mm/vmalloc.c: check VM_UNINITIALIZED flag in s_show instead of show_numa_info
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
08e552c6 57#include "internal.h"
d1a4c0b3 58#include <net/sock.h>
4bd2c1ee 59#include <net/ip.h>
d1a4c0b3 60#include <net/tcp_memcontrol.h>
8cdea7c0 61
8697d331
BS
62#include <asm/uaccess.h>
63
cc8e970c
KM
64#include <trace/events/vmscan.h>
65
a181b0e8 66struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
67EXPORT_SYMBOL(mem_cgroup_subsys);
68
a181b0e8 69#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 70static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 71
c255a458 72#ifdef CONFIG_MEMCG_SWAP
338c8431 73/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 74int do_swap_account __read_mostly;
a42c390c
MH
75
76/* for remember boot option*/
c255a458 77#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
78static int really_do_swap_account __initdata = 1;
79#else
80static int really_do_swap_account __initdata = 0;
81#endif
82
c077719b 83#else
a0db00fc 84#define do_swap_account 0
c077719b
KH
85#endif
86
87
d52aa412
KH
88/*
89 * Statistics for memory cgroup.
90 */
91enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
b070e65c
DR
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
100 MEM_CGROUP_STAT_NSTATS,
101};
102
af7c4b0e
JW
103static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
b070e65c 106 "rss_huge",
af7c4b0e
JW
107 "mapped_file",
108 "swap",
109};
110
e9f8974f
JW
111enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
116 MEM_CGROUP_EVENTS_NSTATS,
117};
af7c4b0e
JW
118
119static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124};
125
58cf188e
SZ
126static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132};
133
7a159cc9
JW
134/*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 143 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
144 MEM_CGROUP_NTARGETS,
145};
a0db00fc
KS
146#define THRESHOLDS_EVENTS_TARGET 128
147#define SOFTLIMIT_EVENTS_TARGET 1024
148#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 149
d52aa412 150struct mem_cgroup_stat_cpu {
7a159cc9 151 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 153 unsigned long nr_page_events;
7a159cc9 154 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
155};
156
527a5ec9 157struct mem_cgroup_reclaim_iter {
5f578161
MH
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
542f85f9 162 struct mem_cgroup *last_visited;
5f578161
MH
163 unsigned long last_dead_count;
164
527a5ec9
JW
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167};
168
6d12e2d8
KH
169/*
170 * per-zone information in memory controller.
171 */
6d12e2d8 172struct mem_cgroup_per_zone {
6290df54 173 struct lruvec lruvec;
1eb49272 174 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 175
527a5ec9
JW
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
f64c3f54
BS
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
d79154bb 182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 183 /* use container_of */
6d12e2d8 184};
6d12e2d8
KH
185
186struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188};
189
f64c3f54
BS
190/*
191 * Cgroups above their limits are maintained in a RB-Tree, independent of
192 * their hierarchy representation
193 */
194
195struct mem_cgroup_tree_per_zone {
196 struct rb_root rb_root;
197 spinlock_t lock;
198};
199
200struct mem_cgroup_tree_per_node {
201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202};
203
204struct mem_cgroup_tree {
205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206};
207
208static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209
2e72b634
KS
210struct mem_cgroup_threshold {
211 struct eventfd_ctx *eventfd;
212 u64 threshold;
213};
214
9490ff27 215/* For threshold */
2e72b634 216struct mem_cgroup_threshold_ary {
748dad36 217 /* An array index points to threshold just below or equal to usage. */
5407a562 218 int current_threshold;
2e72b634
KS
219 /* Size of entries[] */
220 unsigned int size;
221 /* Array of thresholds */
222 struct mem_cgroup_threshold entries[0];
223};
2c488db2
KS
224
225struct mem_cgroup_thresholds {
226 /* Primary thresholds array */
227 struct mem_cgroup_threshold_ary *primary;
228 /*
229 * Spare threshold array.
230 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 * It must be able to store at least primary->size - 1 entries.
232 */
233 struct mem_cgroup_threshold_ary *spare;
234};
235
9490ff27
KH
236/* for OOM */
237struct mem_cgroup_eventfd_list {
238 struct list_head list;
239 struct eventfd_ctx *eventfd;
240};
2e72b634 241
c0ff4b85
R
242static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 244
8cdea7c0
BS
245/*
246 * The memory controller data structure. The memory controller controls both
247 * page cache and RSS per cgroup. We would eventually like to provide
248 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249 * to help the administrator determine what knobs to tune.
250 *
251 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
252 * we hit the water mark. May be even add a low water mark, such that
253 * no reclaim occurs from a cgroup at it's low water mark, this is
254 * a feature that will be implemented much later in the future.
8cdea7c0
BS
255 */
256struct mem_cgroup {
257 struct cgroup_subsys_state css;
258 /*
259 * the counter to account for memory usage
260 */
261 struct res_counter res;
59927fb9 262
70ddf637
AV
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
59927fb9
HD
266 union {
267 /*
268 * the counter to account for mem+swap usage.
269 */
270 struct res_counter memsw;
271
272 /*
273 * rcu_freeing is used only when freeing struct mem_cgroup,
274 * so put it into a union to avoid wasting more memory.
275 * It must be disjoint from the css field. It could be
276 * in a union with the res field, but res plays a much
277 * larger part in mem_cgroup life than memsw, and might
278 * be of interest, even at time of free, when debugging.
279 * So share rcu_head with the less interesting memsw.
280 */
281 struct rcu_head rcu_freeing;
282 /*
3afe36b1
GC
283 * We also need some space for a worker in deferred freeing.
284 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
285 */
286 struct work_struct work_freeing;
287 };
288
510fc4e1
GC
289 /*
290 * the counter to account for kernel memory usage.
291 */
292 struct res_counter kmem;
18f59ea7
BS
293 /*
294 * Should the accounting and control be hierarchical, per subtree?
295 */
296 bool use_hierarchy;
510fc4e1 297 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
298
299 bool oom_lock;
300 atomic_t under_oom;
301
8c7c6e34 302 atomic_t refcnt;
14797e23 303
1f4c025b 304 int swappiness;
3c11ecf4
KH
305 /* OOM-Killer disable */
306 int oom_kill_disable;
a7885eb8 307
22a668d7
KH
308 /* set when res.limit == memsw.limit */
309 bool memsw_is_minimum;
310
2e72b634
KS
311 /* protect arrays of thresholds */
312 struct mutex thresholds_lock;
313
314 /* thresholds for memory usage. RCU-protected */
2c488db2 315 struct mem_cgroup_thresholds thresholds;
907860ed 316
2e72b634 317 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 318 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 319
9490ff27
KH
320 /* For oom notifier event fd */
321 struct list_head oom_notify;
185efc0f 322
7dc74be0
DN
323 /*
324 * Should we move charges of a task when a task is moved into this
325 * mem_cgroup ? And what type of charges should we move ?
326 */
327 unsigned long move_charge_at_immigrate;
619d094b
KH
328 /*
329 * set > 0 if pages under this cgroup are moving to other cgroup.
330 */
331 atomic_t moving_account;
312734c0
KH
332 /* taken only while moving_account > 0 */
333 spinlock_t move_lock;
d52aa412 334 /*
c62b1a3b 335 * percpu counter.
d52aa412 336 */
3a7951b4 337 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
338 /*
339 * used when a cpu is offlined or other synchronizations
340 * See mem_cgroup_read_stat().
341 */
342 struct mem_cgroup_stat_cpu nocpu_base;
343 spinlock_t pcp_counter_lock;
d1a4c0b3 344
5f578161 345 atomic_t dead_count;
4bd2c1ee 346#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
347 struct tcp_memcontrol tcp_mem;
348#endif
2633d7a0
GC
349#if defined(CONFIG_MEMCG_KMEM)
350 /* analogous to slab_common's slab_caches list. per-memcg */
351 struct list_head memcg_slab_caches;
352 /* Not a spinlock, we can take a lot of time walking the list */
353 struct mutex slab_caches_mutex;
354 /* Index in the kmem_cache->memcg_params->memcg_caches array */
355 int kmemcg_id;
356#endif
45cf7ebd
GC
357
358 int last_scanned_node;
359#if MAX_NUMNODES > 1
360 nodemask_t scan_nodes;
361 atomic_t numainfo_events;
362 atomic_t numainfo_updating;
363#endif
70ddf637 364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
45cf7ebd
GC
369static size_t memcg_size(void)
370{
371 return sizeof(struct mem_cgroup) +
372 nr_node_ids * sizeof(struct mem_cgroup_per_node);
373}
374
510fc4e1
GC
375/* internal only representation about the status of kmem accounting. */
376enum {
377 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 378 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 379 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
380};
381
a8964b9b
GC
382/* We account when limit is on, but only after call sites are patched */
383#define KMEM_ACCOUNTED_MASK \
384 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
385
386#ifdef CONFIG_MEMCG_KMEM
387static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
388{
389 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
390}
7de37682
GC
391
392static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
393{
394 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
395}
396
a8964b9b
GC
397static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
398{
399 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
400}
401
55007d84
GC
402static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
403{
404 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
405}
406
7de37682
GC
407static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
408{
409 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
410 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
411}
412
413static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
414{
415 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
416 &memcg->kmem_account_flags);
417}
510fc4e1
GC
418#endif
419
7dc74be0
DN
420/* Stuffs for move charges at task migration. */
421/*
ee5e8472
GC
422 * Types of charges to be moved. "move_charge_at_immitgrate" and
423 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
424 */
425enum move_type {
4ffef5fe 426 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 427 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
428 NR_MOVE_TYPE,
429};
430
4ffef5fe
DN
431/* "mc" and its members are protected by cgroup_mutex */
432static struct move_charge_struct {
b1dd693e 433 spinlock_t lock; /* for from, to */
4ffef5fe
DN
434 struct mem_cgroup *from;
435 struct mem_cgroup *to;
ee5e8472 436 unsigned long immigrate_flags;
4ffef5fe 437 unsigned long precharge;
854ffa8d 438 unsigned long moved_charge;
483c30b5 439 unsigned long moved_swap;
8033b97c
DN
440 struct task_struct *moving_task; /* a task moving charges */
441 wait_queue_head_t waitq; /* a waitq for other context */
442} mc = {
2bd9bb20 443 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
444 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
445};
4ffef5fe 446
90254a65
DN
447static bool move_anon(void)
448{
ee5e8472 449 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
450}
451
87946a72
DN
452static bool move_file(void)
453{
ee5e8472 454 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
455}
456
4e416953
BS
457/*
458 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
459 * limit reclaim to prevent infinite loops, if they ever occur.
460 */
a0db00fc
KS
461#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
462#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 463
217bc319
KH
464enum charge_type {
465 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 466 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 467 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 468 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
469 NR_CHARGE_TYPE,
470};
471
8c7c6e34 472/* for encoding cft->private value on file */
86ae53e1
GC
473enum res_type {
474 _MEM,
475 _MEMSWAP,
476 _OOM_TYPE,
510fc4e1 477 _KMEM,
86ae53e1
GC
478};
479
a0db00fc
KS
480#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
481#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 482#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
483/* Used for OOM nofiier */
484#define OOM_CONTROL (0)
8c7c6e34 485
75822b44
BS
486/*
487 * Reclaim flags for mem_cgroup_hierarchical_reclaim
488 */
489#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
490#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
491#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
492#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
493
0999821b
GC
494/*
495 * The memcg_create_mutex will be held whenever a new cgroup is created.
496 * As a consequence, any change that needs to protect against new child cgroups
497 * appearing has to hold it as well.
498 */
499static DEFINE_MUTEX(memcg_create_mutex);
500
c0ff4b85
R
501static void mem_cgroup_get(struct mem_cgroup *memcg);
502static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 503
b2145145
WL
504static inline
505struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
506{
507 return container_of(s, struct mem_cgroup, css);
508}
509
70ddf637
AV
510/* Some nice accessors for the vmpressure. */
511struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
512{
513 if (!memcg)
514 memcg = root_mem_cgroup;
515 return &memcg->vmpressure;
516}
517
518struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
519{
520 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
521}
522
523struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
524{
525 return &mem_cgroup_from_css(css)->vmpressure;
526}
527
7ffc0edc
MH
528static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
529{
530 return (memcg == root_mem_cgroup);
531}
532
e1aab161 533/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 534#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 535
e1aab161
GC
536void sock_update_memcg(struct sock *sk)
537{
376be5ff 538 if (mem_cgroup_sockets_enabled) {
e1aab161 539 struct mem_cgroup *memcg;
3f134619 540 struct cg_proto *cg_proto;
e1aab161
GC
541
542 BUG_ON(!sk->sk_prot->proto_cgroup);
543
f3f511e1
GC
544 /* Socket cloning can throw us here with sk_cgrp already
545 * filled. It won't however, necessarily happen from
546 * process context. So the test for root memcg given
547 * the current task's memcg won't help us in this case.
548 *
549 * Respecting the original socket's memcg is a better
550 * decision in this case.
551 */
552 if (sk->sk_cgrp) {
553 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
554 mem_cgroup_get(sk->sk_cgrp->memcg);
555 return;
556 }
557
e1aab161
GC
558 rcu_read_lock();
559 memcg = mem_cgroup_from_task(current);
3f134619
GC
560 cg_proto = sk->sk_prot->proto_cgroup(memcg);
561 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 562 mem_cgroup_get(memcg);
3f134619 563 sk->sk_cgrp = cg_proto;
e1aab161
GC
564 }
565 rcu_read_unlock();
566 }
567}
568EXPORT_SYMBOL(sock_update_memcg);
569
570void sock_release_memcg(struct sock *sk)
571{
376be5ff 572 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
573 struct mem_cgroup *memcg;
574 WARN_ON(!sk->sk_cgrp->memcg);
575 memcg = sk->sk_cgrp->memcg;
576 mem_cgroup_put(memcg);
577 }
578}
d1a4c0b3
GC
579
580struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
581{
582 if (!memcg || mem_cgroup_is_root(memcg))
583 return NULL;
584
585 return &memcg->tcp_mem.cg_proto;
586}
587EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 588
3f134619
GC
589static void disarm_sock_keys(struct mem_cgroup *memcg)
590{
591 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
592 return;
593 static_key_slow_dec(&memcg_socket_limit_enabled);
594}
595#else
596static void disarm_sock_keys(struct mem_cgroup *memcg)
597{
598}
599#endif
600
a8964b9b 601#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
602/*
603 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
604 * There are two main reasons for not using the css_id for this:
605 * 1) this works better in sparse environments, where we have a lot of memcgs,
606 * but only a few kmem-limited. Or also, if we have, for instance, 200
607 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
608 * 200 entry array for that.
609 *
610 * 2) In order not to violate the cgroup API, we would like to do all memory
611 * allocation in ->create(). At that point, we haven't yet allocated the
612 * css_id. Having a separate index prevents us from messing with the cgroup
613 * core for this
614 *
615 * The current size of the caches array is stored in
616 * memcg_limited_groups_array_size. It will double each time we have to
617 * increase it.
618 */
619static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
620int memcg_limited_groups_array_size;
621
55007d84
GC
622/*
623 * MIN_SIZE is different than 1, because we would like to avoid going through
624 * the alloc/free process all the time. In a small machine, 4 kmem-limited
625 * cgroups is a reasonable guess. In the future, it could be a parameter or
626 * tunable, but that is strictly not necessary.
627 *
628 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
629 * this constant directly from cgroup, but it is understandable that this is
630 * better kept as an internal representation in cgroup.c. In any case, the
631 * css_id space is not getting any smaller, and we don't have to necessarily
632 * increase ours as well if it increases.
633 */
634#define MEMCG_CACHES_MIN_SIZE 4
635#define MEMCG_CACHES_MAX_SIZE 65535
636
d7f25f8a
GC
637/*
638 * A lot of the calls to the cache allocation functions are expected to be
639 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
640 * conditional to this static branch, we'll have to allow modules that does
641 * kmem_cache_alloc and the such to see this symbol as well
642 */
a8964b9b 643struct static_key memcg_kmem_enabled_key;
d7f25f8a 644EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
645
646static void disarm_kmem_keys(struct mem_cgroup *memcg)
647{
55007d84 648 if (memcg_kmem_is_active(memcg)) {
a8964b9b 649 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
650 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
651 }
bea207c8
GC
652 /*
653 * This check can't live in kmem destruction function,
654 * since the charges will outlive the cgroup
655 */
656 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
657}
658#else
659static void disarm_kmem_keys(struct mem_cgroup *memcg)
660{
661}
662#endif /* CONFIG_MEMCG_KMEM */
663
664static void disarm_static_keys(struct mem_cgroup *memcg)
665{
666 disarm_sock_keys(memcg);
667 disarm_kmem_keys(memcg);
668}
669
c0ff4b85 670static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 671
f64c3f54 672static struct mem_cgroup_per_zone *
c0ff4b85 673mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 674{
45cf7ebd 675 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 676 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
677}
678
c0ff4b85 679struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 680{
c0ff4b85 681 return &memcg->css;
d324236b
WF
682}
683
f64c3f54 684static struct mem_cgroup_per_zone *
c0ff4b85 685page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 686{
97a6c37b
JW
687 int nid = page_to_nid(page);
688 int zid = page_zonenum(page);
f64c3f54 689
c0ff4b85 690 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
691}
692
693static struct mem_cgroup_tree_per_zone *
694soft_limit_tree_node_zone(int nid, int zid)
695{
696 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
697}
698
699static struct mem_cgroup_tree_per_zone *
700soft_limit_tree_from_page(struct page *page)
701{
702 int nid = page_to_nid(page);
703 int zid = page_zonenum(page);
704
705 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
706}
707
708static void
c0ff4b85 709__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 710 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
711 struct mem_cgroup_tree_per_zone *mctz,
712 unsigned long long new_usage_in_excess)
f64c3f54
BS
713{
714 struct rb_node **p = &mctz->rb_root.rb_node;
715 struct rb_node *parent = NULL;
716 struct mem_cgroup_per_zone *mz_node;
717
718 if (mz->on_tree)
719 return;
720
ef8745c1
KH
721 mz->usage_in_excess = new_usage_in_excess;
722 if (!mz->usage_in_excess)
723 return;
f64c3f54
BS
724 while (*p) {
725 parent = *p;
726 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
727 tree_node);
728 if (mz->usage_in_excess < mz_node->usage_in_excess)
729 p = &(*p)->rb_left;
730 /*
731 * We can't avoid mem cgroups that are over their soft
732 * limit by the same amount
733 */
734 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
735 p = &(*p)->rb_right;
736 }
737 rb_link_node(&mz->tree_node, parent, p);
738 rb_insert_color(&mz->tree_node, &mctz->rb_root);
739 mz->on_tree = true;
4e416953
BS
740}
741
742static void
c0ff4b85 743__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
744 struct mem_cgroup_per_zone *mz,
745 struct mem_cgroup_tree_per_zone *mctz)
746{
747 if (!mz->on_tree)
748 return;
749 rb_erase(&mz->tree_node, &mctz->rb_root);
750 mz->on_tree = false;
751}
752
f64c3f54 753static void
c0ff4b85 754mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
755 struct mem_cgroup_per_zone *mz,
756 struct mem_cgroup_tree_per_zone *mctz)
757{
758 spin_lock(&mctz->lock);
c0ff4b85 759 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
760 spin_unlock(&mctz->lock);
761}
762
f64c3f54 763
c0ff4b85 764static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 765{
ef8745c1 766 unsigned long long excess;
f64c3f54
BS
767 struct mem_cgroup_per_zone *mz;
768 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
769 int nid = page_to_nid(page);
770 int zid = page_zonenum(page);
f64c3f54
BS
771 mctz = soft_limit_tree_from_page(page);
772
773 /*
4e649152
KH
774 * Necessary to update all ancestors when hierarchy is used.
775 * because their event counter is not touched.
f64c3f54 776 */
c0ff4b85
R
777 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
778 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
779 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
780 /*
781 * We have to update the tree if mz is on RB-tree or
782 * mem is over its softlimit.
783 */
ef8745c1 784 if (excess || mz->on_tree) {
4e649152
KH
785 spin_lock(&mctz->lock);
786 /* if on-tree, remove it */
787 if (mz->on_tree)
c0ff4b85 788 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 789 /*
ef8745c1
KH
790 * Insert again. mz->usage_in_excess will be updated.
791 * If excess is 0, no tree ops.
4e649152 792 */
c0ff4b85 793 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
794 spin_unlock(&mctz->lock);
795 }
f64c3f54
BS
796 }
797}
798
c0ff4b85 799static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
800{
801 int node, zone;
802 struct mem_cgroup_per_zone *mz;
803 struct mem_cgroup_tree_per_zone *mctz;
804
3ed28fa1 805 for_each_node(node) {
f64c3f54 806 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 807 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 808 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 809 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
810 }
811 }
812}
813
4e416953
BS
814static struct mem_cgroup_per_zone *
815__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816{
817 struct rb_node *rightmost = NULL;
26251eaf 818 struct mem_cgroup_per_zone *mz;
4e416953
BS
819
820retry:
26251eaf 821 mz = NULL;
4e416953
BS
822 rightmost = rb_last(&mctz->rb_root);
823 if (!rightmost)
824 goto done; /* Nothing to reclaim from */
825
826 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
827 /*
828 * Remove the node now but someone else can add it back,
829 * we will to add it back at the end of reclaim to its correct
830 * position in the tree.
831 */
d79154bb
HD
832 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
833 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
834 !css_tryget(&mz->memcg->css))
4e416953
BS
835 goto retry;
836done:
837 return mz;
838}
839
840static struct mem_cgroup_per_zone *
841mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
842{
843 struct mem_cgroup_per_zone *mz;
844
845 spin_lock(&mctz->lock);
846 mz = __mem_cgroup_largest_soft_limit_node(mctz);
847 spin_unlock(&mctz->lock);
848 return mz;
849}
850
711d3d2c
KH
851/*
852 * Implementation Note: reading percpu statistics for memcg.
853 *
854 * Both of vmstat[] and percpu_counter has threshold and do periodic
855 * synchronization to implement "quick" read. There are trade-off between
856 * reading cost and precision of value. Then, we may have a chance to implement
857 * a periodic synchronizion of counter in memcg's counter.
858 *
859 * But this _read() function is used for user interface now. The user accounts
860 * memory usage by memory cgroup and he _always_ requires exact value because
861 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
862 * have to visit all online cpus and make sum. So, for now, unnecessary
863 * synchronization is not implemented. (just implemented for cpu hotplug)
864 *
865 * If there are kernel internal actions which can make use of some not-exact
866 * value, and reading all cpu value can be performance bottleneck in some
867 * common workload, threashold and synchonization as vmstat[] should be
868 * implemented.
869 */
c0ff4b85 870static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 871 enum mem_cgroup_stat_index idx)
c62b1a3b 872{
7a159cc9 873 long val = 0;
c62b1a3b 874 int cpu;
c62b1a3b 875
711d3d2c
KH
876 get_online_cpus();
877 for_each_online_cpu(cpu)
c0ff4b85 878 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 879#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
880 spin_lock(&memcg->pcp_counter_lock);
881 val += memcg->nocpu_base.count[idx];
882 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
883#endif
884 put_online_cpus();
c62b1a3b
KH
885 return val;
886}
887
c0ff4b85 888static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
889 bool charge)
890{
891 int val = (charge) ? 1 : -1;
bff6bb83 892 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
893}
894
c0ff4b85 895static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
896 enum mem_cgroup_events_index idx)
897{
898 unsigned long val = 0;
899 int cpu;
900
901 for_each_online_cpu(cpu)
c0ff4b85 902 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 903#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
904 spin_lock(&memcg->pcp_counter_lock);
905 val += memcg->nocpu_base.events[idx];
906 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
907#endif
908 return val;
909}
910
c0ff4b85 911static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 912 struct page *page,
b2402857 913 bool anon, int nr_pages)
d52aa412 914{
c62b1a3b
KH
915 preempt_disable();
916
b2402857
KH
917 /*
918 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
919 * counted as CACHE even if it's on ANON LRU.
920 */
921 if (anon)
922 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 923 nr_pages);
d52aa412 924 else
b2402857 925 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 926 nr_pages);
55e462b0 927
b070e65c
DR
928 if (PageTransHuge(page))
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
930 nr_pages);
931
e401f176
KH
932 /* pagein of a big page is an event. So, ignore page size */
933 if (nr_pages > 0)
c0ff4b85 934 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 935 else {
c0ff4b85 936 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
937 nr_pages = -nr_pages; /* for event */
938 }
e401f176 939
13114716 940 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 941
c62b1a3b 942 preempt_enable();
6d12e2d8
KH
943}
944
bb2a0de9 945unsigned long
4d7dcca2 946mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
947{
948 struct mem_cgroup_per_zone *mz;
949
950 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
951 return mz->lru_size[lru];
952}
953
954static unsigned long
c0ff4b85 955mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 956 unsigned int lru_mask)
889976db
YH
957{
958 struct mem_cgroup_per_zone *mz;
f156ab93 959 enum lru_list lru;
bb2a0de9
KH
960 unsigned long ret = 0;
961
c0ff4b85 962 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 963
f156ab93
HD
964 for_each_lru(lru) {
965 if (BIT(lru) & lru_mask)
966 ret += mz->lru_size[lru];
bb2a0de9
KH
967 }
968 return ret;
969}
970
971static unsigned long
c0ff4b85 972mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
973 int nid, unsigned int lru_mask)
974{
889976db
YH
975 u64 total = 0;
976 int zid;
977
bb2a0de9 978 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
979 total += mem_cgroup_zone_nr_lru_pages(memcg,
980 nid, zid, lru_mask);
bb2a0de9 981
889976db
YH
982 return total;
983}
bb2a0de9 984
c0ff4b85 985static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 986 unsigned int lru_mask)
6d12e2d8 987{
889976db 988 int nid;
6d12e2d8
KH
989 u64 total = 0;
990
31aaea4a 991 for_each_node_state(nid, N_MEMORY)
c0ff4b85 992 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 993 return total;
d52aa412
KH
994}
995
f53d7ce3
JW
996static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
997 enum mem_cgroup_events_target target)
7a159cc9
JW
998{
999 unsigned long val, next;
1000
13114716 1001 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1002 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1003 /* from time_after() in jiffies.h */
f53d7ce3
JW
1004 if ((long)next - (long)val < 0) {
1005 switch (target) {
1006 case MEM_CGROUP_TARGET_THRESH:
1007 next = val + THRESHOLDS_EVENTS_TARGET;
1008 break;
1009 case MEM_CGROUP_TARGET_SOFTLIMIT:
1010 next = val + SOFTLIMIT_EVENTS_TARGET;
1011 break;
1012 case MEM_CGROUP_TARGET_NUMAINFO:
1013 next = val + NUMAINFO_EVENTS_TARGET;
1014 break;
1015 default:
1016 break;
1017 }
1018 __this_cpu_write(memcg->stat->targets[target], next);
1019 return true;
7a159cc9 1020 }
f53d7ce3 1021 return false;
d2265e6f
KH
1022}
1023
1024/*
1025 * Check events in order.
1026 *
1027 */
c0ff4b85 1028static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1029{
4799401f 1030 preempt_disable();
d2265e6f 1031 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1032 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1033 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
1034 bool do_softlimit;
1035 bool do_numainfo __maybe_unused;
f53d7ce3
JW
1036
1037 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1038 MEM_CGROUP_TARGET_SOFTLIMIT);
1039#if MAX_NUMNODES > 1
1040 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1041 MEM_CGROUP_TARGET_NUMAINFO);
1042#endif
1043 preempt_enable();
1044
c0ff4b85 1045 mem_cgroup_threshold(memcg);
f53d7ce3 1046 if (unlikely(do_softlimit))
c0ff4b85 1047 mem_cgroup_update_tree(memcg, page);
453a9bf3 1048#if MAX_NUMNODES > 1
f53d7ce3 1049 if (unlikely(do_numainfo))
c0ff4b85 1050 atomic_inc(&memcg->numainfo_events);
453a9bf3 1051#endif
f53d7ce3
JW
1052 } else
1053 preempt_enable();
d2265e6f
KH
1054}
1055
d1a4c0b3 1056struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 1057{
b2145145
WL
1058 return mem_cgroup_from_css(
1059 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
1060}
1061
cf475ad2 1062struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1063{
31a78f23
BS
1064 /*
1065 * mm_update_next_owner() may clear mm->owner to NULL
1066 * if it races with swapoff, page migration, etc.
1067 * So this can be called with p == NULL.
1068 */
1069 if (unlikely(!p))
1070 return NULL;
1071
b2145145 1072 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
1073}
1074
a433658c 1075struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1076{
c0ff4b85 1077 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1078
1079 if (!mm)
1080 return NULL;
54595fe2
KH
1081 /*
1082 * Because we have no locks, mm->owner's may be being moved to other
1083 * cgroup. We use css_tryget() here even if this looks
1084 * pessimistic (rather than adding locks here).
1085 */
1086 rcu_read_lock();
1087 do {
c0ff4b85
R
1088 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1089 if (unlikely(!memcg))
54595fe2 1090 break;
c0ff4b85 1091 } while (!css_tryget(&memcg->css));
54595fe2 1092 rcu_read_unlock();
c0ff4b85 1093 return memcg;
54595fe2
KH
1094}
1095
16248d8f
MH
1096/*
1097 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1098 * ref. count) or NULL if the whole root's subtree has been visited.
1099 *
1100 * helper function to be used by mem_cgroup_iter
1101 */
1102static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1103 struct mem_cgroup *last_visited)
1104{
1105 struct cgroup *prev_cgroup, *next_cgroup;
1106
1107 /*
1108 * Root is not visited by cgroup iterators so it needs an
1109 * explicit visit.
1110 */
1111 if (!last_visited)
1112 return root;
1113
1114 prev_cgroup = (last_visited == root) ? NULL
1115 : last_visited->css.cgroup;
1116skip_node:
1117 next_cgroup = cgroup_next_descendant_pre(
1118 prev_cgroup, root->css.cgroup);
1119
1120 /*
1121 * Even if we found a group we have to make sure it is
1122 * alive. css && !memcg means that the groups should be
1123 * skipped and we should continue the tree walk.
1124 * last_visited css is safe to use because it is
1125 * protected by css_get and the tree walk is rcu safe.
1126 */
1127 if (next_cgroup) {
1128 struct mem_cgroup *mem = mem_cgroup_from_cont(
1129 next_cgroup);
1130 if (css_tryget(&mem->css))
1131 return mem;
1132 else {
1133 prev_cgroup = next_cgroup;
1134 goto skip_node;
1135 }
1136 }
1137
1138 return NULL;
1139}
1140
519ebea3
JW
1141static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1142{
1143 /*
1144 * When a group in the hierarchy below root is destroyed, the
1145 * hierarchy iterator can no longer be trusted since it might
1146 * have pointed to the destroyed group. Invalidate it.
1147 */
1148 atomic_inc(&root->dead_count);
1149}
1150
1151static struct mem_cgroup *
1152mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1153 struct mem_cgroup *root,
1154 int *sequence)
1155{
1156 struct mem_cgroup *position = NULL;
1157 /*
1158 * A cgroup destruction happens in two stages: offlining and
1159 * release. They are separated by a RCU grace period.
1160 *
1161 * If the iterator is valid, we may still race with an
1162 * offlining. The RCU lock ensures the object won't be
1163 * released, tryget will fail if we lost the race.
1164 */
1165 *sequence = atomic_read(&root->dead_count);
1166 if (iter->last_dead_count == *sequence) {
1167 smp_rmb();
1168 position = iter->last_visited;
1169 if (position && !css_tryget(&position->css))
1170 position = NULL;
1171 }
1172 return position;
1173}
1174
1175static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1176 struct mem_cgroup *last_visited,
1177 struct mem_cgroup *new_position,
1178 int sequence)
1179{
1180 if (last_visited)
1181 css_put(&last_visited->css);
1182 /*
1183 * We store the sequence count from the time @last_visited was
1184 * loaded successfully instead of rereading it here so that we
1185 * don't lose destruction events in between. We could have
1186 * raced with the destruction of @new_position after all.
1187 */
1188 iter->last_visited = new_position;
1189 smp_wmb();
1190 iter->last_dead_count = sequence;
1191}
1192
5660048c
JW
1193/**
1194 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1195 * @root: hierarchy root
1196 * @prev: previously returned memcg, NULL on first invocation
1197 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1198 *
1199 * Returns references to children of the hierarchy below @root, or
1200 * @root itself, or %NULL after a full round-trip.
1201 *
1202 * Caller must pass the return value in @prev on subsequent
1203 * invocations for reference counting, or use mem_cgroup_iter_break()
1204 * to cancel a hierarchy walk before the round-trip is complete.
1205 *
1206 * Reclaimers can specify a zone and a priority level in @reclaim to
1207 * divide up the memcgs in the hierarchy among all concurrent
1208 * reclaimers operating on the same zone and priority.
1209 */
1210struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1211 struct mem_cgroup *prev,
1212 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1213{
9f3a0d09 1214 struct mem_cgroup *memcg = NULL;
542f85f9 1215 struct mem_cgroup *last_visited = NULL;
711d3d2c 1216
5660048c
JW
1217 if (mem_cgroup_disabled())
1218 return NULL;
1219
9f3a0d09
JW
1220 if (!root)
1221 root = root_mem_cgroup;
7d74b06f 1222
9f3a0d09 1223 if (prev && !reclaim)
542f85f9 1224 last_visited = prev;
14067bb3 1225
9f3a0d09
JW
1226 if (!root->use_hierarchy && root != root_mem_cgroup) {
1227 if (prev)
c40046f3 1228 goto out_css_put;
9f3a0d09
JW
1229 return root;
1230 }
14067bb3 1231
542f85f9 1232 rcu_read_lock();
9f3a0d09 1233 while (!memcg) {
527a5ec9 1234 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1235 int uninitialized_var(seq);
711d3d2c 1236
527a5ec9
JW
1237 if (reclaim) {
1238 int nid = zone_to_nid(reclaim->zone);
1239 int zid = zone_idx(reclaim->zone);
1240 struct mem_cgroup_per_zone *mz;
1241
1242 mz = mem_cgroup_zoneinfo(root, nid, zid);
1243 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1244 if (prev && reclaim->generation != iter->generation) {
5f578161 1245 iter->last_visited = NULL;
542f85f9
MH
1246 goto out_unlock;
1247 }
5f578161 1248
519ebea3 1249 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1250 }
7d74b06f 1251
16248d8f 1252 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1253
527a5ec9 1254 if (reclaim) {
519ebea3 1255 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1256
19f39402 1257 if (!memcg)
527a5ec9
JW
1258 iter->generation++;
1259 else if (!prev && memcg)
1260 reclaim->generation = iter->generation;
1261 }
9f3a0d09 1262
19f39402 1263 if (prev && !memcg)
542f85f9 1264 goto out_unlock;
9f3a0d09 1265 }
542f85f9
MH
1266out_unlock:
1267 rcu_read_unlock();
c40046f3
MH
1268out_css_put:
1269 if (prev && prev != root)
1270 css_put(&prev->css);
1271
9f3a0d09 1272 return memcg;
14067bb3 1273}
7d74b06f 1274
5660048c
JW
1275/**
1276 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1277 * @root: hierarchy root
1278 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1279 */
1280void mem_cgroup_iter_break(struct mem_cgroup *root,
1281 struct mem_cgroup *prev)
9f3a0d09
JW
1282{
1283 if (!root)
1284 root = root_mem_cgroup;
1285 if (prev && prev != root)
1286 css_put(&prev->css);
1287}
7d74b06f 1288
9f3a0d09
JW
1289/*
1290 * Iteration constructs for visiting all cgroups (under a tree). If
1291 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1292 * be used for reference counting.
1293 */
1294#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1295 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1296 iter != NULL; \
527a5ec9 1297 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1298
9f3a0d09 1299#define for_each_mem_cgroup(iter) \
527a5ec9 1300 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1301 iter != NULL; \
527a5ec9 1302 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1303
68ae564b 1304void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1305{
c0ff4b85 1306 struct mem_cgroup *memcg;
456f998e 1307
456f998e 1308 rcu_read_lock();
c0ff4b85
R
1309 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1310 if (unlikely(!memcg))
456f998e
YH
1311 goto out;
1312
1313 switch (idx) {
456f998e 1314 case PGFAULT:
0e574a93
JW
1315 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1316 break;
1317 case PGMAJFAULT:
1318 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1319 break;
1320 default:
1321 BUG();
1322 }
1323out:
1324 rcu_read_unlock();
1325}
68ae564b 1326EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1327
925b7673
JW
1328/**
1329 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1330 * @zone: zone of the wanted lruvec
fa9add64 1331 * @memcg: memcg of the wanted lruvec
925b7673
JW
1332 *
1333 * Returns the lru list vector holding pages for the given @zone and
1334 * @mem. This can be the global zone lruvec, if the memory controller
1335 * is disabled.
1336 */
1337struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1338 struct mem_cgroup *memcg)
1339{
1340 struct mem_cgroup_per_zone *mz;
bea8c150 1341 struct lruvec *lruvec;
925b7673 1342
bea8c150
HD
1343 if (mem_cgroup_disabled()) {
1344 lruvec = &zone->lruvec;
1345 goto out;
1346 }
925b7673
JW
1347
1348 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1349 lruvec = &mz->lruvec;
1350out:
1351 /*
1352 * Since a node can be onlined after the mem_cgroup was created,
1353 * we have to be prepared to initialize lruvec->zone here;
1354 * and if offlined then reonlined, we need to reinitialize it.
1355 */
1356 if (unlikely(lruvec->zone != zone))
1357 lruvec->zone = zone;
1358 return lruvec;
925b7673
JW
1359}
1360
08e552c6
KH
1361/*
1362 * Following LRU functions are allowed to be used without PCG_LOCK.
1363 * Operations are called by routine of global LRU independently from memcg.
1364 * What we have to take care of here is validness of pc->mem_cgroup.
1365 *
1366 * Changes to pc->mem_cgroup happens when
1367 * 1. charge
1368 * 2. moving account
1369 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1370 * It is added to LRU before charge.
1371 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1372 * When moving account, the page is not on LRU. It's isolated.
1373 */
4f98a2fe 1374
925b7673 1375/**
fa9add64 1376 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1377 * @page: the page
fa9add64 1378 * @zone: zone of the page
925b7673 1379 */
fa9add64 1380struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1381{
08e552c6 1382 struct mem_cgroup_per_zone *mz;
925b7673
JW
1383 struct mem_cgroup *memcg;
1384 struct page_cgroup *pc;
bea8c150 1385 struct lruvec *lruvec;
6d12e2d8 1386
bea8c150
HD
1387 if (mem_cgroup_disabled()) {
1388 lruvec = &zone->lruvec;
1389 goto out;
1390 }
925b7673 1391
08e552c6 1392 pc = lookup_page_cgroup(page);
38c5d72f 1393 memcg = pc->mem_cgroup;
7512102c
HD
1394
1395 /*
fa9add64 1396 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1397 * an uncharged page off lru does nothing to secure
1398 * its former mem_cgroup from sudden removal.
1399 *
1400 * Our caller holds lru_lock, and PageCgroupUsed is updated
1401 * under page_cgroup lock: between them, they make all uses
1402 * of pc->mem_cgroup safe.
1403 */
fa9add64 1404 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1405 pc->mem_cgroup = memcg = root_mem_cgroup;
1406
925b7673 1407 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1408 lruvec = &mz->lruvec;
1409out:
1410 /*
1411 * Since a node can be onlined after the mem_cgroup was created,
1412 * we have to be prepared to initialize lruvec->zone here;
1413 * and if offlined then reonlined, we need to reinitialize it.
1414 */
1415 if (unlikely(lruvec->zone != zone))
1416 lruvec->zone = zone;
1417 return lruvec;
08e552c6 1418}
b69408e8 1419
925b7673 1420/**
fa9add64
HD
1421 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1422 * @lruvec: mem_cgroup per zone lru vector
1423 * @lru: index of lru list the page is sitting on
1424 * @nr_pages: positive when adding or negative when removing
925b7673 1425 *
fa9add64
HD
1426 * This function must be called when a page is added to or removed from an
1427 * lru list.
3f58a829 1428 */
fa9add64
HD
1429void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1430 int nr_pages)
3f58a829
MK
1431{
1432 struct mem_cgroup_per_zone *mz;
fa9add64 1433 unsigned long *lru_size;
3f58a829
MK
1434
1435 if (mem_cgroup_disabled())
1436 return;
1437
fa9add64
HD
1438 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1439 lru_size = mz->lru_size + lru;
1440 *lru_size += nr_pages;
1441 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1442}
544122e5 1443
3e92041d 1444/*
c0ff4b85 1445 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1446 * hierarchy subtree
1447 */
c3ac9a8a
JW
1448bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1449 struct mem_cgroup *memcg)
3e92041d 1450{
91c63734
JW
1451 if (root_memcg == memcg)
1452 return true;
3a981f48 1453 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1454 return false;
c3ac9a8a
JW
1455 return css_is_ancestor(&memcg->css, &root_memcg->css);
1456}
1457
1458static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1459 struct mem_cgroup *memcg)
1460{
1461 bool ret;
1462
91c63734 1463 rcu_read_lock();
c3ac9a8a 1464 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1465 rcu_read_unlock();
1466 return ret;
3e92041d
MH
1467}
1468
ffbdccf5
DR
1469bool task_in_mem_cgroup(struct task_struct *task,
1470 const struct mem_cgroup *memcg)
4c4a2214 1471{
0b7f569e 1472 struct mem_cgroup *curr = NULL;
158e0a2d 1473 struct task_struct *p;
ffbdccf5 1474 bool ret;
4c4a2214 1475
158e0a2d 1476 p = find_lock_task_mm(task);
de077d22
DR
1477 if (p) {
1478 curr = try_get_mem_cgroup_from_mm(p->mm);
1479 task_unlock(p);
1480 } else {
1481 /*
1482 * All threads may have already detached their mm's, but the oom
1483 * killer still needs to detect if they have already been oom
1484 * killed to prevent needlessly killing additional tasks.
1485 */
ffbdccf5 1486 rcu_read_lock();
de077d22
DR
1487 curr = mem_cgroup_from_task(task);
1488 if (curr)
1489 css_get(&curr->css);
ffbdccf5 1490 rcu_read_unlock();
de077d22 1491 }
0b7f569e 1492 if (!curr)
ffbdccf5 1493 return false;
d31f56db 1494 /*
c0ff4b85 1495 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1496 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1497 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1498 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1499 */
c0ff4b85 1500 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1501 css_put(&curr->css);
4c4a2214
DR
1502 return ret;
1503}
1504
c56d5c7d 1505int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1506{
9b272977 1507 unsigned long inactive_ratio;
14797e23 1508 unsigned long inactive;
9b272977 1509 unsigned long active;
c772be93 1510 unsigned long gb;
14797e23 1511
4d7dcca2
HD
1512 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1513 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1514
c772be93
KM
1515 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1516 if (gb)
1517 inactive_ratio = int_sqrt(10 * gb);
1518 else
1519 inactive_ratio = 1;
1520
9b272977 1521 return inactive * inactive_ratio < active;
14797e23
KM
1522}
1523
6d61ef40
BS
1524#define mem_cgroup_from_res_counter(counter, member) \
1525 container_of(counter, struct mem_cgroup, member)
1526
19942822 1527/**
9d11ea9f 1528 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1529 * @memcg: the memory cgroup
19942822 1530 *
9d11ea9f 1531 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1532 * pages.
19942822 1533 */
c0ff4b85 1534static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1535{
9d11ea9f
JW
1536 unsigned long long margin;
1537
c0ff4b85 1538 margin = res_counter_margin(&memcg->res);
9d11ea9f 1539 if (do_swap_account)
c0ff4b85 1540 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1541 return margin >> PAGE_SHIFT;
19942822
JW
1542}
1543
1f4c025b 1544int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1545{
1546 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1547
1548 /* root ? */
1549 if (cgrp->parent == NULL)
1550 return vm_swappiness;
1551
bf1ff263 1552 return memcg->swappiness;
a7885eb8
KM
1553}
1554
619d094b
KH
1555/*
1556 * memcg->moving_account is used for checking possibility that some thread is
1557 * calling move_account(). When a thread on CPU-A starts moving pages under
1558 * a memcg, other threads should check memcg->moving_account under
1559 * rcu_read_lock(), like this:
1560 *
1561 * CPU-A CPU-B
1562 * rcu_read_lock()
1563 * memcg->moving_account+1 if (memcg->mocing_account)
1564 * take heavy locks.
1565 * synchronize_rcu() update something.
1566 * rcu_read_unlock()
1567 * start move here.
1568 */
4331f7d3
KH
1569
1570/* for quick checking without looking up memcg */
1571atomic_t memcg_moving __read_mostly;
1572
c0ff4b85 1573static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1574{
4331f7d3 1575 atomic_inc(&memcg_moving);
619d094b 1576 atomic_inc(&memcg->moving_account);
32047e2a
KH
1577 synchronize_rcu();
1578}
1579
c0ff4b85 1580static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1581{
619d094b
KH
1582 /*
1583 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1584 * We check NULL in callee rather than caller.
1585 */
4331f7d3
KH
1586 if (memcg) {
1587 atomic_dec(&memcg_moving);
619d094b 1588 atomic_dec(&memcg->moving_account);
4331f7d3 1589 }
32047e2a 1590}
619d094b 1591
32047e2a
KH
1592/*
1593 * 2 routines for checking "mem" is under move_account() or not.
1594 *
13fd1dd9
AM
1595 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1596 * is used for avoiding races in accounting. If true,
32047e2a
KH
1597 * pc->mem_cgroup may be overwritten.
1598 *
1599 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1600 * under hierarchy of moving cgroups. This is for
1601 * waiting at hith-memory prressure caused by "move".
1602 */
1603
13fd1dd9 1604static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1605{
1606 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1607 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1608}
4b534334 1609
c0ff4b85 1610static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1611{
2bd9bb20
KH
1612 struct mem_cgroup *from;
1613 struct mem_cgroup *to;
4b534334 1614 bool ret = false;
2bd9bb20
KH
1615 /*
1616 * Unlike task_move routines, we access mc.to, mc.from not under
1617 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1618 */
1619 spin_lock(&mc.lock);
1620 from = mc.from;
1621 to = mc.to;
1622 if (!from)
1623 goto unlock;
3e92041d 1624
c0ff4b85
R
1625 ret = mem_cgroup_same_or_subtree(memcg, from)
1626 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1627unlock:
1628 spin_unlock(&mc.lock);
4b534334
KH
1629 return ret;
1630}
1631
c0ff4b85 1632static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1633{
1634 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1635 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1636 DEFINE_WAIT(wait);
1637 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1638 /* moving charge context might have finished. */
1639 if (mc.moving_task)
1640 schedule();
1641 finish_wait(&mc.waitq, &wait);
1642 return true;
1643 }
1644 }
1645 return false;
1646}
1647
312734c0
KH
1648/*
1649 * Take this lock when
1650 * - a code tries to modify page's memcg while it's USED.
1651 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1652 * see mem_cgroup_stolen(), too.
312734c0
KH
1653 */
1654static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1655 unsigned long *flags)
1656{
1657 spin_lock_irqsave(&memcg->move_lock, *flags);
1658}
1659
1660static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1661 unsigned long *flags)
1662{
1663 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1664}
1665
58cf188e 1666#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1667/**
58cf188e 1668 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1669 * @memcg: The memory cgroup that went over limit
1670 * @p: Task that is going to be killed
1671 *
1672 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1673 * enabled
1674 */
1675void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1676{
1677 struct cgroup *task_cgrp;
1678 struct cgroup *mem_cgrp;
1679 /*
1680 * Need a buffer in BSS, can't rely on allocations. The code relies
1681 * on the assumption that OOM is serialized for memory controller.
1682 * If this assumption is broken, revisit this code.
1683 */
1684 static char memcg_name[PATH_MAX];
1685 int ret;
58cf188e
SZ
1686 struct mem_cgroup *iter;
1687 unsigned int i;
e222432b 1688
58cf188e 1689 if (!p)
e222432b
BS
1690 return;
1691
e222432b
BS
1692 rcu_read_lock();
1693
1694 mem_cgrp = memcg->css.cgroup;
1695 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1696
1697 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1698 if (ret < 0) {
1699 /*
1700 * Unfortunately, we are unable to convert to a useful name
1701 * But we'll still print out the usage information
1702 */
1703 rcu_read_unlock();
1704 goto done;
1705 }
1706 rcu_read_unlock();
1707
d045197f 1708 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1709
1710 rcu_read_lock();
1711 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1712 if (ret < 0) {
1713 rcu_read_unlock();
1714 goto done;
1715 }
1716 rcu_read_unlock();
1717
1718 /*
1719 * Continues from above, so we don't need an KERN_ level
1720 */
d045197f 1721 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1722done:
1723
d045197f 1724 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1725 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1726 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1727 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1728 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1729 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1730 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1731 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1732 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1733 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1734 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1735 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1736
1737 for_each_mem_cgroup_tree(iter, memcg) {
1738 pr_info("Memory cgroup stats");
1739
1740 rcu_read_lock();
1741 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1742 if (!ret)
1743 pr_cont(" for %s", memcg_name);
1744 rcu_read_unlock();
1745 pr_cont(":");
1746
1747 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1748 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1749 continue;
1750 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1751 K(mem_cgroup_read_stat(iter, i)));
1752 }
1753
1754 for (i = 0; i < NR_LRU_LISTS; i++)
1755 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1756 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1757
1758 pr_cont("\n");
1759 }
e222432b
BS
1760}
1761
81d39c20
KH
1762/*
1763 * This function returns the number of memcg under hierarchy tree. Returns
1764 * 1(self count) if no children.
1765 */
c0ff4b85 1766static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1767{
1768 int num = 0;
7d74b06f
KH
1769 struct mem_cgroup *iter;
1770
c0ff4b85 1771 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1772 num++;
81d39c20
KH
1773 return num;
1774}
1775
a63d83f4
DR
1776/*
1777 * Return the memory (and swap, if configured) limit for a memcg.
1778 */
9cbb78bb 1779static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1780{
1781 u64 limit;
a63d83f4 1782
f3e8eb70 1783 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1784
a63d83f4 1785 /*
9a5a8f19 1786 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1787 */
9a5a8f19
MH
1788 if (mem_cgroup_swappiness(memcg)) {
1789 u64 memsw;
1790
1791 limit += total_swap_pages << PAGE_SHIFT;
1792 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1793
1794 /*
1795 * If memsw is finite and limits the amount of swap space
1796 * available to this memcg, return that limit.
1797 */
1798 limit = min(limit, memsw);
1799 }
1800
1801 return limit;
a63d83f4
DR
1802}
1803
19965460
DR
1804static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1805 int order)
9cbb78bb
DR
1806{
1807 struct mem_cgroup *iter;
1808 unsigned long chosen_points = 0;
1809 unsigned long totalpages;
1810 unsigned int points = 0;
1811 struct task_struct *chosen = NULL;
1812
876aafbf 1813 /*
465adcf1
DR
1814 * If current has a pending SIGKILL or is exiting, then automatically
1815 * select it. The goal is to allow it to allocate so that it may
1816 * quickly exit and free its memory.
876aafbf 1817 */
465adcf1 1818 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1819 set_thread_flag(TIF_MEMDIE);
1820 return;
1821 }
1822
1823 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1824 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1825 for_each_mem_cgroup_tree(iter, memcg) {
1826 struct cgroup *cgroup = iter->css.cgroup;
1827 struct cgroup_iter it;
1828 struct task_struct *task;
1829
1830 cgroup_iter_start(cgroup, &it);
1831 while ((task = cgroup_iter_next(cgroup, &it))) {
1832 switch (oom_scan_process_thread(task, totalpages, NULL,
1833 false)) {
1834 case OOM_SCAN_SELECT:
1835 if (chosen)
1836 put_task_struct(chosen);
1837 chosen = task;
1838 chosen_points = ULONG_MAX;
1839 get_task_struct(chosen);
1840 /* fall through */
1841 case OOM_SCAN_CONTINUE:
1842 continue;
1843 case OOM_SCAN_ABORT:
1844 cgroup_iter_end(cgroup, &it);
1845 mem_cgroup_iter_break(memcg, iter);
1846 if (chosen)
1847 put_task_struct(chosen);
1848 return;
1849 case OOM_SCAN_OK:
1850 break;
1851 };
1852 points = oom_badness(task, memcg, NULL, totalpages);
1853 if (points > chosen_points) {
1854 if (chosen)
1855 put_task_struct(chosen);
1856 chosen = task;
1857 chosen_points = points;
1858 get_task_struct(chosen);
1859 }
1860 }
1861 cgroup_iter_end(cgroup, &it);
1862 }
1863
1864 if (!chosen)
1865 return;
1866 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1867 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1868 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1869}
1870
5660048c
JW
1871static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1872 gfp_t gfp_mask,
1873 unsigned long flags)
1874{
1875 unsigned long total = 0;
1876 bool noswap = false;
1877 int loop;
1878
1879 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1880 noswap = true;
1881 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1882 noswap = true;
1883
1884 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1885 if (loop)
1886 drain_all_stock_async(memcg);
1887 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1888 /*
1889 * Allow limit shrinkers, which are triggered directly
1890 * by userspace, to catch signals and stop reclaim
1891 * after minimal progress, regardless of the margin.
1892 */
1893 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1894 break;
1895 if (mem_cgroup_margin(memcg))
1896 break;
1897 /*
1898 * If nothing was reclaimed after two attempts, there
1899 * may be no reclaimable pages in this hierarchy.
1900 */
1901 if (loop && !total)
1902 break;
1903 }
1904 return total;
1905}
1906
4d0c066d
KH
1907/**
1908 * test_mem_cgroup_node_reclaimable
dad7557e 1909 * @memcg: the target memcg
4d0c066d
KH
1910 * @nid: the node ID to be checked.
1911 * @noswap : specify true here if the user wants flle only information.
1912 *
1913 * This function returns whether the specified memcg contains any
1914 * reclaimable pages on a node. Returns true if there are any reclaimable
1915 * pages in the node.
1916 */
c0ff4b85 1917static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1918 int nid, bool noswap)
1919{
c0ff4b85 1920 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1921 return true;
1922 if (noswap || !total_swap_pages)
1923 return false;
c0ff4b85 1924 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1925 return true;
1926 return false;
1927
1928}
889976db
YH
1929#if MAX_NUMNODES > 1
1930
1931/*
1932 * Always updating the nodemask is not very good - even if we have an empty
1933 * list or the wrong list here, we can start from some node and traverse all
1934 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1935 *
1936 */
c0ff4b85 1937static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1938{
1939 int nid;
453a9bf3
KH
1940 /*
1941 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1942 * pagein/pageout changes since the last update.
1943 */
c0ff4b85 1944 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1945 return;
c0ff4b85 1946 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1947 return;
1948
889976db 1949 /* make a nodemask where this memcg uses memory from */
31aaea4a 1950 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1951
31aaea4a 1952 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1953
c0ff4b85
R
1954 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1955 node_clear(nid, memcg->scan_nodes);
889976db 1956 }
453a9bf3 1957
c0ff4b85
R
1958 atomic_set(&memcg->numainfo_events, 0);
1959 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1960}
1961
1962/*
1963 * Selecting a node where we start reclaim from. Because what we need is just
1964 * reducing usage counter, start from anywhere is O,K. Considering
1965 * memory reclaim from current node, there are pros. and cons.
1966 *
1967 * Freeing memory from current node means freeing memory from a node which
1968 * we'll use or we've used. So, it may make LRU bad. And if several threads
1969 * hit limits, it will see a contention on a node. But freeing from remote
1970 * node means more costs for memory reclaim because of memory latency.
1971 *
1972 * Now, we use round-robin. Better algorithm is welcomed.
1973 */
c0ff4b85 1974int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1975{
1976 int node;
1977
c0ff4b85
R
1978 mem_cgroup_may_update_nodemask(memcg);
1979 node = memcg->last_scanned_node;
889976db 1980
c0ff4b85 1981 node = next_node(node, memcg->scan_nodes);
889976db 1982 if (node == MAX_NUMNODES)
c0ff4b85 1983 node = first_node(memcg->scan_nodes);
889976db
YH
1984 /*
1985 * We call this when we hit limit, not when pages are added to LRU.
1986 * No LRU may hold pages because all pages are UNEVICTABLE or
1987 * memcg is too small and all pages are not on LRU. In that case,
1988 * we use curret node.
1989 */
1990 if (unlikely(node == MAX_NUMNODES))
1991 node = numa_node_id();
1992
c0ff4b85 1993 memcg->last_scanned_node = node;
889976db
YH
1994 return node;
1995}
1996
4d0c066d
KH
1997/*
1998 * Check all nodes whether it contains reclaimable pages or not.
1999 * For quick scan, we make use of scan_nodes. This will allow us to skip
2000 * unused nodes. But scan_nodes is lazily updated and may not cotain
2001 * enough new information. We need to do double check.
2002 */
6bbda35c 2003static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
2004{
2005 int nid;
2006
2007 /*
2008 * quick check...making use of scan_node.
2009 * We can skip unused nodes.
2010 */
c0ff4b85
R
2011 if (!nodes_empty(memcg->scan_nodes)) {
2012 for (nid = first_node(memcg->scan_nodes);
4d0c066d 2013 nid < MAX_NUMNODES;
c0ff4b85 2014 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 2015
c0ff4b85 2016 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
2017 return true;
2018 }
2019 }
2020 /*
2021 * Check rest of nodes.
2022 */
31aaea4a 2023 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 2024 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 2025 continue;
c0ff4b85 2026 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
2027 return true;
2028 }
2029 return false;
2030}
2031
889976db 2032#else
c0ff4b85 2033int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2034{
2035 return 0;
2036}
4d0c066d 2037
6bbda35c 2038static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 2039{
c0ff4b85 2040 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 2041}
889976db
YH
2042#endif
2043
5660048c
JW
2044static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2045 struct zone *zone,
2046 gfp_t gfp_mask,
2047 unsigned long *total_scanned)
6d61ef40 2048{
9f3a0d09 2049 struct mem_cgroup *victim = NULL;
5660048c 2050 int total = 0;
04046e1a 2051 int loop = 0;
9d11ea9f 2052 unsigned long excess;
185efc0f 2053 unsigned long nr_scanned;
527a5ec9
JW
2054 struct mem_cgroup_reclaim_cookie reclaim = {
2055 .zone = zone,
2056 .priority = 0,
2057 };
9d11ea9f 2058
c0ff4b85 2059 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 2060
4e416953 2061 while (1) {
527a5ec9 2062 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 2063 if (!victim) {
04046e1a 2064 loop++;
4e416953
BS
2065 if (loop >= 2) {
2066 /*
2067 * If we have not been able to reclaim
2068 * anything, it might because there are
2069 * no reclaimable pages under this hierarchy
2070 */
5660048c 2071 if (!total)
4e416953 2072 break;
4e416953 2073 /*
25985edc 2074 * We want to do more targeted reclaim.
4e416953
BS
2075 * excess >> 2 is not to excessive so as to
2076 * reclaim too much, nor too less that we keep
2077 * coming back to reclaim from this cgroup
2078 */
2079 if (total >= (excess >> 2) ||
9f3a0d09 2080 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 2081 break;
4e416953 2082 }
9f3a0d09 2083 continue;
4e416953 2084 }
5660048c 2085 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 2086 continue;
5660048c
JW
2087 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2088 zone, &nr_scanned);
2089 *total_scanned += nr_scanned;
2090 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 2091 break;
6d61ef40 2092 }
9f3a0d09 2093 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 2094 return total;
6d61ef40
BS
2095}
2096
867578cb
KH
2097/*
2098 * Check OOM-Killer is already running under our hierarchy.
2099 * If someone is running, return false.
1af8efe9 2100 * Has to be called with memcg_oom_lock
867578cb 2101 */
c0ff4b85 2102static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 2103{
79dfdacc 2104 struct mem_cgroup *iter, *failed = NULL;
a636b327 2105
9f3a0d09 2106 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2107 if (iter->oom_lock) {
79dfdacc
MH
2108 /*
2109 * this subtree of our hierarchy is already locked
2110 * so we cannot give a lock.
2111 */
79dfdacc 2112 failed = iter;
9f3a0d09
JW
2113 mem_cgroup_iter_break(memcg, iter);
2114 break;
23751be0
JW
2115 } else
2116 iter->oom_lock = true;
7d74b06f 2117 }
867578cb 2118
79dfdacc 2119 if (!failed)
23751be0 2120 return true;
79dfdacc
MH
2121
2122 /*
2123 * OK, we failed to lock the whole subtree so we have to clean up
2124 * what we set up to the failing subtree
2125 */
9f3a0d09 2126 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 2127 if (iter == failed) {
9f3a0d09
JW
2128 mem_cgroup_iter_break(memcg, iter);
2129 break;
79dfdacc
MH
2130 }
2131 iter->oom_lock = false;
2132 }
23751be0 2133 return false;
a636b327 2134}
0b7f569e 2135
79dfdacc 2136/*
1af8efe9 2137 * Has to be called with memcg_oom_lock
79dfdacc 2138 */
c0ff4b85 2139static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2140{
7d74b06f
KH
2141 struct mem_cgroup *iter;
2142
c0ff4b85 2143 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2144 iter->oom_lock = false;
2145 return 0;
2146}
2147
c0ff4b85 2148static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2149{
2150 struct mem_cgroup *iter;
2151
c0ff4b85 2152 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2153 atomic_inc(&iter->under_oom);
2154}
2155
c0ff4b85 2156static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2157{
2158 struct mem_cgroup *iter;
2159
867578cb
KH
2160 /*
2161 * When a new child is created while the hierarchy is under oom,
2162 * mem_cgroup_oom_lock() may not be called. We have to use
2163 * atomic_add_unless() here.
2164 */
c0ff4b85 2165 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2166 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2167}
2168
1af8efe9 2169static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
2170static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2171
dc98df5a 2172struct oom_wait_info {
d79154bb 2173 struct mem_cgroup *memcg;
dc98df5a
KH
2174 wait_queue_t wait;
2175};
2176
2177static int memcg_oom_wake_function(wait_queue_t *wait,
2178 unsigned mode, int sync, void *arg)
2179{
d79154bb
HD
2180 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2181 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2182 struct oom_wait_info *oom_wait_info;
2183
2184 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2185 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2186
dc98df5a 2187 /*
d79154bb 2188 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2189 * Then we can use css_is_ancestor without taking care of RCU.
2190 */
c0ff4b85
R
2191 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2192 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2193 return 0;
dc98df5a
KH
2194 return autoremove_wake_function(wait, mode, sync, arg);
2195}
2196
c0ff4b85 2197static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2198{
c0ff4b85
R
2199 /* for filtering, pass "memcg" as argument. */
2200 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2201}
2202
c0ff4b85 2203static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2204{
c0ff4b85
R
2205 if (memcg && atomic_read(&memcg->under_oom))
2206 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2207}
2208
867578cb
KH
2209/*
2210 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2211 */
6bbda35c
KS
2212static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2213 int order)
0b7f569e 2214{
dc98df5a 2215 struct oom_wait_info owait;
3c11ecf4 2216 bool locked, need_to_kill;
867578cb 2217
d79154bb 2218 owait.memcg = memcg;
dc98df5a
KH
2219 owait.wait.flags = 0;
2220 owait.wait.func = memcg_oom_wake_function;
2221 owait.wait.private = current;
2222 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2223 need_to_kill = true;
c0ff4b85 2224 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2225
c0ff4b85 2226 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2227 spin_lock(&memcg_oom_lock);
c0ff4b85 2228 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2229 /*
2230 * Even if signal_pending(), we can't quit charge() loop without
2231 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2232 * under OOM is always welcomed, use TASK_KILLABLE here.
2233 */
3c11ecf4 2234 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2235 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2236 need_to_kill = false;
2237 if (locked)
c0ff4b85 2238 mem_cgroup_oom_notify(memcg);
1af8efe9 2239 spin_unlock(&memcg_oom_lock);
867578cb 2240
3c11ecf4
KH
2241 if (need_to_kill) {
2242 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2243 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2244 } else {
867578cb 2245 schedule();
dc98df5a 2246 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2247 }
1af8efe9 2248 spin_lock(&memcg_oom_lock);
79dfdacc 2249 if (locked)
c0ff4b85
R
2250 mem_cgroup_oom_unlock(memcg);
2251 memcg_wakeup_oom(memcg);
1af8efe9 2252 spin_unlock(&memcg_oom_lock);
867578cb 2253
c0ff4b85 2254 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2255
867578cb
KH
2256 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2257 return false;
2258 /* Give chance to dying process */
715a5ee8 2259 schedule_timeout_uninterruptible(1);
867578cb 2260 return true;
0b7f569e
KH
2261}
2262
d69b042f
BS
2263/*
2264 * Currently used to update mapped file statistics, but the routine can be
2265 * generalized to update other statistics as well.
32047e2a
KH
2266 *
2267 * Notes: Race condition
2268 *
2269 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2270 * it tends to be costly. But considering some conditions, we doesn't need
2271 * to do so _always_.
2272 *
2273 * Considering "charge", lock_page_cgroup() is not required because all
2274 * file-stat operations happen after a page is attached to radix-tree. There
2275 * are no race with "charge".
2276 *
2277 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2278 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2279 * if there are race with "uncharge". Statistics itself is properly handled
2280 * by flags.
2281 *
2282 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2283 * small, we check mm->moving_account and detect there are possibility of race
2284 * If there is, we take a lock.
d69b042f 2285 */
26174efd 2286
89c06bd5
KH
2287void __mem_cgroup_begin_update_page_stat(struct page *page,
2288 bool *locked, unsigned long *flags)
2289{
2290 struct mem_cgroup *memcg;
2291 struct page_cgroup *pc;
2292
2293 pc = lookup_page_cgroup(page);
2294again:
2295 memcg = pc->mem_cgroup;
2296 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2297 return;
2298 /*
2299 * If this memory cgroup is not under account moving, we don't
da92c47d 2300 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2301 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2302 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2303 */
13fd1dd9 2304 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2305 return;
2306
2307 move_lock_mem_cgroup(memcg, flags);
2308 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2309 move_unlock_mem_cgroup(memcg, flags);
2310 goto again;
2311 }
2312 *locked = true;
2313}
2314
2315void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2316{
2317 struct page_cgroup *pc = lookup_page_cgroup(page);
2318
2319 /*
2320 * It's guaranteed that pc->mem_cgroup never changes while
2321 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2322 * should take move_lock_mem_cgroup().
89c06bd5
KH
2323 */
2324 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2325}
2326
2a7106f2
GT
2327void mem_cgroup_update_page_stat(struct page *page,
2328 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2329{
c0ff4b85 2330 struct mem_cgroup *memcg;
32047e2a 2331 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2332 unsigned long uninitialized_var(flags);
d69b042f 2333
cfa44946 2334 if (mem_cgroup_disabled())
d69b042f 2335 return;
89c06bd5 2336
c0ff4b85
R
2337 memcg = pc->mem_cgroup;
2338 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2339 return;
26174efd 2340
26174efd 2341 switch (idx) {
2a7106f2 2342 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2343 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2344 break;
2345 default:
2346 BUG();
8725d541 2347 }
d69b042f 2348
c0ff4b85 2349 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2350}
26174efd 2351
cdec2e42
KH
2352/*
2353 * size of first charge trial. "32" comes from vmscan.c's magic value.
2354 * TODO: maybe necessary to use big numbers in big irons.
2355 */
7ec99d62 2356#define CHARGE_BATCH 32U
cdec2e42
KH
2357struct memcg_stock_pcp {
2358 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2359 unsigned int nr_pages;
cdec2e42 2360 struct work_struct work;
26fe6168 2361 unsigned long flags;
a0db00fc 2362#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2363};
2364static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2365static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2366
a0956d54
SS
2367/**
2368 * consume_stock: Try to consume stocked charge on this cpu.
2369 * @memcg: memcg to consume from.
2370 * @nr_pages: how many pages to charge.
2371 *
2372 * The charges will only happen if @memcg matches the current cpu's memcg
2373 * stock, and at least @nr_pages are available in that stock. Failure to
2374 * service an allocation will refill the stock.
2375 *
2376 * returns true if successful, false otherwise.
cdec2e42 2377 */
a0956d54 2378static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2379{
2380 struct memcg_stock_pcp *stock;
2381 bool ret = true;
2382
a0956d54
SS
2383 if (nr_pages > CHARGE_BATCH)
2384 return false;
2385
cdec2e42 2386 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2387 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2388 stock->nr_pages -= nr_pages;
cdec2e42
KH
2389 else /* need to call res_counter_charge */
2390 ret = false;
2391 put_cpu_var(memcg_stock);
2392 return ret;
2393}
2394
2395/*
2396 * Returns stocks cached in percpu to res_counter and reset cached information.
2397 */
2398static void drain_stock(struct memcg_stock_pcp *stock)
2399{
2400 struct mem_cgroup *old = stock->cached;
2401
11c9ea4e
JW
2402 if (stock->nr_pages) {
2403 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2404
2405 res_counter_uncharge(&old->res, bytes);
cdec2e42 2406 if (do_swap_account)
11c9ea4e
JW
2407 res_counter_uncharge(&old->memsw, bytes);
2408 stock->nr_pages = 0;
cdec2e42
KH
2409 }
2410 stock->cached = NULL;
cdec2e42
KH
2411}
2412
2413/*
2414 * This must be called under preempt disabled or must be called by
2415 * a thread which is pinned to local cpu.
2416 */
2417static void drain_local_stock(struct work_struct *dummy)
2418{
2419 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2420 drain_stock(stock);
26fe6168 2421 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2422}
2423
e4777496
MH
2424static void __init memcg_stock_init(void)
2425{
2426 int cpu;
2427
2428 for_each_possible_cpu(cpu) {
2429 struct memcg_stock_pcp *stock =
2430 &per_cpu(memcg_stock, cpu);
2431 INIT_WORK(&stock->work, drain_local_stock);
2432 }
2433}
2434
cdec2e42
KH
2435/*
2436 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2437 * This will be consumed by consume_stock() function, later.
cdec2e42 2438 */
c0ff4b85 2439static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2440{
2441 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2442
c0ff4b85 2443 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2444 drain_stock(stock);
c0ff4b85 2445 stock->cached = memcg;
cdec2e42 2446 }
11c9ea4e 2447 stock->nr_pages += nr_pages;
cdec2e42
KH
2448 put_cpu_var(memcg_stock);
2449}
2450
2451/*
c0ff4b85 2452 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2453 * of the hierarchy under it. sync flag says whether we should block
2454 * until the work is done.
cdec2e42 2455 */
c0ff4b85 2456static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2457{
26fe6168 2458 int cpu, curcpu;
d38144b7 2459
cdec2e42 2460 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2461 get_online_cpus();
5af12d0e 2462 curcpu = get_cpu();
cdec2e42
KH
2463 for_each_online_cpu(cpu) {
2464 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2465 struct mem_cgroup *memcg;
26fe6168 2466
c0ff4b85
R
2467 memcg = stock->cached;
2468 if (!memcg || !stock->nr_pages)
26fe6168 2469 continue;
c0ff4b85 2470 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2471 continue;
d1a05b69
MH
2472 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2473 if (cpu == curcpu)
2474 drain_local_stock(&stock->work);
2475 else
2476 schedule_work_on(cpu, &stock->work);
2477 }
cdec2e42 2478 }
5af12d0e 2479 put_cpu();
d38144b7
MH
2480
2481 if (!sync)
2482 goto out;
2483
2484 for_each_online_cpu(cpu) {
2485 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2486 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2487 flush_work(&stock->work);
2488 }
2489out:
cdec2e42 2490 put_online_cpus();
d38144b7
MH
2491}
2492
2493/*
2494 * Tries to drain stocked charges in other cpus. This function is asynchronous
2495 * and just put a work per cpu for draining localy on each cpu. Caller can
2496 * expects some charges will be back to res_counter later but cannot wait for
2497 * it.
2498 */
c0ff4b85 2499static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2500{
9f50fad6
MH
2501 /*
2502 * If someone calls draining, avoid adding more kworker runs.
2503 */
2504 if (!mutex_trylock(&percpu_charge_mutex))
2505 return;
c0ff4b85 2506 drain_all_stock(root_memcg, false);
9f50fad6 2507 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2508}
2509
2510/* This is a synchronous drain interface. */
c0ff4b85 2511static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2512{
2513 /* called when force_empty is called */
9f50fad6 2514 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2515 drain_all_stock(root_memcg, true);
9f50fad6 2516 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2517}
2518
711d3d2c
KH
2519/*
2520 * This function drains percpu counter value from DEAD cpu and
2521 * move it to local cpu. Note that this function can be preempted.
2522 */
c0ff4b85 2523static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2524{
2525 int i;
2526
c0ff4b85 2527 spin_lock(&memcg->pcp_counter_lock);
6104621d 2528 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2529 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2530
c0ff4b85
R
2531 per_cpu(memcg->stat->count[i], cpu) = 0;
2532 memcg->nocpu_base.count[i] += x;
711d3d2c 2533 }
e9f8974f 2534 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2535 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2536
c0ff4b85
R
2537 per_cpu(memcg->stat->events[i], cpu) = 0;
2538 memcg->nocpu_base.events[i] += x;
e9f8974f 2539 }
c0ff4b85 2540 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2541}
2542
2543static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2544 unsigned long action,
2545 void *hcpu)
2546{
2547 int cpu = (unsigned long)hcpu;
2548 struct memcg_stock_pcp *stock;
711d3d2c 2549 struct mem_cgroup *iter;
cdec2e42 2550
619d094b 2551 if (action == CPU_ONLINE)
1489ebad 2552 return NOTIFY_OK;
1489ebad 2553
d833049b 2554 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2555 return NOTIFY_OK;
711d3d2c 2556
9f3a0d09 2557 for_each_mem_cgroup(iter)
711d3d2c
KH
2558 mem_cgroup_drain_pcp_counter(iter, cpu);
2559
cdec2e42
KH
2560 stock = &per_cpu(memcg_stock, cpu);
2561 drain_stock(stock);
2562 return NOTIFY_OK;
2563}
2564
4b534334
KH
2565
2566/* See __mem_cgroup_try_charge() for details */
2567enum {
2568 CHARGE_OK, /* success */
2569 CHARGE_RETRY, /* need to retry but retry is not bad */
2570 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2571 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2572 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2573};
2574
c0ff4b85 2575static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2576 unsigned int nr_pages, unsigned int min_pages,
2577 bool oom_check)
4b534334 2578{
7ec99d62 2579 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2580 struct mem_cgroup *mem_over_limit;
2581 struct res_counter *fail_res;
2582 unsigned long flags = 0;
2583 int ret;
2584
c0ff4b85 2585 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2586
2587 if (likely(!ret)) {
2588 if (!do_swap_account)
2589 return CHARGE_OK;
c0ff4b85 2590 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2591 if (likely(!ret))
2592 return CHARGE_OK;
2593
c0ff4b85 2594 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2595 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2596 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2597 } else
2598 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2599 /*
9221edb7
JW
2600 * Never reclaim on behalf of optional batching, retry with a
2601 * single page instead.
2602 */
4c9c5359 2603 if (nr_pages > min_pages)
4b534334
KH
2604 return CHARGE_RETRY;
2605
2606 if (!(gfp_mask & __GFP_WAIT))
2607 return CHARGE_WOULDBLOCK;
2608
4c9c5359
SS
2609 if (gfp_mask & __GFP_NORETRY)
2610 return CHARGE_NOMEM;
2611
5660048c 2612 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2613 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2614 return CHARGE_RETRY;
4b534334 2615 /*
19942822
JW
2616 * Even though the limit is exceeded at this point, reclaim
2617 * may have been able to free some pages. Retry the charge
2618 * before killing the task.
2619 *
2620 * Only for regular pages, though: huge pages are rather
2621 * unlikely to succeed so close to the limit, and we fall back
2622 * to regular pages anyway in case of failure.
4b534334 2623 */
4c9c5359 2624 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2625 return CHARGE_RETRY;
2626
2627 /*
2628 * At task move, charge accounts can be doubly counted. So, it's
2629 * better to wait until the end of task_move if something is going on.
2630 */
2631 if (mem_cgroup_wait_acct_move(mem_over_limit))
2632 return CHARGE_RETRY;
2633
2634 /* If we don't need to call oom-killer at el, return immediately */
2635 if (!oom_check)
2636 return CHARGE_NOMEM;
2637 /* check OOM */
e845e199 2638 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2639 return CHARGE_OOM_DIE;
2640
2641 return CHARGE_RETRY;
2642}
2643
f817ed48 2644/*
38c5d72f
KH
2645 * __mem_cgroup_try_charge() does
2646 * 1. detect memcg to be charged against from passed *mm and *ptr,
2647 * 2. update res_counter
2648 * 3. call memory reclaim if necessary.
2649 *
2650 * In some special case, if the task is fatal, fatal_signal_pending() or
2651 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2652 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2653 * as possible without any hazards. 2: all pages should have a valid
2654 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2655 * pointer, that is treated as a charge to root_mem_cgroup.
2656 *
2657 * So __mem_cgroup_try_charge() will return
2658 * 0 ... on success, filling *ptr with a valid memcg pointer.
2659 * -ENOMEM ... charge failure because of resource limits.
2660 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2661 *
2662 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2663 * the oom-killer can be invoked.
8a9f3ccd 2664 */
f817ed48 2665static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2666 gfp_t gfp_mask,
7ec99d62 2667 unsigned int nr_pages,
c0ff4b85 2668 struct mem_cgroup **ptr,
7ec99d62 2669 bool oom)
8a9f3ccd 2670{
7ec99d62 2671 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2672 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2673 struct mem_cgroup *memcg = NULL;
4b534334 2674 int ret;
a636b327 2675
867578cb
KH
2676 /*
2677 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2678 * in system level. So, allow to go ahead dying process in addition to
2679 * MEMDIE process.
2680 */
2681 if (unlikely(test_thread_flag(TIF_MEMDIE)
2682 || fatal_signal_pending(current)))
2683 goto bypass;
a636b327 2684
8a9f3ccd 2685 /*
3be91277
HD
2686 * We always charge the cgroup the mm_struct belongs to.
2687 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2688 * thread group leader migrates. It's possible that mm is not
24467cac 2689 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2690 */
c0ff4b85 2691 if (!*ptr && !mm)
38c5d72f 2692 *ptr = root_mem_cgroup;
f75ca962 2693again:
c0ff4b85
R
2694 if (*ptr) { /* css should be a valid one */
2695 memcg = *ptr;
c0ff4b85 2696 if (mem_cgroup_is_root(memcg))
f75ca962 2697 goto done;
a0956d54 2698 if (consume_stock(memcg, nr_pages))
f75ca962 2699 goto done;
c0ff4b85 2700 css_get(&memcg->css);
4b534334 2701 } else {
f75ca962 2702 struct task_struct *p;
54595fe2 2703
f75ca962
KH
2704 rcu_read_lock();
2705 p = rcu_dereference(mm->owner);
f75ca962 2706 /*
ebb76ce1 2707 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2708 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2709 * race with swapoff. Then, we have small risk of mis-accouning.
2710 * But such kind of mis-account by race always happens because
2711 * we don't have cgroup_mutex(). It's overkill and we allo that
2712 * small race, here.
2713 * (*) swapoff at el will charge against mm-struct not against
2714 * task-struct. So, mm->owner can be NULL.
f75ca962 2715 */
c0ff4b85 2716 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2717 if (!memcg)
2718 memcg = root_mem_cgroup;
2719 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2720 rcu_read_unlock();
2721 goto done;
2722 }
a0956d54 2723 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2724 /*
2725 * It seems dagerous to access memcg without css_get().
2726 * But considering how consume_stok works, it's not
2727 * necessary. If consume_stock success, some charges
2728 * from this memcg are cached on this cpu. So, we
2729 * don't need to call css_get()/css_tryget() before
2730 * calling consume_stock().
2731 */
2732 rcu_read_unlock();
2733 goto done;
2734 }
2735 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2736 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2737 rcu_read_unlock();
2738 goto again;
2739 }
2740 rcu_read_unlock();
2741 }
8a9f3ccd 2742
4b534334
KH
2743 do {
2744 bool oom_check;
7a81b88c 2745
4b534334 2746 /* If killed, bypass charge */
f75ca962 2747 if (fatal_signal_pending(current)) {
c0ff4b85 2748 css_put(&memcg->css);
4b534334 2749 goto bypass;
f75ca962 2750 }
6d61ef40 2751
4b534334
KH
2752 oom_check = false;
2753 if (oom && !nr_oom_retries) {
2754 oom_check = true;
2755 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2756 }
66e1707b 2757
4c9c5359
SS
2758 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2759 oom_check);
4b534334
KH
2760 switch (ret) {
2761 case CHARGE_OK:
2762 break;
2763 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2764 batch = nr_pages;
c0ff4b85
R
2765 css_put(&memcg->css);
2766 memcg = NULL;
f75ca962 2767 goto again;
4b534334 2768 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2769 css_put(&memcg->css);
4b534334
KH
2770 goto nomem;
2771 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2772 if (!oom) {
c0ff4b85 2773 css_put(&memcg->css);
867578cb 2774 goto nomem;
f75ca962 2775 }
4b534334
KH
2776 /* If oom, we never return -ENOMEM */
2777 nr_oom_retries--;
2778 break;
2779 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2780 css_put(&memcg->css);
867578cb 2781 goto bypass;
66e1707b 2782 }
4b534334
KH
2783 } while (ret != CHARGE_OK);
2784
7ec99d62 2785 if (batch > nr_pages)
c0ff4b85
R
2786 refill_stock(memcg, batch - nr_pages);
2787 css_put(&memcg->css);
0c3e73e8 2788done:
c0ff4b85 2789 *ptr = memcg;
7a81b88c
KH
2790 return 0;
2791nomem:
c0ff4b85 2792 *ptr = NULL;
7a81b88c 2793 return -ENOMEM;
867578cb 2794bypass:
38c5d72f
KH
2795 *ptr = root_mem_cgroup;
2796 return -EINTR;
7a81b88c 2797}
8a9f3ccd 2798
a3032a2c
DN
2799/*
2800 * Somemtimes we have to undo a charge we got by try_charge().
2801 * This function is for that and do uncharge, put css's refcnt.
2802 * gotten by try_charge().
2803 */
c0ff4b85 2804static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2805 unsigned int nr_pages)
a3032a2c 2806{
c0ff4b85 2807 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2808 unsigned long bytes = nr_pages * PAGE_SIZE;
2809
c0ff4b85 2810 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2811 if (do_swap_account)
c0ff4b85 2812 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2813 }
854ffa8d
DN
2814}
2815
d01dd17f
KH
2816/*
2817 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2818 * This is useful when moving usage to parent cgroup.
2819 */
2820static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2821 unsigned int nr_pages)
2822{
2823 unsigned long bytes = nr_pages * PAGE_SIZE;
2824
2825 if (mem_cgroup_is_root(memcg))
2826 return;
2827
2828 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2829 if (do_swap_account)
2830 res_counter_uncharge_until(&memcg->memsw,
2831 memcg->memsw.parent, bytes);
2832}
2833
a3b2d692
KH
2834/*
2835 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2836 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2837 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2838 * called against removed memcg.)
a3b2d692
KH
2839 */
2840static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2841{
2842 struct cgroup_subsys_state *css;
2843
2844 /* ID 0 is unused ID */
2845 if (!id)
2846 return NULL;
2847 css = css_lookup(&mem_cgroup_subsys, id);
2848 if (!css)
2849 return NULL;
b2145145 2850 return mem_cgroup_from_css(css);
a3b2d692
KH
2851}
2852
e42d9d5d 2853struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2854{
c0ff4b85 2855 struct mem_cgroup *memcg = NULL;
3c776e64 2856 struct page_cgroup *pc;
a3b2d692 2857 unsigned short id;
b5a84319
KH
2858 swp_entry_t ent;
2859
3c776e64
DN
2860 VM_BUG_ON(!PageLocked(page));
2861
3c776e64 2862 pc = lookup_page_cgroup(page);
c0bd3f63 2863 lock_page_cgroup(pc);
a3b2d692 2864 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2865 memcg = pc->mem_cgroup;
2866 if (memcg && !css_tryget(&memcg->css))
2867 memcg = NULL;
e42d9d5d 2868 } else if (PageSwapCache(page)) {
3c776e64 2869 ent.val = page_private(page);
9fb4b7cc 2870 id = lookup_swap_cgroup_id(ent);
a3b2d692 2871 rcu_read_lock();
c0ff4b85
R
2872 memcg = mem_cgroup_lookup(id);
2873 if (memcg && !css_tryget(&memcg->css))
2874 memcg = NULL;
a3b2d692 2875 rcu_read_unlock();
3c776e64 2876 }
c0bd3f63 2877 unlock_page_cgroup(pc);
c0ff4b85 2878 return memcg;
b5a84319
KH
2879}
2880
c0ff4b85 2881static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2882 struct page *page,
7ec99d62 2883 unsigned int nr_pages,
9ce70c02
HD
2884 enum charge_type ctype,
2885 bool lrucare)
7a81b88c 2886{
ce587e65 2887 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2888 struct zone *uninitialized_var(zone);
fa9add64 2889 struct lruvec *lruvec;
9ce70c02 2890 bool was_on_lru = false;
b2402857 2891 bool anon;
9ce70c02 2892
ca3e0214 2893 lock_page_cgroup(pc);
90deb788 2894 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2895 /*
2896 * we don't need page_cgroup_lock about tail pages, becase they are not
2897 * accessed by any other context at this point.
2898 */
9ce70c02
HD
2899
2900 /*
2901 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2902 * may already be on some other mem_cgroup's LRU. Take care of it.
2903 */
2904 if (lrucare) {
2905 zone = page_zone(page);
2906 spin_lock_irq(&zone->lru_lock);
2907 if (PageLRU(page)) {
fa9add64 2908 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2909 ClearPageLRU(page);
fa9add64 2910 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2911 was_on_lru = true;
2912 }
2913 }
2914
c0ff4b85 2915 pc->mem_cgroup = memcg;
261fb61a
KH
2916 /*
2917 * We access a page_cgroup asynchronously without lock_page_cgroup().
2918 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2919 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2920 * before USED bit, we need memory barrier here.
2921 * See mem_cgroup_add_lru_list(), etc.
2922 */
08e552c6 2923 smp_wmb();
b2402857 2924 SetPageCgroupUsed(pc);
3be91277 2925
9ce70c02
HD
2926 if (lrucare) {
2927 if (was_on_lru) {
fa9add64 2928 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2929 VM_BUG_ON(PageLRU(page));
2930 SetPageLRU(page);
fa9add64 2931 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2932 }
2933 spin_unlock_irq(&zone->lru_lock);
2934 }
2935
41326c17 2936 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2937 anon = true;
2938 else
2939 anon = false;
2940
b070e65c 2941 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2942 unlock_page_cgroup(pc);
9ce70c02 2943
430e4863
KH
2944 /*
2945 * "charge_statistics" updated event counter. Then, check it.
2946 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2947 * if they exceeds softlimit.
2948 */
c0ff4b85 2949 memcg_check_events(memcg, page);
7a81b88c 2950}
66e1707b 2951
7cf27982
GC
2952static DEFINE_MUTEX(set_limit_mutex);
2953
7ae1e1d0
GC
2954#ifdef CONFIG_MEMCG_KMEM
2955static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2956{
2957 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2958 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2959}
2960
1f458cbf
GC
2961/*
2962 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2963 * in the memcg_cache_params struct.
2964 */
2965static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2966{
2967 struct kmem_cache *cachep;
2968
2969 VM_BUG_ON(p->is_root_cache);
2970 cachep = p->root_cache;
2971 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2972}
2973
749c5415
GC
2974#ifdef CONFIG_SLABINFO
2975static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2976 struct seq_file *m)
2977{
2978 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2979 struct memcg_cache_params *params;
2980
2981 if (!memcg_can_account_kmem(memcg))
2982 return -EIO;
2983
2984 print_slabinfo_header(m);
2985
2986 mutex_lock(&memcg->slab_caches_mutex);
2987 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2988 cache_show(memcg_params_to_cache(params), m);
2989 mutex_unlock(&memcg->slab_caches_mutex);
2990
2991 return 0;
2992}
2993#endif
2994
7ae1e1d0
GC
2995static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2996{
2997 struct res_counter *fail_res;
2998 struct mem_cgroup *_memcg;
2999 int ret = 0;
3000 bool may_oom;
3001
3002 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3003 if (ret)
3004 return ret;
3005
3006 /*
3007 * Conditions under which we can wait for the oom_killer. Those are
3008 * the same conditions tested by the core page allocator
3009 */
3010 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3011
3012 _memcg = memcg;
3013 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3014 &_memcg, may_oom);
3015
3016 if (ret == -EINTR) {
3017 /*
3018 * __mem_cgroup_try_charge() chosed to bypass to root due to
3019 * OOM kill or fatal signal. Since our only options are to
3020 * either fail the allocation or charge it to this cgroup, do
3021 * it as a temporary condition. But we can't fail. From a
3022 * kmem/slab perspective, the cache has already been selected,
3023 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3024 * our minds.
3025 *
3026 * This condition will only trigger if the task entered
3027 * memcg_charge_kmem in a sane state, but was OOM-killed during
3028 * __mem_cgroup_try_charge() above. Tasks that were already
3029 * dying when the allocation triggers should have been already
3030 * directed to the root cgroup in memcontrol.h
3031 */
3032 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3033 if (do_swap_account)
3034 res_counter_charge_nofail(&memcg->memsw, size,
3035 &fail_res);
3036 ret = 0;
3037 } else if (ret)
3038 res_counter_uncharge(&memcg->kmem, size);
3039
3040 return ret;
3041}
3042
3043static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3044{
7ae1e1d0
GC
3045 res_counter_uncharge(&memcg->res, size);
3046 if (do_swap_account)
3047 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3048
3049 /* Not down to 0 */
3050 if (res_counter_uncharge(&memcg->kmem, size))
3051 return;
3052
3053 if (memcg_kmem_test_and_clear_dead(memcg))
3054 mem_cgroup_put(memcg);
7ae1e1d0
GC
3055}
3056
2633d7a0
GC
3057void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3058{
3059 if (!memcg)
3060 return;
3061
3062 mutex_lock(&memcg->slab_caches_mutex);
3063 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3064 mutex_unlock(&memcg->slab_caches_mutex);
3065}
3066
3067/*
3068 * helper for acessing a memcg's index. It will be used as an index in the
3069 * child cache array in kmem_cache, and also to derive its name. This function
3070 * will return -1 when this is not a kmem-limited memcg.
3071 */
3072int memcg_cache_id(struct mem_cgroup *memcg)
3073{
3074 return memcg ? memcg->kmemcg_id : -1;
3075}
3076
55007d84
GC
3077/*
3078 * This ends up being protected by the set_limit mutex, during normal
3079 * operation, because that is its main call site.
3080 *
3081 * But when we create a new cache, we can call this as well if its parent
3082 * is kmem-limited. That will have to hold set_limit_mutex as well.
3083 */
3084int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3085{
3086 int num, ret;
3087
3088 num = ida_simple_get(&kmem_limited_groups,
3089 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3090 if (num < 0)
3091 return num;
3092 /*
3093 * After this point, kmem_accounted (that we test atomically in
3094 * the beginning of this conditional), is no longer 0. This
3095 * guarantees only one process will set the following boolean
3096 * to true. We don't need test_and_set because we're protected
3097 * by the set_limit_mutex anyway.
3098 */
3099 memcg_kmem_set_activated(memcg);
3100
3101 ret = memcg_update_all_caches(num+1);
3102 if (ret) {
3103 ida_simple_remove(&kmem_limited_groups, num);
3104 memcg_kmem_clear_activated(memcg);
3105 return ret;
3106 }
3107
3108 memcg->kmemcg_id = num;
3109 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3110 mutex_init(&memcg->slab_caches_mutex);
3111 return 0;
3112}
3113
3114static size_t memcg_caches_array_size(int num_groups)
3115{
3116 ssize_t size;
3117 if (num_groups <= 0)
3118 return 0;
3119
3120 size = 2 * num_groups;
3121 if (size < MEMCG_CACHES_MIN_SIZE)
3122 size = MEMCG_CACHES_MIN_SIZE;
3123 else if (size > MEMCG_CACHES_MAX_SIZE)
3124 size = MEMCG_CACHES_MAX_SIZE;
3125
3126 return size;
3127}
3128
3129/*
3130 * We should update the current array size iff all caches updates succeed. This
3131 * can only be done from the slab side. The slab mutex needs to be held when
3132 * calling this.
3133 */
3134void memcg_update_array_size(int num)
3135{
3136 if (num > memcg_limited_groups_array_size)
3137 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3138}
3139
15cf17d2
KK
3140static void kmem_cache_destroy_work_func(struct work_struct *w);
3141
55007d84
GC
3142int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3143{
3144 struct memcg_cache_params *cur_params = s->memcg_params;
3145
3146 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3147
3148 if (num_groups > memcg_limited_groups_array_size) {
3149 int i;
3150 ssize_t size = memcg_caches_array_size(num_groups);
3151
3152 size *= sizeof(void *);
3153 size += sizeof(struct memcg_cache_params);
3154
3155 s->memcg_params = kzalloc(size, GFP_KERNEL);
3156 if (!s->memcg_params) {
3157 s->memcg_params = cur_params;
3158 return -ENOMEM;
3159 }
3160
3161 s->memcg_params->is_root_cache = true;
3162
3163 /*
3164 * There is the chance it will be bigger than
3165 * memcg_limited_groups_array_size, if we failed an allocation
3166 * in a cache, in which case all caches updated before it, will
3167 * have a bigger array.
3168 *
3169 * But if that is the case, the data after
3170 * memcg_limited_groups_array_size is certainly unused
3171 */
3172 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3173 if (!cur_params->memcg_caches[i])
3174 continue;
3175 s->memcg_params->memcg_caches[i] =
3176 cur_params->memcg_caches[i];
3177 }
3178
3179 /*
3180 * Ideally, we would wait until all caches succeed, and only
3181 * then free the old one. But this is not worth the extra
3182 * pointer per-cache we'd have to have for this.
3183 *
3184 * It is not a big deal if some caches are left with a size
3185 * bigger than the others. And all updates will reset this
3186 * anyway.
3187 */
3188 kfree(cur_params);
3189 }
3190 return 0;
3191}
3192
943a451a
GC
3193int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3194 struct kmem_cache *root_cache)
2633d7a0
GC
3195{
3196 size_t size = sizeof(struct memcg_cache_params);
3197
3198 if (!memcg_kmem_enabled())
3199 return 0;
3200
55007d84
GC
3201 if (!memcg)
3202 size += memcg_limited_groups_array_size * sizeof(void *);
3203
2633d7a0
GC
3204 s->memcg_params = kzalloc(size, GFP_KERNEL);
3205 if (!s->memcg_params)
3206 return -ENOMEM;
3207
15cf17d2
KK
3208 INIT_WORK(&s->memcg_params->destroy,
3209 kmem_cache_destroy_work_func);
943a451a 3210 if (memcg) {
2633d7a0 3211 s->memcg_params->memcg = memcg;
943a451a 3212 s->memcg_params->root_cache = root_cache;
4ba902b5
GC
3213 } else
3214 s->memcg_params->is_root_cache = true;
3215
2633d7a0
GC
3216 return 0;
3217}
3218
3219void memcg_release_cache(struct kmem_cache *s)
3220{
d7f25f8a
GC
3221 struct kmem_cache *root;
3222 struct mem_cgroup *memcg;
3223 int id;
3224
3225 /*
3226 * This happens, for instance, when a root cache goes away before we
3227 * add any memcg.
3228 */
3229 if (!s->memcg_params)
3230 return;
3231
3232 if (s->memcg_params->is_root_cache)
3233 goto out;
3234
3235 memcg = s->memcg_params->memcg;
3236 id = memcg_cache_id(memcg);
3237
3238 root = s->memcg_params->root_cache;
3239 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3240
3241 mutex_lock(&memcg->slab_caches_mutex);
3242 list_del(&s->memcg_params->list);
3243 mutex_unlock(&memcg->slab_caches_mutex);
3244
fd0ccaf2 3245 mem_cgroup_put(memcg);
d7f25f8a 3246out:
2633d7a0
GC
3247 kfree(s->memcg_params);
3248}
3249
0e9d92f2
GC
3250/*
3251 * During the creation a new cache, we need to disable our accounting mechanism
3252 * altogether. This is true even if we are not creating, but rather just
3253 * enqueing new caches to be created.
3254 *
3255 * This is because that process will trigger allocations; some visible, like
3256 * explicit kmallocs to auxiliary data structures, name strings and internal
3257 * cache structures; some well concealed, like INIT_WORK() that can allocate
3258 * objects during debug.
3259 *
3260 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3261 * to it. This may not be a bounded recursion: since the first cache creation
3262 * failed to complete (waiting on the allocation), we'll just try to create the
3263 * cache again, failing at the same point.
3264 *
3265 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3266 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3267 * inside the following two functions.
3268 */
3269static inline void memcg_stop_kmem_account(void)
3270{
3271 VM_BUG_ON(!current->mm);
3272 current->memcg_kmem_skip_account++;
3273}
3274
3275static inline void memcg_resume_kmem_account(void)
3276{
3277 VM_BUG_ON(!current->mm);
3278 current->memcg_kmem_skip_account--;
3279}
3280
1f458cbf
GC
3281static void kmem_cache_destroy_work_func(struct work_struct *w)
3282{
3283 struct kmem_cache *cachep;
3284 struct memcg_cache_params *p;
3285
3286 p = container_of(w, struct memcg_cache_params, destroy);
3287
3288 cachep = memcg_params_to_cache(p);
3289
22933152
GC
3290 /*
3291 * If we get down to 0 after shrink, we could delete right away.
3292 * However, memcg_release_pages() already puts us back in the workqueue
3293 * in that case. If we proceed deleting, we'll get a dangling
3294 * reference, and removing the object from the workqueue in that case
3295 * is unnecessary complication. We are not a fast path.
3296 *
3297 * Note that this case is fundamentally different from racing with
3298 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3299 * kmem_cache_shrink, not only we would be reinserting a dead cache
3300 * into the queue, but doing so from inside the worker racing to
3301 * destroy it.
3302 *
3303 * So if we aren't down to zero, we'll just schedule a worker and try
3304 * again
3305 */
3306 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3307 kmem_cache_shrink(cachep);
3308 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3309 return;
3310 } else
1f458cbf
GC
3311 kmem_cache_destroy(cachep);
3312}
3313
3314void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3315{
3316 if (!cachep->memcg_params->dead)
3317 return;
3318
22933152
GC
3319 /*
3320 * There are many ways in which we can get here.
3321 *
3322 * We can get to a memory-pressure situation while the delayed work is
3323 * still pending to run. The vmscan shrinkers can then release all
3324 * cache memory and get us to destruction. If this is the case, we'll
3325 * be executed twice, which is a bug (the second time will execute over
3326 * bogus data). In this case, cancelling the work should be fine.
3327 *
3328 * But we can also get here from the worker itself, if
3329 * kmem_cache_shrink is enough to shake all the remaining objects and
3330 * get the page count to 0. In this case, we'll deadlock if we try to
3331 * cancel the work (the worker runs with an internal lock held, which
3332 * is the same lock we would hold for cancel_work_sync().)
3333 *
3334 * Since we can't possibly know who got us here, just refrain from
3335 * running if there is already work pending
3336 */
3337 if (work_pending(&cachep->memcg_params->destroy))
3338 return;
1f458cbf
GC
3339 /*
3340 * We have to defer the actual destroying to a workqueue, because
3341 * we might currently be in a context that cannot sleep.
3342 */
3343 schedule_work(&cachep->memcg_params->destroy);
3344}
3345
d9c10ddd
MH
3346/*
3347 * This lock protects updaters, not readers. We want readers to be as fast as
3348 * they can, and they will either see NULL or a valid cache value. Our model
3349 * allow them to see NULL, in which case the root memcg will be selected.
3350 *
3351 * We need this lock because multiple allocations to the same cache from a non
3352 * will span more than one worker. Only one of them can create the cache.
3353 */
3354static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3355
d9c10ddd
MH
3356/*
3357 * Called with memcg_cache_mutex held
3358 */
d7f25f8a
GC
3359static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3360 struct kmem_cache *s)
3361{
d7f25f8a 3362 struct kmem_cache *new;
d9c10ddd 3363 static char *tmp_name = NULL;
d7f25f8a 3364
d9c10ddd
MH
3365 lockdep_assert_held(&memcg_cache_mutex);
3366
3367 /*
3368 * kmem_cache_create_memcg duplicates the given name and
3369 * cgroup_name for this name requires RCU context.
3370 * This static temporary buffer is used to prevent from
3371 * pointless shortliving allocation.
3372 */
3373 if (!tmp_name) {
3374 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3375 if (!tmp_name)
3376 return NULL;
3377 }
3378
3379 rcu_read_lock();
3380 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3381 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3382 rcu_read_unlock();
d7f25f8a 3383
d9c10ddd 3384 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3385 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3386
d79923fa
GC
3387 if (new)
3388 new->allocflags |= __GFP_KMEMCG;
3389
d7f25f8a
GC
3390 return new;
3391}
3392
d7f25f8a
GC
3393static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3394 struct kmem_cache *cachep)
3395{
3396 struct kmem_cache *new_cachep;
3397 int idx;
3398
3399 BUG_ON(!memcg_can_account_kmem(memcg));
3400
3401 idx = memcg_cache_id(memcg);
3402
3403 mutex_lock(&memcg_cache_mutex);
3404 new_cachep = cachep->memcg_params->memcg_caches[idx];
3405 if (new_cachep)
3406 goto out;
3407
3408 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3409 if (new_cachep == NULL) {
3410 new_cachep = cachep;
3411 goto out;
3412 }
3413
3414 mem_cgroup_get(memcg);
1f458cbf 3415 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3416
3417 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3418 /*
3419 * the readers won't lock, make sure everybody sees the updated value,
3420 * so they won't put stuff in the queue again for no reason
3421 */
3422 wmb();
3423out:
3424 mutex_unlock(&memcg_cache_mutex);
3425 return new_cachep;
3426}
3427
7cf27982
GC
3428void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3429{
3430 struct kmem_cache *c;
3431 int i;
3432
3433 if (!s->memcg_params)
3434 return;
3435 if (!s->memcg_params->is_root_cache)
3436 return;
3437
3438 /*
3439 * If the cache is being destroyed, we trust that there is no one else
3440 * requesting objects from it. Even if there are, the sanity checks in
3441 * kmem_cache_destroy should caught this ill-case.
3442 *
3443 * Still, we don't want anyone else freeing memcg_caches under our
3444 * noses, which can happen if a new memcg comes to life. As usual,
3445 * we'll take the set_limit_mutex to protect ourselves against this.
3446 */
3447 mutex_lock(&set_limit_mutex);
3448 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3449 c = s->memcg_params->memcg_caches[i];
3450 if (!c)
3451 continue;
3452
3453 /*
3454 * We will now manually delete the caches, so to avoid races
3455 * we need to cancel all pending destruction workers and
3456 * proceed with destruction ourselves.
3457 *
3458 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3459 * and that could spawn the workers again: it is likely that
3460 * the cache still have active pages until this very moment.
3461 * This would lead us back to mem_cgroup_destroy_cache.
3462 *
3463 * But that will not execute at all if the "dead" flag is not
3464 * set, so flip it down to guarantee we are in control.
3465 */
3466 c->memcg_params->dead = false;
22933152 3467 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3468 kmem_cache_destroy(c);
3469 }
3470 mutex_unlock(&set_limit_mutex);
3471}
3472
d7f25f8a
GC
3473struct create_work {
3474 struct mem_cgroup *memcg;
3475 struct kmem_cache *cachep;
3476 struct work_struct work;
3477};
3478
1f458cbf
GC
3479static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3480{
3481 struct kmem_cache *cachep;
3482 struct memcg_cache_params *params;
3483
3484 if (!memcg_kmem_is_active(memcg))
3485 return;
3486
3487 mutex_lock(&memcg->slab_caches_mutex);
3488 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3489 cachep = memcg_params_to_cache(params);
3490 cachep->memcg_params->dead = true;
1f458cbf
GC
3491 schedule_work(&cachep->memcg_params->destroy);
3492 }
3493 mutex_unlock(&memcg->slab_caches_mutex);
3494}
3495
d7f25f8a
GC
3496static void memcg_create_cache_work_func(struct work_struct *w)
3497{
3498 struct create_work *cw;
3499
3500 cw = container_of(w, struct create_work, work);
3501 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3502 /* Drop the reference gotten when we enqueued. */
3503 css_put(&cw->memcg->css);
3504 kfree(cw);
3505}
3506
3507/*
3508 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3509 */
0e9d92f2
GC
3510static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3511 struct kmem_cache *cachep)
d7f25f8a
GC
3512{
3513 struct create_work *cw;
3514
3515 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3516 if (cw == NULL) {
3517 css_put(&memcg->css);
d7f25f8a
GC
3518 return;
3519 }
3520
3521 cw->memcg = memcg;
3522 cw->cachep = cachep;
3523
3524 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3525 schedule_work(&cw->work);
3526}
3527
0e9d92f2
GC
3528static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3529 struct kmem_cache *cachep)
3530{
3531 /*
3532 * We need to stop accounting when we kmalloc, because if the
3533 * corresponding kmalloc cache is not yet created, the first allocation
3534 * in __memcg_create_cache_enqueue will recurse.
3535 *
3536 * However, it is better to enclose the whole function. Depending on
3537 * the debugging options enabled, INIT_WORK(), for instance, can
3538 * trigger an allocation. This too, will make us recurse. Because at
3539 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3540 * the safest choice is to do it like this, wrapping the whole function.
3541 */
3542 memcg_stop_kmem_account();
3543 __memcg_create_cache_enqueue(memcg, cachep);
3544 memcg_resume_kmem_account();
3545}
d7f25f8a
GC
3546/*
3547 * Return the kmem_cache we're supposed to use for a slab allocation.
3548 * We try to use the current memcg's version of the cache.
3549 *
3550 * If the cache does not exist yet, if we are the first user of it,
3551 * we either create it immediately, if possible, or create it asynchronously
3552 * in a workqueue.
3553 * In the latter case, we will let the current allocation go through with
3554 * the original cache.
3555 *
3556 * Can't be called in interrupt context or from kernel threads.
3557 * This function needs to be called with rcu_read_lock() held.
3558 */
3559struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3560 gfp_t gfp)
3561{
3562 struct mem_cgroup *memcg;
3563 int idx;
3564
3565 VM_BUG_ON(!cachep->memcg_params);
3566 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3567
0e9d92f2
GC
3568 if (!current->mm || current->memcg_kmem_skip_account)
3569 return cachep;
3570
d7f25f8a
GC
3571 rcu_read_lock();
3572 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3573
3574 if (!memcg_can_account_kmem(memcg))
ca0dde97 3575 goto out;
d7f25f8a
GC
3576
3577 idx = memcg_cache_id(memcg);
3578
3579 /*
3580 * barrier to mare sure we're always seeing the up to date value. The
3581 * code updating memcg_caches will issue a write barrier to match this.
3582 */
3583 read_barrier_depends();
ca0dde97
LZ
3584 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3585 cachep = cachep->memcg_params->memcg_caches[idx];
3586 goto out;
d7f25f8a
GC
3587 }
3588
ca0dde97
LZ
3589 /* The corresponding put will be done in the workqueue. */
3590 if (!css_tryget(&memcg->css))
3591 goto out;
3592 rcu_read_unlock();
3593
3594 /*
3595 * If we are in a safe context (can wait, and not in interrupt
3596 * context), we could be be predictable and return right away.
3597 * This would guarantee that the allocation being performed
3598 * already belongs in the new cache.
3599 *
3600 * However, there are some clashes that can arrive from locking.
3601 * For instance, because we acquire the slab_mutex while doing
3602 * kmem_cache_dup, this means no further allocation could happen
3603 * with the slab_mutex held.
3604 *
3605 * Also, because cache creation issue get_online_cpus(), this
3606 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3607 * that ends up reversed during cpu hotplug. (cpuset allocates
3608 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3609 * better to defer everything.
3610 */
3611 memcg_create_cache_enqueue(memcg, cachep);
3612 return cachep;
3613out:
3614 rcu_read_unlock();
3615 return cachep;
d7f25f8a
GC
3616}
3617EXPORT_SYMBOL(__memcg_kmem_get_cache);
3618
7ae1e1d0
GC
3619/*
3620 * We need to verify if the allocation against current->mm->owner's memcg is
3621 * possible for the given order. But the page is not allocated yet, so we'll
3622 * need a further commit step to do the final arrangements.
3623 *
3624 * It is possible for the task to switch cgroups in this mean time, so at
3625 * commit time, we can't rely on task conversion any longer. We'll then use
3626 * the handle argument to return to the caller which cgroup we should commit
3627 * against. We could also return the memcg directly and avoid the pointer
3628 * passing, but a boolean return value gives better semantics considering
3629 * the compiled-out case as well.
3630 *
3631 * Returning true means the allocation is possible.
3632 */
3633bool
3634__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3635{
3636 struct mem_cgroup *memcg;
3637 int ret;
3638
3639 *_memcg = NULL;
3640 memcg = try_get_mem_cgroup_from_mm(current->mm);
3641
3642 /*
3643 * very rare case described in mem_cgroup_from_task. Unfortunately there
3644 * isn't much we can do without complicating this too much, and it would
3645 * be gfp-dependent anyway. Just let it go
3646 */
3647 if (unlikely(!memcg))
3648 return true;
3649
3650 if (!memcg_can_account_kmem(memcg)) {
3651 css_put(&memcg->css);
3652 return true;
3653 }
3654
7ae1e1d0
GC
3655 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3656 if (!ret)
3657 *_memcg = memcg;
7ae1e1d0
GC
3658
3659 css_put(&memcg->css);
3660 return (ret == 0);
3661}
3662
3663void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3664 int order)
3665{
3666 struct page_cgroup *pc;
3667
3668 VM_BUG_ON(mem_cgroup_is_root(memcg));
3669
3670 /* The page allocation failed. Revert */
3671 if (!page) {
3672 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3673 return;
3674 }
3675
3676 pc = lookup_page_cgroup(page);
3677 lock_page_cgroup(pc);
3678 pc->mem_cgroup = memcg;
3679 SetPageCgroupUsed(pc);
3680 unlock_page_cgroup(pc);
3681}
3682
3683void __memcg_kmem_uncharge_pages(struct page *page, int order)
3684{
3685 struct mem_cgroup *memcg = NULL;
3686 struct page_cgroup *pc;
3687
3688
3689 pc = lookup_page_cgroup(page);
3690 /*
3691 * Fast unlocked return. Theoretically might have changed, have to
3692 * check again after locking.
3693 */
3694 if (!PageCgroupUsed(pc))
3695 return;
3696
3697 lock_page_cgroup(pc);
3698 if (PageCgroupUsed(pc)) {
3699 memcg = pc->mem_cgroup;
3700 ClearPageCgroupUsed(pc);
3701 }
3702 unlock_page_cgroup(pc);
3703
3704 /*
3705 * We trust that only if there is a memcg associated with the page, it
3706 * is a valid allocation
3707 */
3708 if (!memcg)
3709 return;
3710
3711 VM_BUG_ON(mem_cgroup_is_root(memcg));
3712 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3713}
1f458cbf
GC
3714#else
3715static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3716{
3717}
7ae1e1d0
GC
3718#endif /* CONFIG_MEMCG_KMEM */
3719
ca3e0214
KH
3720#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3721
a0db00fc 3722#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3723/*
3724 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3725 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3726 * charge/uncharge will be never happen and move_account() is done under
3727 * compound_lock(), so we don't have to take care of races.
ca3e0214 3728 */
e94c8a9c 3729void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3730{
3731 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3732 struct page_cgroup *pc;
b070e65c 3733 struct mem_cgroup *memcg;
e94c8a9c 3734 int i;
ca3e0214 3735
3d37c4a9
KH
3736 if (mem_cgroup_disabled())
3737 return;
b070e65c
DR
3738
3739 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3740 for (i = 1; i < HPAGE_PMD_NR; i++) {
3741 pc = head_pc + i;
b070e65c 3742 pc->mem_cgroup = memcg;
e94c8a9c 3743 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3744 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3745 }
b070e65c
DR
3746 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3747 HPAGE_PMD_NR);
ca3e0214 3748}
12d27107 3749#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3750
f817ed48 3751/**
de3638d9 3752 * mem_cgroup_move_account - move account of the page
5564e88b 3753 * @page: the page
7ec99d62 3754 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3755 * @pc: page_cgroup of the page.
3756 * @from: mem_cgroup which the page is moved from.
3757 * @to: mem_cgroup which the page is moved to. @from != @to.
3758 *
3759 * The caller must confirm following.
08e552c6 3760 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3761 * - compound_lock is held when nr_pages > 1
f817ed48 3762 *
2f3479b1
KH
3763 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3764 * from old cgroup.
f817ed48 3765 */
7ec99d62
JW
3766static int mem_cgroup_move_account(struct page *page,
3767 unsigned int nr_pages,
3768 struct page_cgroup *pc,
3769 struct mem_cgroup *from,
2f3479b1 3770 struct mem_cgroup *to)
f817ed48 3771{
de3638d9
JW
3772 unsigned long flags;
3773 int ret;
b2402857 3774 bool anon = PageAnon(page);
987eba66 3775
f817ed48 3776 VM_BUG_ON(from == to);
5564e88b 3777 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3778 /*
3779 * The page is isolated from LRU. So, collapse function
3780 * will not handle this page. But page splitting can happen.
3781 * Do this check under compound_page_lock(). The caller should
3782 * hold it.
3783 */
3784 ret = -EBUSY;
7ec99d62 3785 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3786 goto out;
3787
3788 lock_page_cgroup(pc);
3789
3790 ret = -EINVAL;
3791 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3792 goto unlock;
3793
312734c0 3794 move_lock_mem_cgroup(from, &flags);
f817ed48 3795
2ff76f11 3796 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3797 /* Update mapped_file data for mem_cgroup */
3798 preempt_disable();
3799 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3800 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3801 preempt_enable();
d69b042f 3802 }
b070e65c 3803 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3804
854ffa8d 3805 /* caller should have done css_get */
08e552c6 3806 pc->mem_cgroup = to;
b070e65c 3807 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3808 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3809 ret = 0;
3810unlock:
57f9fd7d 3811 unlock_page_cgroup(pc);
d2265e6f
KH
3812 /*
3813 * check events
3814 */
5564e88b
JW
3815 memcg_check_events(to, page);
3816 memcg_check_events(from, page);
de3638d9 3817out:
f817ed48
KH
3818 return ret;
3819}
3820
2ef37d3f
MH
3821/**
3822 * mem_cgroup_move_parent - moves page to the parent group
3823 * @page: the page to move
3824 * @pc: page_cgroup of the page
3825 * @child: page's cgroup
3826 *
3827 * move charges to its parent or the root cgroup if the group has no
3828 * parent (aka use_hierarchy==0).
3829 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3830 * mem_cgroup_move_account fails) the failure is always temporary and
3831 * it signals a race with a page removal/uncharge or migration. In the
3832 * first case the page is on the way out and it will vanish from the LRU
3833 * on the next attempt and the call should be retried later.
3834 * Isolation from the LRU fails only if page has been isolated from
3835 * the LRU since we looked at it and that usually means either global
3836 * reclaim or migration going on. The page will either get back to the
3837 * LRU or vanish.
3838 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3839 * (!PageCgroupUsed) or moved to a different group. The page will
3840 * disappear in the next attempt.
f817ed48 3841 */
5564e88b
JW
3842static int mem_cgroup_move_parent(struct page *page,
3843 struct page_cgroup *pc,
6068bf01 3844 struct mem_cgroup *child)
f817ed48 3845{
f817ed48 3846 struct mem_cgroup *parent;
7ec99d62 3847 unsigned int nr_pages;
4be4489f 3848 unsigned long uninitialized_var(flags);
f817ed48
KH
3849 int ret;
3850
d8423011 3851 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3852
57f9fd7d
DN
3853 ret = -EBUSY;
3854 if (!get_page_unless_zero(page))
3855 goto out;
3856 if (isolate_lru_page(page))
3857 goto put;
52dbb905 3858
7ec99d62 3859 nr_pages = hpage_nr_pages(page);
08e552c6 3860
cc926f78
KH
3861 parent = parent_mem_cgroup(child);
3862 /*
3863 * If no parent, move charges to root cgroup.
3864 */
3865 if (!parent)
3866 parent = root_mem_cgroup;
f817ed48 3867
2ef37d3f
MH
3868 if (nr_pages > 1) {
3869 VM_BUG_ON(!PageTransHuge(page));
987eba66 3870 flags = compound_lock_irqsave(page);
2ef37d3f 3871 }
987eba66 3872
cc926f78 3873 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3874 pc, child, parent);
cc926f78
KH
3875 if (!ret)
3876 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3877
7ec99d62 3878 if (nr_pages > 1)
987eba66 3879 compound_unlock_irqrestore(page, flags);
08e552c6 3880 putback_lru_page(page);
57f9fd7d 3881put:
40d58138 3882 put_page(page);
57f9fd7d 3883out:
f817ed48
KH
3884 return ret;
3885}
3886
7a81b88c
KH
3887/*
3888 * Charge the memory controller for page usage.
3889 * Return
3890 * 0 if the charge was successful
3891 * < 0 if the cgroup is over its limit
3892 */
3893static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3894 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3895{
c0ff4b85 3896 struct mem_cgroup *memcg = NULL;
7ec99d62 3897 unsigned int nr_pages = 1;
8493ae43 3898 bool oom = true;
7a81b88c 3899 int ret;
ec168510 3900
37c2ac78 3901 if (PageTransHuge(page)) {
7ec99d62 3902 nr_pages <<= compound_order(page);
37c2ac78 3903 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3904 /*
3905 * Never OOM-kill a process for a huge page. The
3906 * fault handler will fall back to regular pages.
3907 */
3908 oom = false;
37c2ac78 3909 }
7a81b88c 3910
c0ff4b85 3911 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3912 if (ret == -ENOMEM)
7a81b88c 3913 return ret;
ce587e65 3914 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3915 return 0;
8a9f3ccd
BS
3916}
3917
7a81b88c
KH
3918int mem_cgroup_newpage_charge(struct page *page,
3919 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3920{
f8d66542 3921 if (mem_cgroup_disabled())
cede86ac 3922 return 0;
7a0524cf
JW
3923 VM_BUG_ON(page_mapped(page));
3924 VM_BUG_ON(page->mapping && !PageAnon(page));
3925 VM_BUG_ON(!mm);
217bc319 3926 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3927 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3928}
3929
54595fe2
KH
3930/*
3931 * While swap-in, try_charge -> commit or cancel, the page is locked.
3932 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3933 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3934 * "commit()" or removed by "cancel()"
3935 */
0435a2fd
JW
3936static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3937 struct page *page,
3938 gfp_t mask,
3939 struct mem_cgroup **memcgp)
8c7c6e34 3940{
c0ff4b85 3941 struct mem_cgroup *memcg;
90deb788 3942 struct page_cgroup *pc;
54595fe2 3943 int ret;
8c7c6e34 3944
90deb788
JW
3945 pc = lookup_page_cgroup(page);
3946 /*
3947 * Every swap fault against a single page tries to charge the
3948 * page, bail as early as possible. shmem_unuse() encounters
3949 * already charged pages, too. The USED bit is protected by
3950 * the page lock, which serializes swap cache removal, which
3951 * in turn serializes uncharging.
3952 */
3953 if (PageCgroupUsed(pc))
3954 return 0;
8c7c6e34
KH
3955 if (!do_swap_account)
3956 goto charge_cur_mm;
c0ff4b85
R
3957 memcg = try_get_mem_cgroup_from_page(page);
3958 if (!memcg)
54595fe2 3959 goto charge_cur_mm;
72835c86
JW
3960 *memcgp = memcg;
3961 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3962 css_put(&memcg->css);
38c5d72f
KH
3963 if (ret == -EINTR)
3964 ret = 0;
54595fe2 3965 return ret;
8c7c6e34 3966charge_cur_mm:
38c5d72f
KH
3967 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3968 if (ret == -EINTR)
3969 ret = 0;
3970 return ret;
8c7c6e34
KH
3971}
3972
0435a2fd
JW
3973int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3974 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3975{
3976 *memcgp = NULL;
3977 if (mem_cgroup_disabled())
3978 return 0;
bdf4f4d2
JW
3979 /*
3980 * A racing thread's fault, or swapoff, may have already
3981 * updated the pte, and even removed page from swap cache: in
3982 * those cases unuse_pte()'s pte_same() test will fail; but
3983 * there's also a KSM case which does need to charge the page.
3984 */
3985 if (!PageSwapCache(page)) {
3986 int ret;
3987
3988 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3989 if (ret == -EINTR)
3990 ret = 0;
3991 return ret;
3992 }
0435a2fd
JW
3993 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3994}
3995
827a03d2
JW
3996void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3997{
3998 if (mem_cgroup_disabled())
3999 return;
4000 if (!memcg)
4001 return;
4002 __mem_cgroup_cancel_charge(memcg, 1);
4003}
4004
83aae4c7 4005static void
72835c86 4006__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4007 enum charge_type ctype)
7a81b88c 4008{
f8d66542 4009 if (mem_cgroup_disabled())
7a81b88c 4010 return;
72835c86 4011 if (!memcg)
7a81b88c 4012 return;
5a6475a4 4013
ce587e65 4014 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4015 /*
4016 * Now swap is on-memory. This means this page may be
4017 * counted both as mem and swap....double count.
03f3c433
KH
4018 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4019 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4020 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4021 */
03f3c433 4022 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4023 swp_entry_t ent = {.val = page_private(page)};
86493009 4024 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4025 }
7a81b88c
KH
4026}
4027
72835c86
JW
4028void mem_cgroup_commit_charge_swapin(struct page *page,
4029 struct mem_cgroup *memcg)
83aae4c7 4030{
72835c86 4031 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4032 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4033}
4034
827a03d2
JW
4035int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4036 gfp_t gfp_mask)
7a81b88c 4037{
827a03d2
JW
4038 struct mem_cgroup *memcg = NULL;
4039 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4040 int ret;
4041
f8d66542 4042 if (mem_cgroup_disabled())
827a03d2
JW
4043 return 0;
4044 if (PageCompound(page))
4045 return 0;
4046
827a03d2
JW
4047 if (!PageSwapCache(page))
4048 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4049 else { /* page is swapcache/shmem */
0435a2fd
JW
4050 ret = __mem_cgroup_try_charge_swapin(mm, page,
4051 gfp_mask, &memcg);
827a03d2
JW
4052 if (!ret)
4053 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4054 }
4055 return ret;
7a81b88c
KH
4056}
4057
c0ff4b85 4058static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4059 unsigned int nr_pages,
4060 const enum charge_type ctype)
569b846d
KH
4061{
4062 struct memcg_batch_info *batch = NULL;
4063 bool uncharge_memsw = true;
7ec99d62 4064
569b846d
KH
4065 /* If swapout, usage of swap doesn't decrease */
4066 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4067 uncharge_memsw = false;
569b846d
KH
4068
4069 batch = &current->memcg_batch;
4070 /*
4071 * In usual, we do css_get() when we remember memcg pointer.
4072 * But in this case, we keep res->usage until end of a series of
4073 * uncharges. Then, it's ok to ignore memcg's refcnt.
4074 */
4075 if (!batch->memcg)
c0ff4b85 4076 batch->memcg = memcg;
3c11ecf4
KH
4077 /*
4078 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4079 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4080 * the same cgroup and we have chance to coalesce uncharges.
4081 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4082 * because we want to do uncharge as soon as possible.
4083 */
4084
4085 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4086 goto direct_uncharge;
4087
7ec99d62 4088 if (nr_pages > 1)
ec168510
AA
4089 goto direct_uncharge;
4090
569b846d
KH
4091 /*
4092 * In typical case, batch->memcg == mem. This means we can
4093 * merge a series of uncharges to an uncharge of res_counter.
4094 * If not, we uncharge res_counter ony by one.
4095 */
c0ff4b85 4096 if (batch->memcg != memcg)
569b846d
KH
4097 goto direct_uncharge;
4098 /* remember freed charge and uncharge it later */
7ffd4ca7 4099 batch->nr_pages++;
569b846d 4100 if (uncharge_memsw)
7ffd4ca7 4101 batch->memsw_nr_pages++;
569b846d
KH
4102 return;
4103direct_uncharge:
c0ff4b85 4104 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4105 if (uncharge_memsw)
c0ff4b85
R
4106 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4107 if (unlikely(batch->memcg != memcg))
4108 memcg_oom_recover(memcg);
569b846d 4109}
7a81b88c 4110
8a9f3ccd 4111/*
69029cd5 4112 * uncharge if !page_mapped(page)
8a9f3ccd 4113 */
8c7c6e34 4114static struct mem_cgroup *
0030f535
JW
4115__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4116 bool end_migration)
8a9f3ccd 4117{
c0ff4b85 4118 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4119 unsigned int nr_pages = 1;
4120 struct page_cgroup *pc;
b2402857 4121 bool anon;
8a9f3ccd 4122
f8d66542 4123 if (mem_cgroup_disabled())
8c7c6e34 4124 return NULL;
4077960e 4125
37c2ac78 4126 if (PageTransHuge(page)) {
7ec99d62 4127 nr_pages <<= compound_order(page);
37c2ac78
AA
4128 VM_BUG_ON(!PageTransHuge(page));
4129 }
8697d331 4130 /*
3c541e14 4131 * Check if our page_cgroup is valid
8697d331 4132 */
52d4b9ac 4133 pc = lookup_page_cgroup(page);
cfa44946 4134 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4135 return NULL;
b9c565d5 4136
52d4b9ac 4137 lock_page_cgroup(pc);
d13d1443 4138
c0ff4b85 4139 memcg = pc->mem_cgroup;
8c7c6e34 4140
d13d1443
KH
4141 if (!PageCgroupUsed(pc))
4142 goto unlock_out;
4143
b2402857
KH
4144 anon = PageAnon(page);
4145
d13d1443 4146 switch (ctype) {
41326c17 4147 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4148 /*
4149 * Generally PageAnon tells if it's the anon statistics to be
4150 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4151 * used before page reached the stage of being marked PageAnon.
4152 */
b2402857
KH
4153 anon = true;
4154 /* fallthrough */
8a9478ca 4155 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4156 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4157 if (page_mapped(page))
4158 goto unlock_out;
4159 /*
4160 * Pages under migration may not be uncharged. But
4161 * end_migration() /must/ be the one uncharging the
4162 * unused post-migration page and so it has to call
4163 * here with the migration bit still set. See the
4164 * res_counter handling below.
4165 */
4166 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4167 goto unlock_out;
4168 break;
4169 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4170 if (!PageAnon(page)) { /* Shared memory */
4171 if (page->mapping && !page_is_file_cache(page))
4172 goto unlock_out;
4173 } else if (page_mapped(page)) /* Anon */
4174 goto unlock_out;
4175 break;
4176 default:
4177 break;
52d4b9ac 4178 }
d13d1443 4179
b070e65c 4180 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4181
52d4b9ac 4182 ClearPageCgroupUsed(pc);
544122e5
KH
4183 /*
4184 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4185 * freed from LRU. This is safe because uncharged page is expected not
4186 * to be reused (freed soon). Exception is SwapCache, it's handled by
4187 * special functions.
4188 */
b9c565d5 4189
52d4b9ac 4190 unlock_page_cgroup(pc);
f75ca962 4191 /*
c0ff4b85 4192 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
4193 * will never be freed.
4194 */
c0ff4b85 4195 memcg_check_events(memcg, page);
f75ca962 4196 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
4197 mem_cgroup_swap_statistics(memcg, true);
4198 mem_cgroup_get(memcg);
f75ca962 4199 }
0030f535
JW
4200 /*
4201 * Migration does not charge the res_counter for the
4202 * replacement page, so leave it alone when phasing out the
4203 * page that is unused after the migration.
4204 */
4205 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4206 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4207
c0ff4b85 4208 return memcg;
d13d1443
KH
4209
4210unlock_out:
4211 unlock_page_cgroup(pc);
8c7c6e34 4212 return NULL;
3c541e14
BS
4213}
4214
69029cd5
KH
4215void mem_cgroup_uncharge_page(struct page *page)
4216{
52d4b9ac
KH
4217 /* early check. */
4218 if (page_mapped(page))
4219 return;
40f23a21 4220 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4221 /*
4222 * If the page is in swap cache, uncharge should be deferred
4223 * to the swap path, which also properly accounts swap usage
4224 * and handles memcg lifetime.
4225 *
4226 * Note that this check is not stable and reclaim may add the
4227 * page to swap cache at any time after this. However, if the
4228 * page is not in swap cache by the time page->mapcount hits
4229 * 0, there won't be any page table references to the swap
4230 * slot, and reclaim will free it and not actually write the
4231 * page to disk.
4232 */
0c59b89c
JW
4233 if (PageSwapCache(page))
4234 return;
0030f535 4235 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4236}
4237
4238void mem_cgroup_uncharge_cache_page(struct page *page)
4239{
4240 VM_BUG_ON(page_mapped(page));
b7abea96 4241 VM_BUG_ON(page->mapping);
0030f535 4242 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4243}
4244
569b846d
KH
4245/*
4246 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4247 * In that cases, pages are freed continuously and we can expect pages
4248 * are in the same memcg. All these calls itself limits the number of
4249 * pages freed at once, then uncharge_start/end() is called properly.
4250 * This may be called prural(2) times in a context,
4251 */
4252
4253void mem_cgroup_uncharge_start(void)
4254{
4255 current->memcg_batch.do_batch++;
4256 /* We can do nest. */
4257 if (current->memcg_batch.do_batch == 1) {
4258 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4259 current->memcg_batch.nr_pages = 0;
4260 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4261 }
4262}
4263
4264void mem_cgroup_uncharge_end(void)
4265{
4266 struct memcg_batch_info *batch = &current->memcg_batch;
4267
4268 if (!batch->do_batch)
4269 return;
4270
4271 batch->do_batch--;
4272 if (batch->do_batch) /* If stacked, do nothing. */
4273 return;
4274
4275 if (!batch->memcg)
4276 return;
4277 /*
4278 * This "batch->memcg" is valid without any css_get/put etc...
4279 * bacause we hide charges behind us.
4280 */
7ffd4ca7
JW
4281 if (batch->nr_pages)
4282 res_counter_uncharge(&batch->memcg->res,
4283 batch->nr_pages * PAGE_SIZE);
4284 if (batch->memsw_nr_pages)
4285 res_counter_uncharge(&batch->memcg->memsw,
4286 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4287 memcg_oom_recover(batch->memcg);
569b846d
KH
4288 /* forget this pointer (for sanity check) */
4289 batch->memcg = NULL;
4290}
4291
e767e056 4292#ifdef CONFIG_SWAP
8c7c6e34 4293/*
e767e056 4294 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4295 * memcg information is recorded to swap_cgroup of "ent"
4296 */
8a9478ca
KH
4297void
4298mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4299{
4300 struct mem_cgroup *memcg;
8a9478ca
KH
4301 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4302
4303 if (!swapout) /* this was a swap cache but the swap is unused ! */
4304 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4305
0030f535 4306 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4307
f75ca962
KH
4308 /*
4309 * record memcg information, if swapout && memcg != NULL,
4310 * mem_cgroup_get() was called in uncharge().
4311 */
4312 if (do_swap_account && swapout && memcg)
a3b2d692 4313 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4314}
e767e056 4315#endif
8c7c6e34 4316
c255a458 4317#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4318/*
4319 * called from swap_entry_free(). remove record in swap_cgroup and
4320 * uncharge "memsw" account.
4321 */
4322void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4323{
8c7c6e34 4324 struct mem_cgroup *memcg;
a3b2d692 4325 unsigned short id;
8c7c6e34
KH
4326
4327 if (!do_swap_account)
4328 return;
4329
a3b2d692
KH
4330 id = swap_cgroup_record(ent, 0);
4331 rcu_read_lock();
4332 memcg = mem_cgroup_lookup(id);
8c7c6e34 4333 if (memcg) {
a3b2d692
KH
4334 /*
4335 * We uncharge this because swap is freed.
4336 * This memcg can be obsolete one. We avoid calling css_tryget
4337 */
0c3e73e8 4338 if (!mem_cgroup_is_root(memcg))
4e649152 4339 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4340 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
4341 mem_cgroup_put(memcg);
4342 }
a3b2d692 4343 rcu_read_unlock();
d13d1443 4344}
02491447
DN
4345
4346/**
4347 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4348 * @entry: swap entry to be moved
4349 * @from: mem_cgroup which the entry is moved from
4350 * @to: mem_cgroup which the entry is moved to
4351 *
4352 * It succeeds only when the swap_cgroup's record for this entry is the same
4353 * as the mem_cgroup's id of @from.
4354 *
4355 * Returns 0 on success, -EINVAL on failure.
4356 *
4357 * The caller must have charged to @to, IOW, called res_counter_charge() about
4358 * both res and memsw, and called css_get().
4359 */
4360static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4361 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4362{
4363 unsigned short old_id, new_id;
4364
4365 old_id = css_id(&from->css);
4366 new_id = css_id(&to->css);
4367
4368 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4369 mem_cgroup_swap_statistics(from, false);
483c30b5 4370 mem_cgroup_swap_statistics(to, true);
02491447 4371 /*
483c30b5
DN
4372 * This function is only called from task migration context now.
4373 * It postpones res_counter and refcount handling till the end
4374 * of task migration(mem_cgroup_clear_mc()) for performance
4375 * improvement. But we cannot postpone mem_cgroup_get(to)
4376 * because if the process that has been moved to @to does
4377 * swap-in, the refcount of @to might be decreased to 0.
02491447 4378 */
02491447 4379 mem_cgroup_get(to);
02491447
DN
4380 return 0;
4381 }
4382 return -EINVAL;
4383}
4384#else
4385static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4386 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4387{
4388 return -EINVAL;
4389}
8c7c6e34 4390#endif
d13d1443 4391
ae41be37 4392/*
01b1ae63
KH
4393 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4394 * page belongs to.
ae41be37 4395 */
0030f535
JW
4396void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4397 struct mem_cgroup **memcgp)
ae41be37 4398{
c0ff4b85 4399 struct mem_cgroup *memcg = NULL;
b32967ff 4400 unsigned int nr_pages = 1;
7ec99d62 4401 struct page_cgroup *pc;
ac39cf8c 4402 enum charge_type ctype;
8869b8f6 4403
72835c86 4404 *memcgp = NULL;
56039efa 4405
f8d66542 4406 if (mem_cgroup_disabled())
0030f535 4407 return;
4077960e 4408
b32967ff
MG
4409 if (PageTransHuge(page))
4410 nr_pages <<= compound_order(page);
4411
52d4b9ac
KH
4412 pc = lookup_page_cgroup(page);
4413 lock_page_cgroup(pc);
4414 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4415 memcg = pc->mem_cgroup;
4416 css_get(&memcg->css);
ac39cf8c 4417 /*
4418 * At migrating an anonymous page, its mapcount goes down
4419 * to 0 and uncharge() will be called. But, even if it's fully
4420 * unmapped, migration may fail and this page has to be
4421 * charged again. We set MIGRATION flag here and delay uncharge
4422 * until end_migration() is called
4423 *
4424 * Corner Case Thinking
4425 * A)
4426 * When the old page was mapped as Anon and it's unmap-and-freed
4427 * while migration was ongoing.
4428 * If unmap finds the old page, uncharge() of it will be delayed
4429 * until end_migration(). If unmap finds a new page, it's
4430 * uncharged when it make mapcount to be 1->0. If unmap code
4431 * finds swap_migration_entry, the new page will not be mapped
4432 * and end_migration() will find it(mapcount==0).
4433 *
4434 * B)
4435 * When the old page was mapped but migraion fails, the kernel
4436 * remaps it. A charge for it is kept by MIGRATION flag even
4437 * if mapcount goes down to 0. We can do remap successfully
4438 * without charging it again.
4439 *
4440 * C)
4441 * The "old" page is under lock_page() until the end of
4442 * migration, so, the old page itself will not be swapped-out.
4443 * If the new page is swapped out before end_migraton, our
4444 * hook to usual swap-out path will catch the event.
4445 */
4446 if (PageAnon(page))
4447 SetPageCgroupMigration(pc);
e8589cc1 4448 }
52d4b9ac 4449 unlock_page_cgroup(pc);
ac39cf8c 4450 /*
4451 * If the page is not charged at this point,
4452 * we return here.
4453 */
c0ff4b85 4454 if (!memcg)
0030f535 4455 return;
01b1ae63 4456
72835c86 4457 *memcgp = memcg;
ac39cf8c 4458 /*
4459 * We charge new page before it's used/mapped. So, even if unlock_page()
4460 * is called before end_migration, we can catch all events on this new
4461 * page. In the case new page is migrated but not remapped, new page's
4462 * mapcount will be finally 0 and we call uncharge in end_migration().
4463 */
ac39cf8c 4464 if (PageAnon(page))
41326c17 4465 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4466 else
62ba7442 4467 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4468 /*
4469 * The page is committed to the memcg, but it's not actually
4470 * charged to the res_counter since we plan on replacing the
4471 * old one and only one page is going to be left afterwards.
4472 */
b32967ff 4473 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4474}
8869b8f6 4475
69029cd5 4476/* remove redundant charge if migration failed*/
c0ff4b85 4477void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4478 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4479{
ac39cf8c 4480 struct page *used, *unused;
01b1ae63 4481 struct page_cgroup *pc;
b2402857 4482 bool anon;
01b1ae63 4483
c0ff4b85 4484 if (!memcg)
01b1ae63 4485 return;
b25ed609 4486
50de1dd9 4487 if (!migration_ok) {
ac39cf8c 4488 used = oldpage;
4489 unused = newpage;
01b1ae63 4490 } else {
ac39cf8c 4491 used = newpage;
01b1ae63
KH
4492 unused = oldpage;
4493 }
0030f535 4494 anon = PageAnon(used);
7d188958
JW
4495 __mem_cgroup_uncharge_common(unused,
4496 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4497 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4498 true);
0030f535 4499 css_put(&memcg->css);
69029cd5 4500 /*
ac39cf8c 4501 * We disallowed uncharge of pages under migration because mapcount
4502 * of the page goes down to zero, temporarly.
4503 * Clear the flag and check the page should be charged.
01b1ae63 4504 */
ac39cf8c 4505 pc = lookup_page_cgroup(oldpage);
4506 lock_page_cgroup(pc);
4507 ClearPageCgroupMigration(pc);
4508 unlock_page_cgroup(pc);
ac39cf8c 4509
01b1ae63 4510 /*
ac39cf8c 4511 * If a page is a file cache, radix-tree replacement is very atomic
4512 * and we can skip this check. When it was an Anon page, its mapcount
4513 * goes down to 0. But because we added MIGRATION flage, it's not
4514 * uncharged yet. There are several case but page->mapcount check
4515 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4516 * check. (see prepare_charge() also)
69029cd5 4517 */
b2402857 4518 if (anon)
ac39cf8c 4519 mem_cgroup_uncharge_page(used);
ae41be37 4520}
78fb7466 4521
ab936cbc
KH
4522/*
4523 * At replace page cache, newpage is not under any memcg but it's on
4524 * LRU. So, this function doesn't touch res_counter but handles LRU
4525 * in correct way. Both pages are locked so we cannot race with uncharge.
4526 */
4527void mem_cgroup_replace_page_cache(struct page *oldpage,
4528 struct page *newpage)
4529{
bde05d1c 4530 struct mem_cgroup *memcg = NULL;
ab936cbc 4531 struct page_cgroup *pc;
ab936cbc 4532 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4533
4534 if (mem_cgroup_disabled())
4535 return;
4536
4537 pc = lookup_page_cgroup(oldpage);
4538 /* fix accounting on old pages */
4539 lock_page_cgroup(pc);
bde05d1c
HD
4540 if (PageCgroupUsed(pc)) {
4541 memcg = pc->mem_cgroup;
b070e65c 4542 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4543 ClearPageCgroupUsed(pc);
4544 }
ab936cbc
KH
4545 unlock_page_cgroup(pc);
4546
bde05d1c
HD
4547 /*
4548 * When called from shmem_replace_page(), in some cases the
4549 * oldpage has already been charged, and in some cases not.
4550 */
4551 if (!memcg)
4552 return;
ab936cbc
KH
4553 /*
4554 * Even if newpage->mapping was NULL before starting replacement,
4555 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4556 * LRU while we overwrite pc->mem_cgroup.
4557 */
ce587e65 4558 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4559}
4560
f212ad7c
DN
4561#ifdef CONFIG_DEBUG_VM
4562static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4563{
4564 struct page_cgroup *pc;
4565
4566 pc = lookup_page_cgroup(page);
cfa44946
JW
4567 /*
4568 * Can be NULL while feeding pages into the page allocator for
4569 * the first time, i.e. during boot or memory hotplug;
4570 * or when mem_cgroup_disabled().
4571 */
f212ad7c
DN
4572 if (likely(pc) && PageCgroupUsed(pc))
4573 return pc;
4574 return NULL;
4575}
4576
4577bool mem_cgroup_bad_page_check(struct page *page)
4578{
4579 if (mem_cgroup_disabled())
4580 return false;
4581
4582 return lookup_page_cgroup_used(page) != NULL;
4583}
4584
4585void mem_cgroup_print_bad_page(struct page *page)
4586{
4587 struct page_cgroup *pc;
4588
4589 pc = lookup_page_cgroup_used(page);
4590 if (pc) {
d045197f
AM
4591 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4592 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4593 }
4594}
4595#endif
4596
d38d2a75 4597static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4598 unsigned long long val)
628f4235 4599{
81d39c20 4600 int retry_count;
3c11ecf4 4601 u64 memswlimit, memlimit;
628f4235 4602 int ret = 0;
81d39c20
KH
4603 int children = mem_cgroup_count_children(memcg);
4604 u64 curusage, oldusage;
3c11ecf4 4605 int enlarge;
81d39c20
KH
4606
4607 /*
4608 * For keeping hierarchical_reclaim simple, how long we should retry
4609 * is depends on callers. We set our retry-count to be function
4610 * of # of children which we should visit in this loop.
4611 */
4612 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4613
4614 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4615
3c11ecf4 4616 enlarge = 0;
8c7c6e34 4617 while (retry_count) {
628f4235
KH
4618 if (signal_pending(current)) {
4619 ret = -EINTR;
4620 break;
4621 }
8c7c6e34
KH
4622 /*
4623 * Rather than hide all in some function, I do this in
4624 * open coded manner. You see what this really does.
aaad153e 4625 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4626 */
4627 mutex_lock(&set_limit_mutex);
4628 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4629 if (memswlimit < val) {
4630 ret = -EINVAL;
4631 mutex_unlock(&set_limit_mutex);
628f4235
KH
4632 break;
4633 }
3c11ecf4
KH
4634
4635 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4636 if (memlimit < val)
4637 enlarge = 1;
4638
8c7c6e34 4639 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4640 if (!ret) {
4641 if (memswlimit == val)
4642 memcg->memsw_is_minimum = true;
4643 else
4644 memcg->memsw_is_minimum = false;
4645 }
8c7c6e34
KH
4646 mutex_unlock(&set_limit_mutex);
4647
4648 if (!ret)
4649 break;
4650
5660048c
JW
4651 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4652 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4653 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4654 /* Usage is reduced ? */
4655 if (curusage >= oldusage)
4656 retry_count--;
4657 else
4658 oldusage = curusage;
8c7c6e34 4659 }
3c11ecf4
KH
4660 if (!ret && enlarge)
4661 memcg_oom_recover(memcg);
14797e23 4662
8c7c6e34
KH
4663 return ret;
4664}
4665
338c8431
LZ
4666static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4667 unsigned long long val)
8c7c6e34 4668{
81d39c20 4669 int retry_count;
3c11ecf4 4670 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4671 int children = mem_cgroup_count_children(memcg);
4672 int ret = -EBUSY;
3c11ecf4 4673 int enlarge = 0;
8c7c6e34 4674
81d39c20
KH
4675 /* see mem_cgroup_resize_res_limit */
4676 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4677 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4678 while (retry_count) {
4679 if (signal_pending(current)) {
4680 ret = -EINTR;
4681 break;
4682 }
4683 /*
4684 * Rather than hide all in some function, I do this in
4685 * open coded manner. You see what this really does.
aaad153e 4686 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4687 */
4688 mutex_lock(&set_limit_mutex);
4689 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4690 if (memlimit > val) {
4691 ret = -EINVAL;
4692 mutex_unlock(&set_limit_mutex);
4693 break;
4694 }
3c11ecf4
KH
4695 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4696 if (memswlimit < val)
4697 enlarge = 1;
8c7c6e34 4698 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4699 if (!ret) {
4700 if (memlimit == val)
4701 memcg->memsw_is_minimum = true;
4702 else
4703 memcg->memsw_is_minimum = false;
4704 }
8c7c6e34
KH
4705 mutex_unlock(&set_limit_mutex);
4706
4707 if (!ret)
4708 break;
4709
5660048c
JW
4710 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4711 MEM_CGROUP_RECLAIM_NOSWAP |
4712 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4713 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4714 /* Usage is reduced ? */
8c7c6e34 4715 if (curusage >= oldusage)
628f4235 4716 retry_count--;
81d39c20
KH
4717 else
4718 oldusage = curusage;
628f4235 4719 }
3c11ecf4
KH
4720 if (!ret && enlarge)
4721 memcg_oom_recover(memcg);
628f4235
KH
4722 return ret;
4723}
4724
4e416953 4725unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4726 gfp_t gfp_mask,
4727 unsigned long *total_scanned)
4e416953
BS
4728{
4729 unsigned long nr_reclaimed = 0;
4730 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4731 unsigned long reclaimed;
4732 int loop = 0;
4733 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4734 unsigned long long excess;
0ae5e89c 4735 unsigned long nr_scanned;
4e416953
BS
4736
4737 if (order > 0)
4738 return 0;
4739
00918b6a 4740 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4741 /*
4742 * This loop can run a while, specially if mem_cgroup's continuously
4743 * keep exceeding their soft limit and putting the system under
4744 * pressure
4745 */
4746 do {
4747 if (next_mz)
4748 mz = next_mz;
4749 else
4750 mz = mem_cgroup_largest_soft_limit_node(mctz);
4751 if (!mz)
4752 break;
4753
0ae5e89c 4754 nr_scanned = 0;
d79154bb 4755 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4756 gfp_mask, &nr_scanned);
4e416953 4757 nr_reclaimed += reclaimed;
0ae5e89c 4758 *total_scanned += nr_scanned;
4e416953
BS
4759 spin_lock(&mctz->lock);
4760
4761 /*
4762 * If we failed to reclaim anything from this memory cgroup
4763 * it is time to move on to the next cgroup
4764 */
4765 next_mz = NULL;
4766 if (!reclaimed) {
4767 do {
4768 /*
4769 * Loop until we find yet another one.
4770 *
4771 * By the time we get the soft_limit lock
4772 * again, someone might have aded the
4773 * group back on the RB tree. Iterate to
4774 * make sure we get a different mem.
4775 * mem_cgroup_largest_soft_limit_node returns
4776 * NULL if no other cgroup is present on
4777 * the tree
4778 */
4779 next_mz =
4780 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4781 if (next_mz == mz)
d79154bb 4782 css_put(&next_mz->memcg->css);
39cc98f1 4783 else /* next_mz == NULL or other memcg */
4e416953
BS
4784 break;
4785 } while (1);
4786 }
d79154bb
HD
4787 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4788 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4789 /*
4790 * One school of thought says that we should not add
4791 * back the node to the tree if reclaim returns 0.
4792 * But our reclaim could return 0, simply because due
4793 * to priority we are exposing a smaller subset of
4794 * memory to reclaim from. Consider this as a longer
4795 * term TODO.
4796 */
ef8745c1 4797 /* If excess == 0, no tree ops */
d79154bb 4798 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4799 spin_unlock(&mctz->lock);
d79154bb 4800 css_put(&mz->memcg->css);
4e416953
BS
4801 loop++;
4802 /*
4803 * Could not reclaim anything and there are no more
4804 * mem cgroups to try or we seem to be looping without
4805 * reclaiming anything.
4806 */
4807 if (!nr_reclaimed &&
4808 (next_mz == NULL ||
4809 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4810 break;
4811 } while (!nr_reclaimed);
4812 if (next_mz)
d79154bb 4813 css_put(&next_mz->memcg->css);
4e416953
BS
4814 return nr_reclaimed;
4815}
4816
2ef37d3f
MH
4817/**
4818 * mem_cgroup_force_empty_list - clears LRU of a group
4819 * @memcg: group to clear
4820 * @node: NUMA node
4821 * @zid: zone id
4822 * @lru: lru to to clear
4823 *
3c935d18 4824 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4825 * reclaim the pages page themselves - pages are moved to the parent (or root)
4826 * group.
cc847582 4827 */
2ef37d3f 4828static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4829 int node, int zid, enum lru_list lru)
cc847582 4830{
bea8c150 4831 struct lruvec *lruvec;
2ef37d3f 4832 unsigned long flags;
072c56c1 4833 struct list_head *list;
925b7673
JW
4834 struct page *busy;
4835 struct zone *zone;
072c56c1 4836
08e552c6 4837 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4838 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4839 list = &lruvec->lists[lru];
cc847582 4840
f817ed48 4841 busy = NULL;
2ef37d3f 4842 do {
925b7673 4843 struct page_cgroup *pc;
5564e88b
JW
4844 struct page *page;
4845
08e552c6 4846 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4847 if (list_empty(list)) {
08e552c6 4848 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4849 break;
f817ed48 4850 }
925b7673
JW
4851 page = list_entry(list->prev, struct page, lru);
4852 if (busy == page) {
4853 list_move(&page->lru, list);
648bcc77 4854 busy = NULL;
08e552c6 4855 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4856 continue;
4857 }
08e552c6 4858 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4859
925b7673 4860 pc = lookup_page_cgroup(page);
5564e88b 4861
3c935d18 4862 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4863 /* found lock contention or "pc" is obsolete. */
925b7673 4864 busy = page;
f817ed48
KH
4865 cond_resched();
4866 } else
4867 busy = NULL;
2ef37d3f 4868 } while (!list_empty(list));
cc847582
KH
4869}
4870
4871/*
c26251f9
MH
4872 * make mem_cgroup's charge to be 0 if there is no task by moving
4873 * all the charges and pages to the parent.
cc847582 4874 * This enables deleting this mem_cgroup.
c26251f9
MH
4875 *
4876 * Caller is responsible for holding css reference on the memcg.
cc847582 4877 */
ab5196c2 4878static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4879{
c26251f9 4880 int node, zid;
bea207c8 4881 u64 usage;
f817ed48 4882
fce66477 4883 do {
52d4b9ac
KH
4884 /* This is for making all *used* pages to be on LRU. */
4885 lru_add_drain_all();
c0ff4b85 4886 drain_all_stock_sync(memcg);
c0ff4b85 4887 mem_cgroup_start_move(memcg);
31aaea4a 4888 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4889 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4890 enum lru_list lru;
4891 for_each_lru(lru) {
2ef37d3f 4892 mem_cgroup_force_empty_list(memcg,
f156ab93 4893 node, zid, lru);
f817ed48 4894 }
1ecaab2b 4895 }
f817ed48 4896 }
c0ff4b85
R
4897 mem_cgroup_end_move(memcg);
4898 memcg_oom_recover(memcg);
52d4b9ac 4899 cond_resched();
f817ed48 4900
2ef37d3f 4901 /*
bea207c8
GC
4902 * Kernel memory may not necessarily be trackable to a specific
4903 * process. So they are not migrated, and therefore we can't
4904 * expect their value to drop to 0 here.
4905 * Having res filled up with kmem only is enough.
4906 *
2ef37d3f
MH
4907 * This is a safety check because mem_cgroup_force_empty_list
4908 * could have raced with mem_cgroup_replace_page_cache callers
4909 * so the lru seemed empty but the page could have been added
4910 * right after the check. RES_USAGE should be safe as we always
4911 * charge before adding to the LRU.
4912 */
bea207c8
GC
4913 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4914 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4915 } while (usage > 0);
c26251f9
MH
4916}
4917
b5f99b53
GC
4918/*
4919 * This mainly exists for tests during the setting of set of use_hierarchy.
4920 * Since this is the very setting we are changing, the current hierarchy value
4921 * is meaningless
4922 */
4923static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4924{
4925 struct cgroup *pos;
4926
4927 /* bounce at first found */
4928 cgroup_for_each_child(pos, memcg->css.cgroup)
4929 return true;
4930 return false;
4931}
4932
4933/*
0999821b
GC
4934 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4935 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4936 * from mem_cgroup_count_children(), in the sense that we don't really care how
4937 * many children we have; we only need to know if we have any. It also counts
4938 * any memcg without hierarchy as infertile.
4939 */
4940static inline bool memcg_has_children(struct mem_cgroup *memcg)
4941{
4942 return memcg->use_hierarchy && __memcg_has_children(memcg);
4943}
4944
c26251f9
MH
4945/*
4946 * Reclaims as many pages from the given memcg as possible and moves
4947 * the rest to the parent.
4948 *
4949 * Caller is responsible for holding css reference for memcg.
4950 */
4951static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4952{
4953 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4954 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4955
c1e862c1 4956 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4957 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4958 return -EBUSY;
4959
c1e862c1
KH
4960 /* we call try-to-free pages for make this cgroup empty */
4961 lru_add_drain_all();
f817ed48 4962 /* try to free all pages in this cgroup */
569530fb 4963 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4964 int progress;
c1e862c1 4965
c26251f9
MH
4966 if (signal_pending(current))
4967 return -EINTR;
4968
c0ff4b85 4969 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4970 false);
c1e862c1 4971 if (!progress) {
f817ed48 4972 nr_retries--;
c1e862c1 4973 /* maybe some writeback is necessary */
8aa7e847 4974 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4975 }
f817ed48
KH
4976
4977 }
08e552c6 4978 lru_add_drain();
ab5196c2
MH
4979 mem_cgroup_reparent_charges(memcg);
4980
4981 return 0;
cc847582
KH
4982}
4983
6bbda35c 4984static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 4985{
c26251f9
MH
4986 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4987 int ret;
4988
d8423011
MH
4989 if (mem_cgroup_is_root(memcg))
4990 return -EINVAL;
c26251f9
MH
4991 css_get(&memcg->css);
4992 ret = mem_cgroup_force_empty(memcg);
4993 css_put(&memcg->css);
4994
4995 return ret;
c1e862c1
KH
4996}
4997
4998
18f59ea7
BS
4999static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
5000{
5001 return mem_cgroup_from_cont(cont)->use_hierarchy;
5002}
5003
5004static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
5005 u64 val)
5006{
5007 int retval = 0;
c0ff4b85 5008 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 5009 struct cgroup *parent = cont->parent;
c0ff4b85 5010 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
5011
5012 if (parent)
c0ff4b85 5013 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7 5014
0999821b 5015 mutex_lock(&memcg_create_mutex);
567fb435
GC
5016
5017 if (memcg->use_hierarchy == val)
5018 goto out;
5019
18f59ea7 5020 /*
af901ca1 5021 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5022 * in the child subtrees. If it is unset, then the change can
5023 * occur, provided the current cgroup has no children.
5024 *
5025 * For the root cgroup, parent_mem is NULL, we allow value to be
5026 * set if there are no children.
5027 */
c0ff4b85 5028 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5029 (val == 1 || val == 0)) {
b5f99b53 5030 if (!__memcg_has_children(memcg))
c0ff4b85 5031 memcg->use_hierarchy = val;
18f59ea7
BS
5032 else
5033 retval = -EBUSY;
5034 } else
5035 retval = -EINVAL;
567fb435
GC
5036
5037out:
0999821b 5038 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5039
5040 return retval;
5041}
5042
0c3e73e8 5043
c0ff4b85 5044static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5045 enum mem_cgroup_stat_index idx)
0c3e73e8 5046{
7d74b06f 5047 struct mem_cgroup *iter;
7a159cc9 5048 long val = 0;
0c3e73e8 5049
7a159cc9 5050 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5051 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5052 val += mem_cgroup_read_stat(iter, idx);
5053
5054 if (val < 0) /* race ? */
5055 val = 0;
5056 return val;
0c3e73e8
BS
5057}
5058
c0ff4b85 5059static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5060{
7d74b06f 5061 u64 val;
104f3928 5062
c0ff4b85 5063 if (!mem_cgroup_is_root(memcg)) {
104f3928 5064 if (!swap)
65c64ce8 5065 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5066 else
65c64ce8 5067 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5068 }
5069
b070e65c
DR
5070 /*
5071 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5072 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5073 */
c0ff4b85
R
5074 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5075 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5076
7d74b06f 5077 if (swap)
bff6bb83 5078 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5079
5080 return val << PAGE_SHIFT;
5081}
5082
af36f906
TH
5083static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5084 struct file *file, char __user *buf,
5085 size_t nbytes, loff_t *ppos)
8cdea7c0 5086{
c0ff4b85 5087 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 5088 char str[64];
104f3928 5089 u64 val;
86ae53e1
GC
5090 int name, len;
5091 enum res_type type;
8c7c6e34
KH
5092
5093 type = MEMFILE_TYPE(cft->private);
5094 name = MEMFILE_ATTR(cft->private);
af36f906 5095
8c7c6e34
KH
5096 switch (type) {
5097 case _MEM:
104f3928 5098 if (name == RES_USAGE)
c0ff4b85 5099 val = mem_cgroup_usage(memcg, false);
104f3928 5100 else
c0ff4b85 5101 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5102 break;
5103 case _MEMSWAP:
104f3928 5104 if (name == RES_USAGE)
c0ff4b85 5105 val = mem_cgroup_usage(memcg, true);
104f3928 5106 else
c0ff4b85 5107 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5108 break;
510fc4e1
GC
5109 case _KMEM:
5110 val = res_counter_read_u64(&memcg->kmem, name);
5111 break;
8c7c6e34
KH
5112 default:
5113 BUG();
8c7c6e34 5114 }
af36f906
TH
5115
5116 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5117 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5118}
510fc4e1
GC
5119
5120static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5121{
5122 int ret = -EINVAL;
5123#ifdef CONFIG_MEMCG_KMEM
5124 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5125 /*
5126 * For simplicity, we won't allow this to be disabled. It also can't
5127 * be changed if the cgroup has children already, or if tasks had
5128 * already joined.
5129 *
5130 * If tasks join before we set the limit, a person looking at
5131 * kmem.usage_in_bytes will have no way to determine when it took
5132 * place, which makes the value quite meaningless.
5133 *
5134 * After it first became limited, changes in the value of the limit are
5135 * of course permitted.
510fc4e1 5136 */
0999821b 5137 mutex_lock(&memcg_create_mutex);
510fc4e1
GC
5138 mutex_lock(&set_limit_mutex);
5139 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
b5f99b53 5140 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
510fc4e1
GC
5141 ret = -EBUSY;
5142 goto out;
5143 }
5144 ret = res_counter_set_limit(&memcg->kmem, val);
5145 VM_BUG_ON(ret);
5146
55007d84
GC
5147 ret = memcg_update_cache_sizes(memcg);
5148 if (ret) {
5149 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5150 goto out;
5151 }
692e89ab
GC
5152 static_key_slow_inc(&memcg_kmem_enabled_key);
5153 /*
5154 * setting the active bit after the inc will guarantee no one
5155 * starts accounting before all call sites are patched
5156 */
5157 memcg_kmem_set_active(memcg);
5158
7de37682
GC
5159 /*
5160 * kmem charges can outlive the cgroup. In the case of slab
5161 * pages, for instance, a page contain objects from various
5162 * processes, so it is unfeasible to migrate them away. We
5163 * need to reference count the memcg because of that.
5164 */
5165 mem_cgroup_get(memcg);
510fc4e1
GC
5166 } else
5167 ret = res_counter_set_limit(&memcg->kmem, val);
5168out:
5169 mutex_unlock(&set_limit_mutex);
0999821b 5170 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5171#endif
5172 return ret;
5173}
5174
6d043990 5175#ifdef CONFIG_MEMCG_KMEM
55007d84 5176static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5177{
55007d84 5178 int ret = 0;
510fc4e1
GC
5179 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5180 if (!parent)
55007d84
GC
5181 goto out;
5182
510fc4e1 5183 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5184 /*
5185 * When that happen, we need to disable the static branch only on those
5186 * memcgs that enabled it. To achieve this, we would be forced to
5187 * complicate the code by keeping track of which memcgs were the ones
5188 * that actually enabled limits, and which ones got it from its
5189 * parents.
5190 *
5191 * It is a lot simpler just to do static_key_slow_inc() on every child
5192 * that is accounted.
5193 */
55007d84
GC
5194 if (!memcg_kmem_is_active(memcg))
5195 goto out;
5196
5197 /*
5198 * destroy(), called if we fail, will issue static_key_slow_inc() and
5199 * mem_cgroup_put() if kmem is enabled. We have to either call them
5200 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5201 * this more consistent, since it always leads to the same destroy path
5202 */
5203 mem_cgroup_get(memcg);
5204 static_key_slow_inc(&memcg_kmem_enabled_key);
5205
5206 mutex_lock(&set_limit_mutex);
5207 ret = memcg_update_cache_sizes(memcg);
5208 mutex_unlock(&set_limit_mutex);
55007d84
GC
5209out:
5210 return ret;
510fc4e1 5211}
6d043990 5212#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5213
628f4235
KH
5214/*
5215 * The user of this function is...
5216 * RES_LIMIT.
5217 */
856c13aa
PM
5218static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5219 const char *buffer)
8cdea7c0 5220{
628f4235 5221 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5222 enum res_type type;
5223 int name;
628f4235
KH
5224 unsigned long long val;
5225 int ret;
5226
8c7c6e34
KH
5227 type = MEMFILE_TYPE(cft->private);
5228 name = MEMFILE_ATTR(cft->private);
af36f906 5229
8c7c6e34 5230 switch (name) {
628f4235 5231 case RES_LIMIT:
4b3bde4c
BS
5232 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5233 ret = -EINVAL;
5234 break;
5235 }
628f4235
KH
5236 /* This function does all necessary parse...reuse it */
5237 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5238 if (ret)
5239 break;
5240 if (type == _MEM)
628f4235 5241 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5242 else if (type == _MEMSWAP)
8c7c6e34 5243 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
5244 else if (type == _KMEM)
5245 ret = memcg_update_kmem_limit(cont, val);
5246 else
5247 return -EINVAL;
628f4235 5248 break;
296c81d8
BS
5249 case RES_SOFT_LIMIT:
5250 ret = res_counter_memparse_write_strategy(buffer, &val);
5251 if (ret)
5252 break;
5253 /*
5254 * For memsw, soft limits are hard to implement in terms
5255 * of semantics, for now, we support soft limits for
5256 * control without swap
5257 */
5258 if (type == _MEM)
5259 ret = res_counter_set_soft_limit(&memcg->res, val);
5260 else
5261 ret = -EINVAL;
5262 break;
628f4235
KH
5263 default:
5264 ret = -EINVAL; /* should be BUG() ? */
5265 break;
5266 }
5267 return ret;
8cdea7c0
BS
5268}
5269
fee7b548
KH
5270static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5271 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5272{
5273 struct cgroup *cgroup;
5274 unsigned long long min_limit, min_memsw_limit, tmp;
5275
5276 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5277 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5278 cgroup = memcg->css.cgroup;
5279 if (!memcg->use_hierarchy)
5280 goto out;
5281
5282 while (cgroup->parent) {
5283 cgroup = cgroup->parent;
5284 memcg = mem_cgroup_from_cont(cgroup);
5285 if (!memcg->use_hierarchy)
5286 break;
5287 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5288 min_limit = min(min_limit, tmp);
5289 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5290 min_memsw_limit = min(min_memsw_limit, tmp);
5291 }
5292out:
5293 *mem_limit = min_limit;
5294 *memsw_limit = min_memsw_limit;
fee7b548
KH
5295}
5296
29f2a4da 5297static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 5298{
af36f906 5299 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5300 int name;
5301 enum res_type type;
c84872e1 5302
8c7c6e34
KH
5303 type = MEMFILE_TYPE(event);
5304 name = MEMFILE_ATTR(event);
af36f906 5305
8c7c6e34 5306 switch (name) {
29f2a4da 5307 case RES_MAX_USAGE:
8c7c6e34 5308 if (type == _MEM)
c0ff4b85 5309 res_counter_reset_max(&memcg->res);
510fc4e1 5310 else if (type == _MEMSWAP)
c0ff4b85 5311 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5312 else if (type == _KMEM)
5313 res_counter_reset_max(&memcg->kmem);
5314 else
5315 return -EINVAL;
29f2a4da
PE
5316 break;
5317 case RES_FAILCNT:
8c7c6e34 5318 if (type == _MEM)
c0ff4b85 5319 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5320 else if (type == _MEMSWAP)
c0ff4b85 5321 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5322 else if (type == _KMEM)
5323 res_counter_reset_failcnt(&memcg->kmem);
5324 else
5325 return -EINVAL;
29f2a4da
PE
5326 break;
5327 }
f64c3f54 5328
85cc59db 5329 return 0;
c84872e1
PE
5330}
5331
7dc74be0
DN
5332static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5333 struct cftype *cft)
5334{
5335 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5336}
5337
02491447 5338#ifdef CONFIG_MMU
7dc74be0
DN
5339static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5340 struct cftype *cft, u64 val)
5341{
c0ff4b85 5342 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
5343
5344 if (val >= (1 << NR_MOVE_TYPE))
5345 return -EINVAL;
ee5e8472 5346
7dc74be0 5347 /*
ee5e8472
GC
5348 * No kind of locking is needed in here, because ->can_attach() will
5349 * check this value once in the beginning of the process, and then carry
5350 * on with stale data. This means that changes to this value will only
5351 * affect task migrations starting after the change.
7dc74be0 5352 */
c0ff4b85 5353 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5354 return 0;
5355}
02491447
DN
5356#else
5357static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5358 struct cftype *cft, u64 val)
5359{
5360 return -ENOSYS;
5361}
5362#endif
7dc74be0 5363
406eb0c9 5364#ifdef CONFIG_NUMA
ab215884 5365static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 5366 struct seq_file *m)
406eb0c9
YH
5367{
5368 int nid;
5369 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5370 unsigned long node_nr;
d79154bb 5371 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 5372
d79154bb 5373 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5374 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5375 for_each_node_state(nid, N_MEMORY) {
d79154bb 5376 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5377 seq_printf(m, " N%d=%lu", nid, node_nr);
5378 }
5379 seq_putc(m, '\n');
5380
d79154bb 5381 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5382 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5383 for_each_node_state(nid, N_MEMORY) {
d79154bb 5384 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5385 LRU_ALL_FILE);
406eb0c9
YH
5386 seq_printf(m, " N%d=%lu", nid, node_nr);
5387 }
5388 seq_putc(m, '\n');
5389
d79154bb 5390 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5391 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5392 for_each_node_state(nid, N_MEMORY) {
d79154bb 5393 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5394 LRU_ALL_ANON);
406eb0c9
YH
5395 seq_printf(m, " N%d=%lu", nid, node_nr);
5396 }
5397 seq_putc(m, '\n');
5398
d79154bb 5399 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5400 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5401 for_each_node_state(nid, N_MEMORY) {
d79154bb 5402 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5403 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5404 seq_printf(m, " N%d=%lu", nid, node_nr);
5405 }
5406 seq_putc(m, '\n');
5407 return 0;
5408}
5409#endif /* CONFIG_NUMA */
5410
af7c4b0e
JW
5411static inline void mem_cgroup_lru_names_not_uptodate(void)
5412{
5413 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5414}
5415
ab215884 5416static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 5417 struct seq_file *m)
d2ceb9b7 5418{
d79154bb 5419 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
5420 struct mem_cgroup *mi;
5421 unsigned int i;
406eb0c9 5422
af7c4b0e 5423 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5424 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5425 continue;
af7c4b0e
JW
5426 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5427 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5428 }
7b854121 5429
af7c4b0e
JW
5430 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5431 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5432 mem_cgroup_read_events(memcg, i));
5433
5434 for (i = 0; i < NR_LRU_LISTS; i++)
5435 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5436 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5437
14067bb3 5438 /* Hierarchical information */
fee7b548
KH
5439 {
5440 unsigned long long limit, memsw_limit;
d79154bb 5441 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5442 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5443 if (do_swap_account)
78ccf5b5
JW
5444 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5445 memsw_limit);
fee7b548 5446 }
7f016ee8 5447
af7c4b0e
JW
5448 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5449 long long val = 0;
5450
bff6bb83 5451 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5452 continue;
af7c4b0e
JW
5453 for_each_mem_cgroup_tree(mi, memcg)
5454 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5455 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5456 }
5457
5458 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5459 unsigned long long val = 0;
5460
5461 for_each_mem_cgroup_tree(mi, memcg)
5462 val += mem_cgroup_read_events(mi, i);
5463 seq_printf(m, "total_%s %llu\n",
5464 mem_cgroup_events_names[i], val);
5465 }
5466
5467 for (i = 0; i < NR_LRU_LISTS; i++) {
5468 unsigned long long val = 0;
5469
5470 for_each_mem_cgroup_tree(mi, memcg)
5471 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5472 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5473 }
14067bb3 5474
7f016ee8 5475#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5476 {
5477 int nid, zid;
5478 struct mem_cgroup_per_zone *mz;
89abfab1 5479 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5480 unsigned long recent_rotated[2] = {0, 0};
5481 unsigned long recent_scanned[2] = {0, 0};
5482
5483 for_each_online_node(nid)
5484 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5485 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5486 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5487
89abfab1
HD
5488 recent_rotated[0] += rstat->recent_rotated[0];
5489 recent_rotated[1] += rstat->recent_rotated[1];
5490 recent_scanned[0] += rstat->recent_scanned[0];
5491 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5492 }
78ccf5b5
JW
5493 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5494 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5495 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5496 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5497 }
5498#endif
5499
d2ceb9b7
KH
5500 return 0;
5501}
5502
a7885eb8
KM
5503static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5504{
5505 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5506
1f4c025b 5507 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5508}
5509
5510static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5511 u64 val)
5512{
5513 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5514 struct mem_cgroup *parent;
068b38c1 5515
a7885eb8
KM
5516 if (val > 100)
5517 return -EINVAL;
5518
5519 if (cgrp->parent == NULL)
5520 return -EINVAL;
5521
5522 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1 5523
0999821b 5524 mutex_lock(&memcg_create_mutex);
068b38c1 5525
a7885eb8 5526 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5527 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5528 mutex_unlock(&memcg_create_mutex);
a7885eb8 5529 return -EINVAL;
068b38c1 5530 }
a7885eb8 5531
a7885eb8 5532 memcg->swappiness = val;
a7885eb8 5533
0999821b 5534 mutex_unlock(&memcg_create_mutex);
068b38c1 5535
a7885eb8
KM
5536 return 0;
5537}
5538
2e72b634
KS
5539static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5540{
5541 struct mem_cgroup_threshold_ary *t;
5542 u64 usage;
5543 int i;
5544
5545 rcu_read_lock();
5546 if (!swap)
2c488db2 5547 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5548 else
2c488db2 5549 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5550
5551 if (!t)
5552 goto unlock;
5553
5554 usage = mem_cgroup_usage(memcg, swap);
5555
5556 /*
748dad36 5557 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5558 * If it's not true, a threshold was crossed after last
5559 * call of __mem_cgroup_threshold().
5560 */
5407a562 5561 i = t->current_threshold;
2e72b634
KS
5562
5563 /*
5564 * Iterate backward over array of thresholds starting from
5565 * current_threshold and check if a threshold is crossed.
5566 * If none of thresholds below usage is crossed, we read
5567 * only one element of the array here.
5568 */
5569 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5570 eventfd_signal(t->entries[i].eventfd, 1);
5571
5572 /* i = current_threshold + 1 */
5573 i++;
5574
5575 /*
5576 * Iterate forward over array of thresholds starting from
5577 * current_threshold+1 and check if a threshold is crossed.
5578 * If none of thresholds above usage is crossed, we read
5579 * only one element of the array here.
5580 */
5581 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5582 eventfd_signal(t->entries[i].eventfd, 1);
5583
5584 /* Update current_threshold */
5407a562 5585 t->current_threshold = i - 1;
2e72b634
KS
5586unlock:
5587 rcu_read_unlock();
5588}
5589
5590static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5591{
ad4ca5f4
KS
5592 while (memcg) {
5593 __mem_cgroup_threshold(memcg, false);
5594 if (do_swap_account)
5595 __mem_cgroup_threshold(memcg, true);
5596
5597 memcg = parent_mem_cgroup(memcg);
5598 }
2e72b634
KS
5599}
5600
5601static int compare_thresholds(const void *a, const void *b)
5602{
5603 const struct mem_cgroup_threshold *_a = a;
5604 const struct mem_cgroup_threshold *_b = b;
5605
5606 return _a->threshold - _b->threshold;
5607}
5608
c0ff4b85 5609static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5610{
5611 struct mem_cgroup_eventfd_list *ev;
5612
c0ff4b85 5613 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5614 eventfd_signal(ev->eventfd, 1);
5615 return 0;
5616}
5617
c0ff4b85 5618static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5619{
7d74b06f
KH
5620 struct mem_cgroup *iter;
5621
c0ff4b85 5622 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5623 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5624}
5625
5626static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5627 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
5628{
5629 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5630 struct mem_cgroup_thresholds *thresholds;
5631 struct mem_cgroup_threshold_ary *new;
86ae53e1 5632 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5633 u64 threshold, usage;
2c488db2 5634 int i, size, ret;
2e72b634
KS
5635
5636 ret = res_counter_memparse_write_strategy(args, &threshold);
5637 if (ret)
5638 return ret;
5639
5640 mutex_lock(&memcg->thresholds_lock);
2c488db2 5641
2e72b634 5642 if (type == _MEM)
2c488db2 5643 thresholds = &memcg->thresholds;
2e72b634 5644 else if (type == _MEMSWAP)
2c488db2 5645 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5646 else
5647 BUG();
5648
5649 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5650
5651 /* Check if a threshold crossed before adding a new one */
2c488db2 5652 if (thresholds->primary)
2e72b634
KS
5653 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5654
2c488db2 5655 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5656
5657 /* Allocate memory for new array of thresholds */
2c488db2 5658 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5659 GFP_KERNEL);
2c488db2 5660 if (!new) {
2e72b634
KS
5661 ret = -ENOMEM;
5662 goto unlock;
5663 }
2c488db2 5664 new->size = size;
2e72b634
KS
5665
5666 /* Copy thresholds (if any) to new array */
2c488db2
KS
5667 if (thresholds->primary) {
5668 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5669 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5670 }
5671
2e72b634 5672 /* Add new threshold */
2c488db2
KS
5673 new->entries[size - 1].eventfd = eventfd;
5674 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5675
5676 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5677 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5678 compare_thresholds, NULL);
5679
5680 /* Find current threshold */
2c488db2 5681 new->current_threshold = -1;
2e72b634 5682 for (i = 0; i < size; i++) {
748dad36 5683 if (new->entries[i].threshold <= usage) {
2e72b634 5684 /*
2c488db2
KS
5685 * new->current_threshold will not be used until
5686 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5687 * it here.
5688 */
2c488db2 5689 ++new->current_threshold;
748dad36
SZ
5690 } else
5691 break;
2e72b634
KS
5692 }
5693
2c488db2
KS
5694 /* Free old spare buffer and save old primary buffer as spare */
5695 kfree(thresholds->spare);
5696 thresholds->spare = thresholds->primary;
5697
5698 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5699
907860ed 5700 /* To be sure that nobody uses thresholds */
2e72b634
KS
5701 synchronize_rcu();
5702
2e72b634
KS
5703unlock:
5704 mutex_unlock(&memcg->thresholds_lock);
5705
5706 return ret;
5707}
5708
907860ed 5709static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 5710 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
5711{
5712 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5713 struct mem_cgroup_thresholds *thresholds;
5714 struct mem_cgroup_threshold_ary *new;
86ae53e1 5715 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5716 u64 usage;
2c488db2 5717 int i, j, size;
2e72b634
KS
5718
5719 mutex_lock(&memcg->thresholds_lock);
5720 if (type == _MEM)
2c488db2 5721 thresholds = &memcg->thresholds;
2e72b634 5722 else if (type == _MEMSWAP)
2c488db2 5723 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5724 else
5725 BUG();
5726
371528ca
AV
5727 if (!thresholds->primary)
5728 goto unlock;
5729
2e72b634
KS
5730 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5731
5732 /* Check if a threshold crossed before removing */
5733 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5734
5735 /* Calculate new number of threshold */
2c488db2
KS
5736 size = 0;
5737 for (i = 0; i < thresholds->primary->size; i++) {
5738 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5739 size++;
5740 }
5741
2c488db2 5742 new = thresholds->spare;
907860ed 5743
2e72b634
KS
5744 /* Set thresholds array to NULL if we don't have thresholds */
5745 if (!size) {
2c488db2
KS
5746 kfree(new);
5747 new = NULL;
907860ed 5748 goto swap_buffers;
2e72b634
KS
5749 }
5750
2c488db2 5751 new->size = size;
2e72b634
KS
5752
5753 /* Copy thresholds and find current threshold */
2c488db2
KS
5754 new->current_threshold = -1;
5755 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5756 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5757 continue;
5758
2c488db2 5759 new->entries[j] = thresholds->primary->entries[i];
748dad36 5760 if (new->entries[j].threshold <= usage) {
2e72b634 5761 /*
2c488db2 5762 * new->current_threshold will not be used
2e72b634
KS
5763 * until rcu_assign_pointer(), so it's safe to increment
5764 * it here.
5765 */
2c488db2 5766 ++new->current_threshold;
2e72b634
KS
5767 }
5768 j++;
5769 }
5770
907860ed 5771swap_buffers:
2c488db2
KS
5772 /* Swap primary and spare array */
5773 thresholds->spare = thresholds->primary;
8c757763
SZ
5774 /* If all events are unregistered, free the spare array */
5775 if (!new) {
5776 kfree(thresholds->spare);
5777 thresholds->spare = NULL;
5778 }
5779
2c488db2 5780 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5781
907860ed 5782 /* To be sure that nobody uses thresholds */
2e72b634 5783 synchronize_rcu();
371528ca 5784unlock:
2e72b634 5785 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5786}
c1e862c1 5787
9490ff27
KH
5788static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5789 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5790{
5791 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5792 struct mem_cgroup_eventfd_list *event;
86ae53e1 5793 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5794
5795 BUG_ON(type != _OOM_TYPE);
5796 event = kmalloc(sizeof(*event), GFP_KERNEL);
5797 if (!event)
5798 return -ENOMEM;
5799
1af8efe9 5800 spin_lock(&memcg_oom_lock);
9490ff27
KH
5801
5802 event->eventfd = eventfd;
5803 list_add(&event->list, &memcg->oom_notify);
5804
5805 /* already in OOM ? */
79dfdacc 5806 if (atomic_read(&memcg->under_oom))
9490ff27 5807 eventfd_signal(eventfd, 1);
1af8efe9 5808 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5809
5810 return 0;
5811}
5812
907860ed 5813static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
5814 struct cftype *cft, struct eventfd_ctx *eventfd)
5815{
c0ff4b85 5816 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 5817 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5818 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5819
5820 BUG_ON(type != _OOM_TYPE);
5821
1af8efe9 5822 spin_lock(&memcg_oom_lock);
9490ff27 5823
c0ff4b85 5824 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5825 if (ev->eventfd == eventfd) {
5826 list_del(&ev->list);
5827 kfree(ev);
5828 }
5829 }
5830
1af8efe9 5831 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5832}
5833
3c11ecf4
KH
5834static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5835 struct cftype *cft, struct cgroup_map_cb *cb)
5836{
c0ff4b85 5837 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 5838
c0ff4b85 5839 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5840
c0ff4b85 5841 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5842 cb->fill(cb, "under_oom", 1);
5843 else
5844 cb->fill(cb, "under_oom", 0);
5845 return 0;
5846}
5847
3c11ecf4
KH
5848static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5849 struct cftype *cft, u64 val)
5850{
c0ff4b85 5851 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
5852 struct mem_cgroup *parent;
5853
5854 /* cannot set to root cgroup and only 0 and 1 are allowed */
5855 if (!cgrp->parent || !((val == 0) || (val == 1)))
5856 return -EINVAL;
5857
5858 parent = mem_cgroup_from_cont(cgrp->parent);
5859
0999821b 5860 mutex_lock(&memcg_create_mutex);
3c11ecf4 5861 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5862 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5863 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5864 return -EINVAL;
5865 }
c0ff4b85 5866 memcg->oom_kill_disable = val;
4d845ebf 5867 if (!val)
c0ff4b85 5868 memcg_oom_recover(memcg);
0999821b 5869 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5870 return 0;
5871}
5872
c255a458 5873#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5874static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5875{
55007d84
GC
5876 int ret;
5877
2633d7a0 5878 memcg->kmemcg_id = -1;
55007d84
GC
5879 ret = memcg_propagate_kmem(memcg);
5880 if (ret)
5881 return ret;
2633d7a0 5882
1d62e436 5883 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5884}
e5671dfa 5885
1d62e436 5886static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 5887{
1d62e436 5888 mem_cgroup_sockets_destroy(memcg);
7de37682
GC
5889
5890 memcg_kmem_mark_dead(memcg);
5891
5892 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5893 return;
5894
5895 /*
5896 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5897 * path here, being careful not to race with memcg_uncharge_kmem: it is
5898 * possible that the charges went down to 0 between mark_dead and the
5899 * res_counter read, so in that case, we don't need the put
5900 */
5901 if (memcg_kmem_test_and_clear_dead(memcg))
5902 mem_cgroup_put(memcg);
d1a4c0b3 5903}
e5671dfa 5904#else
cbe128e3 5905static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5906{
5907 return 0;
5908}
d1a4c0b3 5909
1d62e436 5910static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
5911{
5912}
e5671dfa
GC
5913#endif
5914
8cdea7c0
BS
5915static struct cftype mem_cgroup_files[] = {
5916 {
0eea1030 5917 .name = "usage_in_bytes",
8c7c6e34 5918 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5919 .read = mem_cgroup_read,
9490ff27
KH
5920 .register_event = mem_cgroup_usage_register_event,
5921 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5922 },
c84872e1
PE
5923 {
5924 .name = "max_usage_in_bytes",
8c7c6e34 5925 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5926 .trigger = mem_cgroup_reset,
af36f906 5927 .read = mem_cgroup_read,
c84872e1 5928 },
8cdea7c0 5929 {
0eea1030 5930 .name = "limit_in_bytes",
8c7c6e34 5931 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5932 .write_string = mem_cgroup_write,
af36f906 5933 .read = mem_cgroup_read,
8cdea7c0 5934 },
296c81d8
BS
5935 {
5936 .name = "soft_limit_in_bytes",
5937 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5938 .write_string = mem_cgroup_write,
af36f906 5939 .read = mem_cgroup_read,
296c81d8 5940 },
8cdea7c0
BS
5941 {
5942 .name = "failcnt",
8c7c6e34 5943 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5944 .trigger = mem_cgroup_reset,
af36f906 5945 .read = mem_cgroup_read,
8cdea7c0 5946 },
d2ceb9b7
KH
5947 {
5948 .name = "stat",
ab215884 5949 .read_seq_string = memcg_stat_show,
d2ceb9b7 5950 },
c1e862c1
KH
5951 {
5952 .name = "force_empty",
5953 .trigger = mem_cgroup_force_empty_write,
5954 },
18f59ea7
BS
5955 {
5956 .name = "use_hierarchy",
f00baae7 5957 .flags = CFTYPE_INSANE,
18f59ea7
BS
5958 .write_u64 = mem_cgroup_hierarchy_write,
5959 .read_u64 = mem_cgroup_hierarchy_read,
5960 },
a7885eb8
KM
5961 {
5962 .name = "swappiness",
5963 .read_u64 = mem_cgroup_swappiness_read,
5964 .write_u64 = mem_cgroup_swappiness_write,
5965 },
7dc74be0
DN
5966 {
5967 .name = "move_charge_at_immigrate",
5968 .read_u64 = mem_cgroup_move_charge_read,
5969 .write_u64 = mem_cgroup_move_charge_write,
5970 },
9490ff27
KH
5971 {
5972 .name = "oom_control",
3c11ecf4
KH
5973 .read_map = mem_cgroup_oom_control_read,
5974 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5975 .register_event = mem_cgroup_oom_register_event,
5976 .unregister_event = mem_cgroup_oom_unregister_event,
5977 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5978 },
70ddf637
AV
5979 {
5980 .name = "pressure_level",
5981 .register_event = vmpressure_register_event,
5982 .unregister_event = vmpressure_unregister_event,
5983 },
406eb0c9
YH
5984#ifdef CONFIG_NUMA
5985 {
5986 .name = "numa_stat",
ab215884 5987 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5988 },
5989#endif
510fc4e1
GC
5990#ifdef CONFIG_MEMCG_KMEM
5991 {
5992 .name = "kmem.limit_in_bytes",
5993 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5994 .write_string = mem_cgroup_write,
5995 .read = mem_cgroup_read,
5996 },
5997 {
5998 .name = "kmem.usage_in_bytes",
5999 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6000 .read = mem_cgroup_read,
6001 },
6002 {
6003 .name = "kmem.failcnt",
6004 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6005 .trigger = mem_cgroup_reset,
6006 .read = mem_cgroup_read,
6007 },
6008 {
6009 .name = "kmem.max_usage_in_bytes",
6010 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6011 .trigger = mem_cgroup_reset,
6012 .read = mem_cgroup_read,
6013 },
749c5415
GC
6014#ifdef CONFIG_SLABINFO
6015 {
6016 .name = "kmem.slabinfo",
6017 .read_seq_string = mem_cgroup_slabinfo_read,
6018 },
6019#endif
8c7c6e34 6020#endif
6bc10349 6021 { }, /* terminate */
af36f906 6022};
8c7c6e34 6023
2d11085e
MH
6024#ifdef CONFIG_MEMCG_SWAP
6025static struct cftype memsw_cgroup_files[] = {
6026 {
6027 .name = "memsw.usage_in_bytes",
6028 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6029 .read = mem_cgroup_read,
6030 .register_event = mem_cgroup_usage_register_event,
6031 .unregister_event = mem_cgroup_usage_unregister_event,
6032 },
6033 {
6034 .name = "memsw.max_usage_in_bytes",
6035 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6036 .trigger = mem_cgroup_reset,
6037 .read = mem_cgroup_read,
6038 },
6039 {
6040 .name = "memsw.limit_in_bytes",
6041 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6042 .write_string = mem_cgroup_write,
6043 .read = mem_cgroup_read,
6044 },
6045 {
6046 .name = "memsw.failcnt",
6047 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6048 .trigger = mem_cgroup_reset,
6049 .read = mem_cgroup_read,
6050 },
6051 { }, /* terminate */
6052};
6053#endif
c0ff4b85 6054static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6055{
6056 struct mem_cgroup_per_node *pn;
1ecaab2b 6057 struct mem_cgroup_per_zone *mz;
41e3355d 6058 int zone, tmp = node;
1ecaab2b
KH
6059 /*
6060 * This routine is called against possible nodes.
6061 * But it's BUG to call kmalloc() against offline node.
6062 *
6063 * TODO: this routine can waste much memory for nodes which will
6064 * never be onlined. It's better to use memory hotplug callback
6065 * function.
6066 */
41e3355d
KH
6067 if (!node_state(node, N_NORMAL_MEMORY))
6068 tmp = -1;
17295c88 6069 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6070 if (!pn)
6071 return 1;
1ecaab2b 6072
1ecaab2b
KH
6073 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6074 mz = &pn->zoneinfo[zone];
bea8c150 6075 lruvec_init(&mz->lruvec);
f64c3f54 6076 mz->usage_in_excess = 0;
4e416953 6077 mz->on_tree = false;
d79154bb 6078 mz->memcg = memcg;
1ecaab2b 6079 }
54f72fe0 6080 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6081 return 0;
6082}
6083
c0ff4b85 6084static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6085{
54f72fe0 6086 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6087}
6088
33327948
KH
6089static struct mem_cgroup *mem_cgroup_alloc(void)
6090{
d79154bb 6091 struct mem_cgroup *memcg;
45cf7ebd 6092 size_t size = memcg_size();
33327948 6093
45cf7ebd 6094 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6095 if (size < PAGE_SIZE)
d79154bb 6096 memcg = kzalloc(size, GFP_KERNEL);
33327948 6097 else
d79154bb 6098 memcg = vzalloc(size);
33327948 6099
d79154bb 6100 if (!memcg)
e7bbcdf3
DC
6101 return NULL;
6102
d79154bb
HD
6103 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6104 if (!memcg->stat)
d2e61b8d 6105 goto out_free;
d79154bb
HD
6106 spin_lock_init(&memcg->pcp_counter_lock);
6107 return memcg;
d2e61b8d
DC
6108
6109out_free:
6110 if (size < PAGE_SIZE)
d79154bb 6111 kfree(memcg);
d2e61b8d 6112 else
d79154bb 6113 vfree(memcg);
d2e61b8d 6114 return NULL;
33327948
KH
6115}
6116
59927fb9 6117/*
c8b2a36f
GC
6118 * At destroying mem_cgroup, references from swap_cgroup can remain.
6119 * (scanning all at force_empty is too costly...)
6120 *
6121 * Instead of clearing all references at force_empty, we remember
6122 * the number of reference from swap_cgroup and free mem_cgroup when
6123 * it goes down to 0.
6124 *
6125 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6126 */
c8b2a36f
GC
6127
6128static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6129{
c8b2a36f 6130 int node;
45cf7ebd 6131 size_t size = memcg_size();
59927fb9 6132
c8b2a36f
GC
6133 mem_cgroup_remove_from_trees(memcg);
6134 free_css_id(&mem_cgroup_subsys, &memcg->css);
6135
6136 for_each_node(node)
6137 free_mem_cgroup_per_zone_info(memcg, node);
6138
6139 free_percpu(memcg->stat);
6140
3f134619
GC
6141 /*
6142 * We need to make sure that (at least for now), the jump label
6143 * destruction code runs outside of the cgroup lock. This is because
6144 * get_online_cpus(), which is called from the static_branch update,
6145 * can't be called inside the cgroup_lock. cpusets are the ones
6146 * enforcing this dependency, so if they ever change, we might as well.
6147 *
6148 * schedule_work() will guarantee this happens. Be careful if you need
6149 * to move this code around, and make sure it is outside
6150 * the cgroup_lock.
6151 */
a8964b9b 6152 disarm_static_keys(memcg);
3afe36b1
GC
6153 if (size < PAGE_SIZE)
6154 kfree(memcg);
6155 else
6156 vfree(memcg);
59927fb9 6157}
3afe36b1 6158
59927fb9 6159
8c7c6e34 6160/*
c8b2a36f
GC
6161 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6162 * but in process context. The work_freeing structure is overlaid
6163 * on the rcu_freeing structure, which itself is overlaid on memsw.
8c7c6e34 6164 */
c8b2a36f 6165static void free_work(struct work_struct *work)
33327948 6166{
c8b2a36f 6167 struct mem_cgroup *memcg;
08e552c6 6168
c8b2a36f
GC
6169 memcg = container_of(work, struct mem_cgroup, work_freeing);
6170 __mem_cgroup_free(memcg);
6171}
04046e1a 6172
c8b2a36f
GC
6173static void free_rcu(struct rcu_head *rcu_head)
6174{
6175 struct mem_cgroup *memcg;
08e552c6 6176
c8b2a36f
GC
6177 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6178 INIT_WORK(&memcg->work_freeing, free_work);
6179 schedule_work(&memcg->work_freeing);
33327948
KH
6180}
6181
c0ff4b85 6182static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 6183{
c0ff4b85 6184 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
6185}
6186
c0ff4b85 6187static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 6188{
c0ff4b85
R
6189 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6190 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
c8b2a36f 6191 call_rcu(&memcg->rcu_freeing, free_rcu);
7bcc1bb1
DN
6192 if (parent)
6193 mem_cgroup_put(parent);
6194 }
8c7c6e34
KH
6195}
6196
c0ff4b85 6197static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 6198{
c0ff4b85 6199 __mem_cgroup_put(memcg, 1);
483c30b5
DN
6200}
6201
7bcc1bb1
DN
6202/*
6203 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6204 */
e1aab161 6205struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6206{
c0ff4b85 6207 if (!memcg->res.parent)
7bcc1bb1 6208 return NULL;
c0ff4b85 6209 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6210}
e1aab161 6211EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6212
8787a1df 6213static void __init mem_cgroup_soft_limit_tree_init(void)
f64c3f54
BS
6214{
6215 struct mem_cgroup_tree_per_node *rtpn;
6216 struct mem_cgroup_tree_per_zone *rtpz;
6217 int tmp, node, zone;
6218
3ed28fa1 6219 for_each_node(node) {
f64c3f54
BS
6220 tmp = node;
6221 if (!node_state(node, N_NORMAL_MEMORY))
6222 tmp = -1;
6223 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
8787a1df 6224 BUG_ON(!rtpn);
f64c3f54
BS
6225
6226 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6227
6228 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6229 rtpz = &rtpn->rb_tree_per_zone[zone];
6230 rtpz->rb_root = RB_ROOT;
6231 spin_lock_init(&rtpz->lock);
6232 }
6233 }
f64c3f54
BS
6234}
6235
0eb253e2 6236static struct cgroup_subsys_state * __ref
92fb9748 6237mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 6238{
d142e3e6 6239 struct mem_cgroup *memcg;
04046e1a 6240 long error = -ENOMEM;
6d12e2d8 6241 int node;
8cdea7c0 6242
c0ff4b85
R
6243 memcg = mem_cgroup_alloc();
6244 if (!memcg)
04046e1a 6245 return ERR_PTR(error);
78fb7466 6246
3ed28fa1 6247 for_each_node(node)
c0ff4b85 6248 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6249 goto free_out;
f64c3f54 6250
c077719b 6251 /* root ? */
28dbc4b6 6252 if (cont->parent == NULL) {
a41c58a6 6253 root_mem_cgroup = memcg;
d142e3e6
GC
6254 res_counter_init(&memcg->res, NULL);
6255 res_counter_init(&memcg->memsw, NULL);
6256 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6257 }
28dbc4b6 6258
d142e3e6
GC
6259 memcg->last_scanned_node = MAX_NUMNODES;
6260 INIT_LIST_HEAD(&memcg->oom_notify);
6261 atomic_set(&memcg->refcnt, 1);
6262 memcg->move_charge_at_immigrate = 0;
6263 mutex_init(&memcg->thresholds_lock);
6264 spin_lock_init(&memcg->move_lock);
70ddf637 6265 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6266
6267 return &memcg->css;
6268
6269free_out:
6270 __mem_cgroup_free(memcg);
6271 return ERR_PTR(error);
6272}
6273
6274static int
6275mem_cgroup_css_online(struct cgroup *cont)
6276{
6277 struct mem_cgroup *memcg, *parent;
6278 int error = 0;
6279
6280 if (!cont->parent)
6281 return 0;
6282
0999821b 6283 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6284 memcg = mem_cgroup_from_cont(cont);
6285 parent = mem_cgroup_from_cont(cont->parent);
6286
6287 memcg->use_hierarchy = parent->use_hierarchy;
6288 memcg->oom_kill_disable = parent->oom_kill_disable;
6289 memcg->swappiness = mem_cgroup_swappiness(parent);
6290
6291 if (parent->use_hierarchy) {
c0ff4b85
R
6292 res_counter_init(&memcg->res, &parent->res);
6293 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6294 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6295
7bcc1bb1
DN
6296 /*
6297 * We increment refcnt of the parent to ensure that we can
6298 * safely access it on res_counter_charge/uncharge.
6299 * This refcnt will be decremented when freeing this
6300 * mem_cgroup(see mem_cgroup_put).
6301 */
6302 mem_cgroup_get(parent);
18f59ea7 6303 } else {
c0ff4b85
R
6304 res_counter_init(&memcg->res, NULL);
6305 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6306 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6307 /*
6308 * Deeper hierachy with use_hierarchy == false doesn't make
6309 * much sense so let cgroup subsystem know about this
6310 * unfortunate state in our controller.
6311 */
d142e3e6 6312 if (parent != root_mem_cgroup)
8c7f6edb 6313 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6314 }
cbe128e3
GC
6315
6316 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6317 mutex_unlock(&memcg_create_mutex);
cbe128e3
GC
6318 if (error) {
6319 /*
6320 * We call put now because our (and parent's) refcnts
6321 * are already in place. mem_cgroup_put() will internally
6322 * call __mem_cgroup_free, so return directly
6323 */
6324 mem_cgroup_put(memcg);
e4715f01
GC
6325 if (parent->use_hierarchy)
6326 mem_cgroup_put(parent);
cbe128e3 6327 }
d142e3e6 6328 return error;
8cdea7c0
BS
6329}
6330
5f578161
MH
6331/*
6332 * Announce all parents that a group from their hierarchy is gone.
6333 */
6334static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6335{
6336 struct mem_cgroup *parent = memcg;
6337
6338 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6339 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6340
6341 /*
6342 * if the root memcg is not hierarchical we have to check it
6343 * explicitely.
6344 */
6345 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6346 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6347}
6348
92fb9748 6349static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 6350{
c0ff4b85 6351 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 6352
5f578161 6353 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6354 mem_cgroup_reparent_charges(memcg);
1f458cbf 6355 mem_cgroup_destroy_all_caches(memcg);
df878fb0
KH
6356}
6357
92fb9748 6358static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 6359{
c0ff4b85 6360 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 6361
1d62e436 6362 kmem_cgroup_destroy(memcg);
d1a4c0b3 6363
c0ff4b85 6364 mem_cgroup_put(memcg);
8cdea7c0
BS
6365}
6366
02491447 6367#ifdef CONFIG_MMU
7dc74be0 6368/* Handlers for move charge at task migration. */
854ffa8d
DN
6369#define PRECHARGE_COUNT_AT_ONCE 256
6370static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6371{
854ffa8d
DN
6372 int ret = 0;
6373 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6374 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6375
c0ff4b85 6376 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6377 mc.precharge += count;
6378 /* we don't need css_get for root */
6379 return ret;
6380 }
6381 /* try to charge at once */
6382 if (count > 1) {
6383 struct res_counter *dummy;
6384 /*
c0ff4b85 6385 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6386 * by cgroup_lock_live_cgroup() that it is not removed and we
6387 * are still under the same cgroup_mutex. So we can postpone
6388 * css_get().
6389 */
c0ff4b85 6390 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6391 goto one_by_one;
c0ff4b85 6392 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6393 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6394 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6395 goto one_by_one;
6396 }
6397 mc.precharge += count;
854ffa8d
DN
6398 return ret;
6399 }
6400one_by_one:
6401 /* fall back to one by one charge */
6402 while (count--) {
6403 if (signal_pending(current)) {
6404 ret = -EINTR;
6405 break;
6406 }
6407 if (!batch_count--) {
6408 batch_count = PRECHARGE_COUNT_AT_ONCE;
6409 cond_resched();
6410 }
c0ff4b85
R
6411 ret = __mem_cgroup_try_charge(NULL,
6412 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6413 if (ret)
854ffa8d 6414 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6415 return ret;
854ffa8d
DN
6416 mc.precharge++;
6417 }
4ffef5fe
DN
6418 return ret;
6419}
6420
6421/**
8d32ff84 6422 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6423 * @vma: the vma the pte to be checked belongs
6424 * @addr: the address corresponding to the pte to be checked
6425 * @ptent: the pte to be checked
02491447 6426 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6427 *
6428 * Returns
6429 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6430 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6431 * move charge. if @target is not NULL, the page is stored in target->page
6432 * with extra refcnt got(Callers should handle it).
02491447
DN
6433 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6434 * target for charge migration. if @target is not NULL, the entry is stored
6435 * in target->ent.
4ffef5fe
DN
6436 *
6437 * Called with pte lock held.
6438 */
4ffef5fe
DN
6439union mc_target {
6440 struct page *page;
02491447 6441 swp_entry_t ent;
4ffef5fe
DN
6442};
6443
4ffef5fe 6444enum mc_target_type {
8d32ff84 6445 MC_TARGET_NONE = 0,
4ffef5fe 6446 MC_TARGET_PAGE,
02491447 6447 MC_TARGET_SWAP,
4ffef5fe
DN
6448};
6449
90254a65
DN
6450static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6451 unsigned long addr, pte_t ptent)
4ffef5fe 6452{
90254a65 6453 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6454
90254a65
DN
6455 if (!page || !page_mapped(page))
6456 return NULL;
6457 if (PageAnon(page)) {
6458 /* we don't move shared anon */
4b91355e 6459 if (!move_anon())
90254a65 6460 return NULL;
87946a72
DN
6461 } else if (!move_file())
6462 /* we ignore mapcount for file pages */
90254a65
DN
6463 return NULL;
6464 if (!get_page_unless_zero(page))
6465 return NULL;
6466
6467 return page;
6468}
6469
4b91355e 6470#ifdef CONFIG_SWAP
90254a65
DN
6471static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6472 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6473{
90254a65
DN
6474 struct page *page = NULL;
6475 swp_entry_t ent = pte_to_swp_entry(ptent);
6476
6477 if (!move_anon() || non_swap_entry(ent))
6478 return NULL;
4b91355e
KH
6479 /*
6480 * Because lookup_swap_cache() updates some statistics counter,
6481 * we call find_get_page() with swapper_space directly.
6482 */
33806f06 6483 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6484 if (do_swap_account)
6485 entry->val = ent.val;
6486
6487 return page;
6488}
4b91355e
KH
6489#else
6490static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6491 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6492{
6493 return NULL;
6494}
6495#endif
90254a65 6496
87946a72
DN
6497static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6498 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6499{
6500 struct page *page = NULL;
87946a72
DN
6501 struct address_space *mapping;
6502 pgoff_t pgoff;
6503
6504 if (!vma->vm_file) /* anonymous vma */
6505 return NULL;
6506 if (!move_file())
6507 return NULL;
6508
87946a72
DN
6509 mapping = vma->vm_file->f_mapping;
6510 if (pte_none(ptent))
6511 pgoff = linear_page_index(vma, addr);
6512 else /* pte_file(ptent) is true */
6513 pgoff = pte_to_pgoff(ptent);
6514
6515 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6516 page = find_get_page(mapping, pgoff);
6517
6518#ifdef CONFIG_SWAP
6519 /* shmem/tmpfs may report page out on swap: account for that too. */
6520 if (radix_tree_exceptional_entry(page)) {
6521 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6522 if (do_swap_account)
aa3b1895 6523 *entry = swap;
33806f06 6524 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6525 }
aa3b1895 6526#endif
87946a72
DN
6527 return page;
6528}
6529
8d32ff84 6530static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6531 unsigned long addr, pte_t ptent, union mc_target *target)
6532{
6533 struct page *page = NULL;
6534 struct page_cgroup *pc;
8d32ff84 6535 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6536 swp_entry_t ent = { .val = 0 };
6537
6538 if (pte_present(ptent))
6539 page = mc_handle_present_pte(vma, addr, ptent);
6540 else if (is_swap_pte(ptent))
6541 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6542 else if (pte_none(ptent) || pte_file(ptent))
6543 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6544
6545 if (!page && !ent.val)
8d32ff84 6546 return ret;
02491447
DN
6547 if (page) {
6548 pc = lookup_page_cgroup(page);
6549 /*
6550 * Do only loose check w/o page_cgroup lock.
6551 * mem_cgroup_move_account() checks the pc is valid or not under
6552 * the lock.
6553 */
6554 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6555 ret = MC_TARGET_PAGE;
6556 if (target)
6557 target->page = page;
6558 }
6559 if (!ret || !target)
6560 put_page(page);
6561 }
90254a65
DN
6562 /* There is a swap entry and a page doesn't exist or isn't charged */
6563 if (ent.val && !ret &&
9fb4b7cc 6564 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6565 ret = MC_TARGET_SWAP;
6566 if (target)
6567 target->ent = ent;
4ffef5fe 6568 }
4ffef5fe
DN
6569 return ret;
6570}
6571
12724850
NH
6572#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6573/*
6574 * We don't consider swapping or file mapped pages because THP does not
6575 * support them for now.
6576 * Caller should make sure that pmd_trans_huge(pmd) is true.
6577 */
6578static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6579 unsigned long addr, pmd_t pmd, union mc_target *target)
6580{
6581 struct page *page = NULL;
6582 struct page_cgroup *pc;
6583 enum mc_target_type ret = MC_TARGET_NONE;
6584
6585 page = pmd_page(pmd);
6586 VM_BUG_ON(!page || !PageHead(page));
6587 if (!move_anon())
6588 return ret;
6589 pc = lookup_page_cgroup(page);
6590 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6591 ret = MC_TARGET_PAGE;
6592 if (target) {
6593 get_page(page);
6594 target->page = page;
6595 }
6596 }
6597 return ret;
6598}
6599#else
6600static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6601 unsigned long addr, pmd_t pmd, union mc_target *target)
6602{
6603 return MC_TARGET_NONE;
6604}
6605#endif
6606
4ffef5fe
DN
6607static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6608 unsigned long addr, unsigned long end,
6609 struct mm_walk *walk)
6610{
6611 struct vm_area_struct *vma = walk->private;
6612 pte_t *pte;
6613 spinlock_t *ptl;
6614
12724850
NH
6615 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6616 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6617 mc.precharge += HPAGE_PMD_NR;
6618 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6619 return 0;
12724850 6620 }
03319327 6621
45f83cef
AA
6622 if (pmd_trans_unstable(pmd))
6623 return 0;
4ffef5fe
DN
6624 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6625 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6626 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6627 mc.precharge++; /* increment precharge temporarily */
6628 pte_unmap_unlock(pte - 1, ptl);
6629 cond_resched();
6630
7dc74be0
DN
6631 return 0;
6632}
6633
4ffef5fe
DN
6634static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6635{
6636 unsigned long precharge;
6637 struct vm_area_struct *vma;
6638
dfe076b0 6639 down_read(&mm->mmap_sem);
4ffef5fe
DN
6640 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6641 struct mm_walk mem_cgroup_count_precharge_walk = {
6642 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6643 .mm = mm,
6644 .private = vma,
6645 };
6646 if (is_vm_hugetlb_page(vma))
6647 continue;
4ffef5fe
DN
6648 walk_page_range(vma->vm_start, vma->vm_end,
6649 &mem_cgroup_count_precharge_walk);
6650 }
dfe076b0 6651 up_read(&mm->mmap_sem);
4ffef5fe
DN
6652
6653 precharge = mc.precharge;
6654 mc.precharge = 0;
6655
6656 return precharge;
6657}
6658
4ffef5fe
DN
6659static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6660{
dfe076b0
DN
6661 unsigned long precharge = mem_cgroup_count_precharge(mm);
6662
6663 VM_BUG_ON(mc.moving_task);
6664 mc.moving_task = current;
6665 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6666}
6667
dfe076b0
DN
6668/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6669static void __mem_cgroup_clear_mc(void)
4ffef5fe 6670{
2bd9bb20
KH
6671 struct mem_cgroup *from = mc.from;
6672 struct mem_cgroup *to = mc.to;
6673
4ffef5fe 6674 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6675 if (mc.precharge) {
6676 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6677 mc.precharge = 0;
6678 }
6679 /*
6680 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6681 * we must uncharge here.
6682 */
6683 if (mc.moved_charge) {
6684 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6685 mc.moved_charge = 0;
4ffef5fe 6686 }
483c30b5
DN
6687 /* we must fixup refcnts and charges */
6688 if (mc.moved_swap) {
483c30b5
DN
6689 /* uncharge swap account from the old cgroup */
6690 if (!mem_cgroup_is_root(mc.from))
6691 res_counter_uncharge(&mc.from->memsw,
6692 PAGE_SIZE * mc.moved_swap);
6693 __mem_cgroup_put(mc.from, mc.moved_swap);
6694
6695 if (!mem_cgroup_is_root(mc.to)) {
6696 /*
6697 * we charged both to->res and to->memsw, so we should
6698 * uncharge to->res.
6699 */
6700 res_counter_uncharge(&mc.to->res,
6701 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
6702 }
6703 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
6704 mc.moved_swap = 0;
6705 }
dfe076b0
DN
6706 memcg_oom_recover(from);
6707 memcg_oom_recover(to);
6708 wake_up_all(&mc.waitq);
6709}
6710
6711static void mem_cgroup_clear_mc(void)
6712{
6713 struct mem_cgroup *from = mc.from;
6714
6715 /*
6716 * we must clear moving_task before waking up waiters at the end of
6717 * task migration.
6718 */
6719 mc.moving_task = NULL;
6720 __mem_cgroup_clear_mc();
2bd9bb20 6721 spin_lock(&mc.lock);
4ffef5fe
DN
6722 mc.from = NULL;
6723 mc.to = NULL;
2bd9bb20 6724 spin_unlock(&mc.lock);
32047e2a 6725 mem_cgroup_end_move(from);
4ffef5fe
DN
6726}
6727
761b3ef5
LZ
6728static int mem_cgroup_can_attach(struct cgroup *cgroup,
6729 struct cgroup_taskset *tset)
7dc74be0 6730{
2f7ee569 6731 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6732 int ret = 0;
c0ff4b85 6733 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
ee5e8472 6734 unsigned long move_charge_at_immigrate;
7dc74be0 6735
ee5e8472
GC
6736 /*
6737 * We are now commited to this value whatever it is. Changes in this
6738 * tunable will only affect upcoming migrations, not the current one.
6739 * So we need to save it, and keep it going.
6740 */
6741 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6742 if (move_charge_at_immigrate) {
7dc74be0
DN
6743 struct mm_struct *mm;
6744 struct mem_cgroup *from = mem_cgroup_from_task(p);
6745
c0ff4b85 6746 VM_BUG_ON(from == memcg);
7dc74be0
DN
6747
6748 mm = get_task_mm(p);
6749 if (!mm)
6750 return 0;
7dc74be0 6751 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6752 if (mm->owner == p) {
6753 VM_BUG_ON(mc.from);
6754 VM_BUG_ON(mc.to);
6755 VM_BUG_ON(mc.precharge);
854ffa8d 6756 VM_BUG_ON(mc.moved_charge);
483c30b5 6757 VM_BUG_ON(mc.moved_swap);
32047e2a 6758 mem_cgroup_start_move(from);
2bd9bb20 6759 spin_lock(&mc.lock);
4ffef5fe 6760 mc.from = from;
c0ff4b85 6761 mc.to = memcg;
ee5e8472 6762 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6763 spin_unlock(&mc.lock);
dfe076b0 6764 /* We set mc.moving_task later */
4ffef5fe
DN
6765
6766 ret = mem_cgroup_precharge_mc(mm);
6767 if (ret)
6768 mem_cgroup_clear_mc();
dfe076b0
DN
6769 }
6770 mmput(mm);
7dc74be0
DN
6771 }
6772 return ret;
6773}
6774
761b3ef5
LZ
6775static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6776 struct cgroup_taskset *tset)
7dc74be0 6777{
4ffef5fe 6778 mem_cgroup_clear_mc();
7dc74be0
DN
6779}
6780
4ffef5fe
DN
6781static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6782 unsigned long addr, unsigned long end,
6783 struct mm_walk *walk)
7dc74be0 6784{
4ffef5fe
DN
6785 int ret = 0;
6786 struct vm_area_struct *vma = walk->private;
6787 pte_t *pte;
6788 spinlock_t *ptl;
12724850
NH
6789 enum mc_target_type target_type;
6790 union mc_target target;
6791 struct page *page;
6792 struct page_cgroup *pc;
4ffef5fe 6793
12724850
NH
6794 /*
6795 * We don't take compound_lock() here but no race with splitting thp
6796 * happens because:
6797 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6798 * under splitting, which means there's no concurrent thp split,
6799 * - if another thread runs into split_huge_page() just after we
6800 * entered this if-block, the thread must wait for page table lock
6801 * to be unlocked in __split_huge_page_splitting(), where the main
6802 * part of thp split is not executed yet.
6803 */
6804 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6805 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6806 spin_unlock(&vma->vm_mm->page_table_lock);
6807 return 0;
6808 }
6809 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6810 if (target_type == MC_TARGET_PAGE) {
6811 page = target.page;
6812 if (!isolate_lru_page(page)) {
6813 pc = lookup_page_cgroup(page);
6814 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6815 pc, mc.from, mc.to)) {
12724850
NH
6816 mc.precharge -= HPAGE_PMD_NR;
6817 mc.moved_charge += HPAGE_PMD_NR;
6818 }
6819 putback_lru_page(page);
6820 }
6821 put_page(page);
6822 }
6823 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6824 return 0;
12724850
NH
6825 }
6826
45f83cef
AA
6827 if (pmd_trans_unstable(pmd))
6828 return 0;
4ffef5fe
DN
6829retry:
6830 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6831 for (; addr != end; addr += PAGE_SIZE) {
6832 pte_t ptent = *(pte++);
02491447 6833 swp_entry_t ent;
4ffef5fe
DN
6834
6835 if (!mc.precharge)
6836 break;
6837
8d32ff84 6838 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6839 case MC_TARGET_PAGE:
6840 page = target.page;
6841 if (isolate_lru_page(page))
6842 goto put;
6843 pc = lookup_page_cgroup(page);
7ec99d62 6844 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6845 mc.from, mc.to)) {
4ffef5fe 6846 mc.precharge--;
854ffa8d
DN
6847 /* we uncharge from mc.from later. */
6848 mc.moved_charge++;
4ffef5fe
DN
6849 }
6850 putback_lru_page(page);
8d32ff84 6851put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6852 put_page(page);
6853 break;
02491447
DN
6854 case MC_TARGET_SWAP:
6855 ent = target.ent;
e91cbb42 6856 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6857 mc.precharge--;
483c30b5
DN
6858 /* we fixup refcnts and charges later. */
6859 mc.moved_swap++;
6860 }
02491447 6861 break;
4ffef5fe
DN
6862 default:
6863 break;
6864 }
6865 }
6866 pte_unmap_unlock(pte - 1, ptl);
6867 cond_resched();
6868
6869 if (addr != end) {
6870 /*
6871 * We have consumed all precharges we got in can_attach().
6872 * We try charge one by one, but don't do any additional
6873 * charges to mc.to if we have failed in charge once in attach()
6874 * phase.
6875 */
854ffa8d 6876 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6877 if (!ret)
6878 goto retry;
6879 }
6880
6881 return ret;
6882}
6883
6884static void mem_cgroup_move_charge(struct mm_struct *mm)
6885{
6886 struct vm_area_struct *vma;
6887
6888 lru_add_drain_all();
dfe076b0
DN
6889retry:
6890 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6891 /*
6892 * Someone who are holding the mmap_sem might be waiting in
6893 * waitq. So we cancel all extra charges, wake up all waiters,
6894 * and retry. Because we cancel precharges, we might not be able
6895 * to move enough charges, but moving charge is a best-effort
6896 * feature anyway, so it wouldn't be a big problem.
6897 */
6898 __mem_cgroup_clear_mc();
6899 cond_resched();
6900 goto retry;
6901 }
4ffef5fe
DN
6902 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6903 int ret;
6904 struct mm_walk mem_cgroup_move_charge_walk = {
6905 .pmd_entry = mem_cgroup_move_charge_pte_range,
6906 .mm = mm,
6907 .private = vma,
6908 };
6909 if (is_vm_hugetlb_page(vma))
6910 continue;
4ffef5fe
DN
6911 ret = walk_page_range(vma->vm_start, vma->vm_end,
6912 &mem_cgroup_move_charge_walk);
6913 if (ret)
6914 /*
6915 * means we have consumed all precharges and failed in
6916 * doing additional charge. Just abandon here.
6917 */
6918 break;
6919 }
dfe076b0 6920 up_read(&mm->mmap_sem);
7dc74be0
DN
6921}
6922
761b3ef5
LZ
6923static void mem_cgroup_move_task(struct cgroup *cont,
6924 struct cgroup_taskset *tset)
67e465a7 6925{
2f7ee569 6926 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6927 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6928
dfe076b0 6929 if (mm) {
a433658c
KM
6930 if (mc.to)
6931 mem_cgroup_move_charge(mm);
dfe076b0
DN
6932 mmput(mm);
6933 }
a433658c
KM
6934 if (mc.to)
6935 mem_cgroup_clear_mc();
67e465a7 6936}
5cfb80a7 6937#else /* !CONFIG_MMU */
761b3ef5
LZ
6938static int mem_cgroup_can_attach(struct cgroup *cgroup,
6939 struct cgroup_taskset *tset)
5cfb80a7
DN
6940{
6941 return 0;
6942}
761b3ef5
LZ
6943static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6944 struct cgroup_taskset *tset)
5cfb80a7
DN
6945{
6946}
761b3ef5
LZ
6947static void mem_cgroup_move_task(struct cgroup *cont,
6948 struct cgroup_taskset *tset)
5cfb80a7
DN
6949{
6950}
6951#endif
67e465a7 6952
f00baae7
TH
6953/*
6954 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6955 * to verify sane_behavior flag on each mount attempt.
6956 */
6957static void mem_cgroup_bind(struct cgroup *root)
6958{
6959 /*
6960 * use_hierarchy is forced with sane_behavior. cgroup core
6961 * guarantees that @root doesn't have any children, so turning it
6962 * on for the root memcg is enough.
6963 */
6964 if (cgroup_sane_behavior(root))
6965 mem_cgroup_from_cont(root)->use_hierarchy = true;
6966}
6967
8cdea7c0
BS
6968struct cgroup_subsys mem_cgroup_subsys = {
6969 .name = "memory",
6970 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6971 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6972 .css_online = mem_cgroup_css_online,
92fb9748
TH
6973 .css_offline = mem_cgroup_css_offline,
6974 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6975 .can_attach = mem_cgroup_can_attach,
6976 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6977 .attach = mem_cgroup_move_task,
f00baae7 6978 .bind = mem_cgroup_bind,
6bc10349 6979 .base_cftypes = mem_cgroup_files,
6d12e2d8 6980 .early_init = 0,
04046e1a 6981 .use_id = 1,
8cdea7c0 6982};
c077719b 6983
c255a458 6984#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6985static int __init enable_swap_account(char *s)
6986{
6987 /* consider enabled if no parameter or 1 is given */
a2c8990a 6988 if (!strcmp(s, "1"))
a42c390c 6989 really_do_swap_account = 1;
a2c8990a 6990 else if (!strcmp(s, "0"))
a42c390c
MH
6991 really_do_swap_account = 0;
6992 return 1;
6993}
a2c8990a 6994__setup("swapaccount=", enable_swap_account);
c077719b 6995
2d11085e
MH
6996static void __init memsw_file_init(void)
6997{
6acc8b02
MH
6998 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6999}
7000
7001static void __init enable_swap_cgroup(void)
7002{
7003 if (!mem_cgroup_disabled() && really_do_swap_account) {
7004 do_swap_account = 1;
7005 memsw_file_init();
7006 }
2d11085e 7007}
6acc8b02 7008
2d11085e 7009#else
6acc8b02 7010static void __init enable_swap_cgroup(void)
2d11085e
MH
7011{
7012}
c077719b 7013#endif
2d11085e
MH
7014
7015/*
1081312f
MH
7016 * subsys_initcall() for memory controller.
7017 *
7018 * Some parts like hotcpu_notifier() have to be initialized from this context
7019 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7020 * everything that doesn't depend on a specific mem_cgroup structure should
7021 * be initialized from here.
2d11085e
MH
7022 */
7023static int __init mem_cgroup_init(void)
7024{
7025 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7026 enable_swap_cgroup();
8787a1df 7027 mem_cgroup_soft_limit_tree_init();
e4777496 7028 memcg_stock_init();
2d11085e
MH
7029 return 0;
7030}
7031subsys_initcall(mem_cgroup_init);