mm: vmscan: do not scan anon pages if memcg swap limit is hit
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
4ffef5fe
DN
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
1dfab5ab 212 unsigned long flags;
4ffef5fe 213 unsigned long precharge;
854ffa8d 214 unsigned long moved_charge;
483c30b5 215 unsigned long moved_swap;
8033b97c
DN
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218} mc = {
2bd9bb20 219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221};
4ffef5fe 222
4e416953
BS
223/*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
a0db00fc 227#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 228#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 229
217bc319
KH
230enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 232 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
235 NR_CHARGE_TYPE,
236};
237
8c7c6e34 238/* for encoding cft->private value on file */
86ae53e1
GC
239enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
510fc4e1 243 _KMEM,
d55f90bf 244 _TCP,
86ae53e1
GC
245};
246
a0db00fc
KS
247#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 249#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
250/* Used for OOM nofiier */
251#define OOM_CONTROL (0)
8c7c6e34 252
70ddf637
AV
253/* Some nice accessors for the vmpressure. */
254struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255{
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259}
260
261struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262{
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264}
265
7ffc0edc
MH
266static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267{
268 return (memcg == root_mem_cgroup);
269}
270
4219b2da
LZ
271/*
272 * We restrict the id in the range of [1, 65535], so it can fit into
273 * an unsigned short.
274 */
275#define MEM_CGROUP_ID_MAX USHRT_MAX
276
34c00c31
LZ
277static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
278{
15a4c835 279 return memcg->css.id;
34c00c31
LZ
280}
281
adbe427b
VD
282/*
283 * A helper function to get mem_cgroup from ID. must be called under
284 * rcu_read_lock(). The caller is responsible for calling
285 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
286 * refcnt from swap can be called against removed memcg.)
287 */
34c00c31
LZ
288static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
289{
290 struct cgroup_subsys_state *css;
291
7d699ddb 292 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
293 return mem_cgroup_from_css(css);
294}
295
127424c8 296#ifndef CONFIG_SLOB
55007d84 297/*
f7ce3190 298 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
299 * The main reason for not using cgroup id for this:
300 * this works better in sparse environments, where we have a lot of memcgs,
301 * but only a few kmem-limited. Or also, if we have, for instance, 200
302 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
303 * 200 entry array for that.
55007d84 304 *
dbcf73e2
VD
305 * The current size of the caches array is stored in memcg_nr_cache_ids. It
306 * will double each time we have to increase it.
55007d84 307 */
dbcf73e2
VD
308static DEFINE_IDA(memcg_cache_ida);
309int memcg_nr_cache_ids;
749c5415 310
05257a1a
VD
311/* Protects memcg_nr_cache_ids */
312static DECLARE_RWSEM(memcg_cache_ids_sem);
313
314void memcg_get_cache_ids(void)
315{
316 down_read(&memcg_cache_ids_sem);
317}
318
319void memcg_put_cache_ids(void)
320{
321 up_read(&memcg_cache_ids_sem);
322}
323
55007d84
GC
324/*
325 * MIN_SIZE is different than 1, because we would like to avoid going through
326 * the alloc/free process all the time. In a small machine, 4 kmem-limited
327 * cgroups is a reasonable guess. In the future, it could be a parameter or
328 * tunable, but that is strictly not necessary.
329 *
b8627835 330 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
331 * this constant directly from cgroup, but it is understandable that this is
332 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 333 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
334 * increase ours as well if it increases.
335 */
336#define MEMCG_CACHES_MIN_SIZE 4
b8627835 337#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 338
d7f25f8a
GC
339/*
340 * A lot of the calls to the cache allocation functions are expected to be
341 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
342 * conditional to this static branch, we'll have to allow modules that does
343 * kmem_cache_alloc and the such to see this symbol as well
344 */
ef12947c 345DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 346EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 347
127424c8 348#endif /* !CONFIG_SLOB */
a8964b9b 349
f64c3f54 350static struct mem_cgroup_per_zone *
e231875b 351mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 352{
e231875b
JZ
353 int nid = zone_to_nid(zone);
354 int zid = zone_idx(zone);
355
54f72fe0 356 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
357}
358
ad7fa852
TH
359/**
360 * mem_cgroup_css_from_page - css of the memcg associated with a page
361 * @page: page of interest
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
364 * with @page is returned. The returned css remains associated with @page
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
369 *
370 * XXX: The above description of behavior on the default hierarchy isn't
371 * strictly true yet as replace_page_cache_page() can modify the
372 * association before @page is released even on the default hierarchy;
373 * however, the current and planned usages don't mix the the two functions
374 * and replace_page_cache_page() will soon be updated to make the invariant
375 * actually true.
376 */
377struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
378{
379 struct mem_cgroup *memcg;
380
ad7fa852
TH
381 memcg = page->mem_cgroup;
382
9e10a130 383 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
384 memcg = root_mem_cgroup;
385
ad7fa852
TH
386 return &memcg->css;
387}
388
2fc04524
VD
389/**
390 * page_cgroup_ino - return inode number of the memcg a page is charged to
391 * @page: the page
392 *
393 * Look up the closest online ancestor of the memory cgroup @page is charged to
394 * and return its inode number or 0 if @page is not charged to any cgroup. It
395 * is safe to call this function without holding a reference to @page.
396 *
397 * Note, this function is inherently racy, because there is nothing to prevent
398 * the cgroup inode from getting torn down and potentially reallocated a moment
399 * after page_cgroup_ino() returns, so it only should be used by callers that
400 * do not care (such as procfs interfaces).
401 */
402ino_t page_cgroup_ino(struct page *page)
403{
404 struct mem_cgroup *memcg;
405 unsigned long ino = 0;
406
407 rcu_read_lock();
408 memcg = READ_ONCE(page->mem_cgroup);
409 while (memcg && !(memcg->css.flags & CSS_ONLINE))
410 memcg = parent_mem_cgroup(memcg);
411 if (memcg)
412 ino = cgroup_ino(memcg->css.cgroup);
413 rcu_read_unlock();
414 return ino;
415}
416
f64c3f54 417static struct mem_cgroup_per_zone *
e231875b 418mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 419{
97a6c37b
JW
420 int nid = page_to_nid(page);
421 int zid = page_zonenum(page);
f64c3f54 422
e231875b 423 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
424}
425
bb4cc1a8
AM
426static struct mem_cgroup_tree_per_zone *
427soft_limit_tree_node_zone(int nid, int zid)
428{
429 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
430}
431
432static struct mem_cgroup_tree_per_zone *
433soft_limit_tree_from_page(struct page *page)
434{
435 int nid = page_to_nid(page);
436 int zid = page_zonenum(page);
437
438 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
439}
440
cf2c8127
JW
441static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 443 unsigned long new_usage_in_excess)
bb4cc1a8
AM
444{
445 struct rb_node **p = &mctz->rb_root.rb_node;
446 struct rb_node *parent = NULL;
447 struct mem_cgroup_per_zone *mz_node;
448
449 if (mz->on_tree)
450 return;
451
452 mz->usage_in_excess = new_usage_in_excess;
453 if (!mz->usage_in_excess)
454 return;
455 while (*p) {
456 parent = *p;
457 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
458 tree_node);
459 if (mz->usage_in_excess < mz_node->usage_in_excess)
460 p = &(*p)->rb_left;
461 /*
462 * We can't avoid mem cgroups that are over their soft
463 * limit by the same amount
464 */
465 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
466 p = &(*p)->rb_right;
467 }
468 rb_link_node(&mz->tree_node, parent, p);
469 rb_insert_color(&mz->tree_node, &mctz->rb_root);
470 mz->on_tree = true;
471}
472
cf2c8127
JW
473static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
474 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
475{
476 if (!mz->on_tree)
477 return;
478 rb_erase(&mz->tree_node, &mctz->rb_root);
479 mz->on_tree = false;
480}
481
cf2c8127
JW
482static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
483 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 484{
0a31bc97
JW
485 unsigned long flags;
486
487 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 488 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 489 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
490}
491
3e32cb2e
JW
492static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
493{
494 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 495 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
496 unsigned long excess = 0;
497
498 if (nr_pages > soft_limit)
499 excess = nr_pages - soft_limit;
500
501 return excess;
502}
bb4cc1a8
AM
503
504static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
505{
3e32cb2e 506 unsigned long excess;
bb4cc1a8
AM
507 struct mem_cgroup_per_zone *mz;
508 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 509
e231875b 510 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
511 /*
512 * Necessary to update all ancestors when hierarchy is used.
513 * because their event counter is not touched.
514 */
515 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 516 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 517 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
518 /*
519 * We have to update the tree if mz is on RB-tree or
520 * mem is over its softlimit.
521 */
522 if (excess || mz->on_tree) {
0a31bc97
JW
523 unsigned long flags;
524
525 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
526 /* if on-tree, remove it */
527 if (mz->on_tree)
cf2c8127 528 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
529 /*
530 * Insert again. mz->usage_in_excess will be updated.
531 * If excess is 0, no tree ops.
532 */
cf2c8127 533 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 534 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
535 }
536 }
537}
538
539static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
540{
bb4cc1a8 541 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
542 struct mem_cgroup_per_zone *mz;
543 int nid, zid;
bb4cc1a8 544
e231875b
JZ
545 for_each_node(nid) {
546 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
547 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
548 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 549 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
550 }
551 }
552}
553
554static struct mem_cgroup_per_zone *
555__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
556{
557 struct rb_node *rightmost = NULL;
558 struct mem_cgroup_per_zone *mz;
559
560retry:
561 mz = NULL;
562 rightmost = rb_last(&mctz->rb_root);
563 if (!rightmost)
564 goto done; /* Nothing to reclaim from */
565
566 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
567 /*
568 * Remove the node now but someone else can add it back,
569 * we will to add it back at the end of reclaim to its correct
570 * position in the tree.
571 */
cf2c8127 572 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 573 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 574 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
575 goto retry;
576done:
577 return mz;
578}
579
580static struct mem_cgroup_per_zone *
581mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
582{
583 struct mem_cgroup_per_zone *mz;
584
0a31bc97 585 spin_lock_irq(&mctz->lock);
bb4cc1a8 586 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 587 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
588 return mz;
589}
590
711d3d2c 591/*
484ebb3b
GT
592 * Return page count for single (non recursive) @memcg.
593 *
711d3d2c
KH
594 * Implementation Note: reading percpu statistics for memcg.
595 *
596 * Both of vmstat[] and percpu_counter has threshold and do periodic
597 * synchronization to implement "quick" read. There are trade-off between
598 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 599 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
600 *
601 * But this _read() function is used for user interface now. The user accounts
602 * memory usage by memory cgroup and he _always_ requires exact value because
603 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
604 * have to visit all online cpus and make sum. So, for now, unnecessary
605 * synchronization is not implemented. (just implemented for cpu hotplug)
606 *
607 * If there are kernel internal actions which can make use of some not-exact
608 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 609 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
610 * implemented.
611 */
484ebb3b
GT
612static unsigned long
613mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 614{
7a159cc9 615 long val = 0;
c62b1a3b 616 int cpu;
c62b1a3b 617
484ebb3b 618 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 619 for_each_possible_cpu(cpu)
c0ff4b85 620 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
621 /*
622 * Summing races with updates, so val may be negative. Avoid exposing
623 * transient negative values.
624 */
625 if (val < 0)
626 val = 0;
c62b1a3b
KH
627 return val;
628}
629
c0ff4b85 630static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
631 enum mem_cgroup_events_index idx)
632{
633 unsigned long val = 0;
634 int cpu;
635
733a572e 636 for_each_possible_cpu(cpu)
c0ff4b85 637 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
638 return val;
639}
640
c0ff4b85 641static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 642 struct page *page,
f627c2f5 643 bool compound, int nr_pages)
d52aa412 644{
b2402857
KH
645 /*
646 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
647 * counted as CACHE even if it's on ANON LRU.
648 */
0a31bc97 649 if (PageAnon(page))
b2402857 650 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 651 nr_pages);
d52aa412 652 else
b2402857 653 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 654 nr_pages);
55e462b0 655
f627c2f5
KS
656 if (compound) {
657 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
658 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
659 nr_pages);
f627c2f5 660 }
b070e65c 661
e401f176
KH
662 /* pagein of a big page is an event. So, ignore page size */
663 if (nr_pages > 0)
c0ff4b85 664 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 665 else {
c0ff4b85 666 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
667 nr_pages = -nr_pages; /* for event */
668 }
e401f176 669
13114716 670 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
671}
672
e231875b
JZ
673static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
674 int nid,
675 unsigned int lru_mask)
bb2a0de9 676{
e231875b 677 unsigned long nr = 0;
889976db
YH
678 int zid;
679
e231875b 680 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 681
e231875b
JZ
682 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
683 struct mem_cgroup_per_zone *mz;
684 enum lru_list lru;
685
686 for_each_lru(lru) {
687 if (!(BIT(lru) & lru_mask))
688 continue;
689 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
690 nr += mz->lru_size[lru];
691 }
692 }
693 return nr;
889976db 694}
bb2a0de9 695
c0ff4b85 696static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 697 unsigned int lru_mask)
6d12e2d8 698{
e231875b 699 unsigned long nr = 0;
889976db 700 int nid;
6d12e2d8 701
31aaea4a 702 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
703 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
704 return nr;
d52aa412
KH
705}
706
f53d7ce3
JW
707static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
708 enum mem_cgroup_events_target target)
7a159cc9
JW
709{
710 unsigned long val, next;
711
13114716 712 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 713 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 714 /* from time_after() in jiffies.h */
f53d7ce3
JW
715 if ((long)next - (long)val < 0) {
716 switch (target) {
717 case MEM_CGROUP_TARGET_THRESH:
718 next = val + THRESHOLDS_EVENTS_TARGET;
719 break;
bb4cc1a8
AM
720 case MEM_CGROUP_TARGET_SOFTLIMIT:
721 next = val + SOFTLIMIT_EVENTS_TARGET;
722 break;
f53d7ce3
JW
723 case MEM_CGROUP_TARGET_NUMAINFO:
724 next = val + NUMAINFO_EVENTS_TARGET;
725 break;
726 default:
727 break;
728 }
729 __this_cpu_write(memcg->stat->targets[target], next);
730 return true;
7a159cc9 731 }
f53d7ce3 732 return false;
d2265e6f
KH
733}
734
735/*
736 * Check events in order.
737 *
738 */
c0ff4b85 739static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
740{
741 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
742 if (unlikely(mem_cgroup_event_ratelimit(memcg,
743 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 744 bool do_softlimit;
82b3f2a7 745 bool do_numainfo __maybe_unused;
f53d7ce3 746
bb4cc1a8
AM
747 do_softlimit = mem_cgroup_event_ratelimit(memcg,
748 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
749#if MAX_NUMNODES > 1
750 do_numainfo = mem_cgroup_event_ratelimit(memcg,
751 MEM_CGROUP_TARGET_NUMAINFO);
752#endif
c0ff4b85 753 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
754 if (unlikely(do_softlimit))
755 mem_cgroup_update_tree(memcg, page);
453a9bf3 756#if MAX_NUMNODES > 1
f53d7ce3 757 if (unlikely(do_numainfo))
c0ff4b85 758 atomic_inc(&memcg->numainfo_events);
453a9bf3 759#endif
0a31bc97 760 }
d2265e6f
KH
761}
762
cf475ad2 763struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 764{
31a78f23
BS
765 /*
766 * mm_update_next_owner() may clear mm->owner to NULL
767 * if it races with swapoff, page migration, etc.
768 * So this can be called with p == NULL.
769 */
770 if (unlikely(!p))
771 return NULL;
772
073219e9 773 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 774}
33398cf2 775EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 776
df381975 777static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 778{
c0ff4b85 779 struct mem_cgroup *memcg = NULL;
0b7f569e 780
54595fe2
KH
781 rcu_read_lock();
782 do {
6f6acb00
MH
783 /*
784 * Page cache insertions can happen withou an
785 * actual mm context, e.g. during disk probing
786 * on boot, loopback IO, acct() writes etc.
787 */
788 if (unlikely(!mm))
df381975 789 memcg = root_mem_cgroup;
6f6acb00
MH
790 else {
791 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
792 if (unlikely(!memcg))
793 memcg = root_mem_cgroup;
794 }
ec903c0c 795 } while (!css_tryget_online(&memcg->css));
54595fe2 796 rcu_read_unlock();
c0ff4b85 797 return memcg;
54595fe2
KH
798}
799
5660048c
JW
800/**
801 * mem_cgroup_iter - iterate over memory cgroup hierarchy
802 * @root: hierarchy root
803 * @prev: previously returned memcg, NULL on first invocation
804 * @reclaim: cookie for shared reclaim walks, NULL for full walks
805 *
806 * Returns references to children of the hierarchy below @root, or
807 * @root itself, or %NULL after a full round-trip.
808 *
809 * Caller must pass the return value in @prev on subsequent
810 * invocations for reference counting, or use mem_cgroup_iter_break()
811 * to cancel a hierarchy walk before the round-trip is complete.
812 *
813 * Reclaimers can specify a zone and a priority level in @reclaim to
814 * divide up the memcgs in the hierarchy among all concurrent
815 * reclaimers operating on the same zone and priority.
816 */
694fbc0f 817struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 818 struct mem_cgroup *prev,
694fbc0f 819 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 820{
33398cf2 821 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 822 struct cgroup_subsys_state *css = NULL;
9f3a0d09 823 struct mem_cgroup *memcg = NULL;
5ac8fb31 824 struct mem_cgroup *pos = NULL;
711d3d2c 825
694fbc0f
AM
826 if (mem_cgroup_disabled())
827 return NULL;
5660048c 828
9f3a0d09
JW
829 if (!root)
830 root = root_mem_cgroup;
7d74b06f 831
9f3a0d09 832 if (prev && !reclaim)
5ac8fb31 833 pos = prev;
14067bb3 834
9f3a0d09
JW
835 if (!root->use_hierarchy && root != root_mem_cgroup) {
836 if (prev)
5ac8fb31 837 goto out;
694fbc0f 838 return root;
9f3a0d09 839 }
14067bb3 840
542f85f9 841 rcu_read_lock();
5f578161 842
5ac8fb31
JW
843 if (reclaim) {
844 struct mem_cgroup_per_zone *mz;
845
846 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
847 iter = &mz->iter[reclaim->priority];
848
849 if (prev && reclaim->generation != iter->generation)
850 goto out_unlock;
851
6df38689 852 while (1) {
4db0c3c2 853 pos = READ_ONCE(iter->position);
6df38689
VD
854 if (!pos || css_tryget(&pos->css))
855 break;
5ac8fb31 856 /*
6df38689
VD
857 * css reference reached zero, so iter->position will
858 * be cleared by ->css_released. However, we should not
859 * rely on this happening soon, because ->css_released
860 * is called from a work queue, and by busy-waiting we
861 * might block it. So we clear iter->position right
862 * away.
5ac8fb31 863 */
6df38689
VD
864 (void)cmpxchg(&iter->position, pos, NULL);
865 }
5ac8fb31
JW
866 }
867
868 if (pos)
869 css = &pos->css;
870
871 for (;;) {
872 css = css_next_descendant_pre(css, &root->css);
873 if (!css) {
874 /*
875 * Reclaimers share the hierarchy walk, and a
876 * new one might jump in right at the end of
877 * the hierarchy - make sure they see at least
878 * one group and restart from the beginning.
879 */
880 if (!prev)
881 continue;
882 break;
527a5ec9 883 }
7d74b06f 884
5ac8fb31
JW
885 /*
886 * Verify the css and acquire a reference. The root
887 * is provided by the caller, so we know it's alive
888 * and kicking, and don't take an extra reference.
889 */
890 memcg = mem_cgroup_from_css(css);
14067bb3 891
5ac8fb31
JW
892 if (css == &root->css)
893 break;
14067bb3 894
0b8f73e1
JW
895 if (css_tryget(css))
896 break;
9f3a0d09 897
5ac8fb31 898 memcg = NULL;
9f3a0d09 899 }
5ac8fb31
JW
900
901 if (reclaim) {
5ac8fb31 902 /*
6df38689
VD
903 * The position could have already been updated by a competing
904 * thread, so check that the value hasn't changed since we read
905 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 906 */
6df38689
VD
907 (void)cmpxchg(&iter->position, pos, memcg);
908
5ac8fb31
JW
909 if (pos)
910 css_put(&pos->css);
911
912 if (!memcg)
913 iter->generation++;
914 else if (!prev)
915 reclaim->generation = iter->generation;
9f3a0d09 916 }
5ac8fb31 917
542f85f9
MH
918out_unlock:
919 rcu_read_unlock();
5ac8fb31 920out:
c40046f3
MH
921 if (prev && prev != root)
922 css_put(&prev->css);
923
9f3a0d09 924 return memcg;
14067bb3 925}
7d74b06f 926
5660048c
JW
927/**
928 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
929 * @root: hierarchy root
930 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
931 */
932void mem_cgroup_iter_break(struct mem_cgroup *root,
933 struct mem_cgroup *prev)
9f3a0d09
JW
934{
935 if (!root)
936 root = root_mem_cgroup;
937 if (prev && prev != root)
938 css_put(&prev->css);
939}
7d74b06f 940
6df38689
VD
941static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
942{
943 struct mem_cgroup *memcg = dead_memcg;
944 struct mem_cgroup_reclaim_iter *iter;
945 struct mem_cgroup_per_zone *mz;
946 int nid, zid;
947 int i;
948
949 while ((memcg = parent_mem_cgroup(memcg))) {
950 for_each_node(nid) {
951 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
952 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
953 for (i = 0; i <= DEF_PRIORITY; i++) {
954 iter = &mz->iter[i];
955 cmpxchg(&iter->position,
956 dead_memcg, NULL);
957 }
958 }
959 }
960 }
961}
962
9f3a0d09
JW
963/*
964 * Iteration constructs for visiting all cgroups (under a tree). If
965 * loops are exited prematurely (break), mem_cgroup_iter_break() must
966 * be used for reference counting.
967 */
968#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 969 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 970 iter != NULL; \
527a5ec9 971 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 972
9f3a0d09 973#define for_each_mem_cgroup(iter) \
527a5ec9 974 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 975 iter != NULL; \
527a5ec9 976 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 977
925b7673
JW
978/**
979 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
980 * @zone: zone of the wanted lruvec
fa9add64 981 * @memcg: memcg of the wanted lruvec
925b7673
JW
982 *
983 * Returns the lru list vector holding pages for the given @zone and
984 * @mem. This can be the global zone lruvec, if the memory controller
985 * is disabled.
986 */
987struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
988 struct mem_cgroup *memcg)
989{
990 struct mem_cgroup_per_zone *mz;
bea8c150 991 struct lruvec *lruvec;
925b7673 992
bea8c150
HD
993 if (mem_cgroup_disabled()) {
994 lruvec = &zone->lruvec;
995 goto out;
996 }
925b7673 997
e231875b 998 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
999 lruvec = &mz->lruvec;
1000out:
1001 /*
1002 * Since a node can be onlined after the mem_cgroup was created,
1003 * we have to be prepared to initialize lruvec->zone here;
1004 * and if offlined then reonlined, we need to reinitialize it.
1005 */
1006 if (unlikely(lruvec->zone != zone))
1007 lruvec->zone = zone;
1008 return lruvec;
925b7673
JW
1009}
1010
925b7673 1011/**
dfe0e773 1012 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1013 * @page: the page
fa9add64 1014 * @zone: zone of the page
dfe0e773
JW
1015 *
1016 * This function is only safe when following the LRU page isolation
1017 * and putback protocol: the LRU lock must be held, and the page must
1018 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1019 */
fa9add64 1020struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1021{
08e552c6 1022 struct mem_cgroup_per_zone *mz;
925b7673 1023 struct mem_cgroup *memcg;
bea8c150 1024 struct lruvec *lruvec;
6d12e2d8 1025
bea8c150
HD
1026 if (mem_cgroup_disabled()) {
1027 lruvec = &zone->lruvec;
1028 goto out;
1029 }
925b7673 1030
1306a85a 1031 memcg = page->mem_cgroup;
7512102c 1032 /*
dfe0e773 1033 * Swapcache readahead pages are added to the LRU - and
29833315 1034 * possibly migrated - before they are charged.
7512102c 1035 */
29833315
JW
1036 if (!memcg)
1037 memcg = root_mem_cgroup;
7512102c 1038
e231875b 1039 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1040 lruvec = &mz->lruvec;
1041out:
1042 /*
1043 * Since a node can be onlined after the mem_cgroup was created,
1044 * we have to be prepared to initialize lruvec->zone here;
1045 * and if offlined then reonlined, we need to reinitialize it.
1046 */
1047 if (unlikely(lruvec->zone != zone))
1048 lruvec->zone = zone;
1049 return lruvec;
08e552c6 1050}
b69408e8 1051
925b7673 1052/**
fa9add64
HD
1053 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1054 * @lruvec: mem_cgroup per zone lru vector
1055 * @lru: index of lru list the page is sitting on
1056 * @nr_pages: positive when adding or negative when removing
925b7673 1057 *
fa9add64
HD
1058 * This function must be called when a page is added to or removed from an
1059 * lru list.
3f58a829 1060 */
fa9add64
HD
1061void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1062 int nr_pages)
3f58a829
MK
1063{
1064 struct mem_cgroup_per_zone *mz;
fa9add64 1065 unsigned long *lru_size;
3f58a829
MK
1066
1067 if (mem_cgroup_disabled())
1068 return;
1069
fa9add64
HD
1070 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1071 lru_size = mz->lru_size + lru;
1072 *lru_size += nr_pages;
1073 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1074}
544122e5 1075
2314b42d 1076bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1077{
2314b42d 1078 struct mem_cgroup *task_memcg;
158e0a2d 1079 struct task_struct *p;
ffbdccf5 1080 bool ret;
4c4a2214 1081
158e0a2d 1082 p = find_lock_task_mm(task);
de077d22 1083 if (p) {
2314b42d 1084 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1085 task_unlock(p);
1086 } else {
1087 /*
1088 * All threads may have already detached their mm's, but the oom
1089 * killer still needs to detect if they have already been oom
1090 * killed to prevent needlessly killing additional tasks.
1091 */
ffbdccf5 1092 rcu_read_lock();
2314b42d
JW
1093 task_memcg = mem_cgroup_from_task(task);
1094 css_get(&task_memcg->css);
ffbdccf5 1095 rcu_read_unlock();
de077d22 1096 }
2314b42d
JW
1097 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1098 css_put(&task_memcg->css);
4c4a2214
DR
1099 return ret;
1100}
1101
19942822 1102/**
9d11ea9f 1103 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1104 * @memcg: the memory cgroup
19942822 1105 *
9d11ea9f 1106 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1107 * pages.
19942822 1108 */
c0ff4b85 1109static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1110{
3e32cb2e
JW
1111 unsigned long margin = 0;
1112 unsigned long count;
1113 unsigned long limit;
9d11ea9f 1114
3e32cb2e 1115 count = page_counter_read(&memcg->memory);
4db0c3c2 1116 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1117 if (count < limit)
1118 margin = limit - count;
1119
7941d214 1120 if (do_memsw_account()) {
3e32cb2e 1121 count = page_counter_read(&memcg->memsw);
4db0c3c2 1122 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1123 if (count <= limit)
1124 margin = min(margin, limit - count);
1125 }
1126
1127 return margin;
19942822
JW
1128}
1129
32047e2a 1130/*
bdcbb659 1131 * A routine for checking "mem" is under move_account() or not.
32047e2a 1132 *
bdcbb659
QH
1133 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1134 * moving cgroups. This is for waiting at high-memory pressure
1135 * caused by "move".
32047e2a 1136 */
c0ff4b85 1137static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1138{
2bd9bb20
KH
1139 struct mem_cgroup *from;
1140 struct mem_cgroup *to;
4b534334 1141 bool ret = false;
2bd9bb20
KH
1142 /*
1143 * Unlike task_move routines, we access mc.to, mc.from not under
1144 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1145 */
1146 spin_lock(&mc.lock);
1147 from = mc.from;
1148 to = mc.to;
1149 if (!from)
1150 goto unlock;
3e92041d 1151
2314b42d
JW
1152 ret = mem_cgroup_is_descendant(from, memcg) ||
1153 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1154unlock:
1155 spin_unlock(&mc.lock);
4b534334
KH
1156 return ret;
1157}
1158
c0ff4b85 1159static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1160{
1161 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1162 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1163 DEFINE_WAIT(wait);
1164 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1165 /* moving charge context might have finished. */
1166 if (mc.moving_task)
1167 schedule();
1168 finish_wait(&mc.waitq, &wait);
1169 return true;
1170 }
1171 }
1172 return false;
1173}
1174
58cf188e 1175#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1176/**
58cf188e 1177 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1178 * @memcg: The memory cgroup that went over limit
1179 * @p: Task that is going to be killed
1180 *
1181 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1182 * enabled
1183 */
1184void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1185{
e61734c5 1186 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1187 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1188 struct mem_cgroup *iter;
1189 unsigned int i;
e222432b 1190
08088cb9 1191 mutex_lock(&oom_info_lock);
e222432b
BS
1192 rcu_read_lock();
1193
2415b9f5
BV
1194 if (p) {
1195 pr_info("Task in ");
1196 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1197 pr_cont(" killed as a result of limit of ");
1198 } else {
1199 pr_info("Memory limit reached of cgroup ");
1200 }
1201
e61734c5 1202 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1203 pr_cont("\n");
e222432b 1204
e222432b
BS
1205 rcu_read_unlock();
1206
3e32cb2e
JW
1207 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1208 K((u64)page_counter_read(&memcg->memory)),
1209 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1210 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1211 K((u64)page_counter_read(&memcg->memsw)),
1212 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1213 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1214 K((u64)page_counter_read(&memcg->kmem)),
1215 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1216
1217 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1218 pr_info("Memory cgroup stats for ");
1219 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1220 pr_cont(":");
1221
1222 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1223 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1224 continue;
484ebb3b 1225 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1226 K(mem_cgroup_read_stat(iter, i)));
1227 }
1228
1229 for (i = 0; i < NR_LRU_LISTS; i++)
1230 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1231 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1232
1233 pr_cont("\n");
1234 }
08088cb9 1235 mutex_unlock(&oom_info_lock);
e222432b
BS
1236}
1237
81d39c20
KH
1238/*
1239 * This function returns the number of memcg under hierarchy tree. Returns
1240 * 1(self count) if no children.
1241 */
c0ff4b85 1242static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1243{
1244 int num = 0;
7d74b06f
KH
1245 struct mem_cgroup *iter;
1246
c0ff4b85 1247 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1248 num++;
81d39c20
KH
1249 return num;
1250}
1251
a63d83f4
DR
1252/*
1253 * Return the memory (and swap, if configured) limit for a memcg.
1254 */
3e32cb2e 1255static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1256{
3e32cb2e 1257 unsigned long limit;
f3e8eb70 1258
3e32cb2e 1259 limit = memcg->memory.limit;
9a5a8f19 1260 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1261 unsigned long memsw_limit;
37e84351 1262 unsigned long swap_limit;
9a5a8f19 1263
3e32cb2e 1264 memsw_limit = memcg->memsw.limit;
37e84351
VD
1265 swap_limit = memcg->swap.limit;
1266 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1267 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1268 }
9a5a8f19 1269 return limit;
a63d83f4
DR
1270}
1271
19965460
DR
1272static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1273 int order)
9cbb78bb 1274{
6e0fc46d
DR
1275 struct oom_control oc = {
1276 .zonelist = NULL,
1277 .nodemask = NULL,
1278 .gfp_mask = gfp_mask,
1279 .order = order,
6e0fc46d 1280 };
9cbb78bb
DR
1281 struct mem_cgroup *iter;
1282 unsigned long chosen_points = 0;
1283 unsigned long totalpages;
1284 unsigned int points = 0;
1285 struct task_struct *chosen = NULL;
1286
dc56401f
JW
1287 mutex_lock(&oom_lock);
1288
876aafbf 1289 /*
465adcf1
DR
1290 * If current has a pending SIGKILL or is exiting, then automatically
1291 * select it. The goal is to allow it to allocate so that it may
1292 * quickly exit and free its memory.
876aafbf 1293 */
d003f371 1294 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1295 mark_oom_victim(current);
dc56401f 1296 goto unlock;
876aafbf
DR
1297 }
1298
6e0fc46d 1299 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1300 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1301 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1302 struct css_task_iter it;
9cbb78bb
DR
1303 struct task_struct *task;
1304
72ec7029
TH
1305 css_task_iter_start(&iter->css, &it);
1306 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1307 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1308 case OOM_SCAN_SELECT:
1309 if (chosen)
1310 put_task_struct(chosen);
1311 chosen = task;
1312 chosen_points = ULONG_MAX;
1313 get_task_struct(chosen);
1314 /* fall through */
1315 case OOM_SCAN_CONTINUE:
1316 continue;
1317 case OOM_SCAN_ABORT:
72ec7029 1318 css_task_iter_end(&it);
9cbb78bb
DR
1319 mem_cgroup_iter_break(memcg, iter);
1320 if (chosen)
1321 put_task_struct(chosen);
dc56401f 1322 goto unlock;
9cbb78bb
DR
1323 case OOM_SCAN_OK:
1324 break;
1325 };
1326 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1327 if (!points || points < chosen_points)
1328 continue;
1329 /* Prefer thread group leaders for display purposes */
1330 if (points == chosen_points &&
1331 thread_group_leader(chosen))
1332 continue;
1333
1334 if (chosen)
1335 put_task_struct(chosen);
1336 chosen = task;
1337 chosen_points = points;
1338 get_task_struct(chosen);
9cbb78bb 1339 }
72ec7029 1340 css_task_iter_end(&it);
9cbb78bb
DR
1341 }
1342
dc56401f
JW
1343 if (chosen) {
1344 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1345 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1346 "Memory cgroup out of memory");
dc56401f
JW
1347 }
1348unlock:
1349 mutex_unlock(&oom_lock);
9cbb78bb
DR
1350}
1351
ae6e71d3
MC
1352#if MAX_NUMNODES > 1
1353
4d0c066d
KH
1354/**
1355 * test_mem_cgroup_node_reclaimable
dad7557e 1356 * @memcg: the target memcg
4d0c066d
KH
1357 * @nid: the node ID to be checked.
1358 * @noswap : specify true here if the user wants flle only information.
1359 *
1360 * This function returns whether the specified memcg contains any
1361 * reclaimable pages on a node. Returns true if there are any reclaimable
1362 * pages in the node.
1363 */
c0ff4b85 1364static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1365 int nid, bool noswap)
1366{
c0ff4b85 1367 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1368 return true;
1369 if (noswap || !total_swap_pages)
1370 return false;
c0ff4b85 1371 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1372 return true;
1373 return false;
1374
1375}
889976db
YH
1376
1377/*
1378 * Always updating the nodemask is not very good - even if we have an empty
1379 * list or the wrong list here, we can start from some node and traverse all
1380 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1381 *
1382 */
c0ff4b85 1383static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1384{
1385 int nid;
453a9bf3
KH
1386 /*
1387 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1388 * pagein/pageout changes since the last update.
1389 */
c0ff4b85 1390 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1391 return;
c0ff4b85 1392 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1393 return;
1394
889976db 1395 /* make a nodemask where this memcg uses memory from */
31aaea4a 1396 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1397
31aaea4a 1398 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1399
c0ff4b85
R
1400 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1401 node_clear(nid, memcg->scan_nodes);
889976db 1402 }
453a9bf3 1403
c0ff4b85
R
1404 atomic_set(&memcg->numainfo_events, 0);
1405 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1406}
1407
1408/*
1409 * Selecting a node where we start reclaim from. Because what we need is just
1410 * reducing usage counter, start from anywhere is O,K. Considering
1411 * memory reclaim from current node, there are pros. and cons.
1412 *
1413 * Freeing memory from current node means freeing memory from a node which
1414 * we'll use or we've used. So, it may make LRU bad. And if several threads
1415 * hit limits, it will see a contention on a node. But freeing from remote
1416 * node means more costs for memory reclaim because of memory latency.
1417 *
1418 * Now, we use round-robin. Better algorithm is welcomed.
1419 */
c0ff4b85 1420int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1421{
1422 int node;
1423
c0ff4b85
R
1424 mem_cgroup_may_update_nodemask(memcg);
1425 node = memcg->last_scanned_node;
889976db 1426
c0ff4b85 1427 node = next_node(node, memcg->scan_nodes);
889976db 1428 if (node == MAX_NUMNODES)
c0ff4b85 1429 node = first_node(memcg->scan_nodes);
889976db
YH
1430 /*
1431 * We call this when we hit limit, not when pages are added to LRU.
1432 * No LRU may hold pages because all pages are UNEVICTABLE or
1433 * memcg is too small and all pages are not on LRU. In that case,
1434 * we use curret node.
1435 */
1436 if (unlikely(node == MAX_NUMNODES))
1437 node = numa_node_id();
1438
c0ff4b85 1439 memcg->last_scanned_node = node;
889976db
YH
1440 return node;
1441}
889976db 1442#else
c0ff4b85 1443int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1444{
1445 return 0;
1446}
1447#endif
1448
0608f43d
AM
1449static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1450 struct zone *zone,
1451 gfp_t gfp_mask,
1452 unsigned long *total_scanned)
1453{
1454 struct mem_cgroup *victim = NULL;
1455 int total = 0;
1456 int loop = 0;
1457 unsigned long excess;
1458 unsigned long nr_scanned;
1459 struct mem_cgroup_reclaim_cookie reclaim = {
1460 .zone = zone,
1461 .priority = 0,
1462 };
1463
3e32cb2e 1464 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1465
1466 while (1) {
1467 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1468 if (!victim) {
1469 loop++;
1470 if (loop >= 2) {
1471 /*
1472 * If we have not been able to reclaim
1473 * anything, it might because there are
1474 * no reclaimable pages under this hierarchy
1475 */
1476 if (!total)
1477 break;
1478 /*
1479 * We want to do more targeted reclaim.
1480 * excess >> 2 is not to excessive so as to
1481 * reclaim too much, nor too less that we keep
1482 * coming back to reclaim from this cgroup
1483 */
1484 if (total >= (excess >> 2) ||
1485 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1486 break;
1487 }
1488 continue;
1489 }
0608f43d
AM
1490 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1491 zone, &nr_scanned);
1492 *total_scanned += nr_scanned;
3e32cb2e 1493 if (!soft_limit_excess(root_memcg))
0608f43d 1494 break;
6d61ef40 1495 }
0608f43d
AM
1496 mem_cgroup_iter_break(root_memcg, victim);
1497 return total;
6d61ef40
BS
1498}
1499
0056f4e6
JW
1500#ifdef CONFIG_LOCKDEP
1501static struct lockdep_map memcg_oom_lock_dep_map = {
1502 .name = "memcg_oom_lock",
1503};
1504#endif
1505
fb2a6fc5
JW
1506static DEFINE_SPINLOCK(memcg_oom_lock);
1507
867578cb
KH
1508/*
1509 * Check OOM-Killer is already running under our hierarchy.
1510 * If someone is running, return false.
1511 */
fb2a6fc5 1512static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1513{
79dfdacc 1514 struct mem_cgroup *iter, *failed = NULL;
a636b327 1515
fb2a6fc5
JW
1516 spin_lock(&memcg_oom_lock);
1517
9f3a0d09 1518 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1519 if (iter->oom_lock) {
79dfdacc
MH
1520 /*
1521 * this subtree of our hierarchy is already locked
1522 * so we cannot give a lock.
1523 */
79dfdacc 1524 failed = iter;
9f3a0d09
JW
1525 mem_cgroup_iter_break(memcg, iter);
1526 break;
23751be0
JW
1527 } else
1528 iter->oom_lock = true;
7d74b06f 1529 }
867578cb 1530
fb2a6fc5
JW
1531 if (failed) {
1532 /*
1533 * OK, we failed to lock the whole subtree so we have
1534 * to clean up what we set up to the failing subtree
1535 */
1536 for_each_mem_cgroup_tree(iter, memcg) {
1537 if (iter == failed) {
1538 mem_cgroup_iter_break(memcg, iter);
1539 break;
1540 }
1541 iter->oom_lock = false;
79dfdacc 1542 }
0056f4e6
JW
1543 } else
1544 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1545
1546 spin_unlock(&memcg_oom_lock);
1547
1548 return !failed;
a636b327 1549}
0b7f569e 1550
fb2a6fc5 1551static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1552{
7d74b06f
KH
1553 struct mem_cgroup *iter;
1554
fb2a6fc5 1555 spin_lock(&memcg_oom_lock);
0056f4e6 1556 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1557 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1558 iter->oom_lock = false;
fb2a6fc5 1559 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1560}
1561
c0ff4b85 1562static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1563{
1564 struct mem_cgroup *iter;
1565
c2b42d3c 1566 spin_lock(&memcg_oom_lock);
c0ff4b85 1567 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1568 iter->under_oom++;
1569 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1570}
1571
c0ff4b85 1572static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1573{
1574 struct mem_cgroup *iter;
1575
867578cb
KH
1576 /*
1577 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1578 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1579 */
c2b42d3c 1580 spin_lock(&memcg_oom_lock);
c0ff4b85 1581 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1582 if (iter->under_oom > 0)
1583 iter->under_oom--;
1584 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1585}
1586
867578cb
KH
1587static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1588
dc98df5a 1589struct oom_wait_info {
d79154bb 1590 struct mem_cgroup *memcg;
dc98df5a
KH
1591 wait_queue_t wait;
1592};
1593
1594static int memcg_oom_wake_function(wait_queue_t *wait,
1595 unsigned mode, int sync, void *arg)
1596{
d79154bb
HD
1597 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1598 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1599 struct oom_wait_info *oom_wait_info;
1600
1601 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1602 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1603
2314b42d
JW
1604 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1605 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1606 return 0;
dc98df5a
KH
1607 return autoremove_wake_function(wait, mode, sync, arg);
1608}
1609
c0ff4b85 1610static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1611{
c2b42d3c
TH
1612 /*
1613 * For the following lockless ->under_oom test, the only required
1614 * guarantee is that it must see the state asserted by an OOM when
1615 * this function is called as a result of userland actions
1616 * triggered by the notification of the OOM. This is trivially
1617 * achieved by invoking mem_cgroup_mark_under_oom() before
1618 * triggering notification.
1619 */
1620 if (memcg && memcg->under_oom)
f4b90b70 1621 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1622}
1623
3812c8c8 1624static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1625{
626ebc41 1626 if (!current->memcg_may_oom)
3812c8c8 1627 return;
867578cb 1628 /*
49426420
JW
1629 * We are in the middle of the charge context here, so we
1630 * don't want to block when potentially sitting on a callstack
1631 * that holds all kinds of filesystem and mm locks.
1632 *
1633 * Also, the caller may handle a failed allocation gracefully
1634 * (like optional page cache readahead) and so an OOM killer
1635 * invocation might not even be necessary.
1636 *
1637 * That's why we don't do anything here except remember the
1638 * OOM context and then deal with it at the end of the page
1639 * fault when the stack is unwound, the locks are released,
1640 * and when we know whether the fault was overall successful.
867578cb 1641 */
49426420 1642 css_get(&memcg->css);
626ebc41
TH
1643 current->memcg_in_oom = memcg;
1644 current->memcg_oom_gfp_mask = mask;
1645 current->memcg_oom_order = order;
3812c8c8
JW
1646}
1647
1648/**
1649 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1650 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1651 *
49426420
JW
1652 * This has to be called at the end of a page fault if the memcg OOM
1653 * handler was enabled.
3812c8c8 1654 *
49426420 1655 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1656 * sleep on a waitqueue until the userspace task resolves the
1657 * situation. Sleeping directly in the charge context with all kinds
1658 * of locks held is not a good idea, instead we remember an OOM state
1659 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1660 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1661 *
1662 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1663 * completed, %false otherwise.
3812c8c8 1664 */
49426420 1665bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1666{
626ebc41 1667 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1668 struct oom_wait_info owait;
49426420 1669 bool locked;
3812c8c8
JW
1670
1671 /* OOM is global, do not handle */
3812c8c8 1672 if (!memcg)
49426420 1673 return false;
3812c8c8 1674
c32b3cbe 1675 if (!handle || oom_killer_disabled)
49426420 1676 goto cleanup;
3812c8c8
JW
1677
1678 owait.memcg = memcg;
1679 owait.wait.flags = 0;
1680 owait.wait.func = memcg_oom_wake_function;
1681 owait.wait.private = current;
1682 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1683
3812c8c8 1684 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1685 mem_cgroup_mark_under_oom(memcg);
1686
1687 locked = mem_cgroup_oom_trylock(memcg);
1688
1689 if (locked)
1690 mem_cgroup_oom_notify(memcg);
1691
1692 if (locked && !memcg->oom_kill_disable) {
1693 mem_cgroup_unmark_under_oom(memcg);
1694 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1695 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1696 current->memcg_oom_order);
49426420 1697 } else {
3812c8c8 1698 schedule();
49426420
JW
1699 mem_cgroup_unmark_under_oom(memcg);
1700 finish_wait(&memcg_oom_waitq, &owait.wait);
1701 }
1702
1703 if (locked) {
fb2a6fc5
JW
1704 mem_cgroup_oom_unlock(memcg);
1705 /*
1706 * There is no guarantee that an OOM-lock contender
1707 * sees the wakeups triggered by the OOM kill
1708 * uncharges. Wake any sleepers explicitely.
1709 */
1710 memcg_oom_recover(memcg);
1711 }
49426420 1712cleanup:
626ebc41 1713 current->memcg_in_oom = NULL;
3812c8c8 1714 css_put(&memcg->css);
867578cb 1715 return true;
0b7f569e
KH
1716}
1717
d7365e78
JW
1718/**
1719 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1720 * @page: page that is going to change accounted state
32047e2a 1721 *
d7365e78
JW
1722 * This function must mark the beginning of an accounted page state
1723 * change to prevent double accounting when the page is concurrently
1724 * being moved to another memcg:
32047e2a 1725 *
6de22619 1726 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1727 * if (TestClearPageState(page))
1728 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1729 * mem_cgroup_end_page_stat(memcg);
d69b042f 1730 */
6de22619 1731struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1732{
1733 struct mem_cgroup *memcg;
6de22619 1734 unsigned long flags;
89c06bd5 1735
6de22619
JW
1736 /*
1737 * The RCU lock is held throughout the transaction. The fast
1738 * path can get away without acquiring the memcg->move_lock
1739 * because page moving starts with an RCU grace period.
1740 *
1741 * The RCU lock also protects the memcg from being freed when
1742 * the page state that is going to change is the only thing
1743 * preventing the page from being uncharged.
1744 * E.g. end-writeback clearing PageWriteback(), which allows
1745 * migration to go ahead and uncharge the page before the
1746 * account transaction might be complete.
1747 */
d7365e78
JW
1748 rcu_read_lock();
1749
1750 if (mem_cgroup_disabled())
1751 return NULL;
89c06bd5 1752again:
1306a85a 1753 memcg = page->mem_cgroup;
29833315 1754 if (unlikely(!memcg))
d7365e78
JW
1755 return NULL;
1756
bdcbb659 1757 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1758 return memcg;
89c06bd5 1759
6de22619 1760 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1761 if (memcg != page->mem_cgroup) {
6de22619 1762 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1763 goto again;
1764 }
6de22619
JW
1765
1766 /*
1767 * When charge migration first begins, we can have locked and
1768 * unlocked page stat updates happening concurrently. Track
1769 * the task who has the lock for mem_cgroup_end_page_stat().
1770 */
1771 memcg->move_lock_task = current;
1772 memcg->move_lock_flags = flags;
d7365e78
JW
1773
1774 return memcg;
89c06bd5 1775}
c4843a75 1776EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1777
d7365e78
JW
1778/**
1779 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1780 * @memcg: the memcg that was accounted against
d7365e78 1781 */
6de22619 1782void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1783{
6de22619
JW
1784 if (memcg && memcg->move_lock_task == current) {
1785 unsigned long flags = memcg->move_lock_flags;
1786
1787 memcg->move_lock_task = NULL;
1788 memcg->move_lock_flags = 0;
1789
1790 spin_unlock_irqrestore(&memcg->move_lock, flags);
1791 }
89c06bd5 1792
d7365e78 1793 rcu_read_unlock();
89c06bd5 1794}
c4843a75 1795EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1796
cdec2e42
KH
1797/*
1798 * size of first charge trial. "32" comes from vmscan.c's magic value.
1799 * TODO: maybe necessary to use big numbers in big irons.
1800 */
7ec99d62 1801#define CHARGE_BATCH 32U
cdec2e42
KH
1802struct memcg_stock_pcp {
1803 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1804 unsigned int nr_pages;
cdec2e42 1805 struct work_struct work;
26fe6168 1806 unsigned long flags;
a0db00fc 1807#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1808};
1809static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1810static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1811
a0956d54
SS
1812/**
1813 * consume_stock: Try to consume stocked charge on this cpu.
1814 * @memcg: memcg to consume from.
1815 * @nr_pages: how many pages to charge.
1816 *
1817 * The charges will only happen if @memcg matches the current cpu's memcg
1818 * stock, and at least @nr_pages are available in that stock. Failure to
1819 * service an allocation will refill the stock.
1820 *
1821 * returns true if successful, false otherwise.
cdec2e42 1822 */
a0956d54 1823static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1824{
1825 struct memcg_stock_pcp *stock;
3e32cb2e 1826 bool ret = false;
cdec2e42 1827
a0956d54 1828 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1829 return ret;
a0956d54 1830
cdec2e42 1831 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1832 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1833 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1834 ret = true;
1835 }
cdec2e42
KH
1836 put_cpu_var(memcg_stock);
1837 return ret;
1838}
1839
1840/*
3e32cb2e 1841 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1842 */
1843static void drain_stock(struct memcg_stock_pcp *stock)
1844{
1845 struct mem_cgroup *old = stock->cached;
1846
11c9ea4e 1847 if (stock->nr_pages) {
3e32cb2e 1848 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1849 if (do_memsw_account())
3e32cb2e 1850 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1851 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1852 stock->nr_pages = 0;
cdec2e42
KH
1853 }
1854 stock->cached = NULL;
cdec2e42
KH
1855}
1856
1857/*
1858 * This must be called under preempt disabled or must be called by
1859 * a thread which is pinned to local cpu.
1860 */
1861static void drain_local_stock(struct work_struct *dummy)
1862{
7c8e0181 1863 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1864 drain_stock(stock);
26fe6168 1865 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1866}
1867
1868/*
3e32cb2e 1869 * Cache charges(val) to local per_cpu area.
320cc51d 1870 * This will be consumed by consume_stock() function, later.
cdec2e42 1871 */
c0ff4b85 1872static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1873{
1874 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1875
c0ff4b85 1876 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1877 drain_stock(stock);
c0ff4b85 1878 stock->cached = memcg;
cdec2e42 1879 }
11c9ea4e 1880 stock->nr_pages += nr_pages;
cdec2e42
KH
1881 put_cpu_var(memcg_stock);
1882}
1883
1884/*
c0ff4b85 1885 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1886 * of the hierarchy under it.
cdec2e42 1887 */
6d3d6aa2 1888static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1889{
26fe6168 1890 int cpu, curcpu;
d38144b7 1891
6d3d6aa2
JW
1892 /* If someone's already draining, avoid adding running more workers. */
1893 if (!mutex_trylock(&percpu_charge_mutex))
1894 return;
cdec2e42 1895 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1896 get_online_cpus();
5af12d0e 1897 curcpu = get_cpu();
cdec2e42
KH
1898 for_each_online_cpu(cpu) {
1899 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1900 struct mem_cgroup *memcg;
26fe6168 1901
c0ff4b85
R
1902 memcg = stock->cached;
1903 if (!memcg || !stock->nr_pages)
26fe6168 1904 continue;
2314b42d 1905 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1906 continue;
d1a05b69
MH
1907 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1908 if (cpu == curcpu)
1909 drain_local_stock(&stock->work);
1910 else
1911 schedule_work_on(cpu, &stock->work);
1912 }
cdec2e42 1913 }
5af12d0e 1914 put_cpu();
f894ffa8 1915 put_online_cpus();
9f50fad6 1916 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1917}
1918
0db0628d 1919static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1920 unsigned long action,
1921 void *hcpu)
1922{
1923 int cpu = (unsigned long)hcpu;
1924 struct memcg_stock_pcp *stock;
1925
619d094b 1926 if (action == CPU_ONLINE)
1489ebad 1927 return NOTIFY_OK;
1489ebad 1928
d833049b 1929 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1930 return NOTIFY_OK;
711d3d2c 1931
cdec2e42
KH
1932 stock = &per_cpu(memcg_stock, cpu);
1933 drain_stock(stock);
1934 return NOTIFY_OK;
1935}
1936
f7e1cb6e
JW
1937static void reclaim_high(struct mem_cgroup *memcg,
1938 unsigned int nr_pages,
1939 gfp_t gfp_mask)
1940{
1941 do {
1942 if (page_counter_read(&memcg->memory) <= memcg->high)
1943 continue;
1944 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1945 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1946 } while ((memcg = parent_mem_cgroup(memcg)));
1947}
1948
1949static void high_work_func(struct work_struct *work)
1950{
1951 struct mem_cgroup *memcg;
1952
1953 memcg = container_of(work, struct mem_cgroup, high_work);
1954 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1955}
1956
b23afb93
TH
1957/*
1958 * Scheduled by try_charge() to be executed from the userland return path
1959 * and reclaims memory over the high limit.
1960 */
1961void mem_cgroup_handle_over_high(void)
1962{
1963 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1964 struct mem_cgroup *memcg;
b23afb93
TH
1965
1966 if (likely(!nr_pages))
1967 return;
1968
f7e1cb6e
JW
1969 memcg = get_mem_cgroup_from_mm(current->mm);
1970 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1971 css_put(&memcg->css);
1972 current->memcg_nr_pages_over_high = 0;
1973}
1974
00501b53
JW
1975static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1976 unsigned int nr_pages)
8a9f3ccd 1977{
7ec99d62 1978 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1979 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1980 struct mem_cgroup *mem_over_limit;
3e32cb2e 1981 struct page_counter *counter;
6539cc05 1982 unsigned long nr_reclaimed;
b70a2a21
JW
1983 bool may_swap = true;
1984 bool drained = false;
a636b327 1985
ce00a967 1986 if (mem_cgroup_is_root(memcg))
10d53c74 1987 return 0;
6539cc05 1988retry:
b6b6cc72 1989 if (consume_stock(memcg, nr_pages))
10d53c74 1990 return 0;
8a9f3ccd 1991
7941d214 1992 if (!do_memsw_account() ||
6071ca52
JW
1993 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1994 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1995 goto done_restock;
7941d214 1996 if (do_memsw_account())
3e32cb2e
JW
1997 page_counter_uncharge(&memcg->memsw, batch);
1998 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1999 } else {
3e32cb2e 2000 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2001 may_swap = false;
3fbe7244 2002 }
7a81b88c 2003
6539cc05
JW
2004 if (batch > nr_pages) {
2005 batch = nr_pages;
2006 goto retry;
2007 }
6d61ef40 2008
06b078fc
JW
2009 /*
2010 * Unlike in global OOM situations, memcg is not in a physical
2011 * memory shortage. Allow dying and OOM-killed tasks to
2012 * bypass the last charges so that they can exit quickly and
2013 * free their memory.
2014 */
2015 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2016 fatal_signal_pending(current) ||
2017 current->flags & PF_EXITING))
10d53c74 2018 goto force;
06b078fc
JW
2019
2020 if (unlikely(task_in_memcg_oom(current)))
2021 goto nomem;
2022
d0164adc 2023 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2024 goto nomem;
4b534334 2025
241994ed
JW
2026 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2027
b70a2a21
JW
2028 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2029 gfp_mask, may_swap);
6539cc05 2030
61e02c74 2031 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2032 goto retry;
28c34c29 2033
b70a2a21 2034 if (!drained) {
6d3d6aa2 2035 drain_all_stock(mem_over_limit);
b70a2a21
JW
2036 drained = true;
2037 goto retry;
2038 }
2039
28c34c29
JW
2040 if (gfp_mask & __GFP_NORETRY)
2041 goto nomem;
6539cc05
JW
2042 /*
2043 * Even though the limit is exceeded at this point, reclaim
2044 * may have been able to free some pages. Retry the charge
2045 * before killing the task.
2046 *
2047 * Only for regular pages, though: huge pages are rather
2048 * unlikely to succeed so close to the limit, and we fall back
2049 * to regular pages anyway in case of failure.
2050 */
61e02c74 2051 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2052 goto retry;
2053 /*
2054 * At task move, charge accounts can be doubly counted. So, it's
2055 * better to wait until the end of task_move if something is going on.
2056 */
2057 if (mem_cgroup_wait_acct_move(mem_over_limit))
2058 goto retry;
2059
9b130619
JW
2060 if (nr_retries--)
2061 goto retry;
2062
06b078fc 2063 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2064 goto force;
06b078fc 2065
6539cc05 2066 if (fatal_signal_pending(current))
10d53c74 2067 goto force;
6539cc05 2068
241994ed
JW
2069 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2070
3608de07
JM
2071 mem_cgroup_oom(mem_over_limit, gfp_mask,
2072 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2073nomem:
6d1fdc48 2074 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2075 return -ENOMEM;
10d53c74
TH
2076force:
2077 /*
2078 * The allocation either can't fail or will lead to more memory
2079 * being freed very soon. Allow memory usage go over the limit
2080 * temporarily by force charging it.
2081 */
2082 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2083 if (do_memsw_account())
10d53c74
TH
2084 page_counter_charge(&memcg->memsw, nr_pages);
2085 css_get_many(&memcg->css, nr_pages);
2086
2087 return 0;
6539cc05
JW
2088
2089done_restock:
e8ea14cc 2090 css_get_many(&memcg->css, batch);
6539cc05
JW
2091 if (batch > nr_pages)
2092 refill_stock(memcg, batch - nr_pages);
b23afb93 2093
241994ed 2094 /*
b23afb93
TH
2095 * If the hierarchy is above the normal consumption range, schedule
2096 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2097 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2098 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2099 * not recorded as it most likely matches current's and won't
2100 * change in the meantime. As high limit is checked again before
2101 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2102 */
2103 do {
b23afb93 2104 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2105 /* Don't bother a random interrupted task */
2106 if (in_interrupt()) {
2107 schedule_work(&memcg->high_work);
2108 break;
2109 }
9516a18a 2110 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2111 set_notify_resume(current);
2112 break;
2113 }
241994ed 2114 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2115
2116 return 0;
7a81b88c 2117}
8a9f3ccd 2118
00501b53 2119static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2120{
ce00a967
JW
2121 if (mem_cgroup_is_root(memcg))
2122 return;
2123
3e32cb2e 2124 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2125 if (do_memsw_account())
3e32cb2e 2126 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2127
e8ea14cc 2128 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2129}
2130
0a31bc97
JW
2131static void lock_page_lru(struct page *page, int *isolated)
2132{
2133 struct zone *zone = page_zone(page);
2134
2135 spin_lock_irq(&zone->lru_lock);
2136 if (PageLRU(page)) {
2137 struct lruvec *lruvec;
2138
2139 lruvec = mem_cgroup_page_lruvec(page, zone);
2140 ClearPageLRU(page);
2141 del_page_from_lru_list(page, lruvec, page_lru(page));
2142 *isolated = 1;
2143 } else
2144 *isolated = 0;
2145}
2146
2147static void unlock_page_lru(struct page *page, int isolated)
2148{
2149 struct zone *zone = page_zone(page);
2150
2151 if (isolated) {
2152 struct lruvec *lruvec;
2153
2154 lruvec = mem_cgroup_page_lruvec(page, zone);
2155 VM_BUG_ON_PAGE(PageLRU(page), page);
2156 SetPageLRU(page);
2157 add_page_to_lru_list(page, lruvec, page_lru(page));
2158 }
2159 spin_unlock_irq(&zone->lru_lock);
2160}
2161
00501b53 2162static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2163 bool lrucare)
7a81b88c 2164{
0a31bc97 2165 int isolated;
9ce70c02 2166
1306a85a 2167 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2168
2169 /*
2170 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2171 * may already be on some other mem_cgroup's LRU. Take care of it.
2172 */
0a31bc97
JW
2173 if (lrucare)
2174 lock_page_lru(page, &isolated);
9ce70c02 2175
0a31bc97
JW
2176 /*
2177 * Nobody should be changing or seriously looking at
1306a85a 2178 * page->mem_cgroup at this point:
0a31bc97
JW
2179 *
2180 * - the page is uncharged
2181 *
2182 * - the page is off-LRU
2183 *
2184 * - an anonymous fault has exclusive page access, except for
2185 * a locked page table
2186 *
2187 * - a page cache insertion, a swapin fault, or a migration
2188 * have the page locked
2189 */
1306a85a 2190 page->mem_cgroup = memcg;
9ce70c02 2191
0a31bc97
JW
2192 if (lrucare)
2193 unlock_page_lru(page, isolated);
7a81b88c 2194}
66e1707b 2195
127424c8 2196#ifndef CONFIG_SLOB
f3bb3043 2197static int memcg_alloc_cache_id(void)
55007d84 2198{
f3bb3043
VD
2199 int id, size;
2200 int err;
2201
dbcf73e2 2202 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2203 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2204 if (id < 0)
2205 return id;
55007d84 2206
dbcf73e2 2207 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2208 return id;
2209
2210 /*
2211 * There's no space for the new id in memcg_caches arrays,
2212 * so we have to grow them.
2213 */
05257a1a 2214 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2215
2216 size = 2 * (id + 1);
55007d84
GC
2217 if (size < MEMCG_CACHES_MIN_SIZE)
2218 size = MEMCG_CACHES_MIN_SIZE;
2219 else if (size > MEMCG_CACHES_MAX_SIZE)
2220 size = MEMCG_CACHES_MAX_SIZE;
2221
f3bb3043 2222 err = memcg_update_all_caches(size);
60d3fd32
VD
2223 if (!err)
2224 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2225 if (!err)
2226 memcg_nr_cache_ids = size;
2227
2228 up_write(&memcg_cache_ids_sem);
2229
f3bb3043 2230 if (err) {
dbcf73e2 2231 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2232 return err;
2233 }
2234 return id;
2235}
2236
2237static void memcg_free_cache_id(int id)
2238{
dbcf73e2 2239 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2240}
2241
d5b3cf71 2242struct memcg_kmem_cache_create_work {
5722d094
VD
2243 struct mem_cgroup *memcg;
2244 struct kmem_cache *cachep;
2245 struct work_struct work;
2246};
2247
d5b3cf71 2248static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2249{
d5b3cf71
VD
2250 struct memcg_kmem_cache_create_work *cw =
2251 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2252 struct mem_cgroup *memcg = cw->memcg;
2253 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2254
d5b3cf71 2255 memcg_create_kmem_cache(memcg, cachep);
bd673145 2256
5722d094 2257 css_put(&memcg->css);
d7f25f8a
GC
2258 kfree(cw);
2259}
2260
2261/*
2262 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2263 */
d5b3cf71
VD
2264static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2265 struct kmem_cache *cachep)
d7f25f8a 2266{
d5b3cf71 2267 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2268
776ed0f0 2269 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2270 if (!cw)
d7f25f8a 2271 return;
8135be5a
VD
2272
2273 css_get(&memcg->css);
d7f25f8a
GC
2274
2275 cw->memcg = memcg;
2276 cw->cachep = cachep;
d5b3cf71 2277 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2278
d7f25f8a
GC
2279 schedule_work(&cw->work);
2280}
2281
d5b3cf71
VD
2282static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2283 struct kmem_cache *cachep)
0e9d92f2
GC
2284{
2285 /*
2286 * We need to stop accounting when we kmalloc, because if the
2287 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2288 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2289 *
2290 * However, it is better to enclose the whole function. Depending on
2291 * the debugging options enabled, INIT_WORK(), for instance, can
2292 * trigger an allocation. This too, will make us recurse. Because at
2293 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2294 * the safest choice is to do it like this, wrapping the whole function.
2295 */
6f185c29 2296 current->memcg_kmem_skip_account = 1;
d5b3cf71 2297 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2298 current->memcg_kmem_skip_account = 0;
0e9d92f2 2299}
c67a8a68 2300
d7f25f8a
GC
2301/*
2302 * Return the kmem_cache we're supposed to use for a slab allocation.
2303 * We try to use the current memcg's version of the cache.
2304 *
2305 * If the cache does not exist yet, if we are the first user of it,
2306 * we either create it immediately, if possible, or create it asynchronously
2307 * in a workqueue.
2308 * In the latter case, we will let the current allocation go through with
2309 * the original cache.
2310 *
2311 * Can't be called in interrupt context or from kernel threads.
2312 * This function needs to be called with rcu_read_lock() held.
2313 */
230e9fc2 2314struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2315{
2316 struct mem_cgroup *memcg;
959c8963 2317 struct kmem_cache *memcg_cachep;
2a4db7eb 2318 int kmemcg_id;
d7f25f8a 2319
f7ce3190 2320 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2321
230e9fc2
VD
2322 if (cachep->flags & SLAB_ACCOUNT)
2323 gfp |= __GFP_ACCOUNT;
2324
2325 if (!(gfp & __GFP_ACCOUNT))
2326 return cachep;
2327
9d100c5e 2328 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2329 return cachep;
2330
8135be5a 2331 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2332 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2333 if (kmemcg_id < 0)
ca0dde97 2334 goto out;
d7f25f8a 2335
2a4db7eb 2336 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2337 if (likely(memcg_cachep))
2338 return memcg_cachep;
ca0dde97
LZ
2339
2340 /*
2341 * If we are in a safe context (can wait, and not in interrupt
2342 * context), we could be be predictable and return right away.
2343 * This would guarantee that the allocation being performed
2344 * already belongs in the new cache.
2345 *
2346 * However, there are some clashes that can arrive from locking.
2347 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2348 * memcg_create_kmem_cache, this means no further allocation
2349 * could happen with the slab_mutex held. So it's better to
2350 * defer everything.
ca0dde97 2351 */
d5b3cf71 2352 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2353out:
8135be5a 2354 css_put(&memcg->css);
ca0dde97 2355 return cachep;
d7f25f8a 2356}
d7f25f8a 2357
8135be5a
VD
2358void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2359{
2360 if (!is_root_cache(cachep))
f7ce3190 2361 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2362}
2363
f3ccb2c4
VD
2364int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2365 struct mem_cgroup *memcg)
7ae1e1d0 2366{
f3ccb2c4
VD
2367 unsigned int nr_pages = 1 << order;
2368 struct page_counter *counter;
7ae1e1d0
GC
2369 int ret;
2370
567e9ab2 2371 if (!memcg_kmem_online(memcg))
d05e83a6 2372 return 0;
6d42c232 2373
f3ccb2c4 2374 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2375 if (ret)
f3ccb2c4 2376 return ret;
52c29b04
JW
2377
2378 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2379 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2380 cancel_charge(memcg, nr_pages);
2381 return -ENOMEM;
7ae1e1d0
GC
2382 }
2383
f3ccb2c4 2384 page->mem_cgroup = memcg;
7ae1e1d0 2385
f3ccb2c4 2386 return 0;
7ae1e1d0
GC
2387}
2388
f3ccb2c4 2389int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2390{
f3ccb2c4
VD
2391 struct mem_cgroup *memcg;
2392 int ret;
7ae1e1d0 2393
f3ccb2c4
VD
2394 memcg = get_mem_cgroup_from_mm(current->mm);
2395 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2396 css_put(&memcg->css);
d05e83a6 2397 return ret;
7ae1e1d0
GC
2398}
2399
d05e83a6 2400void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2401{
1306a85a 2402 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2403 unsigned int nr_pages = 1 << order;
7ae1e1d0 2404
7ae1e1d0
GC
2405 if (!memcg)
2406 return;
2407
309381fe 2408 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2409
52c29b04
JW
2410 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2411 page_counter_uncharge(&memcg->kmem, nr_pages);
2412
f3ccb2c4 2413 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2414 if (do_memsw_account())
f3ccb2c4 2415 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2416
1306a85a 2417 page->mem_cgroup = NULL;
f3ccb2c4 2418 css_put_many(&memcg->css, nr_pages);
60d3fd32 2419}
127424c8 2420#endif /* !CONFIG_SLOB */
7ae1e1d0 2421
ca3e0214
KH
2422#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2423
ca3e0214
KH
2424/*
2425 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2426 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2427 */
e94c8a9c 2428void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2429{
e94c8a9c 2430 int i;
ca3e0214 2431
3d37c4a9
KH
2432 if (mem_cgroup_disabled())
2433 return;
b070e65c 2434
29833315 2435 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2436 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2437
1306a85a 2438 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2439 HPAGE_PMD_NR);
ca3e0214 2440}
12d27107 2441#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2442
c255a458 2443#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2444static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2445 bool charge)
d13d1443 2446{
0a31bc97
JW
2447 int val = (charge) ? 1 : -1;
2448 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2449}
02491447
DN
2450
2451/**
2452 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2453 * @entry: swap entry to be moved
2454 * @from: mem_cgroup which the entry is moved from
2455 * @to: mem_cgroup which the entry is moved to
2456 *
2457 * It succeeds only when the swap_cgroup's record for this entry is the same
2458 * as the mem_cgroup's id of @from.
2459 *
2460 * Returns 0 on success, -EINVAL on failure.
2461 *
3e32cb2e 2462 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2463 * both res and memsw, and called css_get().
2464 */
2465static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2466 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2467{
2468 unsigned short old_id, new_id;
2469
34c00c31
LZ
2470 old_id = mem_cgroup_id(from);
2471 new_id = mem_cgroup_id(to);
02491447
DN
2472
2473 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2474 mem_cgroup_swap_statistics(from, false);
483c30b5 2475 mem_cgroup_swap_statistics(to, true);
02491447
DN
2476 return 0;
2477 }
2478 return -EINVAL;
2479}
2480#else
2481static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2482 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2483{
2484 return -EINVAL;
2485}
8c7c6e34 2486#endif
d13d1443 2487
3e32cb2e 2488static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2489
d38d2a75 2490static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2491 unsigned long limit)
628f4235 2492{
3e32cb2e
JW
2493 unsigned long curusage;
2494 unsigned long oldusage;
2495 bool enlarge = false;
81d39c20 2496 int retry_count;
3e32cb2e 2497 int ret;
81d39c20
KH
2498
2499 /*
2500 * For keeping hierarchical_reclaim simple, how long we should retry
2501 * is depends on callers. We set our retry-count to be function
2502 * of # of children which we should visit in this loop.
2503 */
3e32cb2e
JW
2504 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2505 mem_cgroup_count_children(memcg);
81d39c20 2506
3e32cb2e 2507 oldusage = page_counter_read(&memcg->memory);
628f4235 2508
3e32cb2e 2509 do {
628f4235
KH
2510 if (signal_pending(current)) {
2511 ret = -EINTR;
2512 break;
2513 }
3e32cb2e
JW
2514
2515 mutex_lock(&memcg_limit_mutex);
2516 if (limit > memcg->memsw.limit) {
2517 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2518 ret = -EINVAL;
628f4235
KH
2519 break;
2520 }
3e32cb2e
JW
2521 if (limit > memcg->memory.limit)
2522 enlarge = true;
2523 ret = page_counter_limit(&memcg->memory, limit);
2524 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2525
2526 if (!ret)
2527 break;
2528
b70a2a21
JW
2529 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2530
3e32cb2e 2531 curusage = page_counter_read(&memcg->memory);
81d39c20 2532 /* Usage is reduced ? */
f894ffa8 2533 if (curusage >= oldusage)
81d39c20
KH
2534 retry_count--;
2535 else
2536 oldusage = curusage;
3e32cb2e
JW
2537 } while (retry_count);
2538
3c11ecf4
KH
2539 if (!ret && enlarge)
2540 memcg_oom_recover(memcg);
14797e23 2541
8c7c6e34
KH
2542 return ret;
2543}
2544
338c8431 2545static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2546 unsigned long limit)
8c7c6e34 2547{
3e32cb2e
JW
2548 unsigned long curusage;
2549 unsigned long oldusage;
2550 bool enlarge = false;
81d39c20 2551 int retry_count;
3e32cb2e 2552 int ret;
8c7c6e34 2553
81d39c20 2554 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2555 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2556 mem_cgroup_count_children(memcg);
2557
2558 oldusage = page_counter_read(&memcg->memsw);
2559
2560 do {
8c7c6e34
KH
2561 if (signal_pending(current)) {
2562 ret = -EINTR;
2563 break;
2564 }
3e32cb2e
JW
2565
2566 mutex_lock(&memcg_limit_mutex);
2567 if (limit < memcg->memory.limit) {
2568 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2569 ret = -EINVAL;
8c7c6e34
KH
2570 break;
2571 }
3e32cb2e
JW
2572 if (limit > memcg->memsw.limit)
2573 enlarge = true;
2574 ret = page_counter_limit(&memcg->memsw, limit);
2575 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2576
2577 if (!ret)
2578 break;
2579
b70a2a21
JW
2580 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2581
3e32cb2e 2582 curusage = page_counter_read(&memcg->memsw);
81d39c20 2583 /* Usage is reduced ? */
8c7c6e34 2584 if (curusage >= oldusage)
628f4235 2585 retry_count--;
81d39c20
KH
2586 else
2587 oldusage = curusage;
3e32cb2e
JW
2588 } while (retry_count);
2589
3c11ecf4
KH
2590 if (!ret && enlarge)
2591 memcg_oom_recover(memcg);
3e32cb2e 2592
628f4235
KH
2593 return ret;
2594}
2595
0608f43d
AM
2596unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2597 gfp_t gfp_mask,
2598 unsigned long *total_scanned)
2599{
2600 unsigned long nr_reclaimed = 0;
2601 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2602 unsigned long reclaimed;
2603 int loop = 0;
2604 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2605 unsigned long excess;
0608f43d
AM
2606 unsigned long nr_scanned;
2607
2608 if (order > 0)
2609 return 0;
2610
2611 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2612 /*
2613 * This loop can run a while, specially if mem_cgroup's continuously
2614 * keep exceeding their soft limit and putting the system under
2615 * pressure
2616 */
2617 do {
2618 if (next_mz)
2619 mz = next_mz;
2620 else
2621 mz = mem_cgroup_largest_soft_limit_node(mctz);
2622 if (!mz)
2623 break;
2624
2625 nr_scanned = 0;
2626 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2627 gfp_mask, &nr_scanned);
2628 nr_reclaimed += reclaimed;
2629 *total_scanned += nr_scanned;
0a31bc97 2630 spin_lock_irq(&mctz->lock);
bc2f2e7f 2631 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2632
2633 /*
2634 * If we failed to reclaim anything from this memory cgroup
2635 * it is time to move on to the next cgroup
2636 */
2637 next_mz = NULL;
bc2f2e7f
VD
2638 if (!reclaimed)
2639 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2640
3e32cb2e 2641 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2642 /*
2643 * One school of thought says that we should not add
2644 * back the node to the tree if reclaim returns 0.
2645 * But our reclaim could return 0, simply because due
2646 * to priority we are exposing a smaller subset of
2647 * memory to reclaim from. Consider this as a longer
2648 * term TODO.
2649 */
2650 /* If excess == 0, no tree ops */
cf2c8127 2651 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2652 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2653 css_put(&mz->memcg->css);
2654 loop++;
2655 /*
2656 * Could not reclaim anything and there are no more
2657 * mem cgroups to try or we seem to be looping without
2658 * reclaiming anything.
2659 */
2660 if (!nr_reclaimed &&
2661 (next_mz == NULL ||
2662 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2663 break;
2664 } while (!nr_reclaimed);
2665 if (next_mz)
2666 css_put(&next_mz->memcg->css);
2667 return nr_reclaimed;
2668}
2669
ea280e7b
TH
2670/*
2671 * Test whether @memcg has children, dead or alive. Note that this
2672 * function doesn't care whether @memcg has use_hierarchy enabled and
2673 * returns %true if there are child csses according to the cgroup
2674 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2675 */
b5f99b53
GC
2676static inline bool memcg_has_children(struct mem_cgroup *memcg)
2677{
ea280e7b
TH
2678 bool ret;
2679
ea280e7b
TH
2680 rcu_read_lock();
2681 ret = css_next_child(NULL, &memcg->css);
2682 rcu_read_unlock();
2683 return ret;
b5f99b53
GC
2684}
2685
c26251f9
MH
2686/*
2687 * Reclaims as many pages from the given memcg as possible and moves
2688 * the rest to the parent.
2689 *
2690 * Caller is responsible for holding css reference for memcg.
2691 */
2692static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2693{
2694 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2695
c1e862c1
KH
2696 /* we call try-to-free pages for make this cgroup empty */
2697 lru_add_drain_all();
f817ed48 2698 /* try to free all pages in this cgroup */
3e32cb2e 2699 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2700 int progress;
c1e862c1 2701
c26251f9
MH
2702 if (signal_pending(current))
2703 return -EINTR;
2704
b70a2a21
JW
2705 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2706 GFP_KERNEL, true);
c1e862c1 2707 if (!progress) {
f817ed48 2708 nr_retries--;
c1e862c1 2709 /* maybe some writeback is necessary */
8aa7e847 2710 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2711 }
f817ed48
KH
2712
2713 }
ab5196c2
MH
2714
2715 return 0;
cc847582
KH
2716}
2717
6770c64e
TH
2718static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2719 char *buf, size_t nbytes,
2720 loff_t off)
c1e862c1 2721{
6770c64e 2722 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2723
d8423011
MH
2724 if (mem_cgroup_is_root(memcg))
2725 return -EINVAL;
6770c64e 2726 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2727}
2728
182446d0
TH
2729static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2730 struct cftype *cft)
18f59ea7 2731{
182446d0 2732 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2733}
2734
182446d0
TH
2735static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2736 struct cftype *cft, u64 val)
18f59ea7
BS
2737{
2738 int retval = 0;
182446d0 2739 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2740 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2741
567fb435 2742 if (memcg->use_hierarchy == val)
0b8f73e1 2743 return 0;
567fb435 2744
18f59ea7 2745 /*
af901ca1 2746 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2747 * in the child subtrees. If it is unset, then the change can
2748 * occur, provided the current cgroup has no children.
2749 *
2750 * For the root cgroup, parent_mem is NULL, we allow value to be
2751 * set if there are no children.
2752 */
c0ff4b85 2753 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2754 (val == 1 || val == 0)) {
ea280e7b 2755 if (!memcg_has_children(memcg))
c0ff4b85 2756 memcg->use_hierarchy = val;
18f59ea7
BS
2757 else
2758 retval = -EBUSY;
2759 } else
2760 retval = -EINVAL;
567fb435 2761
18f59ea7
BS
2762 return retval;
2763}
2764
3e32cb2e
JW
2765static unsigned long tree_stat(struct mem_cgroup *memcg,
2766 enum mem_cgroup_stat_index idx)
ce00a967
JW
2767{
2768 struct mem_cgroup *iter;
484ebb3b 2769 unsigned long val = 0;
ce00a967 2770
ce00a967
JW
2771 for_each_mem_cgroup_tree(iter, memcg)
2772 val += mem_cgroup_read_stat(iter, idx);
2773
ce00a967
JW
2774 return val;
2775}
2776
6f646156 2777static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2778{
c12176d3 2779 unsigned long val;
ce00a967 2780
3e32cb2e
JW
2781 if (mem_cgroup_is_root(memcg)) {
2782 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2783 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2784 if (swap)
2785 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2786 } else {
ce00a967 2787 if (!swap)
3e32cb2e 2788 val = page_counter_read(&memcg->memory);
ce00a967 2789 else
3e32cb2e 2790 val = page_counter_read(&memcg->memsw);
ce00a967 2791 }
c12176d3 2792 return val;
ce00a967
JW
2793}
2794
3e32cb2e
JW
2795enum {
2796 RES_USAGE,
2797 RES_LIMIT,
2798 RES_MAX_USAGE,
2799 RES_FAILCNT,
2800 RES_SOFT_LIMIT,
2801};
ce00a967 2802
791badbd 2803static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2804 struct cftype *cft)
8cdea7c0 2805{
182446d0 2806 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2807 struct page_counter *counter;
af36f906 2808
3e32cb2e 2809 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2810 case _MEM:
3e32cb2e
JW
2811 counter = &memcg->memory;
2812 break;
8c7c6e34 2813 case _MEMSWAP:
3e32cb2e
JW
2814 counter = &memcg->memsw;
2815 break;
510fc4e1 2816 case _KMEM:
3e32cb2e 2817 counter = &memcg->kmem;
510fc4e1 2818 break;
d55f90bf 2819 case _TCP:
0db15298 2820 counter = &memcg->tcpmem;
d55f90bf 2821 break;
8c7c6e34
KH
2822 default:
2823 BUG();
8c7c6e34 2824 }
3e32cb2e
JW
2825
2826 switch (MEMFILE_ATTR(cft->private)) {
2827 case RES_USAGE:
2828 if (counter == &memcg->memory)
c12176d3 2829 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2830 if (counter == &memcg->memsw)
c12176d3 2831 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2832 return (u64)page_counter_read(counter) * PAGE_SIZE;
2833 case RES_LIMIT:
2834 return (u64)counter->limit * PAGE_SIZE;
2835 case RES_MAX_USAGE:
2836 return (u64)counter->watermark * PAGE_SIZE;
2837 case RES_FAILCNT:
2838 return counter->failcnt;
2839 case RES_SOFT_LIMIT:
2840 return (u64)memcg->soft_limit * PAGE_SIZE;
2841 default:
2842 BUG();
2843 }
8cdea7c0 2844}
510fc4e1 2845
127424c8 2846#ifndef CONFIG_SLOB
567e9ab2 2847static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2848{
d6441637
VD
2849 int memcg_id;
2850
2a4db7eb 2851 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2852 BUG_ON(memcg->kmem_state);
d6441637 2853
f3bb3043 2854 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2855 if (memcg_id < 0)
2856 return memcg_id;
d6441637 2857
ef12947c 2858 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2859 /*
567e9ab2 2860 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2861 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2862 * guarantee no one starts accounting before all call sites are
2863 * patched.
2864 */
900a38f0 2865 memcg->kmemcg_id = memcg_id;
567e9ab2 2866 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2867
2868 return 0;
d6441637
VD
2869}
2870
0b8f73e1
JW
2871static int memcg_propagate_kmem(struct mem_cgroup *parent,
2872 struct mem_cgroup *memcg)
510fc4e1 2873{
55007d84 2874 int ret = 0;
55007d84 2875
8c0145b6 2876 mutex_lock(&memcg_limit_mutex);
55007d84 2877 /*
567e9ab2
JW
2878 * If the parent cgroup is not kmem-online now, it cannot be
2879 * onlined after this point, because it has at least one child
2880 * already.
55007d84 2881 */
04823c83
VD
2882 if (memcg_kmem_online(parent) ||
2883 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
567e9ab2 2884 ret = memcg_online_kmem(memcg);
8c0145b6 2885 mutex_unlock(&memcg_limit_mutex);
55007d84 2886 return ret;
510fc4e1 2887}
8e0a8912 2888
8e0a8912
JW
2889static void memcg_offline_kmem(struct mem_cgroup *memcg)
2890{
2891 struct cgroup_subsys_state *css;
2892 struct mem_cgroup *parent, *child;
2893 int kmemcg_id;
2894
2895 if (memcg->kmem_state != KMEM_ONLINE)
2896 return;
2897 /*
2898 * Clear the online state before clearing memcg_caches array
2899 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2900 * guarantees that no cache will be created for this cgroup
2901 * after we are done (see memcg_create_kmem_cache()).
2902 */
2903 memcg->kmem_state = KMEM_ALLOCATED;
2904
2905 memcg_deactivate_kmem_caches(memcg);
2906
2907 kmemcg_id = memcg->kmemcg_id;
2908 BUG_ON(kmemcg_id < 0);
2909
2910 parent = parent_mem_cgroup(memcg);
2911 if (!parent)
2912 parent = root_mem_cgroup;
2913
2914 /*
2915 * Change kmemcg_id of this cgroup and all its descendants to the
2916 * parent's id, and then move all entries from this cgroup's list_lrus
2917 * to ones of the parent. After we have finished, all list_lrus
2918 * corresponding to this cgroup are guaranteed to remain empty. The
2919 * ordering is imposed by list_lru_node->lock taken by
2920 * memcg_drain_all_list_lrus().
2921 */
2922 css_for_each_descendant_pre(css, &memcg->css) {
2923 child = mem_cgroup_from_css(css);
2924 BUG_ON(child->kmemcg_id != kmemcg_id);
2925 child->kmemcg_id = parent->kmemcg_id;
2926 if (!memcg->use_hierarchy)
2927 break;
2928 }
2929 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2930
2931 memcg_free_cache_id(kmemcg_id);
2932}
2933
2934static void memcg_free_kmem(struct mem_cgroup *memcg)
2935{
0b8f73e1
JW
2936 /* css_alloc() failed, offlining didn't happen */
2937 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2938 memcg_offline_kmem(memcg);
2939
8e0a8912
JW
2940 if (memcg->kmem_state == KMEM_ALLOCATED) {
2941 memcg_destroy_kmem_caches(memcg);
2942 static_branch_dec(&memcg_kmem_enabled_key);
2943 WARN_ON(page_counter_read(&memcg->kmem));
2944 }
8e0a8912 2945}
d6441637 2946#else
0b8f73e1
JW
2947static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
2948{
2949 return 0;
2950}
2951static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2952{
2953 return 0;
2954}
2955static void memcg_offline_kmem(struct mem_cgroup *memcg)
2956{
2957}
2958static void memcg_free_kmem(struct mem_cgroup *memcg)
2959{
2960}
2961#endif /* !CONFIG_SLOB */
2962
d6441637 2963static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2964 unsigned long limit)
d6441637 2965{
0b8f73e1 2966 int ret = 0;
127424c8
JW
2967
2968 mutex_lock(&memcg_limit_mutex);
2969 /* Top-level cgroup doesn't propagate from root */
2970 if (!memcg_kmem_online(memcg)) {
0b8f73e1
JW
2971 if (cgroup_is_populated(memcg->css.cgroup) ||
2972 (memcg->use_hierarchy && memcg_has_children(memcg)))
2973 ret = -EBUSY;
2974 if (ret)
2975 goto out;
127424c8
JW
2976 ret = memcg_online_kmem(memcg);
2977 if (ret)
2978 goto out;
2979 }
2980 ret = page_counter_limit(&memcg->kmem, limit);
2981out:
2982 mutex_unlock(&memcg_limit_mutex);
2983 return ret;
d6441637 2984}
510fc4e1 2985
d55f90bf
VD
2986static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2987{
2988 int ret;
2989
2990 mutex_lock(&memcg_limit_mutex);
2991
0db15298 2992 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2993 if (ret)
2994 goto out;
2995
0db15298 2996 if (!memcg->tcpmem_active) {
d55f90bf
VD
2997 /*
2998 * The active flag needs to be written after the static_key
2999 * update. This is what guarantees that the socket activation
3000 * function is the last one to run. See sock_update_memcg() for
3001 * details, and note that we don't mark any socket as belonging
3002 * to this memcg until that flag is up.
3003 *
3004 * We need to do this, because static_keys will span multiple
3005 * sites, but we can't control their order. If we mark a socket
3006 * as accounted, but the accounting functions are not patched in
3007 * yet, we'll lose accounting.
3008 *
3009 * We never race with the readers in sock_update_memcg(),
3010 * because when this value change, the code to process it is not
3011 * patched in yet.
3012 */
3013 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3014 memcg->tcpmem_active = true;
d55f90bf
VD
3015 }
3016out:
3017 mutex_unlock(&memcg_limit_mutex);
3018 return ret;
3019}
d55f90bf 3020
628f4235
KH
3021/*
3022 * The user of this function is...
3023 * RES_LIMIT.
3024 */
451af504
TH
3025static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3026 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3027{
451af504 3028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3029 unsigned long nr_pages;
628f4235
KH
3030 int ret;
3031
451af504 3032 buf = strstrip(buf);
650c5e56 3033 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3034 if (ret)
3035 return ret;
af36f906 3036
3e32cb2e 3037 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3038 case RES_LIMIT:
4b3bde4c
BS
3039 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3040 ret = -EINVAL;
3041 break;
3042 }
3e32cb2e
JW
3043 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3044 case _MEM:
3045 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3046 break;
3e32cb2e
JW
3047 case _MEMSWAP:
3048 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3049 break;
3e32cb2e
JW
3050 case _KMEM:
3051 ret = memcg_update_kmem_limit(memcg, nr_pages);
3052 break;
d55f90bf
VD
3053 case _TCP:
3054 ret = memcg_update_tcp_limit(memcg, nr_pages);
3055 break;
3e32cb2e 3056 }
296c81d8 3057 break;
3e32cb2e
JW
3058 case RES_SOFT_LIMIT:
3059 memcg->soft_limit = nr_pages;
3060 ret = 0;
628f4235
KH
3061 break;
3062 }
451af504 3063 return ret ?: nbytes;
8cdea7c0
BS
3064}
3065
6770c64e
TH
3066static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3067 size_t nbytes, loff_t off)
c84872e1 3068{
6770c64e 3069 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3070 struct page_counter *counter;
c84872e1 3071
3e32cb2e
JW
3072 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3073 case _MEM:
3074 counter = &memcg->memory;
3075 break;
3076 case _MEMSWAP:
3077 counter = &memcg->memsw;
3078 break;
3079 case _KMEM:
3080 counter = &memcg->kmem;
3081 break;
d55f90bf 3082 case _TCP:
0db15298 3083 counter = &memcg->tcpmem;
d55f90bf 3084 break;
3e32cb2e
JW
3085 default:
3086 BUG();
3087 }
af36f906 3088
3e32cb2e 3089 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3090 case RES_MAX_USAGE:
3e32cb2e 3091 page_counter_reset_watermark(counter);
29f2a4da
PE
3092 break;
3093 case RES_FAILCNT:
3e32cb2e 3094 counter->failcnt = 0;
29f2a4da 3095 break;
3e32cb2e
JW
3096 default:
3097 BUG();
29f2a4da 3098 }
f64c3f54 3099
6770c64e 3100 return nbytes;
c84872e1
PE
3101}
3102
182446d0 3103static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3104 struct cftype *cft)
3105{
182446d0 3106 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3107}
3108
02491447 3109#ifdef CONFIG_MMU
182446d0 3110static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3111 struct cftype *cft, u64 val)
3112{
182446d0 3113 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3114
1dfab5ab 3115 if (val & ~MOVE_MASK)
7dc74be0 3116 return -EINVAL;
ee5e8472 3117
7dc74be0 3118 /*
ee5e8472
GC
3119 * No kind of locking is needed in here, because ->can_attach() will
3120 * check this value once in the beginning of the process, and then carry
3121 * on with stale data. This means that changes to this value will only
3122 * affect task migrations starting after the change.
7dc74be0 3123 */
c0ff4b85 3124 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3125 return 0;
3126}
02491447 3127#else
182446d0 3128static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3129 struct cftype *cft, u64 val)
3130{
3131 return -ENOSYS;
3132}
3133#endif
7dc74be0 3134
406eb0c9 3135#ifdef CONFIG_NUMA
2da8ca82 3136static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3137{
25485de6
GT
3138 struct numa_stat {
3139 const char *name;
3140 unsigned int lru_mask;
3141 };
3142
3143 static const struct numa_stat stats[] = {
3144 { "total", LRU_ALL },
3145 { "file", LRU_ALL_FILE },
3146 { "anon", LRU_ALL_ANON },
3147 { "unevictable", BIT(LRU_UNEVICTABLE) },
3148 };
3149 const struct numa_stat *stat;
406eb0c9 3150 int nid;
25485de6 3151 unsigned long nr;
2da8ca82 3152 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3153
25485de6
GT
3154 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3155 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3156 seq_printf(m, "%s=%lu", stat->name, nr);
3157 for_each_node_state(nid, N_MEMORY) {
3158 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3159 stat->lru_mask);
3160 seq_printf(m, " N%d=%lu", nid, nr);
3161 }
3162 seq_putc(m, '\n');
406eb0c9 3163 }
406eb0c9 3164
071aee13
YH
3165 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3166 struct mem_cgroup *iter;
3167
3168 nr = 0;
3169 for_each_mem_cgroup_tree(iter, memcg)
3170 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3171 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3172 for_each_node_state(nid, N_MEMORY) {
3173 nr = 0;
3174 for_each_mem_cgroup_tree(iter, memcg)
3175 nr += mem_cgroup_node_nr_lru_pages(
3176 iter, nid, stat->lru_mask);
3177 seq_printf(m, " N%d=%lu", nid, nr);
3178 }
3179 seq_putc(m, '\n');
406eb0c9 3180 }
406eb0c9 3181
406eb0c9
YH
3182 return 0;
3183}
3184#endif /* CONFIG_NUMA */
3185
2da8ca82 3186static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3187{
2da8ca82 3188 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3189 unsigned long memory, memsw;
af7c4b0e
JW
3190 struct mem_cgroup *mi;
3191 unsigned int i;
406eb0c9 3192
0ca44b14
GT
3193 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3194 MEM_CGROUP_STAT_NSTATS);
3195 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3196 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3197 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3198
af7c4b0e 3199 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3200 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3201 continue;
484ebb3b 3202 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3203 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3204 }
7b854121 3205
af7c4b0e
JW
3206 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3207 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3208 mem_cgroup_read_events(memcg, i));
3209
3210 for (i = 0; i < NR_LRU_LISTS; i++)
3211 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3212 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3213
14067bb3 3214 /* Hierarchical information */
3e32cb2e
JW
3215 memory = memsw = PAGE_COUNTER_MAX;
3216 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3217 memory = min(memory, mi->memory.limit);
3218 memsw = min(memsw, mi->memsw.limit);
fee7b548 3219 }
3e32cb2e
JW
3220 seq_printf(m, "hierarchical_memory_limit %llu\n",
3221 (u64)memory * PAGE_SIZE);
7941d214 3222 if (do_memsw_account())
3e32cb2e
JW
3223 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3224 (u64)memsw * PAGE_SIZE);
7f016ee8 3225
af7c4b0e 3226 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3227 unsigned long long val = 0;
af7c4b0e 3228
7941d214 3229 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3230 continue;
af7c4b0e
JW
3231 for_each_mem_cgroup_tree(mi, memcg)
3232 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3233 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3234 }
3235
3236 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3237 unsigned long long val = 0;
3238
3239 for_each_mem_cgroup_tree(mi, memcg)
3240 val += mem_cgroup_read_events(mi, i);
3241 seq_printf(m, "total_%s %llu\n",
3242 mem_cgroup_events_names[i], val);
3243 }
3244
3245 for (i = 0; i < NR_LRU_LISTS; i++) {
3246 unsigned long long val = 0;
3247
3248 for_each_mem_cgroup_tree(mi, memcg)
3249 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3250 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3251 }
14067bb3 3252
7f016ee8 3253#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3254 {
3255 int nid, zid;
3256 struct mem_cgroup_per_zone *mz;
89abfab1 3257 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3258 unsigned long recent_rotated[2] = {0, 0};
3259 unsigned long recent_scanned[2] = {0, 0};
3260
3261 for_each_online_node(nid)
3262 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3263 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3264 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3265
89abfab1
HD
3266 recent_rotated[0] += rstat->recent_rotated[0];
3267 recent_rotated[1] += rstat->recent_rotated[1];
3268 recent_scanned[0] += rstat->recent_scanned[0];
3269 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3270 }
78ccf5b5
JW
3271 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3272 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3273 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3274 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3275 }
3276#endif
3277
d2ceb9b7
KH
3278 return 0;
3279}
3280
182446d0
TH
3281static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3282 struct cftype *cft)
a7885eb8 3283{
182446d0 3284 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3285
1f4c025b 3286 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3287}
3288
182446d0
TH
3289static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3290 struct cftype *cft, u64 val)
a7885eb8 3291{
182446d0 3292 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3293
3dae7fec 3294 if (val > 100)
a7885eb8
KM
3295 return -EINVAL;
3296
14208b0e 3297 if (css->parent)
3dae7fec
JW
3298 memcg->swappiness = val;
3299 else
3300 vm_swappiness = val;
068b38c1 3301
a7885eb8
KM
3302 return 0;
3303}
3304
2e72b634
KS
3305static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3306{
3307 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3308 unsigned long usage;
2e72b634
KS
3309 int i;
3310
3311 rcu_read_lock();
3312 if (!swap)
2c488db2 3313 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3314 else
2c488db2 3315 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3316
3317 if (!t)
3318 goto unlock;
3319
ce00a967 3320 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3321
3322 /*
748dad36 3323 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3324 * If it's not true, a threshold was crossed after last
3325 * call of __mem_cgroup_threshold().
3326 */
5407a562 3327 i = t->current_threshold;
2e72b634
KS
3328
3329 /*
3330 * Iterate backward over array of thresholds starting from
3331 * current_threshold and check if a threshold is crossed.
3332 * If none of thresholds below usage is crossed, we read
3333 * only one element of the array here.
3334 */
3335 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3336 eventfd_signal(t->entries[i].eventfd, 1);
3337
3338 /* i = current_threshold + 1 */
3339 i++;
3340
3341 /*
3342 * Iterate forward over array of thresholds starting from
3343 * current_threshold+1 and check if a threshold is crossed.
3344 * If none of thresholds above usage is crossed, we read
3345 * only one element of the array here.
3346 */
3347 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3348 eventfd_signal(t->entries[i].eventfd, 1);
3349
3350 /* Update current_threshold */
5407a562 3351 t->current_threshold = i - 1;
2e72b634
KS
3352unlock:
3353 rcu_read_unlock();
3354}
3355
3356static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3357{
ad4ca5f4
KS
3358 while (memcg) {
3359 __mem_cgroup_threshold(memcg, false);
7941d214 3360 if (do_memsw_account())
ad4ca5f4
KS
3361 __mem_cgroup_threshold(memcg, true);
3362
3363 memcg = parent_mem_cgroup(memcg);
3364 }
2e72b634
KS
3365}
3366
3367static int compare_thresholds(const void *a, const void *b)
3368{
3369 const struct mem_cgroup_threshold *_a = a;
3370 const struct mem_cgroup_threshold *_b = b;
3371
2bff24a3
GT
3372 if (_a->threshold > _b->threshold)
3373 return 1;
3374
3375 if (_a->threshold < _b->threshold)
3376 return -1;
3377
3378 return 0;
2e72b634
KS
3379}
3380
c0ff4b85 3381static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3382{
3383 struct mem_cgroup_eventfd_list *ev;
3384
2bcf2e92
MH
3385 spin_lock(&memcg_oom_lock);
3386
c0ff4b85 3387 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3388 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3389
3390 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3391 return 0;
3392}
3393
c0ff4b85 3394static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3395{
7d74b06f
KH
3396 struct mem_cgroup *iter;
3397
c0ff4b85 3398 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3399 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3400}
3401
59b6f873 3402static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3403 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3404{
2c488db2
KS
3405 struct mem_cgroup_thresholds *thresholds;
3406 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3407 unsigned long threshold;
3408 unsigned long usage;
2c488db2 3409 int i, size, ret;
2e72b634 3410
650c5e56 3411 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3412 if (ret)
3413 return ret;
3414
3415 mutex_lock(&memcg->thresholds_lock);
2c488db2 3416
05b84301 3417 if (type == _MEM) {
2c488db2 3418 thresholds = &memcg->thresholds;
ce00a967 3419 usage = mem_cgroup_usage(memcg, false);
05b84301 3420 } else if (type == _MEMSWAP) {
2c488db2 3421 thresholds = &memcg->memsw_thresholds;
ce00a967 3422 usage = mem_cgroup_usage(memcg, true);
05b84301 3423 } else
2e72b634
KS
3424 BUG();
3425
2e72b634 3426 /* Check if a threshold crossed before adding a new one */
2c488db2 3427 if (thresholds->primary)
2e72b634
KS
3428 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3429
2c488db2 3430 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3431
3432 /* Allocate memory for new array of thresholds */
2c488db2 3433 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3434 GFP_KERNEL);
2c488db2 3435 if (!new) {
2e72b634
KS
3436 ret = -ENOMEM;
3437 goto unlock;
3438 }
2c488db2 3439 new->size = size;
2e72b634
KS
3440
3441 /* Copy thresholds (if any) to new array */
2c488db2
KS
3442 if (thresholds->primary) {
3443 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3444 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3445 }
3446
2e72b634 3447 /* Add new threshold */
2c488db2
KS
3448 new->entries[size - 1].eventfd = eventfd;
3449 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3450
3451 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3452 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3453 compare_thresholds, NULL);
3454
3455 /* Find current threshold */
2c488db2 3456 new->current_threshold = -1;
2e72b634 3457 for (i = 0; i < size; i++) {
748dad36 3458 if (new->entries[i].threshold <= usage) {
2e72b634 3459 /*
2c488db2
KS
3460 * new->current_threshold will not be used until
3461 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3462 * it here.
3463 */
2c488db2 3464 ++new->current_threshold;
748dad36
SZ
3465 } else
3466 break;
2e72b634
KS
3467 }
3468
2c488db2
KS
3469 /* Free old spare buffer and save old primary buffer as spare */
3470 kfree(thresholds->spare);
3471 thresholds->spare = thresholds->primary;
3472
3473 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3474
907860ed 3475 /* To be sure that nobody uses thresholds */
2e72b634
KS
3476 synchronize_rcu();
3477
2e72b634
KS
3478unlock:
3479 mutex_unlock(&memcg->thresholds_lock);
3480
3481 return ret;
3482}
3483
59b6f873 3484static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3485 struct eventfd_ctx *eventfd, const char *args)
3486{
59b6f873 3487 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3488}
3489
59b6f873 3490static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3491 struct eventfd_ctx *eventfd, const char *args)
3492{
59b6f873 3493 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3494}
3495
59b6f873 3496static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3497 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3498{
2c488db2
KS
3499 struct mem_cgroup_thresholds *thresholds;
3500 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3501 unsigned long usage;
2c488db2 3502 int i, j, size;
2e72b634
KS
3503
3504 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3505
3506 if (type == _MEM) {
2c488db2 3507 thresholds = &memcg->thresholds;
ce00a967 3508 usage = mem_cgroup_usage(memcg, false);
05b84301 3509 } else if (type == _MEMSWAP) {
2c488db2 3510 thresholds = &memcg->memsw_thresholds;
ce00a967 3511 usage = mem_cgroup_usage(memcg, true);
05b84301 3512 } else
2e72b634
KS
3513 BUG();
3514
371528ca
AV
3515 if (!thresholds->primary)
3516 goto unlock;
3517
2e72b634
KS
3518 /* Check if a threshold crossed before removing */
3519 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3520
3521 /* Calculate new number of threshold */
2c488db2
KS
3522 size = 0;
3523 for (i = 0; i < thresholds->primary->size; i++) {
3524 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3525 size++;
3526 }
3527
2c488db2 3528 new = thresholds->spare;
907860ed 3529
2e72b634
KS
3530 /* Set thresholds array to NULL if we don't have thresholds */
3531 if (!size) {
2c488db2
KS
3532 kfree(new);
3533 new = NULL;
907860ed 3534 goto swap_buffers;
2e72b634
KS
3535 }
3536
2c488db2 3537 new->size = size;
2e72b634
KS
3538
3539 /* Copy thresholds and find current threshold */
2c488db2
KS
3540 new->current_threshold = -1;
3541 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3542 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3543 continue;
3544
2c488db2 3545 new->entries[j] = thresholds->primary->entries[i];
748dad36 3546 if (new->entries[j].threshold <= usage) {
2e72b634 3547 /*
2c488db2 3548 * new->current_threshold will not be used
2e72b634
KS
3549 * until rcu_assign_pointer(), so it's safe to increment
3550 * it here.
3551 */
2c488db2 3552 ++new->current_threshold;
2e72b634
KS
3553 }
3554 j++;
3555 }
3556
907860ed 3557swap_buffers:
2c488db2
KS
3558 /* Swap primary and spare array */
3559 thresholds->spare = thresholds->primary;
8c757763 3560
2c488db2 3561 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3562
907860ed 3563 /* To be sure that nobody uses thresholds */
2e72b634 3564 synchronize_rcu();
6611d8d7
MC
3565
3566 /* If all events are unregistered, free the spare array */
3567 if (!new) {
3568 kfree(thresholds->spare);
3569 thresholds->spare = NULL;
3570 }
371528ca 3571unlock:
2e72b634 3572 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3573}
c1e862c1 3574
59b6f873 3575static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3576 struct eventfd_ctx *eventfd)
3577{
59b6f873 3578 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3579}
3580
59b6f873 3581static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3582 struct eventfd_ctx *eventfd)
3583{
59b6f873 3584 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3585}
3586
59b6f873 3587static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3588 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3589{
9490ff27 3590 struct mem_cgroup_eventfd_list *event;
9490ff27 3591
9490ff27
KH
3592 event = kmalloc(sizeof(*event), GFP_KERNEL);
3593 if (!event)
3594 return -ENOMEM;
3595
1af8efe9 3596 spin_lock(&memcg_oom_lock);
9490ff27
KH
3597
3598 event->eventfd = eventfd;
3599 list_add(&event->list, &memcg->oom_notify);
3600
3601 /* already in OOM ? */
c2b42d3c 3602 if (memcg->under_oom)
9490ff27 3603 eventfd_signal(eventfd, 1);
1af8efe9 3604 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3605
3606 return 0;
3607}
3608
59b6f873 3609static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3610 struct eventfd_ctx *eventfd)
9490ff27 3611{
9490ff27 3612 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3613
1af8efe9 3614 spin_lock(&memcg_oom_lock);
9490ff27 3615
c0ff4b85 3616 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3617 if (ev->eventfd == eventfd) {
3618 list_del(&ev->list);
3619 kfree(ev);
3620 }
3621 }
3622
1af8efe9 3623 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3624}
3625
2da8ca82 3626static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3627{
2da8ca82 3628 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3629
791badbd 3630 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3631 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3632 return 0;
3633}
3634
182446d0 3635static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3636 struct cftype *cft, u64 val)
3637{
182446d0 3638 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3639
3640 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3641 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3642 return -EINVAL;
3643
c0ff4b85 3644 memcg->oom_kill_disable = val;
4d845ebf 3645 if (!val)
c0ff4b85 3646 memcg_oom_recover(memcg);
3dae7fec 3647
3c11ecf4
KH
3648 return 0;
3649}
3650
52ebea74
TH
3651#ifdef CONFIG_CGROUP_WRITEBACK
3652
3653struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3654{
3655 return &memcg->cgwb_list;
3656}
3657
841710aa
TH
3658static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3659{
3660 return wb_domain_init(&memcg->cgwb_domain, gfp);
3661}
3662
3663static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3664{
3665 wb_domain_exit(&memcg->cgwb_domain);
3666}
3667
2529bb3a
TH
3668static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3669{
3670 wb_domain_size_changed(&memcg->cgwb_domain);
3671}
3672
841710aa
TH
3673struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3674{
3675 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3676
3677 if (!memcg->css.parent)
3678 return NULL;
3679
3680 return &memcg->cgwb_domain;
3681}
3682
c2aa723a
TH
3683/**
3684 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3685 * @wb: bdi_writeback in question
c5edf9cd
TH
3686 * @pfilepages: out parameter for number of file pages
3687 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3688 * @pdirty: out parameter for number of dirty pages
3689 * @pwriteback: out parameter for number of pages under writeback
3690 *
c5edf9cd
TH
3691 * Determine the numbers of file, headroom, dirty, and writeback pages in
3692 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3693 * is a bit more involved.
c2aa723a 3694 *
c5edf9cd
TH
3695 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3696 * headroom is calculated as the lowest headroom of itself and the
3697 * ancestors. Note that this doesn't consider the actual amount of
3698 * available memory in the system. The caller should further cap
3699 * *@pheadroom accordingly.
c2aa723a 3700 */
c5edf9cd
TH
3701void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3702 unsigned long *pheadroom, unsigned long *pdirty,
3703 unsigned long *pwriteback)
c2aa723a
TH
3704{
3705 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3706 struct mem_cgroup *parent;
c2aa723a
TH
3707
3708 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3709
3710 /* this should eventually include NR_UNSTABLE_NFS */
3711 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3712 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3713 (1 << LRU_ACTIVE_FILE));
3714 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3715
c2aa723a
TH
3716 while ((parent = parent_mem_cgroup(memcg))) {
3717 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3718 unsigned long used = page_counter_read(&memcg->memory);
3719
c5edf9cd 3720 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3721 memcg = parent;
3722 }
c2aa723a
TH
3723}
3724
841710aa
TH
3725#else /* CONFIG_CGROUP_WRITEBACK */
3726
3727static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3728{
3729 return 0;
3730}
3731
3732static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3733{
3734}
3735
2529bb3a
TH
3736static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3737{
3738}
3739
52ebea74
TH
3740#endif /* CONFIG_CGROUP_WRITEBACK */
3741
3bc942f3
TH
3742/*
3743 * DO NOT USE IN NEW FILES.
3744 *
3745 * "cgroup.event_control" implementation.
3746 *
3747 * This is way over-engineered. It tries to support fully configurable
3748 * events for each user. Such level of flexibility is completely
3749 * unnecessary especially in the light of the planned unified hierarchy.
3750 *
3751 * Please deprecate this and replace with something simpler if at all
3752 * possible.
3753 */
3754
79bd9814
TH
3755/*
3756 * Unregister event and free resources.
3757 *
3758 * Gets called from workqueue.
3759 */
3bc942f3 3760static void memcg_event_remove(struct work_struct *work)
79bd9814 3761{
3bc942f3
TH
3762 struct mem_cgroup_event *event =
3763 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3764 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3765
3766 remove_wait_queue(event->wqh, &event->wait);
3767
59b6f873 3768 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3769
3770 /* Notify userspace the event is going away. */
3771 eventfd_signal(event->eventfd, 1);
3772
3773 eventfd_ctx_put(event->eventfd);
3774 kfree(event);
59b6f873 3775 css_put(&memcg->css);
79bd9814
TH
3776}
3777
3778/*
3779 * Gets called on POLLHUP on eventfd when user closes it.
3780 *
3781 * Called with wqh->lock held and interrupts disabled.
3782 */
3bc942f3
TH
3783static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3784 int sync, void *key)
79bd9814 3785{
3bc942f3
TH
3786 struct mem_cgroup_event *event =
3787 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3788 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3789 unsigned long flags = (unsigned long)key;
3790
3791 if (flags & POLLHUP) {
3792 /*
3793 * If the event has been detached at cgroup removal, we
3794 * can simply return knowing the other side will cleanup
3795 * for us.
3796 *
3797 * We can't race against event freeing since the other
3798 * side will require wqh->lock via remove_wait_queue(),
3799 * which we hold.
3800 */
fba94807 3801 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3802 if (!list_empty(&event->list)) {
3803 list_del_init(&event->list);
3804 /*
3805 * We are in atomic context, but cgroup_event_remove()
3806 * may sleep, so we have to call it in workqueue.
3807 */
3808 schedule_work(&event->remove);
3809 }
fba94807 3810 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3811 }
3812
3813 return 0;
3814}
3815
3bc942f3 3816static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3817 wait_queue_head_t *wqh, poll_table *pt)
3818{
3bc942f3
TH
3819 struct mem_cgroup_event *event =
3820 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3821
3822 event->wqh = wqh;
3823 add_wait_queue(wqh, &event->wait);
3824}
3825
3826/*
3bc942f3
TH
3827 * DO NOT USE IN NEW FILES.
3828 *
79bd9814
TH
3829 * Parse input and register new cgroup event handler.
3830 *
3831 * Input must be in format '<event_fd> <control_fd> <args>'.
3832 * Interpretation of args is defined by control file implementation.
3833 */
451af504
TH
3834static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3835 char *buf, size_t nbytes, loff_t off)
79bd9814 3836{
451af504 3837 struct cgroup_subsys_state *css = of_css(of);
fba94807 3838 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3839 struct mem_cgroup_event *event;
79bd9814
TH
3840 struct cgroup_subsys_state *cfile_css;
3841 unsigned int efd, cfd;
3842 struct fd efile;
3843 struct fd cfile;
fba94807 3844 const char *name;
79bd9814
TH
3845 char *endp;
3846 int ret;
3847
451af504
TH
3848 buf = strstrip(buf);
3849
3850 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3851 if (*endp != ' ')
3852 return -EINVAL;
451af504 3853 buf = endp + 1;
79bd9814 3854
451af504 3855 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3856 if ((*endp != ' ') && (*endp != '\0'))
3857 return -EINVAL;
451af504 3858 buf = endp + 1;
79bd9814
TH
3859
3860 event = kzalloc(sizeof(*event), GFP_KERNEL);
3861 if (!event)
3862 return -ENOMEM;
3863
59b6f873 3864 event->memcg = memcg;
79bd9814 3865 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3866 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3867 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3868 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3869
3870 efile = fdget(efd);
3871 if (!efile.file) {
3872 ret = -EBADF;
3873 goto out_kfree;
3874 }
3875
3876 event->eventfd = eventfd_ctx_fileget(efile.file);
3877 if (IS_ERR(event->eventfd)) {
3878 ret = PTR_ERR(event->eventfd);
3879 goto out_put_efile;
3880 }
3881
3882 cfile = fdget(cfd);
3883 if (!cfile.file) {
3884 ret = -EBADF;
3885 goto out_put_eventfd;
3886 }
3887
3888 /* the process need read permission on control file */
3889 /* AV: shouldn't we check that it's been opened for read instead? */
3890 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3891 if (ret < 0)
3892 goto out_put_cfile;
3893
fba94807
TH
3894 /*
3895 * Determine the event callbacks and set them in @event. This used
3896 * to be done via struct cftype but cgroup core no longer knows
3897 * about these events. The following is crude but the whole thing
3898 * is for compatibility anyway.
3bc942f3
TH
3899 *
3900 * DO NOT ADD NEW FILES.
fba94807 3901 */
b583043e 3902 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3903
3904 if (!strcmp(name, "memory.usage_in_bytes")) {
3905 event->register_event = mem_cgroup_usage_register_event;
3906 event->unregister_event = mem_cgroup_usage_unregister_event;
3907 } else if (!strcmp(name, "memory.oom_control")) {
3908 event->register_event = mem_cgroup_oom_register_event;
3909 event->unregister_event = mem_cgroup_oom_unregister_event;
3910 } else if (!strcmp(name, "memory.pressure_level")) {
3911 event->register_event = vmpressure_register_event;
3912 event->unregister_event = vmpressure_unregister_event;
3913 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3914 event->register_event = memsw_cgroup_usage_register_event;
3915 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3916 } else {
3917 ret = -EINVAL;
3918 goto out_put_cfile;
3919 }
3920
79bd9814 3921 /*
b5557c4c
TH
3922 * Verify @cfile should belong to @css. Also, remaining events are
3923 * automatically removed on cgroup destruction but the removal is
3924 * asynchronous, so take an extra ref on @css.
79bd9814 3925 */
b583043e 3926 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3927 &memory_cgrp_subsys);
79bd9814 3928 ret = -EINVAL;
5a17f543 3929 if (IS_ERR(cfile_css))
79bd9814 3930 goto out_put_cfile;
5a17f543
TH
3931 if (cfile_css != css) {
3932 css_put(cfile_css);
79bd9814 3933 goto out_put_cfile;
5a17f543 3934 }
79bd9814 3935
451af504 3936 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3937 if (ret)
3938 goto out_put_css;
3939
3940 efile.file->f_op->poll(efile.file, &event->pt);
3941
fba94807
TH
3942 spin_lock(&memcg->event_list_lock);
3943 list_add(&event->list, &memcg->event_list);
3944 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3945
3946 fdput(cfile);
3947 fdput(efile);
3948
451af504 3949 return nbytes;
79bd9814
TH
3950
3951out_put_css:
b5557c4c 3952 css_put(css);
79bd9814
TH
3953out_put_cfile:
3954 fdput(cfile);
3955out_put_eventfd:
3956 eventfd_ctx_put(event->eventfd);
3957out_put_efile:
3958 fdput(efile);
3959out_kfree:
3960 kfree(event);
3961
3962 return ret;
3963}
3964
241994ed 3965static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3966 {
0eea1030 3967 .name = "usage_in_bytes",
8c7c6e34 3968 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3969 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3970 },
c84872e1
PE
3971 {
3972 .name = "max_usage_in_bytes",
8c7c6e34 3973 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3974 .write = mem_cgroup_reset,
791badbd 3975 .read_u64 = mem_cgroup_read_u64,
c84872e1 3976 },
8cdea7c0 3977 {
0eea1030 3978 .name = "limit_in_bytes",
8c7c6e34 3979 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3980 .write = mem_cgroup_write,
791badbd 3981 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3982 },
296c81d8
BS
3983 {
3984 .name = "soft_limit_in_bytes",
3985 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3986 .write = mem_cgroup_write,
791badbd 3987 .read_u64 = mem_cgroup_read_u64,
296c81d8 3988 },
8cdea7c0
BS
3989 {
3990 .name = "failcnt",
8c7c6e34 3991 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3992 .write = mem_cgroup_reset,
791badbd 3993 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3994 },
d2ceb9b7
KH
3995 {
3996 .name = "stat",
2da8ca82 3997 .seq_show = memcg_stat_show,
d2ceb9b7 3998 },
c1e862c1
KH
3999 {
4000 .name = "force_empty",
6770c64e 4001 .write = mem_cgroup_force_empty_write,
c1e862c1 4002 },
18f59ea7
BS
4003 {
4004 .name = "use_hierarchy",
4005 .write_u64 = mem_cgroup_hierarchy_write,
4006 .read_u64 = mem_cgroup_hierarchy_read,
4007 },
79bd9814 4008 {
3bc942f3 4009 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4010 .write = memcg_write_event_control,
7dbdb199 4011 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4012 },
a7885eb8
KM
4013 {
4014 .name = "swappiness",
4015 .read_u64 = mem_cgroup_swappiness_read,
4016 .write_u64 = mem_cgroup_swappiness_write,
4017 },
7dc74be0
DN
4018 {
4019 .name = "move_charge_at_immigrate",
4020 .read_u64 = mem_cgroup_move_charge_read,
4021 .write_u64 = mem_cgroup_move_charge_write,
4022 },
9490ff27
KH
4023 {
4024 .name = "oom_control",
2da8ca82 4025 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4026 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4027 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4028 },
70ddf637
AV
4029 {
4030 .name = "pressure_level",
70ddf637 4031 },
406eb0c9
YH
4032#ifdef CONFIG_NUMA
4033 {
4034 .name = "numa_stat",
2da8ca82 4035 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4036 },
4037#endif
510fc4e1
GC
4038 {
4039 .name = "kmem.limit_in_bytes",
4040 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4041 .write = mem_cgroup_write,
791badbd 4042 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4043 },
4044 {
4045 .name = "kmem.usage_in_bytes",
4046 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4047 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4048 },
4049 {
4050 .name = "kmem.failcnt",
4051 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4052 .write = mem_cgroup_reset,
791badbd 4053 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4054 },
4055 {
4056 .name = "kmem.max_usage_in_bytes",
4057 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4058 .write = mem_cgroup_reset,
791badbd 4059 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4060 },
749c5415
GC
4061#ifdef CONFIG_SLABINFO
4062 {
4063 .name = "kmem.slabinfo",
b047501c
VD
4064 .seq_start = slab_start,
4065 .seq_next = slab_next,
4066 .seq_stop = slab_stop,
4067 .seq_show = memcg_slab_show,
749c5415
GC
4068 },
4069#endif
d55f90bf
VD
4070 {
4071 .name = "kmem.tcp.limit_in_bytes",
4072 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4073 .write = mem_cgroup_write,
4074 .read_u64 = mem_cgroup_read_u64,
4075 },
4076 {
4077 .name = "kmem.tcp.usage_in_bytes",
4078 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4079 .read_u64 = mem_cgroup_read_u64,
4080 },
4081 {
4082 .name = "kmem.tcp.failcnt",
4083 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4084 .write = mem_cgroup_reset,
4085 .read_u64 = mem_cgroup_read_u64,
4086 },
4087 {
4088 .name = "kmem.tcp.max_usage_in_bytes",
4089 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4090 .write = mem_cgroup_reset,
4091 .read_u64 = mem_cgroup_read_u64,
4092 },
6bc10349 4093 { }, /* terminate */
af36f906 4094};
8c7c6e34 4095
c0ff4b85 4096static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4097{
4098 struct mem_cgroup_per_node *pn;
1ecaab2b 4099 struct mem_cgroup_per_zone *mz;
41e3355d 4100 int zone, tmp = node;
1ecaab2b
KH
4101 /*
4102 * This routine is called against possible nodes.
4103 * But it's BUG to call kmalloc() against offline node.
4104 *
4105 * TODO: this routine can waste much memory for nodes which will
4106 * never be onlined. It's better to use memory hotplug callback
4107 * function.
4108 */
41e3355d
KH
4109 if (!node_state(node, N_NORMAL_MEMORY))
4110 tmp = -1;
17295c88 4111 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4112 if (!pn)
4113 return 1;
1ecaab2b 4114
1ecaab2b
KH
4115 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4116 mz = &pn->zoneinfo[zone];
bea8c150 4117 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4118 mz->usage_in_excess = 0;
4119 mz->on_tree = false;
d79154bb 4120 mz->memcg = memcg;
1ecaab2b 4121 }
54f72fe0 4122 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4123 return 0;
4124}
4125
c0ff4b85 4126static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4127{
54f72fe0 4128 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4129}
4130
0b8f73e1 4131static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4132{
c8b2a36f 4133 int node;
59927fb9 4134
0b8f73e1 4135 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4136 for_each_node(node)
4137 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4138 free_percpu(memcg->stat);
8ff69e2c 4139 kfree(memcg);
59927fb9 4140}
3afe36b1 4141
0b8f73e1 4142static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4143{
d142e3e6 4144 struct mem_cgroup *memcg;
0b8f73e1 4145 size_t size;
6d12e2d8 4146 int node;
8cdea7c0 4147
0b8f73e1
JW
4148 size = sizeof(struct mem_cgroup);
4149 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4150
4151 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4152 if (!memcg)
0b8f73e1
JW
4153 return NULL;
4154
4155 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4156 if (!memcg->stat)
4157 goto fail;
78fb7466 4158
3ed28fa1 4159 for_each_node(node)
c0ff4b85 4160 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4161 goto fail;
f64c3f54 4162
0b8f73e1
JW
4163 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4164 goto fail;
28dbc4b6 4165
f7e1cb6e 4166 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4167 memcg->last_scanned_node = MAX_NUMNODES;
4168 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4169 mutex_init(&memcg->thresholds_lock);
4170 spin_lock_init(&memcg->move_lock);
70ddf637 4171 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4172 INIT_LIST_HEAD(&memcg->event_list);
4173 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4174 memcg->socket_pressure = jiffies;
127424c8 4175#ifndef CONFIG_SLOB
900a38f0 4176 memcg->kmemcg_id = -1;
900a38f0 4177#endif
52ebea74
TH
4178#ifdef CONFIG_CGROUP_WRITEBACK
4179 INIT_LIST_HEAD(&memcg->cgwb_list);
4180#endif
0b8f73e1
JW
4181 return memcg;
4182fail:
4183 mem_cgroup_free(memcg);
4184 return NULL;
d142e3e6
GC
4185}
4186
0b8f73e1
JW
4187static struct cgroup_subsys_state * __ref
4188mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4189{
0b8f73e1
JW
4190 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4191 struct mem_cgroup *memcg;
4192 long error = -ENOMEM;
d142e3e6 4193
0b8f73e1
JW
4194 memcg = mem_cgroup_alloc();
4195 if (!memcg)
4196 return ERR_PTR(error);
d142e3e6 4197
0b8f73e1
JW
4198 memcg->high = PAGE_COUNTER_MAX;
4199 memcg->soft_limit = PAGE_COUNTER_MAX;
4200 if (parent) {
4201 memcg->swappiness = mem_cgroup_swappiness(parent);
4202 memcg->oom_kill_disable = parent->oom_kill_disable;
4203 }
4204 if (parent && parent->use_hierarchy) {
4205 memcg->use_hierarchy = true;
3e32cb2e 4206 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4207 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4208 page_counter_init(&memcg->memsw, &parent->memsw);
4209 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4210 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4211 } else {
3e32cb2e 4212 page_counter_init(&memcg->memory, NULL);
37e84351 4213 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4214 page_counter_init(&memcg->memsw, NULL);
4215 page_counter_init(&memcg->kmem, NULL);
0db15298 4216 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4217 /*
4218 * Deeper hierachy with use_hierarchy == false doesn't make
4219 * much sense so let cgroup subsystem know about this
4220 * unfortunate state in our controller.
4221 */
d142e3e6 4222 if (parent != root_mem_cgroup)
073219e9 4223 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4224 }
d6441637 4225
0b8f73e1
JW
4226 /* The following stuff does not apply to the root */
4227 if (!parent) {
4228 root_mem_cgroup = memcg;
4229 return &memcg->css;
4230 }
4231
4232 error = memcg_propagate_kmem(parent, memcg);
4233 if (error)
4234 goto fail;
127424c8 4235
f7e1cb6e 4236 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4237 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4238
0b8f73e1
JW
4239 return &memcg->css;
4240fail:
4241 mem_cgroup_free(memcg);
4242 return NULL;
4243}
4244
4245static int
4246mem_cgroup_css_online(struct cgroup_subsys_state *css)
4247{
4248 if (css->id > MEM_CGROUP_ID_MAX)
4249 return -ENOSPC;
2f7dd7a4
JW
4250
4251 return 0;
8cdea7c0
BS
4252}
4253
eb95419b 4254static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4255{
eb95419b 4256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4257 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4258
4259 /*
4260 * Unregister events and notify userspace.
4261 * Notify userspace about cgroup removing only after rmdir of cgroup
4262 * directory to avoid race between userspace and kernelspace.
4263 */
fba94807
TH
4264 spin_lock(&memcg->event_list_lock);
4265 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4266 list_del_init(&event->list);
4267 schedule_work(&event->remove);
4268 }
fba94807 4269 spin_unlock(&memcg->event_list_lock);
ec64f515 4270
567e9ab2 4271 memcg_offline_kmem(memcg);
52ebea74 4272 wb_memcg_offline(memcg);
df878fb0
KH
4273}
4274
6df38689
VD
4275static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4276{
4277 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4278
4279 invalidate_reclaim_iterators(memcg);
4280}
4281
eb95419b 4282static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4283{
eb95419b 4284 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4285
f7e1cb6e 4286 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4287 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4288
0db15298 4289 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4290 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4291
0b8f73e1
JW
4292 vmpressure_cleanup(&memcg->vmpressure);
4293 cancel_work_sync(&memcg->high_work);
4294 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4295 memcg_free_kmem(memcg);
0b8f73e1 4296 mem_cgroup_free(memcg);
8cdea7c0
BS
4297}
4298
1ced953b
TH
4299/**
4300 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4301 * @css: the target css
4302 *
4303 * Reset the states of the mem_cgroup associated with @css. This is
4304 * invoked when the userland requests disabling on the default hierarchy
4305 * but the memcg is pinned through dependency. The memcg should stop
4306 * applying policies and should revert to the vanilla state as it may be
4307 * made visible again.
4308 *
4309 * The current implementation only resets the essential configurations.
4310 * This needs to be expanded to cover all the visible parts.
4311 */
4312static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4313{
4314 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4315
3e32cb2e
JW
4316 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4317 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4318 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4319 memcg->low = 0;
4320 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4321 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4322 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4323}
4324
02491447 4325#ifdef CONFIG_MMU
7dc74be0 4326/* Handlers for move charge at task migration. */
854ffa8d 4327static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4328{
05b84301 4329 int ret;
9476db97 4330
d0164adc
MG
4331 /* Try a single bulk charge without reclaim first, kswapd may wake */
4332 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4333 if (!ret) {
854ffa8d 4334 mc.precharge += count;
854ffa8d
DN
4335 return ret;
4336 }
9476db97
JW
4337
4338 /* Try charges one by one with reclaim */
854ffa8d 4339 while (count--) {
00501b53 4340 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4341 if (ret)
38c5d72f 4342 return ret;
854ffa8d 4343 mc.precharge++;
9476db97 4344 cond_resched();
854ffa8d 4345 }
9476db97 4346 return 0;
4ffef5fe
DN
4347}
4348
4349/**
8d32ff84 4350 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4351 * @vma: the vma the pte to be checked belongs
4352 * @addr: the address corresponding to the pte to be checked
4353 * @ptent: the pte to be checked
02491447 4354 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4355 *
4356 * Returns
4357 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4358 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4359 * move charge. if @target is not NULL, the page is stored in target->page
4360 * with extra refcnt got(Callers should handle it).
02491447
DN
4361 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4362 * target for charge migration. if @target is not NULL, the entry is stored
4363 * in target->ent.
4ffef5fe
DN
4364 *
4365 * Called with pte lock held.
4366 */
4ffef5fe
DN
4367union mc_target {
4368 struct page *page;
02491447 4369 swp_entry_t ent;
4ffef5fe
DN
4370};
4371
4ffef5fe 4372enum mc_target_type {
8d32ff84 4373 MC_TARGET_NONE = 0,
4ffef5fe 4374 MC_TARGET_PAGE,
02491447 4375 MC_TARGET_SWAP,
4ffef5fe
DN
4376};
4377
90254a65
DN
4378static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4379 unsigned long addr, pte_t ptent)
4ffef5fe 4380{
90254a65 4381 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4382
90254a65
DN
4383 if (!page || !page_mapped(page))
4384 return NULL;
4385 if (PageAnon(page)) {
1dfab5ab 4386 if (!(mc.flags & MOVE_ANON))
90254a65 4387 return NULL;
1dfab5ab
JW
4388 } else {
4389 if (!(mc.flags & MOVE_FILE))
4390 return NULL;
4391 }
90254a65
DN
4392 if (!get_page_unless_zero(page))
4393 return NULL;
4394
4395 return page;
4396}
4397
4b91355e 4398#ifdef CONFIG_SWAP
90254a65
DN
4399static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4400 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4401{
90254a65
DN
4402 struct page *page = NULL;
4403 swp_entry_t ent = pte_to_swp_entry(ptent);
4404
1dfab5ab 4405 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4406 return NULL;
4b91355e
KH
4407 /*
4408 * Because lookup_swap_cache() updates some statistics counter,
4409 * we call find_get_page() with swapper_space directly.
4410 */
33806f06 4411 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4412 if (do_memsw_account())
90254a65
DN
4413 entry->val = ent.val;
4414
4415 return page;
4416}
4b91355e
KH
4417#else
4418static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4419 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4420{
4421 return NULL;
4422}
4423#endif
90254a65 4424
87946a72
DN
4425static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4426 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4427{
4428 struct page *page = NULL;
87946a72
DN
4429 struct address_space *mapping;
4430 pgoff_t pgoff;
4431
4432 if (!vma->vm_file) /* anonymous vma */
4433 return NULL;
1dfab5ab 4434 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4435 return NULL;
4436
87946a72 4437 mapping = vma->vm_file->f_mapping;
0661a336 4438 pgoff = linear_page_index(vma, addr);
87946a72
DN
4439
4440 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4441#ifdef CONFIG_SWAP
4442 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4443 if (shmem_mapping(mapping)) {
4444 page = find_get_entry(mapping, pgoff);
4445 if (radix_tree_exceptional_entry(page)) {
4446 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4447 if (do_memsw_account())
139b6a6f
JW
4448 *entry = swp;
4449 page = find_get_page(swap_address_space(swp), swp.val);
4450 }
4451 } else
4452 page = find_get_page(mapping, pgoff);
4453#else
4454 page = find_get_page(mapping, pgoff);
aa3b1895 4455#endif
87946a72
DN
4456 return page;
4457}
4458
b1b0deab
CG
4459/**
4460 * mem_cgroup_move_account - move account of the page
4461 * @page: the page
4462 * @nr_pages: number of regular pages (>1 for huge pages)
4463 * @from: mem_cgroup which the page is moved from.
4464 * @to: mem_cgroup which the page is moved to. @from != @to.
4465 *
3ac808fd 4466 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4467 *
4468 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4469 * from old cgroup.
4470 */
4471static int mem_cgroup_move_account(struct page *page,
f627c2f5 4472 bool compound,
b1b0deab
CG
4473 struct mem_cgroup *from,
4474 struct mem_cgroup *to)
4475{
4476 unsigned long flags;
f627c2f5 4477 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4478 int ret;
c4843a75 4479 bool anon;
b1b0deab
CG
4480
4481 VM_BUG_ON(from == to);
4482 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4483 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4484
4485 /*
45637bab
HD
4486 * Prevent mem_cgroup_replace_page() from looking at
4487 * page->mem_cgroup of its source page while we change it.
b1b0deab 4488 */
f627c2f5 4489 ret = -EBUSY;
b1b0deab
CG
4490 if (!trylock_page(page))
4491 goto out;
4492
4493 ret = -EINVAL;
4494 if (page->mem_cgroup != from)
4495 goto out_unlock;
4496
c4843a75
GT
4497 anon = PageAnon(page);
4498
b1b0deab
CG
4499 spin_lock_irqsave(&from->move_lock, flags);
4500
c4843a75 4501 if (!anon && page_mapped(page)) {
b1b0deab
CG
4502 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4503 nr_pages);
4504 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4505 nr_pages);
4506 }
4507
c4843a75
GT
4508 /*
4509 * move_lock grabbed above and caller set from->moving_account, so
4510 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4511 * So mapping should be stable for dirty pages.
4512 */
4513 if (!anon && PageDirty(page)) {
4514 struct address_space *mapping = page_mapping(page);
4515
4516 if (mapping_cap_account_dirty(mapping)) {
4517 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4518 nr_pages);
4519 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4520 nr_pages);
4521 }
4522 }
4523
b1b0deab
CG
4524 if (PageWriteback(page)) {
4525 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4526 nr_pages);
4527 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4528 nr_pages);
4529 }
4530
4531 /*
4532 * It is safe to change page->mem_cgroup here because the page
4533 * is referenced, charged, and isolated - we can't race with
4534 * uncharging, charging, migration, or LRU putback.
4535 */
4536
4537 /* caller should have done css_get */
4538 page->mem_cgroup = to;
4539 spin_unlock_irqrestore(&from->move_lock, flags);
4540
4541 ret = 0;
4542
4543 local_irq_disable();
f627c2f5 4544 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4545 memcg_check_events(to, page);
f627c2f5 4546 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4547 memcg_check_events(from, page);
4548 local_irq_enable();
4549out_unlock:
4550 unlock_page(page);
4551out:
4552 return ret;
4553}
4554
8d32ff84 4555static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4556 unsigned long addr, pte_t ptent, union mc_target *target)
4557{
4558 struct page *page = NULL;
8d32ff84 4559 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4560 swp_entry_t ent = { .val = 0 };
4561
4562 if (pte_present(ptent))
4563 page = mc_handle_present_pte(vma, addr, ptent);
4564 else if (is_swap_pte(ptent))
4565 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4566 else if (pte_none(ptent))
87946a72 4567 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4568
4569 if (!page && !ent.val)
8d32ff84 4570 return ret;
02491447 4571 if (page) {
02491447 4572 /*
0a31bc97 4573 * Do only loose check w/o serialization.
1306a85a 4574 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4575 * not under LRU exclusion.
02491447 4576 */
1306a85a 4577 if (page->mem_cgroup == mc.from) {
02491447
DN
4578 ret = MC_TARGET_PAGE;
4579 if (target)
4580 target->page = page;
4581 }
4582 if (!ret || !target)
4583 put_page(page);
4584 }
90254a65
DN
4585 /* There is a swap entry and a page doesn't exist or isn't charged */
4586 if (ent.val && !ret &&
34c00c31 4587 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4588 ret = MC_TARGET_SWAP;
4589 if (target)
4590 target->ent = ent;
4ffef5fe 4591 }
4ffef5fe
DN
4592 return ret;
4593}
4594
12724850
NH
4595#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4596/*
4597 * We don't consider swapping or file mapped pages because THP does not
4598 * support them for now.
4599 * Caller should make sure that pmd_trans_huge(pmd) is true.
4600 */
4601static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4602 unsigned long addr, pmd_t pmd, union mc_target *target)
4603{
4604 struct page *page = NULL;
12724850
NH
4605 enum mc_target_type ret = MC_TARGET_NONE;
4606
4607 page = pmd_page(pmd);
309381fe 4608 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4609 if (!(mc.flags & MOVE_ANON))
12724850 4610 return ret;
1306a85a 4611 if (page->mem_cgroup == mc.from) {
12724850
NH
4612 ret = MC_TARGET_PAGE;
4613 if (target) {
4614 get_page(page);
4615 target->page = page;
4616 }
4617 }
4618 return ret;
4619}
4620#else
4621static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4622 unsigned long addr, pmd_t pmd, union mc_target *target)
4623{
4624 return MC_TARGET_NONE;
4625}
4626#endif
4627
4ffef5fe
DN
4628static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4629 unsigned long addr, unsigned long end,
4630 struct mm_walk *walk)
4631{
26bcd64a 4632 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4633 pte_t *pte;
4634 spinlock_t *ptl;
4635
4b471e88 4636 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
12724850
NH
4637 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4638 mc.precharge += HPAGE_PMD_NR;
bf929152 4639 spin_unlock(ptl);
1a5a9906 4640 return 0;
12724850 4641 }
03319327 4642
45f83cef
AA
4643 if (pmd_trans_unstable(pmd))
4644 return 0;
4ffef5fe
DN
4645 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4646 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4647 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4648 mc.precharge++; /* increment precharge temporarily */
4649 pte_unmap_unlock(pte - 1, ptl);
4650 cond_resched();
4651
7dc74be0
DN
4652 return 0;
4653}
4654
4ffef5fe
DN
4655static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4656{
4657 unsigned long precharge;
4ffef5fe 4658
26bcd64a
NH
4659 struct mm_walk mem_cgroup_count_precharge_walk = {
4660 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4661 .mm = mm,
4662 };
dfe076b0 4663 down_read(&mm->mmap_sem);
26bcd64a 4664 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4665 up_read(&mm->mmap_sem);
4ffef5fe
DN
4666
4667 precharge = mc.precharge;
4668 mc.precharge = 0;
4669
4670 return precharge;
4671}
4672
4ffef5fe
DN
4673static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4674{
dfe076b0
DN
4675 unsigned long precharge = mem_cgroup_count_precharge(mm);
4676
4677 VM_BUG_ON(mc.moving_task);
4678 mc.moving_task = current;
4679 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4680}
4681
dfe076b0
DN
4682/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4683static void __mem_cgroup_clear_mc(void)
4ffef5fe 4684{
2bd9bb20
KH
4685 struct mem_cgroup *from = mc.from;
4686 struct mem_cgroup *to = mc.to;
4687
4ffef5fe 4688 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4689 if (mc.precharge) {
00501b53 4690 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4691 mc.precharge = 0;
4692 }
4693 /*
4694 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4695 * we must uncharge here.
4696 */
4697 if (mc.moved_charge) {
00501b53 4698 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4699 mc.moved_charge = 0;
4ffef5fe 4700 }
483c30b5
DN
4701 /* we must fixup refcnts and charges */
4702 if (mc.moved_swap) {
483c30b5 4703 /* uncharge swap account from the old cgroup */
ce00a967 4704 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4705 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4706
05b84301 4707 /*
3e32cb2e
JW
4708 * we charged both to->memory and to->memsw, so we
4709 * should uncharge to->memory.
05b84301 4710 */
ce00a967 4711 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4712 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4713
e8ea14cc 4714 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4715
4050377b 4716 /* we've already done css_get(mc.to) */
483c30b5
DN
4717 mc.moved_swap = 0;
4718 }
dfe076b0
DN
4719 memcg_oom_recover(from);
4720 memcg_oom_recover(to);
4721 wake_up_all(&mc.waitq);
4722}
4723
4724static void mem_cgroup_clear_mc(void)
4725{
dfe076b0
DN
4726 /*
4727 * we must clear moving_task before waking up waiters at the end of
4728 * task migration.
4729 */
4730 mc.moving_task = NULL;
4731 __mem_cgroup_clear_mc();
2bd9bb20 4732 spin_lock(&mc.lock);
4ffef5fe
DN
4733 mc.from = NULL;
4734 mc.to = NULL;
2bd9bb20 4735 spin_unlock(&mc.lock);
4ffef5fe
DN
4736}
4737
1f7dd3e5 4738static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4739{
1f7dd3e5 4740 struct cgroup_subsys_state *css;
eed67d75 4741 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4742 struct mem_cgroup *from;
4530eddb 4743 struct task_struct *leader, *p;
9f2115f9 4744 struct mm_struct *mm;
1dfab5ab 4745 unsigned long move_flags;
9f2115f9 4746 int ret = 0;
7dc74be0 4747
1f7dd3e5
TH
4748 /* charge immigration isn't supported on the default hierarchy */
4749 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4750 return 0;
4751
4530eddb
TH
4752 /*
4753 * Multi-process migrations only happen on the default hierarchy
4754 * where charge immigration is not used. Perform charge
4755 * immigration if @tset contains a leader and whine if there are
4756 * multiple.
4757 */
4758 p = NULL;
1f7dd3e5 4759 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4760 WARN_ON_ONCE(p);
4761 p = leader;
1f7dd3e5 4762 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4763 }
4764 if (!p)
4765 return 0;
4766
1f7dd3e5
TH
4767 /*
4768 * We are now commited to this value whatever it is. Changes in this
4769 * tunable will only affect upcoming migrations, not the current one.
4770 * So we need to save it, and keep it going.
4771 */
4772 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4773 if (!move_flags)
4774 return 0;
4775
9f2115f9
TH
4776 from = mem_cgroup_from_task(p);
4777
4778 VM_BUG_ON(from == memcg);
4779
4780 mm = get_task_mm(p);
4781 if (!mm)
4782 return 0;
4783 /* We move charges only when we move a owner of the mm */
4784 if (mm->owner == p) {
4785 VM_BUG_ON(mc.from);
4786 VM_BUG_ON(mc.to);
4787 VM_BUG_ON(mc.precharge);
4788 VM_BUG_ON(mc.moved_charge);
4789 VM_BUG_ON(mc.moved_swap);
4790
4791 spin_lock(&mc.lock);
4792 mc.from = from;
4793 mc.to = memcg;
4794 mc.flags = move_flags;
4795 spin_unlock(&mc.lock);
4796 /* We set mc.moving_task later */
4797
4798 ret = mem_cgroup_precharge_mc(mm);
4799 if (ret)
4800 mem_cgroup_clear_mc();
7dc74be0 4801 }
9f2115f9 4802 mmput(mm);
7dc74be0
DN
4803 return ret;
4804}
4805
1f7dd3e5 4806static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4807{
4e2f245d
JW
4808 if (mc.to)
4809 mem_cgroup_clear_mc();
7dc74be0
DN
4810}
4811
4ffef5fe
DN
4812static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4813 unsigned long addr, unsigned long end,
4814 struct mm_walk *walk)
7dc74be0 4815{
4ffef5fe 4816 int ret = 0;
26bcd64a 4817 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4818 pte_t *pte;
4819 spinlock_t *ptl;
12724850
NH
4820 enum mc_target_type target_type;
4821 union mc_target target;
4822 struct page *page;
4ffef5fe 4823
4b471e88 4824 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
62ade86a 4825 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4826 spin_unlock(ptl);
12724850
NH
4827 return 0;
4828 }
4829 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4830 if (target_type == MC_TARGET_PAGE) {
4831 page = target.page;
4832 if (!isolate_lru_page(page)) {
f627c2f5 4833 if (!mem_cgroup_move_account(page, true,
1306a85a 4834 mc.from, mc.to)) {
12724850
NH
4835 mc.precharge -= HPAGE_PMD_NR;
4836 mc.moved_charge += HPAGE_PMD_NR;
4837 }
4838 putback_lru_page(page);
4839 }
4840 put_page(page);
4841 }
bf929152 4842 spin_unlock(ptl);
1a5a9906 4843 return 0;
12724850
NH
4844 }
4845
45f83cef
AA
4846 if (pmd_trans_unstable(pmd))
4847 return 0;
4ffef5fe
DN
4848retry:
4849 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4850 for (; addr != end; addr += PAGE_SIZE) {
4851 pte_t ptent = *(pte++);
02491447 4852 swp_entry_t ent;
4ffef5fe
DN
4853
4854 if (!mc.precharge)
4855 break;
4856
8d32ff84 4857 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4858 case MC_TARGET_PAGE:
4859 page = target.page;
53f9263b
KS
4860 /*
4861 * We can have a part of the split pmd here. Moving it
4862 * can be done but it would be too convoluted so simply
4863 * ignore such a partial THP and keep it in original
4864 * memcg. There should be somebody mapping the head.
4865 */
4866 if (PageTransCompound(page))
4867 goto put;
4ffef5fe
DN
4868 if (isolate_lru_page(page))
4869 goto put;
f627c2f5
KS
4870 if (!mem_cgroup_move_account(page, false,
4871 mc.from, mc.to)) {
4ffef5fe 4872 mc.precharge--;
854ffa8d
DN
4873 /* we uncharge from mc.from later. */
4874 mc.moved_charge++;
4ffef5fe
DN
4875 }
4876 putback_lru_page(page);
8d32ff84 4877put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4878 put_page(page);
4879 break;
02491447
DN
4880 case MC_TARGET_SWAP:
4881 ent = target.ent;
e91cbb42 4882 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4883 mc.precharge--;
483c30b5
DN
4884 /* we fixup refcnts and charges later. */
4885 mc.moved_swap++;
4886 }
02491447 4887 break;
4ffef5fe
DN
4888 default:
4889 break;
4890 }
4891 }
4892 pte_unmap_unlock(pte - 1, ptl);
4893 cond_resched();
4894
4895 if (addr != end) {
4896 /*
4897 * We have consumed all precharges we got in can_attach().
4898 * We try charge one by one, but don't do any additional
4899 * charges to mc.to if we have failed in charge once in attach()
4900 * phase.
4901 */
854ffa8d 4902 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4903 if (!ret)
4904 goto retry;
4905 }
4906
4907 return ret;
4908}
4909
4910static void mem_cgroup_move_charge(struct mm_struct *mm)
4911{
26bcd64a
NH
4912 struct mm_walk mem_cgroup_move_charge_walk = {
4913 .pmd_entry = mem_cgroup_move_charge_pte_range,
4914 .mm = mm,
4915 };
4ffef5fe
DN
4916
4917 lru_add_drain_all();
312722cb
JW
4918 /*
4919 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4920 * move_lock while we're moving its pages to another memcg.
4921 * Then wait for already started RCU-only updates to finish.
4922 */
4923 atomic_inc(&mc.from->moving_account);
4924 synchronize_rcu();
dfe076b0
DN
4925retry:
4926 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4927 /*
4928 * Someone who are holding the mmap_sem might be waiting in
4929 * waitq. So we cancel all extra charges, wake up all waiters,
4930 * and retry. Because we cancel precharges, we might not be able
4931 * to move enough charges, but moving charge is a best-effort
4932 * feature anyway, so it wouldn't be a big problem.
4933 */
4934 __mem_cgroup_clear_mc();
4935 cond_resched();
4936 goto retry;
4937 }
26bcd64a
NH
4938 /*
4939 * When we have consumed all precharges and failed in doing
4940 * additional charge, the page walk just aborts.
4941 */
4942 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 4943 up_read(&mm->mmap_sem);
312722cb 4944 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4945}
4946
1f7dd3e5 4947static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 4948{
1f7dd3e5
TH
4949 struct cgroup_subsys_state *css;
4950 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 4951 struct mm_struct *mm = get_task_mm(p);
dfe076b0 4952
dfe076b0 4953 if (mm) {
a433658c
KM
4954 if (mc.to)
4955 mem_cgroup_move_charge(mm);
dfe076b0
DN
4956 mmput(mm);
4957 }
a433658c
KM
4958 if (mc.to)
4959 mem_cgroup_clear_mc();
67e465a7 4960}
5cfb80a7 4961#else /* !CONFIG_MMU */
1f7dd3e5 4962static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4963{
4964 return 0;
4965}
1f7dd3e5 4966static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4967{
4968}
1f7dd3e5 4969static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
4970{
4971}
4972#endif
67e465a7 4973
f00baae7
TH
4974/*
4975 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4976 * to verify whether we're attached to the default hierarchy on each mount
4977 * attempt.
f00baae7 4978 */
eb95419b 4979static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4980{
4981 /*
aa6ec29b 4982 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4983 * guarantees that @root doesn't have any children, so turning it
4984 * on for the root memcg is enough.
4985 */
9e10a130 4986 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4987 root_mem_cgroup->use_hierarchy = true;
4988 else
4989 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
4990}
4991
241994ed
JW
4992static u64 memory_current_read(struct cgroup_subsys_state *css,
4993 struct cftype *cft)
4994{
f5fc3c5d
JW
4995 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4996
4997 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
4998}
4999
5000static int memory_low_show(struct seq_file *m, void *v)
5001{
5002 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5003 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5004
5005 if (low == PAGE_COUNTER_MAX)
d2973697 5006 seq_puts(m, "max\n");
241994ed
JW
5007 else
5008 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5009
5010 return 0;
5011}
5012
5013static ssize_t memory_low_write(struct kernfs_open_file *of,
5014 char *buf, size_t nbytes, loff_t off)
5015{
5016 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5017 unsigned long low;
5018 int err;
5019
5020 buf = strstrip(buf);
d2973697 5021 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5022 if (err)
5023 return err;
5024
5025 memcg->low = low;
5026
5027 return nbytes;
5028}
5029
5030static int memory_high_show(struct seq_file *m, void *v)
5031{
5032 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5033 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5034
5035 if (high == PAGE_COUNTER_MAX)
d2973697 5036 seq_puts(m, "max\n");
241994ed
JW
5037 else
5038 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5039
5040 return 0;
5041}
5042
5043static ssize_t memory_high_write(struct kernfs_open_file *of,
5044 char *buf, size_t nbytes, loff_t off)
5045{
5046 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5047 unsigned long high;
5048 int err;
5049
5050 buf = strstrip(buf);
d2973697 5051 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5052 if (err)
5053 return err;
5054
5055 memcg->high = high;
5056
2529bb3a 5057 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5058 return nbytes;
5059}
5060
5061static int memory_max_show(struct seq_file *m, void *v)
5062{
5063 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5064 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5065
5066 if (max == PAGE_COUNTER_MAX)
d2973697 5067 seq_puts(m, "max\n");
241994ed
JW
5068 else
5069 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5070
5071 return 0;
5072}
5073
5074static ssize_t memory_max_write(struct kernfs_open_file *of,
5075 char *buf, size_t nbytes, loff_t off)
5076{
5077 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5078 unsigned long max;
5079 int err;
5080
5081 buf = strstrip(buf);
d2973697 5082 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5083 if (err)
5084 return err;
5085
5086 err = mem_cgroup_resize_limit(memcg, max);
5087 if (err)
5088 return err;
5089
2529bb3a 5090 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5091 return nbytes;
5092}
5093
5094static int memory_events_show(struct seq_file *m, void *v)
5095{
5096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5097
5098 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5099 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5100 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5101 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5102
5103 return 0;
5104}
5105
5106static struct cftype memory_files[] = {
5107 {
5108 .name = "current",
f5fc3c5d 5109 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5110 .read_u64 = memory_current_read,
5111 },
5112 {
5113 .name = "low",
5114 .flags = CFTYPE_NOT_ON_ROOT,
5115 .seq_show = memory_low_show,
5116 .write = memory_low_write,
5117 },
5118 {
5119 .name = "high",
5120 .flags = CFTYPE_NOT_ON_ROOT,
5121 .seq_show = memory_high_show,
5122 .write = memory_high_write,
5123 },
5124 {
5125 .name = "max",
5126 .flags = CFTYPE_NOT_ON_ROOT,
5127 .seq_show = memory_max_show,
5128 .write = memory_max_write,
5129 },
5130 {
5131 .name = "events",
5132 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5133 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5134 .seq_show = memory_events_show,
5135 },
5136 { } /* terminate */
5137};
5138
073219e9 5139struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5140 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5141 .css_online = mem_cgroup_css_online,
92fb9748 5142 .css_offline = mem_cgroup_css_offline,
6df38689 5143 .css_released = mem_cgroup_css_released,
92fb9748 5144 .css_free = mem_cgroup_css_free,
1ced953b 5145 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5146 .can_attach = mem_cgroup_can_attach,
5147 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5148 .attach = mem_cgroup_move_task,
f00baae7 5149 .bind = mem_cgroup_bind,
241994ed
JW
5150 .dfl_cftypes = memory_files,
5151 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5152 .early_init = 0,
8cdea7c0 5153};
c077719b 5154
241994ed
JW
5155/**
5156 * mem_cgroup_low - check if memory consumption is below the normal range
5157 * @root: the highest ancestor to consider
5158 * @memcg: the memory cgroup to check
5159 *
5160 * Returns %true if memory consumption of @memcg, and that of all
5161 * configurable ancestors up to @root, is below the normal range.
5162 */
5163bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5164{
5165 if (mem_cgroup_disabled())
5166 return false;
5167
5168 /*
5169 * The toplevel group doesn't have a configurable range, so
5170 * it's never low when looked at directly, and it is not
5171 * considered an ancestor when assessing the hierarchy.
5172 */
5173
5174 if (memcg == root_mem_cgroup)
5175 return false;
5176
4e54dede 5177 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5178 return false;
5179
5180 while (memcg != root) {
5181 memcg = parent_mem_cgroup(memcg);
5182
5183 if (memcg == root_mem_cgroup)
5184 break;
5185
4e54dede 5186 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5187 return false;
5188 }
5189 return true;
5190}
5191
00501b53
JW
5192/**
5193 * mem_cgroup_try_charge - try charging a page
5194 * @page: page to charge
5195 * @mm: mm context of the victim
5196 * @gfp_mask: reclaim mode
5197 * @memcgp: charged memcg return
5198 *
5199 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5200 * pages according to @gfp_mask if necessary.
5201 *
5202 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5203 * Otherwise, an error code is returned.
5204 *
5205 * After page->mapping has been set up, the caller must finalize the
5206 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5207 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5208 */
5209int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5210 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5211 bool compound)
00501b53
JW
5212{
5213 struct mem_cgroup *memcg = NULL;
f627c2f5 5214 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5215 int ret = 0;
5216
5217 if (mem_cgroup_disabled())
5218 goto out;
5219
5220 if (PageSwapCache(page)) {
00501b53
JW
5221 /*
5222 * Every swap fault against a single page tries to charge the
5223 * page, bail as early as possible. shmem_unuse() encounters
5224 * already charged pages, too. The USED bit is protected by
5225 * the page lock, which serializes swap cache removal, which
5226 * in turn serializes uncharging.
5227 */
e993d905 5228 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5229 if (page->mem_cgroup)
00501b53 5230 goto out;
e993d905 5231
37e84351 5232 if (do_swap_account) {
e993d905
VD
5233 swp_entry_t ent = { .val = page_private(page), };
5234 unsigned short id = lookup_swap_cgroup_id(ent);
5235
5236 rcu_read_lock();
5237 memcg = mem_cgroup_from_id(id);
5238 if (memcg && !css_tryget_online(&memcg->css))
5239 memcg = NULL;
5240 rcu_read_unlock();
5241 }
00501b53
JW
5242 }
5243
00501b53
JW
5244 if (!memcg)
5245 memcg = get_mem_cgroup_from_mm(mm);
5246
5247 ret = try_charge(memcg, gfp_mask, nr_pages);
5248
5249 css_put(&memcg->css);
00501b53
JW
5250out:
5251 *memcgp = memcg;
5252 return ret;
5253}
5254
5255/**
5256 * mem_cgroup_commit_charge - commit a page charge
5257 * @page: page to charge
5258 * @memcg: memcg to charge the page to
5259 * @lrucare: page might be on LRU already
5260 *
5261 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5262 * after page->mapping has been set up. This must happen atomically
5263 * as part of the page instantiation, i.e. under the page table lock
5264 * for anonymous pages, under the page lock for page and swap cache.
5265 *
5266 * In addition, the page must not be on the LRU during the commit, to
5267 * prevent racing with task migration. If it might be, use @lrucare.
5268 *
5269 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5270 */
5271void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5272 bool lrucare, bool compound)
00501b53 5273{
f627c2f5 5274 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5275
5276 VM_BUG_ON_PAGE(!page->mapping, page);
5277 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5278
5279 if (mem_cgroup_disabled())
5280 return;
5281 /*
5282 * Swap faults will attempt to charge the same page multiple
5283 * times. But reuse_swap_page() might have removed the page
5284 * from swapcache already, so we can't check PageSwapCache().
5285 */
5286 if (!memcg)
5287 return;
5288
6abb5a86
JW
5289 commit_charge(page, memcg, lrucare);
5290
6abb5a86 5291 local_irq_disable();
f627c2f5 5292 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5293 memcg_check_events(memcg, page);
5294 local_irq_enable();
00501b53 5295
7941d214 5296 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5297 swp_entry_t entry = { .val = page_private(page) };
5298 /*
5299 * The swap entry might not get freed for a long time,
5300 * let's not wait for it. The page already received a
5301 * memory+swap charge, drop the swap entry duplicate.
5302 */
5303 mem_cgroup_uncharge_swap(entry);
5304 }
5305}
5306
5307/**
5308 * mem_cgroup_cancel_charge - cancel a page charge
5309 * @page: page to charge
5310 * @memcg: memcg to charge the page to
5311 *
5312 * Cancel a charge transaction started by mem_cgroup_try_charge().
5313 */
f627c2f5
KS
5314void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5315 bool compound)
00501b53 5316{
f627c2f5 5317 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5318
5319 if (mem_cgroup_disabled())
5320 return;
5321 /*
5322 * Swap faults will attempt to charge the same page multiple
5323 * times. But reuse_swap_page() might have removed the page
5324 * from swapcache already, so we can't check PageSwapCache().
5325 */
5326 if (!memcg)
5327 return;
5328
00501b53
JW
5329 cancel_charge(memcg, nr_pages);
5330}
5331
747db954 5332static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5333 unsigned long nr_anon, unsigned long nr_file,
5334 unsigned long nr_huge, struct page *dummy_page)
5335{
18eca2e6 5336 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5337 unsigned long flags;
5338
ce00a967 5339 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5340 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5341 if (do_memsw_account())
18eca2e6 5342 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5343 memcg_oom_recover(memcg);
5344 }
747db954
JW
5345
5346 local_irq_save(flags);
5347 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5348 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5349 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5350 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5351 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5352 memcg_check_events(memcg, dummy_page);
5353 local_irq_restore(flags);
e8ea14cc
JW
5354
5355 if (!mem_cgroup_is_root(memcg))
18eca2e6 5356 css_put_many(&memcg->css, nr_pages);
747db954
JW
5357}
5358
5359static void uncharge_list(struct list_head *page_list)
5360{
5361 struct mem_cgroup *memcg = NULL;
747db954
JW
5362 unsigned long nr_anon = 0;
5363 unsigned long nr_file = 0;
5364 unsigned long nr_huge = 0;
5365 unsigned long pgpgout = 0;
747db954
JW
5366 struct list_head *next;
5367 struct page *page;
5368
5369 next = page_list->next;
5370 do {
5371 unsigned int nr_pages = 1;
747db954
JW
5372
5373 page = list_entry(next, struct page, lru);
5374 next = page->lru.next;
5375
5376 VM_BUG_ON_PAGE(PageLRU(page), page);
5377 VM_BUG_ON_PAGE(page_count(page), page);
5378
1306a85a 5379 if (!page->mem_cgroup)
747db954
JW
5380 continue;
5381
5382 /*
5383 * Nobody should be changing or seriously looking at
1306a85a 5384 * page->mem_cgroup at this point, we have fully
29833315 5385 * exclusive access to the page.
747db954
JW
5386 */
5387
1306a85a 5388 if (memcg != page->mem_cgroup) {
747db954 5389 if (memcg) {
18eca2e6
JW
5390 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5391 nr_huge, page);
5392 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5393 }
1306a85a 5394 memcg = page->mem_cgroup;
747db954
JW
5395 }
5396
5397 if (PageTransHuge(page)) {
5398 nr_pages <<= compound_order(page);
5399 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5400 nr_huge += nr_pages;
5401 }
5402
5403 if (PageAnon(page))
5404 nr_anon += nr_pages;
5405 else
5406 nr_file += nr_pages;
5407
1306a85a 5408 page->mem_cgroup = NULL;
747db954
JW
5409
5410 pgpgout++;
5411 } while (next != page_list);
5412
5413 if (memcg)
18eca2e6
JW
5414 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5415 nr_huge, page);
747db954
JW
5416}
5417
0a31bc97
JW
5418/**
5419 * mem_cgroup_uncharge - uncharge a page
5420 * @page: page to uncharge
5421 *
5422 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5423 * mem_cgroup_commit_charge().
5424 */
5425void mem_cgroup_uncharge(struct page *page)
5426{
0a31bc97
JW
5427 if (mem_cgroup_disabled())
5428 return;
5429
747db954 5430 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5431 if (!page->mem_cgroup)
0a31bc97
JW
5432 return;
5433
747db954
JW
5434 INIT_LIST_HEAD(&page->lru);
5435 uncharge_list(&page->lru);
5436}
0a31bc97 5437
747db954
JW
5438/**
5439 * mem_cgroup_uncharge_list - uncharge a list of page
5440 * @page_list: list of pages to uncharge
5441 *
5442 * Uncharge a list of pages previously charged with
5443 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5444 */
5445void mem_cgroup_uncharge_list(struct list_head *page_list)
5446{
5447 if (mem_cgroup_disabled())
5448 return;
0a31bc97 5449
747db954
JW
5450 if (!list_empty(page_list))
5451 uncharge_list(page_list);
0a31bc97
JW
5452}
5453
5454/**
45637bab 5455 * mem_cgroup_replace_page - migrate a charge to another page
0a31bc97
JW
5456 * @oldpage: currently charged page
5457 * @newpage: page to transfer the charge to
0a31bc97
JW
5458 *
5459 * Migrate the charge from @oldpage to @newpage.
5460 *
5461 * Both pages must be locked, @newpage->mapping must be set up.
25be6a65 5462 * Either or both pages might be on the LRU already.
0a31bc97 5463 */
45637bab 5464void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
0a31bc97 5465{
29833315 5466 struct mem_cgroup *memcg;
0a31bc97
JW
5467 int isolated;
5468
5469 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5470 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5471 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5472 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5473 newpage);
0a31bc97
JW
5474
5475 if (mem_cgroup_disabled())
5476 return;
5477
5478 /* Page cache replacement: new page already charged? */
1306a85a 5479 if (newpage->mem_cgroup)
0a31bc97
JW
5480 return;
5481
45637bab 5482 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5483 memcg = oldpage->mem_cgroup;
29833315 5484 if (!memcg)
0a31bc97
JW
5485 return;
5486
45637bab 5487 lock_page_lru(oldpage, &isolated);
1306a85a 5488 oldpage->mem_cgroup = NULL;
45637bab 5489 unlock_page_lru(oldpage, isolated);
0a31bc97 5490
45637bab 5491 commit_charge(newpage, memcg, true);
0a31bc97
JW
5492}
5493
ef12947c 5494DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5495EXPORT_SYMBOL(memcg_sockets_enabled_key);
5496
5497void sock_update_memcg(struct sock *sk)
5498{
5499 struct mem_cgroup *memcg;
5500
5501 /* Socket cloning can throw us here with sk_cgrp already
5502 * filled. It won't however, necessarily happen from
5503 * process context. So the test for root memcg given
5504 * the current task's memcg won't help us in this case.
5505 *
5506 * Respecting the original socket's memcg is a better
5507 * decision in this case.
5508 */
5509 if (sk->sk_memcg) {
5510 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5511 css_get(&sk->sk_memcg->css);
5512 return;
5513 }
5514
5515 rcu_read_lock();
5516 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5517 if (memcg == root_mem_cgroup)
5518 goto out;
0db15298 5519 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5520 goto out;
f7e1cb6e 5521 if (css_tryget_online(&memcg->css))
11092087 5522 sk->sk_memcg = memcg;
f7e1cb6e 5523out:
11092087
JW
5524 rcu_read_unlock();
5525}
5526EXPORT_SYMBOL(sock_update_memcg);
5527
5528void sock_release_memcg(struct sock *sk)
5529{
5530 WARN_ON(!sk->sk_memcg);
5531 css_put(&sk->sk_memcg->css);
5532}
5533
5534/**
5535 * mem_cgroup_charge_skmem - charge socket memory
5536 * @memcg: memcg to charge
5537 * @nr_pages: number of pages to charge
5538 *
5539 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5540 * @memcg's configured limit, %false if the charge had to be forced.
5541 */
5542bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5543{
f7e1cb6e 5544 gfp_t gfp_mask = GFP_KERNEL;
11092087 5545
f7e1cb6e 5546 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5547 struct page_counter *fail;
f7e1cb6e 5548
0db15298
JW
5549 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5550 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5551 return true;
5552 }
0db15298
JW
5553 page_counter_charge(&memcg->tcpmem, nr_pages);
5554 memcg->tcpmem_pressure = 1;
f7e1cb6e 5555 return false;
11092087 5556 }
d886f4e4 5557
f7e1cb6e
JW
5558 /* Don't block in the packet receive path */
5559 if (in_softirq())
5560 gfp_mask = GFP_NOWAIT;
5561
5562 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5563 return true;
5564
5565 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5566 return false;
5567}
5568
5569/**
5570 * mem_cgroup_uncharge_skmem - uncharge socket memory
5571 * @memcg - memcg to uncharge
5572 * @nr_pages - number of pages to uncharge
5573 */
5574void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5575{
f7e1cb6e 5576 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5577 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5578 return;
5579 }
d886f4e4 5580
f7e1cb6e
JW
5581 page_counter_uncharge(&memcg->memory, nr_pages);
5582 css_put_many(&memcg->css, nr_pages);
11092087
JW
5583}
5584
f7e1cb6e
JW
5585static int __init cgroup_memory(char *s)
5586{
5587 char *token;
5588
5589 while ((token = strsep(&s, ",")) != NULL) {
5590 if (!*token)
5591 continue;
5592 if (!strcmp(token, "nosocket"))
5593 cgroup_memory_nosocket = true;
04823c83
VD
5594 if (!strcmp(token, "nokmem"))
5595 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5596 }
5597 return 0;
5598}
5599__setup("cgroup.memory=", cgroup_memory);
11092087 5600
2d11085e 5601/*
1081312f
MH
5602 * subsys_initcall() for memory controller.
5603 *
5604 * Some parts like hotcpu_notifier() have to be initialized from this context
5605 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5606 * everything that doesn't depend on a specific mem_cgroup structure should
5607 * be initialized from here.
2d11085e
MH
5608 */
5609static int __init mem_cgroup_init(void)
5610{
95a045f6
JW
5611 int cpu, node;
5612
2d11085e 5613 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5614
5615 for_each_possible_cpu(cpu)
5616 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5617 drain_local_stock);
5618
5619 for_each_node(node) {
5620 struct mem_cgroup_tree_per_node *rtpn;
5621 int zone;
5622
5623 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5624 node_online(node) ? node : NUMA_NO_NODE);
5625
5626 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5627 struct mem_cgroup_tree_per_zone *rtpz;
5628
5629 rtpz = &rtpn->rb_tree_per_zone[zone];
5630 rtpz->rb_root = RB_ROOT;
5631 spin_lock_init(&rtpz->lock);
5632 }
5633 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5634 }
5635
2d11085e
MH
5636 return 0;
5637}
5638subsys_initcall(mem_cgroup_init);
21afa38e
JW
5639
5640#ifdef CONFIG_MEMCG_SWAP
5641/**
5642 * mem_cgroup_swapout - transfer a memsw charge to swap
5643 * @page: page whose memsw charge to transfer
5644 * @entry: swap entry to move the charge to
5645 *
5646 * Transfer the memsw charge of @page to @entry.
5647 */
5648void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5649{
5650 struct mem_cgroup *memcg;
5651 unsigned short oldid;
5652
5653 VM_BUG_ON_PAGE(PageLRU(page), page);
5654 VM_BUG_ON_PAGE(page_count(page), page);
5655
7941d214 5656 if (!do_memsw_account())
21afa38e
JW
5657 return;
5658
5659 memcg = page->mem_cgroup;
5660
5661 /* Readahead page, never charged */
5662 if (!memcg)
5663 return;
5664
5665 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5666 VM_BUG_ON_PAGE(oldid, page);
5667 mem_cgroup_swap_statistics(memcg, true);
5668
5669 page->mem_cgroup = NULL;
5670
5671 if (!mem_cgroup_is_root(memcg))
5672 page_counter_uncharge(&memcg->memory, 1);
5673
ce9ce665
SAS
5674 /*
5675 * Interrupts should be disabled here because the caller holds the
5676 * mapping->tree_lock lock which is taken with interrupts-off. It is
5677 * important here to have the interrupts disabled because it is the
5678 * only synchronisation we have for udpating the per-CPU variables.
5679 */
5680 VM_BUG_ON(!irqs_disabled());
f627c2f5 5681 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5682 memcg_check_events(memcg, page);
5683}
5684
37e84351
VD
5685/*
5686 * mem_cgroup_try_charge_swap - try charging a swap entry
5687 * @page: page being added to swap
5688 * @entry: swap entry to charge
5689 *
5690 * Try to charge @entry to the memcg that @page belongs to.
5691 *
5692 * Returns 0 on success, -ENOMEM on failure.
5693 */
5694int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5695{
5696 struct mem_cgroup *memcg;
5697 struct page_counter *counter;
5698 unsigned short oldid;
5699
5700 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5701 return 0;
5702
5703 memcg = page->mem_cgroup;
5704
5705 /* Readahead page, never charged */
5706 if (!memcg)
5707 return 0;
5708
5709 if (!mem_cgroup_is_root(memcg) &&
5710 !page_counter_try_charge(&memcg->swap, 1, &counter))
5711 return -ENOMEM;
5712
5713 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5714 VM_BUG_ON_PAGE(oldid, page);
5715 mem_cgroup_swap_statistics(memcg, true);
5716
5717 css_get(&memcg->css);
5718 return 0;
5719}
5720
21afa38e
JW
5721/**
5722 * mem_cgroup_uncharge_swap - uncharge a swap entry
5723 * @entry: swap entry to uncharge
5724 *
37e84351 5725 * Drop the swap charge associated with @entry.
21afa38e
JW
5726 */
5727void mem_cgroup_uncharge_swap(swp_entry_t entry)
5728{
5729 struct mem_cgroup *memcg;
5730 unsigned short id;
5731
37e84351 5732 if (!do_swap_account)
21afa38e
JW
5733 return;
5734
5735 id = swap_cgroup_record(entry, 0);
5736 rcu_read_lock();
adbe427b 5737 memcg = mem_cgroup_from_id(id);
21afa38e 5738 if (memcg) {
37e84351
VD
5739 if (!mem_cgroup_is_root(memcg)) {
5740 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5741 page_counter_uncharge(&memcg->swap, 1);
5742 else
5743 page_counter_uncharge(&memcg->memsw, 1);
5744 }
21afa38e
JW
5745 mem_cgroup_swap_statistics(memcg, false);
5746 css_put(&memcg->css);
5747 }
5748 rcu_read_unlock();
5749}
5750
d8b38438
VD
5751long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5752{
5753 long nr_swap_pages = get_nr_swap_pages();
5754
5755 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5756 return nr_swap_pages;
5757 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5758 nr_swap_pages = min_t(long, nr_swap_pages,
5759 READ_ONCE(memcg->swap.limit) -
5760 page_counter_read(&memcg->swap));
5761 return nr_swap_pages;
5762}
5763
21afa38e
JW
5764/* for remember boot option*/
5765#ifdef CONFIG_MEMCG_SWAP_ENABLED
5766static int really_do_swap_account __initdata = 1;
5767#else
5768static int really_do_swap_account __initdata;
5769#endif
5770
5771static int __init enable_swap_account(char *s)
5772{
5773 if (!strcmp(s, "1"))
5774 really_do_swap_account = 1;
5775 else if (!strcmp(s, "0"))
5776 really_do_swap_account = 0;
5777 return 1;
5778}
5779__setup("swapaccount=", enable_swap_account);
5780
37e84351
VD
5781static u64 swap_current_read(struct cgroup_subsys_state *css,
5782 struct cftype *cft)
5783{
5784 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5785
5786 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5787}
5788
5789static int swap_max_show(struct seq_file *m, void *v)
5790{
5791 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5792 unsigned long max = READ_ONCE(memcg->swap.limit);
5793
5794 if (max == PAGE_COUNTER_MAX)
5795 seq_puts(m, "max\n");
5796 else
5797 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5798
5799 return 0;
5800}
5801
5802static ssize_t swap_max_write(struct kernfs_open_file *of,
5803 char *buf, size_t nbytes, loff_t off)
5804{
5805 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5806 unsigned long max;
5807 int err;
5808
5809 buf = strstrip(buf);
5810 err = page_counter_memparse(buf, "max", &max);
5811 if (err)
5812 return err;
5813
5814 mutex_lock(&memcg_limit_mutex);
5815 err = page_counter_limit(&memcg->swap, max);
5816 mutex_unlock(&memcg_limit_mutex);
5817 if (err)
5818 return err;
5819
5820 return nbytes;
5821}
5822
5823static struct cftype swap_files[] = {
5824 {
5825 .name = "swap.current",
5826 .flags = CFTYPE_NOT_ON_ROOT,
5827 .read_u64 = swap_current_read,
5828 },
5829 {
5830 .name = "swap.max",
5831 .flags = CFTYPE_NOT_ON_ROOT,
5832 .seq_show = swap_max_show,
5833 .write = swap_max_write,
5834 },
5835 { } /* terminate */
5836};
5837
21afa38e
JW
5838static struct cftype memsw_cgroup_files[] = {
5839 {
5840 .name = "memsw.usage_in_bytes",
5841 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5842 .read_u64 = mem_cgroup_read_u64,
5843 },
5844 {
5845 .name = "memsw.max_usage_in_bytes",
5846 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5847 .write = mem_cgroup_reset,
5848 .read_u64 = mem_cgroup_read_u64,
5849 },
5850 {
5851 .name = "memsw.limit_in_bytes",
5852 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5853 .write = mem_cgroup_write,
5854 .read_u64 = mem_cgroup_read_u64,
5855 },
5856 {
5857 .name = "memsw.failcnt",
5858 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5859 .write = mem_cgroup_reset,
5860 .read_u64 = mem_cgroup_read_u64,
5861 },
5862 { }, /* terminate */
5863};
5864
5865static int __init mem_cgroup_swap_init(void)
5866{
5867 if (!mem_cgroup_disabled() && really_do_swap_account) {
5868 do_swap_account = 1;
37e84351
VD
5869 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5870 swap_files));
21afa38e
JW
5871 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5872 memsw_cgroup_files));
5873 }
5874 return 0;
5875}
5876subsys_initcall(mem_cgroup_swap_init);
5877
5878#endif /* CONFIG_MEMCG_SWAP */