mm: oom_kill: remove unnecessary locking in exit_oom_victim()
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
d1a4c0b3 68#include <net/tcp_memcontrol.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
a181b0e8 78#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 79static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 80
21afa38e 81/* Whether the swap controller is active */
c255a458 82#ifdef CONFIG_MEMCG_SWAP
c077719b 83int do_swap_account __read_mostly;
c077719b 84#else
a0db00fc 85#define do_swap_account 0
c077719b
KH
86#endif
87
af7c4b0e
JW
88static const char * const mem_cgroup_stat_names[] = {
89 "cache",
90 "rss",
b070e65c 91 "rss_huge",
af7c4b0e 92 "mapped_file",
3ea67d06 93 "writeback",
af7c4b0e
JW
94 "swap",
95};
96
af7c4b0e
JW
97static const char * const mem_cgroup_events_names[] = {
98 "pgpgin",
99 "pgpgout",
100 "pgfault",
101 "pgmajfault",
102};
103
58cf188e
SZ
104static const char * const mem_cgroup_lru_names[] = {
105 "inactive_anon",
106 "active_anon",
107 "inactive_file",
108 "active_file",
109 "unevictable",
110};
111
7a159cc9
JW
112/*
113 * Per memcg event counter is incremented at every pagein/pageout. With THP,
114 * it will be incremated by the number of pages. This counter is used for
115 * for trigger some periodic events. This is straightforward and better
116 * than using jiffies etc. to handle periodic memcg event.
117 */
118enum mem_cgroup_events_target {
119 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 120 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 121 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
122 MEM_CGROUP_NTARGETS,
123};
a0db00fc
KS
124#define THRESHOLDS_EVENTS_TARGET 128
125#define SOFTLIMIT_EVENTS_TARGET 1024
126#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 127
d52aa412 128struct mem_cgroup_stat_cpu {
7a159cc9 129 long count[MEM_CGROUP_STAT_NSTATS];
241994ed 130 unsigned long events[MEMCG_NR_EVENTS];
13114716 131 unsigned long nr_page_events;
7a159cc9 132 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
133};
134
5ac8fb31
JW
135struct reclaim_iter {
136 struct mem_cgroup *position;
527a5ec9
JW
137 /* scan generation, increased every round-trip */
138 unsigned int generation;
139};
140
6d12e2d8
KH
141/*
142 * per-zone information in memory controller.
143 */
6d12e2d8 144struct mem_cgroup_per_zone {
6290df54 145 struct lruvec lruvec;
1eb49272 146 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 147
5ac8fb31 148 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 149
bb4cc1a8 150 struct rb_node tree_node; /* RB tree node */
3e32cb2e 151 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
152 /* the soft limit is exceeded*/
153 bool on_tree;
d79154bb 154 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 155 /* use container_of */
6d12e2d8 156};
6d12e2d8
KH
157
158struct mem_cgroup_per_node {
159 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
160};
161
bb4cc1a8
AM
162/*
163 * Cgroups above their limits are maintained in a RB-Tree, independent of
164 * their hierarchy representation
165 */
166
167struct mem_cgroup_tree_per_zone {
168 struct rb_root rb_root;
169 spinlock_t lock;
170};
171
172struct mem_cgroup_tree_per_node {
173 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
174};
175
176struct mem_cgroup_tree {
177 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
178};
179
180static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181
2e72b634
KS
182struct mem_cgroup_threshold {
183 struct eventfd_ctx *eventfd;
3e32cb2e 184 unsigned long threshold;
2e72b634
KS
185};
186
9490ff27 187/* For threshold */
2e72b634 188struct mem_cgroup_threshold_ary {
748dad36 189 /* An array index points to threshold just below or equal to usage. */
5407a562 190 int current_threshold;
2e72b634
KS
191 /* Size of entries[] */
192 unsigned int size;
193 /* Array of thresholds */
194 struct mem_cgroup_threshold entries[0];
195};
2c488db2
KS
196
197struct mem_cgroup_thresholds {
198 /* Primary thresholds array */
199 struct mem_cgroup_threshold_ary *primary;
200 /*
201 * Spare threshold array.
202 * This is needed to make mem_cgroup_unregister_event() "never fail".
203 * It must be able to store at least primary->size - 1 entries.
204 */
205 struct mem_cgroup_threshold_ary *spare;
206};
207
9490ff27
KH
208/* for OOM */
209struct mem_cgroup_eventfd_list {
210 struct list_head list;
211 struct eventfd_ctx *eventfd;
212};
2e72b634 213
79bd9814
TH
214/*
215 * cgroup_event represents events which userspace want to receive.
216 */
3bc942f3 217struct mem_cgroup_event {
79bd9814 218 /*
59b6f873 219 * memcg which the event belongs to.
79bd9814 220 */
59b6f873 221 struct mem_cgroup *memcg;
79bd9814
TH
222 /*
223 * eventfd to signal userspace about the event.
224 */
225 struct eventfd_ctx *eventfd;
226 /*
227 * Each of these stored in a list by the cgroup.
228 */
229 struct list_head list;
fba94807
TH
230 /*
231 * register_event() callback will be used to add new userspace
232 * waiter for changes related to this event. Use eventfd_signal()
233 * on eventfd to send notification to userspace.
234 */
59b6f873 235 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 236 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
237 /*
238 * unregister_event() callback will be called when userspace closes
239 * the eventfd or on cgroup removing. This callback must be set,
240 * if you want provide notification functionality.
241 */
59b6f873 242 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 243 struct eventfd_ctx *eventfd);
79bd9814
TH
244 /*
245 * All fields below needed to unregister event when
246 * userspace closes eventfd.
247 */
248 poll_table pt;
249 wait_queue_head_t *wqh;
250 wait_queue_t wait;
251 struct work_struct remove;
252};
253
c0ff4b85
R
254static void mem_cgroup_threshold(struct mem_cgroup *memcg);
255static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 256
8cdea7c0
BS
257/*
258 * The memory controller data structure. The memory controller controls both
259 * page cache and RSS per cgroup. We would eventually like to provide
260 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
261 * to help the administrator determine what knobs to tune.
8cdea7c0
BS
262 */
263struct mem_cgroup {
264 struct cgroup_subsys_state css;
3e32cb2e
JW
265
266 /* Accounted resources */
267 struct page_counter memory;
268 struct page_counter memsw;
269 struct page_counter kmem;
270
241994ed
JW
271 /* Normal memory consumption range */
272 unsigned long low;
273 unsigned long high;
274
3e32cb2e 275 unsigned long soft_limit;
59927fb9 276
70ddf637
AV
277 /* vmpressure notifications */
278 struct vmpressure vmpressure;
279
2f7dd7a4
JW
280 /* css_online() has been completed */
281 int initialized;
282
18f59ea7
BS
283 /*
284 * Should the accounting and control be hierarchical, per subtree?
285 */
286 bool use_hierarchy;
79dfdacc
MH
287
288 bool oom_lock;
289 atomic_t under_oom;
3812c8c8 290 atomic_t oom_wakeups;
79dfdacc 291
1f4c025b 292 int swappiness;
3c11ecf4
KH
293 /* OOM-Killer disable */
294 int oom_kill_disable;
a7885eb8 295
2e72b634
KS
296 /* protect arrays of thresholds */
297 struct mutex thresholds_lock;
298
299 /* thresholds for memory usage. RCU-protected */
2c488db2 300 struct mem_cgroup_thresholds thresholds;
907860ed 301
2e72b634 302 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 303 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 304
9490ff27
KH
305 /* For oom notifier event fd */
306 struct list_head oom_notify;
185efc0f 307
7dc74be0
DN
308 /*
309 * Should we move charges of a task when a task is moved into this
310 * mem_cgroup ? And what type of charges should we move ?
311 */
f894ffa8 312 unsigned long move_charge_at_immigrate;
619d094b
KH
313 /*
314 * set > 0 if pages under this cgroup are moving to other cgroup.
315 */
6de22619 316 atomic_t moving_account;
312734c0 317 /* taken only while moving_account > 0 */
6de22619
JW
318 spinlock_t move_lock;
319 struct task_struct *move_lock_task;
320 unsigned long move_lock_flags;
d52aa412 321 /*
c62b1a3b 322 * percpu counter.
d52aa412 323 */
3a7951b4 324 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
325 /*
326 * used when a cpu is offlined or other synchronizations
327 * See mem_cgroup_read_stat().
328 */
329 struct mem_cgroup_stat_cpu nocpu_base;
330 spinlock_t pcp_counter_lock;
d1a4c0b3 331
4bd2c1ee 332#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 333 struct cg_proto tcp_mem;
d1a4c0b3 334#endif
2633d7a0 335#if defined(CONFIG_MEMCG_KMEM)
f7ce3190 336 /* Index in the kmem_cache->memcg_params.memcg_caches array */
2633d7a0 337 int kmemcg_id;
2788cf0c 338 bool kmem_acct_activated;
2a4db7eb 339 bool kmem_acct_active;
2633d7a0 340#endif
45cf7ebd
GC
341
342 int last_scanned_node;
343#if MAX_NUMNODES > 1
344 nodemask_t scan_nodes;
345 atomic_t numainfo_events;
346 atomic_t numainfo_updating;
347#endif
70ddf637 348
fba94807
TH
349 /* List of events which userspace want to receive */
350 struct list_head event_list;
351 spinlock_t event_list_lock;
352
54f72fe0
JW
353 struct mem_cgroup_per_node *nodeinfo[0];
354 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
355};
356
510fc4e1 357#ifdef CONFIG_MEMCG_KMEM
cb731d6c 358bool memcg_kmem_is_active(struct mem_cgroup *memcg)
7de37682 359{
2a4db7eb 360 return memcg->kmem_acct_active;
7de37682 361}
510fc4e1
GC
362#endif
363
7dc74be0
DN
364/* Stuffs for move charges at task migration. */
365/*
1dfab5ab 366 * Types of charges to be moved.
7dc74be0 367 */
1dfab5ab
JW
368#define MOVE_ANON 0x1U
369#define MOVE_FILE 0x2U
370#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 371
4ffef5fe
DN
372/* "mc" and its members are protected by cgroup_mutex */
373static struct move_charge_struct {
b1dd693e 374 spinlock_t lock; /* for from, to */
4ffef5fe
DN
375 struct mem_cgroup *from;
376 struct mem_cgroup *to;
1dfab5ab 377 unsigned long flags;
4ffef5fe 378 unsigned long precharge;
854ffa8d 379 unsigned long moved_charge;
483c30b5 380 unsigned long moved_swap;
8033b97c
DN
381 struct task_struct *moving_task; /* a task moving charges */
382 wait_queue_head_t waitq; /* a waitq for other context */
383} mc = {
2bd9bb20 384 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
385 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
386};
4ffef5fe 387
4e416953
BS
388/*
389 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
390 * limit reclaim to prevent infinite loops, if they ever occur.
391 */
a0db00fc 392#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 393#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 394
217bc319
KH
395enum charge_type {
396 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 397 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 398 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 399 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
400 NR_CHARGE_TYPE,
401};
402
8c7c6e34 403/* for encoding cft->private value on file */
86ae53e1
GC
404enum res_type {
405 _MEM,
406 _MEMSWAP,
407 _OOM_TYPE,
510fc4e1 408 _KMEM,
86ae53e1
GC
409};
410
a0db00fc
KS
411#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
412#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 413#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
414/* Used for OOM nofiier */
415#define OOM_CONTROL (0)
8c7c6e34 416
0999821b
GC
417/*
418 * The memcg_create_mutex will be held whenever a new cgroup is created.
419 * As a consequence, any change that needs to protect against new child cgroups
420 * appearing has to hold it as well.
421 */
422static DEFINE_MUTEX(memcg_create_mutex);
423
b2145145
WL
424struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
425{
a7c6d554 426 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
427}
428
70ddf637
AV
429/* Some nice accessors for the vmpressure. */
430struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
431{
432 if (!memcg)
433 memcg = root_mem_cgroup;
434 return &memcg->vmpressure;
435}
436
437struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
438{
439 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
440}
441
7ffc0edc
MH
442static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
443{
444 return (memcg == root_mem_cgroup);
445}
446
4219b2da
LZ
447/*
448 * We restrict the id in the range of [1, 65535], so it can fit into
449 * an unsigned short.
450 */
451#define MEM_CGROUP_ID_MAX USHRT_MAX
452
34c00c31
LZ
453static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
454{
15a4c835 455 return memcg->css.id;
34c00c31
LZ
456}
457
adbe427b
VD
458/*
459 * A helper function to get mem_cgroup from ID. must be called under
460 * rcu_read_lock(). The caller is responsible for calling
461 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
462 * refcnt from swap can be called against removed memcg.)
463 */
34c00c31
LZ
464static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
465{
466 struct cgroup_subsys_state *css;
467
7d699ddb 468 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
469 return mem_cgroup_from_css(css);
470}
471
e1aab161 472/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 473#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 474
e1aab161
GC
475void sock_update_memcg(struct sock *sk)
476{
376be5ff 477 if (mem_cgroup_sockets_enabled) {
e1aab161 478 struct mem_cgroup *memcg;
3f134619 479 struct cg_proto *cg_proto;
e1aab161
GC
480
481 BUG_ON(!sk->sk_prot->proto_cgroup);
482
f3f511e1
GC
483 /* Socket cloning can throw us here with sk_cgrp already
484 * filled. It won't however, necessarily happen from
485 * process context. So the test for root memcg given
486 * the current task's memcg won't help us in this case.
487 *
488 * Respecting the original socket's memcg is a better
489 * decision in this case.
490 */
491 if (sk->sk_cgrp) {
492 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 493 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
494 return;
495 }
496
e1aab161
GC
497 rcu_read_lock();
498 memcg = mem_cgroup_from_task(current);
3f134619 499 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 500 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
501 memcg_proto_active(cg_proto) &&
502 css_tryget_online(&memcg->css)) {
3f134619 503 sk->sk_cgrp = cg_proto;
e1aab161
GC
504 }
505 rcu_read_unlock();
506 }
507}
508EXPORT_SYMBOL(sock_update_memcg);
509
510void sock_release_memcg(struct sock *sk)
511{
376be5ff 512 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
513 struct mem_cgroup *memcg;
514 WARN_ON(!sk->sk_cgrp->memcg);
515 memcg = sk->sk_cgrp->memcg;
5347e5ae 516 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
517 }
518}
d1a4c0b3
GC
519
520struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
521{
522 if (!memcg || mem_cgroup_is_root(memcg))
523 return NULL;
524
2e685cad 525 return &memcg->tcp_mem;
d1a4c0b3
GC
526}
527EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 528
3f134619
GC
529#endif
530
a8964b9b 531#ifdef CONFIG_MEMCG_KMEM
55007d84 532/*
f7ce3190 533 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
534 * The main reason for not using cgroup id for this:
535 * this works better in sparse environments, where we have a lot of memcgs,
536 * but only a few kmem-limited. Or also, if we have, for instance, 200
537 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
538 * 200 entry array for that.
55007d84 539 *
dbcf73e2
VD
540 * The current size of the caches array is stored in memcg_nr_cache_ids. It
541 * will double each time we have to increase it.
55007d84 542 */
dbcf73e2
VD
543static DEFINE_IDA(memcg_cache_ida);
544int memcg_nr_cache_ids;
749c5415 545
05257a1a
VD
546/* Protects memcg_nr_cache_ids */
547static DECLARE_RWSEM(memcg_cache_ids_sem);
548
549void memcg_get_cache_ids(void)
550{
551 down_read(&memcg_cache_ids_sem);
552}
553
554void memcg_put_cache_ids(void)
555{
556 up_read(&memcg_cache_ids_sem);
557}
558
55007d84
GC
559/*
560 * MIN_SIZE is different than 1, because we would like to avoid going through
561 * the alloc/free process all the time. In a small machine, 4 kmem-limited
562 * cgroups is a reasonable guess. In the future, it could be a parameter or
563 * tunable, but that is strictly not necessary.
564 *
b8627835 565 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
566 * this constant directly from cgroup, but it is understandable that this is
567 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 568 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
569 * increase ours as well if it increases.
570 */
571#define MEMCG_CACHES_MIN_SIZE 4
b8627835 572#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 573
d7f25f8a
GC
574/*
575 * A lot of the calls to the cache allocation functions are expected to be
576 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
577 * conditional to this static branch, we'll have to allow modules that does
578 * kmem_cache_alloc and the such to see this symbol as well
579 */
a8964b9b 580struct static_key memcg_kmem_enabled_key;
d7f25f8a 581EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 582
a8964b9b
GC
583#endif /* CONFIG_MEMCG_KMEM */
584
f64c3f54 585static struct mem_cgroup_per_zone *
e231875b 586mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 587{
e231875b
JZ
588 int nid = zone_to_nid(zone);
589 int zid = zone_idx(zone);
590
54f72fe0 591 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
592}
593
c0ff4b85 594struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 595{
c0ff4b85 596 return &memcg->css;
d324236b
WF
597}
598
f64c3f54 599static struct mem_cgroup_per_zone *
e231875b 600mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 601{
97a6c37b
JW
602 int nid = page_to_nid(page);
603 int zid = page_zonenum(page);
f64c3f54 604
e231875b 605 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
606}
607
bb4cc1a8
AM
608static struct mem_cgroup_tree_per_zone *
609soft_limit_tree_node_zone(int nid, int zid)
610{
611 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
612}
613
614static struct mem_cgroup_tree_per_zone *
615soft_limit_tree_from_page(struct page *page)
616{
617 int nid = page_to_nid(page);
618 int zid = page_zonenum(page);
619
620 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
621}
622
cf2c8127
JW
623static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
624 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 625 unsigned long new_usage_in_excess)
bb4cc1a8
AM
626{
627 struct rb_node **p = &mctz->rb_root.rb_node;
628 struct rb_node *parent = NULL;
629 struct mem_cgroup_per_zone *mz_node;
630
631 if (mz->on_tree)
632 return;
633
634 mz->usage_in_excess = new_usage_in_excess;
635 if (!mz->usage_in_excess)
636 return;
637 while (*p) {
638 parent = *p;
639 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
640 tree_node);
641 if (mz->usage_in_excess < mz_node->usage_in_excess)
642 p = &(*p)->rb_left;
643 /*
644 * We can't avoid mem cgroups that are over their soft
645 * limit by the same amount
646 */
647 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
648 p = &(*p)->rb_right;
649 }
650 rb_link_node(&mz->tree_node, parent, p);
651 rb_insert_color(&mz->tree_node, &mctz->rb_root);
652 mz->on_tree = true;
653}
654
cf2c8127
JW
655static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
656 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
657{
658 if (!mz->on_tree)
659 return;
660 rb_erase(&mz->tree_node, &mctz->rb_root);
661 mz->on_tree = false;
662}
663
cf2c8127
JW
664static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
665 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 666{
0a31bc97
JW
667 unsigned long flags;
668
669 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 670 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 671 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
672}
673
3e32cb2e
JW
674static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
675{
676 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 677 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
678 unsigned long excess = 0;
679
680 if (nr_pages > soft_limit)
681 excess = nr_pages - soft_limit;
682
683 return excess;
684}
bb4cc1a8
AM
685
686static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
687{
3e32cb2e 688 unsigned long excess;
bb4cc1a8
AM
689 struct mem_cgroup_per_zone *mz;
690 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 691
e231875b 692 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
693 /*
694 * Necessary to update all ancestors when hierarchy is used.
695 * because their event counter is not touched.
696 */
697 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 698 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 699 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
700 /*
701 * We have to update the tree if mz is on RB-tree or
702 * mem is over its softlimit.
703 */
704 if (excess || mz->on_tree) {
0a31bc97
JW
705 unsigned long flags;
706
707 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
708 /* if on-tree, remove it */
709 if (mz->on_tree)
cf2c8127 710 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
711 /*
712 * Insert again. mz->usage_in_excess will be updated.
713 * If excess is 0, no tree ops.
714 */
cf2c8127 715 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 716 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
717 }
718 }
719}
720
721static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722{
bb4cc1a8 723 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
724 struct mem_cgroup_per_zone *mz;
725 int nid, zid;
bb4cc1a8 726
e231875b
JZ
727 for_each_node(nid) {
728 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
729 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
730 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 731 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
732 }
733 }
734}
735
736static struct mem_cgroup_per_zone *
737__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
738{
739 struct rb_node *rightmost = NULL;
740 struct mem_cgroup_per_zone *mz;
741
742retry:
743 mz = NULL;
744 rightmost = rb_last(&mctz->rb_root);
745 if (!rightmost)
746 goto done; /* Nothing to reclaim from */
747
748 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
749 /*
750 * Remove the node now but someone else can add it back,
751 * we will to add it back at the end of reclaim to its correct
752 * position in the tree.
753 */
cf2c8127 754 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 755 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 756 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
757 goto retry;
758done:
759 return mz;
760}
761
762static struct mem_cgroup_per_zone *
763mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
764{
765 struct mem_cgroup_per_zone *mz;
766
0a31bc97 767 spin_lock_irq(&mctz->lock);
bb4cc1a8 768 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 769 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
770 return mz;
771}
772
711d3d2c
KH
773/*
774 * Implementation Note: reading percpu statistics for memcg.
775 *
776 * Both of vmstat[] and percpu_counter has threshold and do periodic
777 * synchronization to implement "quick" read. There are trade-off between
778 * reading cost and precision of value. Then, we may have a chance to implement
779 * a periodic synchronizion of counter in memcg's counter.
780 *
781 * But this _read() function is used for user interface now. The user accounts
782 * memory usage by memory cgroup and he _always_ requires exact value because
783 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
784 * have to visit all online cpus and make sum. So, for now, unnecessary
785 * synchronization is not implemented. (just implemented for cpu hotplug)
786 *
787 * If there are kernel internal actions which can make use of some not-exact
788 * value, and reading all cpu value can be performance bottleneck in some
789 * common workload, threashold and synchonization as vmstat[] should be
790 * implemented.
791 */
c0ff4b85 792static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 793 enum mem_cgroup_stat_index idx)
c62b1a3b 794{
7a159cc9 795 long val = 0;
c62b1a3b 796 int cpu;
c62b1a3b 797
711d3d2c
KH
798 get_online_cpus();
799 for_each_online_cpu(cpu)
c0ff4b85 800 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 801#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
802 spin_lock(&memcg->pcp_counter_lock);
803 val += memcg->nocpu_base.count[idx];
804 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
805#endif
806 put_online_cpus();
c62b1a3b
KH
807 return val;
808}
809
c0ff4b85 810static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
811 enum mem_cgroup_events_index idx)
812{
813 unsigned long val = 0;
814 int cpu;
815
9c567512 816 get_online_cpus();
e9f8974f 817 for_each_online_cpu(cpu)
c0ff4b85 818 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 819#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
820 spin_lock(&memcg->pcp_counter_lock);
821 val += memcg->nocpu_base.events[idx];
822 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 823#endif
9c567512 824 put_online_cpus();
e9f8974f
JW
825 return val;
826}
827
c0ff4b85 828static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 829 struct page *page,
0a31bc97 830 int nr_pages)
d52aa412 831{
b2402857
KH
832 /*
833 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
834 * counted as CACHE even if it's on ANON LRU.
835 */
0a31bc97 836 if (PageAnon(page))
b2402857 837 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 838 nr_pages);
d52aa412 839 else
b2402857 840 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 841 nr_pages);
55e462b0 842
b070e65c
DR
843 if (PageTransHuge(page))
844 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
845 nr_pages);
846
e401f176
KH
847 /* pagein of a big page is an event. So, ignore page size */
848 if (nr_pages > 0)
c0ff4b85 849 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 850 else {
c0ff4b85 851 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
852 nr_pages = -nr_pages; /* for event */
853 }
e401f176 854
13114716 855 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
856}
857
e231875b 858unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
859{
860 struct mem_cgroup_per_zone *mz;
861
862 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
863 return mz->lru_size[lru];
864}
865
e231875b
JZ
866static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
867 int nid,
868 unsigned int lru_mask)
bb2a0de9 869{
e231875b 870 unsigned long nr = 0;
889976db
YH
871 int zid;
872
e231875b 873 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 874
e231875b
JZ
875 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
876 struct mem_cgroup_per_zone *mz;
877 enum lru_list lru;
878
879 for_each_lru(lru) {
880 if (!(BIT(lru) & lru_mask))
881 continue;
882 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
883 nr += mz->lru_size[lru];
884 }
885 }
886 return nr;
889976db 887}
bb2a0de9 888
c0ff4b85 889static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 890 unsigned int lru_mask)
6d12e2d8 891{
e231875b 892 unsigned long nr = 0;
889976db 893 int nid;
6d12e2d8 894
31aaea4a 895 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
896 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
897 return nr;
d52aa412
KH
898}
899
f53d7ce3
JW
900static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
901 enum mem_cgroup_events_target target)
7a159cc9
JW
902{
903 unsigned long val, next;
904
13114716 905 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 906 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 907 /* from time_after() in jiffies.h */
f53d7ce3
JW
908 if ((long)next - (long)val < 0) {
909 switch (target) {
910 case MEM_CGROUP_TARGET_THRESH:
911 next = val + THRESHOLDS_EVENTS_TARGET;
912 break;
bb4cc1a8
AM
913 case MEM_CGROUP_TARGET_SOFTLIMIT:
914 next = val + SOFTLIMIT_EVENTS_TARGET;
915 break;
f53d7ce3
JW
916 case MEM_CGROUP_TARGET_NUMAINFO:
917 next = val + NUMAINFO_EVENTS_TARGET;
918 break;
919 default:
920 break;
921 }
922 __this_cpu_write(memcg->stat->targets[target], next);
923 return true;
7a159cc9 924 }
f53d7ce3 925 return false;
d2265e6f
KH
926}
927
928/*
929 * Check events in order.
930 *
931 */
c0ff4b85 932static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
933{
934 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
935 if (unlikely(mem_cgroup_event_ratelimit(memcg,
936 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 937 bool do_softlimit;
82b3f2a7 938 bool do_numainfo __maybe_unused;
f53d7ce3 939
bb4cc1a8
AM
940 do_softlimit = mem_cgroup_event_ratelimit(memcg,
941 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
942#if MAX_NUMNODES > 1
943 do_numainfo = mem_cgroup_event_ratelimit(memcg,
944 MEM_CGROUP_TARGET_NUMAINFO);
945#endif
c0ff4b85 946 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
947 if (unlikely(do_softlimit))
948 mem_cgroup_update_tree(memcg, page);
453a9bf3 949#if MAX_NUMNODES > 1
f53d7ce3 950 if (unlikely(do_numainfo))
c0ff4b85 951 atomic_inc(&memcg->numainfo_events);
453a9bf3 952#endif
0a31bc97 953 }
d2265e6f
KH
954}
955
cf475ad2 956struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 957{
31a78f23
BS
958 /*
959 * mm_update_next_owner() may clear mm->owner to NULL
960 * if it races with swapoff, page migration, etc.
961 * So this can be called with p == NULL.
962 */
963 if (unlikely(!p))
964 return NULL;
965
073219e9 966 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
967}
968
df381975 969static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 970{
c0ff4b85 971 struct mem_cgroup *memcg = NULL;
0b7f569e 972
54595fe2
KH
973 rcu_read_lock();
974 do {
6f6acb00
MH
975 /*
976 * Page cache insertions can happen withou an
977 * actual mm context, e.g. during disk probing
978 * on boot, loopback IO, acct() writes etc.
979 */
980 if (unlikely(!mm))
df381975 981 memcg = root_mem_cgroup;
6f6acb00
MH
982 else {
983 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
984 if (unlikely(!memcg))
985 memcg = root_mem_cgroup;
986 }
ec903c0c 987 } while (!css_tryget_online(&memcg->css));
54595fe2 988 rcu_read_unlock();
c0ff4b85 989 return memcg;
54595fe2
KH
990}
991
5660048c
JW
992/**
993 * mem_cgroup_iter - iterate over memory cgroup hierarchy
994 * @root: hierarchy root
995 * @prev: previously returned memcg, NULL on first invocation
996 * @reclaim: cookie for shared reclaim walks, NULL for full walks
997 *
998 * Returns references to children of the hierarchy below @root, or
999 * @root itself, or %NULL after a full round-trip.
1000 *
1001 * Caller must pass the return value in @prev on subsequent
1002 * invocations for reference counting, or use mem_cgroup_iter_break()
1003 * to cancel a hierarchy walk before the round-trip is complete.
1004 *
1005 * Reclaimers can specify a zone and a priority level in @reclaim to
1006 * divide up the memcgs in the hierarchy among all concurrent
1007 * reclaimers operating on the same zone and priority.
1008 */
694fbc0f 1009struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1010 struct mem_cgroup *prev,
694fbc0f 1011 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1012{
5ac8fb31
JW
1013 struct reclaim_iter *uninitialized_var(iter);
1014 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1015 struct mem_cgroup *memcg = NULL;
5ac8fb31 1016 struct mem_cgroup *pos = NULL;
711d3d2c 1017
694fbc0f
AM
1018 if (mem_cgroup_disabled())
1019 return NULL;
5660048c 1020
9f3a0d09
JW
1021 if (!root)
1022 root = root_mem_cgroup;
7d74b06f 1023
9f3a0d09 1024 if (prev && !reclaim)
5ac8fb31 1025 pos = prev;
14067bb3 1026
9f3a0d09
JW
1027 if (!root->use_hierarchy && root != root_mem_cgroup) {
1028 if (prev)
5ac8fb31 1029 goto out;
694fbc0f 1030 return root;
9f3a0d09 1031 }
14067bb3 1032
542f85f9 1033 rcu_read_lock();
5f578161 1034
5ac8fb31
JW
1035 if (reclaim) {
1036 struct mem_cgroup_per_zone *mz;
1037
1038 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1039 iter = &mz->iter[reclaim->priority];
1040
1041 if (prev && reclaim->generation != iter->generation)
1042 goto out_unlock;
1043
1044 do {
4db0c3c2 1045 pos = READ_ONCE(iter->position);
5ac8fb31
JW
1046 /*
1047 * A racing update may change the position and
1048 * put the last reference, hence css_tryget(),
1049 * or retry to see the updated position.
1050 */
1051 } while (pos && !css_tryget(&pos->css));
1052 }
1053
1054 if (pos)
1055 css = &pos->css;
1056
1057 for (;;) {
1058 css = css_next_descendant_pre(css, &root->css);
1059 if (!css) {
1060 /*
1061 * Reclaimers share the hierarchy walk, and a
1062 * new one might jump in right at the end of
1063 * the hierarchy - make sure they see at least
1064 * one group and restart from the beginning.
1065 */
1066 if (!prev)
1067 continue;
1068 break;
527a5ec9 1069 }
7d74b06f 1070
5ac8fb31
JW
1071 /*
1072 * Verify the css and acquire a reference. The root
1073 * is provided by the caller, so we know it's alive
1074 * and kicking, and don't take an extra reference.
1075 */
1076 memcg = mem_cgroup_from_css(css);
14067bb3 1077
5ac8fb31
JW
1078 if (css == &root->css)
1079 break;
14067bb3 1080
b2052564 1081 if (css_tryget(css)) {
5ac8fb31
JW
1082 /*
1083 * Make sure the memcg is initialized:
1084 * mem_cgroup_css_online() orders the the
1085 * initialization against setting the flag.
1086 */
1087 if (smp_load_acquire(&memcg->initialized))
1088 break;
542f85f9 1089
5ac8fb31 1090 css_put(css);
527a5ec9 1091 }
9f3a0d09 1092
5ac8fb31 1093 memcg = NULL;
9f3a0d09 1094 }
5ac8fb31
JW
1095
1096 if (reclaim) {
1097 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1098 if (memcg)
1099 css_get(&memcg->css);
1100 if (pos)
1101 css_put(&pos->css);
1102 }
1103
1104 /*
1105 * pairs with css_tryget when dereferencing iter->position
1106 * above.
1107 */
1108 if (pos)
1109 css_put(&pos->css);
1110
1111 if (!memcg)
1112 iter->generation++;
1113 else if (!prev)
1114 reclaim->generation = iter->generation;
9f3a0d09 1115 }
5ac8fb31 1116
542f85f9
MH
1117out_unlock:
1118 rcu_read_unlock();
5ac8fb31 1119out:
c40046f3
MH
1120 if (prev && prev != root)
1121 css_put(&prev->css);
1122
9f3a0d09 1123 return memcg;
14067bb3 1124}
7d74b06f 1125
5660048c
JW
1126/**
1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1128 * @root: hierarchy root
1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1130 */
1131void mem_cgroup_iter_break(struct mem_cgroup *root,
1132 struct mem_cgroup *prev)
9f3a0d09
JW
1133{
1134 if (!root)
1135 root = root_mem_cgroup;
1136 if (prev && prev != root)
1137 css_put(&prev->css);
1138}
7d74b06f 1139
9f3a0d09
JW
1140/*
1141 * Iteration constructs for visiting all cgroups (under a tree). If
1142 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1143 * be used for reference counting.
1144 */
1145#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1146 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1147 iter != NULL; \
527a5ec9 1148 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1149
9f3a0d09 1150#define for_each_mem_cgroup(iter) \
527a5ec9 1151 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1152 iter != NULL; \
527a5ec9 1153 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1154
68ae564b 1155void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1156{
c0ff4b85 1157 struct mem_cgroup *memcg;
456f998e 1158
456f998e 1159 rcu_read_lock();
c0ff4b85
R
1160 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1161 if (unlikely(!memcg))
456f998e
YH
1162 goto out;
1163
1164 switch (idx) {
456f998e 1165 case PGFAULT:
0e574a93
JW
1166 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1167 break;
1168 case PGMAJFAULT:
1169 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1170 break;
1171 default:
1172 BUG();
1173 }
1174out:
1175 rcu_read_unlock();
1176}
68ae564b 1177EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1178
925b7673
JW
1179/**
1180 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1181 * @zone: zone of the wanted lruvec
fa9add64 1182 * @memcg: memcg of the wanted lruvec
925b7673
JW
1183 *
1184 * Returns the lru list vector holding pages for the given @zone and
1185 * @mem. This can be the global zone lruvec, if the memory controller
1186 * is disabled.
1187 */
1188struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1189 struct mem_cgroup *memcg)
1190{
1191 struct mem_cgroup_per_zone *mz;
bea8c150 1192 struct lruvec *lruvec;
925b7673 1193
bea8c150
HD
1194 if (mem_cgroup_disabled()) {
1195 lruvec = &zone->lruvec;
1196 goto out;
1197 }
925b7673 1198
e231875b 1199 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1200 lruvec = &mz->lruvec;
1201out:
1202 /*
1203 * Since a node can be onlined after the mem_cgroup was created,
1204 * we have to be prepared to initialize lruvec->zone here;
1205 * and if offlined then reonlined, we need to reinitialize it.
1206 */
1207 if (unlikely(lruvec->zone != zone))
1208 lruvec->zone = zone;
1209 return lruvec;
925b7673
JW
1210}
1211
925b7673 1212/**
dfe0e773 1213 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1214 * @page: the page
fa9add64 1215 * @zone: zone of the page
dfe0e773
JW
1216 *
1217 * This function is only safe when following the LRU page isolation
1218 * and putback protocol: the LRU lock must be held, and the page must
1219 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1220 */
fa9add64 1221struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1222{
08e552c6 1223 struct mem_cgroup_per_zone *mz;
925b7673 1224 struct mem_cgroup *memcg;
bea8c150 1225 struct lruvec *lruvec;
6d12e2d8 1226
bea8c150
HD
1227 if (mem_cgroup_disabled()) {
1228 lruvec = &zone->lruvec;
1229 goto out;
1230 }
925b7673 1231
1306a85a 1232 memcg = page->mem_cgroup;
7512102c 1233 /*
dfe0e773 1234 * Swapcache readahead pages are added to the LRU - and
29833315 1235 * possibly migrated - before they are charged.
7512102c 1236 */
29833315
JW
1237 if (!memcg)
1238 memcg = root_mem_cgroup;
7512102c 1239
e231875b 1240 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1241 lruvec = &mz->lruvec;
1242out:
1243 /*
1244 * Since a node can be onlined after the mem_cgroup was created,
1245 * we have to be prepared to initialize lruvec->zone here;
1246 * and if offlined then reonlined, we need to reinitialize it.
1247 */
1248 if (unlikely(lruvec->zone != zone))
1249 lruvec->zone = zone;
1250 return lruvec;
08e552c6 1251}
b69408e8 1252
925b7673 1253/**
fa9add64
HD
1254 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1255 * @lruvec: mem_cgroup per zone lru vector
1256 * @lru: index of lru list the page is sitting on
1257 * @nr_pages: positive when adding or negative when removing
925b7673 1258 *
fa9add64
HD
1259 * This function must be called when a page is added to or removed from an
1260 * lru list.
3f58a829 1261 */
fa9add64
HD
1262void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1263 int nr_pages)
3f58a829
MK
1264{
1265 struct mem_cgroup_per_zone *mz;
fa9add64 1266 unsigned long *lru_size;
3f58a829
MK
1267
1268 if (mem_cgroup_disabled())
1269 return;
1270
fa9add64
HD
1271 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1272 lru_size = mz->lru_size + lru;
1273 *lru_size += nr_pages;
1274 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1275}
544122e5 1276
2314b42d 1277bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1278{
2314b42d 1279 if (root == memcg)
91c63734 1280 return true;
2314b42d 1281 if (!root->use_hierarchy)
91c63734 1282 return false;
2314b42d 1283 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1284}
1285
2314b42d 1286bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1287{
2314b42d 1288 struct mem_cgroup *task_memcg;
158e0a2d 1289 struct task_struct *p;
ffbdccf5 1290 bool ret;
4c4a2214 1291
158e0a2d 1292 p = find_lock_task_mm(task);
de077d22 1293 if (p) {
2314b42d 1294 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1295 task_unlock(p);
1296 } else {
1297 /*
1298 * All threads may have already detached their mm's, but the oom
1299 * killer still needs to detect if they have already been oom
1300 * killed to prevent needlessly killing additional tasks.
1301 */
ffbdccf5 1302 rcu_read_lock();
2314b42d
JW
1303 task_memcg = mem_cgroup_from_task(task);
1304 css_get(&task_memcg->css);
ffbdccf5 1305 rcu_read_unlock();
de077d22 1306 }
2314b42d
JW
1307 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1308 css_put(&task_memcg->css);
4c4a2214
DR
1309 return ret;
1310}
1311
c56d5c7d 1312int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1313{
9b272977 1314 unsigned long inactive_ratio;
14797e23 1315 unsigned long inactive;
9b272977 1316 unsigned long active;
c772be93 1317 unsigned long gb;
14797e23 1318
4d7dcca2
HD
1319 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1320 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1321
c772be93
KM
1322 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1323 if (gb)
1324 inactive_ratio = int_sqrt(10 * gb);
1325 else
1326 inactive_ratio = 1;
1327
9b272977 1328 return inactive * inactive_ratio < active;
14797e23
KM
1329}
1330
90cbc250
VD
1331bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1332{
1333 struct mem_cgroup_per_zone *mz;
1334 struct mem_cgroup *memcg;
1335
1336 if (mem_cgroup_disabled())
1337 return true;
1338
1339 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1340 memcg = mz->memcg;
1341
1342 return !!(memcg->css.flags & CSS_ONLINE);
1343}
1344
3e32cb2e 1345#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1346 container_of(counter, struct mem_cgroup, member)
1347
19942822 1348/**
9d11ea9f 1349 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1350 * @memcg: the memory cgroup
19942822 1351 *
9d11ea9f 1352 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1353 * pages.
19942822 1354 */
c0ff4b85 1355static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1356{
3e32cb2e
JW
1357 unsigned long margin = 0;
1358 unsigned long count;
1359 unsigned long limit;
9d11ea9f 1360
3e32cb2e 1361 count = page_counter_read(&memcg->memory);
4db0c3c2 1362 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1363 if (count < limit)
1364 margin = limit - count;
1365
1366 if (do_swap_account) {
1367 count = page_counter_read(&memcg->memsw);
4db0c3c2 1368 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1369 if (count <= limit)
1370 margin = min(margin, limit - count);
1371 }
1372
1373 return margin;
19942822
JW
1374}
1375
1f4c025b 1376int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1377{
a7885eb8 1378 /* root ? */
14208b0e 1379 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1380 return vm_swappiness;
1381
bf1ff263 1382 return memcg->swappiness;
a7885eb8
KM
1383}
1384
32047e2a 1385/*
bdcbb659 1386 * A routine for checking "mem" is under move_account() or not.
32047e2a 1387 *
bdcbb659
QH
1388 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1389 * moving cgroups. This is for waiting at high-memory pressure
1390 * caused by "move".
32047e2a 1391 */
c0ff4b85 1392static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1393{
2bd9bb20
KH
1394 struct mem_cgroup *from;
1395 struct mem_cgroup *to;
4b534334 1396 bool ret = false;
2bd9bb20
KH
1397 /*
1398 * Unlike task_move routines, we access mc.to, mc.from not under
1399 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1400 */
1401 spin_lock(&mc.lock);
1402 from = mc.from;
1403 to = mc.to;
1404 if (!from)
1405 goto unlock;
3e92041d 1406
2314b42d
JW
1407 ret = mem_cgroup_is_descendant(from, memcg) ||
1408 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1409unlock:
1410 spin_unlock(&mc.lock);
4b534334
KH
1411 return ret;
1412}
1413
c0ff4b85 1414static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1415{
1416 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1417 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1418 DEFINE_WAIT(wait);
1419 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1420 /* moving charge context might have finished. */
1421 if (mc.moving_task)
1422 schedule();
1423 finish_wait(&mc.waitq, &wait);
1424 return true;
1425 }
1426 }
1427 return false;
1428}
1429
58cf188e 1430#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1431/**
58cf188e 1432 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1433 * @memcg: The memory cgroup that went over limit
1434 * @p: Task that is going to be killed
1435 *
1436 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1437 * enabled
1438 */
1439void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1440{
e61734c5 1441 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1442 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1443 struct mem_cgroup *iter;
1444 unsigned int i;
e222432b 1445
08088cb9 1446 mutex_lock(&oom_info_lock);
e222432b
BS
1447 rcu_read_lock();
1448
2415b9f5
BV
1449 if (p) {
1450 pr_info("Task in ");
1451 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1452 pr_cont(" killed as a result of limit of ");
1453 } else {
1454 pr_info("Memory limit reached of cgroup ");
1455 }
1456
e61734c5 1457 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1458 pr_cont("\n");
e222432b 1459
e222432b
BS
1460 rcu_read_unlock();
1461
3e32cb2e
JW
1462 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1463 K((u64)page_counter_read(&memcg->memory)),
1464 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1465 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1466 K((u64)page_counter_read(&memcg->memsw)),
1467 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1468 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1469 K((u64)page_counter_read(&memcg->kmem)),
1470 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1471
1472 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1473 pr_info("Memory cgroup stats for ");
1474 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1475 pr_cont(":");
1476
1477 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1478 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1479 continue;
1480 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1481 K(mem_cgroup_read_stat(iter, i)));
1482 }
1483
1484 for (i = 0; i < NR_LRU_LISTS; i++)
1485 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1486 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1487
1488 pr_cont("\n");
1489 }
08088cb9 1490 mutex_unlock(&oom_info_lock);
e222432b
BS
1491}
1492
81d39c20
KH
1493/*
1494 * This function returns the number of memcg under hierarchy tree. Returns
1495 * 1(self count) if no children.
1496 */
c0ff4b85 1497static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1498{
1499 int num = 0;
7d74b06f
KH
1500 struct mem_cgroup *iter;
1501
c0ff4b85 1502 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1503 num++;
81d39c20
KH
1504 return num;
1505}
1506
a63d83f4
DR
1507/*
1508 * Return the memory (and swap, if configured) limit for a memcg.
1509 */
3e32cb2e 1510static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1511{
3e32cb2e 1512 unsigned long limit;
f3e8eb70 1513
3e32cb2e 1514 limit = memcg->memory.limit;
9a5a8f19 1515 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1516 unsigned long memsw_limit;
9a5a8f19 1517
3e32cb2e
JW
1518 memsw_limit = memcg->memsw.limit;
1519 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1520 }
9a5a8f19 1521 return limit;
a63d83f4
DR
1522}
1523
19965460
DR
1524static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1525 int order)
9cbb78bb
DR
1526{
1527 struct mem_cgroup *iter;
1528 unsigned long chosen_points = 0;
1529 unsigned long totalpages;
1530 unsigned int points = 0;
1531 struct task_struct *chosen = NULL;
1532
876aafbf 1533 /*
465adcf1
DR
1534 * If current has a pending SIGKILL or is exiting, then automatically
1535 * select it. The goal is to allow it to allocate so that it may
1536 * quickly exit and free its memory.
876aafbf 1537 */
d003f371 1538 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1539 mark_oom_victim(current);
876aafbf
DR
1540 return;
1541 }
1542
2415b9f5 1543 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
3e32cb2e 1544 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1545 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1546 struct css_task_iter it;
9cbb78bb
DR
1547 struct task_struct *task;
1548
72ec7029
TH
1549 css_task_iter_start(&iter->css, &it);
1550 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1551 switch (oom_scan_process_thread(task, totalpages, NULL,
1552 false)) {
1553 case OOM_SCAN_SELECT:
1554 if (chosen)
1555 put_task_struct(chosen);
1556 chosen = task;
1557 chosen_points = ULONG_MAX;
1558 get_task_struct(chosen);
1559 /* fall through */
1560 case OOM_SCAN_CONTINUE:
1561 continue;
1562 case OOM_SCAN_ABORT:
72ec7029 1563 css_task_iter_end(&it);
9cbb78bb
DR
1564 mem_cgroup_iter_break(memcg, iter);
1565 if (chosen)
1566 put_task_struct(chosen);
1567 return;
1568 case OOM_SCAN_OK:
1569 break;
1570 };
1571 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1572 if (!points || points < chosen_points)
1573 continue;
1574 /* Prefer thread group leaders for display purposes */
1575 if (points == chosen_points &&
1576 thread_group_leader(chosen))
1577 continue;
1578
1579 if (chosen)
1580 put_task_struct(chosen);
1581 chosen = task;
1582 chosen_points = points;
1583 get_task_struct(chosen);
9cbb78bb 1584 }
72ec7029 1585 css_task_iter_end(&it);
9cbb78bb
DR
1586 }
1587
1588 if (!chosen)
1589 return;
1590 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1591 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1592 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1593}
1594
ae6e71d3
MC
1595#if MAX_NUMNODES > 1
1596
4d0c066d
KH
1597/**
1598 * test_mem_cgroup_node_reclaimable
dad7557e 1599 * @memcg: the target memcg
4d0c066d
KH
1600 * @nid: the node ID to be checked.
1601 * @noswap : specify true here if the user wants flle only information.
1602 *
1603 * This function returns whether the specified memcg contains any
1604 * reclaimable pages on a node. Returns true if there are any reclaimable
1605 * pages in the node.
1606 */
c0ff4b85 1607static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1608 int nid, bool noswap)
1609{
c0ff4b85 1610 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1611 return true;
1612 if (noswap || !total_swap_pages)
1613 return false;
c0ff4b85 1614 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1615 return true;
1616 return false;
1617
1618}
889976db
YH
1619
1620/*
1621 * Always updating the nodemask is not very good - even if we have an empty
1622 * list or the wrong list here, we can start from some node and traverse all
1623 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1624 *
1625 */
c0ff4b85 1626static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1627{
1628 int nid;
453a9bf3
KH
1629 /*
1630 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1631 * pagein/pageout changes since the last update.
1632 */
c0ff4b85 1633 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1634 return;
c0ff4b85 1635 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1636 return;
1637
889976db 1638 /* make a nodemask where this memcg uses memory from */
31aaea4a 1639 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1640
31aaea4a 1641 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1642
c0ff4b85
R
1643 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1644 node_clear(nid, memcg->scan_nodes);
889976db 1645 }
453a9bf3 1646
c0ff4b85
R
1647 atomic_set(&memcg->numainfo_events, 0);
1648 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1649}
1650
1651/*
1652 * Selecting a node where we start reclaim from. Because what we need is just
1653 * reducing usage counter, start from anywhere is O,K. Considering
1654 * memory reclaim from current node, there are pros. and cons.
1655 *
1656 * Freeing memory from current node means freeing memory from a node which
1657 * we'll use or we've used. So, it may make LRU bad. And if several threads
1658 * hit limits, it will see a contention on a node. But freeing from remote
1659 * node means more costs for memory reclaim because of memory latency.
1660 *
1661 * Now, we use round-robin. Better algorithm is welcomed.
1662 */
c0ff4b85 1663int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1664{
1665 int node;
1666
c0ff4b85
R
1667 mem_cgroup_may_update_nodemask(memcg);
1668 node = memcg->last_scanned_node;
889976db 1669
c0ff4b85 1670 node = next_node(node, memcg->scan_nodes);
889976db 1671 if (node == MAX_NUMNODES)
c0ff4b85 1672 node = first_node(memcg->scan_nodes);
889976db
YH
1673 /*
1674 * We call this when we hit limit, not when pages are added to LRU.
1675 * No LRU may hold pages because all pages are UNEVICTABLE or
1676 * memcg is too small and all pages are not on LRU. In that case,
1677 * we use curret node.
1678 */
1679 if (unlikely(node == MAX_NUMNODES))
1680 node = numa_node_id();
1681
c0ff4b85 1682 memcg->last_scanned_node = node;
889976db
YH
1683 return node;
1684}
889976db 1685#else
c0ff4b85 1686int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1687{
1688 return 0;
1689}
1690#endif
1691
0608f43d
AM
1692static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1693 struct zone *zone,
1694 gfp_t gfp_mask,
1695 unsigned long *total_scanned)
1696{
1697 struct mem_cgroup *victim = NULL;
1698 int total = 0;
1699 int loop = 0;
1700 unsigned long excess;
1701 unsigned long nr_scanned;
1702 struct mem_cgroup_reclaim_cookie reclaim = {
1703 .zone = zone,
1704 .priority = 0,
1705 };
1706
3e32cb2e 1707 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1708
1709 while (1) {
1710 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1711 if (!victim) {
1712 loop++;
1713 if (loop >= 2) {
1714 /*
1715 * If we have not been able to reclaim
1716 * anything, it might because there are
1717 * no reclaimable pages under this hierarchy
1718 */
1719 if (!total)
1720 break;
1721 /*
1722 * We want to do more targeted reclaim.
1723 * excess >> 2 is not to excessive so as to
1724 * reclaim too much, nor too less that we keep
1725 * coming back to reclaim from this cgroup
1726 */
1727 if (total >= (excess >> 2) ||
1728 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1729 break;
1730 }
1731 continue;
1732 }
0608f43d
AM
1733 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1734 zone, &nr_scanned);
1735 *total_scanned += nr_scanned;
3e32cb2e 1736 if (!soft_limit_excess(root_memcg))
0608f43d 1737 break;
6d61ef40 1738 }
0608f43d
AM
1739 mem_cgroup_iter_break(root_memcg, victim);
1740 return total;
6d61ef40
BS
1741}
1742
0056f4e6
JW
1743#ifdef CONFIG_LOCKDEP
1744static struct lockdep_map memcg_oom_lock_dep_map = {
1745 .name = "memcg_oom_lock",
1746};
1747#endif
1748
fb2a6fc5
JW
1749static DEFINE_SPINLOCK(memcg_oom_lock);
1750
867578cb
KH
1751/*
1752 * Check OOM-Killer is already running under our hierarchy.
1753 * If someone is running, return false.
1754 */
fb2a6fc5 1755static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1756{
79dfdacc 1757 struct mem_cgroup *iter, *failed = NULL;
a636b327 1758
fb2a6fc5
JW
1759 spin_lock(&memcg_oom_lock);
1760
9f3a0d09 1761 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1762 if (iter->oom_lock) {
79dfdacc
MH
1763 /*
1764 * this subtree of our hierarchy is already locked
1765 * so we cannot give a lock.
1766 */
79dfdacc 1767 failed = iter;
9f3a0d09
JW
1768 mem_cgroup_iter_break(memcg, iter);
1769 break;
23751be0
JW
1770 } else
1771 iter->oom_lock = true;
7d74b06f 1772 }
867578cb 1773
fb2a6fc5
JW
1774 if (failed) {
1775 /*
1776 * OK, we failed to lock the whole subtree so we have
1777 * to clean up what we set up to the failing subtree
1778 */
1779 for_each_mem_cgroup_tree(iter, memcg) {
1780 if (iter == failed) {
1781 mem_cgroup_iter_break(memcg, iter);
1782 break;
1783 }
1784 iter->oom_lock = false;
79dfdacc 1785 }
0056f4e6
JW
1786 } else
1787 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1788
1789 spin_unlock(&memcg_oom_lock);
1790
1791 return !failed;
a636b327 1792}
0b7f569e 1793
fb2a6fc5 1794static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1795{
7d74b06f
KH
1796 struct mem_cgroup *iter;
1797
fb2a6fc5 1798 spin_lock(&memcg_oom_lock);
0056f4e6 1799 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1800 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1801 iter->oom_lock = false;
fb2a6fc5 1802 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1803}
1804
c0ff4b85 1805static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1806{
1807 struct mem_cgroup *iter;
1808
c0ff4b85 1809 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1810 atomic_inc(&iter->under_oom);
1811}
1812
c0ff4b85 1813static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1814{
1815 struct mem_cgroup *iter;
1816
867578cb
KH
1817 /*
1818 * When a new child is created while the hierarchy is under oom,
1819 * mem_cgroup_oom_lock() may not be called. We have to use
1820 * atomic_add_unless() here.
1821 */
c0ff4b85 1822 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1823 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1824}
1825
867578cb
KH
1826static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1827
dc98df5a 1828struct oom_wait_info {
d79154bb 1829 struct mem_cgroup *memcg;
dc98df5a
KH
1830 wait_queue_t wait;
1831};
1832
1833static int memcg_oom_wake_function(wait_queue_t *wait,
1834 unsigned mode, int sync, void *arg)
1835{
d79154bb
HD
1836 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1837 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1838 struct oom_wait_info *oom_wait_info;
1839
1840 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1841 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1842
2314b42d
JW
1843 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1844 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1845 return 0;
dc98df5a
KH
1846 return autoremove_wake_function(wait, mode, sync, arg);
1847}
1848
c0ff4b85 1849static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1850{
3812c8c8 1851 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1852 /* for filtering, pass "memcg" as argument. */
1853 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1854}
1855
c0ff4b85 1856static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1857{
c0ff4b85
R
1858 if (memcg && atomic_read(&memcg->under_oom))
1859 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1860}
1861
3812c8c8 1862static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1863{
3812c8c8
JW
1864 if (!current->memcg_oom.may_oom)
1865 return;
867578cb 1866 /*
49426420
JW
1867 * We are in the middle of the charge context here, so we
1868 * don't want to block when potentially sitting on a callstack
1869 * that holds all kinds of filesystem and mm locks.
1870 *
1871 * Also, the caller may handle a failed allocation gracefully
1872 * (like optional page cache readahead) and so an OOM killer
1873 * invocation might not even be necessary.
1874 *
1875 * That's why we don't do anything here except remember the
1876 * OOM context and then deal with it at the end of the page
1877 * fault when the stack is unwound, the locks are released,
1878 * and when we know whether the fault was overall successful.
867578cb 1879 */
49426420
JW
1880 css_get(&memcg->css);
1881 current->memcg_oom.memcg = memcg;
1882 current->memcg_oom.gfp_mask = mask;
1883 current->memcg_oom.order = order;
3812c8c8
JW
1884}
1885
1886/**
1887 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1888 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1889 *
49426420
JW
1890 * This has to be called at the end of a page fault if the memcg OOM
1891 * handler was enabled.
3812c8c8 1892 *
49426420 1893 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1894 * sleep on a waitqueue until the userspace task resolves the
1895 * situation. Sleeping directly in the charge context with all kinds
1896 * of locks held is not a good idea, instead we remember an OOM state
1897 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1898 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1899 *
1900 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1901 * completed, %false otherwise.
3812c8c8 1902 */
49426420 1903bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1904{
49426420 1905 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1906 struct oom_wait_info owait;
49426420 1907 bool locked;
3812c8c8
JW
1908
1909 /* OOM is global, do not handle */
3812c8c8 1910 if (!memcg)
49426420 1911 return false;
3812c8c8 1912
c32b3cbe 1913 if (!handle || oom_killer_disabled)
49426420 1914 goto cleanup;
3812c8c8
JW
1915
1916 owait.memcg = memcg;
1917 owait.wait.flags = 0;
1918 owait.wait.func = memcg_oom_wake_function;
1919 owait.wait.private = current;
1920 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1921
3812c8c8 1922 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1923 mem_cgroup_mark_under_oom(memcg);
1924
1925 locked = mem_cgroup_oom_trylock(memcg);
1926
1927 if (locked)
1928 mem_cgroup_oom_notify(memcg);
1929
1930 if (locked && !memcg->oom_kill_disable) {
1931 mem_cgroup_unmark_under_oom(memcg);
1932 finish_wait(&memcg_oom_waitq, &owait.wait);
1933 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1934 current->memcg_oom.order);
1935 } else {
3812c8c8 1936 schedule();
49426420
JW
1937 mem_cgroup_unmark_under_oom(memcg);
1938 finish_wait(&memcg_oom_waitq, &owait.wait);
1939 }
1940
1941 if (locked) {
fb2a6fc5
JW
1942 mem_cgroup_oom_unlock(memcg);
1943 /*
1944 * There is no guarantee that an OOM-lock contender
1945 * sees the wakeups triggered by the OOM kill
1946 * uncharges. Wake any sleepers explicitely.
1947 */
1948 memcg_oom_recover(memcg);
1949 }
49426420
JW
1950cleanup:
1951 current->memcg_oom.memcg = NULL;
3812c8c8 1952 css_put(&memcg->css);
867578cb 1953 return true;
0b7f569e
KH
1954}
1955
d7365e78
JW
1956/**
1957 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1958 * @page: page that is going to change accounted state
32047e2a 1959 *
d7365e78
JW
1960 * This function must mark the beginning of an accounted page state
1961 * change to prevent double accounting when the page is concurrently
1962 * being moved to another memcg:
32047e2a 1963 *
6de22619 1964 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1965 * if (TestClearPageState(page))
1966 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1967 * mem_cgroup_end_page_stat(memcg);
d69b042f 1968 */
6de22619 1969struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1970{
1971 struct mem_cgroup *memcg;
6de22619 1972 unsigned long flags;
89c06bd5 1973
6de22619
JW
1974 /*
1975 * The RCU lock is held throughout the transaction. The fast
1976 * path can get away without acquiring the memcg->move_lock
1977 * because page moving starts with an RCU grace period.
1978 *
1979 * The RCU lock also protects the memcg from being freed when
1980 * the page state that is going to change is the only thing
1981 * preventing the page from being uncharged.
1982 * E.g. end-writeback clearing PageWriteback(), which allows
1983 * migration to go ahead and uncharge the page before the
1984 * account transaction might be complete.
1985 */
d7365e78
JW
1986 rcu_read_lock();
1987
1988 if (mem_cgroup_disabled())
1989 return NULL;
89c06bd5 1990again:
1306a85a 1991 memcg = page->mem_cgroup;
29833315 1992 if (unlikely(!memcg))
d7365e78
JW
1993 return NULL;
1994
bdcbb659 1995 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1996 return memcg;
89c06bd5 1997
6de22619 1998 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1999 if (memcg != page->mem_cgroup) {
6de22619 2000 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2001 goto again;
2002 }
6de22619
JW
2003
2004 /*
2005 * When charge migration first begins, we can have locked and
2006 * unlocked page stat updates happening concurrently. Track
2007 * the task who has the lock for mem_cgroup_end_page_stat().
2008 */
2009 memcg->move_lock_task = current;
2010 memcg->move_lock_flags = flags;
d7365e78
JW
2011
2012 return memcg;
89c06bd5
KH
2013}
2014
d7365e78
JW
2015/**
2016 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2017 * @memcg: the memcg that was accounted against
d7365e78 2018 */
6de22619 2019void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 2020{
6de22619
JW
2021 if (memcg && memcg->move_lock_task == current) {
2022 unsigned long flags = memcg->move_lock_flags;
2023
2024 memcg->move_lock_task = NULL;
2025 memcg->move_lock_flags = 0;
2026
2027 spin_unlock_irqrestore(&memcg->move_lock, flags);
2028 }
89c06bd5 2029
d7365e78 2030 rcu_read_unlock();
89c06bd5
KH
2031}
2032
d7365e78
JW
2033/**
2034 * mem_cgroup_update_page_stat - update page state statistics
2035 * @memcg: memcg to account against
2036 * @idx: page state item to account
2037 * @val: number of pages (positive or negative)
2038 *
2039 * See mem_cgroup_begin_page_stat() for locking requirements.
2040 */
2041void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2042 enum mem_cgroup_stat_index idx, int val)
d69b042f 2043{
658b72c5 2044 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2045
d7365e78
JW
2046 if (memcg)
2047 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2048}
26174efd 2049
cdec2e42
KH
2050/*
2051 * size of first charge trial. "32" comes from vmscan.c's magic value.
2052 * TODO: maybe necessary to use big numbers in big irons.
2053 */
7ec99d62 2054#define CHARGE_BATCH 32U
cdec2e42
KH
2055struct memcg_stock_pcp {
2056 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2057 unsigned int nr_pages;
cdec2e42 2058 struct work_struct work;
26fe6168 2059 unsigned long flags;
a0db00fc 2060#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2061};
2062static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2063static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2064
a0956d54
SS
2065/**
2066 * consume_stock: Try to consume stocked charge on this cpu.
2067 * @memcg: memcg to consume from.
2068 * @nr_pages: how many pages to charge.
2069 *
2070 * The charges will only happen if @memcg matches the current cpu's memcg
2071 * stock, and at least @nr_pages are available in that stock. Failure to
2072 * service an allocation will refill the stock.
2073 *
2074 * returns true if successful, false otherwise.
cdec2e42 2075 */
a0956d54 2076static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2077{
2078 struct memcg_stock_pcp *stock;
3e32cb2e 2079 bool ret = false;
cdec2e42 2080
a0956d54 2081 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2082 return ret;
a0956d54 2083
cdec2e42 2084 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2085 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2086 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2087 ret = true;
2088 }
cdec2e42
KH
2089 put_cpu_var(memcg_stock);
2090 return ret;
2091}
2092
2093/*
3e32cb2e 2094 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2095 */
2096static void drain_stock(struct memcg_stock_pcp *stock)
2097{
2098 struct mem_cgroup *old = stock->cached;
2099
11c9ea4e 2100 if (stock->nr_pages) {
3e32cb2e 2101 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2102 if (do_swap_account)
3e32cb2e 2103 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2104 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2105 stock->nr_pages = 0;
cdec2e42
KH
2106 }
2107 stock->cached = NULL;
cdec2e42
KH
2108}
2109
2110/*
2111 * This must be called under preempt disabled or must be called by
2112 * a thread which is pinned to local cpu.
2113 */
2114static void drain_local_stock(struct work_struct *dummy)
2115{
7c8e0181 2116 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2117 drain_stock(stock);
26fe6168 2118 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2119}
2120
2121/*
3e32cb2e 2122 * Cache charges(val) to local per_cpu area.
320cc51d 2123 * This will be consumed by consume_stock() function, later.
cdec2e42 2124 */
c0ff4b85 2125static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2126{
2127 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2128
c0ff4b85 2129 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2130 drain_stock(stock);
c0ff4b85 2131 stock->cached = memcg;
cdec2e42 2132 }
11c9ea4e 2133 stock->nr_pages += nr_pages;
cdec2e42
KH
2134 put_cpu_var(memcg_stock);
2135}
2136
2137/*
c0ff4b85 2138 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2139 * of the hierarchy under it.
cdec2e42 2140 */
6d3d6aa2 2141static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2142{
26fe6168 2143 int cpu, curcpu;
d38144b7 2144
6d3d6aa2
JW
2145 /* If someone's already draining, avoid adding running more workers. */
2146 if (!mutex_trylock(&percpu_charge_mutex))
2147 return;
cdec2e42 2148 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2149 get_online_cpus();
5af12d0e 2150 curcpu = get_cpu();
cdec2e42
KH
2151 for_each_online_cpu(cpu) {
2152 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2153 struct mem_cgroup *memcg;
26fe6168 2154
c0ff4b85
R
2155 memcg = stock->cached;
2156 if (!memcg || !stock->nr_pages)
26fe6168 2157 continue;
2314b42d 2158 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2159 continue;
d1a05b69
MH
2160 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2161 if (cpu == curcpu)
2162 drain_local_stock(&stock->work);
2163 else
2164 schedule_work_on(cpu, &stock->work);
2165 }
cdec2e42 2166 }
5af12d0e 2167 put_cpu();
f894ffa8 2168 put_online_cpus();
9f50fad6 2169 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2170}
2171
711d3d2c
KH
2172/*
2173 * This function drains percpu counter value from DEAD cpu and
2174 * move it to local cpu. Note that this function can be preempted.
2175 */
c0ff4b85 2176static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2177{
2178 int i;
2179
c0ff4b85 2180 spin_lock(&memcg->pcp_counter_lock);
6104621d 2181 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2182 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2183
c0ff4b85
R
2184 per_cpu(memcg->stat->count[i], cpu) = 0;
2185 memcg->nocpu_base.count[i] += x;
711d3d2c 2186 }
e9f8974f 2187 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2188 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2189
c0ff4b85
R
2190 per_cpu(memcg->stat->events[i], cpu) = 0;
2191 memcg->nocpu_base.events[i] += x;
e9f8974f 2192 }
c0ff4b85 2193 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2194}
2195
0db0628d 2196static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2197 unsigned long action,
2198 void *hcpu)
2199{
2200 int cpu = (unsigned long)hcpu;
2201 struct memcg_stock_pcp *stock;
711d3d2c 2202 struct mem_cgroup *iter;
cdec2e42 2203
619d094b 2204 if (action == CPU_ONLINE)
1489ebad 2205 return NOTIFY_OK;
1489ebad 2206
d833049b 2207 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2208 return NOTIFY_OK;
711d3d2c 2209
9f3a0d09 2210 for_each_mem_cgroup(iter)
711d3d2c
KH
2211 mem_cgroup_drain_pcp_counter(iter, cpu);
2212
cdec2e42
KH
2213 stock = &per_cpu(memcg_stock, cpu);
2214 drain_stock(stock);
2215 return NOTIFY_OK;
2216}
2217
00501b53
JW
2218static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2219 unsigned int nr_pages)
8a9f3ccd 2220{
7ec99d62 2221 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2222 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2223 struct mem_cgroup *mem_over_limit;
3e32cb2e 2224 struct page_counter *counter;
6539cc05 2225 unsigned long nr_reclaimed;
b70a2a21
JW
2226 bool may_swap = true;
2227 bool drained = false;
05b84301 2228 int ret = 0;
a636b327 2229
ce00a967
JW
2230 if (mem_cgroup_is_root(memcg))
2231 goto done;
6539cc05 2232retry:
b6b6cc72
MH
2233 if (consume_stock(memcg, nr_pages))
2234 goto done;
8a9f3ccd 2235
3fbe7244 2236 if (!do_swap_account ||
3e32cb2e
JW
2237 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2238 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2239 goto done_restock;
3fbe7244 2240 if (do_swap_account)
3e32cb2e
JW
2241 page_counter_uncharge(&memcg->memsw, batch);
2242 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2243 } else {
3e32cb2e 2244 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2245 may_swap = false;
3fbe7244 2246 }
7a81b88c 2247
6539cc05
JW
2248 if (batch > nr_pages) {
2249 batch = nr_pages;
2250 goto retry;
2251 }
6d61ef40 2252
06b078fc
JW
2253 /*
2254 * Unlike in global OOM situations, memcg is not in a physical
2255 * memory shortage. Allow dying and OOM-killed tasks to
2256 * bypass the last charges so that they can exit quickly and
2257 * free their memory.
2258 */
2259 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2260 fatal_signal_pending(current) ||
2261 current->flags & PF_EXITING))
2262 goto bypass;
2263
2264 if (unlikely(task_in_memcg_oom(current)))
2265 goto nomem;
2266
6539cc05
JW
2267 if (!(gfp_mask & __GFP_WAIT))
2268 goto nomem;
4b534334 2269
241994ed
JW
2270 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2271
b70a2a21
JW
2272 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2273 gfp_mask, may_swap);
6539cc05 2274
61e02c74 2275 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2276 goto retry;
28c34c29 2277
b70a2a21 2278 if (!drained) {
6d3d6aa2 2279 drain_all_stock(mem_over_limit);
b70a2a21
JW
2280 drained = true;
2281 goto retry;
2282 }
2283
28c34c29
JW
2284 if (gfp_mask & __GFP_NORETRY)
2285 goto nomem;
6539cc05
JW
2286 /*
2287 * Even though the limit is exceeded at this point, reclaim
2288 * may have been able to free some pages. Retry the charge
2289 * before killing the task.
2290 *
2291 * Only for regular pages, though: huge pages are rather
2292 * unlikely to succeed so close to the limit, and we fall back
2293 * to regular pages anyway in case of failure.
2294 */
61e02c74 2295 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2296 goto retry;
2297 /*
2298 * At task move, charge accounts can be doubly counted. So, it's
2299 * better to wait until the end of task_move if something is going on.
2300 */
2301 if (mem_cgroup_wait_acct_move(mem_over_limit))
2302 goto retry;
2303
9b130619
JW
2304 if (nr_retries--)
2305 goto retry;
2306
06b078fc
JW
2307 if (gfp_mask & __GFP_NOFAIL)
2308 goto bypass;
2309
6539cc05
JW
2310 if (fatal_signal_pending(current))
2311 goto bypass;
2312
241994ed
JW
2313 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2314
61e02c74 2315 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2316nomem:
6d1fdc48 2317 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2318 return -ENOMEM;
867578cb 2319bypass:
ce00a967 2320 return -EINTR;
6539cc05
JW
2321
2322done_restock:
e8ea14cc 2323 css_get_many(&memcg->css, batch);
6539cc05
JW
2324 if (batch > nr_pages)
2325 refill_stock(memcg, batch - nr_pages);
7d638093
VD
2326 if (!(gfp_mask & __GFP_WAIT))
2327 goto done;
241994ed
JW
2328 /*
2329 * If the hierarchy is above the normal consumption range,
2330 * make the charging task trim their excess contribution.
2331 */
2332 do {
2333 if (page_counter_read(&memcg->memory) <= memcg->high)
2334 continue;
2335 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2336 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2337 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2338done:
05b84301 2339 return ret;
7a81b88c 2340}
8a9f3ccd 2341
00501b53 2342static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2343{
ce00a967
JW
2344 if (mem_cgroup_is_root(memcg))
2345 return;
2346
3e32cb2e 2347 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2348 if (do_swap_account)
3e32cb2e 2349 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2350
e8ea14cc 2351 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2352}
2353
0a31bc97
JW
2354/*
2355 * try_get_mem_cgroup_from_page - look up page's memcg association
2356 * @page: the page
2357 *
2358 * Look up, get a css reference, and return the memcg that owns @page.
2359 *
2360 * The page must be locked to prevent racing with swap-in and page
2361 * cache charges. If coming from an unlocked page table, the caller
2362 * must ensure the page is on the LRU or this can race with charging.
2363 */
e42d9d5d 2364struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2365{
29833315 2366 struct mem_cgroup *memcg;
a3b2d692 2367 unsigned short id;
b5a84319
KH
2368 swp_entry_t ent;
2369
309381fe 2370 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2371
1306a85a 2372 memcg = page->mem_cgroup;
29833315
JW
2373 if (memcg) {
2374 if (!css_tryget_online(&memcg->css))
c0ff4b85 2375 memcg = NULL;
e42d9d5d 2376 } else if (PageSwapCache(page)) {
3c776e64 2377 ent.val = page_private(page);
9fb4b7cc 2378 id = lookup_swap_cgroup_id(ent);
a3b2d692 2379 rcu_read_lock();
adbe427b 2380 memcg = mem_cgroup_from_id(id);
ec903c0c 2381 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2382 memcg = NULL;
a3b2d692 2383 rcu_read_unlock();
3c776e64 2384 }
c0ff4b85 2385 return memcg;
b5a84319
KH
2386}
2387
0a31bc97
JW
2388static void lock_page_lru(struct page *page, int *isolated)
2389{
2390 struct zone *zone = page_zone(page);
2391
2392 spin_lock_irq(&zone->lru_lock);
2393 if (PageLRU(page)) {
2394 struct lruvec *lruvec;
2395
2396 lruvec = mem_cgroup_page_lruvec(page, zone);
2397 ClearPageLRU(page);
2398 del_page_from_lru_list(page, lruvec, page_lru(page));
2399 *isolated = 1;
2400 } else
2401 *isolated = 0;
2402}
2403
2404static void unlock_page_lru(struct page *page, int isolated)
2405{
2406 struct zone *zone = page_zone(page);
2407
2408 if (isolated) {
2409 struct lruvec *lruvec;
2410
2411 lruvec = mem_cgroup_page_lruvec(page, zone);
2412 VM_BUG_ON_PAGE(PageLRU(page), page);
2413 SetPageLRU(page);
2414 add_page_to_lru_list(page, lruvec, page_lru(page));
2415 }
2416 spin_unlock_irq(&zone->lru_lock);
2417}
2418
00501b53 2419static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2420 bool lrucare)
7a81b88c 2421{
0a31bc97 2422 int isolated;
9ce70c02 2423
1306a85a 2424 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2425
2426 /*
2427 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2428 * may already be on some other mem_cgroup's LRU. Take care of it.
2429 */
0a31bc97
JW
2430 if (lrucare)
2431 lock_page_lru(page, &isolated);
9ce70c02 2432
0a31bc97
JW
2433 /*
2434 * Nobody should be changing or seriously looking at
1306a85a 2435 * page->mem_cgroup at this point:
0a31bc97
JW
2436 *
2437 * - the page is uncharged
2438 *
2439 * - the page is off-LRU
2440 *
2441 * - an anonymous fault has exclusive page access, except for
2442 * a locked page table
2443 *
2444 * - a page cache insertion, a swapin fault, or a migration
2445 * have the page locked
2446 */
1306a85a 2447 page->mem_cgroup = memcg;
9ce70c02 2448
0a31bc97
JW
2449 if (lrucare)
2450 unlock_page_lru(page, isolated);
7a81b88c 2451}
66e1707b 2452
7ae1e1d0 2453#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2454int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2455 unsigned long nr_pages)
7ae1e1d0 2456{
3e32cb2e 2457 struct page_counter *counter;
7ae1e1d0 2458 int ret = 0;
7ae1e1d0 2459
3e32cb2e
JW
2460 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2461 if (ret < 0)
7ae1e1d0
GC
2462 return ret;
2463
3e32cb2e 2464 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2465 if (ret == -EINTR) {
2466 /*
00501b53
JW
2467 * try_charge() chose to bypass to root due to OOM kill or
2468 * fatal signal. Since our only options are to either fail
2469 * the allocation or charge it to this cgroup, do it as a
2470 * temporary condition. But we can't fail. From a kmem/slab
2471 * perspective, the cache has already been selected, by
2472 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2473 * our minds.
2474 *
2475 * This condition will only trigger if the task entered
00501b53
JW
2476 * memcg_charge_kmem in a sane state, but was OOM-killed
2477 * during try_charge() above. Tasks that were already dying
2478 * when the allocation triggers should have been already
7ae1e1d0
GC
2479 * directed to the root cgroup in memcontrol.h
2480 */
3e32cb2e 2481 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2482 if (do_swap_account)
3e32cb2e 2483 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2484 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2485 ret = 0;
2486 } else if (ret)
3e32cb2e 2487 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2488
2489 return ret;
2490}
2491
dbf22eb6 2492void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2493{
3e32cb2e 2494 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2495 if (do_swap_account)
3e32cb2e 2496 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2497
64f21993 2498 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2499
e8ea14cc 2500 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2501}
2502
2633d7a0
GC
2503/*
2504 * helper for acessing a memcg's index. It will be used as an index in the
2505 * child cache array in kmem_cache, and also to derive its name. This function
2506 * will return -1 when this is not a kmem-limited memcg.
2507 */
2508int memcg_cache_id(struct mem_cgroup *memcg)
2509{
2510 return memcg ? memcg->kmemcg_id : -1;
2511}
2512
f3bb3043 2513static int memcg_alloc_cache_id(void)
55007d84 2514{
f3bb3043
VD
2515 int id, size;
2516 int err;
2517
dbcf73e2 2518 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2519 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2520 if (id < 0)
2521 return id;
55007d84 2522
dbcf73e2 2523 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2524 return id;
2525
2526 /*
2527 * There's no space for the new id in memcg_caches arrays,
2528 * so we have to grow them.
2529 */
05257a1a 2530 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2531
2532 size = 2 * (id + 1);
55007d84
GC
2533 if (size < MEMCG_CACHES_MIN_SIZE)
2534 size = MEMCG_CACHES_MIN_SIZE;
2535 else if (size > MEMCG_CACHES_MAX_SIZE)
2536 size = MEMCG_CACHES_MAX_SIZE;
2537
f3bb3043 2538 err = memcg_update_all_caches(size);
60d3fd32
VD
2539 if (!err)
2540 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2541 if (!err)
2542 memcg_nr_cache_ids = size;
2543
2544 up_write(&memcg_cache_ids_sem);
2545
f3bb3043 2546 if (err) {
dbcf73e2 2547 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2548 return err;
2549 }
2550 return id;
2551}
2552
2553static void memcg_free_cache_id(int id)
2554{
dbcf73e2 2555 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2556}
2557
d5b3cf71 2558struct memcg_kmem_cache_create_work {
5722d094
VD
2559 struct mem_cgroup *memcg;
2560 struct kmem_cache *cachep;
2561 struct work_struct work;
2562};
2563
d5b3cf71 2564static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2565{
d5b3cf71
VD
2566 struct memcg_kmem_cache_create_work *cw =
2567 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2568 struct mem_cgroup *memcg = cw->memcg;
2569 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2570
d5b3cf71 2571 memcg_create_kmem_cache(memcg, cachep);
bd673145 2572
5722d094 2573 css_put(&memcg->css);
d7f25f8a
GC
2574 kfree(cw);
2575}
2576
2577/*
2578 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2579 */
d5b3cf71
VD
2580static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2581 struct kmem_cache *cachep)
d7f25f8a 2582{
d5b3cf71 2583 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2584
776ed0f0 2585 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2586 if (!cw)
d7f25f8a 2587 return;
8135be5a
VD
2588
2589 css_get(&memcg->css);
d7f25f8a
GC
2590
2591 cw->memcg = memcg;
2592 cw->cachep = cachep;
d5b3cf71 2593 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2594
d7f25f8a
GC
2595 schedule_work(&cw->work);
2596}
2597
d5b3cf71
VD
2598static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2599 struct kmem_cache *cachep)
0e9d92f2
GC
2600{
2601 /*
2602 * We need to stop accounting when we kmalloc, because if the
2603 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2604 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2605 *
2606 * However, it is better to enclose the whole function. Depending on
2607 * the debugging options enabled, INIT_WORK(), for instance, can
2608 * trigger an allocation. This too, will make us recurse. Because at
2609 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2610 * the safest choice is to do it like this, wrapping the whole function.
2611 */
6f185c29 2612 current->memcg_kmem_skip_account = 1;
d5b3cf71 2613 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2614 current->memcg_kmem_skip_account = 0;
0e9d92f2 2615}
c67a8a68 2616
d7f25f8a
GC
2617/*
2618 * Return the kmem_cache we're supposed to use for a slab allocation.
2619 * We try to use the current memcg's version of the cache.
2620 *
2621 * If the cache does not exist yet, if we are the first user of it,
2622 * we either create it immediately, if possible, or create it asynchronously
2623 * in a workqueue.
2624 * In the latter case, we will let the current allocation go through with
2625 * the original cache.
2626 *
2627 * Can't be called in interrupt context or from kernel threads.
2628 * This function needs to be called with rcu_read_lock() held.
2629 */
056b7cce 2630struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2631{
2632 struct mem_cgroup *memcg;
959c8963 2633 struct kmem_cache *memcg_cachep;
2a4db7eb 2634 int kmemcg_id;
d7f25f8a 2635
f7ce3190 2636 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2637
9d100c5e 2638 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2639 return cachep;
2640
8135be5a 2641 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2642 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2643 if (kmemcg_id < 0)
ca0dde97 2644 goto out;
d7f25f8a 2645
2a4db7eb 2646 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2647 if (likely(memcg_cachep))
2648 return memcg_cachep;
ca0dde97
LZ
2649
2650 /*
2651 * If we are in a safe context (can wait, and not in interrupt
2652 * context), we could be be predictable and return right away.
2653 * This would guarantee that the allocation being performed
2654 * already belongs in the new cache.
2655 *
2656 * However, there are some clashes that can arrive from locking.
2657 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2658 * memcg_create_kmem_cache, this means no further allocation
2659 * could happen with the slab_mutex held. So it's better to
2660 * defer everything.
ca0dde97 2661 */
d5b3cf71 2662 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2663out:
8135be5a 2664 css_put(&memcg->css);
ca0dde97 2665 return cachep;
d7f25f8a 2666}
d7f25f8a 2667
8135be5a
VD
2668void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2669{
2670 if (!is_root_cache(cachep))
f7ce3190 2671 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2672}
2673
7ae1e1d0
GC
2674/*
2675 * We need to verify if the allocation against current->mm->owner's memcg is
2676 * possible for the given order. But the page is not allocated yet, so we'll
2677 * need a further commit step to do the final arrangements.
2678 *
2679 * It is possible for the task to switch cgroups in this mean time, so at
2680 * commit time, we can't rely on task conversion any longer. We'll then use
2681 * the handle argument to return to the caller which cgroup we should commit
2682 * against. We could also return the memcg directly and avoid the pointer
2683 * passing, but a boolean return value gives better semantics considering
2684 * the compiled-out case as well.
2685 *
2686 * Returning true means the allocation is possible.
2687 */
2688bool
2689__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2690{
2691 struct mem_cgroup *memcg;
2692 int ret;
2693
2694 *_memcg = NULL;
6d42c232 2695
df381975 2696 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2697
cf2b8fbf 2698 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2699 css_put(&memcg->css);
2700 return true;
2701 }
2702
3e32cb2e 2703 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2704 if (!ret)
2705 *_memcg = memcg;
7ae1e1d0
GC
2706
2707 css_put(&memcg->css);
2708 return (ret == 0);
2709}
2710
2711void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2712 int order)
2713{
7ae1e1d0
GC
2714 VM_BUG_ON(mem_cgroup_is_root(memcg));
2715
2716 /* The page allocation failed. Revert */
2717 if (!page) {
3e32cb2e 2718 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2719 return;
2720 }
1306a85a 2721 page->mem_cgroup = memcg;
7ae1e1d0
GC
2722}
2723
2724void __memcg_kmem_uncharge_pages(struct page *page, int order)
2725{
1306a85a 2726 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2727
7ae1e1d0
GC
2728 if (!memcg)
2729 return;
2730
309381fe 2731 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2732
3e32cb2e 2733 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2734 page->mem_cgroup = NULL;
7ae1e1d0 2735}
60d3fd32
VD
2736
2737struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2738{
2739 struct mem_cgroup *memcg = NULL;
2740 struct kmem_cache *cachep;
2741 struct page *page;
2742
2743 page = virt_to_head_page(ptr);
2744 if (PageSlab(page)) {
2745 cachep = page->slab_cache;
2746 if (!is_root_cache(cachep))
f7ce3190 2747 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2748 } else
2749 /* page allocated by alloc_kmem_pages */
2750 memcg = page->mem_cgroup;
2751
2752 return memcg;
2753}
7ae1e1d0
GC
2754#endif /* CONFIG_MEMCG_KMEM */
2755
ca3e0214
KH
2756#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2757
ca3e0214
KH
2758/*
2759 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2760 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2761 * charge/uncharge will be never happen and move_account() is done under
2762 * compound_lock(), so we don't have to take care of races.
ca3e0214 2763 */
e94c8a9c 2764void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2765{
e94c8a9c 2766 int i;
ca3e0214 2767
3d37c4a9
KH
2768 if (mem_cgroup_disabled())
2769 return;
b070e65c 2770
29833315 2771 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2772 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2773
1306a85a 2774 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2775 HPAGE_PMD_NR);
ca3e0214 2776}
12d27107 2777#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2778
c255a458 2779#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2780static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2781 bool charge)
d13d1443 2782{
0a31bc97
JW
2783 int val = (charge) ? 1 : -1;
2784 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2785}
02491447
DN
2786
2787/**
2788 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2789 * @entry: swap entry to be moved
2790 * @from: mem_cgroup which the entry is moved from
2791 * @to: mem_cgroup which the entry is moved to
2792 *
2793 * It succeeds only when the swap_cgroup's record for this entry is the same
2794 * as the mem_cgroup's id of @from.
2795 *
2796 * Returns 0 on success, -EINVAL on failure.
2797 *
3e32cb2e 2798 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2799 * both res and memsw, and called css_get().
2800 */
2801static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2802 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2803{
2804 unsigned short old_id, new_id;
2805
34c00c31
LZ
2806 old_id = mem_cgroup_id(from);
2807 new_id = mem_cgroup_id(to);
02491447
DN
2808
2809 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2810 mem_cgroup_swap_statistics(from, false);
483c30b5 2811 mem_cgroup_swap_statistics(to, true);
02491447
DN
2812 return 0;
2813 }
2814 return -EINVAL;
2815}
2816#else
2817static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2818 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2819{
2820 return -EINVAL;
2821}
8c7c6e34 2822#endif
d13d1443 2823
3e32cb2e 2824static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2825
d38d2a75 2826static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2827 unsigned long limit)
628f4235 2828{
3e32cb2e
JW
2829 unsigned long curusage;
2830 unsigned long oldusage;
2831 bool enlarge = false;
81d39c20 2832 int retry_count;
3e32cb2e 2833 int ret;
81d39c20
KH
2834
2835 /*
2836 * For keeping hierarchical_reclaim simple, how long we should retry
2837 * is depends on callers. We set our retry-count to be function
2838 * of # of children which we should visit in this loop.
2839 */
3e32cb2e
JW
2840 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2841 mem_cgroup_count_children(memcg);
81d39c20 2842
3e32cb2e 2843 oldusage = page_counter_read(&memcg->memory);
628f4235 2844
3e32cb2e 2845 do {
628f4235
KH
2846 if (signal_pending(current)) {
2847 ret = -EINTR;
2848 break;
2849 }
3e32cb2e
JW
2850
2851 mutex_lock(&memcg_limit_mutex);
2852 if (limit > memcg->memsw.limit) {
2853 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2854 ret = -EINVAL;
628f4235
KH
2855 break;
2856 }
3e32cb2e
JW
2857 if (limit > memcg->memory.limit)
2858 enlarge = true;
2859 ret = page_counter_limit(&memcg->memory, limit);
2860 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2861
2862 if (!ret)
2863 break;
2864
b70a2a21
JW
2865 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2866
3e32cb2e 2867 curusage = page_counter_read(&memcg->memory);
81d39c20 2868 /* Usage is reduced ? */
f894ffa8 2869 if (curusage >= oldusage)
81d39c20
KH
2870 retry_count--;
2871 else
2872 oldusage = curusage;
3e32cb2e
JW
2873 } while (retry_count);
2874
3c11ecf4
KH
2875 if (!ret && enlarge)
2876 memcg_oom_recover(memcg);
14797e23 2877
8c7c6e34
KH
2878 return ret;
2879}
2880
338c8431 2881static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2882 unsigned long limit)
8c7c6e34 2883{
3e32cb2e
JW
2884 unsigned long curusage;
2885 unsigned long oldusage;
2886 bool enlarge = false;
81d39c20 2887 int retry_count;
3e32cb2e 2888 int ret;
8c7c6e34 2889
81d39c20 2890 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2891 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2892 mem_cgroup_count_children(memcg);
2893
2894 oldusage = page_counter_read(&memcg->memsw);
2895
2896 do {
8c7c6e34
KH
2897 if (signal_pending(current)) {
2898 ret = -EINTR;
2899 break;
2900 }
3e32cb2e
JW
2901
2902 mutex_lock(&memcg_limit_mutex);
2903 if (limit < memcg->memory.limit) {
2904 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2905 ret = -EINVAL;
8c7c6e34
KH
2906 break;
2907 }
3e32cb2e
JW
2908 if (limit > memcg->memsw.limit)
2909 enlarge = true;
2910 ret = page_counter_limit(&memcg->memsw, limit);
2911 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2912
2913 if (!ret)
2914 break;
2915
b70a2a21
JW
2916 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2917
3e32cb2e 2918 curusage = page_counter_read(&memcg->memsw);
81d39c20 2919 /* Usage is reduced ? */
8c7c6e34 2920 if (curusage >= oldusage)
628f4235 2921 retry_count--;
81d39c20
KH
2922 else
2923 oldusage = curusage;
3e32cb2e
JW
2924 } while (retry_count);
2925
3c11ecf4
KH
2926 if (!ret && enlarge)
2927 memcg_oom_recover(memcg);
3e32cb2e 2928
628f4235
KH
2929 return ret;
2930}
2931
0608f43d
AM
2932unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2933 gfp_t gfp_mask,
2934 unsigned long *total_scanned)
2935{
2936 unsigned long nr_reclaimed = 0;
2937 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2938 unsigned long reclaimed;
2939 int loop = 0;
2940 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2941 unsigned long excess;
0608f43d
AM
2942 unsigned long nr_scanned;
2943
2944 if (order > 0)
2945 return 0;
2946
2947 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2948 /*
2949 * This loop can run a while, specially if mem_cgroup's continuously
2950 * keep exceeding their soft limit and putting the system under
2951 * pressure
2952 */
2953 do {
2954 if (next_mz)
2955 mz = next_mz;
2956 else
2957 mz = mem_cgroup_largest_soft_limit_node(mctz);
2958 if (!mz)
2959 break;
2960
2961 nr_scanned = 0;
2962 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2963 gfp_mask, &nr_scanned);
2964 nr_reclaimed += reclaimed;
2965 *total_scanned += nr_scanned;
0a31bc97 2966 spin_lock_irq(&mctz->lock);
bc2f2e7f 2967 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2968
2969 /*
2970 * If we failed to reclaim anything from this memory cgroup
2971 * it is time to move on to the next cgroup
2972 */
2973 next_mz = NULL;
bc2f2e7f
VD
2974 if (!reclaimed)
2975 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2976
3e32cb2e 2977 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2978 /*
2979 * One school of thought says that we should not add
2980 * back the node to the tree if reclaim returns 0.
2981 * But our reclaim could return 0, simply because due
2982 * to priority we are exposing a smaller subset of
2983 * memory to reclaim from. Consider this as a longer
2984 * term TODO.
2985 */
2986 /* If excess == 0, no tree ops */
cf2c8127 2987 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2988 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2989 css_put(&mz->memcg->css);
2990 loop++;
2991 /*
2992 * Could not reclaim anything and there are no more
2993 * mem cgroups to try or we seem to be looping without
2994 * reclaiming anything.
2995 */
2996 if (!nr_reclaimed &&
2997 (next_mz == NULL ||
2998 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2999 break;
3000 } while (!nr_reclaimed);
3001 if (next_mz)
3002 css_put(&next_mz->memcg->css);
3003 return nr_reclaimed;
3004}
3005
ea280e7b
TH
3006/*
3007 * Test whether @memcg has children, dead or alive. Note that this
3008 * function doesn't care whether @memcg has use_hierarchy enabled and
3009 * returns %true if there are child csses according to the cgroup
3010 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3011 */
b5f99b53
GC
3012static inline bool memcg_has_children(struct mem_cgroup *memcg)
3013{
ea280e7b
TH
3014 bool ret;
3015
696ac172 3016 /*
ea280e7b
TH
3017 * The lock does not prevent addition or deletion of children, but
3018 * it prevents a new child from being initialized based on this
3019 * parent in css_online(), so it's enough to decide whether
3020 * hierarchically inherited attributes can still be changed or not.
696ac172 3021 */
ea280e7b
TH
3022 lockdep_assert_held(&memcg_create_mutex);
3023
3024 rcu_read_lock();
3025 ret = css_next_child(NULL, &memcg->css);
3026 rcu_read_unlock();
3027 return ret;
b5f99b53
GC
3028}
3029
c26251f9
MH
3030/*
3031 * Reclaims as many pages from the given memcg as possible and moves
3032 * the rest to the parent.
3033 *
3034 * Caller is responsible for holding css reference for memcg.
3035 */
3036static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3037{
3038 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3039
c1e862c1
KH
3040 /* we call try-to-free pages for make this cgroup empty */
3041 lru_add_drain_all();
f817ed48 3042 /* try to free all pages in this cgroup */
3e32cb2e 3043 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3044 int progress;
c1e862c1 3045
c26251f9
MH
3046 if (signal_pending(current))
3047 return -EINTR;
3048
b70a2a21
JW
3049 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3050 GFP_KERNEL, true);
c1e862c1 3051 if (!progress) {
f817ed48 3052 nr_retries--;
c1e862c1 3053 /* maybe some writeback is necessary */
8aa7e847 3054 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3055 }
f817ed48
KH
3056
3057 }
ab5196c2
MH
3058
3059 return 0;
cc847582
KH
3060}
3061
6770c64e
TH
3062static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3063 char *buf, size_t nbytes,
3064 loff_t off)
c1e862c1 3065{
6770c64e 3066 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3067
d8423011
MH
3068 if (mem_cgroup_is_root(memcg))
3069 return -EINVAL;
6770c64e 3070 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3071}
3072
182446d0
TH
3073static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3074 struct cftype *cft)
18f59ea7 3075{
182446d0 3076 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3077}
3078
182446d0
TH
3079static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3080 struct cftype *cft, u64 val)
18f59ea7
BS
3081{
3082 int retval = 0;
182446d0 3083 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3084 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3085
0999821b 3086 mutex_lock(&memcg_create_mutex);
567fb435
GC
3087
3088 if (memcg->use_hierarchy == val)
3089 goto out;
3090
18f59ea7 3091 /*
af901ca1 3092 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3093 * in the child subtrees. If it is unset, then the change can
3094 * occur, provided the current cgroup has no children.
3095 *
3096 * For the root cgroup, parent_mem is NULL, we allow value to be
3097 * set if there are no children.
3098 */
c0ff4b85 3099 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3100 (val == 1 || val == 0)) {
ea280e7b 3101 if (!memcg_has_children(memcg))
c0ff4b85 3102 memcg->use_hierarchy = val;
18f59ea7
BS
3103 else
3104 retval = -EBUSY;
3105 } else
3106 retval = -EINVAL;
567fb435
GC
3107
3108out:
0999821b 3109 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3110
3111 return retval;
3112}
3113
3e32cb2e
JW
3114static unsigned long tree_stat(struct mem_cgroup *memcg,
3115 enum mem_cgroup_stat_index idx)
ce00a967
JW
3116{
3117 struct mem_cgroup *iter;
3118 long val = 0;
3119
3120 /* Per-cpu values can be negative, use a signed accumulator */
3121 for_each_mem_cgroup_tree(iter, memcg)
3122 val += mem_cgroup_read_stat(iter, idx);
3123
3124 if (val < 0) /* race ? */
3125 val = 0;
3126 return val;
3127}
3128
3129static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3130{
3131 u64 val;
3132
3e32cb2e
JW
3133 if (mem_cgroup_is_root(memcg)) {
3134 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3135 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3136 if (swap)
3137 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3138 } else {
ce00a967 3139 if (!swap)
3e32cb2e 3140 val = page_counter_read(&memcg->memory);
ce00a967 3141 else
3e32cb2e 3142 val = page_counter_read(&memcg->memsw);
ce00a967 3143 }
ce00a967
JW
3144 return val << PAGE_SHIFT;
3145}
3146
3e32cb2e
JW
3147enum {
3148 RES_USAGE,
3149 RES_LIMIT,
3150 RES_MAX_USAGE,
3151 RES_FAILCNT,
3152 RES_SOFT_LIMIT,
3153};
ce00a967 3154
791badbd 3155static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3156 struct cftype *cft)
8cdea7c0 3157{
182446d0 3158 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3159 struct page_counter *counter;
af36f906 3160
3e32cb2e 3161 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3162 case _MEM:
3e32cb2e
JW
3163 counter = &memcg->memory;
3164 break;
8c7c6e34 3165 case _MEMSWAP:
3e32cb2e
JW
3166 counter = &memcg->memsw;
3167 break;
510fc4e1 3168 case _KMEM:
3e32cb2e 3169 counter = &memcg->kmem;
510fc4e1 3170 break;
8c7c6e34
KH
3171 default:
3172 BUG();
8c7c6e34 3173 }
3e32cb2e
JW
3174
3175 switch (MEMFILE_ATTR(cft->private)) {
3176 case RES_USAGE:
3177 if (counter == &memcg->memory)
3178 return mem_cgroup_usage(memcg, false);
3179 if (counter == &memcg->memsw)
3180 return mem_cgroup_usage(memcg, true);
3181 return (u64)page_counter_read(counter) * PAGE_SIZE;
3182 case RES_LIMIT:
3183 return (u64)counter->limit * PAGE_SIZE;
3184 case RES_MAX_USAGE:
3185 return (u64)counter->watermark * PAGE_SIZE;
3186 case RES_FAILCNT:
3187 return counter->failcnt;
3188 case RES_SOFT_LIMIT:
3189 return (u64)memcg->soft_limit * PAGE_SIZE;
3190 default:
3191 BUG();
3192 }
8cdea7c0 3193}
510fc4e1 3194
510fc4e1 3195#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3196static int memcg_activate_kmem(struct mem_cgroup *memcg,
3197 unsigned long nr_pages)
d6441637
VD
3198{
3199 int err = 0;
3200 int memcg_id;
3201
2a4db7eb 3202 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 3203 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 3204 BUG_ON(memcg->kmem_acct_active);
d6441637 3205
510fc4e1
GC
3206 /*
3207 * For simplicity, we won't allow this to be disabled. It also can't
3208 * be changed if the cgroup has children already, or if tasks had
3209 * already joined.
3210 *
3211 * If tasks join before we set the limit, a person looking at
3212 * kmem.usage_in_bytes will have no way to determine when it took
3213 * place, which makes the value quite meaningless.
3214 *
3215 * After it first became limited, changes in the value of the limit are
3216 * of course permitted.
510fc4e1 3217 */
0999821b 3218 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3219 if (cgroup_has_tasks(memcg->css.cgroup) ||
3220 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3221 err = -EBUSY;
3222 mutex_unlock(&memcg_create_mutex);
3223 if (err)
3224 goto out;
510fc4e1 3225
f3bb3043 3226 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3227 if (memcg_id < 0) {
3228 err = memcg_id;
3229 goto out;
3230 }
3231
d6441637 3232 /*
900a38f0
VD
3233 * We couldn't have accounted to this cgroup, because it hasn't got
3234 * activated yet, so this should succeed.
d6441637 3235 */
3e32cb2e 3236 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3237 VM_BUG_ON(err);
3238
3239 static_key_slow_inc(&memcg_kmem_enabled_key);
3240 /*
900a38f0
VD
3241 * A memory cgroup is considered kmem-active as soon as it gets
3242 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3243 * guarantee no one starts accounting before all call sites are
3244 * patched.
3245 */
900a38f0 3246 memcg->kmemcg_id = memcg_id;
2788cf0c 3247 memcg->kmem_acct_activated = true;
2a4db7eb 3248 memcg->kmem_acct_active = true;
510fc4e1 3249out:
d6441637 3250 return err;
d6441637
VD
3251}
3252
d6441637 3253static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3254 unsigned long limit)
d6441637
VD
3255{
3256 int ret;
3257
3e32cb2e 3258 mutex_lock(&memcg_limit_mutex);
d6441637 3259 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3260 ret = memcg_activate_kmem(memcg, limit);
d6441637 3261 else
3e32cb2e
JW
3262 ret = page_counter_limit(&memcg->kmem, limit);
3263 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3264 return ret;
3265}
3266
55007d84 3267static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3268{
55007d84 3269 int ret = 0;
510fc4e1 3270 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3271
d6441637
VD
3272 if (!parent)
3273 return 0;
55007d84 3274
8c0145b6 3275 mutex_lock(&memcg_limit_mutex);
55007d84 3276 /*
d6441637
VD
3277 * If the parent cgroup is not kmem-active now, it cannot be activated
3278 * after this point, because it has at least one child already.
55007d84 3279 */
d6441637 3280 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3281 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3282 mutex_unlock(&memcg_limit_mutex);
55007d84 3283 return ret;
510fc4e1 3284}
d6441637
VD
3285#else
3286static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3287 unsigned long limit)
d6441637
VD
3288{
3289 return -EINVAL;
3290}
6d043990 3291#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3292
628f4235
KH
3293/*
3294 * The user of this function is...
3295 * RES_LIMIT.
3296 */
451af504
TH
3297static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3298 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3299{
451af504 3300 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3301 unsigned long nr_pages;
628f4235
KH
3302 int ret;
3303
451af504 3304 buf = strstrip(buf);
650c5e56 3305 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3306 if (ret)
3307 return ret;
af36f906 3308
3e32cb2e 3309 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3310 case RES_LIMIT:
4b3bde4c
BS
3311 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3312 ret = -EINVAL;
3313 break;
3314 }
3e32cb2e
JW
3315 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3316 case _MEM:
3317 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3318 break;
3e32cb2e
JW
3319 case _MEMSWAP:
3320 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3321 break;
3e32cb2e
JW
3322 case _KMEM:
3323 ret = memcg_update_kmem_limit(memcg, nr_pages);
3324 break;
3325 }
296c81d8 3326 break;
3e32cb2e
JW
3327 case RES_SOFT_LIMIT:
3328 memcg->soft_limit = nr_pages;
3329 ret = 0;
628f4235
KH
3330 break;
3331 }
451af504 3332 return ret ?: nbytes;
8cdea7c0
BS
3333}
3334
6770c64e
TH
3335static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3336 size_t nbytes, loff_t off)
c84872e1 3337{
6770c64e 3338 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3339 struct page_counter *counter;
c84872e1 3340
3e32cb2e
JW
3341 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3342 case _MEM:
3343 counter = &memcg->memory;
3344 break;
3345 case _MEMSWAP:
3346 counter = &memcg->memsw;
3347 break;
3348 case _KMEM:
3349 counter = &memcg->kmem;
3350 break;
3351 default:
3352 BUG();
3353 }
af36f906 3354
3e32cb2e 3355 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3356 case RES_MAX_USAGE:
3e32cb2e 3357 page_counter_reset_watermark(counter);
29f2a4da
PE
3358 break;
3359 case RES_FAILCNT:
3e32cb2e 3360 counter->failcnt = 0;
29f2a4da 3361 break;
3e32cb2e
JW
3362 default:
3363 BUG();
29f2a4da 3364 }
f64c3f54 3365
6770c64e 3366 return nbytes;
c84872e1
PE
3367}
3368
182446d0 3369static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3370 struct cftype *cft)
3371{
182446d0 3372 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3373}
3374
02491447 3375#ifdef CONFIG_MMU
182446d0 3376static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3377 struct cftype *cft, u64 val)
3378{
182446d0 3379 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3380
1dfab5ab 3381 if (val & ~MOVE_MASK)
7dc74be0 3382 return -EINVAL;
ee5e8472 3383
7dc74be0 3384 /*
ee5e8472
GC
3385 * No kind of locking is needed in here, because ->can_attach() will
3386 * check this value once in the beginning of the process, and then carry
3387 * on with stale data. This means that changes to this value will only
3388 * affect task migrations starting after the change.
7dc74be0 3389 */
c0ff4b85 3390 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3391 return 0;
3392}
02491447 3393#else
182446d0 3394static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3395 struct cftype *cft, u64 val)
3396{
3397 return -ENOSYS;
3398}
3399#endif
7dc74be0 3400
406eb0c9 3401#ifdef CONFIG_NUMA
2da8ca82 3402static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3403{
25485de6
GT
3404 struct numa_stat {
3405 const char *name;
3406 unsigned int lru_mask;
3407 };
3408
3409 static const struct numa_stat stats[] = {
3410 { "total", LRU_ALL },
3411 { "file", LRU_ALL_FILE },
3412 { "anon", LRU_ALL_ANON },
3413 { "unevictable", BIT(LRU_UNEVICTABLE) },
3414 };
3415 const struct numa_stat *stat;
406eb0c9 3416 int nid;
25485de6 3417 unsigned long nr;
2da8ca82 3418 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3419
25485de6
GT
3420 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3421 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3422 seq_printf(m, "%s=%lu", stat->name, nr);
3423 for_each_node_state(nid, N_MEMORY) {
3424 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3425 stat->lru_mask);
3426 seq_printf(m, " N%d=%lu", nid, nr);
3427 }
3428 seq_putc(m, '\n');
406eb0c9 3429 }
406eb0c9 3430
071aee13
YH
3431 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3432 struct mem_cgroup *iter;
3433
3434 nr = 0;
3435 for_each_mem_cgroup_tree(iter, memcg)
3436 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3437 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3438 for_each_node_state(nid, N_MEMORY) {
3439 nr = 0;
3440 for_each_mem_cgroup_tree(iter, memcg)
3441 nr += mem_cgroup_node_nr_lru_pages(
3442 iter, nid, stat->lru_mask);
3443 seq_printf(m, " N%d=%lu", nid, nr);
3444 }
3445 seq_putc(m, '\n');
406eb0c9 3446 }
406eb0c9 3447
406eb0c9
YH
3448 return 0;
3449}
3450#endif /* CONFIG_NUMA */
3451
2da8ca82 3452static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3453{
2da8ca82 3454 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3455 unsigned long memory, memsw;
af7c4b0e
JW
3456 struct mem_cgroup *mi;
3457 unsigned int i;
406eb0c9 3458
0ca44b14
GT
3459 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3460 MEM_CGROUP_STAT_NSTATS);
3461 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3462 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3463 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3464
af7c4b0e 3465 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3466 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3467 continue;
af7c4b0e
JW
3468 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3469 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3470 }
7b854121 3471
af7c4b0e
JW
3472 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3473 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3474 mem_cgroup_read_events(memcg, i));
3475
3476 for (i = 0; i < NR_LRU_LISTS; i++)
3477 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3478 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3479
14067bb3 3480 /* Hierarchical information */
3e32cb2e
JW
3481 memory = memsw = PAGE_COUNTER_MAX;
3482 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3483 memory = min(memory, mi->memory.limit);
3484 memsw = min(memsw, mi->memsw.limit);
fee7b548 3485 }
3e32cb2e
JW
3486 seq_printf(m, "hierarchical_memory_limit %llu\n",
3487 (u64)memory * PAGE_SIZE);
3488 if (do_swap_account)
3489 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3490 (u64)memsw * PAGE_SIZE);
7f016ee8 3491
af7c4b0e
JW
3492 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3493 long long val = 0;
3494
bff6bb83 3495 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3496 continue;
af7c4b0e
JW
3497 for_each_mem_cgroup_tree(mi, memcg)
3498 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3499 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3500 }
3501
3502 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3503 unsigned long long val = 0;
3504
3505 for_each_mem_cgroup_tree(mi, memcg)
3506 val += mem_cgroup_read_events(mi, i);
3507 seq_printf(m, "total_%s %llu\n",
3508 mem_cgroup_events_names[i], val);
3509 }
3510
3511 for (i = 0; i < NR_LRU_LISTS; i++) {
3512 unsigned long long val = 0;
3513
3514 for_each_mem_cgroup_tree(mi, memcg)
3515 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3516 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3517 }
14067bb3 3518
7f016ee8 3519#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3520 {
3521 int nid, zid;
3522 struct mem_cgroup_per_zone *mz;
89abfab1 3523 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3524 unsigned long recent_rotated[2] = {0, 0};
3525 unsigned long recent_scanned[2] = {0, 0};
3526
3527 for_each_online_node(nid)
3528 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3529 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3530 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3531
89abfab1
HD
3532 recent_rotated[0] += rstat->recent_rotated[0];
3533 recent_rotated[1] += rstat->recent_rotated[1];
3534 recent_scanned[0] += rstat->recent_scanned[0];
3535 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3536 }
78ccf5b5
JW
3537 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3538 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3539 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3540 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3541 }
3542#endif
3543
d2ceb9b7
KH
3544 return 0;
3545}
3546
182446d0
TH
3547static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3548 struct cftype *cft)
a7885eb8 3549{
182446d0 3550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3551
1f4c025b 3552 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3553}
3554
182446d0
TH
3555static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3556 struct cftype *cft, u64 val)
a7885eb8 3557{
182446d0 3558 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3559
3dae7fec 3560 if (val > 100)
a7885eb8
KM
3561 return -EINVAL;
3562
14208b0e 3563 if (css->parent)
3dae7fec
JW
3564 memcg->swappiness = val;
3565 else
3566 vm_swappiness = val;
068b38c1 3567
a7885eb8
KM
3568 return 0;
3569}
3570
2e72b634
KS
3571static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3572{
3573 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3574 unsigned long usage;
2e72b634
KS
3575 int i;
3576
3577 rcu_read_lock();
3578 if (!swap)
2c488db2 3579 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3580 else
2c488db2 3581 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3582
3583 if (!t)
3584 goto unlock;
3585
ce00a967 3586 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3587
3588 /*
748dad36 3589 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3590 * If it's not true, a threshold was crossed after last
3591 * call of __mem_cgroup_threshold().
3592 */
5407a562 3593 i = t->current_threshold;
2e72b634
KS
3594
3595 /*
3596 * Iterate backward over array of thresholds starting from
3597 * current_threshold and check if a threshold is crossed.
3598 * If none of thresholds below usage is crossed, we read
3599 * only one element of the array here.
3600 */
3601 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3602 eventfd_signal(t->entries[i].eventfd, 1);
3603
3604 /* i = current_threshold + 1 */
3605 i++;
3606
3607 /*
3608 * Iterate forward over array of thresholds starting from
3609 * current_threshold+1 and check if a threshold is crossed.
3610 * If none of thresholds above usage is crossed, we read
3611 * only one element of the array here.
3612 */
3613 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3614 eventfd_signal(t->entries[i].eventfd, 1);
3615
3616 /* Update current_threshold */
5407a562 3617 t->current_threshold = i - 1;
2e72b634
KS
3618unlock:
3619 rcu_read_unlock();
3620}
3621
3622static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3623{
ad4ca5f4
KS
3624 while (memcg) {
3625 __mem_cgroup_threshold(memcg, false);
3626 if (do_swap_account)
3627 __mem_cgroup_threshold(memcg, true);
3628
3629 memcg = parent_mem_cgroup(memcg);
3630 }
2e72b634
KS
3631}
3632
3633static int compare_thresholds(const void *a, const void *b)
3634{
3635 const struct mem_cgroup_threshold *_a = a;
3636 const struct mem_cgroup_threshold *_b = b;
3637
2bff24a3
GT
3638 if (_a->threshold > _b->threshold)
3639 return 1;
3640
3641 if (_a->threshold < _b->threshold)
3642 return -1;
3643
3644 return 0;
2e72b634
KS
3645}
3646
c0ff4b85 3647static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3648{
3649 struct mem_cgroup_eventfd_list *ev;
3650
2bcf2e92
MH
3651 spin_lock(&memcg_oom_lock);
3652
c0ff4b85 3653 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3654 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3655
3656 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3657 return 0;
3658}
3659
c0ff4b85 3660static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3661{
7d74b06f
KH
3662 struct mem_cgroup *iter;
3663
c0ff4b85 3664 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3665 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3666}
3667
59b6f873 3668static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3669 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3670{
2c488db2
KS
3671 struct mem_cgroup_thresholds *thresholds;
3672 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3673 unsigned long threshold;
3674 unsigned long usage;
2c488db2 3675 int i, size, ret;
2e72b634 3676
650c5e56 3677 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3678 if (ret)
3679 return ret;
3680
3681 mutex_lock(&memcg->thresholds_lock);
2c488db2 3682
05b84301 3683 if (type == _MEM) {
2c488db2 3684 thresholds = &memcg->thresholds;
ce00a967 3685 usage = mem_cgroup_usage(memcg, false);
05b84301 3686 } else if (type == _MEMSWAP) {
2c488db2 3687 thresholds = &memcg->memsw_thresholds;
ce00a967 3688 usage = mem_cgroup_usage(memcg, true);
05b84301 3689 } else
2e72b634
KS
3690 BUG();
3691
2e72b634 3692 /* Check if a threshold crossed before adding a new one */
2c488db2 3693 if (thresholds->primary)
2e72b634
KS
3694 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3695
2c488db2 3696 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3697
3698 /* Allocate memory for new array of thresholds */
2c488db2 3699 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3700 GFP_KERNEL);
2c488db2 3701 if (!new) {
2e72b634
KS
3702 ret = -ENOMEM;
3703 goto unlock;
3704 }
2c488db2 3705 new->size = size;
2e72b634
KS
3706
3707 /* Copy thresholds (if any) to new array */
2c488db2
KS
3708 if (thresholds->primary) {
3709 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3710 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3711 }
3712
2e72b634 3713 /* Add new threshold */
2c488db2
KS
3714 new->entries[size - 1].eventfd = eventfd;
3715 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3716
3717 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3718 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3719 compare_thresholds, NULL);
3720
3721 /* Find current threshold */
2c488db2 3722 new->current_threshold = -1;
2e72b634 3723 for (i = 0; i < size; i++) {
748dad36 3724 if (new->entries[i].threshold <= usage) {
2e72b634 3725 /*
2c488db2
KS
3726 * new->current_threshold will not be used until
3727 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3728 * it here.
3729 */
2c488db2 3730 ++new->current_threshold;
748dad36
SZ
3731 } else
3732 break;
2e72b634
KS
3733 }
3734
2c488db2
KS
3735 /* Free old spare buffer and save old primary buffer as spare */
3736 kfree(thresholds->spare);
3737 thresholds->spare = thresholds->primary;
3738
3739 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3740
907860ed 3741 /* To be sure that nobody uses thresholds */
2e72b634
KS
3742 synchronize_rcu();
3743
2e72b634
KS
3744unlock:
3745 mutex_unlock(&memcg->thresholds_lock);
3746
3747 return ret;
3748}
3749
59b6f873 3750static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3751 struct eventfd_ctx *eventfd, const char *args)
3752{
59b6f873 3753 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3754}
3755
59b6f873 3756static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3757 struct eventfd_ctx *eventfd, const char *args)
3758{
59b6f873 3759 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3760}
3761
59b6f873 3762static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3763 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3764{
2c488db2
KS
3765 struct mem_cgroup_thresholds *thresholds;
3766 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3767 unsigned long usage;
2c488db2 3768 int i, j, size;
2e72b634
KS
3769
3770 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3771
3772 if (type == _MEM) {
2c488db2 3773 thresholds = &memcg->thresholds;
ce00a967 3774 usage = mem_cgroup_usage(memcg, false);
05b84301 3775 } else if (type == _MEMSWAP) {
2c488db2 3776 thresholds = &memcg->memsw_thresholds;
ce00a967 3777 usage = mem_cgroup_usage(memcg, true);
05b84301 3778 } else
2e72b634
KS
3779 BUG();
3780
371528ca
AV
3781 if (!thresholds->primary)
3782 goto unlock;
3783
2e72b634
KS
3784 /* Check if a threshold crossed before removing */
3785 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3786
3787 /* Calculate new number of threshold */
2c488db2
KS
3788 size = 0;
3789 for (i = 0; i < thresholds->primary->size; i++) {
3790 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3791 size++;
3792 }
3793
2c488db2 3794 new = thresholds->spare;
907860ed 3795
2e72b634
KS
3796 /* Set thresholds array to NULL if we don't have thresholds */
3797 if (!size) {
2c488db2
KS
3798 kfree(new);
3799 new = NULL;
907860ed 3800 goto swap_buffers;
2e72b634
KS
3801 }
3802
2c488db2 3803 new->size = size;
2e72b634
KS
3804
3805 /* Copy thresholds and find current threshold */
2c488db2
KS
3806 new->current_threshold = -1;
3807 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3808 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3809 continue;
3810
2c488db2 3811 new->entries[j] = thresholds->primary->entries[i];
748dad36 3812 if (new->entries[j].threshold <= usage) {
2e72b634 3813 /*
2c488db2 3814 * new->current_threshold will not be used
2e72b634
KS
3815 * until rcu_assign_pointer(), so it's safe to increment
3816 * it here.
3817 */
2c488db2 3818 ++new->current_threshold;
2e72b634
KS
3819 }
3820 j++;
3821 }
3822
907860ed 3823swap_buffers:
2c488db2
KS
3824 /* Swap primary and spare array */
3825 thresholds->spare = thresholds->primary;
8c757763
SZ
3826 /* If all events are unregistered, free the spare array */
3827 if (!new) {
3828 kfree(thresholds->spare);
3829 thresholds->spare = NULL;
3830 }
3831
2c488db2 3832 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3833
907860ed 3834 /* To be sure that nobody uses thresholds */
2e72b634 3835 synchronize_rcu();
371528ca 3836unlock:
2e72b634 3837 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3838}
c1e862c1 3839
59b6f873 3840static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3841 struct eventfd_ctx *eventfd)
3842{
59b6f873 3843 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3844}
3845
59b6f873 3846static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3847 struct eventfd_ctx *eventfd)
3848{
59b6f873 3849 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3850}
3851
59b6f873 3852static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3853 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3854{
9490ff27 3855 struct mem_cgroup_eventfd_list *event;
9490ff27 3856
9490ff27
KH
3857 event = kmalloc(sizeof(*event), GFP_KERNEL);
3858 if (!event)
3859 return -ENOMEM;
3860
1af8efe9 3861 spin_lock(&memcg_oom_lock);
9490ff27
KH
3862
3863 event->eventfd = eventfd;
3864 list_add(&event->list, &memcg->oom_notify);
3865
3866 /* already in OOM ? */
79dfdacc 3867 if (atomic_read(&memcg->under_oom))
9490ff27 3868 eventfd_signal(eventfd, 1);
1af8efe9 3869 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3870
3871 return 0;
3872}
3873
59b6f873 3874static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3875 struct eventfd_ctx *eventfd)
9490ff27 3876{
9490ff27 3877 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3878
1af8efe9 3879 spin_lock(&memcg_oom_lock);
9490ff27 3880
c0ff4b85 3881 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3882 if (ev->eventfd == eventfd) {
3883 list_del(&ev->list);
3884 kfree(ev);
3885 }
3886 }
3887
1af8efe9 3888 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3889}
3890
2da8ca82 3891static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3892{
2da8ca82 3893 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3894
791badbd
TH
3895 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3896 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
3897 return 0;
3898}
3899
182446d0 3900static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3901 struct cftype *cft, u64 val)
3902{
182446d0 3903 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3904
3905 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3906 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3907 return -EINVAL;
3908
c0ff4b85 3909 memcg->oom_kill_disable = val;
4d845ebf 3910 if (!val)
c0ff4b85 3911 memcg_oom_recover(memcg);
3dae7fec 3912
3c11ecf4
KH
3913 return 0;
3914}
3915
c255a458 3916#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3917static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3918{
55007d84
GC
3919 int ret;
3920
55007d84
GC
3921 ret = memcg_propagate_kmem(memcg);
3922 if (ret)
3923 return ret;
2633d7a0 3924
1d62e436 3925 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3926}
e5671dfa 3927
2a4db7eb
VD
3928static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3929{
2788cf0c
VD
3930 struct cgroup_subsys_state *css;
3931 struct mem_cgroup *parent, *child;
3932 int kmemcg_id;
3933
2a4db7eb
VD
3934 if (!memcg->kmem_acct_active)
3935 return;
3936
3937 /*
3938 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3939 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3940 * guarantees no cache will be created for this cgroup after we are
3941 * done (see memcg_create_kmem_cache()).
3942 */
3943 memcg->kmem_acct_active = false;
3944
3945 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3946
3947 kmemcg_id = memcg->kmemcg_id;
3948 BUG_ON(kmemcg_id < 0);
3949
3950 parent = parent_mem_cgroup(memcg);
3951 if (!parent)
3952 parent = root_mem_cgroup;
3953
3954 /*
3955 * Change kmemcg_id of this cgroup and all its descendants to the
3956 * parent's id, and then move all entries from this cgroup's list_lrus
3957 * to ones of the parent. After we have finished, all list_lrus
3958 * corresponding to this cgroup are guaranteed to remain empty. The
3959 * ordering is imposed by list_lru_node->lock taken by
3960 * memcg_drain_all_list_lrus().
3961 */
3962 css_for_each_descendant_pre(css, &memcg->css) {
3963 child = mem_cgroup_from_css(css);
3964 BUG_ON(child->kmemcg_id != kmemcg_id);
3965 child->kmemcg_id = parent->kmemcg_id;
3966 if (!memcg->use_hierarchy)
3967 break;
3968 }
3969 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3970
3971 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3972}
3973
10d5ebf4 3974static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3975{
f48b80a5
VD
3976 if (memcg->kmem_acct_activated) {
3977 memcg_destroy_kmem_caches(memcg);
3978 static_key_slow_dec(&memcg_kmem_enabled_key);
3979 WARN_ON(page_counter_read(&memcg->kmem));
3980 }
1d62e436 3981 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3982}
e5671dfa 3983#else
cbe128e3 3984static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3985{
3986 return 0;
3987}
d1a4c0b3 3988
2a4db7eb
VD
3989static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3990{
3991}
3992
10d5ebf4
LZ
3993static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3994{
3995}
e5671dfa
GC
3996#endif
3997
3bc942f3
TH
3998/*
3999 * DO NOT USE IN NEW FILES.
4000 *
4001 * "cgroup.event_control" implementation.
4002 *
4003 * This is way over-engineered. It tries to support fully configurable
4004 * events for each user. Such level of flexibility is completely
4005 * unnecessary especially in the light of the planned unified hierarchy.
4006 *
4007 * Please deprecate this and replace with something simpler if at all
4008 * possible.
4009 */
4010
79bd9814
TH
4011/*
4012 * Unregister event and free resources.
4013 *
4014 * Gets called from workqueue.
4015 */
3bc942f3 4016static void memcg_event_remove(struct work_struct *work)
79bd9814 4017{
3bc942f3
TH
4018 struct mem_cgroup_event *event =
4019 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4020 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4021
4022 remove_wait_queue(event->wqh, &event->wait);
4023
59b6f873 4024 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4025
4026 /* Notify userspace the event is going away. */
4027 eventfd_signal(event->eventfd, 1);
4028
4029 eventfd_ctx_put(event->eventfd);
4030 kfree(event);
59b6f873 4031 css_put(&memcg->css);
79bd9814
TH
4032}
4033
4034/*
4035 * Gets called on POLLHUP on eventfd when user closes it.
4036 *
4037 * Called with wqh->lock held and interrupts disabled.
4038 */
3bc942f3
TH
4039static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4040 int sync, void *key)
79bd9814 4041{
3bc942f3
TH
4042 struct mem_cgroup_event *event =
4043 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4044 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4045 unsigned long flags = (unsigned long)key;
4046
4047 if (flags & POLLHUP) {
4048 /*
4049 * If the event has been detached at cgroup removal, we
4050 * can simply return knowing the other side will cleanup
4051 * for us.
4052 *
4053 * We can't race against event freeing since the other
4054 * side will require wqh->lock via remove_wait_queue(),
4055 * which we hold.
4056 */
fba94807 4057 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4058 if (!list_empty(&event->list)) {
4059 list_del_init(&event->list);
4060 /*
4061 * We are in atomic context, but cgroup_event_remove()
4062 * may sleep, so we have to call it in workqueue.
4063 */
4064 schedule_work(&event->remove);
4065 }
fba94807 4066 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4067 }
4068
4069 return 0;
4070}
4071
3bc942f3 4072static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4073 wait_queue_head_t *wqh, poll_table *pt)
4074{
3bc942f3
TH
4075 struct mem_cgroup_event *event =
4076 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4077
4078 event->wqh = wqh;
4079 add_wait_queue(wqh, &event->wait);
4080}
4081
4082/*
3bc942f3
TH
4083 * DO NOT USE IN NEW FILES.
4084 *
79bd9814
TH
4085 * Parse input and register new cgroup event handler.
4086 *
4087 * Input must be in format '<event_fd> <control_fd> <args>'.
4088 * Interpretation of args is defined by control file implementation.
4089 */
451af504
TH
4090static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4091 char *buf, size_t nbytes, loff_t off)
79bd9814 4092{
451af504 4093 struct cgroup_subsys_state *css = of_css(of);
fba94807 4094 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4095 struct mem_cgroup_event *event;
79bd9814
TH
4096 struct cgroup_subsys_state *cfile_css;
4097 unsigned int efd, cfd;
4098 struct fd efile;
4099 struct fd cfile;
fba94807 4100 const char *name;
79bd9814
TH
4101 char *endp;
4102 int ret;
4103
451af504
TH
4104 buf = strstrip(buf);
4105
4106 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4107 if (*endp != ' ')
4108 return -EINVAL;
451af504 4109 buf = endp + 1;
79bd9814 4110
451af504 4111 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4112 if ((*endp != ' ') && (*endp != '\0'))
4113 return -EINVAL;
451af504 4114 buf = endp + 1;
79bd9814
TH
4115
4116 event = kzalloc(sizeof(*event), GFP_KERNEL);
4117 if (!event)
4118 return -ENOMEM;
4119
59b6f873 4120 event->memcg = memcg;
79bd9814 4121 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4122 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4123 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4124 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4125
4126 efile = fdget(efd);
4127 if (!efile.file) {
4128 ret = -EBADF;
4129 goto out_kfree;
4130 }
4131
4132 event->eventfd = eventfd_ctx_fileget(efile.file);
4133 if (IS_ERR(event->eventfd)) {
4134 ret = PTR_ERR(event->eventfd);
4135 goto out_put_efile;
4136 }
4137
4138 cfile = fdget(cfd);
4139 if (!cfile.file) {
4140 ret = -EBADF;
4141 goto out_put_eventfd;
4142 }
4143
4144 /* the process need read permission on control file */
4145 /* AV: shouldn't we check that it's been opened for read instead? */
4146 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4147 if (ret < 0)
4148 goto out_put_cfile;
4149
fba94807
TH
4150 /*
4151 * Determine the event callbacks and set them in @event. This used
4152 * to be done via struct cftype but cgroup core no longer knows
4153 * about these events. The following is crude but the whole thing
4154 * is for compatibility anyway.
3bc942f3
TH
4155 *
4156 * DO NOT ADD NEW FILES.
fba94807 4157 */
b583043e 4158 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4159
4160 if (!strcmp(name, "memory.usage_in_bytes")) {
4161 event->register_event = mem_cgroup_usage_register_event;
4162 event->unregister_event = mem_cgroup_usage_unregister_event;
4163 } else if (!strcmp(name, "memory.oom_control")) {
4164 event->register_event = mem_cgroup_oom_register_event;
4165 event->unregister_event = mem_cgroup_oom_unregister_event;
4166 } else if (!strcmp(name, "memory.pressure_level")) {
4167 event->register_event = vmpressure_register_event;
4168 event->unregister_event = vmpressure_unregister_event;
4169 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4170 event->register_event = memsw_cgroup_usage_register_event;
4171 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4172 } else {
4173 ret = -EINVAL;
4174 goto out_put_cfile;
4175 }
4176
79bd9814 4177 /*
b5557c4c
TH
4178 * Verify @cfile should belong to @css. Also, remaining events are
4179 * automatically removed on cgroup destruction but the removal is
4180 * asynchronous, so take an extra ref on @css.
79bd9814 4181 */
b583043e 4182 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4183 &memory_cgrp_subsys);
79bd9814 4184 ret = -EINVAL;
5a17f543 4185 if (IS_ERR(cfile_css))
79bd9814 4186 goto out_put_cfile;
5a17f543
TH
4187 if (cfile_css != css) {
4188 css_put(cfile_css);
79bd9814 4189 goto out_put_cfile;
5a17f543 4190 }
79bd9814 4191
451af504 4192 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4193 if (ret)
4194 goto out_put_css;
4195
4196 efile.file->f_op->poll(efile.file, &event->pt);
4197
fba94807
TH
4198 spin_lock(&memcg->event_list_lock);
4199 list_add(&event->list, &memcg->event_list);
4200 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4201
4202 fdput(cfile);
4203 fdput(efile);
4204
451af504 4205 return nbytes;
79bd9814
TH
4206
4207out_put_css:
b5557c4c 4208 css_put(css);
79bd9814
TH
4209out_put_cfile:
4210 fdput(cfile);
4211out_put_eventfd:
4212 eventfd_ctx_put(event->eventfd);
4213out_put_efile:
4214 fdput(efile);
4215out_kfree:
4216 kfree(event);
4217
4218 return ret;
4219}
4220
241994ed 4221static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4222 {
0eea1030 4223 .name = "usage_in_bytes",
8c7c6e34 4224 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4225 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4226 },
c84872e1
PE
4227 {
4228 .name = "max_usage_in_bytes",
8c7c6e34 4229 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4230 .write = mem_cgroup_reset,
791badbd 4231 .read_u64 = mem_cgroup_read_u64,
c84872e1 4232 },
8cdea7c0 4233 {
0eea1030 4234 .name = "limit_in_bytes",
8c7c6e34 4235 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4236 .write = mem_cgroup_write,
791badbd 4237 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4238 },
296c81d8
BS
4239 {
4240 .name = "soft_limit_in_bytes",
4241 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4242 .write = mem_cgroup_write,
791badbd 4243 .read_u64 = mem_cgroup_read_u64,
296c81d8 4244 },
8cdea7c0
BS
4245 {
4246 .name = "failcnt",
8c7c6e34 4247 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4248 .write = mem_cgroup_reset,
791badbd 4249 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4250 },
d2ceb9b7
KH
4251 {
4252 .name = "stat",
2da8ca82 4253 .seq_show = memcg_stat_show,
d2ceb9b7 4254 },
c1e862c1
KH
4255 {
4256 .name = "force_empty",
6770c64e 4257 .write = mem_cgroup_force_empty_write,
c1e862c1 4258 },
18f59ea7
BS
4259 {
4260 .name = "use_hierarchy",
4261 .write_u64 = mem_cgroup_hierarchy_write,
4262 .read_u64 = mem_cgroup_hierarchy_read,
4263 },
79bd9814 4264 {
3bc942f3 4265 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4266 .write = memcg_write_event_control,
79bd9814
TH
4267 .flags = CFTYPE_NO_PREFIX,
4268 .mode = S_IWUGO,
4269 },
a7885eb8
KM
4270 {
4271 .name = "swappiness",
4272 .read_u64 = mem_cgroup_swappiness_read,
4273 .write_u64 = mem_cgroup_swappiness_write,
4274 },
7dc74be0
DN
4275 {
4276 .name = "move_charge_at_immigrate",
4277 .read_u64 = mem_cgroup_move_charge_read,
4278 .write_u64 = mem_cgroup_move_charge_write,
4279 },
9490ff27
KH
4280 {
4281 .name = "oom_control",
2da8ca82 4282 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4283 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4284 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4285 },
70ddf637
AV
4286 {
4287 .name = "pressure_level",
70ddf637 4288 },
406eb0c9
YH
4289#ifdef CONFIG_NUMA
4290 {
4291 .name = "numa_stat",
2da8ca82 4292 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4293 },
4294#endif
510fc4e1
GC
4295#ifdef CONFIG_MEMCG_KMEM
4296 {
4297 .name = "kmem.limit_in_bytes",
4298 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4299 .write = mem_cgroup_write,
791badbd 4300 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4301 },
4302 {
4303 .name = "kmem.usage_in_bytes",
4304 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4305 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4306 },
4307 {
4308 .name = "kmem.failcnt",
4309 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4310 .write = mem_cgroup_reset,
791badbd 4311 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4312 },
4313 {
4314 .name = "kmem.max_usage_in_bytes",
4315 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4316 .write = mem_cgroup_reset,
791badbd 4317 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4318 },
749c5415
GC
4319#ifdef CONFIG_SLABINFO
4320 {
4321 .name = "kmem.slabinfo",
b047501c
VD
4322 .seq_start = slab_start,
4323 .seq_next = slab_next,
4324 .seq_stop = slab_stop,
4325 .seq_show = memcg_slab_show,
749c5415
GC
4326 },
4327#endif
8c7c6e34 4328#endif
6bc10349 4329 { }, /* terminate */
af36f906 4330};
8c7c6e34 4331
c0ff4b85 4332static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4333{
4334 struct mem_cgroup_per_node *pn;
1ecaab2b 4335 struct mem_cgroup_per_zone *mz;
41e3355d 4336 int zone, tmp = node;
1ecaab2b
KH
4337 /*
4338 * This routine is called against possible nodes.
4339 * But it's BUG to call kmalloc() against offline node.
4340 *
4341 * TODO: this routine can waste much memory for nodes which will
4342 * never be onlined. It's better to use memory hotplug callback
4343 * function.
4344 */
41e3355d
KH
4345 if (!node_state(node, N_NORMAL_MEMORY))
4346 tmp = -1;
17295c88 4347 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4348 if (!pn)
4349 return 1;
1ecaab2b 4350
1ecaab2b
KH
4351 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4352 mz = &pn->zoneinfo[zone];
bea8c150 4353 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4354 mz->usage_in_excess = 0;
4355 mz->on_tree = false;
d79154bb 4356 mz->memcg = memcg;
1ecaab2b 4357 }
54f72fe0 4358 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4359 return 0;
4360}
4361
c0ff4b85 4362static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4363{
54f72fe0 4364 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4365}
4366
33327948
KH
4367static struct mem_cgroup *mem_cgroup_alloc(void)
4368{
d79154bb 4369 struct mem_cgroup *memcg;
8ff69e2c 4370 size_t size;
33327948 4371
8ff69e2c
VD
4372 size = sizeof(struct mem_cgroup);
4373 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4374
8ff69e2c 4375 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4376 if (!memcg)
e7bbcdf3
DC
4377 return NULL;
4378
d79154bb
HD
4379 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4380 if (!memcg->stat)
d2e61b8d 4381 goto out_free;
d79154bb
HD
4382 spin_lock_init(&memcg->pcp_counter_lock);
4383 return memcg;
d2e61b8d
DC
4384
4385out_free:
8ff69e2c 4386 kfree(memcg);
d2e61b8d 4387 return NULL;
33327948
KH
4388}
4389
59927fb9 4390/*
c8b2a36f
GC
4391 * At destroying mem_cgroup, references from swap_cgroup can remain.
4392 * (scanning all at force_empty is too costly...)
4393 *
4394 * Instead of clearing all references at force_empty, we remember
4395 * the number of reference from swap_cgroup and free mem_cgroup when
4396 * it goes down to 0.
4397 *
4398 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4399 */
c8b2a36f
GC
4400
4401static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4402{
c8b2a36f 4403 int node;
59927fb9 4404
bb4cc1a8 4405 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4406
4407 for_each_node(node)
4408 free_mem_cgroup_per_zone_info(memcg, node);
4409
4410 free_percpu(memcg->stat);
8ff69e2c 4411 kfree(memcg);
59927fb9 4412}
3afe36b1 4413
7bcc1bb1
DN
4414/*
4415 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4416 */
e1aab161 4417struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4418{
3e32cb2e 4419 if (!memcg->memory.parent)
7bcc1bb1 4420 return NULL;
3e32cb2e 4421 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4422}
e1aab161 4423EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4424
0eb253e2 4425static struct cgroup_subsys_state * __ref
eb95419b 4426mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4427{
d142e3e6 4428 struct mem_cgroup *memcg;
04046e1a 4429 long error = -ENOMEM;
6d12e2d8 4430 int node;
8cdea7c0 4431
c0ff4b85
R
4432 memcg = mem_cgroup_alloc();
4433 if (!memcg)
04046e1a 4434 return ERR_PTR(error);
78fb7466 4435
3ed28fa1 4436 for_each_node(node)
c0ff4b85 4437 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4438 goto free_out;
f64c3f54 4439
c077719b 4440 /* root ? */
eb95419b 4441 if (parent_css == NULL) {
a41c58a6 4442 root_mem_cgroup = memcg;
3e32cb2e 4443 page_counter_init(&memcg->memory, NULL);
241994ed 4444 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4445 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4446 page_counter_init(&memcg->memsw, NULL);
4447 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4448 }
28dbc4b6 4449
d142e3e6
GC
4450 memcg->last_scanned_node = MAX_NUMNODES;
4451 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4452 memcg->move_charge_at_immigrate = 0;
4453 mutex_init(&memcg->thresholds_lock);
4454 spin_lock_init(&memcg->move_lock);
70ddf637 4455 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4456 INIT_LIST_HEAD(&memcg->event_list);
4457 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4458#ifdef CONFIG_MEMCG_KMEM
4459 memcg->kmemcg_id = -1;
900a38f0 4460#endif
d142e3e6
GC
4461
4462 return &memcg->css;
4463
4464free_out:
4465 __mem_cgroup_free(memcg);
4466 return ERR_PTR(error);
4467}
4468
4469static int
eb95419b 4470mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4471{
eb95419b 4472 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4473 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4474 int ret;
d142e3e6 4475
15a4c835 4476 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4477 return -ENOSPC;
4478
63876986 4479 if (!parent)
d142e3e6
GC
4480 return 0;
4481
0999821b 4482 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4483
4484 memcg->use_hierarchy = parent->use_hierarchy;
4485 memcg->oom_kill_disable = parent->oom_kill_disable;
4486 memcg->swappiness = mem_cgroup_swappiness(parent);
4487
4488 if (parent->use_hierarchy) {
3e32cb2e 4489 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4490 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4491 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4492 page_counter_init(&memcg->memsw, &parent->memsw);
4493 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4494
7bcc1bb1 4495 /*
8d76a979
LZ
4496 * No need to take a reference to the parent because cgroup
4497 * core guarantees its existence.
7bcc1bb1 4498 */
18f59ea7 4499 } else {
3e32cb2e 4500 page_counter_init(&memcg->memory, NULL);
241994ed 4501 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4502 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4503 page_counter_init(&memcg->memsw, NULL);
4504 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4505 /*
4506 * Deeper hierachy with use_hierarchy == false doesn't make
4507 * much sense so let cgroup subsystem know about this
4508 * unfortunate state in our controller.
4509 */
d142e3e6 4510 if (parent != root_mem_cgroup)
073219e9 4511 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4512 }
0999821b 4513 mutex_unlock(&memcg_create_mutex);
d6441637 4514
2f7dd7a4
JW
4515 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4516 if (ret)
4517 return ret;
4518
4519 /*
4520 * Make sure the memcg is initialized: mem_cgroup_iter()
4521 * orders reading memcg->initialized against its callers
4522 * reading the memcg members.
4523 */
4524 smp_store_release(&memcg->initialized, 1);
4525
4526 return 0;
8cdea7c0
BS
4527}
4528
eb95419b 4529static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4530{
eb95419b 4531 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4532 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4533
4534 /*
4535 * Unregister events and notify userspace.
4536 * Notify userspace about cgroup removing only after rmdir of cgroup
4537 * directory to avoid race between userspace and kernelspace.
4538 */
fba94807
TH
4539 spin_lock(&memcg->event_list_lock);
4540 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4541 list_del_init(&event->list);
4542 schedule_work(&event->remove);
4543 }
fba94807 4544 spin_unlock(&memcg->event_list_lock);
ec64f515 4545
33cb876e 4546 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4547
4548 memcg_deactivate_kmem(memcg);
df878fb0
KH
4549}
4550
eb95419b 4551static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4552{
eb95419b 4553 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4554
10d5ebf4 4555 memcg_destroy_kmem(memcg);
465939a1 4556 __mem_cgroup_free(memcg);
8cdea7c0
BS
4557}
4558
1ced953b
TH
4559/**
4560 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4561 * @css: the target css
4562 *
4563 * Reset the states of the mem_cgroup associated with @css. This is
4564 * invoked when the userland requests disabling on the default hierarchy
4565 * but the memcg is pinned through dependency. The memcg should stop
4566 * applying policies and should revert to the vanilla state as it may be
4567 * made visible again.
4568 *
4569 * The current implementation only resets the essential configurations.
4570 * This needs to be expanded to cover all the visible parts.
4571 */
4572static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4573{
4574 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4575
3e32cb2e
JW
4576 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4577 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4578 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4579 memcg->low = 0;
4580 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4581 memcg->soft_limit = PAGE_COUNTER_MAX;
1ced953b
TH
4582}
4583
02491447 4584#ifdef CONFIG_MMU
7dc74be0 4585/* Handlers for move charge at task migration. */
854ffa8d 4586static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4587{
05b84301 4588 int ret;
9476db97
JW
4589
4590 /* Try a single bulk charge without reclaim first */
00501b53 4591 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4592 if (!ret) {
854ffa8d 4593 mc.precharge += count;
854ffa8d
DN
4594 return ret;
4595 }
692e7c45 4596 if (ret == -EINTR) {
00501b53 4597 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4598 return ret;
4599 }
9476db97
JW
4600
4601 /* Try charges one by one with reclaim */
854ffa8d 4602 while (count--) {
00501b53 4603 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4604 /*
4605 * In case of failure, any residual charges against
4606 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4607 * later on. However, cancel any charges that are
4608 * bypassed to root right away or they'll be lost.
9476db97 4609 */
692e7c45 4610 if (ret == -EINTR)
00501b53 4611 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4612 if (ret)
38c5d72f 4613 return ret;
854ffa8d 4614 mc.precharge++;
9476db97 4615 cond_resched();
854ffa8d 4616 }
9476db97 4617 return 0;
4ffef5fe
DN
4618}
4619
4620/**
8d32ff84 4621 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4622 * @vma: the vma the pte to be checked belongs
4623 * @addr: the address corresponding to the pte to be checked
4624 * @ptent: the pte to be checked
02491447 4625 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4626 *
4627 * Returns
4628 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4629 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4630 * move charge. if @target is not NULL, the page is stored in target->page
4631 * with extra refcnt got(Callers should handle it).
02491447
DN
4632 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4633 * target for charge migration. if @target is not NULL, the entry is stored
4634 * in target->ent.
4ffef5fe
DN
4635 *
4636 * Called with pte lock held.
4637 */
4ffef5fe
DN
4638union mc_target {
4639 struct page *page;
02491447 4640 swp_entry_t ent;
4ffef5fe
DN
4641};
4642
4ffef5fe 4643enum mc_target_type {
8d32ff84 4644 MC_TARGET_NONE = 0,
4ffef5fe 4645 MC_TARGET_PAGE,
02491447 4646 MC_TARGET_SWAP,
4ffef5fe
DN
4647};
4648
90254a65
DN
4649static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4650 unsigned long addr, pte_t ptent)
4ffef5fe 4651{
90254a65 4652 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4653
90254a65
DN
4654 if (!page || !page_mapped(page))
4655 return NULL;
4656 if (PageAnon(page)) {
1dfab5ab 4657 if (!(mc.flags & MOVE_ANON))
90254a65 4658 return NULL;
1dfab5ab
JW
4659 } else {
4660 if (!(mc.flags & MOVE_FILE))
4661 return NULL;
4662 }
90254a65
DN
4663 if (!get_page_unless_zero(page))
4664 return NULL;
4665
4666 return page;
4667}
4668
4b91355e 4669#ifdef CONFIG_SWAP
90254a65
DN
4670static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4671 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4672{
90254a65
DN
4673 struct page *page = NULL;
4674 swp_entry_t ent = pte_to_swp_entry(ptent);
4675
1dfab5ab 4676 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4677 return NULL;
4b91355e
KH
4678 /*
4679 * Because lookup_swap_cache() updates some statistics counter,
4680 * we call find_get_page() with swapper_space directly.
4681 */
33806f06 4682 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4683 if (do_swap_account)
4684 entry->val = ent.val;
4685
4686 return page;
4687}
4b91355e
KH
4688#else
4689static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4690 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4691{
4692 return NULL;
4693}
4694#endif
90254a65 4695
87946a72
DN
4696static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4697 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4698{
4699 struct page *page = NULL;
87946a72
DN
4700 struct address_space *mapping;
4701 pgoff_t pgoff;
4702
4703 if (!vma->vm_file) /* anonymous vma */
4704 return NULL;
1dfab5ab 4705 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4706 return NULL;
4707
87946a72 4708 mapping = vma->vm_file->f_mapping;
0661a336 4709 pgoff = linear_page_index(vma, addr);
87946a72
DN
4710
4711 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4712#ifdef CONFIG_SWAP
4713 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4714 if (shmem_mapping(mapping)) {
4715 page = find_get_entry(mapping, pgoff);
4716 if (radix_tree_exceptional_entry(page)) {
4717 swp_entry_t swp = radix_to_swp_entry(page);
4718 if (do_swap_account)
4719 *entry = swp;
4720 page = find_get_page(swap_address_space(swp), swp.val);
4721 }
4722 } else
4723 page = find_get_page(mapping, pgoff);
4724#else
4725 page = find_get_page(mapping, pgoff);
aa3b1895 4726#endif
87946a72
DN
4727 return page;
4728}
4729
b1b0deab
CG
4730/**
4731 * mem_cgroup_move_account - move account of the page
4732 * @page: the page
4733 * @nr_pages: number of regular pages (>1 for huge pages)
4734 * @from: mem_cgroup which the page is moved from.
4735 * @to: mem_cgroup which the page is moved to. @from != @to.
4736 *
4737 * The caller must confirm following.
4738 * - page is not on LRU (isolate_page() is useful.)
4739 * - compound_lock is held when nr_pages > 1
4740 *
4741 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4742 * from old cgroup.
4743 */
4744static int mem_cgroup_move_account(struct page *page,
4745 unsigned int nr_pages,
4746 struct mem_cgroup *from,
4747 struct mem_cgroup *to)
4748{
4749 unsigned long flags;
4750 int ret;
4751
4752 VM_BUG_ON(from == to);
4753 VM_BUG_ON_PAGE(PageLRU(page), page);
4754 /*
4755 * The page is isolated from LRU. So, collapse function
4756 * will not handle this page. But page splitting can happen.
4757 * Do this check under compound_page_lock(). The caller should
4758 * hold it.
4759 */
4760 ret = -EBUSY;
4761 if (nr_pages > 1 && !PageTransHuge(page))
4762 goto out;
4763
4764 /*
4765 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4766 * of its source page while we change it: page migration takes
4767 * both pages off the LRU, but page cache replacement doesn't.
4768 */
4769 if (!trylock_page(page))
4770 goto out;
4771
4772 ret = -EINVAL;
4773 if (page->mem_cgroup != from)
4774 goto out_unlock;
4775
4776 spin_lock_irqsave(&from->move_lock, flags);
4777
4778 if (!PageAnon(page) && page_mapped(page)) {
4779 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4780 nr_pages);
4781 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4782 nr_pages);
4783 }
4784
4785 if (PageWriteback(page)) {
4786 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4787 nr_pages);
4788 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4789 nr_pages);
4790 }
4791
4792 /*
4793 * It is safe to change page->mem_cgroup here because the page
4794 * is referenced, charged, and isolated - we can't race with
4795 * uncharging, charging, migration, or LRU putback.
4796 */
4797
4798 /* caller should have done css_get */
4799 page->mem_cgroup = to;
4800 spin_unlock_irqrestore(&from->move_lock, flags);
4801
4802 ret = 0;
4803
4804 local_irq_disable();
4805 mem_cgroup_charge_statistics(to, page, nr_pages);
4806 memcg_check_events(to, page);
4807 mem_cgroup_charge_statistics(from, page, -nr_pages);
4808 memcg_check_events(from, page);
4809 local_irq_enable();
4810out_unlock:
4811 unlock_page(page);
4812out:
4813 return ret;
4814}
4815
8d32ff84 4816static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4817 unsigned long addr, pte_t ptent, union mc_target *target)
4818{
4819 struct page *page = NULL;
8d32ff84 4820 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4821 swp_entry_t ent = { .val = 0 };
4822
4823 if (pte_present(ptent))
4824 page = mc_handle_present_pte(vma, addr, ptent);
4825 else if (is_swap_pte(ptent))
4826 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4827 else if (pte_none(ptent))
87946a72 4828 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4829
4830 if (!page && !ent.val)
8d32ff84 4831 return ret;
02491447 4832 if (page) {
02491447 4833 /*
0a31bc97 4834 * Do only loose check w/o serialization.
1306a85a 4835 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4836 * not under LRU exclusion.
02491447 4837 */
1306a85a 4838 if (page->mem_cgroup == mc.from) {
02491447
DN
4839 ret = MC_TARGET_PAGE;
4840 if (target)
4841 target->page = page;
4842 }
4843 if (!ret || !target)
4844 put_page(page);
4845 }
90254a65
DN
4846 /* There is a swap entry and a page doesn't exist or isn't charged */
4847 if (ent.val && !ret &&
34c00c31 4848 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4849 ret = MC_TARGET_SWAP;
4850 if (target)
4851 target->ent = ent;
4ffef5fe 4852 }
4ffef5fe
DN
4853 return ret;
4854}
4855
12724850
NH
4856#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4857/*
4858 * We don't consider swapping or file mapped pages because THP does not
4859 * support them for now.
4860 * Caller should make sure that pmd_trans_huge(pmd) is true.
4861 */
4862static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4863 unsigned long addr, pmd_t pmd, union mc_target *target)
4864{
4865 struct page *page = NULL;
12724850
NH
4866 enum mc_target_type ret = MC_TARGET_NONE;
4867
4868 page = pmd_page(pmd);
309381fe 4869 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4870 if (!(mc.flags & MOVE_ANON))
12724850 4871 return ret;
1306a85a 4872 if (page->mem_cgroup == mc.from) {
12724850
NH
4873 ret = MC_TARGET_PAGE;
4874 if (target) {
4875 get_page(page);
4876 target->page = page;
4877 }
4878 }
4879 return ret;
4880}
4881#else
4882static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4883 unsigned long addr, pmd_t pmd, union mc_target *target)
4884{
4885 return MC_TARGET_NONE;
4886}
4887#endif
4888
4ffef5fe
DN
4889static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4890 unsigned long addr, unsigned long end,
4891 struct mm_walk *walk)
4892{
26bcd64a 4893 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4894 pte_t *pte;
4895 spinlock_t *ptl;
4896
bf929152 4897 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4898 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4899 mc.precharge += HPAGE_PMD_NR;
bf929152 4900 spin_unlock(ptl);
1a5a9906 4901 return 0;
12724850 4902 }
03319327 4903
45f83cef
AA
4904 if (pmd_trans_unstable(pmd))
4905 return 0;
4ffef5fe
DN
4906 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4907 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4908 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4909 mc.precharge++; /* increment precharge temporarily */
4910 pte_unmap_unlock(pte - 1, ptl);
4911 cond_resched();
4912
7dc74be0
DN
4913 return 0;
4914}
4915
4ffef5fe
DN
4916static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4917{
4918 unsigned long precharge;
4ffef5fe 4919
26bcd64a
NH
4920 struct mm_walk mem_cgroup_count_precharge_walk = {
4921 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4922 .mm = mm,
4923 };
dfe076b0 4924 down_read(&mm->mmap_sem);
26bcd64a 4925 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4926 up_read(&mm->mmap_sem);
4ffef5fe
DN
4927
4928 precharge = mc.precharge;
4929 mc.precharge = 0;
4930
4931 return precharge;
4932}
4933
4ffef5fe
DN
4934static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4935{
dfe076b0
DN
4936 unsigned long precharge = mem_cgroup_count_precharge(mm);
4937
4938 VM_BUG_ON(mc.moving_task);
4939 mc.moving_task = current;
4940 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4941}
4942
dfe076b0
DN
4943/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4944static void __mem_cgroup_clear_mc(void)
4ffef5fe 4945{
2bd9bb20
KH
4946 struct mem_cgroup *from = mc.from;
4947 struct mem_cgroup *to = mc.to;
4948
4ffef5fe 4949 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4950 if (mc.precharge) {
00501b53 4951 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4952 mc.precharge = 0;
4953 }
4954 /*
4955 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4956 * we must uncharge here.
4957 */
4958 if (mc.moved_charge) {
00501b53 4959 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4960 mc.moved_charge = 0;
4ffef5fe 4961 }
483c30b5
DN
4962 /* we must fixup refcnts and charges */
4963 if (mc.moved_swap) {
483c30b5 4964 /* uncharge swap account from the old cgroup */
ce00a967 4965 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4966 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4967
05b84301 4968 /*
3e32cb2e
JW
4969 * we charged both to->memory and to->memsw, so we
4970 * should uncharge to->memory.
05b84301 4971 */
ce00a967 4972 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4973 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4974
e8ea14cc 4975 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4976
4050377b 4977 /* we've already done css_get(mc.to) */
483c30b5
DN
4978 mc.moved_swap = 0;
4979 }
dfe076b0
DN
4980 memcg_oom_recover(from);
4981 memcg_oom_recover(to);
4982 wake_up_all(&mc.waitq);
4983}
4984
4985static void mem_cgroup_clear_mc(void)
4986{
dfe076b0
DN
4987 /*
4988 * we must clear moving_task before waking up waiters at the end of
4989 * task migration.
4990 */
4991 mc.moving_task = NULL;
4992 __mem_cgroup_clear_mc();
2bd9bb20 4993 spin_lock(&mc.lock);
4ffef5fe
DN
4994 mc.from = NULL;
4995 mc.to = NULL;
2bd9bb20 4996 spin_unlock(&mc.lock);
4ffef5fe
DN
4997}
4998
eb95419b 4999static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5000 struct cgroup_taskset *tset)
7dc74be0 5001{
2f7ee569 5002 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5003 int ret = 0;
eb95419b 5004 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1dfab5ab 5005 unsigned long move_flags;
7dc74be0 5006
ee5e8472
GC
5007 /*
5008 * We are now commited to this value whatever it is. Changes in this
5009 * tunable will only affect upcoming migrations, not the current one.
5010 * So we need to save it, and keep it going.
5011 */
4db0c3c2 5012 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
1dfab5ab 5013 if (move_flags) {
7dc74be0
DN
5014 struct mm_struct *mm;
5015 struct mem_cgroup *from = mem_cgroup_from_task(p);
5016
c0ff4b85 5017 VM_BUG_ON(from == memcg);
7dc74be0
DN
5018
5019 mm = get_task_mm(p);
5020 if (!mm)
5021 return 0;
7dc74be0 5022 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5023 if (mm->owner == p) {
5024 VM_BUG_ON(mc.from);
5025 VM_BUG_ON(mc.to);
5026 VM_BUG_ON(mc.precharge);
854ffa8d 5027 VM_BUG_ON(mc.moved_charge);
483c30b5 5028 VM_BUG_ON(mc.moved_swap);
247b1447 5029
2bd9bb20 5030 spin_lock(&mc.lock);
4ffef5fe 5031 mc.from = from;
c0ff4b85 5032 mc.to = memcg;
1dfab5ab 5033 mc.flags = move_flags;
2bd9bb20 5034 spin_unlock(&mc.lock);
dfe076b0 5035 /* We set mc.moving_task later */
4ffef5fe
DN
5036
5037 ret = mem_cgroup_precharge_mc(mm);
5038 if (ret)
5039 mem_cgroup_clear_mc();
dfe076b0
DN
5040 }
5041 mmput(mm);
7dc74be0
DN
5042 }
5043 return ret;
5044}
5045
eb95419b 5046static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5047 struct cgroup_taskset *tset)
7dc74be0 5048{
4e2f245d
JW
5049 if (mc.to)
5050 mem_cgroup_clear_mc();
7dc74be0
DN
5051}
5052
4ffef5fe
DN
5053static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5054 unsigned long addr, unsigned long end,
5055 struct mm_walk *walk)
7dc74be0 5056{
4ffef5fe 5057 int ret = 0;
26bcd64a 5058 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5059 pte_t *pte;
5060 spinlock_t *ptl;
12724850
NH
5061 enum mc_target_type target_type;
5062 union mc_target target;
5063 struct page *page;
4ffef5fe 5064
12724850
NH
5065 /*
5066 * We don't take compound_lock() here but no race with splitting thp
5067 * happens because:
5068 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5069 * under splitting, which means there's no concurrent thp split,
5070 * - if another thread runs into split_huge_page() just after we
5071 * entered this if-block, the thread must wait for page table lock
5072 * to be unlocked in __split_huge_page_splitting(), where the main
5073 * part of thp split is not executed yet.
5074 */
bf929152 5075 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5076 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5077 spin_unlock(ptl);
12724850
NH
5078 return 0;
5079 }
5080 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5081 if (target_type == MC_TARGET_PAGE) {
5082 page = target.page;
5083 if (!isolate_lru_page(page)) {
12724850 5084 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5085 mc.from, mc.to)) {
12724850
NH
5086 mc.precharge -= HPAGE_PMD_NR;
5087 mc.moved_charge += HPAGE_PMD_NR;
5088 }
5089 putback_lru_page(page);
5090 }
5091 put_page(page);
5092 }
bf929152 5093 spin_unlock(ptl);
1a5a9906 5094 return 0;
12724850
NH
5095 }
5096
45f83cef
AA
5097 if (pmd_trans_unstable(pmd))
5098 return 0;
4ffef5fe
DN
5099retry:
5100 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5101 for (; addr != end; addr += PAGE_SIZE) {
5102 pte_t ptent = *(pte++);
02491447 5103 swp_entry_t ent;
4ffef5fe
DN
5104
5105 if (!mc.precharge)
5106 break;
5107
8d32ff84 5108 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5109 case MC_TARGET_PAGE:
5110 page = target.page;
5111 if (isolate_lru_page(page))
5112 goto put;
1306a85a 5113 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5114 mc.precharge--;
854ffa8d
DN
5115 /* we uncharge from mc.from later. */
5116 mc.moved_charge++;
4ffef5fe
DN
5117 }
5118 putback_lru_page(page);
8d32ff84 5119put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5120 put_page(page);
5121 break;
02491447
DN
5122 case MC_TARGET_SWAP:
5123 ent = target.ent;
e91cbb42 5124 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5125 mc.precharge--;
483c30b5
DN
5126 /* we fixup refcnts and charges later. */
5127 mc.moved_swap++;
5128 }
02491447 5129 break;
4ffef5fe
DN
5130 default:
5131 break;
5132 }
5133 }
5134 pte_unmap_unlock(pte - 1, ptl);
5135 cond_resched();
5136
5137 if (addr != end) {
5138 /*
5139 * We have consumed all precharges we got in can_attach().
5140 * We try charge one by one, but don't do any additional
5141 * charges to mc.to if we have failed in charge once in attach()
5142 * phase.
5143 */
854ffa8d 5144 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5145 if (!ret)
5146 goto retry;
5147 }
5148
5149 return ret;
5150}
5151
5152static void mem_cgroup_move_charge(struct mm_struct *mm)
5153{
26bcd64a
NH
5154 struct mm_walk mem_cgroup_move_charge_walk = {
5155 .pmd_entry = mem_cgroup_move_charge_pte_range,
5156 .mm = mm,
5157 };
4ffef5fe
DN
5158
5159 lru_add_drain_all();
312722cb
JW
5160 /*
5161 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5162 * move_lock while we're moving its pages to another memcg.
5163 * Then wait for already started RCU-only updates to finish.
5164 */
5165 atomic_inc(&mc.from->moving_account);
5166 synchronize_rcu();
dfe076b0
DN
5167retry:
5168 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5169 /*
5170 * Someone who are holding the mmap_sem might be waiting in
5171 * waitq. So we cancel all extra charges, wake up all waiters,
5172 * and retry. Because we cancel precharges, we might not be able
5173 * to move enough charges, but moving charge is a best-effort
5174 * feature anyway, so it wouldn't be a big problem.
5175 */
5176 __mem_cgroup_clear_mc();
5177 cond_resched();
5178 goto retry;
5179 }
26bcd64a
NH
5180 /*
5181 * When we have consumed all precharges and failed in doing
5182 * additional charge, the page walk just aborts.
5183 */
5184 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5185 up_read(&mm->mmap_sem);
312722cb 5186 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5187}
5188
eb95419b 5189static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5190 struct cgroup_taskset *tset)
67e465a7 5191{
2f7ee569 5192 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5193 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5194
dfe076b0 5195 if (mm) {
a433658c
KM
5196 if (mc.to)
5197 mem_cgroup_move_charge(mm);
dfe076b0
DN
5198 mmput(mm);
5199 }
a433658c
KM
5200 if (mc.to)
5201 mem_cgroup_clear_mc();
67e465a7 5202}
5cfb80a7 5203#else /* !CONFIG_MMU */
eb95419b 5204static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5205 struct cgroup_taskset *tset)
5cfb80a7
DN
5206{
5207 return 0;
5208}
eb95419b 5209static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5210 struct cgroup_taskset *tset)
5cfb80a7
DN
5211{
5212}
eb95419b 5213static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5214 struct cgroup_taskset *tset)
5cfb80a7
DN
5215{
5216}
5217#endif
67e465a7 5218
f00baae7
TH
5219/*
5220 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5221 * to verify whether we're attached to the default hierarchy on each mount
5222 * attempt.
f00baae7 5223 */
eb95419b 5224static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5225{
5226 /*
aa6ec29b 5227 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5228 * guarantees that @root doesn't have any children, so turning it
5229 * on for the root memcg is enough.
5230 */
aa6ec29b 5231 if (cgroup_on_dfl(root_css->cgroup))
7feee590
VD
5232 root_mem_cgroup->use_hierarchy = true;
5233 else
5234 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5235}
5236
241994ed
JW
5237static u64 memory_current_read(struct cgroup_subsys_state *css,
5238 struct cftype *cft)
5239{
5240 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5241}
5242
5243static int memory_low_show(struct seq_file *m, void *v)
5244{
5245 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5246 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5247
5248 if (low == PAGE_COUNTER_MAX)
d2973697 5249 seq_puts(m, "max\n");
241994ed
JW
5250 else
5251 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5252
5253 return 0;
5254}
5255
5256static ssize_t memory_low_write(struct kernfs_open_file *of,
5257 char *buf, size_t nbytes, loff_t off)
5258{
5259 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5260 unsigned long low;
5261 int err;
5262
5263 buf = strstrip(buf);
d2973697 5264 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5265 if (err)
5266 return err;
5267
5268 memcg->low = low;
5269
5270 return nbytes;
5271}
5272
5273static int memory_high_show(struct seq_file *m, void *v)
5274{
5275 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5276 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5277
5278 if (high == PAGE_COUNTER_MAX)
d2973697 5279 seq_puts(m, "max\n");
241994ed
JW
5280 else
5281 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5282
5283 return 0;
5284}
5285
5286static ssize_t memory_high_write(struct kernfs_open_file *of,
5287 char *buf, size_t nbytes, loff_t off)
5288{
5289 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5290 unsigned long high;
5291 int err;
5292
5293 buf = strstrip(buf);
d2973697 5294 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5295 if (err)
5296 return err;
5297
5298 memcg->high = high;
5299
5300 return nbytes;
5301}
5302
5303static int memory_max_show(struct seq_file *m, void *v)
5304{
5305 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5306 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5307
5308 if (max == PAGE_COUNTER_MAX)
d2973697 5309 seq_puts(m, "max\n");
241994ed
JW
5310 else
5311 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5312
5313 return 0;
5314}
5315
5316static ssize_t memory_max_write(struct kernfs_open_file *of,
5317 char *buf, size_t nbytes, loff_t off)
5318{
5319 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5320 unsigned long max;
5321 int err;
5322
5323 buf = strstrip(buf);
d2973697 5324 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5325 if (err)
5326 return err;
5327
5328 err = mem_cgroup_resize_limit(memcg, max);
5329 if (err)
5330 return err;
5331
5332 return nbytes;
5333}
5334
5335static int memory_events_show(struct seq_file *m, void *v)
5336{
5337 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5338
5339 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5340 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5341 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5342 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5343
5344 return 0;
5345}
5346
5347static struct cftype memory_files[] = {
5348 {
5349 .name = "current",
5350 .read_u64 = memory_current_read,
5351 },
5352 {
5353 .name = "low",
5354 .flags = CFTYPE_NOT_ON_ROOT,
5355 .seq_show = memory_low_show,
5356 .write = memory_low_write,
5357 },
5358 {
5359 .name = "high",
5360 .flags = CFTYPE_NOT_ON_ROOT,
5361 .seq_show = memory_high_show,
5362 .write = memory_high_write,
5363 },
5364 {
5365 .name = "max",
5366 .flags = CFTYPE_NOT_ON_ROOT,
5367 .seq_show = memory_max_show,
5368 .write = memory_max_write,
5369 },
5370 {
5371 .name = "events",
5372 .flags = CFTYPE_NOT_ON_ROOT,
5373 .seq_show = memory_events_show,
5374 },
5375 { } /* terminate */
5376};
5377
073219e9 5378struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5379 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5380 .css_online = mem_cgroup_css_online,
92fb9748
TH
5381 .css_offline = mem_cgroup_css_offline,
5382 .css_free = mem_cgroup_css_free,
1ced953b 5383 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5384 .can_attach = mem_cgroup_can_attach,
5385 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5386 .attach = mem_cgroup_move_task,
f00baae7 5387 .bind = mem_cgroup_bind,
241994ed
JW
5388 .dfl_cftypes = memory_files,
5389 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5390 .early_init = 0,
8cdea7c0 5391};
c077719b 5392
241994ed
JW
5393/**
5394 * mem_cgroup_events - count memory events against a cgroup
5395 * @memcg: the memory cgroup
5396 * @idx: the event index
5397 * @nr: the number of events to account for
5398 */
5399void mem_cgroup_events(struct mem_cgroup *memcg,
5400 enum mem_cgroup_events_index idx,
5401 unsigned int nr)
5402{
5403 this_cpu_add(memcg->stat->events[idx], nr);
5404}
5405
5406/**
5407 * mem_cgroup_low - check if memory consumption is below the normal range
5408 * @root: the highest ancestor to consider
5409 * @memcg: the memory cgroup to check
5410 *
5411 * Returns %true if memory consumption of @memcg, and that of all
5412 * configurable ancestors up to @root, is below the normal range.
5413 */
5414bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5415{
5416 if (mem_cgroup_disabled())
5417 return false;
5418
5419 /*
5420 * The toplevel group doesn't have a configurable range, so
5421 * it's never low when looked at directly, and it is not
5422 * considered an ancestor when assessing the hierarchy.
5423 */
5424
5425 if (memcg == root_mem_cgroup)
5426 return false;
5427
4e54dede 5428 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5429 return false;
5430
5431 while (memcg != root) {
5432 memcg = parent_mem_cgroup(memcg);
5433
5434 if (memcg == root_mem_cgroup)
5435 break;
5436
4e54dede 5437 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5438 return false;
5439 }
5440 return true;
5441}
5442
00501b53
JW
5443/**
5444 * mem_cgroup_try_charge - try charging a page
5445 * @page: page to charge
5446 * @mm: mm context of the victim
5447 * @gfp_mask: reclaim mode
5448 * @memcgp: charged memcg return
5449 *
5450 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5451 * pages according to @gfp_mask if necessary.
5452 *
5453 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5454 * Otherwise, an error code is returned.
5455 *
5456 * After page->mapping has been set up, the caller must finalize the
5457 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5458 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5459 */
5460int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5461 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5462{
5463 struct mem_cgroup *memcg = NULL;
5464 unsigned int nr_pages = 1;
5465 int ret = 0;
5466
5467 if (mem_cgroup_disabled())
5468 goto out;
5469
5470 if (PageSwapCache(page)) {
00501b53
JW
5471 /*
5472 * Every swap fault against a single page tries to charge the
5473 * page, bail as early as possible. shmem_unuse() encounters
5474 * already charged pages, too. The USED bit is protected by
5475 * the page lock, which serializes swap cache removal, which
5476 * in turn serializes uncharging.
5477 */
1306a85a 5478 if (page->mem_cgroup)
00501b53
JW
5479 goto out;
5480 }
5481
5482 if (PageTransHuge(page)) {
5483 nr_pages <<= compound_order(page);
5484 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5485 }
5486
5487 if (do_swap_account && PageSwapCache(page))
5488 memcg = try_get_mem_cgroup_from_page(page);
5489 if (!memcg)
5490 memcg = get_mem_cgroup_from_mm(mm);
5491
5492 ret = try_charge(memcg, gfp_mask, nr_pages);
5493
5494 css_put(&memcg->css);
5495
5496 if (ret == -EINTR) {
5497 memcg = root_mem_cgroup;
5498 ret = 0;
5499 }
5500out:
5501 *memcgp = memcg;
5502 return ret;
5503}
5504
5505/**
5506 * mem_cgroup_commit_charge - commit a page charge
5507 * @page: page to charge
5508 * @memcg: memcg to charge the page to
5509 * @lrucare: page might be on LRU already
5510 *
5511 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5512 * after page->mapping has been set up. This must happen atomically
5513 * as part of the page instantiation, i.e. under the page table lock
5514 * for anonymous pages, under the page lock for page and swap cache.
5515 *
5516 * In addition, the page must not be on the LRU during the commit, to
5517 * prevent racing with task migration. If it might be, use @lrucare.
5518 *
5519 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5520 */
5521void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5522 bool lrucare)
5523{
5524 unsigned int nr_pages = 1;
5525
5526 VM_BUG_ON_PAGE(!page->mapping, page);
5527 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5528
5529 if (mem_cgroup_disabled())
5530 return;
5531 /*
5532 * Swap faults will attempt to charge the same page multiple
5533 * times. But reuse_swap_page() might have removed the page
5534 * from swapcache already, so we can't check PageSwapCache().
5535 */
5536 if (!memcg)
5537 return;
5538
6abb5a86
JW
5539 commit_charge(page, memcg, lrucare);
5540
00501b53
JW
5541 if (PageTransHuge(page)) {
5542 nr_pages <<= compound_order(page);
5543 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5544 }
5545
6abb5a86
JW
5546 local_irq_disable();
5547 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5548 memcg_check_events(memcg, page);
5549 local_irq_enable();
00501b53
JW
5550
5551 if (do_swap_account && PageSwapCache(page)) {
5552 swp_entry_t entry = { .val = page_private(page) };
5553 /*
5554 * The swap entry might not get freed for a long time,
5555 * let's not wait for it. The page already received a
5556 * memory+swap charge, drop the swap entry duplicate.
5557 */
5558 mem_cgroup_uncharge_swap(entry);
5559 }
5560}
5561
5562/**
5563 * mem_cgroup_cancel_charge - cancel a page charge
5564 * @page: page to charge
5565 * @memcg: memcg to charge the page to
5566 *
5567 * Cancel a charge transaction started by mem_cgroup_try_charge().
5568 */
5569void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5570{
5571 unsigned int nr_pages = 1;
5572
5573 if (mem_cgroup_disabled())
5574 return;
5575 /*
5576 * Swap faults will attempt to charge the same page multiple
5577 * times. But reuse_swap_page() might have removed the page
5578 * from swapcache already, so we can't check PageSwapCache().
5579 */
5580 if (!memcg)
5581 return;
5582
5583 if (PageTransHuge(page)) {
5584 nr_pages <<= compound_order(page);
5585 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5586 }
5587
5588 cancel_charge(memcg, nr_pages);
5589}
5590
747db954 5591static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5592 unsigned long nr_anon, unsigned long nr_file,
5593 unsigned long nr_huge, struct page *dummy_page)
5594{
18eca2e6 5595 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5596 unsigned long flags;
5597
ce00a967 5598 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5599 page_counter_uncharge(&memcg->memory, nr_pages);
5600 if (do_swap_account)
5601 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5602 memcg_oom_recover(memcg);
5603 }
747db954
JW
5604
5605 local_irq_save(flags);
5606 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5607 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5608 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5609 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5610 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5611 memcg_check_events(memcg, dummy_page);
5612 local_irq_restore(flags);
e8ea14cc
JW
5613
5614 if (!mem_cgroup_is_root(memcg))
18eca2e6 5615 css_put_many(&memcg->css, nr_pages);
747db954
JW
5616}
5617
5618static void uncharge_list(struct list_head *page_list)
5619{
5620 struct mem_cgroup *memcg = NULL;
747db954
JW
5621 unsigned long nr_anon = 0;
5622 unsigned long nr_file = 0;
5623 unsigned long nr_huge = 0;
5624 unsigned long pgpgout = 0;
747db954
JW
5625 struct list_head *next;
5626 struct page *page;
5627
5628 next = page_list->next;
5629 do {
5630 unsigned int nr_pages = 1;
747db954
JW
5631
5632 page = list_entry(next, struct page, lru);
5633 next = page->lru.next;
5634
5635 VM_BUG_ON_PAGE(PageLRU(page), page);
5636 VM_BUG_ON_PAGE(page_count(page), page);
5637
1306a85a 5638 if (!page->mem_cgroup)
747db954
JW
5639 continue;
5640
5641 /*
5642 * Nobody should be changing or seriously looking at
1306a85a 5643 * page->mem_cgroup at this point, we have fully
29833315 5644 * exclusive access to the page.
747db954
JW
5645 */
5646
1306a85a 5647 if (memcg != page->mem_cgroup) {
747db954 5648 if (memcg) {
18eca2e6
JW
5649 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5650 nr_huge, page);
5651 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5652 }
1306a85a 5653 memcg = page->mem_cgroup;
747db954
JW
5654 }
5655
5656 if (PageTransHuge(page)) {
5657 nr_pages <<= compound_order(page);
5658 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5659 nr_huge += nr_pages;
5660 }
5661
5662 if (PageAnon(page))
5663 nr_anon += nr_pages;
5664 else
5665 nr_file += nr_pages;
5666
1306a85a 5667 page->mem_cgroup = NULL;
747db954
JW
5668
5669 pgpgout++;
5670 } while (next != page_list);
5671
5672 if (memcg)
18eca2e6
JW
5673 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5674 nr_huge, page);
747db954
JW
5675}
5676
0a31bc97
JW
5677/**
5678 * mem_cgroup_uncharge - uncharge a page
5679 * @page: page to uncharge
5680 *
5681 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5682 * mem_cgroup_commit_charge().
5683 */
5684void mem_cgroup_uncharge(struct page *page)
5685{
0a31bc97
JW
5686 if (mem_cgroup_disabled())
5687 return;
5688
747db954 5689 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5690 if (!page->mem_cgroup)
0a31bc97
JW
5691 return;
5692
747db954
JW
5693 INIT_LIST_HEAD(&page->lru);
5694 uncharge_list(&page->lru);
5695}
0a31bc97 5696
747db954
JW
5697/**
5698 * mem_cgroup_uncharge_list - uncharge a list of page
5699 * @page_list: list of pages to uncharge
5700 *
5701 * Uncharge a list of pages previously charged with
5702 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5703 */
5704void mem_cgroup_uncharge_list(struct list_head *page_list)
5705{
5706 if (mem_cgroup_disabled())
5707 return;
0a31bc97 5708
747db954
JW
5709 if (!list_empty(page_list))
5710 uncharge_list(page_list);
0a31bc97
JW
5711}
5712
5713/**
5714 * mem_cgroup_migrate - migrate a charge to another page
5715 * @oldpage: currently charged page
5716 * @newpage: page to transfer the charge to
f5e03a49 5717 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5718 *
5719 * Migrate the charge from @oldpage to @newpage.
5720 *
5721 * Both pages must be locked, @newpage->mapping must be set up.
5722 */
5723void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5724 bool lrucare)
5725{
29833315 5726 struct mem_cgroup *memcg;
0a31bc97
JW
5727 int isolated;
5728
5729 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5730 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5731 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5732 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5733 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5734 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5735 newpage);
0a31bc97
JW
5736
5737 if (mem_cgroup_disabled())
5738 return;
5739
5740 /* Page cache replacement: new page already charged? */
1306a85a 5741 if (newpage->mem_cgroup)
0a31bc97
JW
5742 return;
5743
7d5e3245
JW
5744 /*
5745 * Swapcache readahead pages can get migrated before being
5746 * charged, and migration from compaction can happen to an
5747 * uncharged page when the PFN walker finds a page that
5748 * reclaim just put back on the LRU but has not released yet.
5749 */
1306a85a 5750 memcg = oldpage->mem_cgroup;
29833315 5751 if (!memcg)
0a31bc97
JW
5752 return;
5753
0a31bc97
JW
5754 if (lrucare)
5755 lock_page_lru(oldpage, &isolated);
5756
1306a85a 5757 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5758
5759 if (lrucare)
5760 unlock_page_lru(oldpage, isolated);
5761
29833315 5762 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5763}
5764
2d11085e 5765/*
1081312f
MH
5766 * subsys_initcall() for memory controller.
5767 *
5768 * Some parts like hotcpu_notifier() have to be initialized from this context
5769 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5770 * everything that doesn't depend on a specific mem_cgroup structure should
5771 * be initialized from here.
2d11085e
MH
5772 */
5773static int __init mem_cgroup_init(void)
5774{
95a045f6
JW
5775 int cpu, node;
5776
2d11085e 5777 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5778
5779 for_each_possible_cpu(cpu)
5780 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5781 drain_local_stock);
5782
5783 for_each_node(node) {
5784 struct mem_cgroup_tree_per_node *rtpn;
5785 int zone;
5786
5787 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5788 node_online(node) ? node : NUMA_NO_NODE);
5789
5790 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5791 struct mem_cgroup_tree_per_zone *rtpz;
5792
5793 rtpz = &rtpn->rb_tree_per_zone[zone];
5794 rtpz->rb_root = RB_ROOT;
5795 spin_lock_init(&rtpz->lock);
5796 }
5797 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5798 }
5799
2d11085e
MH
5800 return 0;
5801}
5802subsys_initcall(mem_cgroup_init);
21afa38e
JW
5803
5804#ifdef CONFIG_MEMCG_SWAP
5805/**
5806 * mem_cgroup_swapout - transfer a memsw charge to swap
5807 * @page: page whose memsw charge to transfer
5808 * @entry: swap entry to move the charge to
5809 *
5810 * Transfer the memsw charge of @page to @entry.
5811 */
5812void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5813{
5814 struct mem_cgroup *memcg;
5815 unsigned short oldid;
5816
5817 VM_BUG_ON_PAGE(PageLRU(page), page);
5818 VM_BUG_ON_PAGE(page_count(page), page);
5819
5820 if (!do_swap_account)
5821 return;
5822
5823 memcg = page->mem_cgroup;
5824
5825 /* Readahead page, never charged */
5826 if (!memcg)
5827 return;
5828
5829 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5830 VM_BUG_ON_PAGE(oldid, page);
5831 mem_cgroup_swap_statistics(memcg, true);
5832
5833 page->mem_cgroup = NULL;
5834
5835 if (!mem_cgroup_is_root(memcg))
5836 page_counter_uncharge(&memcg->memory, 1);
5837
f371763a 5838 /* Caller disabled preemption with mapping->tree_lock */
21afa38e
JW
5839 mem_cgroup_charge_statistics(memcg, page, -1);
5840 memcg_check_events(memcg, page);
5841}
5842
5843/**
5844 * mem_cgroup_uncharge_swap - uncharge a swap entry
5845 * @entry: swap entry to uncharge
5846 *
5847 * Drop the memsw charge associated with @entry.
5848 */
5849void mem_cgroup_uncharge_swap(swp_entry_t entry)
5850{
5851 struct mem_cgroup *memcg;
5852 unsigned short id;
5853
5854 if (!do_swap_account)
5855 return;
5856
5857 id = swap_cgroup_record(entry, 0);
5858 rcu_read_lock();
adbe427b 5859 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5860 if (memcg) {
5861 if (!mem_cgroup_is_root(memcg))
5862 page_counter_uncharge(&memcg->memsw, 1);
5863 mem_cgroup_swap_statistics(memcg, false);
5864 css_put(&memcg->css);
5865 }
5866 rcu_read_unlock();
5867}
5868
5869/* for remember boot option*/
5870#ifdef CONFIG_MEMCG_SWAP_ENABLED
5871static int really_do_swap_account __initdata = 1;
5872#else
5873static int really_do_swap_account __initdata;
5874#endif
5875
5876static int __init enable_swap_account(char *s)
5877{
5878 if (!strcmp(s, "1"))
5879 really_do_swap_account = 1;
5880 else if (!strcmp(s, "0"))
5881 really_do_swap_account = 0;
5882 return 1;
5883}
5884__setup("swapaccount=", enable_swap_account);
5885
5886static struct cftype memsw_cgroup_files[] = {
5887 {
5888 .name = "memsw.usage_in_bytes",
5889 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5890 .read_u64 = mem_cgroup_read_u64,
5891 },
5892 {
5893 .name = "memsw.max_usage_in_bytes",
5894 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5895 .write = mem_cgroup_reset,
5896 .read_u64 = mem_cgroup_read_u64,
5897 },
5898 {
5899 .name = "memsw.limit_in_bytes",
5900 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5901 .write = mem_cgroup_write,
5902 .read_u64 = mem_cgroup_read_u64,
5903 },
5904 {
5905 .name = "memsw.failcnt",
5906 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5907 .write = mem_cgroup_reset,
5908 .read_u64 = mem_cgroup_read_u64,
5909 },
5910 { }, /* terminate */
5911};
5912
5913static int __init mem_cgroup_swap_init(void)
5914{
5915 if (!mem_cgroup_disabled() && really_do_swap_account) {
5916 do_swap_account = 1;
5917 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5918 memsw_cgroup_files));
5919 }
5920 return 0;
5921}
5922subsys_initcall(mem_cgroup_swap_init);
5923
5924#endif /* CONFIG_MEMCG_SWAP */