memcg: add lock to synchronize page accounting and migration
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
d2265e6f
KH
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 85
d52aa412
KH
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c
KH
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
32047e2a 102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
103
104 MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
109};
110
6d12e2d8
KH
111/*
112 * per-zone information in memory controller.
113 */
6d12e2d8 114struct mem_cgroup_per_zone {
072c56c1
KH
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
b69408e8
CL
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
120
121 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
4e416953
BS
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
6d12e2d8
KH
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
f64c3f54
BS
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
2e72b634
KS
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163};
164
9490ff27 165/* For threshold */
2e72b634
KS
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
5407a562 168 int current_threshold;
2e72b634
KS
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173};
2c488db2
KS
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
9490ff27
KH
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190};
2e72b634 191
2e72b634 192static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 194
8cdea7c0
BS
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
8cdea7c0
BS
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
8c7c6e34
KH
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
78fb7466
PE
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
78fb7466 219 */
6d12e2d8 220 struct mem_cgroup_lru_info info;
072c56c1 221
2733c06a
KM
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
6d61ef40 227 /*
af901ca1 228 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 229 * reclaimed from.
6d61ef40 230 */
04046e1a 231 int last_scanned_child;
18f59ea7
BS
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
867578cb 236 atomic_t oom_lock;
8c7c6e34 237 atomic_t refcnt;
14797e23 238
a7885eb8 239 unsigned int swappiness;
3c11ecf4
KH
240 /* OOM-Killer disable */
241 int oom_kill_disable;
a7885eb8 242
22a668d7
KH
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
2e72b634
KS
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
2c488db2 250 struct mem_cgroup_thresholds thresholds;
907860ed 251
2e72b634 252 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 253 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 254
9490ff27
KH
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
7dc74be0
DN
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
d52aa412 263 /*
c62b1a3b 264 * percpu counter.
d52aa412 265 */
c62b1a3b 266 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
8cdea7c0
BS
273};
274
7dc74be0
DN
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
4ffef5fe 281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
283 NR_MOVE_TYPE,
284};
285
4ffef5fe
DN
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
b1dd693e 288 spinlock_t lock; /* for from, to */
4ffef5fe
DN
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
854ffa8d 292 unsigned long moved_charge;
483c30b5 293 unsigned long moved_swap;
8033b97c 294 struct task_struct *moving_task; /* a task moving charges */
b1dd693e 295 struct mm_struct *mm;
8033b97c
DN
296 wait_queue_head_t waitq; /* a waitq for other context */
297} mc = {
2bd9bb20 298 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
299 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
300};
4ffef5fe 301
90254a65
DN
302static bool move_anon(void)
303{
304 return test_bit(MOVE_CHARGE_TYPE_ANON,
305 &mc.to->move_charge_at_immigrate);
306}
307
87946a72
DN
308static bool move_file(void)
309{
310 return test_bit(MOVE_CHARGE_TYPE_FILE,
311 &mc.to->move_charge_at_immigrate);
312}
313
4e416953
BS
314/*
315 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
316 * limit reclaim to prevent infinite loops, if they ever occur.
317 */
318#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
319#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
320
217bc319
KH
321enum charge_type {
322 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
323 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 324 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 325 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 326 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 327 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
328 NR_CHARGE_TYPE,
329};
330
52d4b9ac
KH
331/* only for here (for easy reading.) */
332#define PCGF_CACHE (1UL << PCG_CACHE)
333#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 334#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
335/* Not used, but added here for completeness */
336#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 337
8c7c6e34
KH
338/* for encoding cft->private value on file */
339#define _MEM (0)
340#define _MEMSWAP (1)
9490ff27 341#define _OOM_TYPE (2)
8c7c6e34
KH
342#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
343#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
344#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
345/* Used for OOM nofiier */
346#define OOM_CONTROL (0)
8c7c6e34 347
75822b44
BS
348/*
349 * Reclaim flags for mem_cgroup_hierarchical_reclaim
350 */
351#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
352#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
353#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
354#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
355#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
356#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 357
8c7c6e34
KH
358static void mem_cgroup_get(struct mem_cgroup *mem);
359static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 360static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 361static void drain_all_stock_async(void);
8c7c6e34 362
f64c3f54
BS
363static struct mem_cgroup_per_zone *
364mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
365{
366 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
367}
368
d324236b
WF
369struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
370{
371 return &mem->css;
372}
373
f64c3f54
BS
374static struct mem_cgroup_per_zone *
375page_cgroup_zoneinfo(struct page_cgroup *pc)
376{
377 struct mem_cgroup *mem = pc->mem_cgroup;
378 int nid = page_cgroup_nid(pc);
379 int zid = page_cgroup_zid(pc);
380
381 if (!mem)
382 return NULL;
383
384 return mem_cgroup_zoneinfo(mem, nid, zid);
385}
386
387static struct mem_cgroup_tree_per_zone *
388soft_limit_tree_node_zone(int nid, int zid)
389{
390 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
391}
392
393static struct mem_cgroup_tree_per_zone *
394soft_limit_tree_from_page(struct page *page)
395{
396 int nid = page_to_nid(page);
397 int zid = page_zonenum(page);
398
399 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
400}
401
402static void
4e416953 403__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 404 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
405 struct mem_cgroup_tree_per_zone *mctz,
406 unsigned long long new_usage_in_excess)
f64c3f54
BS
407{
408 struct rb_node **p = &mctz->rb_root.rb_node;
409 struct rb_node *parent = NULL;
410 struct mem_cgroup_per_zone *mz_node;
411
412 if (mz->on_tree)
413 return;
414
ef8745c1
KH
415 mz->usage_in_excess = new_usage_in_excess;
416 if (!mz->usage_in_excess)
417 return;
f64c3f54
BS
418 while (*p) {
419 parent = *p;
420 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
421 tree_node);
422 if (mz->usage_in_excess < mz_node->usage_in_excess)
423 p = &(*p)->rb_left;
424 /*
425 * We can't avoid mem cgroups that are over their soft
426 * limit by the same amount
427 */
428 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
429 p = &(*p)->rb_right;
430 }
431 rb_link_node(&mz->tree_node, parent, p);
432 rb_insert_color(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = true;
4e416953
BS
434}
435
436static void
437__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
438 struct mem_cgroup_per_zone *mz,
439 struct mem_cgroup_tree_per_zone *mctz)
440{
441 if (!mz->on_tree)
442 return;
443 rb_erase(&mz->tree_node, &mctz->rb_root);
444 mz->on_tree = false;
445}
446
f64c3f54
BS
447static void
448mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
449 struct mem_cgroup_per_zone *mz,
450 struct mem_cgroup_tree_per_zone *mctz)
451{
452 spin_lock(&mctz->lock);
4e416953 453 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
454 spin_unlock(&mctz->lock);
455}
456
f64c3f54
BS
457
458static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
459{
ef8745c1 460 unsigned long long excess;
f64c3f54
BS
461 struct mem_cgroup_per_zone *mz;
462 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
463 int nid = page_to_nid(page);
464 int zid = page_zonenum(page);
f64c3f54
BS
465 mctz = soft_limit_tree_from_page(page);
466
467 /*
4e649152
KH
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
f64c3f54 470 */
4e649152
KH
471 for (; mem; mem = parent_mem_cgroup(mem)) {
472 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 473 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
ef8745c1 478 if (excess || mz->on_tree) {
4e649152
KH
479 spin_lock(&mctz->lock);
480 /* if on-tree, remove it */
481 if (mz->on_tree)
482 __mem_cgroup_remove_exceeded(mem, mz, mctz);
483 /*
ef8745c1
KH
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
4e649152 486 */
ef8745c1 487 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
488 spin_unlock(&mctz->lock);
489 }
f64c3f54
BS
490 }
491}
492
493static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
494{
495 int node, zone;
496 struct mem_cgroup_per_zone *mz;
497 struct mem_cgroup_tree_per_zone *mctz;
498
499 for_each_node_state(node, N_POSSIBLE) {
500 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
501 mz = mem_cgroup_zoneinfo(mem, node, zone);
502 mctz = soft_limit_tree_node_zone(node, zone);
503 mem_cgroup_remove_exceeded(mem, mz, mctz);
504 }
505 }
506}
507
4e416953
BS
508static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
509{
510 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
511}
512
513static struct mem_cgroup_per_zone *
514__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
515{
516 struct rb_node *rightmost = NULL;
26251eaf 517 struct mem_cgroup_per_zone *mz;
4e416953
BS
518
519retry:
26251eaf 520 mz = NULL;
4e416953
BS
521 rightmost = rb_last(&mctz->rb_root);
522 if (!rightmost)
523 goto done; /* Nothing to reclaim from */
524
525 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
526 /*
527 * Remove the node now but someone else can add it back,
528 * we will to add it back at the end of reclaim to its correct
529 * position in the tree.
530 */
531 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
532 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
533 !css_tryget(&mz->mem->css))
534 goto retry;
535done:
536 return mz;
537}
538
539static struct mem_cgroup_per_zone *
540mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
541{
542 struct mem_cgroup_per_zone *mz;
543
544 spin_lock(&mctz->lock);
545 mz = __mem_cgroup_largest_soft_limit_node(mctz);
546 spin_unlock(&mctz->lock);
547 return mz;
548}
549
711d3d2c
KH
550/*
551 * Implementation Note: reading percpu statistics for memcg.
552 *
553 * Both of vmstat[] and percpu_counter has threshold and do periodic
554 * synchronization to implement "quick" read. There are trade-off between
555 * reading cost and precision of value. Then, we may have a chance to implement
556 * a periodic synchronizion of counter in memcg's counter.
557 *
558 * But this _read() function is used for user interface now. The user accounts
559 * memory usage by memory cgroup and he _always_ requires exact value because
560 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
561 * have to visit all online cpus and make sum. So, for now, unnecessary
562 * synchronization is not implemented. (just implemented for cpu hotplug)
563 *
564 * If there are kernel internal actions which can make use of some not-exact
565 * value, and reading all cpu value can be performance bottleneck in some
566 * common workload, threashold and synchonization as vmstat[] should be
567 * implemented.
568 */
c62b1a3b
KH
569static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
570 enum mem_cgroup_stat_index idx)
571{
572 int cpu;
573 s64 val = 0;
574
711d3d2c
KH
575 get_online_cpus();
576 for_each_online_cpu(cpu)
c62b1a3b 577 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
578#ifdef CONFIG_HOTPLUG_CPU
579 spin_lock(&mem->pcp_counter_lock);
580 val += mem->nocpu_base.count[idx];
581 spin_unlock(&mem->pcp_counter_lock);
582#endif
583 put_online_cpus();
c62b1a3b
KH
584 return val;
585}
586
587static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
588{
589 s64 ret;
590
591 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
592 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
593 return ret;
594}
595
0c3e73e8
BS
596static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
597 bool charge)
598{
599 int val = (charge) ? 1 : -1;
c62b1a3b 600 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
601}
602
c05555b5
KH
603static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
604 struct page_cgroup *pc,
605 bool charge)
d52aa412 606{
0c3e73e8 607 int val = (charge) ? 1 : -1;
d52aa412 608
c62b1a3b
KH
609 preempt_disable();
610
c05555b5 611 if (PageCgroupCache(pc))
c62b1a3b 612 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
d52aa412 613 else
c62b1a3b 614 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
55e462b0
BR
615
616 if (charge)
c62b1a3b 617 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
55e462b0 618 else
c62b1a3b 619 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
d2265e6f 620 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
2e72b634 621
c62b1a3b 622 preempt_enable();
6d12e2d8
KH
623}
624
14067bb3 625static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 626 enum lru_list idx)
6d12e2d8
KH
627{
628 int nid, zid;
629 struct mem_cgroup_per_zone *mz;
630 u64 total = 0;
631
632 for_each_online_node(nid)
633 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
634 mz = mem_cgroup_zoneinfo(mem, nid, zid);
635 total += MEM_CGROUP_ZSTAT(mz, idx);
636 }
637 return total;
d52aa412
KH
638}
639
d2265e6f
KH
640static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
641{
642 s64 val;
643
644 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
645
646 return !(val & ((1 << event_mask_shift) - 1));
647}
648
649/*
650 * Check events in order.
651 *
652 */
653static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
654{
655 /* threshold event is triggered in finer grain than soft limit */
656 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
657 mem_cgroup_threshold(mem);
658 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
659 mem_cgroup_update_tree(mem, page);
660 }
661}
662
d5b69e38 663static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
664{
665 return container_of(cgroup_subsys_state(cont,
666 mem_cgroup_subsys_id), struct mem_cgroup,
667 css);
668}
669
cf475ad2 670struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 671{
31a78f23
BS
672 /*
673 * mm_update_next_owner() may clear mm->owner to NULL
674 * if it races with swapoff, page migration, etc.
675 * So this can be called with p == NULL.
676 */
677 if (unlikely(!p))
678 return NULL;
679
78fb7466
PE
680 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
681 struct mem_cgroup, css);
682}
683
54595fe2
KH
684static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
685{
686 struct mem_cgroup *mem = NULL;
0b7f569e
KH
687
688 if (!mm)
689 return NULL;
54595fe2
KH
690 /*
691 * Because we have no locks, mm->owner's may be being moved to other
692 * cgroup. We use css_tryget() here even if this looks
693 * pessimistic (rather than adding locks here).
694 */
695 rcu_read_lock();
696 do {
697 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
698 if (unlikely(!mem))
699 break;
700 } while (!css_tryget(&mem->css));
701 rcu_read_unlock();
702 return mem;
703}
704
7d74b06f
KH
705/* The caller has to guarantee "mem" exists before calling this */
706static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 707{
711d3d2c
KH
708 struct cgroup_subsys_state *css;
709 int found;
710
711 if (!mem) /* ROOT cgroup has the smallest ID */
712 return root_mem_cgroup; /*css_put/get against root is ignored*/
713 if (!mem->use_hierarchy) {
714 if (css_tryget(&mem->css))
715 return mem;
716 return NULL;
717 }
718 rcu_read_lock();
719 /*
720 * searching a memory cgroup which has the smallest ID under given
721 * ROOT cgroup. (ID >= 1)
722 */
723 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
724 if (css && css_tryget(css))
725 mem = container_of(css, struct mem_cgroup, css);
726 else
727 mem = NULL;
728 rcu_read_unlock();
729 return mem;
7d74b06f
KH
730}
731
732static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
733 struct mem_cgroup *root,
734 bool cond)
735{
736 int nextid = css_id(&iter->css) + 1;
737 int found;
738 int hierarchy_used;
14067bb3 739 struct cgroup_subsys_state *css;
14067bb3 740
7d74b06f 741 hierarchy_used = iter->use_hierarchy;
14067bb3 742
7d74b06f 743 css_put(&iter->css);
711d3d2c
KH
744 /* If no ROOT, walk all, ignore hierarchy */
745 if (!cond || (root && !hierarchy_used))
7d74b06f 746 return NULL;
14067bb3 747
711d3d2c
KH
748 if (!root)
749 root = root_mem_cgroup;
750
7d74b06f
KH
751 do {
752 iter = NULL;
14067bb3 753 rcu_read_lock();
7d74b06f
KH
754
755 css = css_get_next(&mem_cgroup_subsys, nextid,
756 &root->css, &found);
14067bb3 757 if (css && css_tryget(css))
7d74b06f 758 iter = container_of(css, struct mem_cgroup, css);
14067bb3 759 rcu_read_unlock();
7d74b06f 760 /* If css is NULL, no more cgroups will be found */
14067bb3 761 nextid = found + 1;
7d74b06f 762 } while (css && !iter);
14067bb3 763
7d74b06f 764 return iter;
14067bb3 765}
7d74b06f
KH
766/*
767 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768 * be careful that "break" loop is not allowed. We have reference count.
769 * Instead of that modify "cond" to be false and "continue" to exit the loop.
770 */
771#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
772 for (iter = mem_cgroup_start_loop(root);\
773 iter != NULL;\
774 iter = mem_cgroup_get_next(iter, root, cond))
775
776#define for_each_mem_cgroup_tree(iter, root) \
777 for_each_mem_cgroup_tree_cond(iter, root, true)
778
711d3d2c
KH
779#define for_each_mem_cgroup_all(iter) \
780 for_each_mem_cgroup_tree_cond(iter, NULL, true)
781
14067bb3 782
4b3bde4c
BS
783static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
784{
785 return (mem == root_mem_cgroup);
786}
787
08e552c6
KH
788/*
789 * Following LRU functions are allowed to be used without PCG_LOCK.
790 * Operations are called by routine of global LRU independently from memcg.
791 * What we have to take care of here is validness of pc->mem_cgroup.
792 *
793 * Changes to pc->mem_cgroup happens when
794 * 1. charge
795 * 2. moving account
796 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797 * It is added to LRU before charge.
798 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799 * When moving account, the page is not on LRU. It's isolated.
800 */
4f98a2fe 801
08e552c6
KH
802void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
803{
804 struct page_cgroup *pc;
08e552c6 805 struct mem_cgroup_per_zone *mz;
6d12e2d8 806
f8d66542 807 if (mem_cgroup_disabled())
08e552c6
KH
808 return;
809 pc = lookup_page_cgroup(page);
810 /* can happen while we handle swapcache. */
4b3bde4c 811 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 812 return;
4b3bde4c 813 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
814 /*
815 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816 * removed from global LRU.
817 */
08e552c6 818 mz = page_cgroup_zoneinfo(pc);
b69408e8 819 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
4b3bde4c
BS
820 if (mem_cgroup_is_root(pc->mem_cgroup))
821 return;
822 VM_BUG_ON(list_empty(&pc->lru));
08e552c6
KH
823 list_del_init(&pc->lru);
824 return;
6d12e2d8
KH
825}
826
08e552c6 827void mem_cgroup_del_lru(struct page *page)
6d12e2d8 828{
08e552c6
KH
829 mem_cgroup_del_lru_list(page, page_lru(page));
830}
b69408e8 831
08e552c6
KH
832void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
833{
834 struct mem_cgroup_per_zone *mz;
835 struct page_cgroup *pc;
b69408e8 836
f8d66542 837 if (mem_cgroup_disabled())
08e552c6 838 return;
6d12e2d8 839
08e552c6 840 pc = lookup_page_cgroup(page);
bd112db8
DN
841 /*
842 * Used bit is set without atomic ops but after smp_wmb().
843 * For making pc->mem_cgroup visible, insert smp_rmb() here.
844 */
08e552c6 845 smp_rmb();
4b3bde4c
BS
846 /* unused or root page is not rotated. */
847 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
848 return;
849 mz = page_cgroup_zoneinfo(pc);
850 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
851}
852
08e552c6 853void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 854{
08e552c6
KH
855 struct page_cgroup *pc;
856 struct mem_cgroup_per_zone *mz;
6d12e2d8 857
f8d66542 858 if (mem_cgroup_disabled())
08e552c6
KH
859 return;
860 pc = lookup_page_cgroup(page);
4b3bde4c 861 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
862 /*
863 * Used bit is set without atomic ops but after smp_wmb().
864 * For making pc->mem_cgroup visible, insert smp_rmb() here.
865 */
08e552c6
KH
866 smp_rmb();
867 if (!PageCgroupUsed(pc))
894bc310 868 return;
b69408e8 869
08e552c6 870 mz = page_cgroup_zoneinfo(pc);
b69408e8 871 MEM_CGROUP_ZSTAT(mz, lru) += 1;
4b3bde4c
BS
872 SetPageCgroupAcctLRU(pc);
873 if (mem_cgroup_is_root(pc->mem_cgroup))
874 return;
08e552c6
KH
875 list_add(&pc->lru, &mz->lists[lru]);
876}
544122e5 877
08e552c6 878/*
544122e5
KH
879 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
880 * lru because the page may.be reused after it's fully uncharged (because of
881 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
882 * it again. This function is only used to charge SwapCache. It's done under
883 * lock_page and expected that zone->lru_lock is never held.
08e552c6 884 */
544122e5 885static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 886{
544122e5
KH
887 unsigned long flags;
888 struct zone *zone = page_zone(page);
889 struct page_cgroup *pc = lookup_page_cgroup(page);
890
891 spin_lock_irqsave(&zone->lru_lock, flags);
892 /*
893 * Forget old LRU when this page_cgroup is *not* used. This Used bit
894 * is guarded by lock_page() because the page is SwapCache.
895 */
896 if (!PageCgroupUsed(pc))
897 mem_cgroup_del_lru_list(page, page_lru(page));
898 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
899}
900
544122e5
KH
901static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
902{
903 unsigned long flags;
904 struct zone *zone = page_zone(page);
905 struct page_cgroup *pc = lookup_page_cgroup(page);
906
907 spin_lock_irqsave(&zone->lru_lock, flags);
908 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 909 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
910 mem_cgroup_add_lru_list(page, page_lru(page));
911 spin_unlock_irqrestore(&zone->lru_lock, flags);
912}
913
914
08e552c6
KH
915void mem_cgroup_move_lists(struct page *page,
916 enum lru_list from, enum lru_list to)
917{
f8d66542 918 if (mem_cgroup_disabled())
08e552c6
KH
919 return;
920 mem_cgroup_del_lru_list(page, from);
921 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
922}
923
4c4a2214
DR
924int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
925{
926 int ret;
0b7f569e 927 struct mem_cgroup *curr = NULL;
158e0a2d 928 struct task_struct *p;
4c4a2214 929
158e0a2d
KH
930 p = find_lock_task_mm(task);
931 if (!p)
932 return 0;
933 curr = try_get_mem_cgroup_from_mm(p->mm);
934 task_unlock(p);
0b7f569e
KH
935 if (!curr)
936 return 0;
d31f56db
DN
937 /*
938 * We should check use_hierarchy of "mem" not "curr". Because checking
939 * use_hierarchy of "curr" here make this function true if hierarchy is
940 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
941 * hierarchy(even if use_hierarchy is disabled in "mem").
942 */
943 if (mem->use_hierarchy)
0b7f569e
KH
944 ret = css_is_ancestor(&curr->css, &mem->css);
945 else
946 ret = (curr == mem);
947 css_put(&curr->css);
4c4a2214
DR
948 return ret;
949}
950
c772be93 951static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
952{
953 unsigned long active;
954 unsigned long inactive;
c772be93
KM
955 unsigned long gb;
956 unsigned long inactive_ratio;
14797e23 957
14067bb3
KH
958 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
959 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 960
c772be93
KM
961 gb = (inactive + active) >> (30 - PAGE_SHIFT);
962 if (gb)
963 inactive_ratio = int_sqrt(10 * gb);
964 else
965 inactive_ratio = 1;
966
967 if (present_pages) {
968 present_pages[0] = inactive;
969 present_pages[1] = active;
970 }
971
972 return inactive_ratio;
973}
974
975int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
976{
977 unsigned long active;
978 unsigned long inactive;
979 unsigned long present_pages[2];
980 unsigned long inactive_ratio;
981
982 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
983
984 inactive = present_pages[0];
985 active = present_pages[1];
986
987 if (inactive * inactive_ratio < active)
14797e23
KM
988 return 1;
989
990 return 0;
991}
992
56e49d21
RR
993int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
994{
995 unsigned long active;
996 unsigned long inactive;
997
998 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
999 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1000
1001 return (active > inactive);
1002}
1003
a3d8e054
KM
1004unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1005 struct zone *zone,
1006 enum lru_list lru)
1007{
13d7e3a2 1008 int nid = zone_to_nid(zone);
a3d8e054
KM
1009 int zid = zone_idx(zone);
1010 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1011
1012 return MEM_CGROUP_ZSTAT(mz, lru);
1013}
1014
3e2f41f1
KM
1015struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1016 struct zone *zone)
1017{
13d7e3a2 1018 int nid = zone_to_nid(zone);
3e2f41f1
KM
1019 int zid = zone_idx(zone);
1020 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021
1022 return &mz->reclaim_stat;
1023}
1024
1025struct zone_reclaim_stat *
1026mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1027{
1028 struct page_cgroup *pc;
1029 struct mem_cgroup_per_zone *mz;
1030
1031 if (mem_cgroup_disabled())
1032 return NULL;
1033
1034 pc = lookup_page_cgroup(page);
bd112db8
DN
1035 /*
1036 * Used bit is set without atomic ops but after smp_wmb().
1037 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1038 */
1039 smp_rmb();
1040 if (!PageCgroupUsed(pc))
1041 return NULL;
1042
3e2f41f1
KM
1043 mz = page_cgroup_zoneinfo(pc);
1044 if (!mz)
1045 return NULL;
1046
1047 return &mz->reclaim_stat;
1048}
1049
66e1707b
BS
1050unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1051 struct list_head *dst,
1052 unsigned long *scanned, int order,
1053 int mode, struct zone *z,
1054 struct mem_cgroup *mem_cont,
4f98a2fe 1055 int active, int file)
66e1707b
BS
1056{
1057 unsigned long nr_taken = 0;
1058 struct page *page;
1059 unsigned long scan;
1060 LIST_HEAD(pc_list);
1061 struct list_head *src;
ff7283fa 1062 struct page_cgroup *pc, *tmp;
13d7e3a2 1063 int nid = zone_to_nid(z);
1ecaab2b
KH
1064 int zid = zone_idx(z);
1065 struct mem_cgroup_per_zone *mz;
b7c46d15 1066 int lru = LRU_FILE * file + active;
2ffebca6 1067 int ret;
66e1707b 1068
cf475ad2 1069 BUG_ON(!mem_cont);
1ecaab2b 1070 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1071 src = &mz->lists[lru];
66e1707b 1072
ff7283fa
KH
1073 scan = 0;
1074 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1075 if (scan >= nr_to_scan)
ff7283fa 1076 break;
08e552c6
KH
1077
1078 page = pc->page;
52d4b9ac
KH
1079 if (unlikely(!PageCgroupUsed(pc)))
1080 continue;
436c6541 1081 if (unlikely(!PageLRU(page)))
ff7283fa 1082 continue;
ff7283fa 1083
436c6541 1084 scan++;
2ffebca6
KH
1085 ret = __isolate_lru_page(page, mode, file);
1086 switch (ret) {
1087 case 0:
66e1707b 1088 list_move(&page->lru, dst);
2ffebca6 1089 mem_cgroup_del_lru(page);
2c888cfb 1090 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1091 break;
1092 case -EBUSY:
1093 /* we don't affect global LRU but rotate in our LRU */
1094 mem_cgroup_rotate_lru_list(page, page_lru(page));
1095 break;
1096 default:
1097 break;
66e1707b
BS
1098 }
1099 }
1100
66e1707b 1101 *scanned = scan;
cc8e970c
KM
1102
1103 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1104 0, 0, 0, mode);
1105
66e1707b
BS
1106 return nr_taken;
1107}
1108
6d61ef40
BS
1109#define mem_cgroup_from_res_counter(counter, member) \
1110 container_of(counter, struct mem_cgroup, member)
1111
b85a96c0
DN
1112static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1113{
1114 if (do_swap_account) {
1115 if (res_counter_check_under_limit(&mem->res) &&
1116 res_counter_check_under_limit(&mem->memsw))
1117 return true;
1118 } else
1119 if (res_counter_check_under_limit(&mem->res))
1120 return true;
1121 return false;
1122}
1123
a7885eb8
KM
1124static unsigned int get_swappiness(struct mem_cgroup *memcg)
1125{
1126 struct cgroup *cgrp = memcg->css.cgroup;
1127 unsigned int swappiness;
1128
1129 /* root ? */
1130 if (cgrp->parent == NULL)
1131 return vm_swappiness;
1132
1133 spin_lock(&memcg->reclaim_param_lock);
1134 swappiness = memcg->swappiness;
1135 spin_unlock(&memcg->reclaim_param_lock);
1136
1137 return swappiness;
1138}
1139
32047e2a
KH
1140static void mem_cgroup_start_move(struct mem_cgroup *mem)
1141{
1142 int cpu;
1489ebad
KH
1143
1144 get_online_cpus();
1145 spin_lock(&mem->pcp_counter_lock);
1146 for_each_online_cpu(cpu)
32047e2a 1147 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1148 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1149 spin_unlock(&mem->pcp_counter_lock);
1150 put_online_cpus();
32047e2a
KH
1151
1152 synchronize_rcu();
1153}
1154
1155static void mem_cgroup_end_move(struct mem_cgroup *mem)
1156{
1157 int cpu;
1158
1159 if (!mem)
1160 return;
1489ebad
KH
1161 get_online_cpus();
1162 spin_lock(&mem->pcp_counter_lock);
1163 for_each_online_cpu(cpu)
32047e2a 1164 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1165 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1166 spin_unlock(&mem->pcp_counter_lock);
1167 put_online_cpus();
32047e2a
KH
1168}
1169/*
1170 * 2 routines for checking "mem" is under move_account() or not.
1171 *
1172 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1173 * for avoiding race in accounting. If true,
1174 * pc->mem_cgroup may be overwritten.
1175 *
1176 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1177 * under hierarchy of moving cgroups. This is for
1178 * waiting at hith-memory prressure caused by "move".
1179 */
1180
1181static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1182{
1183 VM_BUG_ON(!rcu_read_lock_held());
1184 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1185}
4b534334
KH
1186
1187static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1188{
2bd9bb20
KH
1189 struct mem_cgroup *from;
1190 struct mem_cgroup *to;
4b534334 1191 bool ret = false;
2bd9bb20
KH
1192 /*
1193 * Unlike task_move routines, we access mc.to, mc.from not under
1194 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1195 */
1196 spin_lock(&mc.lock);
1197 from = mc.from;
1198 to = mc.to;
1199 if (!from)
1200 goto unlock;
1201 if (from == mem || to == mem
1202 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1203 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1204 ret = true;
1205unlock:
1206 spin_unlock(&mc.lock);
4b534334
KH
1207 return ret;
1208}
1209
1210static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1211{
1212 if (mc.moving_task && current != mc.moving_task) {
1213 if (mem_cgroup_under_move(mem)) {
1214 DEFINE_WAIT(wait);
1215 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1216 /* moving charge context might have finished. */
1217 if (mc.moving_task)
1218 schedule();
1219 finish_wait(&mc.waitq, &wait);
1220 return true;
1221 }
1222 }
1223 return false;
1224}
1225
e222432b 1226/**
6a6135b6 1227 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1228 * @memcg: The memory cgroup that went over limit
1229 * @p: Task that is going to be killed
1230 *
1231 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1232 * enabled
1233 */
1234void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1235{
1236 struct cgroup *task_cgrp;
1237 struct cgroup *mem_cgrp;
1238 /*
1239 * Need a buffer in BSS, can't rely on allocations. The code relies
1240 * on the assumption that OOM is serialized for memory controller.
1241 * If this assumption is broken, revisit this code.
1242 */
1243 static char memcg_name[PATH_MAX];
1244 int ret;
1245
d31f56db 1246 if (!memcg || !p)
e222432b
BS
1247 return;
1248
1249
1250 rcu_read_lock();
1251
1252 mem_cgrp = memcg->css.cgroup;
1253 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1254
1255 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1256 if (ret < 0) {
1257 /*
1258 * Unfortunately, we are unable to convert to a useful name
1259 * But we'll still print out the usage information
1260 */
1261 rcu_read_unlock();
1262 goto done;
1263 }
1264 rcu_read_unlock();
1265
1266 printk(KERN_INFO "Task in %s killed", memcg_name);
1267
1268 rcu_read_lock();
1269 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1270 if (ret < 0) {
1271 rcu_read_unlock();
1272 goto done;
1273 }
1274 rcu_read_unlock();
1275
1276 /*
1277 * Continues from above, so we don't need an KERN_ level
1278 */
1279 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1280done:
1281
1282 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1283 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1284 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1285 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1286 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1287 "failcnt %llu\n",
1288 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1289 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1290 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1291}
1292
81d39c20
KH
1293/*
1294 * This function returns the number of memcg under hierarchy tree. Returns
1295 * 1(self count) if no children.
1296 */
1297static int mem_cgroup_count_children(struct mem_cgroup *mem)
1298{
1299 int num = 0;
7d74b06f
KH
1300 struct mem_cgroup *iter;
1301
1302 for_each_mem_cgroup_tree(iter, mem)
1303 num++;
81d39c20
KH
1304 return num;
1305}
1306
a63d83f4
DR
1307/*
1308 * Return the memory (and swap, if configured) limit for a memcg.
1309 */
1310u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1311{
1312 u64 limit;
1313 u64 memsw;
1314
1315 limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1316 total_swap_pages;
1317 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1318 /*
1319 * If memsw is finite and limits the amount of swap space available
1320 * to this memcg, return that limit.
1321 */
1322 return min(limit, memsw);
1323}
1324
6d61ef40 1325/*
04046e1a
KH
1326 * Visit the first child (need not be the first child as per the ordering
1327 * of the cgroup list, since we track last_scanned_child) of @mem and use
1328 * that to reclaim free pages from.
1329 */
1330static struct mem_cgroup *
1331mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1332{
1333 struct mem_cgroup *ret = NULL;
1334 struct cgroup_subsys_state *css;
1335 int nextid, found;
1336
1337 if (!root_mem->use_hierarchy) {
1338 css_get(&root_mem->css);
1339 ret = root_mem;
1340 }
1341
1342 while (!ret) {
1343 rcu_read_lock();
1344 nextid = root_mem->last_scanned_child + 1;
1345 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1346 &found);
1347 if (css && css_tryget(css))
1348 ret = container_of(css, struct mem_cgroup, css);
1349
1350 rcu_read_unlock();
1351 /* Updates scanning parameter */
1352 spin_lock(&root_mem->reclaim_param_lock);
1353 if (!css) {
1354 /* this means start scan from ID:1 */
1355 root_mem->last_scanned_child = 0;
1356 } else
1357 root_mem->last_scanned_child = found;
1358 spin_unlock(&root_mem->reclaim_param_lock);
1359 }
1360
1361 return ret;
1362}
1363
1364/*
1365 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1366 * we reclaimed from, so that we don't end up penalizing one child extensively
1367 * based on its position in the children list.
6d61ef40
BS
1368 *
1369 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1370 *
1371 * We give up and return to the caller when we visit root_mem twice.
1372 * (other groups can be removed while we're walking....)
81d39c20
KH
1373 *
1374 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1375 */
1376static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1377 struct zone *zone,
75822b44
BS
1378 gfp_t gfp_mask,
1379 unsigned long reclaim_options)
6d61ef40 1380{
04046e1a
KH
1381 struct mem_cgroup *victim;
1382 int ret, total = 0;
1383 int loop = 0;
75822b44
BS
1384 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1385 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1386 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1387 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1388
22a668d7
KH
1389 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1390 if (root_mem->memsw_is_minimum)
1391 noswap = true;
1392
4e416953 1393 while (1) {
04046e1a 1394 victim = mem_cgroup_select_victim(root_mem);
4e416953 1395 if (victim == root_mem) {
04046e1a 1396 loop++;
cdec2e42
KH
1397 if (loop >= 1)
1398 drain_all_stock_async();
4e416953
BS
1399 if (loop >= 2) {
1400 /*
1401 * If we have not been able to reclaim
1402 * anything, it might because there are
1403 * no reclaimable pages under this hierarchy
1404 */
1405 if (!check_soft || !total) {
1406 css_put(&victim->css);
1407 break;
1408 }
1409 /*
1410 * We want to do more targetted reclaim.
1411 * excess >> 2 is not to excessive so as to
1412 * reclaim too much, nor too less that we keep
1413 * coming back to reclaim from this cgroup
1414 */
1415 if (total >= (excess >> 2) ||
1416 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1417 css_put(&victim->css);
1418 break;
1419 }
1420 }
1421 }
c62b1a3b 1422 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1423 /* this cgroup's local usage == 0 */
1424 css_put(&victim->css);
6d61ef40
BS
1425 continue;
1426 }
04046e1a 1427 /* we use swappiness of local cgroup */
4e416953
BS
1428 if (check_soft)
1429 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
14fec796 1430 noswap, get_swappiness(victim), zone);
4e416953
BS
1431 else
1432 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1433 noswap, get_swappiness(victim));
04046e1a 1434 css_put(&victim->css);
81d39c20
KH
1435 /*
1436 * At shrinking usage, we can't check we should stop here or
1437 * reclaim more. It's depends on callers. last_scanned_child
1438 * will work enough for keeping fairness under tree.
1439 */
1440 if (shrink)
1441 return ret;
04046e1a 1442 total += ret;
4e416953
BS
1443 if (check_soft) {
1444 if (res_counter_check_under_soft_limit(&root_mem->res))
1445 return total;
1446 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1447 return 1 + total;
6d61ef40 1448 }
04046e1a 1449 return total;
6d61ef40
BS
1450}
1451
867578cb
KH
1452/*
1453 * Check OOM-Killer is already running under our hierarchy.
1454 * If someone is running, return false.
1455 */
1456static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1457{
7d74b06f
KH
1458 int x, lock_count = 0;
1459 struct mem_cgroup *iter;
a636b327 1460
7d74b06f
KH
1461 for_each_mem_cgroup_tree(iter, mem) {
1462 x = atomic_inc_return(&iter->oom_lock);
1463 lock_count = max(x, lock_count);
1464 }
867578cb
KH
1465
1466 if (lock_count == 1)
1467 return true;
1468 return false;
a636b327 1469}
0b7f569e 1470
7d74b06f 1471static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1472{
7d74b06f
KH
1473 struct mem_cgroup *iter;
1474
867578cb
KH
1475 /*
1476 * When a new child is created while the hierarchy is under oom,
1477 * mem_cgroup_oom_lock() may not be called. We have to use
1478 * atomic_add_unless() here.
1479 */
7d74b06f
KH
1480 for_each_mem_cgroup_tree(iter, mem)
1481 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1482 return 0;
1483}
1484
867578cb
KH
1485
1486static DEFINE_MUTEX(memcg_oom_mutex);
1487static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1488
dc98df5a
KH
1489struct oom_wait_info {
1490 struct mem_cgroup *mem;
1491 wait_queue_t wait;
1492};
1493
1494static int memcg_oom_wake_function(wait_queue_t *wait,
1495 unsigned mode, int sync, void *arg)
1496{
1497 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1498 struct oom_wait_info *oom_wait_info;
1499
1500 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1501
1502 if (oom_wait_info->mem == wake_mem)
1503 goto wakeup;
1504 /* if no hierarchy, no match */
1505 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1506 return 0;
1507 /*
1508 * Both of oom_wait_info->mem and wake_mem are stable under us.
1509 * Then we can use css_is_ancestor without taking care of RCU.
1510 */
1511 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1512 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1513 return 0;
1514
1515wakeup:
1516 return autoremove_wake_function(wait, mode, sync, arg);
1517}
1518
1519static void memcg_wakeup_oom(struct mem_cgroup *mem)
1520{
1521 /* for filtering, pass "mem" as argument. */
1522 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1523}
1524
3c11ecf4
KH
1525static void memcg_oom_recover(struct mem_cgroup *mem)
1526{
2bd9bb20 1527 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1528 memcg_wakeup_oom(mem);
1529}
1530
867578cb
KH
1531/*
1532 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1533 */
1534bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1535{
dc98df5a 1536 struct oom_wait_info owait;
3c11ecf4 1537 bool locked, need_to_kill;
867578cb 1538
dc98df5a
KH
1539 owait.mem = mem;
1540 owait.wait.flags = 0;
1541 owait.wait.func = memcg_oom_wake_function;
1542 owait.wait.private = current;
1543 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1544 need_to_kill = true;
867578cb
KH
1545 /* At first, try to OOM lock hierarchy under mem.*/
1546 mutex_lock(&memcg_oom_mutex);
1547 locked = mem_cgroup_oom_lock(mem);
1548 /*
1549 * Even if signal_pending(), we can't quit charge() loop without
1550 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1551 * under OOM is always welcomed, use TASK_KILLABLE here.
1552 */
3c11ecf4
KH
1553 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1554 if (!locked || mem->oom_kill_disable)
1555 need_to_kill = false;
1556 if (locked)
9490ff27 1557 mem_cgroup_oom_notify(mem);
867578cb
KH
1558 mutex_unlock(&memcg_oom_mutex);
1559
3c11ecf4
KH
1560 if (need_to_kill) {
1561 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1562 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1563 } else {
867578cb 1564 schedule();
dc98df5a 1565 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1566 }
1567 mutex_lock(&memcg_oom_mutex);
1568 mem_cgroup_oom_unlock(mem);
dc98df5a 1569 memcg_wakeup_oom(mem);
867578cb
KH
1570 mutex_unlock(&memcg_oom_mutex);
1571
1572 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1573 return false;
1574 /* Give chance to dying process */
1575 schedule_timeout(1);
1576 return true;
0b7f569e
KH
1577}
1578
d69b042f
BS
1579/*
1580 * Currently used to update mapped file statistics, but the routine can be
1581 * generalized to update other statistics as well.
32047e2a
KH
1582 *
1583 * Notes: Race condition
1584 *
1585 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1586 * it tends to be costly. But considering some conditions, we doesn't need
1587 * to do so _always_.
1588 *
1589 * Considering "charge", lock_page_cgroup() is not required because all
1590 * file-stat operations happen after a page is attached to radix-tree. There
1591 * are no race with "charge".
1592 *
1593 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1594 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1595 * if there are race with "uncharge". Statistics itself is properly handled
1596 * by flags.
1597 *
1598 * Considering "move", this is an only case we see a race. To make the race
1599 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1600 * possibility of race condition. If there is, we take a lock.
d69b042f 1601 */
26174efd 1602
2a7106f2
GT
1603void mem_cgroup_update_page_stat(struct page *page,
1604 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
1605{
1606 struct mem_cgroup *mem;
32047e2a
KH
1607 struct page_cgroup *pc = lookup_page_cgroup(page);
1608 bool need_unlock = false;
dbd4ea78 1609 unsigned long uninitialized_var(flags);
d69b042f 1610
d69b042f
BS
1611 if (unlikely(!pc))
1612 return;
1613
32047e2a 1614 rcu_read_lock();
d69b042f 1615 mem = pc->mem_cgroup;
32047e2a
KH
1616 if (unlikely(!mem || !PageCgroupUsed(pc)))
1617 goto out;
1618 /* pc->mem_cgroup is unstable ? */
1619 if (unlikely(mem_cgroup_stealed(mem))) {
1620 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1621 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
1622 need_unlock = true;
1623 mem = pc->mem_cgroup;
1624 if (!mem || !PageCgroupUsed(pc))
1625 goto out;
1626 }
26174efd 1627
26174efd 1628 switch (idx) {
2a7106f2 1629 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1630 if (val > 0)
1631 SetPageCgroupFileMapped(pc);
1632 else if (!page_mapped(page))
0c270f8f 1633 ClearPageCgroupFileMapped(pc);
2a7106f2 1634 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1635 break;
1636 default:
1637 BUG();
8725d541 1638 }
d69b042f 1639
2a7106f2
GT
1640 this_cpu_add(mem->stat->count[idx], val);
1641
32047e2a
KH
1642out:
1643 if (unlikely(need_unlock))
dbd4ea78 1644 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1645 rcu_read_unlock();
1646 return;
d69b042f 1647}
2a7106f2 1648EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1649
cdec2e42
KH
1650/*
1651 * size of first charge trial. "32" comes from vmscan.c's magic value.
1652 * TODO: maybe necessary to use big numbers in big irons.
1653 */
1654#define CHARGE_SIZE (32 * PAGE_SIZE)
1655struct memcg_stock_pcp {
1656 struct mem_cgroup *cached; /* this never be root cgroup */
1657 int charge;
1658 struct work_struct work;
1659};
1660static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1661static atomic_t memcg_drain_count;
1662
1663/*
1664 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1665 * from local stock and true is returned. If the stock is 0 or charges from a
1666 * cgroup which is not current target, returns false. This stock will be
1667 * refilled.
1668 */
1669static bool consume_stock(struct mem_cgroup *mem)
1670{
1671 struct memcg_stock_pcp *stock;
1672 bool ret = true;
1673
1674 stock = &get_cpu_var(memcg_stock);
1675 if (mem == stock->cached && stock->charge)
1676 stock->charge -= PAGE_SIZE;
1677 else /* need to call res_counter_charge */
1678 ret = false;
1679 put_cpu_var(memcg_stock);
1680 return ret;
1681}
1682
1683/*
1684 * Returns stocks cached in percpu to res_counter and reset cached information.
1685 */
1686static void drain_stock(struct memcg_stock_pcp *stock)
1687{
1688 struct mem_cgroup *old = stock->cached;
1689
1690 if (stock->charge) {
1691 res_counter_uncharge(&old->res, stock->charge);
1692 if (do_swap_account)
1693 res_counter_uncharge(&old->memsw, stock->charge);
1694 }
1695 stock->cached = NULL;
1696 stock->charge = 0;
1697}
1698
1699/*
1700 * This must be called under preempt disabled or must be called by
1701 * a thread which is pinned to local cpu.
1702 */
1703static void drain_local_stock(struct work_struct *dummy)
1704{
1705 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1706 drain_stock(stock);
1707}
1708
1709/*
1710 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1711 * This will be consumed by consume_stock() function, later.
cdec2e42
KH
1712 */
1713static void refill_stock(struct mem_cgroup *mem, int val)
1714{
1715 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1716
1717 if (stock->cached != mem) { /* reset if necessary */
1718 drain_stock(stock);
1719 stock->cached = mem;
1720 }
1721 stock->charge += val;
1722 put_cpu_var(memcg_stock);
1723}
1724
1725/*
1726 * Tries to drain stocked charges in other cpus. This function is asynchronous
1727 * and just put a work per cpu for draining localy on each cpu. Caller can
1728 * expects some charges will be back to res_counter later but cannot wait for
1729 * it.
1730 */
1731static void drain_all_stock_async(void)
1732{
1733 int cpu;
1734 /* This function is for scheduling "drain" in asynchronous way.
1735 * The result of "drain" is not directly handled by callers. Then,
1736 * if someone is calling drain, we don't have to call drain more.
1737 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1738 * there is a race. We just do loose check here.
1739 */
1740 if (atomic_read(&memcg_drain_count))
1741 return;
1742 /* Notify other cpus that system-wide "drain" is running */
1743 atomic_inc(&memcg_drain_count);
1744 get_online_cpus();
1745 for_each_online_cpu(cpu) {
1746 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1747 schedule_work_on(cpu, &stock->work);
1748 }
1749 put_online_cpus();
1750 atomic_dec(&memcg_drain_count);
1751 /* We don't wait for flush_work */
1752}
1753
1754/* This is a synchronous drain interface. */
1755static void drain_all_stock_sync(void)
1756{
1757 /* called when force_empty is called */
1758 atomic_inc(&memcg_drain_count);
1759 schedule_on_each_cpu(drain_local_stock);
1760 atomic_dec(&memcg_drain_count);
1761}
1762
711d3d2c
KH
1763/*
1764 * This function drains percpu counter value from DEAD cpu and
1765 * move it to local cpu. Note that this function can be preempted.
1766 */
1767static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1768{
1769 int i;
1770
1771 spin_lock(&mem->pcp_counter_lock);
1772 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1773 s64 x = per_cpu(mem->stat->count[i], cpu);
1774
1775 per_cpu(mem->stat->count[i], cpu) = 0;
1776 mem->nocpu_base.count[i] += x;
1777 }
1489ebad
KH
1778 /* need to clear ON_MOVE value, works as a kind of lock. */
1779 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1780 spin_unlock(&mem->pcp_counter_lock);
1781}
1782
1783static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1784{
1785 int idx = MEM_CGROUP_ON_MOVE;
1786
1787 spin_lock(&mem->pcp_counter_lock);
1788 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
1789 spin_unlock(&mem->pcp_counter_lock);
1790}
1791
1792static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1793 unsigned long action,
1794 void *hcpu)
1795{
1796 int cpu = (unsigned long)hcpu;
1797 struct memcg_stock_pcp *stock;
711d3d2c 1798 struct mem_cgroup *iter;
cdec2e42 1799
1489ebad
KH
1800 if ((action == CPU_ONLINE)) {
1801 for_each_mem_cgroup_all(iter)
1802 synchronize_mem_cgroup_on_move(iter, cpu);
1803 return NOTIFY_OK;
1804 }
1805
711d3d2c 1806 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 1807 return NOTIFY_OK;
711d3d2c
KH
1808
1809 for_each_mem_cgroup_all(iter)
1810 mem_cgroup_drain_pcp_counter(iter, cpu);
1811
cdec2e42
KH
1812 stock = &per_cpu(memcg_stock, cpu);
1813 drain_stock(stock);
1814 return NOTIFY_OK;
1815}
1816
4b534334
KH
1817
1818/* See __mem_cgroup_try_charge() for details */
1819enum {
1820 CHARGE_OK, /* success */
1821 CHARGE_RETRY, /* need to retry but retry is not bad */
1822 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1823 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1824 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1825};
1826
1827static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1828 int csize, bool oom_check)
1829{
1830 struct mem_cgroup *mem_over_limit;
1831 struct res_counter *fail_res;
1832 unsigned long flags = 0;
1833 int ret;
1834
1835 ret = res_counter_charge(&mem->res, csize, &fail_res);
1836
1837 if (likely(!ret)) {
1838 if (!do_swap_account)
1839 return CHARGE_OK;
1840 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1841 if (likely(!ret))
1842 return CHARGE_OK;
1843
1844 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1845 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1846 } else
1847 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1848
1849 if (csize > PAGE_SIZE) /* change csize and retry */
1850 return CHARGE_RETRY;
1851
1852 if (!(gfp_mask & __GFP_WAIT))
1853 return CHARGE_WOULDBLOCK;
1854
1855 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1856 gfp_mask, flags);
1857 /*
1858 * try_to_free_mem_cgroup_pages() might not give us a full
1859 * picture of reclaim. Some pages are reclaimed and might be
1860 * moved to swap cache or just unmapped from the cgroup.
1861 * Check the limit again to see if the reclaim reduced the
1862 * current usage of the cgroup before giving up
1863 */
1864 if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1865 return CHARGE_RETRY;
1866
1867 /*
1868 * At task move, charge accounts can be doubly counted. So, it's
1869 * better to wait until the end of task_move if something is going on.
1870 */
1871 if (mem_cgroup_wait_acct_move(mem_over_limit))
1872 return CHARGE_RETRY;
1873
1874 /* If we don't need to call oom-killer at el, return immediately */
1875 if (!oom_check)
1876 return CHARGE_NOMEM;
1877 /* check OOM */
1878 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1879 return CHARGE_OOM_DIE;
1880
1881 return CHARGE_RETRY;
1882}
1883
f817ed48
KH
1884/*
1885 * Unlike exported interface, "oom" parameter is added. if oom==true,
1886 * oom-killer can be invoked.
8a9f3ccd 1887 */
f817ed48 1888static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510
AA
1889 gfp_t gfp_mask,
1890 struct mem_cgroup **memcg, bool oom,
1891 int page_size)
8a9f3ccd 1892{
4b534334
KH
1893 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1894 struct mem_cgroup *mem = NULL;
1895 int ret;
ec168510 1896 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
a636b327 1897
867578cb
KH
1898 /*
1899 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1900 * in system level. So, allow to go ahead dying process in addition to
1901 * MEMDIE process.
1902 */
1903 if (unlikely(test_thread_flag(TIF_MEMDIE)
1904 || fatal_signal_pending(current)))
1905 goto bypass;
a636b327 1906
8a9f3ccd 1907 /*
3be91277
HD
1908 * We always charge the cgroup the mm_struct belongs to.
1909 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1910 * thread group leader migrates. It's possible that mm is not
1911 * set, if so charge the init_mm (happens for pagecache usage).
1912 */
f75ca962
KH
1913 if (!*memcg && !mm)
1914 goto bypass;
1915again:
1916 if (*memcg) { /* css should be a valid one */
4b534334 1917 mem = *memcg;
f75ca962
KH
1918 VM_BUG_ON(css_is_removed(&mem->css));
1919 if (mem_cgroup_is_root(mem))
1920 goto done;
ec168510 1921 if (page_size == PAGE_SIZE && consume_stock(mem))
f75ca962 1922 goto done;
4b534334
KH
1923 css_get(&mem->css);
1924 } else {
f75ca962 1925 struct task_struct *p;
54595fe2 1926
f75ca962
KH
1927 rcu_read_lock();
1928 p = rcu_dereference(mm->owner);
f75ca962 1929 /*
ebb76ce1
KH
1930 * Because we don't have task_lock(), "p" can exit.
1931 * In that case, "mem" can point to root or p can be NULL with
1932 * race with swapoff. Then, we have small risk of mis-accouning.
1933 * But such kind of mis-account by race always happens because
1934 * we don't have cgroup_mutex(). It's overkill and we allo that
1935 * small race, here.
1936 * (*) swapoff at el will charge against mm-struct not against
1937 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
1938 */
1939 mem = mem_cgroup_from_task(p);
ebb76ce1 1940 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
1941 rcu_read_unlock();
1942 goto done;
1943 }
ec168510 1944 if (page_size == PAGE_SIZE && consume_stock(mem)) {
f75ca962
KH
1945 /*
1946 * It seems dagerous to access memcg without css_get().
1947 * But considering how consume_stok works, it's not
1948 * necessary. If consume_stock success, some charges
1949 * from this memcg are cached on this cpu. So, we
1950 * don't need to call css_get()/css_tryget() before
1951 * calling consume_stock().
1952 */
1953 rcu_read_unlock();
1954 goto done;
1955 }
1956 /* after here, we may be blocked. we need to get refcnt */
1957 if (!css_tryget(&mem->css)) {
1958 rcu_read_unlock();
1959 goto again;
1960 }
1961 rcu_read_unlock();
1962 }
8a9f3ccd 1963
4b534334
KH
1964 do {
1965 bool oom_check;
7a81b88c 1966
4b534334 1967 /* If killed, bypass charge */
f75ca962
KH
1968 if (fatal_signal_pending(current)) {
1969 css_put(&mem->css);
4b534334 1970 goto bypass;
f75ca962 1971 }
6d61ef40 1972
4b534334
KH
1973 oom_check = false;
1974 if (oom && !nr_oom_retries) {
1975 oom_check = true;
1976 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 1977 }
66e1707b 1978
4b534334 1979 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
8033b97c 1980
4b534334
KH
1981 switch (ret) {
1982 case CHARGE_OK:
1983 break;
1984 case CHARGE_RETRY: /* not in OOM situation but retry */
ec168510 1985 csize = page_size;
f75ca962
KH
1986 css_put(&mem->css);
1987 mem = NULL;
1988 goto again;
4b534334 1989 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 1990 css_put(&mem->css);
4b534334
KH
1991 goto nomem;
1992 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
1993 if (!oom) {
1994 css_put(&mem->css);
867578cb 1995 goto nomem;
f75ca962 1996 }
4b534334
KH
1997 /* If oom, we never return -ENOMEM */
1998 nr_oom_retries--;
1999 break;
2000 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2001 css_put(&mem->css);
867578cb 2002 goto bypass;
66e1707b 2003 }
4b534334
KH
2004 } while (ret != CHARGE_OK);
2005
ec168510
AA
2006 if (csize > page_size)
2007 refill_stock(mem, csize - page_size);
f75ca962 2008 css_put(&mem->css);
0c3e73e8 2009done:
f75ca962 2010 *memcg = mem;
7a81b88c
KH
2011 return 0;
2012nomem:
f75ca962 2013 *memcg = NULL;
7a81b88c 2014 return -ENOMEM;
867578cb
KH
2015bypass:
2016 *memcg = NULL;
2017 return 0;
7a81b88c 2018}
8a9f3ccd 2019
a3032a2c
DN
2020/*
2021 * Somemtimes we have to undo a charge we got by try_charge().
2022 * This function is for that and do uncharge, put css's refcnt.
2023 * gotten by try_charge().
2024 */
854ffa8d
DN
2025static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2026 unsigned long count)
a3032a2c
DN
2027{
2028 if (!mem_cgroup_is_root(mem)) {
854ffa8d 2029 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 2030 if (do_swap_account)
854ffa8d 2031 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
a3032a2c 2032 }
854ffa8d
DN
2033}
2034
ec168510
AA
2035static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2036 int page_size)
854ffa8d 2037{
ec168510 2038 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
a3032a2c
DN
2039}
2040
a3b2d692
KH
2041/*
2042 * A helper function to get mem_cgroup from ID. must be called under
2043 * rcu_read_lock(). The caller must check css_is_removed() or some if
2044 * it's concern. (dropping refcnt from swap can be called against removed
2045 * memcg.)
2046 */
2047static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2048{
2049 struct cgroup_subsys_state *css;
2050
2051 /* ID 0 is unused ID */
2052 if (!id)
2053 return NULL;
2054 css = css_lookup(&mem_cgroup_subsys, id);
2055 if (!css)
2056 return NULL;
2057 return container_of(css, struct mem_cgroup, css);
2058}
2059
e42d9d5d 2060struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2061{
e42d9d5d 2062 struct mem_cgroup *mem = NULL;
3c776e64 2063 struct page_cgroup *pc;
a3b2d692 2064 unsigned short id;
b5a84319
KH
2065 swp_entry_t ent;
2066
3c776e64
DN
2067 VM_BUG_ON(!PageLocked(page));
2068
3c776e64 2069 pc = lookup_page_cgroup(page);
c0bd3f63 2070 lock_page_cgroup(pc);
a3b2d692 2071 if (PageCgroupUsed(pc)) {
3c776e64 2072 mem = pc->mem_cgroup;
a3b2d692
KH
2073 if (mem && !css_tryget(&mem->css))
2074 mem = NULL;
e42d9d5d 2075 } else if (PageSwapCache(page)) {
3c776e64 2076 ent.val = page_private(page);
a3b2d692
KH
2077 id = lookup_swap_cgroup(ent);
2078 rcu_read_lock();
2079 mem = mem_cgroup_lookup(id);
2080 if (mem && !css_tryget(&mem->css))
2081 mem = NULL;
2082 rcu_read_unlock();
3c776e64 2083 }
c0bd3f63 2084 unlock_page_cgroup(pc);
b5a84319
KH
2085 return mem;
2086}
2087
7a81b88c 2088/*
a5e924f5 2089 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
2090 * USED state. If already USED, uncharge and return.
2091 */
152c9ccb
DN
2092static void ____mem_cgroup_commit_charge(struct mem_cgroup *mem,
2093 struct page_cgroup *pc,
2094 enum charge_type ctype)
7a81b88c 2095{
8a9f3ccd 2096 pc->mem_cgroup = mem;
261fb61a
KH
2097 /*
2098 * We access a page_cgroup asynchronously without lock_page_cgroup().
2099 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2100 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2101 * before USED bit, we need memory barrier here.
2102 * See mem_cgroup_add_lru_list(), etc.
2103 */
08e552c6 2104 smp_wmb();
4b3bde4c
BS
2105 switch (ctype) {
2106 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2107 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2108 SetPageCgroupCache(pc);
2109 SetPageCgroupUsed(pc);
2110 break;
2111 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2112 ClearPageCgroupCache(pc);
2113 SetPageCgroupUsed(pc);
2114 break;
2115 default:
2116 break;
2117 }
3be91277 2118
08e552c6 2119 mem_cgroup_charge_statistics(mem, pc, true);
152c9ccb
DN
2120}
2121
2122static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2123 struct page_cgroup *pc,
2124 enum charge_type ctype,
2125 int page_size)
2126{
2127 int i;
2128 int count = page_size >> PAGE_SHIFT;
2129
2130 /* try_charge() can return NULL to *memcg, taking care of it. */
2131 if (!mem)
2132 return;
2133
2134 lock_page_cgroup(pc);
2135 if (unlikely(PageCgroupUsed(pc))) {
2136 unlock_page_cgroup(pc);
2137 mem_cgroup_cancel_charge(mem, page_size);
2138 return;
2139 }
2140
2141 /*
2142 * we don't need page_cgroup_lock about tail pages, becase they are not
2143 * accessed by any other context at this point.
2144 */
2145 for (i = 0; i < count; i++)
2146 ____mem_cgroup_commit_charge(mem, pc + i, ctype);
52d4b9ac 2147
52d4b9ac 2148 unlock_page_cgroup(pc);
430e4863
KH
2149 /*
2150 * "charge_statistics" updated event counter. Then, check it.
2151 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2152 * if they exceeds softlimit.
2153 */
d2265e6f 2154 memcg_check_events(mem, pc->page);
7a81b88c 2155}
66e1707b 2156
f817ed48 2157/**
57f9fd7d 2158 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
2159 * @pc: page_cgroup of the page.
2160 * @from: mem_cgroup which the page is moved from.
2161 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2162 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2163 *
2164 * The caller must confirm following.
08e552c6 2165 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 2166 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 2167 *
854ffa8d
DN
2168 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2169 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2170 * true, this function does "uncharge" from old cgroup, but it doesn't if
2171 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
2172 */
2173
57f9fd7d 2174static void __mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 2175 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
f817ed48 2176{
f817ed48 2177 VM_BUG_ON(from == to);
08e552c6 2178 VM_BUG_ON(PageLRU(pc->page));
112bc2e1 2179 VM_BUG_ON(!page_is_cgroup_locked(pc));
57f9fd7d
DN
2180 VM_BUG_ON(!PageCgroupUsed(pc));
2181 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 2182
8725d541 2183 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2184 /* Update mapped_file data for mem_cgroup */
2185 preempt_disable();
2186 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2187 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2188 preempt_enable();
d69b042f 2189 }
854ffa8d
DN
2190 mem_cgroup_charge_statistics(from, pc, false);
2191 if (uncharge)
2192 /* This is not "cancel", but cancel_charge does all we need. */
ec168510 2193 mem_cgroup_cancel_charge(from, PAGE_SIZE);
d69b042f 2194
854ffa8d 2195 /* caller should have done css_get */
08e552c6
KH
2196 pc->mem_cgroup = to;
2197 mem_cgroup_charge_statistics(to, pc, true);
88703267
KH
2198 /*
2199 * We charges against "to" which may not have any tasks. Then, "to"
2200 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
2201 * this function is just force_empty() and move charge, so it's
2202 * garanteed that "to" is never removed. So, we don't check rmdir
2203 * status here.
88703267 2204 */
57f9fd7d
DN
2205}
2206
2207/*
2208 * check whether the @pc is valid for moving account and call
2209 * __mem_cgroup_move_account()
2210 */
2211static int mem_cgroup_move_account(struct page_cgroup *pc,
854ffa8d 2212 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
57f9fd7d
DN
2213{
2214 int ret = -EINVAL;
dbd4ea78
KH
2215 unsigned long flags;
2216
57f9fd7d
DN
2217 lock_page_cgroup(pc);
2218 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
dbd4ea78 2219 move_lock_page_cgroup(pc, &flags);
854ffa8d 2220 __mem_cgroup_move_account(pc, from, to, uncharge);
dbd4ea78 2221 move_unlock_page_cgroup(pc, &flags);
57f9fd7d
DN
2222 ret = 0;
2223 }
2224 unlock_page_cgroup(pc);
d2265e6f
KH
2225 /*
2226 * check events
2227 */
2228 memcg_check_events(to, pc->page);
2229 memcg_check_events(from, pc->page);
f817ed48
KH
2230 return ret;
2231}
2232
2233/*
2234 * move charges to its parent.
2235 */
2236
2237static int mem_cgroup_move_parent(struct page_cgroup *pc,
2238 struct mem_cgroup *child,
2239 gfp_t gfp_mask)
2240{
08e552c6 2241 struct page *page = pc->page;
f817ed48
KH
2242 struct cgroup *cg = child->css.cgroup;
2243 struct cgroup *pcg = cg->parent;
2244 struct mem_cgroup *parent;
f817ed48
KH
2245 int ret;
2246
2247 /* Is ROOT ? */
2248 if (!pcg)
2249 return -EINVAL;
2250
57f9fd7d
DN
2251 ret = -EBUSY;
2252 if (!get_page_unless_zero(page))
2253 goto out;
2254 if (isolate_lru_page(page))
2255 goto put;
08e552c6 2256
f817ed48 2257 parent = mem_cgroup_from_cont(pcg);
ec168510
AA
2258 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
2259 PAGE_SIZE);
a636b327 2260 if (ret || !parent)
57f9fd7d 2261 goto put_back;
f817ed48 2262
854ffa8d
DN
2263 ret = mem_cgroup_move_account(pc, child, parent, true);
2264 if (ret)
ec168510 2265 mem_cgroup_cancel_charge(parent, PAGE_SIZE);
57f9fd7d 2266put_back:
08e552c6 2267 putback_lru_page(page);
57f9fd7d 2268put:
40d58138 2269 put_page(page);
57f9fd7d 2270out:
f817ed48
KH
2271 return ret;
2272}
2273
7a81b88c
KH
2274/*
2275 * Charge the memory controller for page usage.
2276 * Return
2277 * 0 if the charge was successful
2278 * < 0 if the cgroup is over its limit
2279 */
2280static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2281 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2282{
73045c47 2283 struct mem_cgroup *mem = NULL;
7a81b88c
KH
2284 struct page_cgroup *pc;
2285 int ret;
ec168510
AA
2286 int page_size = PAGE_SIZE;
2287
37c2ac78 2288 if (PageTransHuge(page)) {
ec168510 2289 page_size <<= compound_order(page);
37c2ac78
AA
2290 VM_BUG_ON(!PageTransHuge(page));
2291 }
7a81b88c
KH
2292
2293 pc = lookup_page_cgroup(page);
2294 /* can happen at boot */
2295 if (unlikely(!pc))
2296 return 0;
2297 prefetchw(pc);
2298
ec168510 2299 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
a636b327 2300 if (ret || !mem)
7a81b88c
KH
2301 return ret;
2302
ec168510 2303 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
8a9f3ccd 2304 return 0;
8a9f3ccd
BS
2305}
2306
7a81b88c
KH
2307int mem_cgroup_newpage_charge(struct page *page,
2308 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2309{
f8d66542 2310 if (mem_cgroup_disabled())
cede86ac 2311 return 0;
69029cd5
KH
2312 /*
2313 * If already mapped, we don't have to account.
2314 * If page cache, page->mapping has address_space.
2315 * But page->mapping may have out-of-use anon_vma pointer,
2316 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2317 * is NULL.
2318 */
2319 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2320 return 0;
2321 if (unlikely(!mm))
2322 mm = &init_mm;
217bc319 2323 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2324 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2325}
2326
83aae4c7
DN
2327static void
2328__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2329 enum charge_type ctype);
2330
e1a1cd59
BS
2331int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2332 gfp_t gfp_mask)
8697d331 2333{
b5a84319
KH
2334 int ret;
2335
f8d66542 2336 if (mem_cgroup_disabled())
cede86ac 2337 return 0;
52d4b9ac
KH
2338 if (PageCompound(page))
2339 return 0;
accf163e
KH
2340 /*
2341 * Corner case handling. This is called from add_to_page_cache()
2342 * in usual. But some FS (shmem) precharges this page before calling it
2343 * and call add_to_page_cache() with GFP_NOWAIT.
2344 *
2345 * For GFP_NOWAIT case, the page may be pre-charged before calling
2346 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2347 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2348 * And when the page is SwapCache, it should take swap information
2349 * into account. This is under lock_page() now.
accf163e
KH
2350 */
2351 if (!(gfp_mask & __GFP_WAIT)) {
2352 struct page_cgroup *pc;
2353
52d4b9ac
KH
2354 pc = lookup_page_cgroup(page);
2355 if (!pc)
2356 return 0;
2357 lock_page_cgroup(pc);
2358 if (PageCgroupUsed(pc)) {
2359 unlock_page_cgroup(pc);
accf163e
KH
2360 return 0;
2361 }
52d4b9ac 2362 unlock_page_cgroup(pc);
accf163e
KH
2363 }
2364
73045c47 2365 if (unlikely(!mm))
8697d331 2366 mm = &init_mm;
accf163e 2367
c05555b5
KH
2368 if (page_is_file_cache(page))
2369 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2370 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2371
83aae4c7
DN
2372 /* shmem */
2373 if (PageSwapCache(page)) {
73045c47
DN
2374 struct mem_cgroup *mem = NULL;
2375
83aae4c7
DN
2376 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2377 if (!ret)
2378 __mem_cgroup_commit_charge_swapin(page, mem,
2379 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2380 } else
2381 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2382 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2383
b5a84319 2384 return ret;
e8589cc1
KH
2385}
2386
54595fe2
KH
2387/*
2388 * While swap-in, try_charge -> commit or cancel, the page is locked.
2389 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2390 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2391 * "commit()" or removed by "cancel()"
2392 */
8c7c6e34
KH
2393int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2394 struct page *page,
2395 gfp_t mask, struct mem_cgroup **ptr)
2396{
2397 struct mem_cgroup *mem;
54595fe2 2398 int ret;
8c7c6e34 2399
f8d66542 2400 if (mem_cgroup_disabled())
8c7c6e34
KH
2401 return 0;
2402
2403 if (!do_swap_account)
2404 goto charge_cur_mm;
8c7c6e34
KH
2405 /*
2406 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2407 * the pte, and even removed page from swap cache: in those cases
2408 * do_swap_page()'s pte_same() test will fail; but there's also a
2409 * KSM case which does need to charge the page.
8c7c6e34
KH
2410 */
2411 if (!PageSwapCache(page))
407f9c8b 2412 goto charge_cur_mm;
e42d9d5d 2413 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2414 if (!mem)
2415 goto charge_cur_mm;
8c7c6e34 2416 *ptr = mem;
ec168510 2417 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
54595fe2
KH
2418 css_put(&mem->css);
2419 return ret;
8c7c6e34
KH
2420charge_cur_mm:
2421 if (unlikely(!mm))
2422 mm = &init_mm;
ec168510 2423 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
8c7c6e34
KH
2424}
2425
83aae4c7
DN
2426static void
2427__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2428 enum charge_type ctype)
7a81b88c
KH
2429{
2430 struct page_cgroup *pc;
2431
f8d66542 2432 if (mem_cgroup_disabled())
7a81b88c
KH
2433 return;
2434 if (!ptr)
2435 return;
88703267 2436 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2437 pc = lookup_page_cgroup(page);
544122e5 2438 mem_cgroup_lru_del_before_commit_swapcache(page);
ec168510 2439 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
544122e5 2440 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2441 /*
2442 * Now swap is on-memory. This means this page may be
2443 * counted both as mem and swap....double count.
03f3c433
KH
2444 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2445 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2446 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2447 */
03f3c433 2448 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2449 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2450 unsigned short id;
8c7c6e34 2451 struct mem_cgroup *memcg;
a3b2d692
KH
2452
2453 id = swap_cgroup_record(ent, 0);
2454 rcu_read_lock();
2455 memcg = mem_cgroup_lookup(id);
8c7c6e34 2456 if (memcg) {
a3b2d692
KH
2457 /*
2458 * This recorded memcg can be obsolete one. So, avoid
2459 * calling css_tryget
2460 */
0c3e73e8 2461 if (!mem_cgroup_is_root(memcg))
4e649152 2462 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2463 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2464 mem_cgroup_put(memcg);
2465 }
a3b2d692 2466 rcu_read_unlock();
8c7c6e34 2467 }
88703267
KH
2468 /*
2469 * At swapin, we may charge account against cgroup which has no tasks.
2470 * So, rmdir()->pre_destroy() can be called while we do this charge.
2471 * In that case, we need to call pre_destroy() again. check it here.
2472 */
2473 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2474}
2475
83aae4c7
DN
2476void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2477{
2478 __mem_cgroup_commit_charge_swapin(page, ptr,
2479 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2480}
2481
7a81b88c
KH
2482void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2483{
f8d66542 2484 if (mem_cgroup_disabled())
7a81b88c
KH
2485 return;
2486 if (!mem)
2487 return;
ec168510 2488 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
7a81b88c
KH
2489}
2490
569b846d 2491static void
ec168510
AA
2492__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2493 int page_size)
569b846d
KH
2494{
2495 struct memcg_batch_info *batch = NULL;
2496 bool uncharge_memsw = true;
2497 /* If swapout, usage of swap doesn't decrease */
2498 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2499 uncharge_memsw = false;
569b846d
KH
2500
2501 batch = &current->memcg_batch;
2502 /*
2503 * In usual, we do css_get() when we remember memcg pointer.
2504 * But in this case, we keep res->usage until end of a series of
2505 * uncharges. Then, it's ok to ignore memcg's refcnt.
2506 */
2507 if (!batch->memcg)
2508 batch->memcg = mem;
3c11ecf4
KH
2509 /*
2510 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2511 * In those cases, all pages freed continously can be expected to be in
2512 * the same cgroup and we have chance to coalesce uncharges.
2513 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2514 * because we want to do uncharge as soon as possible.
2515 */
2516
2517 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2518 goto direct_uncharge;
2519
ec168510
AA
2520 if (page_size != PAGE_SIZE)
2521 goto direct_uncharge;
2522
569b846d
KH
2523 /*
2524 * In typical case, batch->memcg == mem. This means we can
2525 * merge a series of uncharges to an uncharge of res_counter.
2526 * If not, we uncharge res_counter ony by one.
2527 */
2528 if (batch->memcg != mem)
2529 goto direct_uncharge;
2530 /* remember freed charge and uncharge it later */
2531 batch->bytes += PAGE_SIZE;
2532 if (uncharge_memsw)
2533 batch->memsw_bytes += PAGE_SIZE;
2534 return;
2535direct_uncharge:
ec168510 2536 res_counter_uncharge(&mem->res, page_size);
569b846d 2537 if (uncharge_memsw)
ec168510 2538 res_counter_uncharge(&mem->memsw, page_size);
3c11ecf4
KH
2539 if (unlikely(batch->memcg != mem))
2540 memcg_oom_recover(mem);
569b846d
KH
2541 return;
2542}
7a81b88c 2543
8a9f3ccd 2544/*
69029cd5 2545 * uncharge if !page_mapped(page)
8a9f3ccd 2546 */
8c7c6e34 2547static struct mem_cgroup *
69029cd5 2548__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2549{
152c9ccb
DN
2550 int i;
2551 int count;
8289546e 2552 struct page_cgroup *pc;
8c7c6e34 2553 struct mem_cgroup *mem = NULL;
ec168510 2554 int page_size = PAGE_SIZE;
8a9f3ccd 2555
f8d66542 2556 if (mem_cgroup_disabled())
8c7c6e34 2557 return NULL;
4077960e 2558
d13d1443 2559 if (PageSwapCache(page))
8c7c6e34 2560 return NULL;
d13d1443 2561
37c2ac78 2562 if (PageTransHuge(page)) {
ec168510 2563 page_size <<= compound_order(page);
37c2ac78
AA
2564 VM_BUG_ON(!PageTransHuge(page));
2565 }
ec168510 2566
152c9ccb 2567 count = page_size >> PAGE_SHIFT;
8697d331 2568 /*
3c541e14 2569 * Check if our page_cgroup is valid
8697d331 2570 */
52d4b9ac
KH
2571 pc = lookup_page_cgroup(page);
2572 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2573 return NULL;
b9c565d5 2574
52d4b9ac 2575 lock_page_cgroup(pc);
d13d1443 2576
8c7c6e34
KH
2577 mem = pc->mem_cgroup;
2578
d13d1443
KH
2579 if (!PageCgroupUsed(pc))
2580 goto unlock_out;
2581
2582 switch (ctype) {
2583 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2584 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2585 /* See mem_cgroup_prepare_migration() */
2586 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2587 goto unlock_out;
2588 break;
2589 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2590 if (!PageAnon(page)) { /* Shared memory */
2591 if (page->mapping && !page_is_file_cache(page))
2592 goto unlock_out;
2593 } else if (page_mapped(page)) /* Anon */
2594 goto unlock_out;
2595 break;
2596 default:
2597 break;
52d4b9ac 2598 }
d13d1443 2599
152c9ccb
DN
2600 for (i = 0; i < count; i++)
2601 mem_cgroup_charge_statistics(mem, pc + i, false);
04046e1a 2602
52d4b9ac 2603 ClearPageCgroupUsed(pc);
544122e5
KH
2604 /*
2605 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2606 * freed from LRU. This is safe because uncharged page is expected not
2607 * to be reused (freed soon). Exception is SwapCache, it's handled by
2608 * special functions.
2609 */
b9c565d5 2610
52d4b9ac 2611 unlock_page_cgroup(pc);
f75ca962
KH
2612 /*
2613 * even after unlock, we have mem->res.usage here and this memcg
2614 * will never be freed.
2615 */
d2265e6f 2616 memcg_check_events(mem, page);
f75ca962
KH
2617 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2618 mem_cgroup_swap_statistics(mem, true);
2619 mem_cgroup_get(mem);
2620 }
2621 if (!mem_cgroup_is_root(mem))
ec168510 2622 __do_uncharge(mem, ctype, page_size);
6d12e2d8 2623
8c7c6e34 2624 return mem;
d13d1443
KH
2625
2626unlock_out:
2627 unlock_page_cgroup(pc);
8c7c6e34 2628 return NULL;
3c541e14
BS
2629}
2630
69029cd5
KH
2631void mem_cgroup_uncharge_page(struct page *page)
2632{
52d4b9ac
KH
2633 /* early check. */
2634 if (page_mapped(page))
2635 return;
2636 if (page->mapping && !PageAnon(page))
2637 return;
69029cd5
KH
2638 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2639}
2640
2641void mem_cgroup_uncharge_cache_page(struct page *page)
2642{
2643 VM_BUG_ON(page_mapped(page));
b7abea96 2644 VM_BUG_ON(page->mapping);
69029cd5
KH
2645 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2646}
2647
569b846d
KH
2648/*
2649 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2650 * In that cases, pages are freed continuously and we can expect pages
2651 * are in the same memcg. All these calls itself limits the number of
2652 * pages freed at once, then uncharge_start/end() is called properly.
2653 * This may be called prural(2) times in a context,
2654 */
2655
2656void mem_cgroup_uncharge_start(void)
2657{
2658 current->memcg_batch.do_batch++;
2659 /* We can do nest. */
2660 if (current->memcg_batch.do_batch == 1) {
2661 current->memcg_batch.memcg = NULL;
2662 current->memcg_batch.bytes = 0;
2663 current->memcg_batch.memsw_bytes = 0;
2664 }
2665}
2666
2667void mem_cgroup_uncharge_end(void)
2668{
2669 struct memcg_batch_info *batch = &current->memcg_batch;
2670
2671 if (!batch->do_batch)
2672 return;
2673
2674 batch->do_batch--;
2675 if (batch->do_batch) /* If stacked, do nothing. */
2676 return;
2677
2678 if (!batch->memcg)
2679 return;
2680 /*
2681 * This "batch->memcg" is valid without any css_get/put etc...
2682 * bacause we hide charges behind us.
2683 */
2684 if (batch->bytes)
2685 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2686 if (batch->memsw_bytes)
2687 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
3c11ecf4 2688 memcg_oom_recover(batch->memcg);
569b846d
KH
2689 /* forget this pointer (for sanity check) */
2690 batch->memcg = NULL;
2691}
2692
e767e056 2693#ifdef CONFIG_SWAP
8c7c6e34 2694/*
e767e056 2695 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2696 * memcg information is recorded to swap_cgroup of "ent"
2697 */
8a9478ca
KH
2698void
2699mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2700{
2701 struct mem_cgroup *memcg;
8a9478ca
KH
2702 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2703
2704 if (!swapout) /* this was a swap cache but the swap is unused ! */
2705 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2706
2707 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2708
f75ca962
KH
2709 /*
2710 * record memcg information, if swapout && memcg != NULL,
2711 * mem_cgroup_get() was called in uncharge().
2712 */
2713 if (do_swap_account && swapout && memcg)
a3b2d692 2714 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2715}
e767e056 2716#endif
8c7c6e34
KH
2717
2718#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2719/*
2720 * called from swap_entry_free(). remove record in swap_cgroup and
2721 * uncharge "memsw" account.
2722 */
2723void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2724{
8c7c6e34 2725 struct mem_cgroup *memcg;
a3b2d692 2726 unsigned short id;
8c7c6e34
KH
2727
2728 if (!do_swap_account)
2729 return;
2730
a3b2d692
KH
2731 id = swap_cgroup_record(ent, 0);
2732 rcu_read_lock();
2733 memcg = mem_cgroup_lookup(id);
8c7c6e34 2734 if (memcg) {
a3b2d692
KH
2735 /*
2736 * We uncharge this because swap is freed.
2737 * This memcg can be obsolete one. We avoid calling css_tryget
2738 */
0c3e73e8 2739 if (!mem_cgroup_is_root(memcg))
4e649152 2740 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2741 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2742 mem_cgroup_put(memcg);
2743 }
a3b2d692 2744 rcu_read_unlock();
d13d1443 2745}
02491447
DN
2746
2747/**
2748 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2749 * @entry: swap entry to be moved
2750 * @from: mem_cgroup which the entry is moved from
2751 * @to: mem_cgroup which the entry is moved to
483c30b5 2752 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2753 *
2754 * It succeeds only when the swap_cgroup's record for this entry is the same
2755 * as the mem_cgroup's id of @from.
2756 *
2757 * Returns 0 on success, -EINVAL on failure.
2758 *
2759 * The caller must have charged to @to, IOW, called res_counter_charge() about
2760 * both res and memsw, and called css_get().
2761 */
2762static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2763 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2764{
2765 unsigned short old_id, new_id;
2766
2767 old_id = css_id(&from->css);
2768 new_id = css_id(&to->css);
2769
2770 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2771 mem_cgroup_swap_statistics(from, false);
483c30b5 2772 mem_cgroup_swap_statistics(to, true);
02491447 2773 /*
483c30b5
DN
2774 * This function is only called from task migration context now.
2775 * It postpones res_counter and refcount handling till the end
2776 * of task migration(mem_cgroup_clear_mc()) for performance
2777 * improvement. But we cannot postpone mem_cgroup_get(to)
2778 * because if the process that has been moved to @to does
2779 * swap-in, the refcount of @to might be decreased to 0.
02491447 2780 */
02491447 2781 mem_cgroup_get(to);
483c30b5
DN
2782 if (need_fixup) {
2783 if (!mem_cgroup_is_root(from))
2784 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2785 mem_cgroup_put(from);
2786 /*
2787 * we charged both to->res and to->memsw, so we should
2788 * uncharge to->res.
2789 */
2790 if (!mem_cgroup_is_root(to))
2791 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 2792 }
02491447
DN
2793 return 0;
2794 }
2795 return -EINVAL;
2796}
2797#else
2798static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2799 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2800{
2801 return -EINVAL;
2802}
8c7c6e34 2803#endif
d13d1443 2804
ae41be37 2805/*
01b1ae63
KH
2806 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2807 * page belongs to.
ae41be37 2808 */
ac39cf8c 2809int mem_cgroup_prepare_migration(struct page *page,
2810 struct page *newpage, struct mem_cgroup **ptr)
ae41be37
KH
2811{
2812 struct page_cgroup *pc;
e8589cc1 2813 struct mem_cgroup *mem = NULL;
ac39cf8c 2814 enum charge_type ctype;
e8589cc1 2815 int ret = 0;
8869b8f6 2816
ec168510 2817 VM_BUG_ON(PageTransHuge(page));
f8d66542 2818 if (mem_cgroup_disabled())
4077960e
BS
2819 return 0;
2820
52d4b9ac
KH
2821 pc = lookup_page_cgroup(page);
2822 lock_page_cgroup(pc);
2823 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2824 mem = pc->mem_cgroup;
2825 css_get(&mem->css);
ac39cf8c 2826 /*
2827 * At migrating an anonymous page, its mapcount goes down
2828 * to 0 and uncharge() will be called. But, even if it's fully
2829 * unmapped, migration may fail and this page has to be
2830 * charged again. We set MIGRATION flag here and delay uncharge
2831 * until end_migration() is called
2832 *
2833 * Corner Case Thinking
2834 * A)
2835 * When the old page was mapped as Anon and it's unmap-and-freed
2836 * while migration was ongoing.
2837 * If unmap finds the old page, uncharge() of it will be delayed
2838 * until end_migration(). If unmap finds a new page, it's
2839 * uncharged when it make mapcount to be 1->0. If unmap code
2840 * finds swap_migration_entry, the new page will not be mapped
2841 * and end_migration() will find it(mapcount==0).
2842 *
2843 * B)
2844 * When the old page was mapped but migraion fails, the kernel
2845 * remaps it. A charge for it is kept by MIGRATION flag even
2846 * if mapcount goes down to 0. We can do remap successfully
2847 * without charging it again.
2848 *
2849 * C)
2850 * The "old" page is under lock_page() until the end of
2851 * migration, so, the old page itself will not be swapped-out.
2852 * If the new page is swapped out before end_migraton, our
2853 * hook to usual swap-out path will catch the event.
2854 */
2855 if (PageAnon(page))
2856 SetPageCgroupMigration(pc);
e8589cc1 2857 }
52d4b9ac 2858 unlock_page_cgroup(pc);
ac39cf8c 2859 /*
2860 * If the page is not charged at this point,
2861 * we return here.
2862 */
2863 if (!mem)
2864 return 0;
01b1ae63 2865
93d5c9be 2866 *ptr = mem;
ec168510 2867 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
ac39cf8c 2868 css_put(&mem->css);/* drop extra refcnt */
2869 if (ret || *ptr == NULL) {
2870 if (PageAnon(page)) {
2871 lock_page_cgroup(pc);
2872 ClearPageCgroupMigration(pc);
2873 unlock_page_cgroup(pc);
2874 /*
2875 * The old page may be fully unmapped while we kept it.
2876 */
2877 mem_cgroup_uncharge_page(page);
2878 }
2879 return -ENOMEM;
e8589cc1 2880 }
ac39cf8c 2881 /*
2882 * We charge new page before it's used/mapped. So, even if unlock_page()
2883 * is called before end_migration, we can catch all events on this new
2884 * page. In the case new page is migrated but not remapped, new page's
2885 * mapcount will be finally 0 and we call uncharge in end_migration().
2886 */
2887 pc = lookup_page_cgroup(newpage);
2888 if (PageAnon(page))
2889 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2890 else if (page_is_file_cache(page))
2891 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2892 else
2893 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ec168510 2894 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
e8589cc1 2895 return ret;
ae41be37 2896}
8869b8f6 2897
69029cd5 2898/* remove redundant charge if migration failed*/
01b1ae63 2899void mem_cgroup_end_migration(struct mem_cgroup *mem,
ac39cf8c 2900 struct page *oldpage, struct page *newpage)
ae41be37 2901{
ac39cf8c 2902 struct page *used, *unused;
01b1ae63 2903 struct page_cgroup *pc;
01b1ae63
KH
2904
2905 if (!mem)
2906 return;
ac39cf8c 2907 /* blocks rmdir() */
88703267 2908 cgroup_exclude_rmdir(&mem->css);
01b1ae63
KH
2909 /* at migration success, oldpage->mapping is NULL. */
2910 if (oldpage->mapping) {
ac39cf8c 2911 used = oldpage;
2912 unused = newpage;
01b1ae63 2913 } else {
ac39cf8c 2914 used = newpage;
01b1ae63
KH
2915 unused = oldpage;
2916 }
69029cd5 2917 /*
ac39cf8c 2918 * We disallowed uncharge of pages under migration because mapcount
2919 * of the page goes down to zero, temporarly.
2920 * Clear the flag and check the page should be charged.
01b1ae63 2921 */
ac39cf8c 2922 pc = lookup_page_cgroup(oldpage);
2923 lock_page_cgroup(pc);
2924 ClearPageCgroupMigration(pc);
2925 unlock_page_cgroup(pc);
01b1ae63 2926
ac39cf8c 2927 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2928
01b1ae63 2929 /*
ac39cf8c 2930 * If a page is a file cache, radix-tree replacement is very atomic
2931 * and we can skip this check. When it was an Anon page, its mapcount
2932 * goes down to 0. But because we added MIGRATION flage, it's not
2933 * uncharged yet. There are several case but page->mapcount check
2934 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2935 * check. (see prepare_charge() also)
69029cd5 2936 */
ac39cf8c 2937 if (PageAnon(used))
2938 mem_cgroup_uncharge_page(used);
88703267 2939 /*
ac39cf8c 2940 * At migration, we may charge account against cgroup which has no
2941 * tasks.
88703267
KH
2942 * So, rmdir()->pre_destroy() can be called while we do this charge.
2943 * In that case, we need to call pre_destroy() again. check it here.
2944 */
2945 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2946}
78fb7466 2947
c9b0ed51 2948/*
ae3abae6
DN
2949 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2950 * Calling hierarchical_reclaim is not enough because we should update
2951 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2952 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2953 * not from the memcg which this page would be charged to.
2954 * try_charge_swapin does all of these works properly.
c9b0ed51 2955 */
ae3abae6 2956int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2957 struct mm_struct *mm,
2958 gfp_t gfp_mask)
c9b0ed51 2959{
b5a84319 2960 struct mem_cgroup *mem = NULL;
ae3abae6 2961 int ret;
c9b0ed51 2962
f8d66542 2963 if (mem_cgroup_disabled())
cede86ac 2964 return 0;
c9b0ed51 2965
ae3abae6
DN
2966 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2967 if (!ret)
2968 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 2969
ae3abae6 2970 return ret;
c9b0ed51
KH
2971}
2972
8c7c6e34
KH
2973static DEFINE_MUTEX(set_limit_mutex);
2974
d38d2a75 2975static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 2976 unsigned long long val)
628f4235 2977{
81d39c20 2978 int retry_count;
3c11ecf4 2979 u64 memswlimit, memlimit;
628f4235 2980 int ret = 0;
81d39c20
KH
2981 int children = mem_cgroup_count_children(memcg);
2982 u64 curusage, oldusage;
3c11ecf4 2983 int enlarge;
81d39c20
KH
2984
2985 /*
2986 * For keeping hierarchical_reclaim simple, how long we should retry
2987 * is depends on callers. We set our retry-count to be function
2988 * of # of children which we should visit in this loop.
2989 */
2990 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2991
2992 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 2993
3c11ecf4 2994 enlarge = 0;
8c7c6e34 2995 while (retry_count) {
628f4235
KH
2996 if (signal_pending(current)) {
2997 ret = -EINTR;
2998 break;
2999 }
8c7c6e34
KH
3000 /*
3001 * Rather than hide all in some function, I do this in
3002 * open coded manner. You see what this really does.
3003 * We have to guarantee mem->res.limit < mem->memsw.limit.
3004 */
3005 mutex_lock(&set_limit_mutex);
3006 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3007 if (memswlimit < val) {
3008 ret = -EINVAL;
3009 mutex_unlock(&set_limit_mutex);
628f4235
KH
3010 break;
3011 }
3c11ecf4
KH
3012
3013 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3014 if (memlimit < val)
3015 enlarge = 1;
3016
8c7c6e34 3017 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3018 if (!ret) {
3019 if (memswlimit == val)
3020 memcg->memsw_is_minimum = true;
3021 else
3022 memcg->memsw_is_minimum = false;
3023 }
8c7c6e34
KH
3024 mutex_unlock(&set_limit_mutex);
3025
3026 if (!ret)
3027 break;
3028
aa20d489 3029 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 3030 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3031 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3032 /* Usage is reduced ? */
3033 if (curusage >= oldusage)
3034 retry_count--;
3035 else
3036 oldusage = curusage;
8c7c6e34 3037 }
3c11ecf4
KH
3038 if (!ret && enlarge)
3039 memcg_oom_recover(memcg);
14797e23 3040
8c7c6e34
KH
3041 return ret;
3042}
3043
338c8431
LZ
3044static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3045 unsigned long long val)
8c7c6e34 3046{
81d39c20 3047 int retry_count;
3c11ecf4 3048 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3049 int children = mem_cgroup_count_children(memcg);
3050 int ret = -EBUSY;
3c11ecf4 3051 int enlarge = 0;
8c7c6e34 3052
81d39c20
KH
3053 /* see mem_cgroup_resize_res_limit */
3054 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3055 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3056 while (retry_count) {
3057 if (signal_pending(current)) {
3058 ret = -EINTR;
3059 break;
3060 }
3061 /*
3062 * Rather than hide all in some function, I do this in
3063 * open coded manner. You see what this really does.
3064 * We have to guarantee mem->res.limit < mem->memsw.limit.
3065 */
3066 mutex_lock(&set_limit_mutex);
3067 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3068 if (memlimit > val) {
3069 ret = -EINVAL;
3070 mutex_unlock(&set_limit_mutex);
3071 break;
3072 }
3c11ecf4
KH
3073 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3074 if (memswlimit < val)
3075 enlarge = 1;
8c7c6e34 3076 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3077 if (!ret) {
3078 if (memlimit == val)
3079 memcg->memsw_is_minimum = true;
3080 else
3081 memcg->memsw_is_minimum = false;
3082 }
8c7c6e34
KH
3083 mutex_unlock(&set_limit_mutex);
3084
3085 if (!ret)
3086 break;
3087
4e416953 3088 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
3089 MEM_CGROUP_RECLAIM_NOSWAP |
3090 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3091 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3092 /* Usage is reduced ? */
8c7c6e34 3093 if (curusage >= oldusage)
628f4235 3094 retry_count--;
81d39c20
KH
3095 else
3096 oldusage = curusage;
628f4235 3097 }
3c11ecf4
KH
3098 if (!ret && enlarge)
3099 memcg_oom_recover(memcg);
628f4235
KH
3100 return ret;
3101}
3102
4e416953 3103unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
00918b6a 3104 gfp_t gfp_mask)
4e416953
BS
3105{
3106 unsigned long nr_reclaimed = 0;
3107 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3108 unsigned long reclaimed;
3109 int loop = 0;
3110 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3111 unsigned long long excess;
4e416953
BS
3112
3113 if (order > 0)
3114 return 0;
3115
00918b6a 3116 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3117 /*
3118 * This loop can run a while, specially if mem_cgroup's continuously
3119 * keep exceeding their soft limit and putting the system under
3120 * pressure
3121 */
3122 do {
3123 if (next_mz)
3124 mz = next_mz;
3125 else
3126 mz = mem_cgroup_largest_soft_limit_node(mctz);
3127 if (!mz)
3128 break;
3129
3130 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3131 gfp_mask,
3132 MEM_CGROUP_RECLAIM_SOFT);
3133 nr_reclaimed += reclaimed;
3134 spin_lock(&mctz->lock);
3135
3136 /*
3137 * If we failed to reclaim anything from this memory cgroup
3138 * it is time to move on to the next cgroup
3139 */
3140 next_mz = NULL;
3141 if (!reclaimed) {
3142 do {
3143 /*
3144 * Loop until we find yet another one.
3145 *
3146 * By the time we get the soft_limit lock
3147 * again, someone might have aded the
3148 * group back on the RB tree. Iterate to
3149 * make sure we get a different mem.
3150 * mem_cgroup_largest_soft_limit_node returns
3151 * NULL if no other cgroup is present on
3152 * the tree
3153 */
3154 next_mz =
3155 __mem_cgroup_largest_soft_limit_node(mctz);
3156 if (next_mz == mz) {
3157 css_put(&next_mz->mem->css);
3158 next_mz = NULL;
3159 } else /* next_mz == NULL or other memcg */
3160 break;
3161 } while (1);
3162 }
4e416953 3163 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3164 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3165 /*
3166 * One school of thought says that we should not add
3167 * back the node to the tree if reclaim returns 0.
3168 * But our reclaim could return 0, simply because due
3169 * to priority we are exposing a smaller subset of
3170 * memory to reclaim from. Consider this as a longer
3171 * term TODO.
3172 */
ef8745c1
KH
3173 /* If excess == 0, no tree ops */
3174 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3175 spin_unlock(&mctz->lock);
3176 css_put(&mz->mem->css);
3177 loop++;
3178 /*
3179 * Could not reclaim anything and there are no more
3180 * mem cgroups to try or we seem to be looping without
3181 * reclaiming anything.
3182 */
3183 if (!nr_reclaimed &&
3184 (next_mz == NULL ||
3185 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3186 break;
3187 } while (!nr_reclaimed);
3188 if (next_mz)
3189 css_put(&next_mz->mem->css);
3190 return nr_reclaimed;
3191}
3192
cc847582
KH
3193/*
3194 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3195 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3196 */
f817ed48 3197static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3198 int node, int zid, enum lru_list lru)
cc847582 3199{
08e552c6
KH
3200 struct zone *zone;
3201 struct mem_cgroup_per_zone *mz;
f817ed48 3202 struct page_cgroup *pc, *busy;
08e552c6 3203 unsigned long flags, loop;
072c56c1 3204 struct list_head *list;
f817ed48 3205 int ret = 0;
072c56c1 3206
08e552c6
KH
3207 zone = &NODE_DATA(node)->node_zones[zid];
3208 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3209 list = &mz->lists[lru];
cc847582 3210
f817ed48
KH
3211 loop = MEM_CGROUP_ZSTAT(mz, lru);
3212 /* give some margin against EBUSY etc...*/
3213 loop += 256;
3214 busy = NULL;
3215 while (loop--) {
3216 ret = 0;
08e552c6 3217 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3218 if (list_empty(list)) {
08e552c6 3219 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3220 break;
f817ed48
KH
3221 }
3222 pc = list_entry(list->prev, struct page_cgroup, lru);
3223 if (busy == pc) {
3224 list_move(&pc->lru, list);
648bcc77 3225 busy = NULL;
08e552c6 3226 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3227 continue;
3228 }
08e552c6 3229 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3230
2c26fdd7 3231 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 3232 if (ret == -ENOMEM)
52d4b9ac 3233 break;
f817ed48
KH
3234
3235 if (ret == -EBUSY || ret == -EINVAL) {
3236 /* found lock contention or "pc" is obsolete. */
3237 busy = pc;
3238 cond_resched();
3239 } else
3240 busy = NULL;
cc847582 3241 }
08e552c6 3242
f817ed48
KH
3243 if (!ret && !list_empty(list))
3244 return -EBUSY;
3245 return ret;
cc847582
KH
3246}
3247
3248/*
3249 * make mem_cgroup's charge to be 0 if there is no task.
3250 * This enables deleting this mem_cgroup.
3251 */
c1e862c1 3252static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3253{
f817ed48
KH
3254 int ret;
3255 int node, zid, shrink;
3256 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3257 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3258
cc847582 3259 css_get(&mem->css);
f817ed48
KH
3260
3261 shrink = 0;
c1e862c1
KH
3262 /* should free all ? */
3263 if (free_all)
3264 goto try_to_free;
f817ed48 3265move_account:
fce66477 3266 do {
f817ed48 3267 ret = -EBUSY;
c1e862c1
KH
3268 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3269 goto out;
3270 ret = -EINTR;
3271 if (signal_pending(current))
cc847582 3272 goto out;
52d4b9ac
KH
3273 /* This is for making all *used* pages to be on LRU. */
3274 lru_add_drain_all();
cdec2e42 3275 drain_all_stock_sync();
f817ed48 3276 ret = 0;
32047e2a 3277 mem_cgroup_start_move(mem);
299b4eaa 3278 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3279 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3280 enum lru_list l;
f817ed48
KH
3281 for_each_lru(l) {
3282 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3283 node, zid, l);
f817ed48
KH
3284 if (ret)
3285 break;
3286 }
1ecaab2b 3287 }
f817ed48
KH
3288 if (ret)
3289 break;
3290 }
32047e2a 3291 mem_cgroup_end_move(mem);
3c11ecf4 3292 memcg_oom_recover(mem);
f817ed48
KH
3293 /* it seems parent cgroup doesn't have enough mem */
3294 if (ret == -ENOMEM)
3295 goto try_to_free;
52d4b9ac 3296 cond_resched();
fce66477
DN
3297 /* "ret" should also be checked to ensure all lists are empty. */
3298 } while (mem->res.usage > 0 || ret);
cc847582
KH
3299out:
3300 css_put(&mem->css);
3301 return ret;
f817ed48
KH
3302
3303try_to_free:
c1e862c1
KH
3304 /* returns EBUSY if there is a task or if we come here twice. */
3305 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3306 ret = -EBUSY;
3307 goto out;
3308 }
c1e862c1
KH
3309 /* we call try-to-free pages for make this cgroup empty */
3310 lru_add_drain_all();
f817ed48
KH
3311 /* try to free all pages in this cgroup */
3312 shrink = 1;
3313 while (nr_retries && mem->res.usage > 0) {
3314 int progress;
c1e862c1
KH
3315
3316 if (signal_pending(current)) {
3317 ret = -EINTR;
3318 goto out;
3319 }
a7885eb8
KM
3320 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3321 false, get_swappiness(mem));
c1e862c1 3322 if (!progress) {
f817ed48 3323 nr_retries--;
c1e862c1 3324 /* maybe some writeback is necessary */
8aa7e847 3325 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3326 }
f817ed48
KH
3327
3328 }
08e552c6 3329 lru_add_drain();
f817ed48 3330 /* try move_account...there may be some *locked* pages. */
fce66477 3331 goto move_account;
cc847582
KH
3332}
3333
c1e862c1
KH
3334int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3335{
3336 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3337}
3338
3339
18f59ea7
BS
3340static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3341{
3342 return mem_cgroup_from_cont(cont)->use_hierarchy;
3343}
3344
3345static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3346 u64 val)
3347{
3348 int retval = 0;
3349 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3350 struct cgroup *parent = cont->parent;
3351 struct mem_cgroup *parent_mem = NULL;
3352
3353 if (parent)
3354 parent_mem = mem_cgroup_from_cont(parent);
3355
3356 cgroup_lock();
3357 /*
af901ca1 3358 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3359 * in the child subtrees. If it is unset, then the change can
3360 * occur, provided the current cgroup has no children.
3361 *
3362 * For the root cgroup, parent_mem is NULL, we allow value to be
3363 * set if there are no children.
3364 */
3365 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3366 (val == 1 || val == 0)) {
3367 if (list_empty(&cont->children))
3368 mem->use_hierarchy = val;
3369 else
3370 retval = -EBUSY;
3371 } else
3372 retval = -EINVAL;
3373 cgroup_unlock();
3374
3375 return retval;
3376}
3377
0c3e73e8 3378
7d74b06f
KH
3379static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3380 enum mem_cgroup_stat_index idx)
0c3e73e8 3381{
7d74b06f
KH
3382 struct mem_cgroup *iter;
3383 s64 val = 0;
0c3e73e8 3384
7d74b06f
KH
3385 /* each per cpu's value can be minus.Then, use s64 */
3386 for_each_mem_cgroup_tree(iter, mem)
3387 val += mem_cgroup_read_stat(iter, idx);
3388
3389 if (val < 0) /* race ? */
3390 val = 0;
3391 return val;
0c3e73e8
BS
3392}
3393
104f3928
KS
3394static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3395{
7d74b06f 3396 u64 val;
104f3928
KS
3397
3398 if (!mem_cgroup_is_root(mem)) {
3399 if (!swap)
3400 return res_counter_read_u64(&mem->res, RES_USAGE);
3401 else
3402 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3403 }
3404
7d74b06f
KH
3405 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3406 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3407
7d74b06f
KH
3408 if (swap)
3409 val += mem_cgroup_get_recursive_idx_stat(mem,
3410 MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3411
3412 return val << PAGE_SHIFT;
3413}
3414
2c3daa72 3415static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3416{
8c7c6e34 3417 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3418 u64 val;
8c7c6e34
KH
3419 int type, name;
3420
3421 type = MEMFILE_TYPE(cft->private);
3422 name = MEMFILE_ATTR(cft->private);
3423 switch (type) {
3424 case _MEM:
104f3928
KS
3425 if (name == RES_USAGE)
3426 val = mem_cgroup_usage(mem, false);
3427 else
0c3e73e8 3428 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3429 break;
3430 case _MEMSWAP:
104f3928
KS
3431 if (name == RES_USAGE)
3432 val = mem_cgroup_usage(mem, true);
3433 else
0c3e73e8 3434 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3435 break;
3436 default:
3437 BUG();
3438 break;
3439 }
3440 return val;
8cdea7c0 3441}
628f4235
KH
3442/*
3443 * The user of this function is...
3444 * RES_LIMIT.
3445 */
856c13aa
PM
3446static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3447 const char *buffer)
8cdea7c0 3448{
628f4235 3449 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3450 int type, name;
628f4235
KH
3451 unsigned long long val;
3452 int ret;
3453
8c7c6e34
KH
3454 type = MEMFILE_TYPE(cft->private);
3455 name = MEMFILE_ATTR(cft->private);
3456 switch (name) {
628f4235 3457 case RES_LIMIT:
4b3bde4c
BS
3458 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3459 ret = -EINVAL;
3460 break;
3461 }
628f4235
KH
3462 /* This function does all necessary parse...reuse it */
3463 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3464 if (ret)
3465 break;
3466 if (type == _MEM)
628f4235 3467 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3468 else
3469 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3470 break;
296c81d8
BS
3471 case RES_SOFT_LIMIT:
3472 ret = res_counter_memparse_write_strategy(buffer, &val);
3473 if (ret)
3474 break;
3475 /*
3476 * For memsw, soft limits are hard to implement in terms
3477 * of semantics, for now, we support soft limits for
3478 * control without swap
3479 */
3480 if (type == _MEM)
3481 ret = res_counter_set_soft_limit(&memcg->res, val);
3482 else
3483 ret = -EINVAL;
3484 break;
628f4235
KH
3485 default:
3486 ret = -EINVAL; /* should be BUG() ? */
3487 break;
3488 }
3489 return ret;
8cdea7c0
BS
3490}
3491
fee7b548
KH
3492static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3493 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3494{
3495 struct cgroup *cgroup;
3496 unsigned long long min_limit, min_memsw_limit, tmp;
3497
3498 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3499 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3500 cgroup = memcg->css.cgroup;
3501 if (!memcg->use_hierarchy)
3502 goto out;
3503
3504 while (cgroup->parent) {
3505 cgroup = cgroup->parent;
3506 memcg = mem_cgroup_from_cont(cgroup);
3507 if (!memcg->use_hierarchy)
3508 break;
3509 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3510 min_limit = min(min_limit, tmp);
3511 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3512 min_memsw_limit = min(min_memsw_limit, tmp);
3513 }
3514out:
3515 *mem_limit = min_limit;
3516 *memsw_limit = min_memsw_limit;
3517 return;
3518}
3519
29f2a4da 3520static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3521{
3522 struct mem_cgroup *mem;
8c7c6e34 3523 int type, name;
c84872e1
PE
3524
3525 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3526 type = MEMFILE_TYPE(event);
3527 name = MEMFILE_ATTR(event);
3528 switch (name) {
29f2a4da 3529 case RES_MAX_USAGE:
8c7c6e34
KH
3530 if (type == _MEM)
3531 res_counter_reset_max(&mem->res);
3532 else
3533 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3534 break;
3535 case RES_FAILCNT:
8c7c6e34
KH
3536 if (type == _MEM)
3537 res_counter_reset_failcnt(&mem->res);
3538 else
3539 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3540 break;
3541 }
f64c3f54 3542
85cc59db 3543 return 0;
c84872e1
PE
3544}
3545
7dc74be0
DN
3546static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3547 struct cftype *cft)
3548{
3549 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3550}
3551
02491447 3552#ifdef CONFIG_MMU
7dc74be0
DN
3553static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3554 struct cftype *cft, u64 val)
3555{
3556 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3557
3558 if (val >= (1 << NR_MOVE_TYPE))
3559 return -EINVAL;
3560 /*
3561 * We check this value several times in both in can_attach() and
3562 * attach(), so we need cgroup lock to prevent this value from being
3563 * inconsistent.
3564 */
3565 cgroup_lock();
3566 mem->move_charge_at_immigrate = val;
3567 cgroup_unlock();
3568
3569 return 0;
3570}
02491447
DN
3571#else
3572static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3573 struct cftype *cft, u64 val)
3574{
3575 return -ENOSYS;
3576}
3577#endif
7dc74be0 3578
14067bb3
KH
3579
3580/* For read statistics */
3581enum {
3582 MCS_CACHE,
3583 MCS_RSS,
d8046582 3584 MCS_FILE_MAPPED,
14067bb3
KH
3585 MCS_PGPGIN,
3586 MCS_PGPGOUT,
1dd3a273 3587 MCS_SWAP,
14067bb3
KH
3588 MCS_INACTIVE_ANON,
3589 MCS_ACTIVE_ANON,
3590 MCS_INACTIVE_FILE,
3591 MCS_ACTIVE_FILE,
3592 MCS_UNEVICTABLE,
3593 NR_MCS_STAT,
3594};
3595
3596struct mcs_total_stat {
3597 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3598};
3599
14067bb3
KH
3600struct {
3601 char *local_name;
3602 char *total_name;
3603} memcg_stat_strings[NR_MCS_STAT] = {
3604 {"cache", "total_cache"},
3605 {"rss", "total_rss"},
d69b042f 3606 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3607 {"pgpgin", "total_pgpgin"},
3608 {"pgpgout", "total_pgpgout"},
1dd3a273 3609 {"swap", "total_swap"},
14067bb3
KH
3610 {"inactive_anon", "total_inactive_anon"},
3611 {"active_anon", "total_active_anon"},
3612 {"inactive_file", "total_inactive_file"},
3613 {"active_file", "total_active_file"},
3614 {"unevictable", "total_unevictable"}
3615};
3616
3617
7d74b06f
KH
3618static void
3619mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 3620{
14067bb3
KH
3621 s64 val;
3622
3623 /* per cpu stat */
c62b1a3b 3624 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3625 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3626 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3627 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3628 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3629 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3630 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3631 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3632 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3633 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3634 if (do_swap_account) {
c62b1a3b 3635 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3636 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3637 }
14067bb3
KH
3638
3639 /* per zone stat */
3640 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3641 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3642 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3643 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3644 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3645 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3646 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3647 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3648 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3649 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
3650}
3651
3652static void
3653mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3654{
7d74b06f
KH
3655 struct mem_cgroup *iter;
3656
3657 for_each_mem_cgroup_tree(iter, mem)
3658 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
3659}
3660
c64745cf
PM
3661static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3662 struct cgroup_map_cb *cb)
d2ceb9b7 3663{
d2ceb9b7 3664 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3665 struct mcs_total_stat mystat;
d2ceb9b7
KH
3666 int i;
3667
14067bb3
KH
3668 memset(&mystat, 0, sizeof(mystat));
3669 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3670
1dd3a273
DN
3671 for (i = 0; i < NR_MCS_STAT; i++) {
3672 if (i == MCS_SWAP && !do_swap_account)
3673 continue;
14067bb3 3674 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3675 }
7b854121 3676
14067bb3 3677 /* Hierarchical information */
fee7b548
KH
3678 {
3679 unsigned long long limit, memsw_limit;
3680 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3681 cb->fill(cb, "hierarchical_memory_limit", limit);
3682 if (do_swap_account)
3683 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3684 }
7f016ee8 3685
14067bb3
KH
3686 memset(&mystat, 0, sizeof(mystat));
3687 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3688 for (i = 0; i < NR_MCS_STAT; i++) {
3689 if (i == MCS_SWAP && !do_swap_account)
3690 continue;
14067bb3 3691 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3692 }
14067bb3 3693
7f016ee8 3694#ifdef CONFIG_DEBUG_VM
c772be93 3695 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3696
3697 {
3698 int nid, zid;
3699 struct mem_cgroup_per_zone *mz;
3700 unsigned long recent_rotated[2] = {0, 0};
3701 unsigned long recent_scanned[2] = {0, 0};
3702
3703 for_each_online_node(nid)
3704 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3705 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3706
3707 recent_rotated[0] +=
3708 mz->reclaim_stat.recent_rotated[0];
3709 recent_rotated[1] +=
3710 mz->reclaim_stat.recent_rotated[1];
3711 recent_scanned[0] +=
3712 mz->reclaim_stat.recent_scanned[0];
3713 recent_scanned[1] +=
3714 mz->reclaim_stat.recent_scanned[1];
3715 }
3716 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3717 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3718 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3719 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3720 }
3721#endif
3722
d2ceb9b7
KH
3723 return 0;
3724}
3725
a7885eb8
KM
3726static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3727{
3728 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3729
3730 return get_swappiness(memcg);
3731}
3732
3733static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3734 u64 val)
3735{
3736 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3737 struct mem_cgroup *parent;
068b38c1 3738
a7885eb8
KM
3739 if (val > 100)
3740 return -EINVAL;
3741
3742 if (cgrp->parent == NULL)
3743 return -EINVAL;
3744
3745 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3746
3747 cgroup_lock();
3748
a7885eb8
KM
3749 /* If under hierarchy, only empty-root can set this value */
3750 if ((parent->use_hierarchy) ||
068b38c1
LZ
3751 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3752 cgroup_unlock();
a7885eb8 3753 return -EINVAL;
068b38c1 3754 }
a7885eb8
KM
3755
3756 spin_lock(&memcg->reclaim_param_lock);
3757 memcg->swappiness = val;
3758 spin_unlock(&memcg->reclaim_param_lock);
3759
068b38c1
LZ
3760 cgroup_unlock();
3761
a7885eb8
KM
3762 return 0;
3763}
3764
2e72b634
KS
3765static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3766{
3767 struct mem_cgroup_threshold_ary *t;
3768 u64 usage;
3769 int i;
3770
3771 rcu_read_lock();
3772 if (!swap)
2c488db2 3773 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3774 else
2c488db2 3775 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3776
3777 if (!t)
3778 goto unlock;
3779
3780 usage = mem_cgroup_usage(memcg, swap);
3781
3782 /*
3783 * current_threshold points to threshold just below usage.
3784 * If it's not true, a threshold was crossed after last
3785 * call of __mem_cgroup_threshold().
3786 */
5407a562 3787 i = t->current_threshold;
2e72b634
KS
3788
3789 /*
3790 * Iterate backward over array of thresholds starting from
3791 * current_threshold and check if a threshold is crossed.
3792 * If none of thresholds below usage is crossed, we read
3793 * only one element of the array here.
3794 */
3795 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3796 eventfd_signal(t->entries[i].eventfd, 1);
3797
3798 /* i = current_threshold + 1 */
3799 i++;
3800
3801 /*
3802 * Iterate forward over array of thresholds starting from
3803 * current_threshold+1 and check if a threshold is crossed.
3804 * If none of thresholds above usage is crossed, we read
3805 * only one element of the array here.
3806 */
3807 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3808 eventfd_signal(t->entries[i].eventfd, 1);
3809
3810 /* Update current_threshold */
5407a562 3811 t->current_threshold = i - 1;
2e72b634
KS
3812unlock:
3813 rcu_read_unlock();
3814}
3815
3816static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3817{
ad4ca5f4
KS
3818 while (memcg) {
3819 __mem_cgroup_threshold(memcg, false);
3820 if (do_swap_account)
3821 __mem_cgroup_threshold(memcg, true);
3822
3823 memcg = parent_mem_cgroup(memcg);
3824 }
2e72b634
KS
3825}
3826
3827static int compare_thresholds(const void *a, const void *b)
3828{
3829 const struct mem_cgroup_threshold *_a = a;
3830 const struct mem_cgroup_threshold *_b = b;
3831
3832 return _a->threshold - _b->threshold;
3833}
3834
7d74b06f 3835static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
3836{
3837 struct mem_cgroup_eventfd_list *ev;
3838
3839 list_for_each_entry(ev, &mem->oom_notify, list)
3840 eventfd_signal(ev->eventfd, 1);
3841 return 0;
3842}
3843
3844static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3845{
7d74b06f
KH
3846 struct mem_cgroup *iter;
3847
3848 for_each_mem_cgroup_tree(iter, mem)
3849 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3850}
3851
3852static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3853 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3854{
3855 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3856 struct mem_cgroup_thresholds *thresholds;
3857 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3858 int type = MEMFILE_TYPE(cft->private);
3859 u64 threshold, usage;
2c488db2 3860 int i, size, ret;
2e72b634
KS
3861
3862 ret = res_counter_memparse_write_strategy(args, &threshold);
3863 if (ret)
3864 return ret;
3865
3866 mutex_lock(&memcg->thresholds_lock);
2c488db2 3867
2e72b634 3868 if (type == _MEM)
2c488db2 3869 thresholds = &memcg->thresholds;
2e72b634 3870 else if (type == _MEMSWAP)
2c488db2 3871 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3872 else
3873 BUG();
3874
3875 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3876
3877 /* Check if a threshold crossed before adding a new one */
2c488db2 3878 if (thresholds->primary)
2e72b634
KS
3879 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3880
2c488db2 3881 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3882
3883 /* Allocate memory for new array of thresholds */
2c488db2 3884 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3885 GFP_KERNEL);
2c488db2 3886 if (!new) {
2e72b634
KS
3887 ret = -ENOMEM;
3888 goto unlock;
3889 }
2c488db2 3890 new->size = size;
2e72b634
KS
3891
3892 /* Copy thresholds (if any) to new array */
2c488db2
KS
3893 if (thresholds->primary) {
3894 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3895 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3896 }
3897
2e72b634 3898 /* Add new threshold */
2c488db2
KS
3899 new->entries[size - 1].eventfd = eventfd;
3900 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3901
3902 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3903 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3904 compare_thresholds, NULL);
3905
3906 /* Find current threshold */
2c488db2 3907 new->current_threshold = -1;
2e72b634 3908 for (i = 0; i < size; i++) {
2c488db2 3909 if (new->entries[i].threshold < usage) {
2e72b634 3910 /*
2c488db2
KS
3911 * new->current_threshold will not be used until
3912 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3913 * it here.
3914 */
2c488db2 3915 ++new->current_threshold;
2e72b634
KS
3916 }
3917 }
3918
2c488db2
KS
3919 /* Free old spare buffer and save old primary buffer as spare */
3920 kfree(thresholds->spare);
3921 thresholds->spare = thresholds->primary;
3922
3923 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3924
907860ed 3925 /* To be sure that nobody uses thresholds */
2e72b634
KS
3926 synchronize_rcu();
3927
2e72b634
KS
3928unlock:
3929 mutex_unlock(&memcg->thresholds_lock);
3930
3931 return ret;
3932}
3933
907860ed 3934static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 3935 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
3936{
3937 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3938 struct mem_cgroup_thresholds *thresholds;
3939 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3940 int type = MEMFILE_TYPE(cft->private);
3941 u64 usage;
2c488db2 3942 int i, j, size;
2e72b634
KS
3943
3944 mutex_lock(&memcg->thresholds_lock);
3945 if (type == _MEM)
2c488db2 3946 thresholds = &memcg->thresholds;
2e72b634 3947 else if (type == _MEMSWAP)
2c488db2 3948 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3949 else
3950 BUG();
3951
3952 /*
3953 * Something went wrong if we trying to unregister a threshold
3954 * if we don't have thresholds
3955 */
3956 BUG_ON(!thresholds);
3957
3958 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3959
3960 /* Check if a threshold crossed before removing */
3961 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3962
3963 /* Calculate new number of threshold */
2c488db2
KS
3964 size = 0;
3965 for (i = 0; i < thresholds->primary->size; i++) {
3966 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3967 size++;
3968 }
3969
2c488db2 3970 new = thresholds->spare;
907860ed 3971
2e72b634
KS
3972 /* Set thresholds array to NULL if we don't have thresholds */
3973 if (!size) {
2c488db2
KS
3974 kfree(new);
3975 new = NULL;
907860ed 3976 goto swap_buffers;
2e72b634
KS
3977 }
3978
2c488db2 3979 new->size = size;
2e72b634
KS
3980
3981 /* Copy thresholds and find current threshold */
2c488db2
KS
3982 new->current_threshold = -1;
3983 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3984 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3985 continue;
3986
2c488db2
KS
3987 new->entries[j] = thresholds->primary->entries[i];
3988 if (new->entries[j].threshold < usage) {
2e72b634 3989 /*
2c488db2 3990 * new->current_threshold will not be used
2e72b634
KS
3991 * until rcu_assign_pointer(), so it's safe to increment
3992 * it here.
3993 */
2c488db2 3994 ++new->current_threshold;
2e72b634
KS
3995 }
3996 j++;
3997 }
3998
907860ed 3999swap_buffers:
2c488db2
KS
4000 /* Swap primary and spare array */
4001 thresholds->spare = thresholds->primary;
4002 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4003
907860ed 4004 /* To be sure that nobody uses thresholds */
2e72b634
KS
4005 synchronize_rcu();
4006
2e72b634 4007 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4008}
c1e862c1 4009
9490ff27
KH
4010static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4011 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4012{
4013 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4014 struct mem_cgroup_eventfd_list *event;
4015 int type = MEMFILE_TYPE(cft->private);
4016
4017 BUG_ON(type != _OOM_TYPE);
4018 event = kmalloc(sizeof(*event), GFP_KERNEL);
4019 if (!event)
4020 return -ENOMEM;
4021
4022 mutex_lock(&memcg_oom_mutex);
4023
4024 event->eventfd = eventfd;
4025 list_add(&event->list, &memcg->oom_notify);
4026
4027 /* already in OOM ? */
4028 if (atomic_read(&memcg->oom_lock))
4029 eventfd_signal(eventfd, 1);
4030 mutex_unlock(&memcg_oom_mutex);
4031
4032 return 0;
4033}
4034
907860ed 4035static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4036 struct cftype *cft, struct eventfd_ctx *eventfd)
4037{
4038 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4039 struct mem_cgroup_eventfd_list *ev, *tmp;
4040 int type = MEMFILE_TYPE(cft->private);
4041
4042 BUG_ON(type != _OOM_TYPE);
4043
4044 mutex_lock(&memcg_oom_mutex);
4045
4046 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4047 if (ev->eventfd == eventfd) {
4048 list_del(&ev->list);
4049 kfree(ev);
4050 }
4051 }
4052
4053 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
4054}
4055
3c11ecf4
KH
4056static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4057 struct cftype *cft, struct cgroup_map_cb *cb)
4058{
4059 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4060
4061 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4062
4063 if (atomic_read(&mem->oom_lock))
4064 cb->fill(cb, "under_oom", 1);
4065 else
4066 cb->fill(cb, "under_oom", 0);
4067 return 0;
4068}
4069
3c11ecf4
KH
4070static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4071 struct cftype *cft, u64 val)
4072{
4073 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4074 struct mem_cgroup *parent;
4075
4076 /* cannot set to root cgroup and only 0 and 1 are allowed */
4077 if (!cgrp->parent || !((val == 0) || (val == 1)))
4078 return -EINVAL;
4079
4080 parent = mem_cgroup_from_cont(cgrp->parent);
4081
4082 cgroup_lock();
4083 /* oom-kill-disable is a flag for subhierarchy. */
4084 if ((parent->use_hierarchy) ||
4085 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4086 cgroup_unlock();
4087 return -EINVAL;
4088 }
4089 mem->oom_kill_disable = val;
4d845ebf
KH
4090 if (!val)
4091 memcg_oom_recover(mem);
3c11ecf4
KH
4092 cgroup_unlock();
4093 return 0;
4094}
4095
8cdea7c0
BS
4096static struct cftype mem_cgroup_files[] = {
4097 {
0eea1030 4098 .name = "usage_in_bytes",
8c7c6e34 4099 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4100 .read_u64 = mem_cgroup_read,
9490ff27
KH
4101 .register_event = mem_cgroup_usage_register_event,
4102 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4103 },
c84872e1
PE
4104 {
4105 .name = "max_usage_in_bytes",
8c7c6e34 4106 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4107 .trigger = mem_cgroup_reset,
c84872e1
PE
4108 .read_u64 = mem_cgroup_read,
4109 },
8cdea7c0 4110 {
0eea1030 4111 .name = "limit_in_bytes",
8c7c6e34 4112 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4113 .write_string = mem_cgroup_write,
2c3daa72 4114 .read_u64 = mem_cgroup_read,
8cdea7c0 4115 },
296c81d8
BS
4116 {
4117 .name = "soft_limit_in_bytes",
4118 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4119 .write_string = mem_cgroup_write,
4120 .read_u64 = mem_cgroup_read,
4121 },
8cdea7c0
BS
4122 {
4123 .name = "failcnt",
8c7c6e34 4124 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4125 .trigger = mem_cgroup_reset,
2c3daa72 4126 .read_u64 = mem_cgroup_read,
8cdea7c0 4127 },
d2ceb9b7
KH
4128 {
4129 .name = "stat",
c64745cf 4130 .read_map = mem_control_stat_show,
d2ceb9b7 4131 },
c1e862c1
KH
4132 {
4133 .name = "force_empty",
4134 .trigger = mem_cgroup_force_empty_write,
4135 },
18f59ea7
BS
4136 {
4137 .name = "use_hierarchy",
4138 .write_u64 = mem_cgroup_hierarchy_write,
4139 .read_u64 = mem_cgroup_hierarchy_read,
4140 },
a7885eb8
KM
4141 {
4142 .name = "swappiness",
4143 .read_u64 = mem_cgroup_swappiness_read,
4144 .write_u64 = mem_cgroup_swappiness_write,
4145 },
7dc74be0
DN
4146 {
4147 .name = "move_charge_at_immigrate",
4148 .read_u64 = mem_cgroup_move_charge_read,
4149 .write_u64 = mem_cgroup_move_charge_write,
4150 },
9490ff27
KH
4151 {
4152 .name = "oom_control",
3c11ecf4
KH
4153 .read_map = mem_cgroup_oom_control_read,
4154 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4155 .register_event = mem_cgroup_oom_register_event,
4156 .unregister_event = mem_cgroup_oom_unregister_event,
4157 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4158 },
8cdea7c0
BS
4159};
4160
8c7c6e34
KH
4161#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4162static struct cftype memsw_cgroup_files[] = {
4163 {
4164 .name = "memsw.usage_in_bytes",
4165 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4166 .read_u64 = mem_cgroup_read,
9490ff27
KH
4167 .register_event = mem_cgroup_usage_register_event,
4168 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4169 },
4170 {
4171 .name = "memsw.max_usage_in_bytes",
4172 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4173 .trigger = mem_cgroup_reset,
4174 .read_u64 = mem_cgroup_read,
4175 },
4176 {
4177 .name = "memsw.limit_in_bytes",
4178 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4179 .write_string = mem_cgroup_write,
4180 .read_u64 = mem_cgroup_read,
4181 },
4182 {
4183 .name = "memsw.failcnt",
4184 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4185 .trigger = mem_cgroup_reset,
4186 .read_u64 = mem_cgroup_read,
4187 },
4188};
4189
4190static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4191{
4192 if (!do_swap_account)
4193 return 0;
4194 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4195 ARRAY_SIZE(memsw_cgroup_files));
4196};
4197#else
4198static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4199{
4200 return 0;
4201}
4202#endif
4203
6d12e2d8
KH
4204static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4205{
4206 struct mem_cgroup_per_node *pn;
1ecaab2b 4207 struct mem_cgroup_per_zone *mz;
b69408e8 4208 enum lru_list l;
41e3355d 4209 int zone, tmp = node;
1ecaab2b
KH
4210 /*
4211 * This routine is called against possible nodes.
4212 * But it's BUG to call kmalloc() against offline node.
4213 *
4214 * TODO: this routine can waste much memory for nodes which will
4215 * never be onlined. It's better to use memory hotplug callback
4216 * function.
4217 */
41e3355d
KH
4218 if (!node_state(node, N_NORMAL_MEMORY))
4219 tmp = -1;
4220 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4221 if (!pn)
4222 return 1;
1ecaab2b 4223
6d12e2d8
KH
4224 mem->info.nodeinfo[node] = pn;
4225 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
4226
4227 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4228 mz = &pn->zoneinfo[zone];
b69408e8
CL
4229 for_each_lru(l)
4230 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4231 mz->usage_in_excess = 0;
4e416953
BS
4232 mz->on_tree = false;
4233 mz->mem = mem;
1ecaab2b 4234 }
6d12e2d8
KH
4235 return 0;
4236}
4237
1ecaab2b
KH
4238static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4239{
4240 kfree(mem->info.nodeinfo[node]);
4241}
4242
33327948
KH
4243static struct mem_cgroup *mem_cgroup_alloc(void)
4244{
4245 struct mem_cgroup *mem;
c62b1a3b 4246 int size = sizeof(struct mem_cgroup);
33327948 4247
c62b1a3b 4248 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb
JB
4249 if (size < PAGE_SIZE)
4250 mem = kmalloc(size, GFP_KERNEL);
33327948 4251 else
c8dad2bb 4252 mem = vmalloc(size);
33327948 4253
e7bbcdf3
DC
4254 if (!mem)
4255 return NULL;
4256
4257 memset(mem, 0, size);
c62b1a3b 4258 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4259 if (!mem->stat)
4260 goto out_free;
711d3d2c 4261 spin_lock_init(&mem->pcp_counter_lock);
33327948 4262 return mem;
d2e61b8d
DC
4263
4264out_free:
4265 if (size < PAGE_SIZE)
4266 kfree(mem);
4267 else
4268 vfree(mem);
4269 return NULL;
33327948
KH
4270}
4271
8c7c6e34
KH
4272/*
4273 * At destroying mem_cgroup, references from swap_cgroup can remain.
4274 * (scanning all at force_empty is too costly...)
4275 *
4276 * Instead of clearing all references at force_empty, we remember
4277 * the number of reference from swap_cgroup and free mem_cgroup when
4278 * it goes down to 0.
4279 *
8c7c6e34
KH
4280 * Removal of cgroup itself succeeds regardless of refs from swap.
4281 */
4282
a7ba0eef 4283static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4284{
08e552c6
KH
4285 int node;
4286
f64c3f54 4287 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4288 free_css_id(&mem_cgroup_subsys, &mem->css);
4289
08e552c6
KH
4290 for_each_node_state(node, N_POSSIBLE)
4291 free_mem_cgroup_per_zone_info(mem, node);
4292
c62b1a3b
KH
4293 free_percpu(mem->stat);
4294 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4295 kfree(mem);
4296 else
4297 vfree(mem);
4298}
4299
8c7c6e34
KH
4300static void mem_cgroup_get(struct mem_cgroup *mem)
4301{
4302 atomic_inc(&mem->refcnt);
4303}
4304
483c30b5 4305static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4306{
483c30b5 4307 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4308 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4309 __mem_cgroup_free(mem);
7bcc1bb1
DN
4310 if (parent)
4311 mem_cgroup_put(parent);
4312 }
8c7c6e34
KH
4313}
4314
483c30b5
DN
4315static void mem_cgroup_put(struct mem_cgroup *mem)
4316{
4317 __mem_cgroup_put(mem, 1);
4318}
4319
7bcc1bb1
DN
4320/*
4321 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4322 */
4323static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4324{
4325 if (!mem->res.parent)
4326 return NULL;
4327 return mem_cgroup_from_res_counter(mem->res.parent, res);
4328}
33327948 4329
c077719b
KH
4330#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4331static void __init enable_swap_cgroup(void)
4332{
f8d66542 4333 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4334 do_swap_account = 1;
4335}
4336#else
4337static void __init enable_swap_cgroup(void)
4338{
4339}
4340#endif
4341
f64c3f54
BS
4342static int mem_cgroup_soft_limit_tree_init(void)
4343{
4344 struct mem_cgroup_tree_per_node *rtpn;
4345 struct mem_cgroup_tree_per_zone *rtpz;
4346 int tmp, node, zone;
4347
4348 for_each_node_state(node, N_POSSIBLE) {
4349 tmp = node;
4350 if (!node_state(node, N_NORMAL_MEMORY))
4351 tmp = -1;
4352 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4353 if (!rtpn)
4354 return 1;
4355
4356 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4357
4358 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4359 rtpz = &rtpn->rb_tree_per_zone[zone];
4360 rtpz->rb_root = RB_ROOT;
4361 spin_lock_init(&rtpz->lock);
4362 }
4363 }
4364 return 0;
4365}
4366
0eb253e2 4367static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4368mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4369{
28dbc4b6 4370 struct mem_cgroup *mem, *parent;
04046e1a 4371 long error = -ENOMEM;
6d12e2d8 4372 int node;
8cdea7c0 4373
c8dad2bb
JB
4374 mem = mem_cgroup_alloc();
4375 if (!mem)
04046e1a 4376 return ERR_PTR(error);
78fb7466 4377
6d12e2d8
KH
4378 for_each_node_state(node, N_POSSIBLE)
4379 if (alloc_mem_cgroup_per_zone_info(mem, node))
4380 goto free_out;
f64c3f54 4381
c077719b 4382 /* root ? */
28dbc4b6 4383 if (cont->parent == NULL) {
cdec2e42 4384 int cpu;
c077719b 4385 enable_swap_cgroup();
28dbc4b6 4386 parent = NULL;
4b3bde4c 4387 root_mem_cgroup = mem;
f64c3f54
BS
4388 if (mem_cgroup_soft_limit_tree_init())
4389 goto free_out;
cdec2e42
KH
4390 for_each_possible_cpu(cpu) {
4391 struct memcg_stock_pcp *stock =
4392 &per_cpu(memcg_stock, cpu);
4393 INIT_WORK(&stock->work, drain_local_stock);
4394 }
711d3d2c 4395 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4396 } else {
28dbc4b6 4397 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4398 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4399 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4400 }
28dbc4b6 4401
18f59ea7
BS
4402 if (parent && parent->use_hierarchy) {
4403 res_counter_init(&mem->res, &parent->res);
4404 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4405 /*
4406 * We increment refcnt of the parent to ensure that we can
4407 * safely access it on res_counter_charge/uncharge.
4408 * This refcnt will be decremented when freeing this
4409 * mem_cgroup(see mem_cgroup_put).
4410 */
4411 mem_cgroup_get(parent);
18f59ea7
BS
4412 } else {
4413 res_counter_init(&mem->res, NULL);
4414 res_counter_init(&mem->memsw, NULL);
4415 }
04046e1a 4416 mem->last_scanned_child = 0;
2733c06a 4417 spin_lock_init(&mem->reclaim_param_lock);
9490ff27 4418 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4419
a7885eb8
KM
4420 if (parent)
4421 mem->swappiness = get_swappiness(parent);
a7ba0eef 4422 atomic_set(&mem->refcnt, 1);
7dc74be0 4423 mem->move_charge_at_immigrate = 0;
2e72b634 4424 mutex_init(&mem->thresholds_lock);
8cdea7c0 4425 return &mem->css;
6d12e2d8 4426free_out:
a7ba0eef 4427 __mem_cgroup_free(mem);
4b3bde4c 4428 root_mem_cgroup = NULL;
04046e1a 4429 return ERR_PTR(error);
8cdea7c0
BS
4430}
4431
ec64f515 4432static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4433 struct cgroup *cont)
4434{
4435 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4436
4437 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4438}
4439
8cdea7c0
BS
4440static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4441 struct cgroup *cont)
4442{
c268e994 4443 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4444
c268e994 4445 mem_cgroup_put(mem);
8cdea7c0
BS
4446}
4447
4448static int mem_cgroup_populate(struct cgroup_subsys *ss,
4449 struct cgroup *cont)
4450{
8c7c6e34
KH
4451 int ret;
4452
4453 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4454 ARRAY_SIZE(mem_cgroup_files));
4455
4456 if (!ret)
4457 ret = register_memsw_files(cont, ss);
4458 return ret;
8cdea7c0
BS
4459}
4460
02491447 4461#ifdef CONFIG_MMU
7dc74be0 4462/* Handlers for move charge at task migration. */
854ffa8d
DN
4463#define PRECHARGE_COUNT_AT_ONCE 256
4464static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4465{
854ffa8d
DN
4466 int ret = 0;
4467 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4468 struct mem_cgroup *mem = mc.to;
4469
854ffa8d
DN
4470 if (mem_cgroup_is_root(mem)) {
4471 mc.precharge += count;
4472 /* we don't need css_get for root */
4473 return ret;
4474 }
4475 /* try to charge at once */
4476 if (count > 1) {
4477 struct res_counter *dummy;
4478 /*
4479 * "mem" cannot be under rmdir() because we've already checked
4480 * by cgroup_lock_live_cgroup() that it is not removed and we
4481 * are still under the same cgroup_mutex. So we can postpone
4482 * css_get().
4483 */
4484 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4485 goto one_by_one;
4486 if (do_swap_account && res_counter_charge(&mem->memsw,
4487 PAGE_SIZE * count, &dummy)) {
4488 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4489 goto one_by_one;
4490 }
4491 mc.precharge += count;
854ffa8d
DN
4492 return ret;
4493 }
4494one_by_one:
4495 /* fall back to one by one charge */
4496 while (count--) {
4497 if (signal_pending(current)) {
4498 ret = -EINTR;
4499 break;
4500 }
4501 if (!batch_count--) {
4502 batch_count = PRECHARGE_COUNT_AT_ONCE;
4503 cond_resched();
4504 }
ec168510
AA
4505 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4506 PAGE_SIZE);
854ffa8d
DN
4507 if (ret || !mem)
4508 /* mem_cgroup_clear_mc() will do uncharge later */
4509 return -ENOMEM;
4510 mc.precharge++;
4511 }
4ffef5fe
DN
4512 return ret;
4513}
4514
4515/**
4516 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4517 * @vma: the vma the pte to be checked belongs
4518 * @addr: the address corresponding to the pte to be checked
4519 * @ptent: the pte to be checked
02491447 4520 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4521 *
4522 * Returns
4523 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4524 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4525 * move charge. if @target is not NULL, the page is stored in target->page
4526 * with extra refcnt got(Callers should handle it).
02491447
DN
4527 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4528 * target for charge migration. if @target is not NULL, the entry is stored
4529 * in target->ent.
4ffef5fe
DN
4530 *
4531 * Called with pte lock held.
4532 */
4ffef5fe
DN
4533union mc_target {
4534 struct page *page;
02491447 4535 swp_entry_t ent;
4ffef5fe
DN
4536};
4537
4ffef5fe
DN
4538enum mc_target_type {
4539 MC_TARGET_NONE, /* not used */
4540 MC_TARGET_PAGE,
02491447 4541 MC_TARGET_SWAP,
4ffef5fe
DN
4542};
4543
90254a65
DN
4544static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4545 unsigned long addr, pte_t ptent)
4ffef5fe 4546{
90254a65 4547 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4548
90254a65
DN
4549 if (!page || !page_mapped(page))
4550 return NULL;
4551 if (PageAnon(page)) {
4552 /* we don't move shared anon */
4553 if (!move_anon() || page_mapcount(page) > 2)
4554 return NULL;
87946a72
DN
4555 } else if (!move_file())
4556 /* we ignore mapcount for file pages */
90254a65
DN
4557 return NULL;
4558 if (!get_page_unless_zero(page))
4559 return NULL;
4560
4561 return page;
4562}
4563
4564static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4565 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4566{
4567 int usage_count;
4568 struct page *page = NULL;
4569 swp_entry_t ent = pte_to_swp_entry(ptent);
4570
4571 if (!move_anon() || non_swap_entry(ent))
4572 return NULL;
4573 usage_count = mem_cgroup_count_swap_user(ent, &page);
4574 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4575 if (page)
4576 put_page(page);
90254a65 4577 return NULL;
02491447 4578 }
90254a65
DN
4579 if (do_swap_account)
4580 entry->val = ent.val;
4581
4582 return page;
4583}
4584
87946a72
DN
4585static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4586 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4587{
4588 struct page *page = NULL;
4589 struct inode *inode;
4590 struct address_space *mapping;
4591 pgoff_t pgoff;
4592
4593 if (!vma->vm_file) /* anonymous vma */
4594 return NULL;
4595 if (!move_file())
4596 return NULL;
4597
4598 inode = vma->vm_file->f_path.dentry->d_inode;
4599 mapping = vma->vm_file->f_mapping;
4600 if (pte_none(ptent))
4601 pgoff = linear_page_index(vma, addr);
4602 else /* pte_file(ptent) is true */
4603 pgoff = pte_to_pgoff(ptent);
4604
4605 /* page is moved even if it's not RSS of this task(page-faulted). */
4606 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4607 page = find_get_page(mapping, pgoff);
4608 } else { /* shmem/tmpfs file. we should take account of swap too. */
4609 swp_entry_t ent;
4610 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4611 if (do_swap_account)
4612 entry->val = ent.val;
4613 }
4614
4615 return page;
4616}
4617
90254a65
DN
4618static int is_target_pte_for_mc(struct vm_area_struct *vma,
4619 unsigned long addr, pte_t ptent, union mc_target *target)
4620{
4621 struct page *page = NULL;
4622 struct page_cgroup *pc;
4623 int ret = 0;
4624 swp_entry_t ent = { .val = 0 };
4625
4626 if (pte_present(ptent))
4627 page = mc_handle_present_pte(vma, addr, ptent);
4628 else if (is_swap_pte(ptent))
4629 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4630 else if (pte_none(ptent) || pte_file(ptent))
4631 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4632
4633 if (!page && !ent.val)
4634 return 0;
02491447
DN
4635 if (page) {
4636 pc = lookup_page_cgroup(page);
4637 /*
4638 * Do only loose check w/o page_cgroup lock.
4639 * mem_cgroup_move_account() checks the pc is valid or not under
4640 * the lock.
4641 */
4642 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4643 ret = MC_TARGET_PAGE;
4644 if (target)
4645 target->page = page;
4646 }
4647 if (!ret || !target)
4648 put_page(page);
4649 }
90254a65
DN
4650 /* There is a swap entry and a page doesn't exist or isn't charged */
4651 if (ent.val && !ret &&
7f0f1546
KH
4652 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4653 ret = MC_TARGET_SWAP;
4654 if (target)
4655 target->ent = ent;
4ffef5fe 4656 }
4ffef5fe
DN
4657 return ret;
4658}
4659
4660static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4661 unsigned long addr, unsigned long end,
4662 struct mm_walk *walk)
4663{
4664 struct vm_area_struct *vma = walk->private;
4665 pte_t *pte;
4666 spinlock_t *ptl;
4667
ec168510 4668 VM_BUG_ON(pmd_trans_huge(*pmd));
4ffef5fe
DN
4669 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4670 for (; addr != end; pte++, addr += PAGE_SIZE)
4671 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4672 mc.precharge++; /* increment precharge temporarily */
4673 pte_unmap_unlock(pte - 1, ptl);
4674 cond_resched();
4675
7dc74be0
DN
4676 return 0;
4677}
4678
4ffef5fe
DN
4679static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4680{
4681 unsigned long precharge;
4682 struct vm_area_struct *vma;
4683
b1dd693e 4684 /* We've already held the mmap_sem */
4ffef5fe
DN
4685 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4686 struct mm_walk mem_cgroup_count_precharge_walk = {
4687 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4688 .mm = mm,
4689 .private = vma,
4690 };
4691 if (is_vm_hugetlb_page(vma))
4692 continue;
4ffef5fe
DN
4693 walk_page_range(vma->vm_start, vma->vm_end,
4694 &mem_cgroup_count_precharge_walk);
4695 }
4ffef5fe
DN
4696
4697 precharge = mc.precharge;
4698 mc.precharge = 0;
4699
4700 return precharge;
4701}
4702
4ffef5fe
DN
4703static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4704{
854ffa8d 4705 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4ffef5fe
DN
4706}
4707
4708static void mem_cgroup_clear_mc(void)
4709{
2bd9bb20
KH
4710 struct mem_cgroup *from = mc.from;
4711 struct mem_cgroup *to = mc.to;
4712
4ffef5fe 4713 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4714 if (mc.precharge) {
4715 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4716 mc.precharge = 0;
4717 }
4718 /*
4719 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4720 * we must uncharge here.
4721 */
4722 if (mc.moved_charge) {
4723 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4724 mc.moved_charge = 0;
4ffef5fe 4725 }
483c30b5
DN
4726 /* we must fixup refcnts and charges */
4727 if (mc.moved_swap) {
483c30b5
DN
4728 /* uncharge swap account from the old cgroup */
4729 if (!mem_cgroup_is_root(mc.from))
4730 res_counter_uncharge(&mc.from->memsw,
4731 PAGE_SIZE * mc.moved_swap);
4732 __mem_cgroup_put(mc.from, mc.moved_swap);
4733
4734 if (!mem_cgroup_is_root(mc.to)) {
4735 /*
4736 * we charged both to->res and to->memsw, so we should
4737 * uncharge to->res.
4738 */
4739 res_counter_uncharge(&mc.to->res,
4740 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
4741 }
4742 /* we've already done mem_cgroup_get(mc.to) */
4743
4744 mc.moved_swap = 0;
4745 }
b1dd693e
DN
4746 if (mc.mm) {
4747 up_read(&mc.mm->mmap_sem);
4748 mmput(mc.mm);
4749 }
2bd9bb20 4750 spin_lock(&mc.lock);
4ffef5fe
DN
4751 mc.from = NULL;
4752 mc.to = NULL;
2bd9bb20 4753 spin_unlock(&mc.lock);
b1dd693e
DN
4754 mc.moving_task = NULL;
4755 mc.mm = NULL;
32047e2a 4756 mem_cgroup_end_move(from);
2bd9bb20
KH
4757 memcg_oom_recover(from);
4758 memcg_oom_recover(to);
8033b97c 4759 wake_up_all(&mc.waitq);
4ffef5fe
DN
4760}
4761
7dc74be0
DN
4762static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4763 struct cgroup *cgroup,
4764 struct task_struct *p,
4765 bool threadgroup)
4766{
4767 int ret = 0;
4768 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4769
4770 if (mem->move_charge_at_immigrate) {
4771 struct mm_struct *mm;
4772 struct mem_cgroup *from = mem_cgroup_from_task(p);
4773
4774 VM_BUG_ON(from == mem);
4775
4776 mm = get_task_mm(p);
4777 if (!mm)
4778 return 0;
7dc74be0 4779 /* We move charges only when we move a owner of the mm */
4ffef5fe 4780 if (mm->owner == p) {
b1dd693e
DN
4781 /*
4782 * We do all the move charge works under one mmap_sem to
4783 * avoid deadlock with down_write(&mmap_sem)
4784 * -> try_charge() -> if (mc.moving_task) -> sleep.
4785 */
4786 down_read(&mm->mmap_sem);
4787
4ffef5fe
DN
4788 VM_BUG_ON(mc.from);
4789 VM_BUG_ON(mc.to);
4790 VM_BUG_ON(mc.precharge);
854ffa8d 4791 VM_BUG_ON(mc.moved_charge);
483c30b5 4792 VM_BUG_ON(mc.moved_swap);
8033b97c 4793 VM_BUG_ON(mc.moving_task);
b1dd693e
DN
4794 VM_BUG_ON(mc.mm);
4795
32047e2a 4796 mem_cgroup_start_move(from);
2bd9bb20 4797 spin_lock(&mc.lock);
4ffef5fe
DN
4798 mc.from = from;
4799 mc.to = mem;
4800 mc.precharge = 0;
854ffa8d 4801 mc.moved_charge = 0;
483c30b5 4802 mc.moved_swap = 0;
2bd9bb20 4803 spin_unlock(&mc.lock);
b1dd693e
DN
4804 mc.moving_task = current;
4805 mc.mm = mm;
4ffef5fe
DN
4806
4807 ret = mem_cgroup_precharge_mc(mm);
4808 if (ret)
4809 mem_cgroup_clear_mc();
b1dd693e
DN
4810 /* We call up_read() and mmput() in clear_mc(). */
4811 } else
4812 mmput(mm);
7dc74be0
DN
4813 }
4814 return ret;
4815}
4816
4817static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4818 struct cgroup *cgroup,
4819 struct task_struct *p,
4820 bool threadgroup)
4821{
4ffef5fe 4822 mem_cgroup_clear_mc();
7dc74be0
DN
4823}
4824
4ffef5fe
DN
4825static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4826 unsigned long addr, unsigned long end,
4827 struct mm_walk *walk)
7dc74be0 4828{
4ffef5fe
DN
4829 int ret = 0;
4830 struct vm_area_struct *vma = walk->private;
4831 pte_t *pte;
4832 spinlock_t *ptl;
4833
4834retry:
ec168510 4835 VM_BUG_ON(pmd_trans_huge(*pmd));
4ffef5fe
DN
4836 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4837 for (; addr != end; addr += PAGE_SIZE) {
4838 pte_t ptent = *(pte++);
4839 union mc_target target;
4840 int type;
4841 struct page *page;
4842 struct page_cgroup *pc;
02491447 4843 swp_entry_t ent;
4ffef5fe
DN
4844
4845 if (!mc.precharge)
4846 break;
4847
4848 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4849 switch (type) {
4850 case MC_TARGET_PAGE:
4851 page = target.page;
4852 if (isolate_lru_page(page))
4853 goto put;
4854 pc = lookup_page_cgroup(page);
854ffa8d
DN
4855 if (!mem_cgroup_move_account(pc,
4856 mc.from, mc.to, false)) {
4ffef5fe 4857 mc.precharge--;
854ffa8d
DN
4858 /* we uncharge from mc.from later. */
4859 mc.moved_charge++;
4ffef5fe
DN
4860 }
4861 putback_lru_page(page);
4862put: /* is_target_pte_for_mc() gets the page */
4863 put_page(page);
4864 break;
02491447
DN
4865 case MC_TARGET_SWAP:
4866 ent = target.ent;
483c30b5
DN
4867 if (!mem_cgroup_move_swap_account(ent,
4868 mc.from, mc.to, false)) {
02491447 4869 mc.precharge--;
483c30b5
DN
4870 /* we fixup refcnts and charges later. */
4871 mc.moved_swap++;
4872 }
02491447 4873 break;
4ffef5fe
DN
4874 default:
4875 break;
4876 }
4877 }
4878 pte_unmap_unlock(pte - 1, ptl);
4879 cond_resched();
4880
4881 if (addr != end) {
4882 /*
4883 * We have consumed all precharges we got in can_attach().
4884 * We try charge one by one, but don't do any additional
4885 * charges to mc.to if we have failed in charge once in attach()
4886 * phase.
4887 */
854ffa8d 4888 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4889 if (!ret)
4890 goto retry;
4891 }
4892
4893 return ret;
4894}
4895
4896static void mem_cgroup_move_charge(struct mm_struct *mm)
4897{
4898 struct vm_area_struct *vma;
4899
4900 lru_add_drain_all();
b1dd693e 4901 /* We've already held the mmap_sem */
4ffef5fe
DN
4902 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4903 int ret;
4904 struct mm_walk mem_cgroup_move_charge_walk = {
4905 .pmd_entry = mem_cgroup_move_charge_pte_range,
4906 .mm = mm,
4907 .private = vma,
4908 };
4909 if (is_vm_hugetlb_page(vma))
4910 continue;
4ffef5fe
DN
4911 ret = walk_page_range(vma->vm_start, vma->vm_end,
4912 &mem_cgroup_move_charge_walk);
4913 if (ret)
4914 /*
4915 * means we have consumed all precharges and failed in
4916 * doing additional charge. Just abandon here.
4917 */
4918 break;
4919 }
7dc74be0
DN
4920}
4921
67e465a7
BS
4922static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4923 struct cgroup *cont,
4924 struct cgroup *old_cont,
be367d09
BB
4925 struct task_struct *p,
4926 bool threadgroup)
67e465a7 4927{
b1dd693e 4928 if (!mc.mm)
4ffef5fe
DN
4929 /* no need to move charge */
4930 return;
4931
b1dd693e 4932 mem_cgroup_move_charge(mc.mm);
4ffef5fe 4933 mem_cgroup_clear_mc();
67e465a7 4934}
5cfb80a7
DN
4935#else /* !CONFIG_MMU */
4936static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4937 struct cgroup *cgroup,
4938 struct task_struct *p,
4939 bool threadgroup)
4940{
4941 return 0;
4942}
4943static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4944 struct cgroup *cgroup,
4945 struct task_struct *p,
4946 bool threadgroup)
4947{
4948}
4949static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4950 struct cgroup *cont,
4951 struct cgroup *old_cont,
4952 struct task_struct *p,
4953 bool threadgroup)
4954{
4955}
4956#endif
67e465a7 4957
8cdea7c0
BS
4958struct cgroup_subsys mem_cgroup_subsys = {
4959 .name = "memory",
4960 .subsys_id = mem_cgroup_subsys_id,
4961 .create = mem_cgroup_create,
df878fb0 4962 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
4963 .destroy = mem_cgroup_destroy,
4964 .populate = mem_cgroup_populate,
7dc74be0
DN
4965 .can_attach = mem_cgroup_can_attach,
4966 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 4967 .attach = mem_cgroup_move_task,
6d12e2d8 4968 .early_init = 0,
04046e1a 4969 .use_id = 1,
8cdea7c0 4970};
c077719b
KH
4971
4972#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
4973static int __init enable_swap_account(char *s)
4974{
4975 /* consider enabled if no parameter or 1 is given */
4976 if (!s || !strcmp(s, "1"))
4977 really_do_swap_account = 1;
4978 else if (!strcmp(s, "0"))
4979 really_do_swap_account = 0;
4980 return 1;
4981}
4982__setup("swapaccount", enable_swap_account);
c077719b
KH
4983
4984static int __init disable_swap_account(char *s)
4985{
a42c390c 4986 enable_swap_account("0");
c077719b
KH
4987 return 1;
4988}
4989__setup("noswapaccount", disable_swap_account);
4990#endif