, nr_huge, page);
6398 pgpgout = nr_mem = nr_memsw = 0;
6399 nr_anon = nr_file = nr_huge = 0;
6400 }
6401 memcg = pc->mem_cgroup;
6402 }
6403
6404 if (PageTransHuge(page)) {
6405 nr_pages <<= compound_order(page);
6406 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6407 nr_huge += nr_pages;
6408 }
6409
6410 if (PageAnon(page))
6411 nr_anon += nr_pages;
6412 else
6413 nr_file += nr_pages;
6414
6415 if (pc->flags & PCG_MEM)
6416 nr_mem += nr_pages;
6417 if (pc->flags & PCG_MEMSW)
6418 nr_memsw += nr_pages;
6419 pc->flags = 0;
6420
6421 pgpgout++;
6422 } while (next != page_list);
6423
6424 if (memcg)
6425 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6426 nr_anon, nr_file, nr_huge, page);
6427}
6428
0a31bc97
JW
6429/**
6430 * mem_cgroup_uncharge - uncharge a page
6431 * @page: page to uncharge
6432 *
6433 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6434 * mem_cgroup_commit_charge().
6435 */
6436void mem_cgroup_uncharge(struct page *page)
6437{
0a31bc97 6438 struct page_cgroup *pc;
0a31bc97
JW
6439
6440 if (mem_cgroup_disabled())
6441 return;
6442
747db954 6443 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 6444 pc = lookup_page_cgroup(page);
0a31bc97
JW
6445 if (!PageCgroupUsed(pc))
6446 return;
6447
747db954
JW
6448 INIT_LIST_HEAD(&page->lru);
6449 uncharge_list(&page->lru);
6450}
0a31bc97 6451
747db954
JW
6452/**
6453 * mem_cgroup_uncharge_list - uncharge a list of page
6454 * @page_list: list of pages to uncharge
6455 *
6456 * Uncharge a list of pages previously charged with
6457 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6458 */
6459void mem_cgroup_uncharge_list(struct list_head *page_list)
6460{
6461 if (mem_cgroup_disabled())
6462 return;
0a31bc97 6463
747db954
JW
6464 if (!list_empty(page_list))
6465 uncharge_list(page_list);
0a31bc97
JW
6466}
6467
6468/**
6469 * mem_cgroup_migrate - migrate a charge to another page
6470 * @oldpage: currently charged page
6471 * @newpage: page to transfer the charge to
6472 * @lrucare: both pages might be on the LRU already
6473 *
6474 * Migrate the charge from @oldpage to @newpage.
6475 *
6476 * Both pages must be locked, @newpage->mapping must be set up.
6477 */
6478void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6479 bool lrucare)
6480{
0a31bc97
JW
6481 struct page_cgroup *pc;
6482 int isolated;
6483
6484 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6485 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6486 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6487 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6488 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6489 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6490 newpage);
0a31bc97
JW
6491
6492 if (mem_cgroup_disabled())
6493 return;
6494
6495 /* Page cache replacement: new page already charged? */
6496 pc = lookup_page_cgroup(newpage);
6497 if (PageCgroupUsed(pc))
6498 return;
6499
6500 /* Re-entrant migration: old page already uncharged? */
6501 pc = lookup_page_cgroup(oldpage);
6502 if (!PageCgroupUsed(pc))
6503 return;
6504
6505 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6506 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6507
0a31bc97
JW
6508 if (lrucare)
6509 lock_page_lru(oldpage, &isolated);
6510
6511 pc->flags = 0;
6512
6513 if (lrucare)
6514 unlock_page_lru(oldpage, isolated);
6515
6abb5a86 6516 commit_charge(newpage, pc->mem_cgroup, lrucare);
0a31bc97
JW
6517}
6518
2d11085e 6519/*
1081312f
MH
6520 * subsys_initcall() for memory controller.
6521 *
6522 * Some parts like hotcpu_notifier() have to be initialized from this context
6523 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6524 * everything that doesn't depend on a specific mem_cgroup structure should
6525 * be initialized from here.
2d11085e
MH
6526 */
6527static int __init mem_cgroup_init(void)
6528{
6529 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6530 enable_swap_cgroup();
bb4cc1a8 6531 mem_cgroup_soft_limit_tree_init();
e4777496 6532 memcg_stock_init();
2d11085e
MH
6533 return 0;
6534}
6535subsys_initcall(mem_cgroup_init);