memcg: simplify charging kmem pages
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
d1a4c0b3 69#include <net/tcp_memcontrol.h>
f35c3a8e 70#include "slab.h"
8cdea7c0 71
8697d331
BS
72#include <asm/uaccess.h>
73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
a181b0e8 79#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 80static struct mem_cgroup *root_mem_cgroup __read_mostly;
56161634 81struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
8cdea7c0 82
21afa38e 83/* Whether the swap controller is active */
c255a458 84#ifdef CONFIG_MEMCG_SWAP
c077719b 85int do_swap_account __read_mostly;
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
af7c4b0e
JW
90static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
b070e65c 93 "rss_huge",
af7c4b0e 94 "mapped_file",
c4843a75 95 "dirty",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
af7c4b0e
JW
100static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105};
106
58cf188e
SZ
107static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113};
114
a0db00fc
KS
115#define THRESHOLDS_EVENTS_TARGET 128
116#define SOFTLIMIT_EVENTS_TARGET 1024
117#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 118
bb4cc1a8
AM
119/*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124struct mem_cgroup_tree_per_zone {
125 struct rb_root rb_root;
126 spinlock_t lock;
127};
128
129struct mem_cgroup_tree_per_node {
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131};
132
133struct mem_cgroup_tree {
134 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135};
136
137static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
9490ff27
KH
139/* for OOM */
140struct mem_cgroup_eventfd_list {
141 struct list_head list;
142 struct eventfd_ctx *eventfd;
143};
2e72b634 144
79bd9814
TH
145/*
146 * cgroup_event represents events which userspace want to receive.
147 */
3bc942f3 148struct mem_cgroup_event {
79bd9814 149 /*
59b6f873 150 * memcg which the event belongs to.
79bd9814 151 */
59b6f873 152 struct mem_cgroup *memcg;
79bd9814
TH
153 /*
154 * eventfd to signal userspace about the event.
155 */
156 struct eventfd_ctx *eventfd;
157 /*
158 * Each of these stored in a list by the cgroup.
159 */
160 struct list_head list;
fba94807
TH
161 /*
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
165 */
59b6f873 166 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 167 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
168 /*
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
172 */
59b6f873 173 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 174 struct eventfd_ctx *eventfd);
79bd9814
TH
175 /*
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
178 */
179 poll_table pt;
180 wait_queue_head_t *wqh;
181 wait_queue_t wait;
182 struct work_struct remove;
183};
184
c0ff4b85
R
185static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 187
7dc74be0
DN
188/* Stuffs for move charges at task migration. */
189/*
1dfab5ab 190 * Types of charges to be moved.
7dc74be0 191 */
1dfab5ab
JW
192#define MOVE_ANON 0x1U
193#define MOVE_FILE 0x2U
194#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 195
4ffef5fe
DN
196/* "mc" and its members are protected by cgroup_mutex */
197static struct move_charge_struct {
b1dd693e 198 spinlock_t lock; /* for from, to */
4ffef5fe
DN
199 struct mem_cgroup *from;
200 struct mem_cgroup *to;
1dfab5ab 201 unsigned long flags;
4ffef5fe 202 unsigned long precharge;
854ffa8d 203 unsigned long moved_charge;
483c30b5 204 unsigned long moved_swap;
8033b97c
DN
205 struct task_struct *moving_task; /* a task moving charges */
206 wait_queue_head_t waitq; /* a waitq for other context */
207} mc = {
2bd9bb20 208 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
209 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
210};
4ffef5fe 211
4e416953
BS
212/*
213 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
214 * limit reclaim to prevent infinite loops, if they ever occur.
215 */
a0db00fc 216#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 217#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 218
217bc319
KH
219enum charge_type {
220 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 221 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 222 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 223 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
224 NR_CHARGE_TYPE,
225};
226
8c7c6e34 227/* for encoding cft->private value on file */
86ae53e1
GC
228enum res_type {
229 _MEM,
230 _MEMSWAP,
231 _OOM_TYPE,
510fc4e1 232 _KMEM,
86ae53e1
GC
233};
234
a0db00fc
KS
235#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
236#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 237#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
238/* Used for OOM nofiier */
239#define OOM_CONTROL (0)
8c7c6e34 240
0999821b
GC
241/*
242 * The memcg_create_mutex will be held whenever a new cgroup is created.
243 * As a consequence, any change that needs to protect against new child cgroups
244 * appearing has to hold it as well.
245 */
246static DEFINE_MUTEX(memcg_create_mutex);
247
70ddf637
AV
248/* Some nice accessors for the vmpressure. */
249struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250{
251 if (!memcg)
252 memcg = root_mem_cgroup;
253 return &memcg->vmpressure;
254}
255
256struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
257{
258 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259}
260
7ffc0edc
MH
261static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
262{
263 return (memcg == root_mem_cgroup);
264}
265
4219b2da
LZ
266/*
267 * We restrict the id in the range of [1, 65535], so it can fit into
268 * an unsigned short.
269 */
270#define MEM_CGROUP_ID_MAX USHRT_MAX
271
34c00c31
LZ
272static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
273{
15a4c835 274 return memcg->css.id;
34c00c31
LZ
275}
276
adbe427b
VD
277/*
278 * A helper function to get mem_cgroup from ID. must be called under
279 * rcu_read_lock(). The caller is responsible for calling
280 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
281 * refcnt from swap can be called against removed memcg.)
282 */
34c00c31
LZ
283static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
284{
285 struct cgroup_subsys_state *css;
286
7d699ddb 287 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
288 return mem_cgroup_from_css(css);
289}
290
e1aab161 291/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 292#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 293
e1aab161
GC
294void sock_update_memcg(struct sock *sk)
295{
376be5ff 296 if (mem_cgroup_sockets_enabled) {
e1aab161 297 struct mem_cgroup *memcg;
3f134619 298 struct cg_proto *cg_proto;
e1aab161
GC
299
300 BUG_ON(!sk->sk_prot->proto_cgroup);
301
f3f511e1
GC
302 /* Socket cloning can throw us here with sk_cgrp already
303 * filled. It won't however, necessarily happen from
304 * process context. So the test for root memcg given
305 * the current task's memcg won't help us in this case.
306 *
307 * Respecting the original socket's memcg is a better
308 * decision in this case.
309 */
310 if (sk->sk_cgrp) {
311 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 312 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
313 return;
314 }
315
e1aab161
GC
316 rcu_read_lock();
317 memcg = mem_cgroup_from_task(current);
3f134619 318 cg_proto = sk->sk_prot->proto_cgroup(memcg);
e752eb68 319 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
ec903c0c 320 css_tryget_online(&memcg->css)) {
3f134619 321 sk->sk_cgrp = cg_proto;
e1aab161
GC
322 }
323 rcu_read_unlock();
324 }
325}
326EXPORT_SYMBOL(sock_update_memcg);
327
328void sock_release_memcg(struct sock *sk)
329{
376be5ff 330 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
331 struct mem_cgroup *memcg;
332 WARN_ON(!sk->sk_cgrp->memcg);
333 memcg = sk->sk_cgrp->memcg;
5347e5ae 334 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
335 }
336}
d1a4c0b3
GC
337
338struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
339{
340 if (!memcg || mem_cgroup_is_root(memcg))
341 return NULL;
342
2e685cad 343 return &memcg->tcp_mem;
d1a4c0b3
GC
344}
345EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 346
3f134619
GC
347#endif
348
a8964b9b 349#ifdef CONFIG_MEMCG_KMEM
55007d84 350/*
f7ce3190 351 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
55007d84 357 *
dbcf73e2
VD
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
55007d84 360 */
dbcf73e2
VD
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
749c5415 363
05257a1a
VD
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
55007d84
GC
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
b8627835 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
b8627835 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 391
d7f25f8a
GC
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
a8964b9b 398struct static_key memcg_kmem_enabled_key;
d7f25f8a 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 400
a8964b9b
GC
401#endif /* CONFIG_MEMCG_KMEM */
402
f64c3f54 403static struct mem_cgroup_per_zone *
e231875b 404mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 405{
e231875b
JZ
406 int nid = zone_to_nid(zone);
407 int zid = zone_idx(zone);
408
54f72fe0 409 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
410}
411
ad7fa852
TH
412/**
413 * mem_cgroup_css_from_page - css of the memcg associated with a page
414 * @page: page of interest
415 *
416 * If memcg is bound to the default hierarchy, css of the memcg associated
417 * with @page is returned. The returned css remains associated with @page
418 * until it is released.
419 *
420 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
421 * is returned.
422 *
423 * XXX: The above description of behavior on the default hierarchy isn't
424 * strictly true yet as replace_page_cache_page() can modify the
425 * association before @page is released even on the default hierarchy;
426 * however, the current and planned usages don't mix the the two functions
427 * and replace_page_cache_page() will soon be updated to make the invariant
428 * actually true.
429 */
430struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
431{
432 struct mem_cgroup *memcg;
433
434 rcu_read_lock();
435
436 memcg = page->mem_cgroup;
437
438 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
439 memcg = root_mem_cgroup;
440
441 rcu_read_unlock();
442 return &memcg->css;
443}
444
2fc04524
VD
445/**
446 * page_cgroup_ino - return inode number of the memcg a page is charged to
447 * @page: the page
448 *
449 * Look up the closest online ancestor of the memory cgroup @page is charged to
450 * and return its inode number or 0 if @page is not charged to any cgroup. It
451 * is safe to call this function without holding a reference to @page.
452 *
453 * Note, this function is inherently racy, because there is nothing to prevent
454 * the cgroup inode from getting torn down and potentially reallocated a moment
455 * after page_cgroup_ino() returns, so it only should be used by callers that
456 * do not care (such as procfs interfaces).
457 */
458ino_t page_cgroup_ino(struct page *page)
459{
460 struct mem_cgroup *memcg;
461 unsigned long ino = 0;
462
463 rcu_read_lock();
464 memcg = READ_ONCE(page->mem_cgroup);
465 while (memcg && !(memcg->css.flags & CSS_ONLINE))
466 memcg = parent_mem_cgroup(memcg);
467 if (memcg)
468 ino = cgroup_ino(memcg->css.cgroup);
469 rcu_read_unlock();
470 return ino;
471}
472
f64c3f54 473static struct mem_cgroup_per_zone *
e231875b 474mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 475{
97a6c37b
JW
476 int nid = page_to_nid(page);
477 int zid = page_zonenum(page);
f64c3f54 478
e231875b 479 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
480}
481
bb4cc1a8
AM
482static struct mem_cgroup_tree_per_zone *
483soft_limit_tree_node_zone(int nid, int zid)
484{
485 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
486}
487
488static struct mem_cgroup_tree_per_zone *
489soft_limit_tree_from_page(struct page *page)
490{
491 int nid = page_to_nid(page);
492 int zid = page_zonenum(page);
493
494 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
495}
496
cf2c8127
JW
497static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
498 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 499 unsigned long new_usage_in_excess)
bb4cc1a8
AM
500{
501 struct rb_node **p = &mctz->rb_root.rb_node;
502 struct rb_node *parent = NULL;
503 struct mem_cgroup_per_zone *mz_node;
504
505 if (mz->on_tree)
506 return;
507
508 mz->usage_in_excess = new_usage_in_excess;
509 if (!mz->usage_in_excess)
510 return;
511 while (*p) {
512 parent = *p;
513 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
514 tree_node);
515 if (mz->usage_in_excess < mz_node->usage_in_excess)
516 p = &(*p)->rb_left;
517 /*
518 * We can't avoid mem cgroups that are over their soft
519 * limit by the same amount
520 */
521 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
522 p = &(*p)->rb_right;
523 }
524 rb_link_node(&mz->tree_node, parent, p);
525 rb_insert_color(&mz->tree_node, &mctz->rb_root);
526 mz->on_tree = true;
527}
528
cf2c8127
JW
529static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
531{
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536}
537
cf2c8127
JW
538static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
539 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 540{
0a31bc97
JW
541 unsigned long flags;
542
543 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 544 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 545 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
546}
547
3e32cb2e
JW
548static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
549{
550 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 551 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
552 unsigned long excess = 0;
553
554 if (nr_pages > soft_limit)
555 excess = nr_pages - soft_limit;
556
557 return excess;
558}
bb4cc1a8
AM
559
560static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
561{
3e32cb2e 562 unsigned long excess;
bb4cc1a8
AM
563 struct mem_cgroup_per_zone *mz;
564 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 565
e231875b 566 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
567 /*
568 * Necessary to update all ancestors when hierarchy is used.
569 * because their event counter is not touched.
570 */
571 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 572 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 573 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
574 /*
575 * We have to update the tree if mz is on RB-tree or
576 * mem is over its softlimit.
577 */
578 if (excess || mz->on_tree) {
0a31bc97
JW
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
582 /* if on-tree, remove it */
583 if (mz->on_tree)
cf2c8127 584 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
585 /*
586 * Insert again. mz->usage_in_excess will be updated.
587 * If excess is 0, no tree ops.
588 */
cf2c8127 589 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 590 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
591 }
592 }
593}
594
595static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
596{
bb4cc1a8 597 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
598 struct mem_cgroup_per_zone *mz;
599 int nid, zid;
bb4cc1a8 600
e231875b
JZ
601 for_each_node(nid) {
602 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
603 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
604 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 605 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
606 }
607 }
608}
609
610static struct mem_cgroup_per_zone *
611__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
612{
613 struct rb_node *rightmost = NULL;
614 struct mem_cgroup_per_zone *mz;
615
616retry:
617 mz = NULL;
618 rightmost = rb_last(&mctz->rb_root);
619 if (!rightmost)
620 goto done; /* Nothing to reclaim from */
621
622 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
623 /*
624 * Remove the node now but someone else can add it back,
625 * we will to add it back at the end of reclaim to its correct
626 * position in the tree.
627 */
cf2c8127 628 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 629 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 630 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
631 goto retry;
632done:
633 return mz;
634}
635
636static struct mem_cgroup_per_zone *
637mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
638{
639 struct mem_cgroup_per_zone *mz;
640
0a31bc97 641 spin_lock_irq(&mctz->lock);
bb4cc1a8 642 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 643 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
644 return mz;
645}
646
711d3d2c 647/*
484ebb3b
GT
648 * Return page count for single (non recursive) @memcg.
649 *
711d3d2c
KH
650 * Implementation Note: reading percpu statistics for memcg.
651 *
652 * Both of vmstat[] and percpu_counter has threshold and do periodic
653 * synchronization to implement "quick" read. There are trade-off between
654 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 655 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
656 *
657 * But this _read() function is used for user interface now. The user accounts
658 * memory usage by memory cgroup and he _always_ requires exact value because
659 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
660 * have to visit all online cpus and make sum. So, for now, unnecessary
661 * synchronization is not implemented. (just implemented for cpu hotplug)
662 *
663 * If there are kernel internal actions which can make use of some not-exact
664 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 665 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
666 * implemented.
667 */
484ebb3b
GT
668static unsigned long
669mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 670{
7a159cc9 671 long val = 0;
c62b1a3b 672 int cpu;
c62b1a3b 673
484ebb3b 674 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 675 for_each_possible_cpu(cpu)
c0ff4b85 676 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
677 /*
678 * Summing races with updates, so val may be negative. Avoid exposing
679 * transient negative values.
680 */
681 if (val < 0)
682 val = 0;
c62b1a3b
KH
683 return val;
684}
685
c0ff4b85 686static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
687 enum mem_cgroup_events_index idx)
688{
689 unsigned long val = 0;
690 int cpu;
691
733a572e 692 for_each_possible_cpu(cpu)
c0ff4b85 693 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
694 return val;
695}
696
c0ff4b85 697static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 698 struct page *page,
0a31bc97 699 int nr_pages)
d52aa412 700{
b2402857
KH
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
0a31bc97 705 if (PageAnon(page))
b2402857 706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 707 nr_pages);
d52aa412 708 else
b2402857 709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 710 nr_pages);
55e462b0 711
b070e65c
DR
712 if (PageTransHuge(page))
713 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
714 nr_pages);
715
e401f176
KH
716 /* pagein of a big page is an event. So, ignore page size */
717 if (nr_pages > 0)
c0ff4b85 718 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 719 else {
c0ff4b85 720 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
721 nr_pages = -nr_pages; /* for event */
722 }
e401f176 723
13114716 724 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
725}
726
e231875b
JZ
727static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 int nid,
729 unsigned int lru_mask)
bb2a0de9 730{
e231875b 731 unsigned long nr = 0;
889976db
YH
732 int zid;
733
e231875b 734 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 735
e231875b
JZ
736 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
737 struct mem_cgroup_per_zone *mz;
738 enum lru_list lru;
739
740 for_each_lru(lru) {
741 if (!(BIT(lru) & lru_mask))
742 continue;
743 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
744 nr += mz->lru_size[lru];
745 }
746 }
747 return nr;
889976db 748}
bb2a0de9 749
c0ff4b85 750static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 751 unsigned int lru_mask)
6d12e2d8 752{
e231875b 753 unsigned long nr = 0;
889976db 754 int nid;
6d12e2d8 755
31aaea4a 756 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
757 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
758 return nr;
d52aa412
KH
759}
760
f53d7ce3
JW
761static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
762 enum mem_cgroup_events_target target)
7a159cc9
JW
763{
764 unsigned long val, next;
765
13114716 766 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 767 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 768 /* from time_after() in jiffies.h */
f53d7ce3
JW
769 if ((long)next - (long)val < 0) {
770 switch (target) {
771 case MEM_CGROUP_TARGET_THRESH:
772 next = val + THRESHOLDS_EVENTS_TARGET;
773 break;
bb4cc1a8
AM
774 case MEM_CGROUP_TARGET_SOFTLIMIT:
775 next = val + SOFTLIMIT_EVENTS_TARGET;
776 break;
f53d7ce3
JW
777 case MEM_CGROUP_TARGET_NUMAINFO:
778 next = val + NUMAINFO_EVENTS_TARGET;
779 break;
780 default:
781 break;
782 }
783 __this_cpu_write(memcg->stat->targets[target], next);
784 return true;
7a159cc9 785 }
f53d7ce3 786 return false;
d2265e6f
KH
787}
788
789/*
790 * Check events in order.
791 *
792 */
c0ff4b85 793static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
794{
795 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
796 if (unlikely(mem_cgroup_event_ratelimit(memcg,
797 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 798 bool do_softlimit;
82b3f2a7 799 bool do_numainfo __maybe_unused;
f53d7ce3 800
bb4cc1a8
AM
801 do_softlimit = mem_cgroup_event_ratelimit(memcg,
802 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
803#if MAX_NUMNODES > 1
804 do_numainfo = mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_NUMAINFO);
806#endif
c0ff4b85 807 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
808 if (unlikely(do_softlimit))
809 mem_cgroup_update_tree(memcg, page);
453a9bf3 810#if MAX_NUMNODES > 1
f53d7ce3 811 if (unlikely(do_numainfo))
c0ff4b85 812 atomic_inc(&memcg->numainfo_events);
453a9bf3 813#endif
0a31bc97 814 }
d2265e6f
KH
815}
816
cf475ad2 817struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 818{
31a78f23
BS
819 /*
820 * mm_update_next_owner() may clear mm->owner to NULL
821 * if it races with swapoff, page migration, etc.
822 * So this can be called with p == NULL.
823 */
824 if (unlikely(!p))
825 return NULL;
826
073219e9 827 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 828}
33398cf2 829EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 830
df381975 831static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 832{
c0ff4b85 833 struct mem_cgroup *memcg = NULL;
0b7f569e 834
54595fe2
KH
835 rcu_read_lock();
836 do {
6f6acb00
MH
837 /*
838 * Page cache insertions can happen withou an
839 * actual mm context, e.g. during disk probing
840 * on boot, loopback IO, acct() writes etc.
841 */
842 if (unlikely(!mm))
df381975 843 memcg = root_mem_cgroup;
6f6acb00
MH
844 else {
845 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
846 if (unlikely(!memcg))
847 memcg = root_mem_cgroup;
848 }
ec903c0c 849 } while (!css_tryget_online(&memcg->css));
54595fe2 850 rcu_read_unlock();
c0ff4b85 851 return memcg;
54595fe2
KH
852}
853
5660048c
JW
854/**
855 * mem_cgroup_iter - iterate over memory cgroup hierarchy
856 * @root: hierarchy root
857 * @prev: previously returned memcg, NULL on first invocation
858 * @reclaim: cookie for shared reclaim walks, NULL for full walks
859 *
860 * Returns references to children of the hierarchy below @root, or
861 * @root itself, or %NULL after a full round-trip.
862 *
863 * Caller must pass the return value in @prev on subsequent
864 * invocations for reference counting, or use mem_cgroup_iter_break()
865 * to cancel a hierarchy walk before the round-trip is complete.
866 *
867 * Reclaimers can specify a zone and a priority level in @reclaim to
868 * divide up the memcgs in the hierarchy among all concurrent
869 * reclaimers operating on the same zone and priority.
870 */
694fbc0f 871struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 872 struct mem_cgroup *prev,
694fbc0f 873 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 874{
33398cf2 875 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 876 struct cgroup_subsys_state *css = NULL;
9f3a0d09 877 struct mem_cgroup *memcg = NULL;
5ac8fb31 878 struct mem_cgroup *pos = NULL;
711d3d2c 879
694fbc0f
AM
880 if (mem_cgroup_disabled())
881 return NULL;
5660048c 882
9f3a0d09
JW
883 if (!root)
884 root = root_mem_cgroup;
7d74b06f 885
9f3a0d09 886 if (prev && !reclaim)
5ac8fb31 887 pos = prev;
14067bb3 888
9f3a0d09
JW
889 if (!root->use_hierarchy && root != root_mem_cgroup) {
890 if (prev)
5ac8fb31 891 goto out;
694fbc0f 892 return root;
9f3a0d09 893 }
14067bb3 894
542f85f9 895 rcu_read_lock();
5f578161 896
5ac8fb31
JW
897 if (reclaim) {
898 struct mem_cgroup_per_zone *mz;
899
900 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
901 iter = &mz->iter[reclaim->priority];
902
903 if (prev && reclaim->generation != iter->generation)
904 goto out_unlock;
905
906 do {
4db0c3c2 907 pos = READ_ONCE(iter->position);
5ac8fb31
JW
908 /*
909 * A racing update may change the position and
910 * put the last reference, hence css_tryget(),
911 * or retry to see the updated position.
912 */
913 } while (pos && !css_tryget(&pos->css));
914 }
915
916 if (pos)
917 css = &pos->css;
918
919 for (;;) {
920 css = css_next_descendant_pre(css, &root->css);
921 if (!css) {
922 /*
923 * Reclaimers share the hierarchy walk, and a
924 * new one might jump in right at the end of
925 * the hierarchy - make sure they see at least
926 * one group and restart from the beginning.
927 */
928 if (!prev)
929 continue;
930 break;
527a5ec9 931 }
7d74b06f 932
5ac8fb31
JW
933 /*
934 * Verify the css and acquire a reference. The root
935 * is provided by the caller, so we know it's alive
936 * and kicking, and don't take an extra reference.
937 */
938 memcg = mem_cgroup_from_css(css);
14067bb3 939
5ac8fb31
JW
940 if (css == &root->css)
941 break;
14067bb3 942
b2052564 943 if (css_tryget(css)) {
5ac8fb31
JW
944 /*
945 * Make sure the memcg is initialized:
946 * mem_cgroup_css_online() orders the the
947 * initialization against setting the flag.
948 */
949 if (smp_load_acquire(&memcg->initialized))
950 break;
542f85f9 951
5ac8fb31 952 css_put(css);
527a5ec9 953 }
9f3a0d09 954
5ac8fb31 955 memcg = NULL;
9f3a0d09 956 }
5ac8fb31
JW
957
958 if (reclaim) {
959 if (cmpxchg(&iter->position, pos, memcg) == pos) {
960 if (memcg)
961 css_get(&memcg->css);
962 if (pos)
963 css_put(&pos->css);
964 }
965
966 /*
967 * pairs with css_tryget when dereferencing iter->position
968 * above.
969 */
970 if (pos)
971 css_put(&pos->css);
972
973 if (!memcg)
974 iter->generation++;
975 else if (!prev)
976 reclaim->generation = iter->generation;
9f3a0d09 977 }
5ac8fb31 978
542f85f9
MH
979out_unlock:
980 rcu_read_unlock();
5ac8fb31 981out:
c40046f3
MH
982 if (prev && prev != root)
983 css_put(&prev->css);
984
9f3a0d09 985 return memcg;
14067bb3 986}
7d74b06f 987
5660048c
JW
988/**
989 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
990 * @root: hierarchy root
991 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
992 */
993void mem_cgroup_iter_break(struct mem_cgroup *root,
994 struct mem_cgroup *prev)
9f3a0d09
JW
995{
996 if (!root)
997 root = root_mem_cgroup;
998 if (prev && prev != root)
999 css_put(&prev->css);
1000}
7d74b06f 1001
9f3a0d09
JW
1002/*
1003 * Iteration constructs for visiting all cgroups (under a tree). If
1004 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1005 * be used for reference counting.
1006 */
1007#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1008 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1009 iter != NULL; \
527a5ec9 1010 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1011
9f3a0d09 1012#define for_each_mem_cgroup(iter) \
527a5ec9 1013 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1014 iter != NULL; \
527a5ec9 1015 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1016
925b7673
JW
1017/**
1018 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1019 * @zone: zone of the wanted lruvec
fa9add64 1020 * @memcg: memcg of the wanted lruvec
925b7673
JW
1021 *
1022 * Returns the lru list vector holding pages for the given @zone and
1023 * @mem. This can be the global zone lruvec, if the memory controller
1024 * is disabled.
1025 */
1026struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1027 struct mem_cgroup *memcg)
1028{
1029 struct mem_cgroup_per_zone *mz;
bea8c150 1030 struct lruvec *lruvec;
925b7673 1031
bea8c150
HD
1032 if (mem_cgroup_disabled()) {
1033 lruvec = &zone->lruvec;
1034 goto out;
1035 }
925b7673 1036
e231875b 1037 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1038 lruvec = &mz->lruvec;
1039out:
1040 /*
1041 * Since a node can be onlined after the mem_cgroup was created,
1042 * we have to be prepared to initialize lruvec->zone here;
1043 * and if offlined then reonlined, we need to reinitialize it.
1044 */
1045 if (unlikely(lruvec->zone != zone))
1046 lruvec->zone = zone;
1047 return lruvec;
925b7673
JW
1048}
1049
925b7673 1050/**
dfe0e773 1051 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1052 * @page: the page
fa9add64 1053 * @zone: zone of the page
dfe0e773
JW
1054 *
1055 * This function is only safe when following the LRU page isolation
1056 * and putback protocol: the LRU lock must be held, and the page must
1057 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1058 */
fa9add64 1059struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1060{
08e552c6 1061 struct mem_cgroup_per_zone *mz;
925b7673 1062 struct mem_cgroup *memcg;
bea8c150 1063 struct lruvec *lruvec;
6d12e2d8 1064
bea8c150
HD
1065 if (mem_cgroup_disabled()) {
1066 lruvec = &zone->lruvec;
1067 goto out;
1068 }
925b7673 1069
1306a85a 1070 memcg = page->mem_cgroup;
7512102c 1071 /*
dfe0e773 1072 * Swapcache readahead pages are added to the LRU - and
29833315 1073 * possibly migrated - before they are charged.
7512102c 1074 */
29833315
JW
1075 if (!memcg)
1076 memcg = root_mem_cgroup;
7512102c 1077
e231875b 1078 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1079 lruvec = &mz->lruvec;
1080out:
1081 /*
1082 * Since a node can be onlined after the mem_cgroup was created,
1083 * we have to be prepared to initialize lruvec->zone here;
1084 * and if offlined then reonlined, we need to reinitialize it.
1085 */
1086 if (unlikely(lruvec->zone != zone))
1087 lruvec->zone = zone;
1088 return lruvec;
08e552c6 1089}
b69408e8 1090
925b7673 1091/**
fa9add64
HD
1092 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1093 * @lruvec: mem_cgroup per zone lru vector
1094 * @lru: index of lru list the page is sitting on
1095 * @nr_pages: positive when adding or negative when removing
925b7673 1096 *
fa9add64
HD
1097 * This function must be called when a page is added to or removed from an
1098 * lru list.
3f58a829 1099 */
fa9add64
HD
1100void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1101 int nr_pages)
3f58a829
MK
1102{
1103 struct mem_cgroup_per_zone *mz;
fa9add64 1104 unsigned long *lru_size;
3f58a829
MK
1105
1106 if (mem_cgroup_disabled())
1107 return;
1108
fa9add64
HD
1109 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1110 lru_size = mz->lru_size + lru;
1111 *lru_size += nr_pages;
1112 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1113}
544122e5 1114
2314b42d 1115bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1116{
2314b42d 1117 struct mem_cgroup *task_memcg;
158e0a2d 1118 struct task_struct *p;
ffbdccf5 1119 bool ret;
4c4a2214 1120
158e0a2d 1121 p = find_lock_task_mm(task);
de077d22 1122 if (p) {
2314b42d 1123 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1124 task_unlock(p);
1125 } else {
1126 /*
1127 * All threads may have already detached their mm's, but the oom
1128 * killer still needs to detect if they have already been oom
1129 * killed to prevent needlessly killing additional tasks.
1130 */
ffbdccf5 1131 rcu_read_lock();
2314b42d
JW
1132 task_memcg = mem_cgroup_from_task(task);
1133 css_get(&task_memcg->css);
ffbdccf5 1134 rcu_read_unlock();
de077d22 1135 }
2314b42d
JW
1136 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1137 css_put(&task_memcg->css);
4c4a2214
DR
1138 return ret;
1139}
1140
3e32cb2e 1141#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1142 container_of(counter, struct mem_cgroup, member)
1143
19942822 1144/**
9d11ea9f 1145 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1146 * @memcg: the memory cgroup
19942822 1147 *
9d11ea9f 1148 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1149 * pages.
19942822 1150 */
c0ff4b85 1151static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1152{
3e32cb2e
JW
1153 unsigned long margin = 0;
1154 unsigned long count;
1155 unsigned long limit;
9d11ea9f 1156
3e32cb2e 1157 count = page_counter_read(&memcg->memory);
4db0c3c2 1158 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1159 if (count < limit)
1160 margin = limit - count;
1161
1162 if (do_swap_account) {
1163 count = page_counter_read(&memcg->memsw);
4db0c3c2 1164 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1165 if (count <= limit)
1166 margin = min(margin, limit - count);
1167 }
1168
1169 return margin;
19942822
JW
1170}
1171
32047e2a 1172/*
bdcbb659 1173 * A routine for checking "mem" is under move_account() or not.
32047e2a 1174 *
bdcbb659
QH
1175 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1176 * moving cgroups. This is for waiting at high-memory pressure
1177 * caused by "move".
32047e2a 1178 */
c0ff4b85 1179static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1180{
2bd9bb20
KH
1181 struct mem_cgroup *from;
1182 struct mem_cgroup *to;
4b534334 1183 bool ret = false;
2bd9bb20
KH
1184 /*
1185 * Unlike task_move routines, we access mc.to, mc.from not under
1186 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1187 */
1188 spin_lock(&mc.lock);
1189 from = mc.from;
1190 to = mc.to;
1191 if (!from)
1192 goto unlock;
3e92041d 1193
2314b42d
JW
1194 ret = mem_cgroup_is_descendant(from, memcg) ||
1195 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1196unlock:
1197 spin_unlock(&mc.lock);
4b534334
KH
1198 return ret;
1199}
1200
c0ff4b85 1201static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1202{
1203 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1204 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1205 DEFINE_WAIT(wait);
1206 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1207 /* moving charge context might have finished. */
1208 if (mc.moving_task)
1209 schedule();
1210 finish_wait(&mc.waitq, &wait);
1211 return true;
1212 }
1213 }
1214 return false;
1215}
1216
58cf188e 1217#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1218/**
58cf188e 1219 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1220 * @memcg: The memory cgroup that went over limit
1221 * @p: Task that is going to be killed
1222 *
1223 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1224 * enabled
1225 */
1226void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1227{
e61734c5 1228 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1229 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1230 struct mem_cgroup *iter;
1231 unsigned int i;
e222432b 1232
08088cb9 1233 mutex_lock(&oom_info_lock);
e222432b
BS
1234 rcu_read_lock();
1235
2415b9f5
BV
1236 if (p) {
1237 pr_info("Task in ");
1238 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1239 pr_cont(" killed as a result of limit of ");
1240 } else {
1241 pr_info("Memory limit reached of cgroup ");
1242 }
1243
e61734c5 1244 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1245 pr_cont("\n");
e222432b 1246
e222432b
BS
1247 rcu_read_unlock();
1248
3e32cb2e
JW
1249 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1250 K((u64)page_counter_read(&memcg->memory)),
1251 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1252 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1253 K((u64)page_counter_read(&memcg->memsw)),
1254 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1255 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1256 K((u64)page_counter_read(&memcg->kmem)),
1257 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1258
1259 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1260 pr_info("Memory cgroup stats for ");
1261 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1262 pr_cont(":");
1263
1264 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1265 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1266 continue;
484ebb3b 1267 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1268 K(mem_cgroup_read_stat(iter, i)));
1269 }
1270
1271 for (i = 0; i < NR_LRU_LISTS; i++)
1272 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1273 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1274
1275 pr_cont("\n");
1276 }
08088cb9 1277 mutex_unlock(&oom_info_lock);
e222432b
BS
1278}
1279
81d39c20
KH
1280/*
1281 * This function returns the number of memcg under hierarchy tree. Returns
1282 * 1(self count) if no children.
1283 */
c0ff4b85 1284static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1285{
1286 int num = 0;
7d74b06f
KH
1287 struct mem_cgroup *iter;
1288
c0ff4b85 1289 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1290 num++;
81d39c20
KH
1291 return num;
1292}
1293
a63d83f4
DR
1294/*
1295 * Return the memory (and swap, if configured) limit for a memcg.
1296 */
3e32cb2e 1297static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1298{
3e32cb2e 1299 unsigned long limit;
f3e8eb70 1300
3e32cb2e 1301 limit = memcg->memory.limit;
9a5a8f19 1302 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1303 unsigned long memsw_limit;
9a5a8f19 1304
3e32cb2e
JW
1305 memsw_limit = memcg->memsw.limit;
1306 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1307 }
9a5a8f19 1308 return limit;
a63d83f4
DR
1309}
1310
19965460
DR
1311static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1312 int order)
9cbb78bb 1313{
6e0fc46d
DR
1314 struct oom_control oc = {
1315 .zonelist = NULL,
1316 .nodemask = NULL,
1317 .gfp_mask = gfp_mask,
1318 .order = order,
6e0fc46d 1319 };
9cbb78bb
DR
1320 struct mem_cgroup *iter;
1321 unsigned long chosen_points = 0;
1322 unsigned long totalpages;
1323 unsigned int points = 0;
1324 struct task_struct *chosen = NULL;
1325
dc56401f
JW
1326 mutex_lock(&oom_lock);
1327
876aafbf 1328 /*
465adcf1
DR
1329 * If current has a pending SIGKILL or is exiting, then automatically
1330 * select it. The goal is to allow it to allocate so that it may
1331 * quickly exit and free its memory.
876aafbf 1332 */
d003f371 1333 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1334 mark_oom_victim(current);
dc56401f 1335 goto unlock;
876aafbf
DR
1336 }
1337
6e0fc46d 1338 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1339 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1340 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1341 struct css_task_iter it;
9cbb78bb
DR
1342 struct task_struct *task;
1343
72ec7029
TH
1344 css_task_iter_start(&iter->css, &it);
1345 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1346 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1347 case OOM_SCAN_SELECT:
1348 if (chosen)
1349 put_task_struct(chosen);
1350 chosen = task;
1351 chosen_points = ULONG_MAX;
1352 get_task_struct(chosen);
1353 /* fall through */
1354 case OOM_SCAN_CONTINUE:
1355 continue;
1356 case OOM_SCAN_ABORT:
72ec7029 1357 css_task_iter_end(&it);
9cbb78bb
DR
1358 mem_cgroup_iter_break(memcg, iter);
1359 if (chosen)
1360 put_task_struct(chosen);
dc56401f 1361 goto unlock;
9cbb78bb
DR
1362 case OOM_SCAN_OK:
1363 break;
1364 };
1365 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1366 if (!points || points < chosen_points)
1367 continue;
1368 /* Prefer thread group leaders for display purposes */
1369 if (points == chosen_points &&
1370 thread_group_leader(chosen))
1371 continue;
1372
1373 if (chosen)
1374 put_task_struct(chosen);
1375 chosen = task;
1376 chosen_points = points;
1377 get_task_struct(chosen);
9cbb78bb 1378 }
72ec7029 1379 css_task_iter_end(&it);
9cbb78bb
DR
1380 }
1381
dc56401f
JW
1382 if (chosen) {
1383 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1384 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1385 "Memory cgroup out of memory");
dc56401f
JW
1386 }
1387unlock:
1388 mutex_unlock(&oom_lock);
9cbb78bb
DR
1389}
1390
ae6e71d3
MC
1391#if MAX_NUMNODES > 1
1392
4d0c066d
KH
1393/**
1394 * test_mem_cgroup_node_reclaimable
dad7557e 1395 * @memcg: the target memcg
4d0c066d
KH
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1398 *
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1402 */
c0ff4b85 1403static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1404 int nid, bool noswap)
1405{
c0ff4b85 1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1407 return true;
1408 if (noswap || !total_swap_pages)
1409 return false;
c0ff4b85 1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1411 return true;
1412 return false;
1413
1414}
889976db
YH
1415
1416/*
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420 *
1421 */
c0ff4b85 1422static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1423{
1424 int nid;
453a9bf3
KH
1425 /*
1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 * pagein/pageout changes since the last update.
1428 */
c0ff4b85 1429 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1430 return;
c0ff4b85 1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1432 return;
1433
889976db 1434 /* make a nodemask where this memcg uses memory from */
31aaea4a 1435 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1436
31aaea4a 1437 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1438
c0ff4b85
R
1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 node_clear(nid, memcg->scan_nodes);
889976db 1441 }
453a9bf3 1442
c0ff4b85
R
1443 atomic_set(&memcg->numainfo_events, 0);
1444 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1445}
1446
1447/*
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1451 *
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1456 *
1457 * Now, we use round-robin. Better algorithm is welcomed.
1458 */
c0ff4b85 1459int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1460{
1461 int node;
1462
c0ff4b85
R
1463 mem_cgroup_may_update_nodemask(memcg);
1464 node = memcg->last_scanned_node;
889976db 1465
c0ff4b85 1466 node = next_node(node, memcg->scan_nodes);
889976db 1467 if (node == MAX_NUMNODES)
c0ff4b85 1468 node = first_node(memcg->scan_nodes);
889976db
YH
1469 /*
1470 * We call this when we hit limit, not when pages are added to LRU.
1471 * No LRU may hold pages because all pages are UNEVICTABLE or
1472 * memcg is too small and all pages are not on LRU. In that case,
1473 * we use curret node.
1474 */
1475 if (unlikely(node == MAX_NUMNODES))
1476 node = numa_node_id();
1477
c0ff4b85 1478 memcg->last_scanned_node = node;
889976db
YH
1479 return node;
1480}
889976db 1481#else
c0ff4b85 1482int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1483{
1484 return 0;
1485}
1486#endif
1487
0608f43d
AM
1488static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1489 struct zone *zone,
1490 gfp_t gfp_mask,
1491 unsigned long *total_scanned)
1492{
1493 struct mem_cgroup *victim = NULL;
1494 int total = 0;
1495 int loop = 0;
1496 unsigned long excess;
1497 unsigned long nr_scanned;
1498 struct mem_cgroup_reclaim_cookie reclaim = {
1499 .zone = zone,
1500 .priority = 0,
1501 };
1502
3e32cb2e 1503 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1504
1505 while (1) {
1506 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1507 if (!victim) {
1508 loop++;
1509 if (loop >= 2) {
1510 /*
1511 * If we have not been able to reclaim
1512 * anything, it might because there are
1513 * no reclaimable pages under this hierarchy
1514 */
1515 if (!total)
1516 break;
1517 /*
1518 * We want to do more targeted reclaim.
1519 * excess >> 2 is not to excessive so as to
1520 * reclaim too much, nor too less that we keep
1521 * coming back to reclaim from this cgroup
1522 */
1523 if (total >= (excess >> 2) ||
1524 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1525 break;
1526 }
1527 continue;
1528 }
0608f43d
AM
1529 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1530 zone, &nr_scanned);
1531 *total_scanned += nr_scanned;
3e32cb2e 1532 if (!soft_limit_excess(root_memcg))
0608f43d 1533 break;
6d61ef40 1534 }
0608f43d
AM
1535 mem_cgroup_iter_break(root_memcg, victim);
1536 return total;
6d61ef40
BS
1537}
1538
0056f4e6
JW
1539#ifdef CONFIG_LOCKDEP
1540static struct lockdep_map memcg_oom_lock_dep_map = {
1541 .name = "memcg_oom_lock",
1542};
1543#endif
1544
fb2a6fc5
JW
1545static DEFINE_SPINLOCK(memcg_oom_lock);
1546
867578cb
KH
1547/*
1548 * Check OOM-Killer is already running under our hierarchy.
1549 * If someone is running, return false.
1550 */
fb2a6fc5 1551static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1552{
79dfdacc 1553 struct mem_cgroup *iter, *failed = NULL;
a636b327 1554
fb2a6fc5
JW
1555 spin_lock(&memcg_oom_lock);
1556
9f3a0d09 1557 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1558 if (iter->oom_lock) {
79dfdacc
MH
1559 /*
1560 * this subtree of our hierarchy is already locked
1561 * so we cannot give a lock.
1562 */
79dfdacc 1563 failed = iter;
9f3a0d09
JW
1564 mem_cgroup_iter_break(memcg, iter);
1565 break;
23751be0
JW
1566 } else
1567 iter->oom_lock = true;
7d74b06f 1568 }
867578cb 1569
fb2a6fc5
JW
1570 if (failed) {
1571 /*
1572 * OK, we failed to lock the whole subtree so we have
1573 * to clean up what we set up to the failing subtree
1574 */
1575 for_each_mem_cgroup_tree(iter, memcg) {
1576 if (iter == failed) {
1577 mem_cgroup_iter_break(memcg, iter);
1578 break;
1579 }
1580 iter->oom_lock = false;
79dfdacc 1581 }
0056f4e6
JW
1582 } else
1583 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1584
1585 spin_unlock(&memcg_oom_lock);
1586
1587 return !failed;
a636b327 1588}
0b7f569e 1589
fb2a6fc5 1590static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1591{
7d74b06f
KH
1592 struct mem_cgroup *iter;
1593
fb2a6fc5 1594 spin_lock(&memcg_oom_lock);
0056f4e6 1595 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1596 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1597 iter->oom_lock = false;
fb2a6fc5 1598 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1599}
1600
c0ff4b85 1601static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1602{
1603 struct mem_cgroup *iter;
1604
c2b42d3c 1605 spin_lock(&memcg_oom_lock);
c0ff4b85 1606 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1607 iter->under_oom++;
1608 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1609}
1610
c0ff4b85 1611static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1612{
1613 struct mem_cgroup *iter;
1614
867578cb
KH
1615 /*
1616 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1617 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1618 */
c2b42d3c 1619 spin_lock(&memcg_oom_lock);
c0ff4b85 1620 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1621 if (iter->under_oom > 0)
1622 iter->under_oom--;
1623 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1624}
1625
867578cb
KH
1626static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1627
dc98df5a 1628struct oom_wait_info {
d79154bb 1629 struct mem_cgroup *memcg;
dc98df5a
KH
1630 wait_queue_t wait;
1631};
1632
1633static int memcg_oom_wake_function(wait_queue_t *wait,
1634 unsigned mode, int sync, void *arg)
1635{
d79154bb
HD
1636 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1637 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1638 struct oom_wait_info *oom_wait_info;
1639
1640 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1641 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1642
2314b42d
JW
1643 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1644 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1645 return 0;
dc98df5a
KH
1646 return autoremove_wake_function(wait, mode, sync, arg);
1647}
1648
c0ff4b85 1649static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1650{
c2b42d3c
TH
1651 /*
1652 * For the following lockless ->under_oom test, the only required
1653 * guarantee is that it must see the state asserted by an OOM when
1654 * this function is called as a result of userland actions
1655 * triggered by the notification of the OOM. This is trivially
1656 * achieved by invoking mem_cgroup_mark_under_oom() before
1657 * triggering notification.
1658 */
1659 if (memcg && memcg->under_oom)
f4b90b70 1660 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1661}
1662
3812c8c8 1663static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1664{
626ebc41 1665 if (!current->memcg_may_oom)
3812c8c8 1666 return;
867578cb 1667 /*
49426420
JW
1668 * We are in the middle of the charge context here, so we
1669 * don't want to block when potentially sitting on a callstack
1670 * that holds all kinds of filesystem and mm locks.
1671 *
1672 * Also, the caller may handle a failed allocation gracefully
1673 * (like optional page cache readahead) and so an OOM killer
1674 * invocation might not even be necessary.
1675 *
1676 * That's why we don't do anything here except remember the
1677 * OOM context and then deal with it at the end of the page
1678 * fault when the stack is unwound, the locks are released,
1679 * and when we know whether the fault was overall successful.
867578cb 1680 */
49426420 1681 css_get(&memcg->css);
626ebc41
TH
1682 current->memcg_in_oom = memcg;
1683 current->memcg_oom_gfp_mask = mask;
1684 current->memcg_oom_order = order;
3812c8c8
JW
1685}
1686
1687/**
1688 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1689 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1690 *
49426420
JW
1691 * This has to be called at the end of a page fault if the memcg OOM
1692 * handler was enabled.
3812c8c8 1693 *
49426420 1694 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1695 * sleep on a waitqueue until the userspace task resolves the
1696 * situation. Sleeping directly in the charge context with all kinds
1697 * of locks held is not a good idea, instead we remember an OOM state
1698 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1699 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1700 *
1701 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1702 * completed, %false otherwise.
3812c8c8 1703 */
49426420 1704bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1705{
626ebc41 1706 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1707 struct oom_wait_info owait;
49426420 1708 bool locked;
3812c8c8
JW
1709
1710 /* OOM is global, do not handle */
3812c8c8 1711 if (!memcg)
49426420 1712 return false;
3812c8c8 1713
c32b3cbe 1714 if (!handle || oom_killer_disabled)
49426420 1715 goto cleanup;
3812c8c8
JW
1716
1717 owait.memcg = memcg;
1718 owait.wait.flags = 0;
1719 owait.wait.func = memcg_oom_wake_function;
1720 owait.wait.private = current;
1721 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1722
3812c8c8 1723 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1724 mem_cgroup_mark_under_oom(memcg);
1725
1726 locked = mem_cgroup_oom_trylock(memcg);
1727
1728 if (locked)
1729 mem_cgroup_oom_notify(memcg);
1730
1731 if (locked && !memcg->oom_kill_disable) {
1732 mem_cgroup_unmark_under_oom(memcg);
1733 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1734 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1735 current->memcg_oom_order);
49426420 1736 } else {
3812c8c8 1737 schedule();
49426420
JW
1738 mem_cgroup_unmark_under_oom(memcg);
1739 finish_wait(&memcg_oom_waitq, &owait.wait);
1740 }
1741
1742 if (locked) {
fb2a6fc5
JW
1743 mem_cgroup_oom_unlock(memcg);
1744 /*
1745 * There is no guarantee that an OOM-lock contender
1746 * sees the wakeups triggered by the OOM kill
1747 * uncharges. Wake any sleepers explicitely.
1748 */
1749 memcg_oom_recover(memcg);
1750 }
49426420 1751cleanup:
626ebc41 1752 current->memcg_in_oom = NULL;
3812c8c8 1753 css_put(&memcg->css);
867578cb 1754 return true;
0b7f569e
KH
1755}
1756
d7365e78
JW
1757/**
1758 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1759 * @page: page that is going to change accounted state
32047e2a 1760 *
d7365e78
JW
1761 * This function must mark the beginning of an accounted page state
1762 * change to prevent double accounting when the page is concurrently
1763 * being moved to another memcg:
32047e2a 1764 *
6de22619 1765 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1766 * if (TestClearPageState(page))
1767 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1768 * mem_cgroup_end_page_stat(memcg);
d69b042f 1769 */
6de22619 1770struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1771{
1772 struct mem_cgroup *memcg;
6de22619 1773 unsigned long flags;
89c06bd5 1774
6de22619
JW
1775 /*
1776 * The RCU lock is held throughout the transaction. The fast
1777 * path can get away without acquiring the memcg->move_lock
1778 * because page moving starts with an RCU grace period.
1779 *
1780 * The RCU lock also protects the memcg from being freed when
1781 * the page state that is going to change is the only thing
1782 * preventing the page from being uncharged.
1783 * E.g. end-writeback clearing PageWriteback(), which allows
1784 * migration to go ahead and uncharge the page before the
1785 * account transaction might be complete.
1786 */
d7365e78
JW
1787 rcu_read_lock();
1788
1789 if (mem_cgroup_disabled())
1790 return NULL;
89c06bd5 1791again:
1306a85a 1792 memcg = page->mem_cgroup;
29833315 1793 if (unlikely(!memcg))
d7365e78
JW
1794 return NULL;
1795
bdcbb659 1796 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1797 return memcg;
89c06bd5 1798
6de22619 1799 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1800 if (memcg != page->mem_cgroup) {
6de22619 1801 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1802 goto again;
1803 }
6de22619
JW
1804
1805 /*
1806 * When charge migration first begins, we can have locked and
1807 * unlocked page stat updates happening concurrently. Track
1808 * the task who has the lock for mem_cgroup_end_page_stat().
1809 */
1810 memcg->move_lock_task = current;
1811 memcg->move_lock_flags = flags;
d7365e78
JW
1812
1813 return memcg;
89c06bd5 1814}
c4843a75 1815EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1816
d7365e78
JW
1817/**
1818 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1819 * @memcg: the memcg that was accounted against
d7365e78 1820 */
6de22619 1821void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1822{
6de22619
JW
1823 if (memcg && memcg->move_lock_task == current) {
1824 unsigned long flags = memcg->move_lock_flags;
1825
1826 memcg->move_lock_task = NULL;
1827 memcg->move_lock_flags = 0;
1828
1829 spin_unlock_irqrestore(&memcg->move_lock, flags);
1830 }
89c06bd5 1831
d7365e78 1832 rcu_read_unlock();
89c06bd5 1833}
c4843a75 1834EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1835
cdec2e42
KH
1836/*
1837 * size of first charge trial. "32" comes from vmscan.c's magic value.
1838 * TODO: maybe necessary to use big numbers in big irons.
1839 */
7ec99d62 1840#define CHARGE_BATCH 32U
cdec2e42
KH
1841struct memcg_stock_pcp {
1842 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1843 unsigned int nr_pages;
cdec2e42 1844 struct work_struct work;
26fe6168 1845 unsigned long flags;
a0db00fc 1846#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1847};
1848static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1849static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1850
a0956d54
SS
1851/**
1852 * consume_stock: Try to consume stocked charge on this cpu.
1853 * @memcg: memcg to consume from.
1854 * @nr_pages: how many pages to charge.
1855 *
1856 * The charges will only happen if @memcg matches the current cpu's memcg
1857 * stock, and at least @nr_pages are available in that stock. Failure to
1858 * service an allocation will refill the stock.
1859 *
1860 * returns true if successful, false otherwise.
cdec2e42 1861 */
a0956d54 1862static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1863{
1864 struct memcg_stock_pcp *stock;
3e32cb2e 1865 bool ret = false;
cdec2e42 1866
a0956d54 1867 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1868 return ret;
a0956d54 1869
cdec2e42 1870 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1871 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1872 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1873 ret = true;
1874 }
cdec2e42
KH
1875 put_cpu_var(memcg_stock);
1876 return ret;
1877}
1878
1879/*
3e32cb2e 1880 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1881 */
1882static void drain_stock(struct memcg_stock_pcp *stock)
1883{
1884 struct mem_cgroup *old = stock->cached;
1885
11c9ea4e 1886 if (stock->nr_pages) {
3e32cb2e 1887 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 1888 if (do_swap_account)
3e32cb2e 1889 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1890 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1891 stock->nr_pages = 0;
cdec2e42
KH
1892 }
1893 stock->cached = NULL;
cdec2e42
KH
1894}
1895
1896/*
1897 * This must be called under preempt disabled or must be called by
1898 * a thread which is pinned to local cpu.
1899 */
1900static void drain_local_stock(struct work_struct *dummy)
1901{
7c8e0181 1902 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1903 drain_stock(stock);
26fe6168 1904 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1905}
1906
1907/*
3e32cb2e 1908 * Cache charges(val) to local per_cpu area.
320cc51d 1909 * This will be consumed by consume_stock() function, later.
cdec2e42 1910 */
c0ff4b85 1911static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1912{
1913 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1914
c0ff4b85 1915 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1916 drain_stock(stock);
c0ff4b85 1917 stock->cached = memcg;
cdec2e42 1918 }
11c9ea4e 1919 stock->nr_pages += nr_pages;
cdec2e42
KH
1920 put_cpu_var(memcg_stock);
1921}
1922
1923/*
c0ff4b85 1924 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1925 * of the hierarchy under it.
cdec2e42 1926 */
6d3d6aa2 1927static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1928{
26fe6168 1929 int cpu, curcpu;
d38144b7 1930
6d3d6aa2
JW
1931 /* If someone's already draining, avoid adding running more workers. */
1932 if (!mutex_trylock(&percpu_charge_mutex))
1933 return;
cdec2e42 1934 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1935 get_online_cpus();
5af12d0e 1936 curcpu = get_cpu();
cdec2e42
KH
1937 for_each_online_cpu(cpu) {
1938 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1939 struct mem_cgroup *memcg;
26fe6168 1940
c0ff4b85
R
1941 memcg = stock->cached;
1942 if (!memcg || !stock->nr_pages)
26fe6168 1943 continue;
2314b42d 1944 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1945 continue;
d1a05b69
MH
1946 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1947 if (cpu == curcpu)
1948 drain_local_stock(&stock->work);
1949 else
1950 schedule_work_on(cpu, &stock->work);
1951 }
cdec2e42 1952 }
5af12d0e 1953 put_cpu();
f894ffa8 1954 put_online_cpus();
9f50fad6 1955 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1956}
1957
0db0628d 1958static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1959 unsigned long action,
1960 void *hcpu)
1961{
1962 int cpu = (unsigned long)hcpu;
1963 struct memcg_stock_pcp *stock;
1964
619d094b 1965 if (action == CPU_ONLINE)
1489ebad 1966 return NOTIFY_OK;
1489ebad 1967
d833049b 1968 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1969 return NOTIFY_OK;
711d3d2c 1970
cdec2e42
KH
1971 stock = &per_cpu(memcg_stock, cpu);
1972 drain_stock(stock);
1973 return NOTIFY_OK;
1974}
1975
b23afb93
TH
1976/*
1977 * Scheduled by try_charge() to be executed from the userland return path
1978 * and reclaims memory over the high limit.
1979 */
1980void mem_cgroup_handle_over_high(void)
1981{
1982 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1983 struct mem_cgroup *memcg, *pos;
1984
1985 if (likely(!nr_pages))
1986 return;
1987
1988 pos = memcg = get_mem_cgroup_from_mm(current->mm);
1989
1990 do {
1991 if (page_counter_read(&pos->memory) <= pos->high)
1992 continue;
1993 mem_cgroup_events(pos, MEMCG_HIGH, 1);
1994 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
1995 } while ((pos = parent_mem_cgroup(pos)));
1996
1997 css_put(&memcg->css);
1998 current->memcg_nr_pages_over_high = 0;
1999}
2000
00501b53
JW
2001static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2002 unsigned int nr_pages)
8a9f3ccd 2003{
7ec99d62 2004 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2005 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2006 struct mem_cgroup *mem_over_limit;
3e32cb2e 2007 struct page_counter *counter;
6539cc05 2008 unsigned long nr_reclaimed;
b70a2a21
JW
2009 bool may_swap = true;
2010 bool drained = false;
a636b327 2011
ce00a967 2012 if (mem_cgroup_is_root(memcg))
10d53c74 2013 return 0;
6539cc05 2014retry:
b6b6cc72 2015 if (consume_stock(memcg, nr_pages))
10d53c74 2016 return 0;
8a9f3ccd 2017
3fbe7244 2018 if (!do_swap_account ||
3e32cb2e
JW
2019 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2020 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2021 goto done_restock;
3fbe7244 2022 if (do_swap_account)
3e32cb2e
JW
2023 page_counter_uncharge(&memcg->memsw, batch);
2024 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2025 } else {
3e32cb2e 2026 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2027 may_swap = false;
3fbe7244 2028 }
7a81b88c 2029
6539cc05
JW
2030 if (batch > nr_pages) {
2031 batch = nr_pages;
2032 goto retry;
2033 }
6d61ef40 2034
06b078fc
JW
2035 /*
2036 * Unlike in global OOM situations, memcg is not in a physical
2037 * memory shortage. Allow dying and OOM-killed tasks to
2038 * bypass the last charges so that they can exit quickly and
2039 * free their memory.
2040 */
2041 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2042 fatal_signal_pending(current) ||
2043 current->flags & PF_EXITING))
10d53c74 2044 goto force;
06b078fc
JW
2045
2046 if (unlikely(task_in_memcg_oom(current)))
2047 goto nomem;
2048
6539cc05
JW
2049 if (!(gfp_mask & __GFP_WAIT))
2050 goto nomem;
4b534334 2051
241994ed
JW
2052 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2053
b70a2a21
JW
2054 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2055 gfp_mask, may_swap);
6539cc05 2056
61e02c74 2057 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2058 goto retry;
28c34c29 2059
b70a2a21 2060 if (!drained) {
6d3d6aa2 2061 drain_all_stock(mem_over_limit);
b70a2a21
JW
2062 drained = true;
2063 goto retry;
2064 }
2065
28c34c29
JW
2066 if (gfp_mask & __GFP_NORETRY)
2067 goto nomem;
6539cc05
JW
2068 /*
2069 * Even though the limit is exceeded at this point, reclaim
2070 * may have been able to free some pages. Retry the charge
2071 * before killing the task.
2072 *
2073 * Only for regular pages, though: huge pages are rather
2074 * unlikely to succeed so close to the limit, and we fall back
2075 * to regular pages anyway in case of failure.
2076 */
61e02c74 2077 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2078 goto retry;
2079 /*
2080 * At task move, charge accounts can be doubly counted. So, it's
2081 * better to wait until the end of task_move if something is going on.
2082 */
2083 if (mem_cgroup_wait_acct_move(mem_over_limit))
2084 goto retry;
2085
9b130619
JW
2086 if (nr_retries--)
2087 goto retry;
2088
06b078fc 2089 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2090 goto force;
06b078fc 2091
6539cc05 2092 if (fatal_signal_pending(current))
10d53c74 2093 goto force;
6539cc05 2094
241994ed
JW
2095 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2096
3608de07
JM
2097 mem_cgroup_oom(mem_over_limit, gfp_mask,
2098 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2099nomem:
6d1fdc48 2100 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2101 return -ENOMEM;
10d53c74
TH
2102force:
2103 /*
2104 * The allocation either can't fail or will lead to more memory
2105 * being freed very soon. Allow memory usage go over the limit
2106 * temporarily by force charging it.
2107 */
2108 page_counter_charge(&memcg->memory, nr_pages);
2109 if (do_swap_account)
2110 page_counter_charge(&memcg->memsw, nr_pages);
2111 css_get_many(&memcg->css, nr_pages);
2112
2113 return 0;
6539cc05
JW
2114
2115done_restock:
e8ea14cc 2116 css_get_many(&memcg->css, batch);
6539cc05
JW
2117 if (batch > nr_pages)
2118 refill_stock(memcg, batch - nr_pages);
b23afb93 2119
241994ed 2120 /*
b23afb93
TH
2121 * If the hierarchy is above the normal consumption range, schedule
2122 * reclaim on returning to userland. We can perform reclaim here
2123 * if __GFP_WAIT but let's always punt for simplicity and so that
2124 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2125 * not recorded as it most likely matches current's and won't
2126 * change in the meantime. As high limit is checked again before
2127 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2128 */
2129 do {
b23afb93
TH
2130 if (page_counter_read(&memcg->memory) > memcg->high) {
2131 current->memcg_nr_pages_over_high += nr_pages;
2132 set_notify_resume(current);
2133 break;
2134 }
241994ed 2135 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2136
2137 return 0;
7a81b88c 2138}
8a9f3ccd 2139
00501b53 2140static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2141{
ce00a967
JW
2142 if (mem_cgroup_is_root(memcg))
2143 return;
2144
3e32cb2e 2145 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2146 if (do_swap_account)
3e32cb2e 2147 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2148
e8ea14cc 2149 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2150}
2151
0a31bc97
JW
2152static void lock_page_lru(struct page *page, int *isolated)
2153{
2154 struct zone *zone = page_zone(page);
2155
2156 spin_lock_irq(&zone->lru_lock);
2157 if (PageLRU(page)) {
2158 struct lruvec *lruvec;
2159
2160 lruvec = mem_cgroup_page_lruvec(page, zone);
2161 ClearPageLRU(page);
2162 del_page_from_lru_list(page, lruvec, page_lru(page));
2163 *isolated = 1;
2164 } else
2165 *isolated = 0;
2166}
2167
2168static void unlock_page_lru(struct page *page, int isolated)
2169{
2170 struct zone *zone = page_zone(page);
2171
2172 if (isolated) {
2173 struct lruvec *lruvec;
2174
2175 lruvec = mem_cgroup_page_lruvec(page, zone);
2176 VM_BUG_ON_PAGE(PageLRU(page), page);
2177 SetPageLRU(page);
2178 add_page_to_lru_list(page, lruvec, page_lru(page));
2179 }
2180 spin_unlock_irq(&zone->lru_lock);
2181}
2182
00501b53 2183static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2184 bool lrucare)
7a81b88c 2185{
0a31bc97 2186 int isolated;
9ce70c02 2187
1306a85a 2188 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2189
2190 /*
2191 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2192 * may already be on some other mem_cgroup's LRU. Take care of it.
2193 */
0a31bc97
JW
2194 if (lrucare)
2195 lock_page_lru(page, &isolated);
9ce70c02 2196
0a31bc97
JW
2197 /*
2198 * Nobody should be changing or seriously looking at
1306a85a 2199 * page->mem_cgroup at this point:
0a31bc97
JW
2200 *
2201 * - the page is uncharged
2202 *
2203 * - the page is off-LRU
2204 *
2205 * - an anonymous fault has exclusive page access, except for
2206 * a locked page table
2207 *
2208 * - a page cache insertion, a swapin fault, or a migration
2209 * have the page locked
2210 */
1306a85a 2211 page->mem_cgroup = memcg;
9ce70c02 2212
0a31bc97
JW
2213 if (lrucare)
2214 unlock_page_lru(page, isolated);
7a81b88c 2215}
66e1707b 2216
7ae1e1d0 2217#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2218int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2219 unsigned long nr_pages)
7ae1e1d0 2220{
3e32cb2e 2221 struct page_counter *counter;
7ae1e1d0 2222 int ret = 0;
7ae1e1d0 2223
3e32cb2e
JW
2224 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2225 if (ret < 0)
7ae1e1d0
GC
2226 return ret;
2227
3e32cb2e 2228 ret = try_charge(memcg, gfp, nr_pages);
10d53c74 2229 if (ret)
3e32cb2e 2230 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2231
2232 return ret;
2233}
2234
dbf22eb6 2235void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2236{
3e32cb2e 2237 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2238 if (do_swap_account)
3e32cb2e 2239 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2240
64f21993 2241 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2242
e8ea14cc 2243 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2244}
2245
f3bb3043 2246static int memcg_alloc_cache_id(void)
55007d84 2247{
f3bb3043
VD
2248 int id, size;
2249 int err;
2250
dbcf73e2 2251 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2252 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2253 if (id < 0)
2254 return id;
55007d84 2255
dbcf73e2 2256 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2257 return id;
2258
2259 /*
2260 * There's no space for the new id in memcg_caches arrays,
2261 * so we have to grow them.
2262 */
05257a1a 2263 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2264
2265 size = 2 * (id + 1);
55007d84
GC
2266 if (size < MEMCG_CACHES_MIN_SIZE)
2267 size = MEMCG_CACHES_MIN_SIZE;
2268 else if (size > MEMCG_CACHES_MAX_SIZE)
2269 size = MEMCG_CACHES_MAX_SIZE;
2270
f3bb3043 2271 err = memcg_update_all_caches(size);
60d3fd32
VD
2272 if (!err)
2273 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2274 if (!err)
2275 memcg_nr_cache_ids = size;
2276
2277 up_write(&memcg_cache_ids_sem);
2278
f3bb3043 2279 if (err) {
dbcf73e2 2280 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2281 return err;
2282 }
2283 return id;
2284}
2285
2286static void memcg_free_cache_id(int id)
2287{
dbcf73e2 2288 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2289}
2290
d5b3cf71 2291struct memcg_kmem_cache_create_work {
5722d094
VD
2292 struct mem_cgroup *memcg;
2293 struct kmem_cache *cachep;
2294 struct work_struct work;
2295};
2296
d5b3cf71 2297static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2298{
d5b3cf71
VD
2299 struct memcg_kmem_cache_create_work *cw =
2300 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2301 struct mem_cgroup *memcg = cw->memcg;
2302 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2303
d5b3cf71 2304 memcg_create_kmem_cache(memcg, cachep);
bd673145 2305
5722d094 2306 css_put(&memcg->css);
d7f25f8a
GC
2307 kfree(cw);
2308}
2309
2310/*
2311 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2312 */
d5b3cf71
VD
2313static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2314 struct kmem_cache *cachep)
d7f25f8a 2315{
d5b3cf71 2316 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2317
776ed0f0 2318 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2319 if (!cw)
d7f25f8a 2320 return;
8135be5a
VD
2321
2322 css_get(&memcg->css);
d7f25f8a
GC
2323
2324 cw->memcg = memcg;
2325 cw->cachep = cachep;
d5b3cf71 2326 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2327
d7f25f8a
GC
2328 schedule_work(&cw->work);
2329}
2330
d5b3cf71
VD
2331static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2332 struct kmem_cache *cachep)
0e9d92f2
GC
2333{
2334 /*
2335 * We need to stop accounting when we kmalloc, because if the
2336 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2337 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2338 *
2339 * However, it is better to enclose the whole function. Depending on
2340 * the debugging options enabled, INIT_WORK(), for instance, can
2341 * trigger an allocation. This too, will make us recurse. Because at
2342 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2343 * the safest choice is to do it like this, wrapping the whole function.
2344 */
6f185c29 2345 current->memcg_kmem_skip_account = 1;
d5b3cf71 2346 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2347 current->memcg_kmem_skip_account = 0;
0e9d92f2 2348}
c67a8a68 2349
d7f25f8a
GC
2350/*
2351 * Return the kmem_cache we're supposed to use for a slab allocation.
2352 * We try to use the current memcg's version of the cache.
2353 *
2354 * If the cache does not exist yet, if we are the first user of it,
2355 * we either create it immediately, if possible, or create it asynchronously
2356 * in a workqueue.
2357 * In the latter case, we will let the current allocation go through with
2358 * the original cache.
2359 *
2360 * Can't be called in interrupt context or from kernel threads.
2361 * This function needs to be called with rcu_read_lock() held.
2362 */
056b7cce 2363struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2364{
2365 struct mem_cgroup *memcg;
959c8963 2366 struct kmem_cache *memcg_cachep;
2a4db7eb 2367 int kmemcg_id;
d7f25f8a 2368
f7ce3190 2369 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2370
9d100c5e 2371 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2372 return cachep;
2373
8135be5a 2374 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2375 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2376 if (kmemcg_id < 0)
ca0dde97 2377 goto out;
d7f25f8a 2378
2a4db7eb 2379 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2380 if (likely(memcg_cachep))
2381 return memcg_cachep;
ca0dde97
LZ
2382
2383 /*
2384 * If we are in a safe context (can wait, and not in interrupt
2385 * context), we could be be predictable and return right away.
2386 * This would guarantee that the allocation being performed
2387 * already belongs in the new cache.
2388 *
2389 * However, there are some clashes that can arrive from locking.
2390 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2391 * memcg_create_kmem_cache, this means no further allocation
2392 * could happen with the slab_mutex held. So it's better to
2393 * defer everything.
ca0dde97 2394 */
d5b3cf71 2395 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2396out:
8135be5a 2397 css_put(&memcg->css);
ca0dde97 2398 return cachep;
d7f25f8a 2399}
d7f25f8a 2400
8135be5a
VD
2401void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2402{
2403 if (!is_root_cache(cachep))
f7ce3190 2404 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2405}
2406
d05e83a6 2407int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0
GC
2408{
2409 struct mem_cgroup *memcg;
2410 int ret;
2411
df381975 2412 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2413
cf2b8fbf 2414 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0 2415 css_put(&memcg->css);
d05e83a6 2416 return 0;
7ae1e1d0
GC
2417 }
2418
3e32cb2e 2419 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2420
2421 css_put(&memcg->css);
1306a85a 2422 page->mem_cgroup = memcg;
d05e83a6 2423 return ret;
7ae1e1d0
GC
2424}
2425
d05e83a6 2426void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2427{
1306a85a 2428 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2429
7ae1e1d0
GC
2430 if (!memcg)
2431 return;
2432
309381fe 2433 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2434
3e32cb2e 2435 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2436 page->mem_cgroup = NULL;
7ae1e1d0 2437}
60d3fd32
VD
2438
2439struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2440{
2441 struct mem_cgroup *memcg = NULL;
2442 struct kmem_cache *cachep;
2443 struct page *page;
2444
2445 page = virt_to_head_page(ptr);
2446 if (PageSlab(page)) {
2447 cachep = page->slab_cache;
2448 if (!is_root_cache(cachep))
f7ce3190 2449 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2450 } else
2451 /* page allocated by alloc_kmem_pages */
2452 memcg = page->mem_cgroup;
2453
2454 return memcg;
2455}
7ae1e1d0
GC
2456#endif /* CONFIG_MEMCG_KMEM */
2457
ca3e0214
KH
2458#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2459
ca3e0214
KH
2460/*
2461 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2462 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2463 * charge/uncharge will be never happen and move_account() is done under
2464 * compound_lock(), so we don't have to take care of races.
ca3e0214 2465 */
e94c8a9c 2466void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2467{
e94c8a9c 2468 int i;
ca3e0214 2469
3d37c4a9
KH
2470 if (mem_cgroup_disabled())
2471 return;
b070e65c 2472
29833315 2473 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2474 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2475
1306a85a 2476 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2477 HPAGE_PMD_NR);
ca3e0214 2478}
12d27107 2479#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2480
c255a458 2481#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2482static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2483 bool charge)
d13d1443 2484{
0a31bc97
JW
2485 int val = (charge) ? 1 : -1;
2486 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2487}
02491447
DN
2488
2489/**
2490 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2491 * @entry: swap entry to be moved
2492 * @from: mem_cgroup which the entry is moved from
2493 * @to: mem_cgroup which the entry is moved to
2494 *
2495 * It succeeds only when the swap_cgroup's record for this entry is the same
2496 * as the mem_cgroup's id of @from.
2497 *
2498 * Returns 0 on success, -EINVAL on failure.
2499 *
3e32cb2e 2500 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2501 * both res and memsw, and called css_get().
2502 */
2503static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2504 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2505{
2506 unsigned short old_id, new_id;
2507
34c00c31
LZ
2508 old_id = mem_cgroup_id(from);
2509 new_id = mem_cgroup_id(to);
02491447
DN
2510
2511 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2512 mem_cgroup_swap_statistics(from, false);
483c30b5 2513 mem_cgroup_swap_statistics(to, true);
02491447
DN
2514 return 0;
2515 }
2516 return -EINVAL;
2517}
2518#else
2519static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2520 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2521{
2522 return -EINVAL;
2523}
8c7c6e34 2524#endif
d13d1443 2525
3e32cb2e 2526static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2527
d38d2a75 2528static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2529 unsigned long limit)
628f4235 2530{
3e32cb2e
JW
2531 unsigned long curusage;
2532 unsigned long oldusage;
2533 bool enlarge = false;
81d39c20 2534 int retry_count;
3e32cb2e 2535 int ret;
81d39c20
KH
2536
2537 /*
2538 * For keeping hierarchical_reclaim simple, how long we should retry
2539 * is depends on callers. We set our retry-count to be function
2540 * of # of children which we should visit in this loop.
2541 */
3e32cb2e
JW
2542 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2543 mem_cgroup_count_children(memcg);
81d39c20 2544
3e32cb2e 2545 oldusage = page_counter_read(&memcg->memory);
628f4235 2546
3e32cb2e 2547 do {
628f4235
KH
2548 if (signal_pending(current)) {
2549 ret = -EINTR;
2550 break;
2551 }
3e32cb2e
JW
2552
2553 mutex_lock(&memcg_limit_mutex);
2554 if (limit > memcg->memsw.limit) {
2555 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2556 ret = -EINVAL;
628f4235
KH
2557 break;
2558 }
3e32cb2e
JW
2559 if (limit > memcg->memory.limit)
2560 enlarge = true;
2561 ret = page_counter_limit(&memcg->memory, limit);
2562 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2563
2564 if (!ret)
2565 break;
2566
b70a2a21
JW
2567 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2568
3e32cb2e 2569 curusage = page_counter_read(&memcg->memory);
81d39c20 2570 /* Usage is reduced ? */
f894ffa8 2571 if (curusage >= oldusage)
81d39c20
KH
2572 retry_count--;
2573 else
2574 oldusage = curusage;
3e32cb2e
JW
2575 } while (retry_count);
2576
3c11ecf4
KH
2577 if (!ret && enlarge)
2578 memcg_oom_recover(memcg);
14797e23 2579
8c7c6e34
KH
2580 return ret;
2581}
2582
338c8431 2583static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2584 unsigned long limit)
8c7c6e34 2585{
3e32cb2e
JW
2586 unsigned long curusage;
2587 unsigned long oldusage;
2588 bool enlarge = false;
81d39c20 2589 int retry_count;
3e32cb2e 2590 int ret;
8c7c6e34 2591
81d39c20 2592 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2593 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2594 mem_cgroup_count_children(memcg);
2595
2596 oldusage = page_counter_read(&memcg->memsw);
2597
2598 do {
8c7c6e34
KH
2599 if (signal_pending(current)) {
2600 ret = -EINTR;
2601 break;
2602 }
3e32cb2e
JW
2603
2604 mutex_lock(&memcg_limit_mutex);
2605 if (limit < memcg->memory.limit) {
2606 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2607 ret = -EINVAL;
8c7c6e34
KH
2608 break;
2609 }
3e32cb2e
JW
2610 if (limit > memcg->memsw.limit)
2611 enlarge = true;
2612 ret = page_counter_limit(&memcg->memsw, limit);
2613 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2614
2615 if (!ret)
2616 break;
2617
b70a2a21
JW
2618 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2619
3e32cb2e 2620 curusage = page_counter_read(&memcg->memsw);
81d39c20 2621 /* Usage is reduced ? */
8c7c6e34 2622 if (curusage >= oldusage)
628f4235 2623 retry_count--;
81d39c20
KH
2624 else
2625 oldusage = curusage;
3e32cb2e
JW
2626 } while (retry_count);
2627
3c11ecf4
KH
2628 if (!ret && enlarge)
2629 memcg_oom_recover(memcg);
3e32cb2e 2630
628f4235
KH
2631 return ret;
2632}
2633
0608f43d
AM
2634unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2635 gfp_t gfp_mask,
2636 unsigned long *total_scanned)
2637{
2638 unsigned long nr_reclaimed = 0;
2639 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2640 unsigned long reclaimed;
2641 int loop = 0;
2642 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2643 unsigned long excess;
0608f43d
AM
2644 unsigned long nr_scanned;
2645
2646 if (order > 0)
2647 return 0;
2648
2649 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2650 /*
2651 * This loop can run a while, specially if mem_cgroup's continuously
2652 * keep exceeding their soft limit and putting the system under
2653 * pressure
2654 */
2655 do {
2656 if (next_mz)
2657 mz = next_mz;
2658 else
2659 mz = mem_cgroup_largest_soft_limit_node(mctz);
2660 if (!mz)
2661 break;
2662
2663 nr_scanned = 0;
2664 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2665 gfp_mask, &nr_scanned);
2666 nr_reclaimed += reclaimed;
2667 *total_scanned += nr_scanned;
0a31bc97 2668 spin_lock_irq(&mctz->lock);
bc2f2e7f 2669 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2670
2671 /*
2672 * If we failed to reclaim anything from this memory cgroup
2673 * it is time to move on to the next cgroup
2674 */
2675 next_mz = NULL;
bc2f2e7f
VD
2676 if (!reclaimed)
2677 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2678
3e32cb2e 2679 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2680 /*
2681 * One school of thought says that we should not add
2682 * back the node to the tree if reclaim returns 0.
2683 * But our reclaim could return 0, simply because due
2684 * to priority we are exposing a smaller subset of
2685 * memory to reclaim from. Consider this as a longer
2686 * term TODO.
2687 */
2688 /* If excess == 0, no tree ops */
cf2c8127 2689 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2690 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2691 css_put(&mz->memcg->css);
2692 loop++;
2693 /*
2694 * Could not reclaim anything and there are no more
2695 * mem cgroups to try or we seem to be looping without
2696 * reclaiming anything.
2697 */
2698 if (!nr_reclaimed &&
2699 (next_mz == NULL ||
2700 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2701 break;
2702 } while (!nr_reclaimed);
2703 if (next_mz)
2704 css_put(&next_mz->memcg->css);
2705 return nr_reclaimed;
2706}
2707
ea280e7b
TH
2708/*
2709 * Test whether @memcg has children, dead or alive. Note that this
2710 * function doesn't care whether @memcg has use_hierarchy enabled and
2711 * returns %true if there are child csses according to the cgroup
2712 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2713 */
b5f99b53
GC
2714static inline bool memcg_has_children(struct mem_cgroup *memcg)
2715{
ea280e7b
TH
2716 bool ret;
2717
696ac172 2718 /*
ea280e7b
TH
2719 * The lock does not prevent addition or deletion of children, but
2720 * it prevents a new child from being initialized based on this
2721 * parent in css_online(), so it's enough to decide whether
2722 * hierarchically inherited attributes can still be changed or not.
696ac172 2723 */
ea280e7b
TH
2724 lockdep_assert_held(&memcg_create_mutex);
2725
2726 rcu_read_lock();
2727 ret = css_next_child(NULL, &memcg->css);
2728 rcu_read_unlock();
2729 return ret;
b5f99b53
GC
2730}
2731
c26251f9
MH
2732/*
2733 * Reclaims as many pages from the given memcg as possible and moves
2734 * the rest to the parent.
2735 *
2736 * Caller is responsible for holding css reference for memcg.
2737 */
2738static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2739{
2740 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2741
c1e862c1
KH
2742 /* we call try-to-free pages for make this cgroup empty */
2743 lru_add_drain_all();
f817ed48 2744 /* try to free all pages in this cgroup */
3e32cb2e 2745 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2746 int progress;
c1e862c1 2747
c26251f9
MH
2748 if (signal_pending(current))
2749 return -EINTR;
2750
b70a2a21
JW
2751 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2752 GFP_KERNEL, true);
c1e862c1 2753 if (!progress) {
f817ed48 2754 nr_retries--;
c1e862c1 2755 /* maybe some writeback is necessary */
8aa7e847 2756 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2757 }
f817ed48
KH
2758
2759 }
ab5196c2
MH
2760
2761 return 0;
cc847582
KH
2762}
2763
6770c64e
TH
2764static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2765 char *buf, size_t nbytes,
2766 loff_t off)
c1e862c1 2767{
6770c64e 2768 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2769
d8423011
MH
2770 if (mem_cgroup_is_root(memcg))
2771 return -EINVAL;
6770c64e 2772 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2773}
2774
182446d0
TH
2775static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2776 struct cftype *cft)
18f59ea7 2777{
182446d0 2778 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2779}
2780
182446d0
TH
2781static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2782 struct cftype *cft, u64 val)
18f59ea7
BS
2783{
2784 int retval = 0;
182446d0 2785 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2786 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2787
0999821b 2788 mutex_lock(&memcg_create_mutex);
567fb435
GC
2789
2790 if (memcg->use_hierarchy == val)
2791 goto out;
2792
18f59ea7 2793 /*
af901ca1 2794 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2795 * in the child subtrees. If it is unset, then the change can
2796 * occur, provided the current cgroup has no children.
2797 *
2798 * For the root cgroup, parent_mem is NULL, we allow value to be
2799 * set if there are no children.
2800 */
c0ff4b85 2801 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2802 (val == 1 || val == 0)) {
ea280e7b 2803 if (!memcg_has_children(memcg))
c0ff4b85 2804 memcg->use_hierarchy = val;
18f59ea7
BS
2805 else
2806 retval = -EBUSY;
2807 } else
2808 retval = -EINVAL;
567fb435
GC
2809
2810out:
0999821b 2811 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2812
2813 return retval;
2814}
2815
3e32cb2e
JW
2816static unsigned long tree_stat(struct mem_cgroup *memcg,
2817 enum mem_cgroup_stat_index idx)
ce00a967
JW
2818{
2819 struct mem_cgroup *iter;
484ebb3b 2820 unsigned long val = 0;
ce00a967 2821
ce00a967
JW
2822 for_each_mem_cgroup_tree(iter, memcg)
2823 val += mem_cgroup_read_stat(iter, idx);
2824
ce00a967
JW
2825 return val;
2826}
2827
2828static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2829{
2830 u64 val;
2831
3e32cb2e
JW
2832 if (mem_cgroup_is_root(memcg)) {
2833 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2834 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2835 if (swap)
2836 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2837 } else {
ce00a967 2838 if (!swap)
3e32cb2e 2839 val = page_counter_read(&memcg->memory);
ce00a967 2840 else
3e32cb2e 2841 val = page_counter_read(&memcg->memsw);
ce00a967 2842 }
ce00a967
JW
2843 return val << PAGE_SHIFT;
2844}
2845
3e32cb2e
JW
2846enum {
2847 RES_USAGE,
2848 RES_LIMIT,
2849 RES_MAX_USAGE,
2850 RES_FAILCNT,
2851 RES_SOFT_LIMIT,
2852};
ce00a967 2853
791badbd 2854static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2855 struct cftype *cft)
8cdea7c0 2856{
182446d0 2857 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2858 struct page_counter *counter;
af36f906 2859
3e32cb2e 2860 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2861 case _MEM:
3e32cb2e
JW
2862 counter = &memcg->memory;
2863 break;
8c7c6e34 2864 case _MEMSWAP:
3e32cb2e
JW
2865 counter = &memcg->memsw;
2866 break;
510fc4e1 2867 case _KMEM:
3e32cb2e 2868 counter = &memcg->kmem;
510fc4e1 2869 break;
8c7c6e34
KH
2870 default:
2871 BUG();
8c7c6e34 2872 }
3e32cb2e
JW
2873
2874 switch (MEMFILE_ATTR(cft->private)) {
2875 case RES_USAGE:
2876 if (counter == &memcg->memory)
2877 return mem_cgroup_usage(memcg, false);
2878 if (counter == &memcg->memsw)
2879 return mem_cgroup_usage(memcg, true);
2880 return (u64)page_counter_read(counter) * PAGE_SIZE;
2881 case RES_LIMIT:
2882 return (u64)counter->limit * PAGE_SIZE;
2883 case RES_MAX_USAGE:
2884 return (u64)counter->watermark * PAGE_SIZE;
2885 case RES_FAILCNT:
2886 return counter->failcnt;
2887 case RES_SOFT_LIMIT:
2888 return (u64)memcg->soft_limit * PAGE_SIZE;
2889 default:
2890 BUG();
2891 }
8cdea7c0 2892}
510fc4e1 2893
510fc4e1 2894#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
2895static int memcg_activate_kmem(struct mem_cgroup *memcg,
2896 unsigned long nr_pages)
d6441637
VD
2897{
2898 int err = 0;
2899 int memcg_id;
2900
2a4db7eb 2901 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 2902 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 2903 BUG_ON(memcg->kmem_acct_active);
d6441637 2904
510fc4e1
GC
2905 /*
2906 * For simplicity, we won't allow this to be disabled. It also can't
2907 * be changed if the cgroup has children already, or if tasks had
2908 * already joined.
2909 *
2910 * If tasks join before we set the limit, a person looking at
2911 * kmem.usage_in_bytes will have no way to determine when it took
2912 * place, which makes the value quite meaningless.
2913 *
2914 * After it first became limited, changes in the value of the limit are
2915 * of course permitted.
510fc4e1 2916 */
0999821b 2917 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
2918 if (cgroup_has_tasks(memcg->css.cgroup) ||
2919 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2920 err = -EBUSY;
2921 mutex_unlock(&memcg_create_mutex);
2922 if (err)
2923 goto out;
510fc4e1 2924
f3bb3043 2925 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2926 if (memcg_id < 0) {
2927 err = memcg_id;
2928 goto out;
2929 }
2930
d6441637 2931 /*
900a38f0
VD
2932 * We couldn't have accounted to this cgroup, because it hasn't got
2933 * activated yet, so this should succeed.
d6441637 2934 */
3e32cb2e 2935 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
2936 VM_BUG_ON(err);
2937
2938 static_key_slow_inc(&memcg_kmem_enabled_key);
2939 /*
900a38f0
VD
2940 * A memory cgroup is considered kmem-active as soon as it gets
2941 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2942 * guarantee no one starts accounting before all call sites are
2943 * patched.
2944 */
900a38f0 2945 memcg->kmemcg_id = memcg_id;
2788cf0c 2946 memcg->kmem_acct_activated = true;
2a4db7eb 2947 memcg->kmem_acct_active = true;
510fc4e1 2948out:
d6441637 2949 return err;
d6441637
VD
2950}
2951
d6441637 2952static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2953 unsigned long limit)
d6441637
VD
2954{
2955 int ret;
2956
3e32cb2e 2957 mutex_lock(&memcg_limit_mutex);
d6441637 2958 if (!memcg_kmem_is_active(memcg))
3e32cb2e 2959 ret = memcg_activate_kmem(memcg, limit);
d6441637 2960 else
3e32cb2e
JW
2961 ret = page_counter_limit(&memcg->kmem, limit);
2962 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
2963 return ret;
2964}
2965
55007d84 2966static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 2967{
55007d84 2968 int ret = 0;
510fc4e1 2969 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 2970
d6441637
VD
2971 if (!parent)
2972 return 0;
55007d84 2973
8c0145b6 2974 mutex_lock(&memcg_limit_mutex);
55007d84 2975 /*
d6441637
VD
2976 * If the parent cgroup is not kmem-active now, it cannot be activated
2977 * after this point, because it has at least one child already.
55007d84 2978 */
d6441637 2979 if (memcg_kmem_is_active(parent))
8c0145b6
VD
2980 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2981 mutex_unlock(&memcg_limit_mutex);
55007d84 2982 return ret;
510fc4e1 2983}
d6441637
VD
2984#else
2985static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2986 unsigned long limit)
d6441637
VD
2987{
2988 return -EINVAL;
2989}
6d043990 2990#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 2991
628f4235
KH
2992/*
2993 * The user of this function is...
2994 * RES_LIMIT.
2995 */
451af504
TH
2996static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2997 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2998{
451af504 2999 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3000 unsigned long nr_pages;
628f4235
KH
3001 int ret;
3002
451af504 3003 buf = strstrip(buf);
650c5e56 3004 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3005 if (ret)
3006 return ret;
af36f906 3007
3e32cb2e 3008 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3009 case RES_LIMIT:
4b3bde4c
BS
3010 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3011 ret = -EINVAL;
3012 break;
3013 }
3e32cb2e
JW
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3017 break;
3e32cb2e
JW
3018 case _MEMSWAP:
3019 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3020 break;
3e32cb2e
JW
3021 case _KMEM:
3022 ret = memcg_update_kmem_limit(memcg, nr_pages);
3023 break;
3024 }
296c81d8 3025 break;
3e32cb2e
JW
3026 case RES_SOFT_LIMIT:
3027 memcg->soft_limit = nr_pages;
3028 ret = 0;
628f4235
KH
3029 break;
3030 }
451af504 3031 return ret ?: nbytes;
8cdea7c0
BS
3032}
3033
6770c64e
TH
3034static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3035 size_t nbytes, loff_t off)
c84872e1 3036{
6770c64e 3037 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3038 struct page_counter *counter;
c84872e1 3039
3e32cb2e
JW
3040 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3041 case _MEM:
3042 counter = &memcg->memory;
3043 break;
3044 case _MEMSWAP:
3045 counter = &memcg->memsw;
3046 break;
3047 case _KMEM:
3048 counter = &memcg->kmem;
3049 break;
3050 default:
3051 BUG();
3052 }
af36f906 3053
3e32cb2e 3054 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3055 case RES_MAX_USAGE:
3e32cb2e 3056 page_counter_reset_watermark(counter);
29f2a4da
PE
3057 break;
3058 case RES_FAILCNT:
3e32cb2e 3059 counter->failcnt = 0;
29f2a4da 3060 break;
3e32cb2e
JW
3061 default:
3062 BUG();
29f2a4da 3063 }
f64c3f54 3064
6770c64e 3065 return nbytes;
c84872e1
PE
3066}
3067
182446d0 3068static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3069 struct cftype *cft)
3070{
182446d0 3071 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3072}
3073
02491447 3074#ifdef CONFIG_MMU
182446d0 3075static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3076 struct cftype *cft, u64 val)
3077{
182446d0 3078 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3079
1dfab5ab 3080 if (val & ~MOVE_MASK)
7dc74be0 3081 return -EINVAL;
ee5e8472 3082
7dc74be0 3083 /*
ee5e8472
GC
3084 * No kind of locking is needed in here, because ->can_attach() will
3085 * check this value once in the beginning of the process, and then carry
3086 * on with stale data. This means that changes to this value will only
3087 * affect task migrations starting after the change.
7dc74be0 3088 */
c0ff4b85 3089 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3090 return 0;
3091}
02491447 3092#else
182446d0 3093static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3094 struct cftype *cft, u64 val)
3095{
3096 return -ENOSYS;
3097}
3098#endif
7dc74be0 3099
406eb0c9 3100#ifdef CONFIG_NUMA
2da8ca82 3101static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3102{
25485de6
GT
3103 struct numa_stat {
3104 const char *name;
3105 unsigned int lru_mask;
3106 };
3107
3108 static const struct numa_stat stats[] = {
3109 { "total", LRU_ALL },
3110 { "file", LRU_ALL_FILE },
3111 { "anon", LRU_ALL_ANON },
3112 { "unevictable", BIT(LRU_UNEVICTABLE) },
3113 };
3114 const struct numa_stat *stat;
406eb0c9 3115 int nid;
25485de6 3116 unsigned long nr;
2da8ca82 3117 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3118
25485de6
GT
3119 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3120 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3121 seq_printf(m, "%s=%lu", stat->name, nr);
3122 for_each_node_state(nid, N_MEMORY) {
3123 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3124 stat->lru_mask);
3125 seq_printf(m, " N%d=%lu", nid, nr);
3126 }
3127 seq_putc(m, '\n');
406eb0c9 3128 }
406eb0c9 3129
071aee13
YH
3130 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3131 struct mem_cgroup *iter;
3132
3133 nr = 0;
3134 for_each_mem_cgroup_tree(iter, memcg)
3135 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3136 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3137 for_each_node_state(nid, N_MEMORY) {
3138 nr = 0;
3139 for_each_mem_cgroup_tree(iter, memcg)
3140 nr += mem_cgroup_node_nr_lru_pages(
3141 iter, nid, stat->lru_mask);
3142 seq_printf(m, " N%d=%lu", nid, nr);
3143 }
3144 seq_putc(m, '\n');
406eb0c9 3145 }
406eb0c9 3146
406eb0c9
YH
3147 return 0;
3148}
3149#endif /* CONFIG_NUMA */
3150
2da8ca82 3151static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3152{
2da8ca82 3153 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3154 unsigned long memory, memsw;
af7c4b0e
JW
3155 struct mem_cgroup *mi;
3156 unsigned int i;
406eb0c9 3157
0ca44b14
GT
3158 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3159 MEM_CGROUP_STAT_NSTATS);
3160 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3161 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3162 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3163
af7c4b0e 3164 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3165 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3166 continue;
484ebb3b 3167 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3168 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3169 }
7b854121 3170
af7c4b0e
JW
3171 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3172 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3173 mem_cgroup_read_events(memcg, i));
3174
3175 for (i = 0; i < NR_LRU_LISTS; i++)
3176 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3177 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3178
14067bb3 3179 /* Hierarchical information */
3e32cb2e
JW
3180 memory = memsw = PAGE_COUNTER_MAX;
3181 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3182 memory = min(memory, mi->memory.limit);
3183 memsw = min(memsw, mi->memsw.limit);
fee7b548 3184 }
3e32cb2e
JW
3185 seq_printf(m, "hierarchical_memory_limit %llu\n",
3186 (u64)memory * PAGE_SIZE);
3187 if (do_swap_account)
3188 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3189 (u64)memsw * PAGE_SIZE);
7f016ee8 3190
af7c4b0e 3191 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3192 unsigned long long val = 0;
af7c4b0e 3193
bff6bb83 3194 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3195 continue;
af7c4b0e
JW
3196 for_each_mem_cgroup_tree(mi, memcg)
3197 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3198 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3199 }
3200
3201 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3202 unsigned long long val = 0;
3203
3204 for_each_mem_cgroup_tree(mi, memcg)
3205 val += mem_cgroup_read_events(mi, i);
3206 seq_printf(m, "total_%s %llu\n",
3207 mem_cgroup_events_names[i], val);
3208 }
3209
3210 for (i = 0; i < NR_LRU_LISTS; i++) {
3211 unsigned long long val = 0;
3212
3213 for_each_mem_cgroup_tree(mi, memcg)
3214 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3215 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3216 }
14067bb3 3217
7f016ee8 3218#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3219 {
3220 int nid, zid;
3221 struct mem_cgroup_per_zone *mz;
89abfab1 3222 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3223 unsigned long recent_rotated[2] = {0, 0};
3224 unsigned long recent_scanned[2] = {0, 0};
3225
3226 for_each_online_node(nid)
3227 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3228 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3229 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3230
89abfab1
HD
3231 recent_rotated[0] += rstat->recent_rotated[0];
3232 recent_rotated[1] += rstat->recent_rotated[1];
3233 recent_scanned[0] += rstat->recent_scanned[0];
3234 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3235 }
78ccf5b5
JW
3236 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3237 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3238 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3239 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3240 }
3241#endif
3242
d2ceb9b7
KH
3243 return 0;
3244}
3245
182446d0
TH
3246static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3247 struct cftype *cft)
a7885eb8 3248{
182446d0 3249 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3250
1f4c025b 3251 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3252}
3253
182446d0
TH
3254static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3255 struct cftype *cft, u64 val)
a7885eb8 3256{
182446d0 3257 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3258
3dae7fec 3259 if (val > 100)
a7885eb8
KM
3260 return -EINVAL;
3261
14208b0e 3262 if (css->parent)
3dae7fec
JW
3263 memcg->swappiness = val;
3264 else
3265 vm_swappiness = val;
068b38c1 3266
a7885eb8
KM
3267 return 0;
3268}
3269
2e72b634
KS
3270static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3271{
3272 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3273 unsigned long usage;
2e72b634
KS
3274 int i;
3275
3276 rcu_read_lock();
3277 if (!swap)
2c488db2 3278 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3279 else
2c488db2 3280 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3281
3282 if (!t)
3283 goto unlock;
3284
ce00a967 3285 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3286
3287 /*
748dad36 3288 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3289 * If it's not true, a threshold was crossed after last
3290 * call of __mem_cgroup_threshold().
3291 */
5407a562 3292 i = t->current_threshold;
2e72b634
KS
3293
3294 /*
3295 * Iterate backward over array of thresholds starting from
3296 * current_threshold and check if a threshold is crossed.
3297 * If none of thresholds below usage is crossed, we read
3298 * only one element of the array here.
3299 */
3300 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3301 eventfd_signal(t->entries[i].eventfd, 1);
3302
3303 /* i = current_threshold + 1 */
3304 i++;
3305
3306 /*
3307 * Iterate forward over array of thresholds starting from
3308 * current_threshold+1 and check if a threshold is crossed.
3309 * If none of thresholds above usage is crossed, we read
3310 * only one element of the array here.
3311 */
3312 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3313 eventfd_signal(t->entries[i].eventfd, 1);
3314
3315 /* Update current_threshold */
5407a562 3316 t->current_threshold = i - 1;
2e72b634
KS
3317unlock:
3318 rcu_read_unlock();
3319}
3320
3321static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3322{
ad4ca5f4
KS
3323 while (memcg) {
3324 __mem_cgroup_threshold(memcg, false);
3325 if (do_swap_account)
3326 __mem_cgroup_threshold(memcg, true);
3327
3328 memcg = parent_mem_cgroup(memcg);
3329 }
2e72b634
KS
3330}
3331
3332static int compare_thresholds(const void *a, const void *b)
3333{
3334 const struct mem_cgroup_threshold *_a = a;
3335 const struct mem_cgroup_threshold *_b = b;
3336
2bff24a3
GT
3337 if (_a->threshold > _b->threshold)
3338 return 1;
3339
3340 if (_a->threshold < _b->threshold)
3341 return -1;
3342
3343 return 0;
2e72b634
KS
3344}
3345
c0ff4b85 3346static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3347{
3348 struct mem_cgroup_eventfd_list *ev;
3349
2bcf2e92
MH
3350 spin_lock(&memcg_oom_lock);
3351
c0ff4b85 3352 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3353 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3354
3355 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3356 return 0;
3357}
3358
c0ff4b85 3359static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3360{
7d74b06f
KH
3361 struct mem_cgroup *iter;
3362
c0ff4b85 3363 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3364 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3365}
3366
59b6f873 3367static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3368 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3369{
2c488db2
KS
3370 struct mem_cgroup_thresholds *thresholds;
3371 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3372 unsigned long threshold;
3373 unsigned long usage;
2c488db2 3374 int i, size, ret;
2e72b634 3375
650c5e56 3376 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3377 if (ret)
3378 return ret;
424cdc14 3379 threshold <<= PAGE_SHIFT;
2e72b634
KS
3380
3381 mutex_lock(&memcg->thresholds_lock);
2c488db2 3382
05b84301 3383 if (type == _MEM) {
2c488db2 3384 thresholds = &memcg->thresholds;
ce00a967 3385 usage = mem_cgroup_usage(memcg, false);
05b84301 3386 } else if (type == _MEMSWAP) {
2c488db2 3387 thresholds = &memcg->memsw_thresholds;
ce00a967 3388 usage = mem_cgroup_usage(memcg, true);
05b84301 3389 } else
2e72b634
KS
3390 BUG();
3391
2e72b634 3392 /* Check if a threshold crossed before adding a new one */
2c488db2 3393 if (thresholds->primary)
2e72b634
KS
3394 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3395
2c488db2 3396 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3397
3398 /* Allocate memory for new array of thresholds */
2c488db2 3399 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3400 GFP_KERNEL);
2c488db2 3401 if (!new) {
2e72b634
KS
3402 ret = -ENOMEM;
3403 goto unlock;
3404 }
2c488db2 3405 new->size = size;
2e72b634
KS
3406
3407 /* Copy thresholds (if any) to new array */
2c488db2
KS
3408 if (thresholds->primary) {
3409 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3410 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3411 }
3412
2e72b634 3413 /* Add new threshold */
2c488db2
KS
3414 new->entries[size - 1].eventfd = eventfd;
3415 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3416
3417 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3418 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3419 compare_thresholds, NULL);
3420
3421 /* Find current threshold */
2c488db2 3422 new->current_threshold = -1;
2e72b634 3423 for (i = 0; i < size; i++) {
748dad36 3424 if (new->entries[i].threshold <= usage) {
2e72b634 3425 /*
2c488db2
KS
3426 * new->current_threshold will not be used until
3427 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3428 * it here.
3429 */
2c488db2 3430 ++new->current_threshold;
748dad36
SZ
3431 } else
3432 break;
2e72b634
KS
3433 }
3434
2c488db2
KS
3435 /* Free old spare buffer and save old primary buffer as spare */
3436 kfree(thresholds->spare);
3437 thresholds->spare = thresholds->primary;
3438
3439 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3440
907860ed 3441 /* To be sure that nobody uses thresholds */
2e72b634
KS
3442 synchronize_rcu();
3443
2e72b634
KS
3444unlock:
3445 mutex_unlock(&memcg->thresholds_lock);
3446
3447 return ret;
3448}
3449
59b6f873 3450static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3451 struct eventfd_ctx *eventfd, const char *args)
3452{
59b6f873 3453 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3454}
3455
59b6f873 3456static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3457 struct eventfd_ctx *eventfd, const char *args)
3458{
59b6f873 3459 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3460}
3461
59b6f873 3462static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3463 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3464{
2c488db2
KS
3465 struct mem_cgroup_thresholds *thresholds;
3466 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3467 unsigned long usage;
2c488db2 3468 int i, j, size;
2e72b634
KS
3469
3470 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3471
3472 if (type == _MEM) {
2c488db2 3473 thresholds = &memcg->thresholds;
ce00a967 3474 usage = mem_cgroup_usage(memcg, false);
05b84301 3475 } else if (type == _MEMSWAP) {
2c488db2 3476 thresholds = &memcg->memsw_thresholds;
ce00a967 3477 usage = mem_cgroup_usage(memcg, true);
05b84301 3478 } else
2e72b634
KS
3479 BUG();
3480
371528ca
AV
3481 if (!thresholds->primary)
3482 goto unlock;
3483
2e72b634
KS
3484 /* Check if a threshold crossed before removing */
3485 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3486
3487 /* Calculate new number of threshold */
2c488db2
KS
3488 size = 0;
3489 for (i = 0; i < thresholds->primary->size; i++) {
3490 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3491 size++;
3492 }
3493
2c488db2 3494 new = thresholds->spare;
907860ed 3495
2e72b634
KS
3496 /* Set thresholds array to NULL if we don't have thresholds */
3497 if (!size) {
2c488db2
KS
3498 kfree(new);
3499 new = NULL;
907860ed 3500 goto swap_buffers;
2e72b634
KS
3501 }
3502
2c488db2 3503 new->size = size;
2e72b634
KS
3504
3505 /* Copy thresholds and find current threshold */
2c488db2
KS
3506 new->current_threshold = -1;
3507 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3508 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3509 continue;
3510
2c488db2 3511 new->entries[j] = thresholds->primary->entries[i];
748dad36 3512 if (new->entries[j].threshold <= usage) {
2e72b634 3513 /*
2c488db2 3514 * new->current_threshold will not be used
2e72b634
KS
3515 * until rcu_assign_pointer(), so it's safe to increment
3516 * it here.
3517 */
2c488db2 3518 ++new->current_threshold;
2e72b634
KS
3519 }
3520 j++;
3521 }
3522
907860ed 3523swap_buffers:
2c488db2
KS
3524 /* Swap primary and spare array */
3525 thresholds->spare = thresholds->primary;
8c757763
SZ
3526 /* If all events are unregistered, free the spare array */
3527 if (!new) {
3528 kfree(thresholds->spare);
3529 thresholds->spare = NULL;
3530 }
3531
2c488db2 3532 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3533
907860ed 3534 /* To be sure that nobody uses thresholds */
2e72b634 3535 synchronize_rcu();
371528ca 3536unlock:
2e72b634 3537 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3538}
c1e862c1 3539
59b6f873 3540static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3541 struct eventfd_ctx *eventfd)
3542{
59b6f873 3543 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3544}
3545
59b6f873 3546static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3547 struct eventfd_ctx *eventfd)
3548{
59b6f873 3549 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3550}
3551
59b6f873 3552static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3553 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3554{
9490ff27 3555 struct mem_cgroup_eventfd_list *event;
9490ff27 3556
9490ff27
KH
3557 event = kmalloc(sizeof(*event), GFP_KERNEL);
3558 if (!event)
3559 return -ENOMEM;
3560
1af8efe9 3561 spin_lock(&memcg_oom_lock);
9490ff27
KH
3562
3563 event->eventfd = eventfd;
3564 list_add(&event->list, &memcg->oom_notify);
3565
3566 /* already in OOM ? */
c2b42d3c 3567 if (memcg->under_oom)
9490ff27 3568 eventfd_signal(eventfd, 1);
1af8efe9 3569 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3570
3571 return 0;
3572}
3573
59b6f873 3574static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3575 struct eventfd_ctx *eventfd)
9490ff27 3576{
9490ff27 3577 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3578
1af8efe9 3579 spin_lock(&memcg_oom_lock);
9490ff27 3580
c0ff4b85 3581 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3582 if (ev->eventfd == eventfd) {
3583 list_del(&ev->list);
3584 kfree(ev);
3585 }
3586 }
3587
1af8efe9 3588 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3589}
3590
2da8ca82 3591static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3592{
2da8ca82 3593 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3594
791badbd 3595 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3596 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3597 return 0;
3598}
3599
182446d0 3600static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3601 struct cftype *cft, u64 val)
3602{
182446d0 3603 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3604
3605 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3606 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3607 return -EINVAL;
3608
c0ff4b85 3609 memcg->oom_kill_disable = val;
4d845ebf 3610 if (!val)
c0ff4b85 3611 memcg_oom_recover(memcg);
3dae7fec 3612
3c11ecf4
KH
3613 return 0;
3614}
3615
c255a458 3616#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3617static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3618{
55007d84
GC
3619 int ret;
3620
55007d84
GC
3621 ret = memcg_propagate_kmem(memcg);
3622 if (ret)
3623 return ret;
2633d7a0 3624
1d62e436 3625 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3626}
e5671dfa 3627
2a4db7eb
VD
3628static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3629{
2788cf0c
VD
3630 struct cgroup_subsys_state *css;
3631 struct mem_cgroup *parent, *child;
3632 int kmemcg_id;
3633
2a4db7eb
VD
3634 if (!memcg->kmem_acct_active)
3635 return;
3636
3637 /*
3638 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3639 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3640 * guarantees no cache will be created for this cgroup after we are
3641 * done (see memcg_create_kmem_cache()).
3642 */
3643 memcg->kmem_acct_active = false;
3644
3645 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3646
3647 kmemcg_id = memcg->kmemcg_id;
3648 BUG_ON(kmemcg_id < 0);
3649
3650 parent = parent_mem_cgroup(memcg);
3651 if (!parent)
3652 parent = root_mem_cgroup;
3653
3654 /*
3655 * Change kmemcg_id of this cgroup and all its descendants to the
3656 * parent's id, and then move all entries from this cgroup's list_lrus
3657 * to ones of the parent. After we have finished, all list_lrus
3658 * corresponding to this cgroup are guaranteed to remain empty. The
3659 * ordering is imposed by list_lru_node->lock taken by
3660 * memcg_drain_all_list_lrus().
3661 */
3662 css_for_each_descendant_pre(css, &memcg->css) {
3663 child = mem_cgroup_from_css(css);
3664 BUG_ON(child->kmemcg_id != kmemcg_id);
3665 child->kmemcg_id = parent->kmemcg_id;
3666 if (!memcg->use_hierarchy)
3667 break;
3668 }
3669 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3670
3671 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3672}
3673
10d5ebf4 3674static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3675{
f48b80a5
VD
3676 if (memcg->kmem_acct_activated) {
3677 memcg_destroy_kmem_caches(memcg);
3678 static_key_slow_dec(&memcg_kmem_enabled_key);
3679 WARN_ON(page_counter_read(&memcg->kmem));
3680 }
1d62e436 3681 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3682}
e5671dfa 3683#else
cbe128e3 3684static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3685{
3686 return 0;
3687}
d1a4c0b3 3688
2a4db7eb
VD
3689static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3690{
3691}
3692
10d5ebf4
LZ
3693static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3694{
3695}
e5671dfa
GC
3696#endif
3697
52ebea74
TH
3698#ifdef CONFIG_CGROUP_WRITEBACK
3699
3700struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3701{
3702 return &memcg->cgwb_list;
3703}
3704
841710aa
TH
3705static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3706{
3707 return wb_domain_init(&memcg->cgwb_domain, gfp);
3708}
3709
3710static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3711{
3712 wb_domain_exit(&memcg->cgwb_domain);
3713}
3714
2529bb3a
TH
3715static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3716{
3717 wb_domain_size_changed(&memcg->cgwb_domain);
3718}
3719
841710aa
TH
3720struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3721{
3722 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3723
3724 if (!memcg->css.parent)
3725 return NULL;
3726
3727 return &memcg->cgwb_domain;
3728}
3729
c2aa723a
TH
3730/**
3731 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3732 * @wb: bdi_writeback in question
c5edf9cd
TH
3733 * @pfilepages: out parameter for number of file pages
3734 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3735 * @pdirty: out parameter for number of dirty pages
3736 * @pwriteback: out parameter for number of pages under writeback
3737 *
c5edf9cd
TH
3738 * Determine the numbers of file, headroom, dirty, and writeback pages in
3739 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3740 * is a bit more involved.
c2aa723a 3741 *
c5edf9cd
TH
3742 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3743 * headroom is calculated as the lowest headroom of itself and the
3744 * ancestors. Note that this doesn't consider the actual amount of
3745 * available memory in the system. The caller should further cap
3746 * *@pheadroom accordingly.
c2aa723a 3747 */
c5edf9cd
TH
3748void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3749 unsigned long *pheadroom, unsigned long *pdirty,
3750 unsigned long *pwriteback)
c2aa723a
TH
3751{
3752 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3753 struct mem_cgroup *parent;
c2aa723a
TH
3754
3755 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3756
3757 /* this should eventually include NR_UNSTABLE_NFS */
3758 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3759 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3760 (1 << LRU_ACTIVE_FILE));
3761 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3762
c2aa723a
TH
3763 while ((parent = parent_mem_cgroup(memcg))) {
3764 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3765 unsigned long used = page_counter_read(&memcg->memory);
3766
c5edf9cd 3767 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3768 memcg = parent;
3769 }
c2aa723a
TH
3770}
3771
841710aa
TH
3772#else /* CONFIG_CGROUP_WRITEBACK */
3773
3774static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3775{
3776 return 0;
3777}
3778
3779static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3780{
3781}
3782
2529bb3a
TH
3783static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3784{
3785}
3786
52ebea74
TH
3787#endif /* CONFIG_CGROUP_WRITEBACK */
3788
3bc942f3
TH
3789/*
3790 * DO NOT USE IN NEW FILES.
3791 *
3792 * "cgroup.event_control" implementation.
3793 *
3794 * This is way over-engineered. It tries to support fully configurable
3795 * events for each user. Such level of flexibility is completely
3796 * unnecessary especially in the light of the planned unified hierarchy.
3797 *
3798 * Please deprecate this and replace with something simpler if at all
3799 * possible.
3800 */
3801
79bd9814
TH
3802/*
3803 * Unregister event and free resources.
3804 *
3805 * Gets called from workqueue.
3806 */
3bc942f3 3807static void memcg_event_remove(struct work_struct *work)
79bd9814 3808{
3bc942f3
TH
3809 struct mem_cgroup_event *event =
3810 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3811 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3812
3813 remove_wait_queue(event->wqh, &event->wait);
3814
59b6f873 3815 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3816
3817 /* Notify userspace the event is going away. */
3818 eventfd_signal(event->eventfd, 1);
3819
3820 eventfd_ctx_put(event->eventfd);
3821 kfree(event);
59b6f873 3822 css_put(&memcg->css);
79bd9814
TH
3823}
3824
3825/*
3826 * Gets called on POLLHUP on eventfd when user closes it.
3827 *
3828 * Called with wqh->lock held and interrupts disabled.
3829 */
3bc942f3
TH
3830static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3831 int sync, void *key)
79bd9814 3832{
3bc942f3
TH
3833 struct mem_cgroup_event *event =
3834 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3835 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3836 unsigned long flags = (unsigned long)key;
3837
3838 if (flags & POLLHUP) {
3839 /*
3840 * If the event has been detached at cgroup removal, we
3841 * can simply return knowing the other side will cleanup
3842 * for us.
3843 *
3844 * We can't race against event freeing since the other
3845 * side will require wqh->lock via remove_wait_queue(),
3846 * which we hold.
3847 */
fba94807 3848 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3849 if (!list_empty(&event->list)) {
3850 list_del_init(&event->list);
3851 /*
3852 * We are in atomic context, but cgroup_event_remove()
3853 * may sleep, so we have to call it in workqueue.
3854 */
3855 schedule_work(&event->remove);
3856 }
fba94807 3857 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3858 }
3859
3860 return 0;
3861}
3862
3bc942f3 3863static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3864 wait_queue_head_t *wqh, poll_table *pt)
3865{
3bc942f3
TH
3866 struct mem_cgroup_event *event =
3867 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3868
3869 event->wqh = wqh;
3870 add_wait_queue(wqh, &event->wait);
3871}
3872
3873/*
3bc942f3
TH
3874 * DO NOT USE IN NEW FILES.
3875 *
79bd9814
TH
3876 * Parse input and register new cgroup event handler.
3877 *
3878 * Input must be in format '<event_fd> <control_fd> <args>'.
3879 * Interpretation of args is defined by control file implementation.
3880 */
451af504
TH
3881static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3882 char *buf, size_t nbytes, loff_t off)
79bd9814 3883{
451af504 3884 struct cgroup_subsys_state *css = of_css(of);
fba94807 3885 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3886 struct mem_cgroup_event *event;
79bd9814
TH
3887 struct cgroup_subsys_state *cfile_css;
3888 unsigned int efd, cfd;
3889 struct fd efile;
3890 struct fd cfile;
fba94807 3891 const char *name;
79bd9814
TH
3892 char *endp;
3893 int ret;
3894
451af504
TH
3895 buf = strstrip(buf);
3896
3897 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3898 if (*endp != ' ')
3899 return -EINVAL;
451af504 3900 buf = endp + 1;
79bd9814 3901
451af504 3902 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3903 if ((*endp != ' ') && (*endp != '\0'))
3904 return -EINVAL;
451af504 3905 buf = endp + 1;
79bd9814
TH
3906
3907 event = kzalloc(sizeof(*event), GFP_KERNEL);
3908 if (!event)
3909 return -ENOMEM;
3910
59b6f873 3911 event->memcg = memcg;
79bd9814 3912 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3913 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3914 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3915 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3916
3917 efile = fdget(efd);
3918 if (!efile.file) {
3919 ret = -EBADF;
3920 goto out_kfree;
3921 }
3922
3923 event->eventfd = eventfd_ctx_fileget(efile.file);
3924 if (IS_ERR(event->eventfd)) {
3925 ret = PTR_ERR(event->eventfd);
3926 goto out_put_efile;
3927 }
3928
3929 cfile = fdget(cfd);
3930 if (!cfile.file) {
3931 ret = -EBADF;
3932 goto out_put_eventfd;
3933 }
3934
3935 /* the process need read permission on control file */
3936 /* AV: shouldn't we check that it's been opened for read instead? */
3937 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3938 if (ret < 0)
3939 goto out_put_cfile;
3940
fba94807
TH
3941 /*
3942 * Determine the event callbacks and set them in @event. This used
3943 * to be done via struct cftype but cgroup core no longer knows
3944 * about these events. The following is crude but the whole thing
3945 * is for compatibility anyway.
3bc942f3
TH
3946 *
3947 * DO NOT ADD NEW FILES.
fba94807 3948 */
b583043e 3949 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3950
3951 if (!strcmp(name, "memory.usage_in_bytes")) {
3952 event->register_event = mem_cgroup_usage_register_event;
3953 event->unregister_event = mem_cgroup_usage_unregister_event;
3954 } else if (!strcmp(name, "memory.oom_control")) {
3955 event->register_event = mem_cgroup_oom_register_event;
3956 event->unregister_event = mem_cgroup_oom_unregister_event;
3957 } else if (!strcmp(name, "memory.pressure_level")) {
3958 event->register_event = vmpressure_register_event;
3959 event->unregister_event = vmpressure_unregister_event;
3960 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3961 event->register_event = memsw_cgroup_usage_register_event;
3962 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3963 } else {
3964 ret = -EINVAL;
3965 goto out_put_cfile;
3966 }
3967
79bd9814 3968 /*
b5557c4c
TH
3969 * Verify @cfile should belong to @css. Also, remaining events are
3970 * automatically removed on cgroup destruction but the removal is
3971 * asynchronous, so take an extra ref on @css.
79bd9814 3972 */
b583043e 3973 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3974 &memory_cgrp_subsys);
79bd9814 3975 ret = -EINVAL;
5a17f543 3976 if (IS_ERR(cfile_css))
79bd9814 3977 goto out_put_cfile;
5a17f543
TH
3978 if (cfile_css != css) {
3979 css_put(cfile_css);
79bd9814 3980 goto out_put_cfile;
5a17f543 3981 }
79bd9814 3982
451af504 3983 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3984 if (ret)
3985 goto out_put_css;
3986
3987 efile.file->f_op->poll(efile.file, &event->pt);
3988
fba94807
TH
3989 spin_lock(&memcg->event_list_lock);
3990 list_add(&event->list, &memcg->event_list);
3991 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3992
3993 fdput(cfile);
3994 fdput(efile);
3995
451af504 3996 return nbytes;
79bd9814
TH
3997
3998out_put_css:
b5557c4c 3999 css_put(css);
79bd9814
TH
4000out_put_cfile:
4001 fdput(cfile);
4002out_put_eventfd:
4003 eventfd_ctx_put(event->eventfd);
4004out_put_efile:
4005 fdput(efile);
4006out_kfree:
4007 kfree(event);
4008
4009 return ret;
4010}
4011
241994ed 4012static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4013 {
0eea1030 4014 .name = "usage_in_bytes",
8c7c6e34 4015 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4016 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4017 },
c84872e1
PE
4018 {
4019 .name = "max_usage_in_bytes",
8c7c6e34 4020 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4021 .write = mem_cgroup_reset,
791badbd 4022 .read_u64 = mem_cgroup_read_u64,
c84872e1 4023 },
8cdea7c0 4024 {
0eea1030 4025 .name = "limit_in_bytes",
8c7c6e34 4026 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4027 .write = mem_cgroup_write,
791badbd 4028 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4029 },
296c81d8
BS
4030 {
4031 .name = "soft_limit_in_bytes",
4032 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4033 .write = mem_cgroup_write,
791badbd 4034 .read_u64 = mem_cgroup_read_u64,
296c81d8 4035 },
8cdea7c0
BS
4036 {
4037 .name = "failcnt",
8c7c6e34 4038 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4039 .write = mem_cgroup_reset,
791badbd 4040 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4041 },
d2ceb9b7
KH
4042 {
4043 .name = "stat",
2da8ca82 4044 .seq_show = memcg_stat_show,
d2ceb9b7 4045 },
c1e862c1
KH
4046 {
4047 .name = "force_empty",
6770c64e 4048 .write = mem_cgroup_force_empty_write,
c1e862c1 4049 },
18f59ea7
BS
4050 {
4051 .name = "use_hierarchy",
4052 .write_u64 = mem_cgroup_hierarchy_write,
4053 .read_u64 = mem_cgroup_hierarchy_read,
4054 },
79bd9814 4055 {
3bc942f3 4056 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4057 .write = memcg_write_event_control,
79bd9814
TH
4058 .flags = CFTYPE_NO_PREFIX,
4059 .mode = S_IWUGO,
4060 },
a7885eb8
KM
4061 {
4062 .name = "swappiness",
4063 .read_u64 = mem_cgroup_swappiness_read,
4064 .write_u64 = mem_cgroup_swappiness_write,
4065 },
7dc74be0
DN
4066 {
4067 .name = "move_charge_at_immigrate",
4068 .read_u64 = mem_cgroup_move_charge_read,
4069 .write_u64 = mem_cgroup_move_charge_write,
4070 },
9490ff27
KH
4071 {
4072 .name = "oom_control",
2da8ca82 4073 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4074 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4075 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4076 },
70ddf637
AV
4077 {
4078 .name = "pressure_level",
70ddf637 4079 },
406eb0c9
YH
4080#ifdef CONFIG_NUMA
4081 {
4082 .name = "numa_stat",
2da8ca82 4083 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4084 },
4085#endif
510fc4e1
GC
4086#ifdef CONFIG_MEMCG_KMEM
4087 {
4088 .name = "kmem.limit_in_bytes",
4089 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4090 .write = mem_cgroup_write,
791badbd 4091 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4092 },
4093 {
4094 .name = "kmem.usage_in_bytes",
4095 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4096 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4097 },
4098 {
4099 .name = "kmem.failcnt",
4100 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4101 .write = mem_cgroup_reset,
791badbd 4102 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4103 },
4104 {
4105 .name = "kmem.max_usage_in_bytes",
4106 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4107 .write = mem_cgroup_reset,
791badbd 4108 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4109 },
749c5415
GC
4110#ifdef CONFIG_SLABINFO
4111 {
4112 .name = "kmem.slabinfo",
b047501c
VD
4113 .seq_start = slab_start,
4114 .seq_next = slab_next,
4115 .seq_stop = slab_stop,
4116 .seq_show = memcg_slab_show,
749c5415
GC
4117 },
4118#endif
8c7c6e34 4119#endif
6bc10349 4120 { }, /* terminate */
af36f906 4121};
8c7c6e34 4122
c0ff4b85 4123static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4124{
4125 struct mem_cgroup_per_node *pn;
1ecaab2b 4126 struct mem_cgroup_per_zone *mz;
41e3355d 4127 int zone, tmp = node;
1ecaab2b
KH
4128 /*
4129 * This routine is called against possible nodes.
4130 * But it's BUG to call kmalloc() against offline node.
4131 *
4132 * TODO: this routine can waste much memory for nodes which will
4133 * never be onlined. It's better to use memory hotplug callback
4134 * function.
4135 */
41e3355d
KH
4136 if (!node_state(node, N_NORMAL_MEMORY))
4137 tmp = -1;
17295c88 4138 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4139 if (!pn)
4140 return 1;
1ecaab2b 4141
1ecaab2b
KH
4142 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4143 mz = &pn->zoneinfo[zone];
bea8c150 4144 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4145 mz->usage_in_excess = 0;
4146 mz->on_tree = false;
d79154bb 4147 mz->memcg = memcg;
1ecaab2b 4148 }
54f72fe0 4149 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4150 return 0;
4151}
4152
c0ff4b85 4153static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4154{
54f72fe0 4155 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4156}
4157
33327948
KH
4158static struct mem_cgroup *mem_cgroup_alloc(void)
4159{
d79154bb 4160 struct mem_cgroup *memcg;
8ff69e2c 4161 size_t size;
33327948 4162
8ff69e2c
VD
4163 size = sizeof(struct mem_cgroup);
4164 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4165
8ff69e2c 4166 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4167 if (!memcg)
e7bbcdf3
DC
4168 return NULL;
4169
d79154bb
HD
4170 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4171 if (!memcg->stat)
d2e61b8d 4172 goto out_free;
841710aa
TH
4173
4174 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4175 goto out_free_stat;
4176
d79154bb 4177 return memcg;
d2e61b8d 4178
841710aa
TH
4179out_free_stat:
4180 free_percpu(memcg->stat);
d2e61b8d 4181out_free:
8ff69e2c 4182 kfree(memcg);
d2e61b8d 4183 return NULL;
33327948
KH
4184}
4185
59927fb9 4186/*
c8b2a36f
GC
4187 * At destroying mem_cgroup, references from swap_cgroup can remain.
4188 * (scanning all at force_empty is too costly...)
4189 *
4190 * Instead of clearing all references at force_empty, we remember
4191 * the number of reference from swap_cgroup and free mem_cgroup when
4192 * it goes down to 0.
4193 *
4194 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4195 */
c8b2a36f
GC
4196
4197static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4198{
c8b2a36f 4199 int node;
59927fb9 4200
bb4cc1a8 4201 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4202
4203 for_each_node(node)
4204 free_mem_cgroup_per_zone_info(memcg, node);
4205
4206 free_percpu(memcg->stat);
841710aa 4207 memcg_wb_domain_exit(memcg);
8ff69e2c 4208 kfree(memcg);
59927fb9 4209}
3afe36b1 4210
7bcc1bb1
DN
4211/*
4212 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4213 */
e1aab161 4214struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4215{
3e32cb2e 4216 if (!memcg->memory.parent)
7bcc1bb1 4217 return NULL;
3e32cb2e 4218 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4219}
e1aab161 4220EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4221
0eb253e2 4222static struct cgroup_subsys_state * __ref
eb95419b 4223mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4224{
d142e3e6 4225 struct mem_cgroup *memcg;
04046e1a 4226 long error = -ENOMEM;
6d12e2d8 4227 int node;
8cdea7c0 4228
c0ff4b85
R
4229 memcg = mem_cgroup_alloc();
4230 if (!memcg)
04046e1a 4231 return ERR_PTR(error);
78fb7466 4232
3ed28fa1 4233 for_each_node(node)
c0ff4b85 4234 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4235 goto free_out;
f64c3f54 4236
c077719b 4237 /* root ? */
eb95419b 4238 if (parent_css == NULL) {
a41c58a6 4239 root_mem_cgroup = memcg;
56161634 4240 mem_cgroup_root_css = &memcg->css;
3e32cb2e 4241 page_counter_init(&memcg->memory, NULL);
241994ed 4242 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4243 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4244 page_counter_init(&memcg->memsw, NULL);
4245 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4246 }
28dbc4b6 4247
d142e3e6
GC
4248 memcg->last_scanned_node = MAX_NUMNODES;
4249 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4250 memcg->move_charge_at_immigrate = 0;
4251 mutex_init(&memcg->thresholds_lock);
4252 spin_lock_init(&memcg->move_lock);
70ddf637 4253 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4254 INIT_LIST_HEAD(&memcg->event_list);
4255 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4256#ifdef CONFIG_MEMCG_KMEM
4257 memcg->kmemcg_id = -1;
900a38f0 4258#endif
52ebea74
TH
4259#ifdef CONFIG_CGROUP_WRITEBACK
4260 INIT_LIST_HEAD(&memcg->cgwb_list);
4261#endif
d142e3e6
GC
4262 return &memcg->css;
4263
4264free_out:
4265 __mem_cgroup_free(memcg);
4266 return ERR_PTR(error);
4267}
4268
4269static int
eb95419b 4270mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4271{
eb95419b 4272 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4273 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4274 int ret;
d142e3e6 4275
15a4c835 4276 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4277 return -ENOSPC;
4278
63876986 4279 if (!parent)
d142e3e6
GC
4280 return 0;
4281
0999821b 4282 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4283
4284 memcg->use_hierarchy = parent->use_hierarchy;
4285 memcg->oom_kill_disable = parent->oom_kill_disable;
4286 memcg->swappiness = mem_cgroup_swappiness(parent);
4287
4288 if (parent->use_hierarchy) {
3e32cb2e 4289 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4290 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4291 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4292 page_counter_init(&memcg->memsw, &parent->memsw);
4293 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4294
7bcc1bb1 4295 /*
8d76a979
LZ
4296 * No need to take a reference to the parent because cgroup
4297 * core guarantees its existence.
7bcc1bb1 4298 */
18f59ea7 4299 } else {
3e32cb2e 4300 page_counter_init(&memcg->memory, NULL);
241994ed 4301 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4302 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4303 page_counter_init(&memcg->memsw, NULL);
4304 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4305 /*
4306 * Deeper hierachy with use_hierarchy == false doesn't make
4307 * much sense so let cgroup subsystem know about this
4308 * unfortunate state in our controller.
4309 */
d142e3e6 4310 if (parent != root_mem_cgroup)
073219e9 4311 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4312 }
0999821b 4313 mutex_unlock(&memcg_create_mutex);
d6441637 4314
2f7dd7a4
JW
4315 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4316 if (ret)
4317 return ret;
4318
4319 /*
4320 * Make sure the memcg is initialized: mem_cgroup_iter()
4321 * orders reading memcg->initialized against its callers
4322 * reading the memcg members.
4323 */
4324 smp_store_release(&memcg->initialized, 1);
4325
4326 return 0;
8cdea7c0
BS
4327}
4328
eb95419b 4329static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4330{
eb95419b 4331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4332 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4333
4334 /*
4335 * Unregister events and notify userspace.
4336 * Notify userspace about cgroup removing only after rmdir of cgroup
4337 * directory to avoid race between userspace and kernelspace.
4338 */
fba94807
TH
4339 spin_lock(&memcg->event_list_lock);
4340 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4341 list_del_init(&event->list);
4342 schedule_work(&event->remove);
4343 }
fba94807 4344 spin_unlock(&memcg->event_list_lock);
ec64f515 4345
33cb876e 4346 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4347
4348 memcg_deactivate_kmem(memcg);
52ebea74
TH
4349
4350 wb_memcg_offline(memcg);
df878fb0
KH
4351}
4352
eb95419b 4353static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4354{
eb95419b 4355 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4356
10d5ebf4 4357 memcg_destroy_kmem(memcg);
465939a1 4358 __mem_cgroup_free(memcg);
8cdea7c0
BS
4359}
4360
1ced953b
TH
4361/**
4362 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4363 * @css: the target css
4364 *
4365 * Reset the states of the mem_cgroup associated with @css. This is
4366 * invoked when the userland requests disabling on the default hierarchy
4367 * but the memcg is pinned through dependency. The memcg should stop
4368 * applying policies and should revert to the vanilla state as it may be
4369 * made visible again.
4370 *
4371 * The current implementation only resets the essential configurations.
4372 * This needs to be expanded to cover all the visible parts.
4373 */
4374static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4375{
4376 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4377
3e32cb2e
JW
4378 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4379 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4380 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4381 memcg->low = 0;
4382 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4383 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4384 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4385}
4386
02491447 4387#ifdef CONFIG_MMU
7dc74be0 4388/* Handlers for move charge at task migration. */
854ffa8d 4389static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4390{
05b84301 4391 int ret;
9476db97
JW
4392
4393 /* Try a single bulk charge without reclaim first */
00501b53 4394 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4395 if (!ret) {
854ffa8d 4396 mc.precharge += count;
854ffa8d
DN
4397 return ret;
4398 }
9476db97
JW
4399
4400 /* Try charges one by one with reclaim */
854ffa8d 4401 while (count--) {
00501b53 4402 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4403 if (ret)
38c5d72f 4404 return ret;
854ffa8d 4405 mc.precharge++;
9476db97 4406 cond_resched();
854ffa8d 4407 }
9476db97 4408 return 0;
4ffef5fe
DN
4409}
4410
4411/**
8d32ff84 4412 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4413 * @vma: the vma the pte to be checked belongs
4414 * @addr: the address corresponding to the pte to be checked
4415 * @ptent: the pte to be checked
02491447 4416 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4417 *
4418 * Returns
4419 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4420 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4421 * move charge. if @target is not NULL, the page is stored in target->page
4422 * with extra refcnt got(Callers should handle it).
02491447
DN
4423 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4424 * target for charge migration. if @target is not NULL, the entry is stored
4425 * in target->ent.
4ffef5fe
DN
4426 *
4427 * Called with pte lock held.
4428 */
4ffef5fe
DN
4429union mc_target {
4430 struct page *page;
02491447 4431 swp_entry_t ent;
4ffef5fe
DN
4432};
4433
4ffef5fe 4434enum mc_target_type {
8d32ff84 4435 MC_TARGET_NONE = 0,
4ffef5fe 4436 MC_TARGET_PAGE,
02491447 4437 MC_TARGET_SWAP,
4ffef5fe
DN
4438};
4439
90254a65
DN
4440static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4441 unsigned long addr, pte_t ptent)
4ffef5fe 4442{
90254a65 4443 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4444
90254a65
DN
4445 if (!page || !page_mapped(page))
4446 return NULL;
4447 if (PageAnon(page)) {
1dfab5ab 4448 if (!(mc.flags & MOVE_ANON))
90254a65 4449 return NULL;
1dfab5ab
JW
4450 } else {
4451 if (!(mc.flags & MOVE_FILE))
4452 return NULL;
4453 }
90254a65
DN
4454 if (!get_page_unless_zero(page))
4455 return NULL;
4456
4457 return page;
4458}
4459
4b91355e 4460#ifdef CONFIG_SWAP
90254a65
DN
4461static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4462 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4463{
90254a65
DN
4464 struct page *page = NULL;
4465 swp_entry_t ent = pte_to_swp_entry(ptent);
4466
1dfab5ab 4467 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4468 return NULL;
4b91355e
KH
4469 /*
4470 * Because lookup_swap_cache() updates some statistics counter,
4471 * we call find_get_page() with swapper_space directly.
4472 */
33806f06 4473 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4474 if (do_swap_account)
4475 entry->val = ent.val;
4476
4477 return page;
4478}
4b91355e
KH
4479#else
4480static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4481 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4482{
4483 return NULL;
4484}
4485#endif
90254a65 4486
87946a72
DN
4487static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4488 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4489{
4490 struct page *page = NULL;
87946a72
DN
4491 struct address_space *mapping;
4492 pgoff_t pgoff;
4493
4494 if (!vma->vm_file) /* anonymous vma */
4495 return NULL;
1dfab5ab 4496 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4497 return NULL;
4498
87946a72 4499 mapping = vma->vm_file->f_mapping;
0661a336 4500 pgoff = linear_page_index(vma, addr);
87946a72
DN
4501
4502 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4503#ifdef CONFIG_SWAP
4504 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4505 if (shmem_mapping(mapping)) {
4506 page = find_get_entry(mapping, pgoff);
4507 if (radix_tree_exceptional_entry(page)) {
4508 swp_entry_t swp = radix_to_swp_entry(page);
4509 if (do_swap_account)
4510 *entry = swp;
4511 page = find_get_page(swap_address_space(swp), swp.val);
4512 }
4513 } else
4514 page = find_get_page(mapping, pgoff);
4515#else
4516 page = find_get_page(mapping, pgoff);
aa3b1895 4517#endif
87946a72
DN
4518 return page;
4519}
4520
b1b0deab
CG
4521/**
4522 * mem_cgroup_move_account - move account of the page
4523 * @page: the page
4524 * @nr_pages: number of regular pages (>1 for huge pages)
4525 * @from: mem_cgroup which the page is moved from.
4526 * @to: mem_cgroup which the page is moved to. @from != @to.
4527 *
4528 * The caller must confirm following.
4529 * - page is not on LRU (isolate_page() is useful.)
4530 * - compound_lock is held when nr_pages > 1
4531 *
4532 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4533 * from old cgroup.
4534 */
4535static int mem_cgroup_move_account(struct page *page,
4536 unsigned int nr_pages,
4537 struct mem_cgroup *from,
4538 struct mem_cgroup *to)
4539{
4540 unsigned long flags;
4541 int ret;
c4843a75 4542 bool anon;
b1b0deab
CG
4543
4544 VM_BUG_ON(from == to);
4545 VM_BUG_ON_PAGE(PageLRU(page), page);
4546 /*
4547 * The page is isolated from LRU. So, collapse function
4548 * will not handle this page. But page splitting can happen.
4549 * Do this check under compound_page_lock(). The caller should
4550 * hold it.
4551 */
4552 ret = -EBUSY;
4553 if (nr_pages > 1 && !PageTransHuge(page))
4554 goto out;
4555
4556 /*
4557 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4558 * of its source page while we change it: page migration takes
4559 * both pages off the LRU, but page cache replacement doesn't.
4560 */
4561 if (!trylock_page(page))
4562 goto out;
4563
4564 ret = -EINVAL;
4565 if (page->mem_cgroup != from)
4566 goto out_unlock;
4567
c4843a75
GT
4568 anon = PageAnon(page);
4569
b1b0deab
CG
4570 spin_lock_irqsave(&from->move_lock, flags);
4571
c4843a75 4572 if (!anon && page_mapped(page)) {
b1b0deab
CG
4573 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4574 nr_pages);
4575 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4576 nr_pages);
4577 }
4578
c4843a75
GT
4579 /*
4580 * move_lock grabbed above and caller set from->moving_account, so
4581 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4582 * So mapping should be stable for dirty pages.
4583 */
4584 if (!anon && PageDirty(page)) {
4585 struct address_space *mapping = page_mapping(page);
4586
4587 if (mapping_cap_account_dirty(mapping)) {
4588 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4589 nr_pages);
4590 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4591 nr_pages);
4592 }
4593 }
4594
b1b0deab
CG
4595 if (PageWriteback(page)) {
4596 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4597 nr_pages);
4598 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4599 nr_pages);
4600 }
4601
4602 /*
4603 * It is safe to change page->mem_cgroup here because the page
4604 * is referenced, charged, and isolated - we can't race with
4605 * uncharging, charging, migration, or LRU putback.
4606 */
4607
4608 /* caller should have done css_get */
4609 page->mem_cgroup = to;
4610 spin_unlock_irqrestore(&from->move_lock, flags);
4611
4612 ret = 0;
4613
4614 local_irq_disable();
4615 mem_cgroup_charge_statistics(to, page, nr_pages);
4616 memcg_check_events(to, page);
4617 mem_cgroup_charge_statistics(from, page, -nr_pages);
4618 memcg_check_events(from, page);
4619 local_irq_enable();
4620out_unlock:
4621 unlock_page(page);
4622out:
4623 return ret;
4624}
4625
8d32ff84 4626static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4627 unsigned long addr, pte_t ptent, union mc_target *target)
4628{
4629 struct page *page = NULL;
8d32ff84 4630 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4631 swp_entry_t ent = { .val = 0 };
4632
4633 if (pte_present(ptent))
4634 page = mc_handle_present_pte(vma, addr, ptent);
4635 else if (is_swap_pte(ptent))
4636 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4637 else if (pte_none(ptent))
87946a72 4638 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4639
4640 if (!page && !ent.val)
8d32ff84 4641 return ret;
02491447 4642 if (page) {
02491447 4643 /*
0a31bc97 4644 * Do only loose check w/o serialization.
1306a85a 4645 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4646 * not under LRU exclusion.
02491447 4647 */
1306a85a 4648 if (page->mem_cgroup == mc.from) {
02491447
DN
4649 ret = MC_TARGET_PAGE;
4650 if (target)
4651 target->page = page;
4652 }
4653 if (!ret || !target)
4654 put_page(page);
4655 }
90254a65
DN
4656 /* There is a swap entry and a page doesn't exist or isn't charged */
4657 if (ent.val && !ret &&
34c00c31 4658 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4659 ret = MC_TARGET_SWAP;
4660 if (target)
4661 target->ent = ent;
4ffef5fe 4662 }
4ffef5fe
DN
4663 return ret;
4664}
4665
12724850
NH
4666#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4667/*
4668 * We don't consider swapping or file mapped pages because THP does not
4669 * support them for now.
4670 * Caller should make sure that pmd_trans_huge(pmd) is true.
4671 */
4672static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4673 unsigned long addr, pmd_t pmd, union mc_target *target)
4674{
4675 struct page *page = NULL;
12724850
NH
4676 enum mc_target_type ret = MC_TARGET_NONE;
4677
4678 page = pmd_page(pmd);
309381fe 4679 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4680 if (!(mc.flags & MOVE_ANON))
12724850 4681 return ret;
1306a85a 4682 if (page->mem_cgroup == mc.from) {
12724850
NH
4683 ret = MC_TARGET_PAGE;
4684 if (target) {
4685 get_page(page);
4686 target->page = page;
4687 }
4688 }
4689 return ret;
4690}
4691#else
4692static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4693 unsigned long addr, pmd_t pmd, union mc_target *target)
4694{
4695 return MC_TARGET_NONE;
4696}
4697#endif
4698
4ffef5fe
DN
4699static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4700 unsigned long addr, unsigned long end,
4701 struct mm_walk *walk)
4702{
26bcd64a 4703 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4704 pte_t *pte;
4705 spinlock_t *ptl;
4706
bf929152 4707 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4708 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4709 mc.precharge += HPAGE_PMD_NR;
bf929152 4710 spin_unlock(ptl);
1a5a9906 4711 return 0;
12724850 4712 }
03319327 4713
45f83cef
AA
4714 if (pmd_trans_unstable(pmd))
4715 return 0;
4ffef5fe
DN
4716 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4717 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4718 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4719 mc.precharge++; /* increment precharge temporarily */
4720 pte_unmap_unlock(pte - 1, ptl);
4721 cond_resched();
4722
7dc74be0
DN
4723 return 0;
4724}
4725
4ffef5fe
DN
4726static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4727{
4728 unsigned long precharge;
4ffef5fe 4729
26bcd64a
NH
4730 struct mm_walk mem_cgroup_count_precharge_walk = {
4731 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4732 .mm = mm,
4733 };
dfe076b0 4734 down_read(&mm->mmap_sem);
26bcd64a 4735 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4736 up_read(&mm->mmap_sem);
4ffef5fe
DN
4737
4738 precharge = mc.precharge;
4739 mc.precharge = 0;
4740
4741 return precharge;
4742}
4743
4ffef5fe
DN
4744static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4745{
dfe076b0
DN
4746 unsigned long precharge = mem_cgroup_count_precharge(mm);
4747
4748 VM_BUG_ON(mc.moving_task);
4749 mc.moving_task = current;
4750 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4751}
4752
dfe076b0
DN
4753/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4754static void __mem_cgroup_clear_mc(void)
4ffef5fe 4755{
2bd9bb20
KH
4756 struct mem_cgroup *from = mc.from;
4757 struct mem_cgroup *to = mc.to;
4758
4ffef5fe 4759 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4760 if (mc.precharge) {
00501b53 4761 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4762 mc.precharge = 0;
4763 }
4764 /*
4765 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4766 * we must uncharge here.
4767 */
4768 if (mc.moved_charge) {
00501b53 4769 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4770 mc.moved_charge = 0;
4ffef5fe 4771 }
483c30b5
DN
4772 /* we must fixup refcnts and charges */
4773 if (mc.moved_swap) {
483c30b5 4774 /* uncharge swap account from the old cgroup */
ce00a967 4775 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4776 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4777
05b84301 4778 /*
3e32cb2e
JW
4779 * we charged both to->memory and to->memsw, so we
4780 * should uncharge to->memory.
05b84301 4781 */
ce00a967 4782 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4783 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4784
e8ea14cc 4785 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4786
4050377b 4787 /* we've already done css_get(mc.to) */
483c30b5
DN
4788 mc.moved_swap = 0;
4789 }
dfe076b0
DN
4790 memcg_oom_recover(from);
4791 memcg_oom_recover(to);
4792 wake_up_all(&mc.waitq);
4793}
4794
4795static void mem_cgroup_clear_mc(void)
4796{
dfe076b0
DN
4797 /*
4798 * we must clear moving_task before waking up waiters at the end of
4799 * task migration.
4800 */
4801 mc.moving_task = NULL;
4802 __mem_cgroup_clear_mc();
2bd9bb20 4803 spin_lock(&mc.lock);
4ffef5fe
DN
4804 mc.from = NULL;
4805 mc.to = NULL;
2bd9bb20 4806 spin_unlock(&mc.lock);
4ffef5fe
DN
4807}
4808
eb95419b 4809static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 4810 struct cgroup_taskset *tset)
7dc74be0 4811{
eb95419b 4812 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9f2115f9
TH
4813 struct mem_cgroup *from;
4814 struct task_struct *p;
4815 struct mm_struct *mm;
1dfab5ab 4816 unsigned long move_flags;
9f2115f9 4817 int ret = 0;
7dc74be0 4818
ee5e8472
GC
4819 /*
4820 * We are now commited to this value whatever it is. Changes in this
4821 * tunable will only affect upcoming migrations, not the current one.
4822 * So we need to save it, and keep it going.
4823 */
4db0c3c2 4824 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
9f2115f9
TH
4825 if (!move_flags)
4826 return 0;
4827
4828 p = cgroup_taskset_first(tset);
4829 from = mem_cgroup_from_task(p);
4830
4831 VM_BUG_ON(from == memcg);
4832
4833 mm = get_task_mm(p);
4834 if (!mm)
4835 return 0;
4836 /* We move charges only when we move a owner of the mm */
4837 if (mm->owner == p) {
4838 VM_BUG_ON(mc.from);
4839 VM_BUG_ON(mc.to);
4840 VM_BUG_ON(mc.precharge);
4841 VM_BUG_ON(mc.moved_charge);
4842 VM_BUG_ON(mc.moved_swap);
4843
4844 spin_lock(&mc.lock);
4845 mc.from = from;
4846 mc.to = memcg;
4847 mc.flags = move_flags;
4848 spin_unlock(&mc.lock);
4849 /* We set mc.moving_task later */
4850
4851 ret = mem_cgroup_precharge_mc(mm);
4852 if (ret)
4853 mem_cgroup_clear_mc();
7dc74be0 4854 }
9f2115f9 4855 mmput(mm);
7dc74be0
DN
4856 return ret;
4857}
4858
eb95419b 4859static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 4860 struct cgroup_taskset *tset)
7dc74be0 4861{
4e2f245d
JW
4862 if (mc.to)
4863 mem_cgroup_clear_mc();
7dc74be0
DN
4864}
4865
4ffef5fe
DN
4866static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4867 unsigned long addr, unsigned long end,
4868 struct mm_walk *walk)
7dc74be0 4869{
4ffef5fe 4870 int ret = 0;
26bcd64a 4871 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4872 pte_t *pte;
4873 spinlock_t *ptl;
12724850
NH
4874 enum mc_target_type target_type;
4875 union mc_target target;
4876 struct page *page;
4ffef5fe 4877
12724850
NH
4878 /*
4879 * We don't take compound_lock() here but no race with splitting thp
4880 * happens because:
4881 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4882 * under splitting, which means there's no concurrent thp split,
4883 * - if another thread runs into split_huge_page() just after we
4884 * entered this if-block, the thread must wait for page table lock
4885 * to be unlocked in __split_huge_page_splitting(), where the main
4886 * part of thp split is not executed yet.
4887 */
bf929152 4888 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 4889 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4890 spin_unlock(ptl);
12724850
NH
4891 return 0;
4892 }
4893 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4894 if (target_type == MC_TARGET_PAGE) {
4895 page = target.page;
4896 if (!isolate_lru_page(page)) {
12724850 4897 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 4898 mc.from, mc.to)) {
12724850
NH
4899 mc.precharge -= HPAGE_PMD_NR;
4900 mc.moved_charge += HPAGE_PMD_NR;
4901 }
4902 putback_lru_page(page);
4903 }
4904 put_page(page);
4905 }
bf929152 4906 spin_unlock(ptl);
1a5a9906 4907 return 0;
12724850
NH
4908 }
4909
45f83cef
AA
4910 if (pmd_trans_unstable(pmd))
4911 return 0;
4ffef5fe
DN
4912retry:
4913 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4914 for (; addr != end; addr += PAGE_SIZE) {
4915 pte_t ptent = *(pte++);
02491447 4916 swp_entry_t ent;
4ffef5fe
DN
4917
4918 if (!mc.precharge)
4919 break;
4920
8d32ff84 4921 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4922 case MC_TARGET_PAGE:
4923 page = target.page;
4924 if (isolate_lru_page(page))
4925 goto put;
1306a85a 4926 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 4927 mc.precharge--;
854ffa8d
DN
4928 /* we uncharge from mc.from later. */
4929 mc.moved_charge++;
4ffef5fe
DN
4930 }
4931 putback_lru_page(page);
8d32ff84 4932put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4933 put_page(page);
4934 break;
02491447
DN
4935 case MC_TARGET_SWAP:
4936 ent = target.ent;
e91cbb42 4937 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4938 mc.precharge--;
483c30b5
DN
4939 /* we fixup refcnts and charges later. */
4940 mc.moved_swap++;
4941 }
02491447 4942 break;
4ffef5fe
DN
4943 default:
4944 break;
4945 }
4946 }
4947 pte_unmap_unlock(pte - 1, ptl);
4948 cond_resched();
4949
4950 if (addr != end) {
4951 /*
4952 * We have consumed all precharges we got in can_attach().
4953 * We try charge one by one, but don't do any additional
4954 * charges to mc.to if we have failed in charge once in attach()
4955 * phase.
4956 */
854ffa8d 4957 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4958 if (!ret)
4959 goto retry;
4960 }
4961
4962 return ret;
4963}
4964
4965static void mem_cgroup_move_charge(struct mm_struct *mm)
4966{
26bcd64a
NH
4967 struct mm_walk mem_cgroup_move_charge_walk = {
4968 .pmd_entry = mem_cgroup_move_charge_pte_range,
4969 .mm = mm,
4970 };
4ffef5fe
DN
4971
4972 lru_add_drain_all();
312722cb
JW
4973 /*
4974 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4975 * move_lock while we're moving its pages to another memcg.
4976 * Then wait for already started RCU-only updates to finish.
4977 */
4978 atomic_inc(&mc.from->moving_account);
4979 synchronize_rcu();
dfe076b0
DN
4980retry:
4981 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4982 /*
4983 * Someone who are holding the mmap_sem might be waiting in
4984 * waitq. So we cancel all extra charges, wake up all waiters,
4985 * and retry. Because we cancel precharges, we might not be able
4986 * to move enough charges, but moving charge is a best-effort
4987 * feature anyway, so it wouldn't be a big problem.
4988 */
4989 __mem_cgroup_clear_mc();
4990 cond_resched();
4991 goto retry;
4992 }
26bcd64a
NH
4993 /*
4994 * When we have consumed all precharges and failed in doing
4995 * additional charge, the page walk just aborts.
4996 */
4997 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 4998 up_read(&mm->mmap_sem);
312722cb 4999 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5000}
5001
eb95419b 5002static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5003 struct cgroup_taskset *tset)
67e465a7 5004{
2f7ee569 5005 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5006 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5007
dfe076b0 5008 if (mm) {
a433658c
KM
5009 if (mc.to)
5010 mem_cgroup_move_charge(mm);
dfe076b0
DN
5011 mmput(mm);
5012 }
a433658c
KM
5013 if (mc.to)
5014 mem_cgroup_clear_mc();
67e465a7 5015}
5cfb80a7 5016#else /* !CONFIG_MMU */
eb95419b 5017static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5018 struct cgroup_taskset *tset)
5cfb80a7
DN
5019{
5020 return 0;
5021}
eb95419b 5022static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5023 struct cgroup_taskset *tset)
5cfb80a7
DN
5024{
5025}
eb95419b 5026static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5027 struct cgroup_taskset *tset)
5cfb80a7
DN
5028{
5029}
5030#endif
67e465a7 5031
f00baae7
TH
5032/*
5033 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5034 * to verify whether we're attached to the default hierarchy on each mount
5035 * attempt.
f00baae7 5036 */
eb95419b 5037static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5038{
5039 /*
aa6ec29b 5040 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5041 * guarantees that @root doesn't have any children, so turning it
5042 * on for the root memcg is enough.
5043 */
aa6ec29b 5044 if (cgroup_on_dfl(root_css->cgroup))
7feee590
VD
5045 root_mem_cgroup->use_hierarchy = true;
5046 else
5047 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5048}
5049
241994ed
JW
5050static u64 memory_current_read(struct cgroup_subsys_state *css,
5051 struct cftype *cft)
5052{
5053 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5054}
5055
5056static int memory_low_show(struct seq_file *m, void *v)
5057{
5058 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5059 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5060
5061 if (low == PAGE_COUNTER_MAX)
d2973697 5062 seq_puts(m, "max\n");
241994ed
JW
5063 else
5064 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5065
5066 return 0;
5067}
5068
5069static ssize_t memory_low_write(struct kernfs_open_file *of,
5070 char *buf, size_t nbytes, loff_t off)
5071{
5072 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5073 unsigned long low;
5074 int err;
5075
5076 buf = strstrip(buf);
d2973697 5077 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5078 if (err)
5079 return err;
5080
5081 memcg->low = low;
5082
5083 return nbytes;
5084}
5085
5086static int memory_high_show(struct seq_file *m, void *v)
5087{
5088 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5089 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5090
5091 if (high == PAGE_COUNTER_MAX)
d2973697 5092 seq_puts(m, "max\n");
241994ed
JW
5093 else
5094 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5095
5096 return 0;
5097}
5098
5099static ssize_t memory_high_write(struct kernfs_open_file *of,
5100 char *buf, size_t nbytes, loff_t off)
5101{
5102 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5103 unsigned long high;
5104 int err;
5105
5106 buf = strstrip(buf);
d2973697 5107 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5108 if (err)
5109 return err;
5110
5111 memcg->high = high;
5112
2529bb3a 5113 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5114 return nbytes;
5115}
5116
5117static int memory_max_show(struct seq_file *m, void *v)
5118{
5119 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5120 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5121
5122 if (max == PAGE_COUNTER_MAX)
d2973697 5123 seq_puts(m, "max\n");
241994ed
JW
5124 else
5125 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5126
5127 return 0;
5128}
5129
5130static ssize_t memory_max_write(struct kernfs_open_file *of,
5131 char *buf, size_t nbytes, loff_t off)
5132{
5133 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5134 unsigned long max;
5135 int err;
5136
5137 buf = strstrip(buf);
d2973697 5138 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5139 if (err)
5140 return err;
5141
5142 err = mem_cgroup_resize_limit(memcg, max);
5143 if (err)
5144 return err;
5145
2529bb3a 5146 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5147 return nbytes;
5148}
5149
5150static int memory_events_show(struct seq_file *m, void *v)
5151{
5152 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5153
5154 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5155 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5156 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5157 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5158
5159 return 0;
5160}
5161
5162static struct cftype memory_files[] = {
5163 {
5164 .name = "current",
5165 .read_u64 = memory_current_read,
5166 },
5167 {
5168 .name = "low",
5169 .flags = CFTYPE_NOT_ON_ROOT,
5170 .seq_show = memory_low_show,
5171 .write = memory_low_write,
5172 },
5173 {
5174 .name = "high",
5175 .flags = CFTYPE_NOT_ON_ROOT,
5176 .seq_show = memory_high_show,
5177 .write = memory_high_write,
5178 },
5179 {
5180 .name = "max",
5181 .flags = CFTYPE_NOT_ON_ROOT,
5182 .seq_show = memory_max_show,
5183 .write = memory_max_write,
5184 },
5185 {
5186 .name = "events",
5187 .flags = CFTYPE_NOT_ON_ROOT,
5188 .seq_show = memory_events_show,
5189 },
5190 { } /* terminate */
5191};
5192
073219e9 5193struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5194 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5195 .css_online = mem_cgroup_css_online,
92fb9748
TH
5196 .css_offline = mem_cgroup_css_offline,
5197 .css_free = mem_cgroup_css_free,
1ced953b 5198 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5199 .can_attach = mem_cgroup_can_attach,
5200 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5201 .attach = mem_cgroup_move_task,
f00baae7 5202 .bind = mem_cgroup_bind,
241994ed
JW
5203 .dfl_cftypes = memory_files,
5204 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5205 .early_init = 0,
8cdea7c0 5206};
c077719b 5207
241994ed
JW
5208/**
5209 * mem_cgroup_low - check if memory consumption is below the normal range
5210 * @root: the highest ancestor to consider
5211 * @memcg: the memory cgroup to check
5212 *
5213 * Returns %true if memory consumption of @memcg, and that of all
5214 * configurable ancestors up to @root, is below the normal range.
5215 */
5216bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5217{
5218 if (mem_cgroup_disabled())
5219 return false;
5220
5221 /*
5222 * The toplevel group doesn't have a configurable range, so
5223 * it's never low when looked at directly, and it is not
5224 * considered an ancestor when assessing the hierarchy.
5225 */
5226
5227 if (memcg == root_mem_cgroup)
5228 return false;
5229
4e54dede 5230 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5231 return false;
5232
5233 while (memcg != root) {
5234 memcg = parent_mem_cgroup(memcg);
5235
5236 if (memcg == root_mem_cgroup)
5237 break;
5238
4e54dede 5239 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5240 return false;
5241 }
5242 return true;
5243}
5244
00501b53
JW
5245/**
5246 * mem_cgroup_try_charge - try charging a page
5247 * @page: page to charge
5248 * @mm: mm context of the victim
5249 * @gfp_mask: reclaim mode
5250 * @memcgp: charged memcg return
5251 *
5252 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5253 * pages according to @gfp_mask if necessary.
5254 *
5255 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5256 * Otherwise, an error code is returned.
5257 *
5258 * After page->mapping has been set up, the caller must finalize the
5259 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5260 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5261 */
5262int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5263 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5264{
5265 struct mem_cgroup *memcg = NULL;
5266 unsigned int nr_pages = 1;
5267 int ret = 0;
5268
5269 if (mem_cgroup_disabled())
5270 goto out;
5271
5272 if (PageSwapCache(page)) {
00501b53
JW
5273 /*
5274 * Every swap fault against a single page tries to charge the
5275 * page, bail as early as possible. shmem_unuse() encounters
5276 * already charged pages, too. The USED bit is protected by
5277 * the page lock, which serializes swap cache removal, which
5278 * in turn serializes uncharging.
5279 */
e993d905 5280 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5281 if (page->mem_cgroup)
00501b53 5282 goto out;
e993d905
VD
5283
5284 if (do_swap_account) {
5285 swp_entry_t ent = { .val = page_private(page), };
5286 unsigned short id = lookup_swap_cgroup_id(ent);
5287
5288 rcu_read_lock();
5289 memcg = mem_cgroup_from_id(id);
5290 if (memcg && !css_tryget_online(&memcg->css))
5291 memcg = NULL;
5292 rcu_read_unlock();
5293 }
00501b53
JW
5294 }
5295
5296 if (PageTransHuge(page)) {
5297 nr_pages <<= compound_order(page);
5298 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5299 }
5300
00501b53
JW
5301 if (!memcg)
5302 memcg = get_mem_cgroup_from_mm(mm);
5303
5304 ret = try_charge(memcg, gfp_mask, nr_pages);
5305
5306 css_put(&memcg->css);
00501b53
JW
5307out:
5308 *memcgp = memcg;
5309 return ret;
5310}
5311
5312/**
5313 * mem_cgroup_commit_charge - commit a page charge
5314 * @page: page to charge
5315 * @memcg: memcg to charge the page to
5316 * @lrucare: page might be on LRU already
5317 *
5318 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5319 * after page->mapping has been set up. This must happen atomically
5320 * as part of the page instantiation, i.e. under the page table lock
5321 * for anonymous pages, under the page lock for page and swap cache.
5322 *
5323 * In addition, the page must not be on the LRU during the commit, to
5324 * prevent racing with task migration. If it might be, use @lrucare.
5325 *
5326 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5327 */
5328void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5329 bool lrucare)
5330{
5331 unsigned int nr_pages = 1;
5332
5333 VM_BUG_ON_PAGE(!page->mapping, page);
5334 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5335
5336 if (mem_cgroup_disabled())
5337 return;
5338 /*
5339 * Swap faults will attempt to charge the same page multiple
5340 * times. But reuse_swap_page() might have removed the page
5341 * from swapcache already, so we can't check PageSwapCache().
5342 */
5343 if (!memcg)
5344 return;
5345
6abb5a86
JW
5346 commit_charge(page, memcg, lrucare);
5347
00501b53
JW
5348 if (PageTransHuge(page)) {
5349 nr_pages <<= compound_order(page);
5350 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5351 }
5352
6abb5a86
JW
5353 local_irq_disable();
5354 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5355 memcg_check_events(memcg, page);
5356 local_irq_enable();
00501b53
JW
5357
5358 if (do_swap_account && PageSwapCache(page)) {
5359 swp_entry_t entry = { .val = page_private(page) };
5360 /*
5361 * The swap entry might not get freed for a long time,
5362 * let's not wait for it. The page already received a
5363 * memory+swap charge, drop the swap entry duplicate.
5364 */
5365 mem_cgroup_uncharge_swap(entry);
5366 }
5367}
5368
5369/**
5370 * mem_cgroup_cancel_charge - cancel a page charge
5371 * @page: page to charge
5372 * @memcg: memcg to charge the page to
5373 *
5374 * Cancel a charge transaction started by mem_cgroup_try_charge().
5375 */
5376void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5377{
5378 unsigned int nr_pages = 1;
5379
5380 if (mem_cgroup_disabled())
5381 return;
5382 /*
5383 * Swap faults will attempt to charge the same page multiple
5384 * times. But reuse_swap_page() might have removed the page
5385 * from swapcache already, so we can't check PageSwapCache().
5386 */
5387 if (!memcg)
5388 return;
5389
5390 if (PageTransHuge(page)) {
5391 nr_pages <<= compound_order(page);
5392 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5393 }
5394
5395 cancel_charge(memcg, nr_pages);
5396}
5397
747db954 5398static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5399 unsigned long nr_anon, unsigned long nr_file,
5400 unsigned long nr_huge, struct page *dummy_page)
5401{
18eca2e6 5402 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5403 unsigned long flags;
5404
ce00a967 5405 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5406 page_counter_uncharge(&memcg->memory, nr_pages);
5407 if (do_swap_account)
5408 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5409 memcg_oom_recover(memcg);
5410 }
747db954
JW
5411
5412 local_irq_save(flags);
5413 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5414 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5415 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5416 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5417 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5418 memcg_check_events(memcg, dummy_page);
5419 local_irq_restore(flags);
e8ea14cc
JW
5420
5421 if (!mem_cgroup_is_root(memcg))
18eca2e6 5422 css_put_many(&memcg->css, nr_pages);
747db954
JW
5423}
5424
5425static void uncharge_list(struct list_head *page_list)
5426{
5427 struct mem_cgroup *memcg = NULL;
747db954
JW
5428 unsigned long nr_anon = 0;
5429 unsigned long nr_file = 0;
5430 unsigned long nr_huge = 0;
5431 unsigned long pgpgout = 0;
747db954
JW
5432 struct list_head *next;
5433 struct page *page;
5434
5435 next = page_list->next;
5436 do {
5437 unsigned int nr_pages = 1;
747db954
JW
5438
5439 page = list_entry(next, struct page, lru);
5440 next = page->lru.next;
5441
5442 VM_BUG_ON_PAGE(PageLRU(page), page);
5443 VM_BUG_ON_PAGE(page_count(page), page);
5444
1306a85a 5445 if (!page->mem_cgroup)
747db954
JW
5446 continue;
5447
5448 /*
5449 * Nobody should be changing or seriously looking at
1306a85a 5450 * page->mem_cgroup at this point, we have fully
29833315 5451 * exclusive access to the page.
747db954
JW
5452 */
5453
1306a85a 5454 if (memcg != page->mem_cgroup) {
747db954 5455 if (memcg) {
18eca2e6
JW
5456 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5457 nr_huge, page);
5458 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5459 }
1306a85a 5460 memcg = page->mem_cgroup;
747db954
JW
5461 }
5462
5463 if (PageTransHuge(page)) {
5464 nr_pages <<= compound_order(page);
5465 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5466 nr_huge += nr_pages;
5467 }
5468
5469 if (PageAnon(page))
5470 nr_anon += nr_pages;
5471 else
5472 nr_file += nr_pages;
5473
1306a85a 5474 page->mem_cgroup = NULL;
747db954
JW
5475
5476 pgpgout++;
5477 } while (next != page_list);
5478
5479 if (memcg)
18eca2e6
JW
5480 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5481 nr_huge, page);
747db954
JW
5482}
5483
0a31bc97
JW
5484/**
5485 * mem_cgroup_uncharge - uncharge a page
5486 * @page: page to uncharge
5487 *
5488 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5489 * mem_cgroup_commit_charge().
5490 */
5491void mem_cgroup_uncharge(struct page *page)
5492{
0a31bc97
JW
5493 if (mem_cgroup_disabled())
5494 return;
5495
747db954 5496 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5497 if (!page->mem_cgroup)
0a31bc97
JW
5498 return;
5499
747db954
JW
5500 INIT_LIST_HEAD(&page->lru);
5501 uncharge_list(&page->lru);
5502}
0a31bc97 5503
747db954
JW
5504/**
5505 * mem_cgroup_uncharge_list - uncharge a list of page
5506 * @page_list: list of pages to uncharge
5507 *
5508 * Uncharge a list of pages previously charged with
5509 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5510 */
5511void mem_cgroup_uncharge_list(struct list_head *page_list)
5512{
5513 if (mem_cgroup_disabled())
5514 return;
0a31bc97 5515
747db954
JW
5516 if (!list_empty(page_list))
5517 uncharge_list(page_list);
0a31bc97
JW
5518}
5519
5520/**
5521 * mem_cgroup_migrate - migrate a charge to another page
5522 * @oldpage: currently charged page
5523 * @newpage: page to transfer the charge to
f5e03a49 5524 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5525 *
5526 * Migrate the charge from @oldpage to @newpage.
5527 *
5528 * Both pages must be locked, @newpage->mapping must be set up.
5529 */
5530void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5531 bool lrucare)
5532{
29833315 5533 struct mem_cgroup *memcg;
0a31bc97
JW
5534 int isolated;
5535
5536 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5537 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5538 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5539 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5540 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5541 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5542 newpage);
0a31bc97
JW
5543
5544 if (mem_cgroup_disabled())
5545 return;
5546
5547 /* Page cache replacement: new page already charged? */
1306a85a 5548 if (newpage->mem_cgroup)
0a31bc97
JW
5549 return;
5550
7d5e3245
JW
5551 /*
5552 * Swapcache readahead pages can get migrated before being
5553 * charged, and migration from compaction can happen to an
5554 * uncharged page when the PFN walker finds a page that
5555 * reclaim just put back on the LRU but has not released yet.
5556 */
1306a85a 5557 memcg = oldpage->mem_cgroup;
29833315 5558 if (!memcg)
0a31bc97
JW
5559 return;
5560
0a31bc97
JW
5561 if (lrucare)
5562 lock_page_lru(oldpage, &isolated);
5563
1306a85a 5564 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5565
5566 if (lrucare)
5567 unlock_page_lru(oldpage, isolated);
5568
29833315 5569 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5570}
5571
2d11085e 5572/*
1081312f
MH
5573 * subsys_initcall() for memory controller.
5574 *
5575 * Some parts like hotcpu_notifier() have to be initialized from this context
5576 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5577 * everything that doesn't depend on a specific mem_cgroup structure should
5578 * be initialized from here.
2d11085e
MH
5579 */
5580static int __init mem_cgroup_init(void)
5581{
95a045f6
JW
5582 int cpu, node;
5583
2d11085e 5584 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5585
5586 for_each_possible_cpu(cpu)
5587 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5588 drain_local_stock);
5589
5590 for_each_node(node) {
5591 struct mem_cgroup_tree_per_node *rtpn;
5592 int zone;
5593
5594 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5595 node_online(node) ? node : NUMA_NO_NODE);
5596
5597 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5598 struct mem_cgroup_tree_per_zone *rtpz;
5599
5600 rtpz = &rtpn->rb_tree_per_zone[zone];
5601 rtpz->rb_root = RB_ROOT;
5602 spin_lock_init(&rtpz->lock);
5603 }
5604 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5605 }
5606
2d11085e
MH
5607 return 0;
5608}
5609subsys_initcall(mem_cgroup_init);
21afa38e
JW
5610
5611#ifdef CONFIG_MEMCG_SWAP
5612/**
5613 * mem_cgroup_swapout - transfer a memsw charge to swap
5614 * @page: page whose memsw charge to transfer
5615 * @entry: swap entry to move the charge to
5616 *
5617 * Transfer the memsw charge of @page to @entry.
5618 */
5619void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5620{
5621 struct mem_cgroup *memcg;
5622 unsigned short oldid;
5623
5624 VM_BUG_ON_PAGE(PageLRU(page), page);
5625 VM_BUG_ON_PAGE(page_count(page), page);
5626
5627 if (!do_swap_account)
5628 return;
5629
5630 memcg = page->mem_cgroup;
5631
5632 /* Readahead page, never charged */
5633 if (!memcg)
5634 return;
5635
5636 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5637 VM_BUG_ON_PAGE(oldid, page);
5638 mem_cgroup_swap_statistics(memcg, true);
5639
5640 page->mem_cgroup = NULL;
5641
5642 if (!mem_cgroup_is_root(memcg))
5643 page_counter_uncharge(&memcg->memory, 1);
5644
ce9ce665
SAS
5645 /*
5646 * Interrupts should be disabled here because the caller holds the
5647 * mapping->tree_lock lock which is taken with interrupts-off. It is
5648 * important here to have the interrupts disabled because it is the
5649 * only synchronisation we have for udpating the per-CPU variables.
5650 */
5651 VM_BUG_ON(!irqs_disabled());
21afa38e
JW
5652 mem_cgroup_charge_statistics(memcg, page, -1);
5653 memcg_check_events(memcg, page);
5654}
5655
5656/**
5657 * mem_cgroup_uncharge_swap - uncharge a swap entry
5658 * @entry: swap entry to uncharge
5659 *
5660 * Drop the memsw charge associated with @entry.
5661 */
5662void mem_cgroup_uncharge_swap(swp_entry_t entry)
5663{
5664 struct mem_cgroup *memcg;
5665 unsigned short id;
5666
5667 if (!do_swap_account)
5668 return;
5669
5670 id = swap_cgroup_record(entry, 0);
5671 rcu_read_lock();
adbe427b 5672 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5673 if (memcg) {
5674 if (!mem_cgroup_is_root(memcg))
5675 page_counter_uncharge(&memcg->memsw, 1);
5676 mem_cgroup_swap_statistics(memcg, false);
5677 css_put(&memcg->css);
5678 }
5679 rcu_read_unlock();
5680}
5681
5682/* for remember boot option*/
5683#ifdef CONFIG_MEMCG_SWAP_ENABLED
5684static int really_do_swap_account __initdata = 1;
5685#else
5686static int really_do_swap_account __initdata;
5687#endif
5688
5689static int __init enable_swap_account(char *s)
5690{
5691 if (!strcmp(s, "1"))
5692 really_do_swap_account = 1;
5693 else if (!strcmp(s, "0"))
5694 really_do_swap_account = 0;
5695 return 1;
5696}
5697__setup("swapaccount=", enable_swap_account);
5698
5699static struct cftype memsw_cgroup_files[] = {
5700 {
5701 .name = "memsw.usage_in_bytes",
5702 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5703 .read_u64 = mem_cgroup_read_u64,
5704 },
5705 {
5706 .name = "memsw.max_usage_in_bytes",
5707 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5708 .write = mem_cgroup_reset,
5709 .read_u64 = mem_cgroup_read_u64,
5710 },
5711 {
5712 .name = "memsw.limit_in_bytes",
5713 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5714 .write = mem_cgroup_write,
5715 .read_u64 = mem_cgroup_read_u64,
5716 },
5717 {
5718 .name = "memsw.failcnt",
5719 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5720 .write = mem_cgroup_reset,
5721 .read_u64 = mem_cgroup_read_u64,
5722 },
5723 { }, /* terminate */
5724};
5725
5726static int __init mem_cgroup_swap_init(void)
5727{
5728 if (!mem_cgroup_disabled() && really_do_swap_account) {
5729 do_swap_account = 1;
5730 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5731 memsw_cgroup_files));
5732 }
5733 return 0;
5734}
5735subsys_initcall(mem_cgroup_swap_init);
5736
5737#endif /* CONFIG_MEMCG_SWAP */