memcg: collect kmem bypass conditions into __memcg_kmem_bypass()
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
d1a4c0b3 69#include <net/tcp_memcontrol.h>
f35c3a8e 70#include "slab.h"
8cdea7c0 71
8697d331
BS
72#include <asm/uaccess.h>
73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
a181b0e8 79#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 80static struct mem_cgroup *root_mem_cgroup __read_mostly;
56161634 81struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
8cdea7c0 82
21afa38e 83/* Whether the swap controller is active */
c255a458 84#ifdef CONFIG_MEMCG_SWAP
c077719b 85int do_swap_account __read_mostly;
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
af7c4b0e
JW
90static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
b070e65c 93 "rss_huge",
af7c4b0e 94 "mapped_file",
c4843a75 95 "dirty",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
af7c4b0e
JW
100static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105};
106
58cf188e
SZ
107static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113};
114
a0db00fc
KS
115#define THRESHOLDS_EVENTS_TARGET 128
116#define SOFTLIMIT_EVENTS_TARGET 1024
117#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 118
bb4cc1a8
AM
119/*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124struct mem_cgroup_tree_per_zone {
125 struct rb_root rb_root;
126 spinlock_t lock;
127};
128
129struct mem_cgroup_tree_per_node {
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131};
132
133struct mem_cgroup_tree {
134 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135};
136
137static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
9490ff27
KH
139/* for OOM */
140struct mem_cgroup_eventfd_list {
141 struct list_head list;
142 struct eventfd_ctx *eventfd;
143};
2e72b634 144
79bd9814
TH
145/*
146 * cgroup_event represents events which userspace want to receive.
147 */
3bc942f3 148struct mem_cgroup_event {
79bd9814 149 /*
59b6f873 150 * memcg which the event belongs to.
79bd9814 151 */
59b6f873 152 struct mem_cgroup *memcg;
79bd9814
TH
153 /*
154 * eventfd to signal userspace about the event.
155 */
156 struct eventfd_ctx *eventfd;
157 /*
158 * Each of these stored in a list by the cgroup.
159 */
160 struct list_head list;
fba94807
TH
161 /*
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
165 */
59b6f873 166 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 167 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
168 /*
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
172 */
59b6f873 173 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 174 struct eventfd_ctx *eventfd);
79bd9814
TH
175 /*
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
178 */
179 poll_table pt;
180 wait_queue_head_t *wqh;
181 wait_queue_t wait;
182 struct work_struct remove;
183};
184
c0ff4b85
R
185static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 187
7dc74be0
DN
188/* Stuffs for move charges at task migration. */
189/*
1dfab5ab 190 * Types of charges to be moved.
7dc74be0 191 */
1dfab5ab
JW
192#define MOVE_ANON 0x1U
193#define MOVE_FILE 0x2U
194#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 195
4ffef5fe
DN
196/* "mc" and its members are protected by cgroup_mutex */
197static struct move_charge_struct {
b1dd693e 198 spinlock_t lock; /* for from, to */
4ffef5fe
DN
199 struct mem_cgroup *from;
200 struct mem_cgroup *to;
1dfab5ab 201 unsigned long flags;
4ffef5fe 202 unsigned long precharge;
854ffa8d 203 unsigned long moved_charge;
483c30b5 204 unsigned long moved_swap;
8033b97c
DN
205 struct task_struct *moving_task; /* a task moving charges */
206 wait_queue_head_t waitq; /* a waitq for other context */
207} mc = {
2bd9bb20 208 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
209 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
210};
4ffef5fe 211
4e416953
BS
212/*
213 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
214 * limit reclaim to prevent infinite loops, if they ever occur.
215 */
a0db00fc 216#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 217#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 218
217bc319
KH
219enum charge_type {
220 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 221 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 222 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 223 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
224 NR_CHARGE_TYPE,
225};
226
8c7c6e34 227/* for encoding cft->private value on file */
86ae53e1
GC
228enum res_type {
229 _MEM,
230 _MEMSWAP,
231 _OOM_TYPE,
510fc4e1 232 _KMEM,
86ae53e1
GC
233};
234
a0db00fc
KS
235#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
236#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 237#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
238/* Used for OOM nofiier */
239#define OOM_CONTROL (0)
8c7c6e34 240
0999821b
GC
241/*
242 * The memcg_create_mutex will be held whenever a new cgroup is created.
243 * As a consequence, any change that needs to protect against new child cgroups
244 * appearing has to hold it as well.
245 */
246static DEFINE_MUTEX(memcg_create_mutex);
247
70ddf637
AV
248/* Some nice accessors for the vmpressure. */
249struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250{
251 if (!memcg)
252 memcg = root_mem_cgroup;
253 return &memcg->vmpressure;
254}
255
256struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
257{
258 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259}
260
7ffc0edc
MH
261static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
262{
263 return (memcg == root_mem_cgroup);
264}
265
4219b2da
LZ
266/*
267 * We restrict the id in the range of [1, 65535], so it can fit into
268 * an unsigned short.
269 */
270#define MEM_CGROUP_ID_MAX USHRT_MAX
271
34c00c31
LZ
272static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
273{
15a4c835 274 return memcg->css.id;
34c00c31
LZ
275}
276
adbe427b
VD
277/*
278 * A helper function to get mem_cgroup from ID. must be called under
279 * rcu_read_lock(). The caller is responsible for calling
280 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
281 * refcnt from swap can be called against removed memcg.)
282 */
34c00c31
LZ
283static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
284{
285 struct cgroup_subsys_state *css;
286
7d699ddb 287 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
288 return mem_cgroup_from_css(css);
289}
290
e1aab161 291/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 292#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 293
e1aab161
GC
294void sock_update_memcg(struct sock *sk)
295{
376be5ff 296 if (mem_cgroup_sockets_enabled) {
e1aab161 297 struct mem_cgroup *memcg;
3f134619 298 struct cg_proto *cg_proto;
e1aab161
GC
299
300 BUG_ON(!sk->sk_prot->proto_cgroup);
301
f3f511e1
GC
302 /* Socket cloning can throw us here with sk_cgrp already
303 * filled. It won't however, necessarily happen from
304 * process context. So the test for root memcg given
305 * the current task's memcg won't help us in this case.
306 *
307 * Respecting the original socket's memcg is a better
308 * decision in this case.
309 */
310 if (sk->sk_cgrp) {
311 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 312 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
313 return;
314 }
315
e1aab161
GC
316 rcu_read_lock();
317 memcg = mem_cgroup_from_task(current);
3f134619 318 cg_proto = sk->sk_prot->proto_cgroup(memcg);
e752eb68 319 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
ec903c0c 320 css_tryget_online(&memcg->css)) {
3f134619 321 sk->sk_cgrp = cg_proto;
e1aab161
GC
322 }
323 rcu_read_unlock();
324 }
325}
326EXPORT_SYMBOL(sock_update_memcg);
327
328void sock_release_memcg(struct sock *sk)
329{
376be5ff 330 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
331 struct mem_cgroup *memcg;
332 WARN_ON(!sk->sk_cgrp->memcg);
333 memcg = sk->sk_cgrp->memcg;
5347e5ae 334 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
335 }
336}
d1a4c0b3
GC
337
338struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
339{
340 if (!memcg || mem_cgroup_is_root(memcg))
341 return NULL;
342
2e685cad 343 return &memcg->tcp_mem;
d1a4c0b3
GC
344}
345EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 346
3f134619
GC
347#endif
348
a8964b9b 349#ifdef CONFIG_MEMCG_KMEM
55007d84 350/*
f7ce3190 351 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
55007d84 357 *
dbcf73e2
VD
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
55007d84 360 */
dbcf73e2
VD
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
749c5415 363
05257a1a
VD
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
55007d84
GC
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
b8627835 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
b8627835 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 391
d7f25f8a
GC
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
a8964b9b 398struct static_key memcg_kmem_enabled_key;
d7f25f8a 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 400
a8964b9b
GC
401#endif /* CONFIG_MEMCG_KMEM */
402
f64c3f54 403static struct mem_cgroup_per_zone *
e231875b 404mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 405{
e231875b
JZ
406 int nid = zone_to_nid(zone);
407 int zid = zone_idx(zone);
408
54f72fe0 409 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
410}
411
ad7fa852
TH
412/**
413 * mem_cgroup_css_from_page - css of the memcg associated with a page
414 * @page: page of interest
415 *
416 * If memcg is bound to the default hierarchy, css of the memcg associated
417 * with @page is returned. The returned css remains associated with @page
418 * until it is released.
419 *
420 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
421 * is returned.
422 *
423 * XXX: The above description of behavior on the default hierarchy isn't
424 * strictly true yet as replace_page_cache_page() can modify the
425 * association before @page is released even on the default hierarchy;
426 * however, the current and planned usages don't mix the the two functions
427 * and replace_page_cache_page() will soon be updated to make the invariant
428 * actually true.
429 */
430struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
431{
432 struct mem_cgroup *memcg;
433
434 rcu_read_lock();
435
436 memcg = page->mem_cgroup;
437
438 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
439 memcg = root_mem_cgroup;
440
441 rcu_read_unlock();
442 return &memcg->css;
443}
444
2fc04524
VD
445/**
446 * page_cgroup_ino - return inode number of the memcg a page is charged to
447 * @page: the page
448 *
449 * Look up the closest online ancestor of the memory cgroup @page is charged to
450 * and return its inode number or 0 if @page is not charged to any cgroup. It
451 * is safe to call this function without holding a reference to @page.
452 *
453 * Note, this function is inherently racy, because there is nothing to prevent
454 * the cgroup inode from getting torn down and potentially reallocated a moment
455 * after page_cgroup_ino() returns, so it only should be used by callers that
456 * do not care (such as procfs interfaces).
457 */
458ino_t page_cgroup_ino(struct page *page)
459{
460 struct mem_cgroup *memcg;
461 unsigned long ino = 0;
462
463 rcu_read_lock();
464 memcg = READ_ONCE(page->mem_cgroup);
465 while (memcg && !(memcg->css.flags & CSS_ONLINE))
466 memcg = parent_mem_cgroup(memcg);
467 if (memcg)
468 ino = cgroup_ino(memcg->css.cgroup);
469 rcu_read_unlock();
470 return ino;
471}
472
f64c3f54 473static struct mem_cgroup_per_zone *
e231875b 474mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 475{
97a6c37b
JW
476 int nid = page_to_nid(page);
477 int zid = page_zonenum(page);
f64c3f54 478
e231875b 479 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
480}
481
bb4cc1a8
AM
482static struct mem_cgroup_tree_per_zone *
483soft_limit_tree_node_zone(int nid, int zid)
484{
485 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
486}
487
488static struct mem_cgroup_tree_per_zone *
489soft_limit_tree_from_page(struct page *page)
490{
491 int nid = page_to_nid(page);
492 int zid = page_zonenum(page);
493
494 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
495}
496
cf2c8127
JW
497static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
498 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 499 unsigned long new_usage_in_excess)
bb4cc1a8
AM
500{
501 struct rb_node **p = &mctz->rb_root.rb_node;
502 struct rb_node *parent = NULL;
503 struct mem_cgroup_per_zone *mz_node;
504
505 if (mz->on_tree)
506 return;
507
508 mz->usage_in_excess = new_usage_in_excess;
509 if (!mz->usage_in_excess)
510 return;
511 while (*p) {
512 parent = *p;
513 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
514 tree_node);
515 if (mz->usage_in_excess < mz_node->usage_in_excess)
516 p = &(*p)->rb_left;
517 /*
518 * We can't avoid mem cgroups that are over their soft
519 * limit by the same amount
520 */
521 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
522 p = &(*p)->rb_right;
523 }
524 rb_link_node(&mz->tree_node, parent, p);
525 rb_insert_color(&mz->tree_node, &mctz->rb_root);
526 mz->on_tree = true;
527}
528
cf2c8127
JW
529static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
531{
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536}
537
cf2c8127
JW
538static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
539 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 540{
0a31bc97
JW
541 unsigned long flags;
542
543 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 544 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 545 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
546}
547
3e32cb2e
JW
548static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
549{
550 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 551 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
552 unsigned long excess = 0;
553
554 if (nr_pages > soft_limit)
555 excess = nr_pages - soft_limit;
556
557 return excess;
558}
bb4cc1a8
AM
559
560static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
561{
3e32cb2e 562 unsigned long excess;
bb4cc1a8
AM
563 struct mem_cgroup_per_zone *mz;
564 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 565
e231875b 566 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
567 /*
568 * Necessary to update all ancestors when hierarchy is used.
569 * because their event counter is not touched.
570 */
571 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 572 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 573 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
574 /*
575 * We have to update the tree if mz is on RB-tree or
576 * mem is over its softlimit.
577 */
578 if (excess || mz->on_tree) {
0a31bc97
JW
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
582 /* if on-tree, remove it */
583 if (mz->on_tree)
cf2c8127 584 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
585 /*
586 * Insert again. mz->usage_in_excess will be updated.
587 * If excess is 0, no tree ops.
588 */
cf2c8127 589 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 590 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
591 }
592 }
593}
594
595static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
596{
bb4cc1a8 597 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
598 struct mem_cgroup_per_zone *mz;
599 int nid, zid;
bb4cc1a8 600
e231875b
JZ
601 for_each_node(nid) {
602 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
603 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
604 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 605 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
606 }
607 }
608}
609
610static struct mem_cgroup_per_zone *
611__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
612{
613 struct rb_node *rightmost = NULL;
614 struct mem_cgroup_per_zone *mz;
615
616retry:
617 mz = NULL;
618 rightmost = rb_last(&mctz->rb_root);
619 if (!rightmost)
620 goto done; /* Nothing to reclaim from */
621
622 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
623 /*
624 * Remove the node now but someone else can add it back,
625 * we will to add it back at the end of reclaim to its correct
626 * position in the tree.
627 */
cf2c8127 628 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 629 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 630 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
631 goto retry;
632done:
633 return mz;
634}
635
636static struct mem_cgroup_per_zone *
637mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
638{
639 struct mem_cgroup_per_zone *mz;
640
0a31bc97 641 spin_lock_irq(&mctz->lock);
bb4cc1a8 642 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 643 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
644 return mz;
645}
646
711d3d2c 647/*
484ebb3b
GT
648 * Return page count for single (non recursive) @memcg.
649 *
711d3d2c
KH
650 * Implementation Note: reading percpu statistics for memcg.
651 *
652 * Both of vmstat[] and percpu_counter has threshold and do periodic
653 * synchronization to implement "quick" read. There are trade-off between
654 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 655 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
656 *
657 * But this _read() function is used for user interface now. The user accounts
658 * memory usage by memory cgroup and he _always_ requires exact value because
659 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
660 * have to visit all online cpus and make sum. So, for now, unnecessary
661 * synchronization is not implemented. (just implemented for cpu hotplug)
662 *
663 * If there are kernel internal actions which can make use of some not-exact
664 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 665 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
666 * implemented.
667 */
484ebb3b
GT
668static unsigned long
669mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 670{
7a159cc9 671 long val = 0;
c62b1a3b 672 int cpu;
c62b1a3b 673
484ebb3b 674 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 675 for_each_possible_cpu(cpu)
c0ff4b85 676 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
677 /*
678 * Summing races with updates, so val may be negative. Avoid exposing
679 * transient negative values.
680 */
681 if (val < 0)
682 val = 0;
c62b1a3b
KH
683 return val;
684}
685
c0ff4b85 686static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
687 enum mem_cgroup_events_index idx)
688{
689 unsigned long val = 0;
690 int cpu;
691
733a572e 692 for_each_possible_cpu(cpu)
c0ff4b85 693 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
694 return val;
695}
696
c0ff4b85 697static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 698 struct page *page,
0a31bc97 699 int nr_pages)
d52aa412 700{
b2402857
KH
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
0a31bc97 705 if (PageAnon(page))
b2402857 706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 707 nr_pages);
d52aa412 708 else
b2402857 709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 710 nr_pages);
55e462b0 711
b070e65c
DR
712 if (PageTransHuge(page))
713 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
714 nr_pages);
715
e401f176
KH
716 /* pagein of a big page is an event. So, ignore page size */
717 if (nr_pages > 0)
c0ff4b85 718 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 719 else {
c0ff4b85 720 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
721 nr_pages = -nr_pages; /* for event */
722 }
e401f176 723
13114716 724 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
725}
726
e231875b
JZ
727static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 int nid,
729 unsigned int lru_mask)
bb2a0de9 730{
e231875b 731 unsigned long nr = 0;
889976db
YH
732 int zid;
733
e231875b 734 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 735
e231875b
JZ
736 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
737 struct mem_cgroup_per_zone *mz;
738 enum lru_list lru;
739
740 for_each_lru(lru) {
741 if (!(BIT(lru) & lru_mask))
742 continue;
743 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
744 nr += mz->lru_size[lru];
745 }
746 }
747 return nr;
889976db 748}
bb2a0de9 749
c0ff4b85 750static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 751 unsigned int lru_mask)
6d12e2d8 752{
e231875b 753 unsigned long nr = 0;
889976db 754 int nid;
6d12e2d8 755
31aaea4a 756 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
757 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
758 return nr;
d52aa412
KH
759}
760
f53d7ce3
JW
761static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
762 enum mem_cgroup_events_target target)
7a159cc9
JW
763{
764 unsigned long val, next;
765
13114716 766 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 767 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 768 /* from time_after() in jiffies.h */
f53d7ce3
JW
769 if ((long)next - (long)val < 0) {
770 switch (target) {
771 case MEM_CGROUP_TARGET_THRESH:
772 next = val + THRESHOLDS_EVENTS_TARGET;
773 break;
bb4cc1a8
AM
774 case MEM_CGROUP_TARGET_SOFTLIMIT:
775 next = val + SOFTLIMIT_EVENTS_TARGET;
776 break;
f53d7ce3
JW
777 case MEM_CGROUP_TARGET_NUMAINFO:
778 next = val + NUMAINFO_EVENTS_TARGET;
779 break;
780 default:
781 break;
782 }
783 __this_cpu_write(memcg->stat->targets[target], next);
784 return true;
7a159cc9 785 }
f53d7ce3 786 return false;
d2265e6f
KH
787}
788
789/*
790 * Check events in order.
791 *
792 */
c0ff4b85 793static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
794{
795 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
796 if (unlikely(mem_cgroup_event_ratelimit(memcg,
797 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 798 bool do_softlimit;
82b3f2a7 799 bool do_numainfo __maybe_unused;
f53d7ce3 800
bb4cc1a8
AM
801 do_softlimit = mem_cgroup_event_ratelimit(memcg,
802 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
803#if MAX_NUMNODES > 1
804 do_numainfo = mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_NUMAINFO);
806#endif
c0ff4b85 807 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
808 if (unlikely(do_softlimit))
809 mem_cgroup_update_tree(memcg, page);
453a9bf3 810#if MAX_NUMNODES > 1
f53d7ce3 811 if (unlikely(do_numainfo))
c0ff4b85 812 atomic_inc(&memcg->numainfo_events);
453a9bf3 813#endif
0a31bc97 814 }
d2265e6f
KH
815}
816
cf475ad2 817struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 818{
31a78f23
BS
819 /*
820 * mm_update_next_owner() may clear mm->owner to NULL
821 * if it races with swapoff, page migration, etc.
822 * So this can be called with p == NULL.
823 */
824 if (unlikely(!p))
825 return NULL;
826
073219e9 827 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 828}
33398cf2 829EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 830
df381975 831static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 832{
c0ff4b85 833 struct mem_cgroup *memcg = NULL;
0b7f569e 834
54595fe2
KH
835 rcu_read_lock();
836 do {
6f6acb00
MH
837 /*
838 * Page cache insertions can happen withou an
839 * actual mm context, e.g. during disk probing
840 * on boot, loopback IO, acct() writes etc.
841 */
842 if (unlikely(!mm))
df381975 843 memcg = root_mem_cgroup;
6f6acb00
MH
844 else {
845 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
846 if (unlikely(!memcg))
847 memcg = root_mem_cgroup;
848 }
ec903c0c 849 } while (!css_tryget_online(&memcg->css));
54595fe2 850 rcu_read_unlock();
c0ff4b85 851 return memcg;
54595fe2
KH
852}
853
5660048c
JW
854/**
855 * mem_cgroup_iter - iterate over memory cgroup hierarchy
856 * @root: hierarchy root
857 * @prev: previously returned memcg, NULL on first invocation
858 * @reclaim: cookie for shared reclaim walks, NULL for full walks
859 *
860 * Returns references to children of the hierarchy below @root, or
861 * @root itself, or %NULL after a full round-trip.
862 *
863 * Caller must pass the return value in @prev on subsequent
864 * invocations for reference counting, or use mem_cgroup_iter_break()
865 * to cancel a hierarchy walk before the round-trip is complete.
866 *
867 * Reclaimers can specify a zone and a priority level in @reclaim to
868 * divide up the memcgs in the hierarchy among all concurrent
869 * reclaimers operating on the same zone and priority.
870 */
694fbc0f 871struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 872 struct mem_cgroup *prev,
694fbc0f 873 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 874{
33398cf2 875 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 876 struct cgroup_subsys_state *css = NULL;
9f3a0d09 877 struct mem_cgroup *memcg = NULL;
5ac8fb31 878 struct mem_cgroup *pos = NULL;
711d3d2c 879
694fbc0f
AM
880 if (mem_cgroup_disabled())
881 return NULL;
5660048c 882
9f3a0d09
JW
883 if (!root)
884 root = root_mem_cgroup;
7d74b06f 885
9f3a0d09 886 if (prev && !reclaim)
5ac8fb31 887 pos = prev;
14067bb3 888
9f3a0d09
JW
889 if (!root->use_hierarchy && root != root_mem_cgroup) {
890 if (prev)
5ac8fb31 891 goto out;
694fbc0f 892 return root;
9f3a0d09 893 }
14067bb3 894
542f85f9 895 rcu_read_lock();
5f578161 896
5ac8fb31
JW
897 if (reclaim) {
898 struct mem_cgroup_per_zone *mz;
899
900 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
901 iter = &mz->iter[reclaim->priority];
902
903 if (prev && reclaim->generation != iter->generation)
904 goto out_unlock;
905
906 do {
4db0c3c2 907 pos = READ_ONCE(iter->position);
5ac8fb31
JW
908 /*
909 * A racing update may change the position and
910 * put the last reference, hence css_tryget(),
911 * or retry to see the updated position.
912 */
913 } while (pos && !css_tryget(&pos->css));
914 }
915
916 if (pos)
917 css = &pos->css;
918
919 for (;;) {
920 css = css_next_descendant_pre(css, &root->css);
921 if (!css) {
922 /*
923 * Reclaimers share the hierarchy walk, and a
924 * new one might jump in right at the end of
925 * the hierarchy - make sure they see at least
926 * one group and restart from the beginning.
927 */
928 if (!prev)
929 continue;
930 break;
527a5ec9 931 }
7d74b06f 932
5ac8fb31
JW
933 /*
934 * Verify the css and acquire a reference. The root
935 * is provided by the caller, so we know it's alive
936 * and kicking, and don't take an extra reference.
937 */
938 memcg = mem_cgroup_from_css(css);
14067bb3 939
5ac8fb31
JW
940 if (css == &root->css)
941 break;
14067bb3 942
b2052564 943 if (css_tryget(css)) {
5ac8fb31
JW
944 /*
945 * Make sure the memcg is initialized:
946 * mem_cgroup_css_online() orders the the
947 * initialization against setting the flag.
948 */
949 if (smp_load_acquire(&memcg->initialized))
950 break;
542f85f9 951
5ac8fb31 952 css_put(css);
527a5ec9 953 }
9f3a0d09 954
5ac8fb31 955 memcg = NULL;
9f3a0d09 956 }
5ac8fb31
JW
957
958 if (reclaim) {
959 if (cmpxchg(&iter->position, pos, memcg) == pos) {
960 if (memcg)
961 css_get(&memcg->css);
962 if (pos)
963 css_put(&pos->css);
964 }
965
966 /*
967 * pairs with css_tryget when dereferencing iter->position
968 * above.
969 */
970 if (pos)
971 css_put(&pos->css);
972
973 if (!memcg)
974 iter->generation++;
975 else if (!prev)
976 reclaim->generation = iter->generation;
9f3a0d09 977 }
5ac8fb31 978
542f85f9
MH
979out_unlock:
980 rcu_read_unlock();
5ac8fb31 981out:
c40046f3
MH
982 if (prev && prev != root)
983 css_put(&prev->css);
984
9f3a0d09 985 return memcg;
14067bb3 986}
7d74b06f 987
5660048c
JW
988/**
989 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
990 * @root: hierarchy root
991 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
992 */
993void mem_cgroup_iter_break(struct mem_cgroup *root,
994 struct mem_cgroup *prev)
9f3a0d09
JW
995{
996 if (!root)
997 root = root_mem_cgroup;
998 if (prev && prev != root)
999 css_put(&prev->css);
1000}
7d74b06f 1001
9f3a0d09
JW
1002/*
1003 * Iteration constructs for visiting all cgroups (under a tree). If
1004 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1005 * be used for reference counting.
1006 */
1007#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1008 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1009 iter != NULL; \
527a5ec9 1010 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1011
9f3a0d09 1012#define for_each_mem_cgroup(iter) \
527a5ec9 1013 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1014 iter != NULL; \
527a5ec9 1015 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1016
925b7673
JW
1017/**
1018 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1019 * @zone: zone of the wanted lruvec
fa9add64 1020 * @memcg: memcg of the wanted lruvec
925b7673
JW
1021 *
1022 * Returns the lru list vector holding pages for the given @zone and
1023 * @mem. This can be the global zone lruvec, if the memory controller
1024 * is disabled.
1025 */
1026struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1027 struct mem_cgroup *memcg)
1028{
1029 struct mem_cgroup_per_zone *mz;
bea8c150 1030 struct lruvec *lruvec;
925b7673 1031
bea8c150
HD
1032 if (mem_cgroup_disabled()) {
1033 lruvec = &zone->lruvec;
1034 goto out;
1035 }
925b7673 1036
e231875b 1037 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1038 lruvec = &mz->lruvec;
1039out:
1040 /*
1041 * Since a node can be onlined after the mem_cgroup was created,
1042 * we have to be prepared to initialize lruvec->zone here;
1043 * and if offlined then reonlined, we need to reinitialize it.
1044 */
1045 if (unlikely(lruvec->zone != zone))
1046 lruvec->zone = zone;
1047 return lruvec;
925b7673
JW
1048}
1049
925b7673 1050/**
dfe0e773 1051 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1052 * @page: the page
fa9add64 1053 * @zone: zone of the page
dfe0e773
JW
1054 *
1055 * This function is only safe when following the LRU page isolation
1056 * and putback protocol: the LRU lock must be held, and the page must
1057 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1058 */
fa9add64 1059struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1060{
08e552c6 1061 struct mem_cgroup_per_zone *mz;
925b7673 1062 struct mem_cgroup *memcg;
bea8c150 1063 struct lruvec *lruvec;
6d12e2d8 1064
bea8c150
HD
1065 if (mem_cgroup_disabled()) {
1066 lruvec = &zone->lruvec;
1067 goto out;
1068 }
925b7673 1069
1306a85a 1070 memcg = page->mem_cgroup;
7512102c 1071 /*
dfe0e773 1072 * Swapcache readahead pages are added to the LRU - and
29833315 1073 * possibly migrated - before they are charged.
7512102c 1074 */
29833315
JW
1075 if (!memcg)
1076 memcg = root_mem_cgroup;
7512102c 1077
e231875b 1078 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1079 lruvec = &mz->lruvec;
1080out:
1081 /*
1082 * Since a node can be onlined after the mem_cgroup was created,
1083 * we have to be prepared to initialize lruvec->zone here;
1084 * and if offlined then reonlined, we need to reinitialize it.
1085 */
1086 if (unlikely(lruvec->zone != zone))
1087 lruvec->zone = zone;
1088 return lruvec;
08e552c6 1089}
b69408e8 1090
925b7673 1091/**
fa9add64
HD
1092 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1093 * @lruvec: mem_cgroup per zone lru vector
1094 * @lru: index of lru list the page is sitting on
1095 * @nr_pages: positive when adding or negative when removing
925b7673 1096 *
fa9add64
HD
1097 * This function must be called when a page is added to or removed from an
1098 * lru list.
3f58a829 1099 */
fa9add64
HD
1100void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1101 int nr_pages)
3f58a829
MK
1102{
1103 struct mem_cgroup_per_zone *mz;
fa9add64 1104 unsigned long *lru_size;
3f58a829
MK
1105
1106 if (mem_cgroup_disabled())
1107 return;
1108
fa9add64
HD
1109 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1110 lru_size = mz->lru_size + lru;
1111 *lru_size += nr_pages;
1112 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1113}
544122e5 1114
2314b42d 1115bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1116{
2314b42d 1117 struct mem_cgroup *task_memcg;
158e0a2d 1118 struct task_struct *p;
ffbdccf5 1119 bool ret;
4c4a2214 1120
158e0a2d 1121 p = find_lock_task_mm(task);
de077d22 1122 if (p) {
2314b42d 1123 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1124 task_unlock(p);
1125 } else {
1126 /*
1127 * All threads may have already detached their mm's, but the oom
1128 * killer still needs to detect if they have already been oom
1129 * killed to prevent needlessly killing additional tasks.
1130 */
ffbdccf5 1131 rcu_read_lock();
2314b42d
JW
1132 task_memcg = mem_cgroup_from_task(task);
1133 css_get(&task_memcg->css);
ffbdccf5 1134 rcu_read_unlock();
de077d22 1135 }
2314b42d
JW
1136 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1137 css_put(&task_memcg->css);
4c4a2214
DR
1138 return ret;
1139}
1140
3e32cb2e 1141#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1142 container_of(counter, struct mem_cgroup, member)
1143
19942822 1144/**
9d11ea9f 1145 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1146 * @memcg: the memory cgroup
19942822 1147 *
9d11ea9f 1148 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1149 * pages.
19942822 1150 */
c0ff4b85 1151static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1152{
3e32cb2e
JW
1153 unsigned long margin = 0;
1154 unsigned long count;
1155 unsigned long limit;
9d11ea9f 1156
3e32cb2e 1157 count = page_counter_read(&memcg->memory);
4db0c3c2 1158 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1159 if (count < limit)
1160 margin = limit - count;
1161
1162 if (do_swap_account) {
1163 count = page_counter_read(&memcg->memsw);
4db0c3c2 1164 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1165 if (count <= limit)
1166 margin = min(margin, limit - count);
1167 }
1168
1169 return margin;
19942822
JW
1170}
1171
32047e2a 1172/*
bdcbb659 1173 * A routine for checking "mem" is under move_account() or not.
32047e2a 1174 *
bdcbb659
QH
1175 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1176 * moving cgroups. This is for waiting at high-memory pressure
1177 * caused by "move".
32047e2a 1178 */
c0ff4b85 1179static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1180{
2bd9bb20
KH
1181 struct mem_cgroup *from;
1182 struct mem_cgroup *to;
4b534334 1183 bool ret = false;
2bd9bb20
KH
1184 /*
1185 * Unlike task_move routines, we access mc.to, mc.from not under
1186 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1187 */
1188 spin_lock(&mc.lock);
1189 from = mc.from;
1190 to = mc.to;
1191 if (!from)
1192 goto unlock;
3e92041d 1193
2314b42d
JW
1194 ret = mem_cgroup_is_descendant(from, memcg) ||
1195 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1196unlock:
1197 spin_unlock(&mc.lock);
4b534334
KH
1198 return ret;
1199}
1200
c0ff4b85 1201static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1202{
1203 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1204 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1205 DEFINE_WAIT(wait);
1206 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1207 /* moving charge context might have finished. */
1208 if (mc.moving_task)
1209 schedule();
1210 finish_wait(&mc.waitq, &wait);
1211 return true;
1212 }
1213 }
1214 return false;
1215}
1216
58cf188e 1217#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1218/**
58cf188e 1219 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1220 * @memcg: The memory cgroup that went over limit
1221 * @p: Task that is going to be killed
1222 *
1223 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1224 * enabled
1225 */
1226void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1227{
e61734c5 1228 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1229 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1230 struct mem_cgroup *iter;
1231 unsigned int i;
e222432b 1232
08088cb9 1233 mutex_lock(&oom_info_lock);
e222432b
BS
1234 rcu_read_lock();
1235
2415b9f5
BV
1236 if (p) {
1237 pr_info("Task in ");
1238 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1239 pr_cont(" killed as a result of limit of ");
1240 } else {
1241 pr_info("Memory limit reached of cgroup ");
1242 }
1243
e61734c5 1244 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1245 pr_cont("\n");
e222432b 1246
e222432b
BS
1247 rcu_read_unlock();
1248
3e32cb2e
JW
1249 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1250 K((u64)page_counter_read(&memcg->memory)),
1251 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1252 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1253 K((u64)page_counter_read(&memcg->memsw)),
1254 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1255 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1256 K((u64)page_counter_read(&memcg->kmem)),
1257 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1258
1259 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1260 pr_info("Memory cgroup stats for ");
1261 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1262 pr_cont(":");
1263
1264 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1265 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1266 continue;
484ebb3b 1267 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1268 K(mem_cgroup_read_stat(iter, i)));
1269 }
1270
1271 for (i = 0; i < NR_LRU_LISTS; i++)
1272 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1273 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1274
1275 pr_cont("\n");
1276 }
08088cb9 1277 mutex_unlock(&oom_info_lock);
e222432b
BS
1278}
1279
81d39c20
KH
1280/*
1281 * This function returns the number of memcg under hierarchy tree. Returns
1282 * 1(self count) if no children.
1283 */
c0ff4b85 1284static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1285{
1286 int num = 0;
7d74b06f
KH
1287 struct mem_cgroup *iter;
1288
c0ff4b85 1289 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1290 num++;
81d39c20
KH
1291 return num;
1292}
1293
a63d83f4
DR
1294/*
1295 * Return the memory (and swap, if configured) limit for a memcg.
1296 */
3e32cb2e 1297static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1298{
3e32cb2e 1299 unsigned long limit;
f3e8eb70 1300
3e32cb2e 1301 limit = memcg->memory.limit;
9a5a8f19 1302 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1303 unsigned long memsw_limit;
9a5a8f19 1304
3e32cb2e
JW
1305 memsw_limit = memcg->memsw.limit;
1306 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1307 }
9a5a8f19 1308 return limit;
a63d83f4
DR
1309}
1310
19965460
DR
1311static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1312 int order)
9cbb78bb 1313{
6e0fc46d
DR
1314 struct oom_control oc = {
1315 .zonelist = NULL,
1316 .nodemask = NULL,
1317 .gfp_mask = gfp_mask,
1318 .order = order,
6e0fc46d 1319 };
9cbb78bb
DR
1320 struct mem_cgroup *iter;
1321 unsigned long chosen_points = 0;
1322 unsigned long totalpages;
1323 unsigned int points = 0;
1324 struct task_struct *chosen = NULL;
1325
dc56401f
JW
1326 mutex_lock(&oom_lock);
1327
876aafbf 1328 /*
465adcf1
DR
1329 * If current has a pending SIGKILL or is exiting, then automatically
1330 * select it. The goal is to allow it to allocate so that it may
1331 * quickly exit and free its memory.
876aafbf 1332 */
d003f371 1333 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1334 mark_oom_victim(current);
dc56401f 1335 goto unlock;
876aafbf
DR
1336 }
1337
6e0fc46d 1338 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1339 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1340 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1341 struct css_task_iter it;
9cbb78bb
DR
1342 struct task_struct *task;
1343
72ec7029
TH
1344 css_task_iter_start(&iter->css, &it);
1345 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1346 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1347 case OOM_SCAN_SELECT:
1348 if (chosen)
1349 put_task_struct(chosen);
1350 chosen = task;
1351 chosen_points = ULONG_MAX;
1352 get_task_struct(chosen);
1353 /* fall through */
1354 case OOM_SCAN_CONTINUE:
1355 continue;
1356 case OOM_SCAN_ABORT:
72ec7029 1357 css_task_iter_end(&it);
9cbb78bb
DR
1358 mem_cgroup_iter_break(memcg, iter);
1359 if (chosen)
1360 put_task_struct(chosen);
dc56401f 1361 goto unlock;
9cbb78bb
DR
1362 case OOM_SCAN_OK:
1363 break;
1364 };
1365 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1366 if (!points || points < chosen_points)
1367 continue;
1368 /* Prefer thread group leaders for display purposes */
1369 if (points == chosen_points &&
1370 thread_group_leader(chosen))
1371 continue;
1372
1373 if (chosen)
1374 put_task_struct(chosen);
1375 chosen = task;
1376 chosen_points = points;
1377 get_task_struct(chosen);
9cbb78bb 1378 }
72ec7029 1379 css_task_iter_end(&it);
9cbb78bb
DR
1380 }
1381
dc56401f
JW
1382 if (chosen) {
1383 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1384 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1385 "Memory cgroup out of memory");
dc56401f
JW
1386 }
1387unlock:
1388 mutex_unlock(&oom_lock);
9cbb78bb
DR
1389}
1390
ae6e71d3
MC
1391#if MAX_NUMNODES > 1
1392
4d0c066d
KH
1393/**
1394 * test_mem_cgroup_node_reclaimable
dad7557e 1395 * @memcg: the target memcg
4d0c066d
KH
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1398 *
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1402 */
c0ff4b85 1403static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1404 int nid, bool noswap)
1405{
c0ff4b85 1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1407 return true;
1408 if (noswap || !total_swap_pages)
1409 return false;
c0ff4b85 1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1411 return true;
1412 return false;
1413
1414}
889976db
YH
1415
1416/*
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420 *
1421 */
c0ff4b85 1422static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1423{
1424 int nid;
453a9bf3
KH
1425 /*
1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 * pagein/pageout changes since the last update.
1428 */
c0ff4b85 1429 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1430 return;
c0ff4b85 1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1432 return;
1433
889976db 1434 /* make a nodemask where this memcg uses memory from */
31aaea4a 1435 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1436
31aaea4a 1437 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1438
c0ff4b85
R
1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 node_clear(nid, memcg->scan_nodes);
889976db 1441 }
453a9bf3 1442
c0ff4b85
R
1443 atomic_set(&memcg->numainfo_events, 0);
1444 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1445}
1446
1447/*
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1451 *
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1456 *
1457 * Now, we use round-robin. Better algorithm is welcomed.
1458 */
c0ff4b85 1459int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1460{
1461 int node;
1462
c0ff4b85
R
1463 mem_cgroup_may_update_nodemask(memcg);
1464 node = memcg->last_scanned_node;
889976db 1465
c0ff4b85 1466 node = next_node(node, memcg->scan_nodes);
889976db 1467 if (node == MAX_NUMNODES)
c0ff4b85 1468 node = first_node(memcg->scan_nodes);
889976db
YH
1469 /*
1470 * We call this when we hit limit, not when pages are added to LRU.
1471 * No LRU may hold pages because all pages are UNEVICTABLE or
1472 * memcg is too small and all pages are not on LRU. In that case,
1473 * we use curret node.
1474 */
1475 if (unlikely(node == MAX_NUMNODES))
1476 node = numa_node_id();
1477
c0ff4b85 1478 memcg->last_scanned_node = node;
889976db
YH
1479 return node;
1480}
889976db 1481#else
c0ff4b85 1482int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1483{
1484 return 0;
1485}
1486#endif
1487
0608f43d
AM
1488static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1489 struct zone *zone,
1490 gfp_t gfp_mask,
1491 unsigned long *total_scanned)
1492{
1493 struct mem_cgroup *victim = NULL;
1494 int total = 0;
1495 int loop = 0;
1496 unsigned long excess;
1497 unsigned long nr_scanned;
1498 struct mem_cgroup_reclaim_cookie reclaim = {
1499 .zone = zone,
1500 .priority = 0,
1501 };
1502
3e32cb2e 1503 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1504
1505 while (1) {
1506 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1507 if (!victim) {
1508 loop++;
1509 if (loop >= 2) {
1510 /*
1511 * If we have not been able to reclaim
1512 * anything, it might because there are
1513 * no reclaimable pages under this hierarchy
1514 */
1515 if (!total)
1516 break;
1517 /*
1518 * We want to do more targeted reclaim.
1519 * excess >> 2 is not to excessive so as to
1520 * reclaim too much, nor too less that we keep
1521 * coming back to reclaim from this cgroup
1522 */
1523 if (total >= (excess >> 2) ||
1524 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1525 break;
1526 }
1527 continue;
1528 }
0608f43d
AM
1529 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1530 zone, &nr_scanned);
1531 *total_scanned += nr_scanned;
3e32cb2e 1532 if (!soft_limit_excess(root_memcg))
0608f43d 1533 break;
6d61ef40 1534 }
0608f43d
AM
1535 mem_cgroup_iter_break(root_memcg, victim);
1536 return total;
6d61ef40
BS
1537}
1538
0056f4e6
JW
1539#ifdef CONFIG_LOCKDEP
1540static struct lockdep_map memcg_oom_lock_dep_map = {
1541 .name = "memcg_oom_lock",
1542};
1543#endif
1544
fb2a6fc5
JW
1545static DEFINE_SPINLOCK(memcg_oom_lock);
1546
867578cb
KH
1547/*
1548 * Check OOM-Killer is already running under our hierarchy.
1549 * If someone is running, return false.
1550 */
fb2a6fc5 1551static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1552{
79dfdacc 1553 struct mem_cgroup *iter, *failed = NULL;
a636b327 1554
fb2a6fc5
JW
1555 spin_lock(&memcg_oom_lock);
1556
9f3a0d09 1557 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1558 if (iter->oom_lock) {
79dfdacc
MH
1559 /*
1560 * this subtree of our hierarchy is already locked
1561 * so we cannot give a lock.
1562 */
79dfdacc 1563 failed = iter;
9f3a0d09
JW
1564 mem_cgroup_iter_break(memcg, iter);
1565 break;
23751be0
JW
1566 } else
1567 iter->oom_lock = true;
7d74b06f 1568 }
867578cb 1569
fb2a6fc5
JW
1570 if (failed) {
1571 /*
1572 * OK, we failed to lock the whole subtree so we have
1573 * to clean up what we set up to the failing subtree
1574 */
1575 for_each_mem_cgroup_tree(iter, memcg) {
1576 if (iter == failed) {
1577 mem_cgroup_iter_break(memcg, iter);
1578 break;
1579 }
1580 iter->oom_lock = false;
79dfdacc 1581 }
0056f4e6
JW
1582 } else
1583 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1584
1585 spin_unlock(&memcg_oom_lock);
1586
1587 return !failed;
a636b327 1588}
0b7f569e 1589
fb2a6fc5 1590static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1591{
7d74b06f
KH
1592 struct mem_cgroup *iter;
1593
fb2a6fc5 1594 spin_lock(&memcg_oom_lock);
0056f4e6 1595 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1596 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1597 iter->oom_lock = false;
fb2a6fc5 1598 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1599}
1600
c0ff4b85 1601static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1602{
1603 struct mem_cgroup *iter;
1604
c2b42d3c 1605 spin_lock(&memcg_oom_lock);
c0ff4b85 1606 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1607 iter->under_oom++;
1608 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1609}
1610
c0ff4b85 1611static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1612{
1613 struct mem_cgroup *iter;
1614
867578cb
KH
1615 /*
1616 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1617 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1618 */
c2b42d3c 1619 spin_lock(&memcg_oom_lock);
c0ff4b85 1620 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1621 if (iter->under_oom > 0)
1622 iter->under_oom--;
1623 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1624}
1625
867578cb
KH
1626static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1627
dc98df5a 1628struct oom_wait_info {
d79154bb 1629 struct mem_cgroup *memcg;
dc98df5a
KH
1630 wait_queue_t wait;
1631};
1632
1633static int memcg_oom_wake_function(wait_queue_t *wait,
1634 unsigned mode, int sync, void *arg)
1635{
d79154bb
HD
1636 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1637 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1638 struct oom_wait_info *oom_wait_info;
1639
1640 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1641 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1642
2314b42d
JW
1643 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1644 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1645 return 0;
dc98df5a
KH
1646 return autoremove_wake_function(wait, mode, sync, arg);
1647}
1648
c0ff4b85 1649static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1650{
c2b42d3c
TH
1651 /*
1652 * For the following lockless ->under_oom test, the only required
1653 * guarantee is that it must see the state asserted by an OOM when
1654 * this function is called as a result of userland actions
1655 * triggered by the notification of the OOM. This is trivially
1656 * achieved by invoking mem_cgroup_mark_under_oom() before
1657 * triggering notification.
1658 */
1659 if (memcg && memcg->under_oom)
f4b90b70 1660 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1661}
1662
3812c8c8 1663static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1664{
626ebc41 1665 if (!current->memcg_may_oom)
3812c8c8 1666 return;
867578cb 1667 /*
49426420
JW
1668 * We are in the middle of the charge context here, so we
1669 * don't want to block when potentially sitting on a callstack
1670 * that holds all kinds of filesystem and mm locks.
1671 *
1672 * Also, the caller may handle a failed allocation gracefully
1673 * (like optional page cache readahead) and so an OOM killer
1674 * invocation might not even be necessary.
1675 *
1676 * That's why we don't do anything here except remember the
1677 * OOM context and then deal with it at the end of the page
1678 * fault when the stack is unwound, the locks are released,
1679 * and when we know whether the fault was overall successful.
867578cb 1680 */
49426420 1681 css_get(&memcg->css);
626ebc41
TH
1682 current->memcg_in_oom = memcg;
1683 current->memcg_oom_gfp_mask = mask;
1684 current->memcg_oom_order = order;
3812c8c8
JW
1685}
1686
1687/**
1688 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1689 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1690 *
49426420
JW
1691 * This has to be called at the end of a page fault if the memcg OOM
1692 * handler was enabled.
3812c8c8 1693 *
49426420 1694 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1695 * sleep on a waitqueue until the userspace task resolves the
1696 * situation. Sleeping directly in the charge context with all kinds
1697 * of locks held is not a good idea, instead we remember an OOM state
1698 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1699 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1700 *
1701 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1702 * completed, %false otherwise.
3812c8c8 1703 */
49426420 1704bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1705{
626ebc41 1706 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1707 struct oom_wait_info owait;
49426420 1708 bool locked;
3812c8c8
JW
1709
1710 /* OOM is global, do not handle */
3812c8c8 1711 if (!memcg)
49426420 1712 return false;
3812c8c8 1713
c32b3cbe 1714 if (!handle || oom_killer_disabled)
49426420 1715 goto cleanup;
3812c8c8
JW
1716
1717 owait.memcg = memcg;
1718 owait.wait.flags = 0;
1719 owait.wait.func = memcg_oom_wake_function;
1720 owait.wait.private = current;
1721 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1722
3812c8c8 1723 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1724 mem_cgroup_mark_under_oom(memcg);
1725
1726 locked = mem_cgroup_oom_trylock(memcg);
1727
1728 if (locked)
1729 mem_cgroup_oom_notify(memcg);
1730
1731 if (locked && !memcg->oom_kill_disable) {
1732 mem_cgroup_unmark_under_oom(memcg);
1733 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1734 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1735 current->memcg_oom_order);
49426420 1736 } else {
3812c8c8 1737 schedule();
49426420
JW
1738 mem_cgroup_unmark_under_oom(memcg);
1739 finish_wait(&memcg_oom_waitq, &owait.wait);
1740 }
1741
1742 if (locked) {
fb2a6fc5
JW
1743 mem_cgroup_oom_unlock(memcg);
1744 /*
1745 * There is no guarantee that an OOM-lock contender
1746 * sees the wakeups triggered by the OOM kill
1747 * uncharges. Wake any sleepers explicitely.
1748 */
1749 memcg_oom_recover(memcg);
1750 }
49426420 1751cleanup:
626ebc41 1752 current->memcg_in_oom = NULL;
3812c8c8 1753 css_put(&memcg->css);
867578cb 1754 return true;
0b7f569e
KH
1755}
1756
d7365e78
JW
1757/**
1758 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1759 * @page: page that is going to change accounted state
32047e2a 1760 *
d7365e78
JW
1761 * This function must mark the beginning of an accounted page state
1762 * change to prevent double accounting when the page is concurrently
1763 * being moved to another memcg:
32047e2a 1764 *
6de22619 1765 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1766 * if (TestClearPageState(page))
1767 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1768 * mem_cgroup_end_page_stat(memcg);
d69b042f 1769 */
6de22619 1770struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1771{
1772 struct mem_cgroup *memcg;
6de22619 1773 unsigned long flags;
89c06bd5 1774
6de22619
JW
1775 /*
1776 * The RCU lock is held throughout the transaction. The fast
1777 * path can get away without acquiring the memcg->move_lock
1778 * because page moving starts with an RCU grace period.
1779 *
1780 * The RCU lock also protects the memcg from being freed when
1781 * the page state that is going to change is the only thing
1782 * preventing the page from being uncharged.
1783 * E.g. end-writeback clearing PageWriteback(), which allows
1784 * migration to go ahead and uncharge the page before the
1785 * account transaction might be complete.
1786 */
d7365e78
JW
1787 rcu_read_lock();
1788
1789 if (mem_cgroup_disabled())
1790 return NULL;
89c06bd5 1791again:
1306a85a 1792 memcg = page->mem_cgroup;
29833315 1793 if (unlikely(!memcg))
d7365e78
JW
1794 return NULL;
1795
bdcbb659 1796 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1797 return memcg;
89c06bd5 1798
6de22619 1799 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1800 if (memcg != page->mem_cgroup) {
6de22619 1801 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1802 goto again;
1803 }
6de22619
JW
1804
1805 /*
1806 * When charge migration first begins, we can have locked and
1807 * unlocked page stat updates happening concurrently. Track
1808 * the task who has the lock for mem_cgroup_end_page_stat().
1809 */
1810 memcg->move_lock_task = current;
1811 memcg->move_lock_flags = flags;
d7365e78
JW
1812
1813 return memcg;
89c06bd5 1814}
c4843a75 1815EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1816
d7365e78
JW
1817/**
1818 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1819 * @memcg: the memcg that was accounted against
d7365e78 1820 */
6de22619 1821void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1822{
6de22619
JW
1823 if (memcg && memcg->move_lock_task == current) {
1824 unsigned long flags = memcg->move_lock_flags;
1825
1826 memcg->move_lock_task = NULL;
1827 memcg->move_lock_flags = 0;
1828
1829 spin_unlock_irqrestore(&memcg->move_lock, flags);
1830 }
89c06bd5 1831
d7365e78 1832 rcu_read_unlock();
89c06bd5 1833}
c4843a75 1834EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1835
cdec2e42
KH
1836/*
1837 * size of first charge trial. "32" comes from vmscan.c's magic value.
1838 * TODO: maybe necessary to use big numbers in big irons.
1839 */
7ec99d62 1840#define CHARGE_BATCH 32U
cdec2e42
KH
1841struct memcg_stock_pcp {
1842 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1843 unsigned int nr_pages;
cdec2e42 1844 struct work_struct work;
26fe6168 1845 unsigned long flags;
a0db00fc 1846#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1847};
1848static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1849static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1850
a0956d54
SS
1851/**
1852 * consume_stock: Try to consume stocked charge on this cpu.
1853 * @memcg: memcg to consume from.
1854 * @nr_pages: how many pages to charge.
1855 *
1856 * The charges will only happen if @memcg matches the current cpu's memcg
1857 * stock, and at least @nr_pages are available in that stock. Failure to
1858 * service an allocation will refill the stock.
1859 *
1860 * returns true if successful, false otherwise.
cdec2e42 1861 */
a0956d54 1862static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1863{
1864 struct memcg_stock_pcp *stock;
3e32cb2e 1865 bool ret = false;
cdec2e42 1866
a0956d54 1867 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1868 return ret;
a0956d54 1869
cdec2e42 1870 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1871 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1872 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1873 ret = true;
1874 }
cdec2e42
KH
1875 put_cpu_var(memcg_stock);
1876 return ret;
1877}
1878
1879/*
3e32cb2e 1880 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1881 */
1882static void drain_stock(struct memcg_stock_pcp *stock)
1883{
1884 struct mem_cgroup *old = stock->cached;
1885
11c9ea4e 1886 if (stock->nr_pages) {
3e32cb2e 1887 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 1888 if (do_swap_account)
3e32cb2e 1889 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1890 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1891 stock->nr_pages = 0;
cdec2e42
KH
1892 }
1893 stock->cached = NULL;
cdec2e42
KH
1894}
1895
1896/*
1897 * This must be called under preempt disabled or must be called by
1898 * a thread which is pinned to local cpu.
1899 */
1900static void drain_local_stock(struct work_struct *dummy)
1901{
7c8e0181 1902 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1903 drain_stock(stock);
26fe6168 1904 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1905}
1906
1907/*
3e32cb2e 1908 * Cache charges(val) to local per_cpu area.
320cc51d 1909 * This will be consumed by consume_stock() function, later.
cdec2e42 1910 */
c0ff4b85 1911static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1912{
1913 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1914
c0ff4b85 1915 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1916 drain_stock(stock);
c0ff4b85 1917 stock->cached = memcg;
cdec2e42 1918 }
11c9ea4e 1919 stock->nr_pages += nr_pages;
cdec2e42
KH
1920 put_cpu_var(memcg_stock);
1921}
1922
1923/*
c0ff4b85 1924 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1925 * of the hierarchy under it.
cdec2e42 1926 */
6d3d6aa2 1927static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1928{
26fe6168 1929 int cpu, curcpu;
d38144b7 1930
6d3d6aa2
JW
1931 /* If someone's already draining, avoid adding running more workers. */
1932 if (!mutex_trylock(&percpu_charge_mutex))
1933 return;
cdec2e42 1934 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1935 get_online_cpus();
5af12d0e 1936 curcpu = get_cpu();
cdec2e42
KH
1937 for_each_online_cpu(cpu) {
1938 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1939 struct mem_cgroup *memcg;
26fe6168 1940
c0ff4b85
R
1941 memcg = stock->cached;
1942 if (!memcg || !stock->nr_pages)
26fe6168 1943 continue;
2314b42d 1944 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1945 continue;
d1a05b69
MH
1946 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1947 if (cpu == curcpu)
1948 drain_local_stock(&stock->work);
1949 else
1950 schedule_work_on(cpu, &stock->work);
1951 }
cdec2e42 1952 }
5af12d0e 1953 put_cpu();
f894ffa8 1954 put_online_cpus();
9f50fad6 1955 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1956}
1957
0db0628d 1958static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1959 unsigned long action,
1960 void *hcpu)
1961{
1962 int cpu = (unsigned long)hcpu;
1963 struct memcg_stock_pcp *stock;
1964
619d094b 1965 if (action == CPU_ONLINE)
1489ebad 1966 return NOTIFY_OK;
1489ebad 1967
d833049b 1968 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1969 return NOTIFY_OK;
711d3d2c 1970
cdec2e42
KH
1971 stock = &per_cpu(memcg_stock, cpu);
1972 drain_stock(stock);
1973 return NOTIFY_OK;
1974}
1975
b23afb93
TH
1976/*
1977 * Scheduled by try_charge() to be executed from the userland return path
1978 * and reclaims memory over the high limit.
1979 */
1980void mem_cgroup_handle_over_high(void)
1981{
1982 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1983 struct mem_cgroup *memcg, *pos;
1984
1985 if (likely(!nr_pages))
1986 return;
1987
1988 pos = memcg = get_mem_cgroup_from_mm(current->mm);
1989
1990 do {
1991 if (page_counter_read(&pos->memory) <= pos->high)
1992 continue;
1993 mem_cgroup_events(pos, MEMCG_HIGH, 1);
1994 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
1995 } while ((pos = parent_mem_cgroup(pos)));
1996
1997 css_put(&memcg->css);
1998 current->memcg_nr_pages_over_high = 0;
1999}
2000
00501b53
JW
2001static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2002 unsigned int nr_pages)
8a9f3ccd 2003{
7ec99d62 2004 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2005 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2006 struct mem_cgroup *mem_over_limit;
3e32cb2e 2007 struct page_counter *counter;
6539cc05 2008 unsigned long nr_reclaimed;
b70a2a21
JW
2009 bool may_swap = true;
2010 bool drained = false;
05b84301 2011 int ret = 0;
a636b327 2012
ce00a967
JW
2013 if (mem_cgroup_is_root(memcg))
2014 goto done;
6539cc05 2015retry:
b6b6cc72
MH
2016 if (consume_stock(memcg, nr_pages))
2017 goto done;
8a9f3ccd 2018
3fbe7244 2019 if (!do_swap_account ||
3e32cb2e
JW
2020 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2021 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2022 goto done_restock;
3fbe7244 2023 if (do_swap_account)
3e32cb2e
JW
2024 page_counter_uncharge(&memcg->memsw, batch);
2025 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2026 } else {
3e32cb2e 2027 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2028 may_swap = false;
3fbe7244 2029 }
7a81b88c 2030
6539cc05
JW
2031 if (batch > nr_pages) {
2032 batch = nr_pages;
2033 goto retry;
2034 }
6d61ef40 2035
06b078fc
JW
2036 /*
2037 * Unlike in global OOM situations, memcg is not in a physical
2038 * memory shortage. Allow dying and OOM-killed tasks to
2039 * bypass the last charges so that they can exit quickly and
2040 * free their memory.
2041 */
2042 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2043 fatal_signal_pending(current) ||
2044 current->flags & PF_EXITING))
2045 goto bypass;
2046
2047 if (unlikely(task_in_memcg_oom(current)))
2048 goto nomem;
2049
6539cc05
JW
2050 if (!(gfp_mask & __GFP_WAIT))
2051 goto nomem;
4b534334 2052
241994ed
JW
2053 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2054
b70a2a21
JW
2055 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2056 gfp_mask, may_swap);
6539cc05 2057
61e02c74 2058 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2059 goto retry;
28c34c29 2060
b70a2a21 2061 if (!drained) {
6d3d6aa2 2062 drain_all_stock(mem_over_limit);
b70a2a21
JW
2063 drained = true;
2064 goto retry;
2065 }
2066
28c34c29
JW
2067 if (gfp_mask & __GFP_NORETRY)
2068 goto nomem;
6539cc05
JW
2069 /*
2070 * Even though the limit is exceeded at this point, reclaim
2071 * may have been able to free some pages. Retry the charge
2072 * before killing the task.
2073 *
2074 * Only for regular pages, though: huge pages are rather
2075 * unlikely to succeed so close to the limit, and we fall back
2076 * to regular pages anyway in case of failure.
2077 */
61e02c74 2078 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2079 goto retry;
2080 /*
2081 * At task move, charge accounts can be doubly counted. So, it's
2082 * better to wait until the end of task_move if something is going on.
2083 */
2084 if (mem_cgroup_wait_acct_move(mem_over_limit))
2085 goto retry;
2086
9b130619
JW
2087 if (nr_retries--)
2088 goto retry;
2089
06b078fc
JW
2090 if (gfp_mask & __GFP_NOFAIL)
2091 goto bypass;
2092
6539cc05
JW
2093 if (fatal_signal_pending(current))
2094 goto bypass;
2095
241994ed
JW
2096 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2097
61e02c74 2098 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2099nomem:
6d1fdc48 2100 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2101 return -ENOMEM;
867578cb 2102bypass:
ce00a967 2103 return -EINTR;
6539cc05
JW
2104
2105done_restock:
e8ea14cc 2106 css_get_many(&memcg->css, batch);
6539cc05
JW
2107 if (batch > nr_pages)
2108 refill_stock(memcg, batch - nr_pages);
b23afb93 2109
241994ed 2110 /*
b23afb93
TH
2111 * If the hierarchy is above the normal consumption range, schedule
2112 * reclaim on returning to userland. We can perform reclaim here
2113 * if __GFP_WAIT but let's always punt for simplicity and so that
2114 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2115 * not recorded as it most likely matches current's and won't
2116 * change in the meantime. As high limit is checked again before
2117 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2118 */
2119 do {
b23afb93
TH
2120 if (page_counter_read(&memcg->memory) > memcg->high) {
2121 current->memcg_nr_pages_over_high += nr_pages;
2122 set_notify_resume(current);
2123 break;
2124 }
241994ed 2125 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2126done:
05b84301 2127 return ret;
7a81b88c 2128}
8a9f3ccd 2129
00501b53 2130static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2131{
ce00a967
JW
2132 if (mem_cgroup_is_root(memcg))
2133 return;
2134
3e32cb2e 2135 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2136 if (do_swap_account)
3e32cb2e 2137 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2138
e8ea14cc 2139 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2140}
2141
0a31bc97
JW
2142static void lock_page_lru(struct page *page, int *isolated)
2143{
2144 struct zone *zone = page_zone(page);
2145
2146 spin_lock_irq(&zone->lru_lock);
2147 if (PageLRU(page)) {
2148 struct lruvec *lruvec;
2149
2150 lruvec = mem_cgroup_page_lruvec(page, zone);
2151 ClearPageLRU(page);
2152 del_page_from_lru_list(page, lruvec, page_lru(page));
2153 *isolated = 1;
2154 } else
2155 *isolated = 0;
2156}
2157
2158static void unlock_page_lru(struct page *page, int isolated)
2159{
2160 struct zone *zone = page_zone(page);
2161
2162 if (isolated) {
2163 struct lruvec *lruvec;
2164
2165 lruvec = mem_cgroup_page_lruvec(page, zone);
2166 VM_BUG_ON_PAGE(PageLRU(page), page);
2167 SetPageLRU(page);
2168 add_page_to_lru_list(page, lruvec, page_lru(page));
2169 }
2170 spin_unlock_irq(&zone->lru_lock);
2171}
2172
00501b53 2173static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2174 bool lrucare)
7a81b88c 2175{
0a31bc97 2176 int isolated;
9ce70c02 2177
1306a85a 2178 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2179
2180 /*
2181 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2182 * may already be on some other mem_cgroup's LRU. Take care of it.
2183 */
0a31bc97
JW
2184 if (lrucare)
2185 lock_page_lru(page, &isolated);
9ce70c02 2186
0a31bc97
JW
2187 /*
2188 * Nobody should be changing or seriously looking at
1306a85a 2189 * page->mem_cgroup at this point:
0a31bc97
JW
2190 *
2191 * - the page is uncharged
2192 *
2193 * - the page is off-LRU
2194 *
2195 * - an anonymous fault has exclusive page access, except for
2196 * a locked page table
2197 *
2198 * - a page cache insertion, a swapin fault, or a migration
2199 * have the page locked
2200 */
1306a85a 2201 page->mem_cgroup = memcg;
9ce70c02 2202
0a31bc97
JW
2203 if (lrucare)
2204 unlock_page_lru(page, isolated);
7a81b88c 2205}
66e1707b 2206
7ae1e1d0 2207#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2208int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2209 unsigned long nr_pages)
7ae1e1d0 2210{
3e32cb2e 2211 struct page_counter *counter;
7ae1e1d0 2212 int ret = 0;
7ae1e1d0 2213
3e32cb2e
JW
2214 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2215 if (ret < 0)
7ae1e1d0
GC
2216 return ret;
2217
3e32cb2e 2218 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2219 if (ret == -EINTR) {
2220 /*
00501b53
JW
2221 * try_charge() chose to bypass to root due to OOM kill or
2222 * fatal signal. Since our only options are to either fail
2223 * the allocation or charge it to this cgroup, do it as a
2224 * temporary condition. But we can't fail. From a kmem/slab
2225 * perspective, the cache has already been selected, by
2226 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2227 * our minds.
2228 *
2229 * This condition will only trigger if the task entered
00501b53
JW
2230 * memcg_charge_kmem in a sane state, but was OOM-killed
2231 * during try_charge() above. Tasks that were already dying
2232 * when the allocation triggers should have been already
7ae1e1d0
GC
2233 * directed to the root cgroup in memcontrol.h
2234 */
3e32cb2e 2235 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2236 if (do_swap_account)
3e32cb2e 2237 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2238 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2239 ret = 0;
2240 } else if (ret)
3e32cb2e 2241 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2242
2243 return ret;
2244}
2245
dbf22eb6 2246void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2247{
3e32cb2e 2248 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2249 if (do_swap_account)
3e32cb2e 2250 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2251
64f21993 2252 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2253
e8ea14cc 2254 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2255}
2256
f3bb3043 2257static int memcg_alloc_cache_id(void)
55007d84 2258{
f3bb3043
VD
2259 int id, size;
2260 int err;
2261
dbcf73e2 2262 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2263 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2264 if (id < 0)
2265 return id;
55007d84 2266
dbcf73e2 2267 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2268 return id;
2269
2270 /*
2271 * There's no space for the new id in memcg_caches arrays,
2272 * so we have to grow them.
2273 */
05257a1a 2274 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2275
2276 size = 2 * (id + 1);
55007d84
GC
2277 if (size < MEMCG_CACHES_MIN_SIZE)
2278 size = MEMCG_CACHES_MIN_SIZE;
2279 else if (size > MEMCG_CACHES_MAX_SIZE)
2280 size = MEMCG_CACHES_MAX_SIZE;
2281
f3bb3043 2282 err = memcg_update_all_caches(size);
60d3fd32
VD
2283 if (!err)
2284 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2285 if (!err)
2286 memcg_nr_cache_ids = size;
2287
2288 up_write(&memcg_cache_ids_sem);
2289
f3bb3043 2290 if (err) {
dbcf73e2 2291 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2292 return err;
2293 }
2294 return id;
2295}
2296
2297static void memcg_free_cache_id(int id)
2298{
dbcf73e2 2299 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2300}
2301
d5b3cf71 2302struct memcg_kmem_cache_create_work {
5722d094
VD
2303 struct mem_cgroup *memcg;
2304 struct kmem_cache *cachep;
2305 struct work_struct work;
2306};
2307
d5b3cf71 2308static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2309{
d5b3cf71
VD
2310 struct memcg_kmem_cache_create_work *cw =
2311 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2312 struct mem_cgroup *memcg = cw->memcg;
2313 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2314
d5b3cf71 2315 memcg_create_kmem_cache(memcg, cachep);
bd673145 2316
5722d094 2317 css_put(&memcg->css);
d7f25f8a
GC
2318 kfree(cw);
2319}
2320
2321/*
2322 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2323 */
d5b3cf71
VD
2324static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2325 struct kmem_cache *cachep)
d7f25f8a 2326{
d5b3cf71 2327 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2328
776ed0f0 2329 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2330 if (!cw)
d7f25f8a 2331 return;
8135be5a
VD
2332
2333 css_get(&memcg->css);
d7f25f8a
GC
2334
2335 cw->memcg = memcg;
2336 cw->cachep = cachep;
d5b3cf71 2337 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2338
d7f25f8a
GC
2339 schedule_work(&cw->work);
2340}
2341
d5b3cf71
VD
2342static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2343 struct kmem_cache *cachep)
0e9d92f2
GC
2344{
2345 /*
2346 * We need to stop accounting when we kmalloc, because if the
2347 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2348 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2349 *
2350 * However, it is better to enclose the whole function. Depending on
2351 * the debugging options enabled, INIT_WORK(), for instance, can
2352 * trigger an allocation. This too, will make us recurse. Because at
2353 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2354 * the safest choice is to do it like this, wrapping the whole function.
2355 */
6f185c29 2356 current->memcg_kmem_skip_account = 1;
d5b3cf71 2357 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2358 current->memcg_kmem_skip_account = 0;
0e9d92f2 2359}
c67a8a68 2360
d7f25f8a
GC
2361/*
2362 * Return the kmem_cache we're supposed to use for a slab allocation.
2363 * We try to use the current memcg's version of the cache.
2364 *
2365 * If the cache does not exist yet, if we are the first user of it,
2366 * we either create it immediately, if possible, or create it asynchronously
2367 * in a workqueue.
2368 * In the latter case, we will let the current allocation go through with
2369 * the original cache.
2370 *
2371 * Can't be called in interrupt context or from kernel threads.
2372 * This function needs to be called with rcu_read_lock() held.
2373 */
056b7cce 2374struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2375{
2376 struct mem_cgroup *memcg;
959c8963 2377 struct kmem_cache *memcg_cachep;
2a4db7eb 2378 int kmemcg_id;
d7f25f8a 2379
f7ce3190 2380 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2381
9d100c5e 2382 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2383 return cachep;
2384
8135be5a 2385 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2386 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2387 if (kmemcg_id < 0)
ca0dde97 2388 goto out;
d7f25f8a 2389
2a4db7eb 2390 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2391 if (likely(memcg_cachep))
2392 return memcg_cachep;
ca0dde97
LZ
2393
2394 /*
2395 * If we are in a safe context (can wait, and not in interrupt
2396 * context), we could be be predictable and return right away.
2397 * This would guarantee that the allocation being performed
2398 * already belongs in the new cache.
2399 *
2400 * However, there are some clashes that can arrive from locking.
2401 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2402 * memcg_create_kmem_cache, this means no further allocation
2403 * could happen with the slab_mutex held. So it's better to
2404 * defer everything.
ca0dde97 2405 */
d5b3cf71 2406 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2407out:
8135be5a 2408 css_put(&memcg->css);
ca0dde97 2409 return cachep;
d7f25f8a 2410}
d7f25f8a 2411
8135be5a
VD
2412void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2413{
2414 if (!is_root_cache(cachep))
f7ce3190 2415 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2416}
2417
7ae1e1d0
GC
2418/*
2419 * We need to verify if the allocation against current->mm->owner's memcg is
2420 * possible for the given order. But the page is not allocated yet, so we'll
2421 * need a further commit step to do the final arrangements.
2422 *
2423 * It is possible for the task to switch cgroups in this mean time, so at
2424 * commit time, we can't rely on task conversion any longer. We'll then use
2425 * the handle argument to return to the caller which cgroup we should commit
2426 * against. We could also return the memcg directly and avoid the pointer
2427 * passing, but a boolean return value gives better semantics considering
2428 * the compiled-out case as well.
2429 *
2430 * Returning true means the allocation is possible.
2431 */
2432bool
2433__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2434{
2435 struct mem_cgroup *memcg;
2436 int ret;
2437
2438 *_memcg = NULL;
6d42c232 2439
df381975 2440 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2441
cf2b8fbf 2442 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2443 css_put(&memcg->css);
2444 return true;
2445 }
2446
3e32cb2e 2447 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2448 if (!ret)
2449 *_memcg = memcg;
7ae1e1d0
GC
2450
2451 css_put(&memcg->css);
2452 return (ret == 0);
2453}
2454
2455void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2456 int order)
2457{
7ae1e1d0
GC
2458 VM_BUG_ON(mem_cgroup_is_root(memcg));
2459
2460 /* The page allocation failed. Revert */
2461 if (!page) {
3e32cb2e 2462 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2463 return;
2464 }
1306a85a 2465 page->mem_cgroup = memcg;
7ae1e1d0
GC
2466}
2467
2468void __memcg_kmem_uncharge_pages(struct page *page, int order)
2469{
1306a85a 2470 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2471
7ae1e1d0
GC
2472 if (!memcg)
2473 return;
2474
309381fe 2475 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2476
3e32cb2e 2477 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2478 page->mem_cgroup = NULL;
7ae1e1d0 2479}
60d3fd32
VD
2480
2481struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2482{
2483 struct mem_cgroup *memcg = NULL;
2484 struct kmem_cache *cachep;
2485 struct page *page;
2486
2487 page = virt_to_head_page(ptr);
2488 if (PageSlab(page)) {
2489 cachep = page->slab_cache;
2490 if (!is_root_cache(cachep))
f7ce3190 2491 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2492 } else
2493 /* page allocated by alloc_kmem_pages */
2494 memcg = page->mem_cgroup;
2495
2496 return memcg;
2497}
7ae1e1d0
GC
2498#endif /* CONFIG_MEMCG_KMEM */
2499
ca3e0214
KH
2500#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2501
ca3e0214
KH
2502/*
2503 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2504 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2505 * charge/uncharge will be never happen and move_account() is done under
2506 * compound_lock(), so we don't have to take care of races.
ca3e0214 2507 */
e94c8a9c 2508void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2509{
e94c8a9c 2510 int i;
ca3e0214 2511
3d37c4a9
KH
2512 if (mem_cgroup_disabled())
2513 return;
b070e65c 2514
29833315 2515 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2516 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2517
1306a85a 2518 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2519 HPAGE_PMD_NR);
ca3e0214 2520}
12d27107 2521#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2522
c255a458 2523#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2524static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2525 bool charge)
d13d1443 2526{
0a31bc97
JW
2527 int val = (charge) ? 1 : -1;
2528 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2529}
02491447
DN
2530
2531/**
2532 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2533 * @entry: swap entry to be moved
2534 * @from: mem_cgroup which the entry is moved from
2535 * @to: mem_cgroup which the entry is moved to
2536 *
2537 * It succeeds only when the swap_cgroup's record for this entry is the same
2538 * as the mem_cgroup's id of @from.
2539 *
2540 * Returns 0 on success, -EINVAL on failure.
2541 *
3e32cb2e 2542 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2543 * both res and memsw, and called css_get().
2544 */
2545static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2546 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2547{
2548 unsigned short old_id, new_id;
2549
34c00c31
LZ
2550 old_id = mem_cgroup_id(from);
2551 new_id = mem_cgroup_id(to);
02491447
DN
2552
2553 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2554 mem_cgroup_swap_statistics(from, false);
483c30b5 2555 mem_cgroup_swap_statistics(to, true);
02491447
DN
2556 return 0;
2557 }
2558 return -EINVAL;
2559}
2560#else
2561static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2562 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2563{
2564 return -EINVAL;
2565}
8c7c6e34 2566#endif
d13d1443 2567
3e32cb2e 2568static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2569
d38d2a75 2570static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2571 unsigned long limit)
628f4235 2572{
3e32cb2e
JW
2573 unsigned long curusage;
2574 unsigned long oldusage;
2575 bool enlarge = false;
81d39c20 2576 int retry_count;
3e32cb2e 2577 int ret;
81d39c20
KH
2578
2579 /*
2580 * For keeping hierarchical_reclaim simple, how long we should retry
2581 * is depends on callers. We set our retry-count to be function
2582 * of # of children which we should visit in this loop.
2583 */
3e32cb2e
JW
2584 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2585 mem_cgroup_count_children(memcg);
81d39c20 2586
3e32cb2e 2587 oldusage = page_counter_read(&memcg->memory);
628f4235 2588
3e32cb2e 2589 do {
628f4235
KH
2590 if (signal_pending(current)) {
2591 ret = -EINTR;
2592 break;
2593 }
3e32cb2e
JW
2594
2595 mutex_lock(&memcg_limit_mutex);
2596 if (limit > memcg->memsw.limit) {
2597 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2598 ret = -EINVAL;
628f4235
KH
2599 break;
2600 }
3e32cb2e
JW
2601 if (limit > memcg->memory.limit)
2602 enlarge = true;
2603 ret = page_counter_limit(&memcg->memory, limit);
2604 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2605
2606 if (!ret)
2607 break;
2608
b70a2a21
JW
2609 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2610
3e32cb2e 2611 curusage = page_counter_read(&memcg->memory);
81d39c20 2612 /* Usage is reduced ? */
f894ffa8 2613 if (curusage >= oldusage)
81d39c20
KH
2614 retry_count--;
2615 else
2616 oldusage = curusage;
3e32cb2e
JW
2617 } while (retry_count);
2618
3c11ecf4
KH
2619 if (!ret && enlarge)
2620 memcg_oom_recover(memcg);
14797e23 2621
8c7c6e34
KH
2622 return ret;
2623}
2624
338c8431 2625static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2626 unsigned long limit)
8c7c6e34 2627{
3e32cb2e
JW
2628 unsigned long curusage;
2629 unsigned long oldusage;
2630 bool enlarge = false;
81d39c20 2631 int retry_count;
3e32cb2e 2632 int ret;
8c7c6e34 2633
81d39c20 2634 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2635 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2636 mem_cgroup_count_children(memcg);
2637
2638 oldusage = page_counter_read(&memcg->memsw);
2639
2640 do {
8c7c6e34
KH
2641 if (signal_pending(current)) {
2642 ret = -EINTR;
2643 break;
2644 }
3e32cb2e
JW
2645
2646 mutex_lock(&memcg_limit_mutex);
2647 if (limit < memcg->memory.limit) {
2648 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2649 ret = -EINVAL;
8c7c6e34
KH
2650 break;
2651 }
3e32cb2e
JW
2652 if (limit > memcg->memsw.limit)
2653 enlarge = true;
2654 ret = page_counter_limit(&memcg->memsw, limit);
2655 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2656
2657 if (!ret)
2658 break;
2659
b70a2a21
JW
2660 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2661
3e32cb2e 2662 curusage = page_counter_read(&memcg->memsw);
81d39c20 2663 /* Usage is reduced ? */
8c7c6e34 2664 if (curusage >= oldusage)
628f4235 2665 retry_count--;
81d39c20
KH
2666 else
2667 oldusage = curusage;
3e32cb2e
JW
2668 } while (retry_count);
2669
3c11ecf4
KH
2670 if (!ret && enlarge)
2671 memcg_oom_recover(memcg);
3e32cb2e 2672
628f4235
KH
2673 return ret;
2674}
2675
0608f43d
AM
2676unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2677 gfp_t gfp_mask,
2678 unsigned long *total_scanned)
2679{
2680 unsigned long nr_reclaimed = 0;
2681 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2682 unsigned long reclaimed;
2683 int loop = 0;
2684 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2685 unsigned long excess;
0608f43d
AM
2686 unsigned long nr_scanned;
2687
2688 if (order > 0)
2689 return 0;
2690
2691 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2692 /*
2693 * This loop can run a while, specially if mem_cgroup's continuously
2694 * keep exceeding their soft limit and putting the system under
2695 * pressure
2696 */
2697 do {
2698 if (next_mz)
2699 mz = next_mz;
2700 else
2701 mz = mem_cgroup_largest_soft_limit_node(mctz);
2702 if (!mz)
2703 break;
2704
2705 nr_scanned = 0;
2706 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2707 gfp_mask, &nr_scanned);
2708 nr_reclaimed += reclaimed;
2709 *total_scanned += nr_scanned;
0a31bc97 2710 spin_lock_irq(&mctz->lock);
bc2f2e7f 2711 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2712
2713 /*
2714 * If we failed to reclaim anything from this memory cgroup
2715 * it is time to move on to the next cgroup
2716 */
2717 next_mz = NULL;
bc2f2e7f
VD
2718 if (!reclaimed)
2719 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2720
3e32cb2e 2721 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2722 /*
2723 * One school of thought says that we should not add
2724 * back the node to the tree if reclaim returns 0.
2725 * But our reclaim could return 0, simply because due
2726 * to priority we are exposing a smaller subset of
2727 * memory to reclaim from. Consider this as a longer
2728 * term TODO.
2729 */
2730 /* If excess == 0, no tree ops */
cf2c8127 2731 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2732 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2733 css_put(&mz->memcg->css);
2734 loop++;
2735 /*
2736 * Could not reclaim anything and there are no more
2737 * mem cgroups to try or we seem to be looping without
2738 * reclaiming anything.
2739 */
2740 if (!nr_reclaimed &&
2741 (next_mz == NULL ||
2742 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2743 break;
2744 } while (!nr_reclaimed);
2745 if (next_mz)
2746 css_put(&next_mz->memcg->css);
2747 return nr_reclaimed;
2748}
2749
ea280e7b
TH
2750/*
2751 * Test whether @memcg has children, dead or alive. Note that this
2752 * function doesn't care whether @memcg has use_hierarchy enabled and
2753 * returns %true if there are child csses according to the cgroup
2754 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2755 */
b5f99b53
GC
2756static inline bool memcg_has_children(struct mem_cgroup *memcg)
2757{
ea280e7b
TH
2758 bool ret;
2759
696ac172 2760 /*
ea280e7b
TH
2761 * The lock does not prevent addition or deletion of children, but
2762 * it prevents a new child from being initialized based on this
2763 * parent in css_online(), so it's enough to decide whether
2764 * hierarchically inherited attributes can still be changed or not.
696ac172 2765 */
ea280e7b
TH
2766 lockdep_assert_held(&memcg_create_mutex);
2767
2768 rcu_read_lock();
2769 ret = css_next_child(NULL, &memcg->css);
2770 rcu_read_unlock();
2771 return ret;
b5f99b53
GC
2772}
2773
c26251f9
MH
2774/*
2775 * Reclaims as many pages from the given memcg as possible and moves
2776 * the rest to the parent.
2777 *
2778 * Caller is responsible for holding css reference for memcg.
2779 */
2780static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2781{
2782 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2783
c1e862c1
KH
2784 /* we call try-to-free pages for make this cgroup empty */
2785 lru_add_drain_all();
f817ed48 2786 /* try to free all pages in this cgroup */
3e32cb2e 2787 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2788 int progress;
c1e862c1 2789
c26251f9
MH
2790 if (signal_pending(current))
2791 return -EINTR;
2792
b70a2a21
JW
2793 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2794 GFP_KERNEL, true);
c1e862c1 2795 if (!progress) {
f817ed48 2796 nr_retries--;
c1e862c1 2797 /* maybe some writeback is necessary */
8aa7e847 2798 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2799 }
f817ed48
KH
2800
2801 }
ab5196c2
MH
2802
2803 return 0;
cc847582
KH
2804}
2805
6770c64e
TH
2806static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2807 char *buf, size_t nbytes,
2808 loff_t off)
c1e862c1 2809{
6770c64e 2810 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2811
d8423011
MH
2812 if (mem_cgroup_is_root(memcg))
2813 return -EINVAL;
6770c64e 2814 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2815}
2816
182446d0
TH
2817static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2818 struct cftype *cft)
18f59ea7 2819{
182446d0 2820 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2821}
2822
182446d0
TH
2823static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2824 struct cftype *cft, u64 val)
18f59ea7
BS
2825{
2826 int retval = 0;
182446d0 2827 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2828 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2829
0999821b 2830 mutex_lock(&memcg_create_mutex);
567fb435
GC
2831
2832 if (memcg->use_hierarchy == val)
2833 goto out;
2834
18f59ea7 2835 /*
af901ca1 2836 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2837 * in the child subtrees. If it is unset, then the change can
2838 * occur, provided the current cgroup has no children.
2839 *
2840 * For the root cgroup, parent_mem is NULL, we allow value to be
2841 * set if there are no children.
2842 */
c0ff4b85 2843 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2844 (val == 1 || val == 0)) {
ea280e7b 2845 if (!memcg_has_children(memcg))
c0ff4b85 2846 memcg->use_hierarchy = val;
18f59ea7
BS
2847 else
2848 retval = -EBUSY;
2849 } else
2850 retval = -EINVAL;
567fb435
GC
2851
2852out:
0999821b 2853 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2854
2855 return retval;
2856}
2857
3e32cb2e
JW
2858static unsigned long tree_stat(struct mem_cgroup *memcg,
2859 enum mem_cgroup_stat_index idx)
ce00a967
JW
2860{
2861 struct mem_cgroup *iter;
484ebb3b 2862 unsigned long val = 0;
ce00a967 2863
ce00a967
JW
2864 for_each_mem_cgroup_tree(iter, memcg)
2865 val += mem_cgroup_read_stat(iter, idx);
2866
ce00a967
JW
2867 return val;
2868}
2869
2870static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2871{
2872 u64 val;
2873
3e32cb2e
JW
2874 if (mem_cgroup_is_root(memcg)) {
2875 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2876 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2877 if (swap)
2878 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2879 } else {
ce00a967 2880 if (!swap)
3e32cb2e 2881 val = page_counter_read(&memcg->memory);
ce00a967 2882 else
3e32cb2e 2883 val = page_counter_read(&memcg->memsw);
ce00a967 2884 }
ce00a967
JW
2885 return val << PAGE_SHIFT;
2886}
2887
3e32cb2e
JW
2888enum {
2889 RES_USAGE,
2890 RES_LIMIT,
2891 RES_MAX_USAGE,
2892 RES_FAILCNT,
2893 RES_SOFT_LIMIT,
2894};
ce00a967 2895
791badbd 2896static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2897 struct cftype *cft)
8cdea7c0 2898{
182446d0 2899 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2900 struct page_counter *counter;
af36f906 2901
3e32cb2e 2902 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2903 case _MEM:
3e32cb2e
JW
2904 counter = &memcg->memory;
2905 break;
8c7c6e34 2906 case _MEMSWAP:
3e32cb2e
JW
2907 counter = &memcg->memsw;
2908 break;
510fc4e1 2909 case _KMEM:
3e32cb2e 2910 counter = &memcg->kmem;
510fc4e1 2911 break;
8c7c6e34
KH
2912 default:
2913 BUG();
8c7c6e34 2914 }
3e32cb2e
JW
2915
2916 switch (MEMFILE_ATTR(cft->private)) {
2917 case RES_USAGE:
2918 if (counter == &memcg->memory)
2919 return mem_cgroup_usage(memcg, false);
2920 if (counter == &memcg->memsw)
2921 return mem_cgroup_usage(memcg, true);
2922 return (u64)page_counter_read(counter) * PAGE_SIZE;
2923 case RES_LIMIT:
2924 return (u64)counter->limit * PAGE_SIZE;
2925 case RES_MAX_USAGE:
2926 return (u64)counter->watermark * PAGE_SIZE;
2927 case RES_FAILCNT:
2928 return counter->failcnt;
2929 case RES_SOFT_LIMIT:
2930 return (u64)memcg->soft_limit * PAGE_SIZE;
2931 default:
2932 BUG();
2933 }
8cdea7c0 2934}
510fc4e1 2935
510fc4e1 2936#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
2937static int memcg_activate_kmem(struct mem_cgroup *memcg,
2938 unsigned long nr_pages)
d6441637
VD
2939{
2940 int err = 0;
2941 int memcg_id;
2942
2a4db7eb 2943 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 2944 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 2945 BUG_ON(memcg->kmem_acct_active);
d6441637 2946
510fc4e1
GC
2947 /*
2948 * For simplicity, we won't allow this to be disabled. It also can't
2949 * be changed if the cgroup has children already, or if tasks had
2950 * already joined.
2951 *
2952 * If tasks join before we set the limit, a person looking at
2953 * kmem.usage_in_bytes will have no way to determine when it took
2954 * place, which makes the value quite meaningless.
2955 *
2956 * After it first became limited, changes in the value of the limit are
2957 * of course permitted.
510fc4e1 2958 */
0999821b 2959 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
2960 if (cgroup_has_tasks(memcg->css.cgroup) ||
2961 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2962 err = -EBUSY;
2963 mutex_unlock(&memcg_create_mutex);
2964 if (err)
2965 goto out;
510fc4e1 2966
f3bb3043 2967 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2968 if (memcg_id < 0) {
2969 err = memcg_id;
2970 goto out;
2971 }
2972
d6441637 2973 /*
900a38f0
VD
2974 * We couldn't have accounted to this cgroup, because it hasn't got
2975 * activated yet, so this should succeed.
d6441637 2976 */
3e32cb2e 2977 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
2978 VM_BUG_ON(err);
2979
2980 static_key_slow_inc(&memcg_kmem_enabled_key);
2981 /*
900a38f0
VD
2982 * A memory cgroup is considered kmem-active as soon as it gets
2983 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2984 * guarantee no one starts accounting before all call sites are
2985 * patched.
2986 */
900a38f0 2987 memcg->kmemcg_id = memcg_id;
2788cf0c 2988 memcg->kmem_acct_activated = true;
2a4db7eb 2989 memcg->kmem_acct_active = true;
510fc4e1 2990out:
d6441637 2991 return err;
d6441637
VD
2992}
2993
d6441637 2994static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2995 unsigned long limit)
d6441637
VD
2996{
2997 int ret;
2998
3e32cb2e 2999 mutex_lock(&memcg_limit_mutex);
d6441637 3000 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3001 ret = memcg_activate_kmem(memcg, limit);
d6441637 3002 else
3e32cb2e
JW
3003 ret = page_counter_limit(&memcg->kmem, limit);
3004 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3005 return ret;
3006}
3007
55007d84 3008static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3009{
55007d84 3010 int ret = 0;
510fc4e1 3011 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3012
d6441637
VD
3013 if (!parent)
3014 return 0;
55007d84 3015
8c0145b6 3016 mutex_lock(&memcg_limit_mutex);
55007d84 3017 /*
d6441637
VD
3018 * If the parent cgroup is not kmem-active now, it cannot be activated
3019 * after this point, because it has at least one child already.
55007d84 3020 */
d6441637 3021 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3022 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3023 mutex_unlock(&memcg_limit_mutex);
55007d84 3024 return ret;
510fc4e1 3025}
d6441637
VD
3026#else
3027static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3028 unsigned long limit)
d6441637
VD
3029{
3030 return -EINVAL;
3031}
6d043990 3032#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3033
628f4235
KH
3034/*
3035 * The user of this function is...
3036 * RES_LIMIT.
3037 */
451af504
TH
3038static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3039 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3040{
451af504 3041 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3042 unsigned long nr_pages;
628f4235
KH
3043 int ret;
3044
451af504 3045 buf = strstrip(buf);
650c5e56 3046 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3047 if (ret)
3048 return ret;
af36f906 3049
3e32cb2e 3050 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3051 case RES_LIMIT:
4b3bde4c
BS
3052 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3053 ret = -EINVAL;
3054 break;
3055 }
3e32cb2e
JW
3056 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3057 case _MEM:
3058 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3059 break;
3e32cb2e
JW
3060 case _MEMSWAP:
3061 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3062 break;
3e32cb2e
JW
3063 case _KMEM:
3064 ret = memcg_update_kmem_limit(memcg, nr_pages);
3065 break;
3066 }
296c81d8 3067 break;
3e32cb2e
JW
3068 case RES_SOFT_LIMIT:
3069 memcg->soft_limit = nr_pages;
3070 ret = 0;
628f4235
KH
3071 break;
3072 }
451af504 3073 return ret ?: nbytes;
8cdea7c0
BS
3074}
3075
6770c64e
TH
3076static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3077 size_t nbytes, loff_t off)
c84872e1 3078{
6770c64e 3079 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3080 struct page_counter *counter;
c84872e1 3081
3e32cb2e
JW
3082 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3083 case _MEM:
3084 counter = &memcg->memory;
3085 break;
3086 case _MEMSWAP:
3087 counter = &memcg->memsw;
3088 break;
3089 case _KMEM:
3090 counter = &memcg->kmem;
3091 break;
3092 default:
3093 BUG();
3094 }
af36f906 3095
3e32cb2e 3096 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3097 case RES_MAX_USAGE:
3e32cb2e 3098 page_counter_reset_watermark(counter);
29f2a4da
PE
3099 break;
3100 case RES_FAILCNT:
3e32cb2e 3101 counter->failcnt = 0;
29f2a4da 3102 break;
3e32cb2e
JW
3103 default:
3104 BUG();
29f2a4da 3105 }
f64c3f54 3106
6770c64e 3107 return nbytes;
c84872e1
PE
3108}
3109
182446d0 3110static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3111 struct cftype *cft)
3112{
182446d0 3113 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3114}
3115
02491447 3116#ifdef CONFIG_MMU
182446d0 3117static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3118 struct cftype *cft, u64 val)
3119{
182446d0 3120 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3121
1dfab5ab 3122 if (val & ~MOVE_MASK)
7dc74be0 3123 return -EINVAL;
ee5e8472 3124
7dc74be0 3125 /*
ee5e8472
GC
3126 * No kind of locking is needed in here, because ->can_attach() will
3127 * check this value once in the beginning of the process, and then carry
3128 * on with stale data. This means that changes to this value will only
3129 * affect task migrations starting after the change.
7dc74be0 3130 */
c0ff4b85 3131 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3132 return 0;
3133}
02491447 3134#else
182446d0 3135static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3136 struct cftype *cft, u64 val)
3137{
3138 return -ENOSYS;
3139}
3140#endif
7dc74be0 3141
406eb0c9 3142#ifdef CONFIG_NUMA
2da8ca82 3143static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3144{
25485de6
GT
3145 struct numa_stat {
3146 const char *name;
3147 unsigned int lru_mask;
3148 };
3149
3150 static const struct numa_stat stats[] = {
3151 { "total", LRU_ALL },
3152 { "file", LRU_ALL_FILE },
3153 { "anon", LRU_ALL_ANON },
3154 { "unevictable", BIT(LRU_UNEVICTABLE) },
3155 };
3156 const struct numa_stat *stat;
406eb0c9 3157 int nid;
25485de6 3158 unsigned long nr;
2da8ca82 3159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3160
25485de6
GT
3161 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3162 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3163 seq_printf(m, "%s=%lu", stat->name, nr);
3164 for_each_node_state(nid, N_MEMORY) {
3165 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3166 stat->lru_mask);
3167 seq_printf(m, " N%d=%lu", nid, nr);
3168 }
3169 seq_putc(m, '\n');
406eb0c9 3170 }
406eb0c9 3171
071aee13
YH
3172 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3173 struct mem_cgroup *iter;
3174
3175 nr = 0;
3176 for_each_mem_cgroup_tree(iter, memcg)
3177 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3178 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3179 for_each_node_state(nid, N_MEMORY) {
3180 nr = 0;
3181 for_each_mem_cgroup_tree(iter, memcg)
3182 nr += mem_cgroup_node_nr_lru_pages(
3183 iter, nid, stat->lru_mask);
3184 seq_printf(m, " N%d=%lu", nid, nr);
3185 }
3186 seq_putc(m, '\n');
406eb0c9 3187 }
406eb0c9 3188
406eb0c9
YH
3189 return 0;
3190}
3191#endif /* CONFIG_NUMA */
3192
2da8ca82 3193static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3194{
2da8ca82 3195 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3196 unsigned long memory, memsw;
af7c4b0e
JW
3197 struct mem_cgroup *mi;
3198 unsigned int i;
406eb0c9 3199
0ca44b14
GT
3200 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3201 MEM_CGROUP_STAT_NSTATS);
3202 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3203 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3204 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3205
af7c4b0e 3206 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3207 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3208 continue;
484ebb3b 3209 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3210 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3211 }
7b854121 3212
af7c4b0e
JW
3213 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3214 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3215 mem_cgroup_read_events(memcg, i));
3216
3217 for (i = 0; i < NR_LRU_LISTS; i++)
3218 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3219 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3220
14067bb3 3221 /* Hierarchical information */
3e32cb2e
JW
3222 memory = memsw = PAGE_COUNTER_MAX;
3223 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3224 memory = min(memory, mi->memory.limit);
3225 memsw = min(memsw, mi->memsw.limit);
fee7b548 3226 }
3e32cb2e
JW
3227 seq_printf(m, "hierarchical_memory_limit %llu\n",
3228 (u64)memory * PAGE_SIZE);
3229 if (do_swap_account)
3230 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3231 (u64)memsw * PAGE_SIZE);
7f016ee8 3232
af7c4b0e 3233 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3234 unsigned long long val = 0;
af7c4b0e 3235
bff6bb83 3236 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3237 continue;
af7c4b0e
JW
3238 for_each_mem_cgroup_tree(mi, memcg)
3239 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3240 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3241 }
3242
3243 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3244 unsigned long long val = 0;
3245
3246 for_each_mem_cgroup_tree(mi, memcg)
3247 val += mem_cgroup_read_events(mi, i);
3248 seq_printf(m, "total_%s %llu\n",
3249 mem_cgroup_events_names[i], val);
3250 }
3251
3252 for (i = 0; i < NR_LRU_LISTS; i++) {
3253 unsigned long long val = 0;
3254
3255 for_each_mem_cgroup_tree(mi, memcg)
3256 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3257 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3258 }
14067bb3 3259
7f016ee8 3260#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3261 {
3262 int nid, zid;
3263 struct mem_cgroup_per_zone *mz;
89abfab1 3264 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3265 unsigned long recent_rotated[2] = {0, 0};
3266 unsigned long recent_scanned[2] = {0, 0};
3267
3268 for_each_online_node(nid)
3269 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3270 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3271 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3272
89abfab1
HD
3273 recent_rotated[0] += rstat->recent_rotated[0];
3274 recent_rotated[1] += rstat->recent_rotated[1];
3275 recent_scanned[0] += rstat->recent_scanned[0];
3276 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3277 }
78ccf5b5
JW
3278 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3279 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3280 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3281 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3282 }
3283#endif
3284
d2ceb9b7
KH
3285 return 0;
3286}
3287
182446d0
TH
3288static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3289 struct cftype *cft)
a7885eb8 3290{
182446d0 3291 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3292
1f4c025b 3293 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3294}
3295
182446d0
TH
3296static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3297 struct cftype *cft, u64 val)
a7885eb8 3298{
182446d0 3299 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3300
3dae7fec 3301 if (val > 100)
a7885eb8
KM
3302 return -EINVAL;
3303
14208b0e 3304 if (css->parent)
3dae7fec
JW
3305 memcg->swappiness = val;
3306 else
3307 vm_swappiness = val;
068b38c1 3308
a7885eb8
KM
3309 return 0;
3310}
3311
2e72b634
KS
3312static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3313{
3314 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3315 unsigned long usage;
2e72b634
KS
3316 int i;
3317
3318 rcu_read_lock();
3319 if (!swap)
2c488db2 3320 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3321 else
2c488db2 3322 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3323
3324 if (!t)
3325 goto unlock;
3326
ce00a967 3327 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3328
3329 /*
748dad36 3330 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3331 * If it's not true, a threshold was crossed after last
3332 * call of __mem_cgroup_threshold().
3333 */
5407a562 3334 i = t->current_threshold;
2e72b634
KS
3335
3336 /*
3337 * Iterate backward over array of thresholds starting from
3338 * current_threshold and check if a threshold is crossed.
3339 * If none of thresholds below usage is crossed, we read
3340 * only one element of the array here.
3341 */
3342 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3343 eventfd_signal(t->entries[i].eventfd, 1);
3344
3345 /* i = current_threshold + 1 */
3346 i++;
3347
3348 /*
3349 * Iterate forward over array of thresholds starting from
3350 * current_threshold+1 and check if a threshold is crossed.
3351 * If none of thresholds above usage is crossed, we read
3352 * only one element of the array here.
3353 */
3354 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3355 eventfd_signal(t->entries[i].eventfd, 1);
3356
3357 /* Update current_threshold */
5407a562 3358 t->current_threshold = i - 1;
2e72b634
KS
3359unlock:
3360 rcu_read_unlock();
3361}
3362
3363static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3364{
ad4ca5f4
KS
3365 while (memcg) {
3366 __mem_cgroup_threshold(memcg, false);
3367 if (do_swap_account)
3368 __mem_cgroup_threshold(memcg, true);
3369
3370 memcg = parent_mem_cgroup(memcg);
3371 }
2e72b634
KS
3372}
3373
3374static int compare_thresholds(const void *a, const void *b)
3375{
3376 const struct mem_cgroup_threshold *_a = a;
3377 const struct mem_cgroup_threshold *_b = b;
3378
2bff24a3
GT
3379 if (_a->threshold > _b->threshold)
3380 return 1;
3381
3382 if (_a->threshold < _b->threshold)
3383 return -1;
3384
3385 return 0;
2e72b634
KS
3386}
3387
c0ff4b85 3388static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3389{
3390 struct mem_cgroup_eventfd_list *ev;
3391
2bcf2e92
MH
3392 spin_lock(&memcg_oom_lock);
3393
c0ff4b85 3394 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3395 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3396
3397 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3398 return 0;
3399}
3400
c0ff4b85 3401static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3402{
7d74b06f
KH
3403 struct mem_cgroup *iter;
3404
c0ff4b85 3405 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3406 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3407}
3408
59b6f873 3409static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3410 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3411{
2c488db2
KS
3412 struct mem_cgroup_thresholds *thresholds;
3413 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3414 unsigned long threshold;
3415 unsigned long usage;
2c488db2 3416 int i, size, ret;
2e72b634 3417
650c5e56 3418 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3419 if (ret)
3420 return ret;
424cdc14 3421 threshold <<= PAGE_SHIFT;
2e72b634
KS
3422
3423 mutex_lock(&memcg->thresholds_lock);
2c488db2 3424
05b84301 3425 if (type == _MEM) {
2c488db2 3426 thresholds = &memcg->thresholds;
ce00a967 3427 usage = mem_cgroup_usage(memcg, false);
05b84301 3428 } else if (type == _MEMSWAP) {
2c488db2 3429 thresholds = &memcg->memsw_thresholds;
ce00a967 3430 usage = mem_cgroup_usage(memcg, true);
05b84301 3431 } else
2e72b634
KS
3432 BUG();
3433
2e72b634 3434 /* Check if a threshold crossed before adding a new one */
2c488db2 3435 if (thresholds->primary)
2e72b634
KS
3436 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3437
2c488db2 3438 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3439
3440 /* Allocate memory for new array of thresholds */
2c488db2 3441 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3442 GFP_KERNEL);
2c488db2 3443 if (!new) {
2e72b634
KS
3444 ret = -ENOMEM;
3445 goto unlock;
3446 }
2c488db2 3447 new->size = size;
2e72b634
KS
3448
3449 /* Copy thresholds (if any) to new array */
2c488db2
KS
3450 if (thresholds->primary) {
3451 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3452 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3453 }
3454
2e72b634 3455 /* Add new threshold */
2c488db2
KS
3456 new->entries[size - 1].eventfd = eventfd;
3457 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3458
3459 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3460 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3461 compare_thresholds, NULL);
3462
3463 /* Find current threshold */
2c488db2 3464 new->current_threshold = -1;
2e72b634 3465 for (i = 0; i < size; i++) {
748dad36 3466 if (new->entries[i].threshold <= usage) {
2e72b634 3467 /*
2c488db2
KS
3468 * new->current_threshold will not be used until
3469 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3470 * it here.
3471 */
2c488db2 3472 ++new->current_threshold;
748dad36
SZ
3473 } else
3474 break;
2e72b634
KS
3475 }
3476
2c488db2
KS
3477 /* Free old spare buffer and save old primary buffer as spare */
3478 kfree(thresholds->spare);
3479 thresholds->spare = thresholds->primary;
3480
3481 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3482
907860ed 3483 /* To be sure that nobody uses thresholds */
2e72b634
KS
3484 synchronize_rcu();
3485
2e72b634
KS
3486unlock:
3487 mutex_unlock(&memcg->thresholds_lock);
3488
3489 return ret;
3490}
3491
59b6f873 3492static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3493 struct eventfd_ctx *eventfd, const char *args)
3494{
59b6f873 3495 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3496}
3497
59b6f873 3498static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3499 struct eventfd_ctx *eventfd, const char *args)
3500{
59b6f873 3501 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3502}
3503
59b6f873 3504static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3505 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3506{
2c488db2
KS
3507 struct mem_cgroup_thresholds *thresholds;
3508 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3509 unsigned long usage;
2c488db2 3510 int i, j, size;
2e72b634
KS
3511
3512 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3513
3514 if (type == _MEM) {
2c488db2 3515 thresholds = &memcg->thresholds;
ce00a967 3516 usage = mem_cgroup_usage(memcg, false);
05b84301 3517 } else if (type == _MEMSWAP) {
2c488db2 3518 thresholds = &memcg->memsw_thresholds;
ce00a967 3519 usage = mem_cgroup_usage(memcg, true);
05b84301 3520 } else
2e72b634
KS
3521 BUG();
3522
371528ca
AV
3523 if (!thresholds->primary)
3524 goto unlock;
3525
2e72b634
KS
3526 /* Check if a threshold crossed before removing */
3527 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3528
3529 /* Calculate new number of threshold */
2c488db2
KS
3530 size = 0;
3531 for (i = 0; i < thresholds->primary->size; i++) {
3532 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3533 size++;
3534 }
3535
2c488db2 3536 new = thresholds->spare;
907860ed 3537
2e72b634
KS
3538 /* Set thresholds array to NULL if we don't have thresholds */
3539 if (!size) {
2c488db2
KS
3540 kfree(new);
3541 new = NULL;
907860ed 3542 goto swap_buffers;
2e72b634
KS
3543 }
3544
2c488db2 3545 new->size = size;
2e72b634
KS
3546
3547 /* Copy thresholds and find current threshold */
2c488db2
KS
3548 new->current_threshold = -1;
3549 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3550 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3551 continue;
3552
2c488db2 3553 new->entries[j] = thresholds->primary->entries[i];
748dad36 3554 if (new->entries[j].threshold <= usage) {
2e72b634 3555 /*
2c488db2 3556 * new->current_threshold will not be used
2e72b634
KS
3557 * until rcu_assign_pointer(), so it's safe to increment
3558 * it here.
3559 */
2c488db2 3560 ++new->current_threshold;
2e72b634
KS
3561 }
3562 j++;
3563 }
3564
907860ed 3565swap_buffers:
2c488db2
KS
3566 /* Swap primary and spare array */
3567 thresholds->spare = thresholds->primary;
8c757763
SZ
3568 /* If all events are unregistered, free the spare array */
3569 if (!new) {
3570 kfree(thresholds->spare);
3571 thresholds->spare = NULL;
3572 }
3573
2c488db2 3574 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3575
907860ed 3576 /* To be sure that nobody uses thresholds */
2e72b634 3577 synchronize_rcu();
371528ca 3578unlock:
2e72b634 3579 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3580}
c1e862c1 3581
59b6f873 3582static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3583 struct eventfd_ctx *eventfd)
3584{
59b6f873 3585 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3586}
3587
59b6f873 3588static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3589 struct eventfd_ctx *eventfd)
3590{
59b6f873 3591 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3592}
3593
59b6f873 3594static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3595 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3596{
9490ff27 3597 struct mem_cgroup_eventfd_list *event;
9490ff27 3598
9490ff27
KH
3599 event = kmalloc(sizeof(*event), GFP_KERNEL);
3600 if (!event)
3601 return -ENOMEM;
3602
1af8efe9 3603 spin_lock(&memcg_oom_lock);
9490ff27
KH
3604
3605 event->eventfd = eventfd;
3606 list_add(&event->list, &memcg->oom_notify);
3607
3608 /* already in OOM ? */
c2b42d3c 3609 if (memcg->under_oom)
9490ff27 3610 eventfd_signal(eventfd, 1);
1af8efe9 3611 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3612
3613 return 0;
3614}
3615
59b6f873 3616static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3617 struct eventfd_ctx *eventfd)
9490ff27 3618{
9490ff27 3619 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3620
1af8efe9 3621 spin_lock(&memcg_oom_lock);
9490ff27 3622
c0ff4b85 3623 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3624 if (ev->eventfd == eventfd) {
3625 list_del(&ev->list);
3626 kfree(ev);
3627 }
3628 }
3629
1af8efe9 3630 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3631}
3632
2da8ca82 3633static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3634{
2da8ca82 3635 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3636
791badbd 3637 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3638 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3639 return 0;
3640}
3641
182446d0 3642static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3643 struct cftype *cft, u64 val)
3644{
182446d0 3645 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3646
3647 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3648 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3649 return -EINVAL;
3650
c0ff4b85 3651 memcg->oom_kill_disable = val;
4d845ebf 3652 if (!val)
c0ff4b85 3653 memcg_oom_recover(memcg);
3dae7fec 3654
3c11ecf4
KH
3655 return 0;
3656}
3657
c255a458 3658#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3659static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3660{
55007d84
GC
3661 int ret;
3662
55007d84
GC
3663 ret = memcg_propagate_kmem(memcg);
3664 if (ret)
3665 return ret;
2633d7a0 3666
1d62e436 3667 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3668}
e5671dfa 3669
2a4db7eb
VD
3670static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3671{
2788cf0c
VD
3672 struct cgroup_subsys_state *css;
3673 struct mem_cgroup *parent, *child;
3674 int kmemcg_id;
3675
2a4db7eb
VD
3676 if (!memcg->kmem_acct_active)
3677 return;
3678
3679 /*
3680 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3681 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3682 * guarantees no cache will be created for this cgroup after we are
3683 * done (see memcg_create_kmem_cache()).
3684 */
3685 memcg->kmem_acct_active = false;
3686
3687 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3688
3689 kmemcg_id = memcg->kmemcg_id;
3690 BUG_ON(kmemcg_id < 0);
3691
3692 parent = parent_mem_cgroup(memcg);
3693 if (!parent)
3694 parent = root_mem_cgroup;
3695
3696 /*
3697 * Change kmemcg_id of this cgroup and all its descendants to the
3698 * parent's id, and then move all entries from this cgroup's list_lrus
3699 * to ones of the parent. After we have finished, all list_lrus
3700 * corresponding to this cgroup are guaranteed to remain empty. The
3701 * ordering is imposed by list_lru_node->lock taken by
3702 * memcg_drain_all_list_lrus().
3703 */
3704 css_for_each_descendant_pre(css, &memcg->css) {
3705 child = mem_cgroup_from_css(css);
3706 BUG_ON(child->kmemcg_id != kmemcg_id);
3707 child->kmemcg_id = parent->kmemcg_id;
3708 if (!memcg->use_hierarchy)
3709 break;
3710 }
3711 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3712
3713 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3714}
3715
10d5ebf4 3716static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3717{
f48b80a5
VD
3718 if (memcg->kmem_acct_activated) {
3719 memcg_destroy_kmem_caches(memcg);
3720 static_key_slow_dec(&memcg_kmem_enabled_key);
3721 WARN_ON(page_counter_read(&memcg->kmem));
3722 }
1d62e436 3723 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3724}
e5671dfa 3725#else
cbe128e3 3726static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3727{
3728 return 0;
3729}
d1a4c0b3 3730
2a4db7eb
VD
3731static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3732{
3733}
3734
10d5ebf4
LZ
3735static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3736{
3737}
e5671dfa
GC
3738#endif
3739
52ebea74
TH
3740#ifdef CONFIG_CGROUP_WRITEBACK
3741
3742struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3743{
3744 return &memcg->cgwb_list;
3745}
3746
841710aa
TH
3747static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3748{
3749 return wb_domain_init(&memcg->cgwb_domain, gfp);
3750}
3751
3752static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3753{
3754 wb_domain_exit(&memcg->cgwb_domain);
3755}
3756
2529bb3a
TH
3757static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3758{
3759 wb_domain_size_changed(&memcg->cgwb_domain);
3760}
3761
841710aa
TH
3762struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3763{
3764 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3765
3766 if (!memcg->css.parent)
3767 return NULL;
3768
3769 return &memcg->cgwb_domain;
3770}
3771
c2aa723a
TH
3772/**
3773 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3774 * @wb: bdi_writeback in question
c5edf9cd
TH
3775 * @pfilepages: out parameter for number of file pages
3776 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3777 * @pdirty: out parameter for number of dirty pages
3778 * @pwriteback: out parameter for number of pages under writeback
3779 *
c5edf9cd
TH
3780 * Determine the numbers of file, headroom, dirty, and writeback pages in
3781 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3782 * is a bit more involved.
c2aa723a 3783 *
c5edf9cd
TH
3784 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3785 * headroom is calculated as the lowest headroom of itself and the
3786 * ancestors. Note that this doesn't consider the actual amount of
3787 * available memory in the system. The caller should further cap
3788 * *@pheadroom accordingly.
c2aa723a 3789 */
c5edf9cd
TH
3790void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3791 unsigned long *pheadroom, unsigned long *pdirty,
3792 unsigned long *pwriteback)
c2aa723a
TH
3793{
3794 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3795 struct mem_cgroup *parent;
c2aa723a
TH
3796
3797 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3798
3799 /* this should eventually include NR_UNSTABLE_NFS */
3800 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3801 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3802 (1 << LRU_ACTIVE_FILE));
3803 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3804
c2aa723a
TH
3805 while ((parent = parent_mem_cgroup(memcg))) {
3806 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3807 unsigned long used = page_counter_read(&memcg->memory);
3808
c5edf9cd 3809 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3810 memcg = parent;
3811 }
c2aa723a
TH
3812}
3813
841710aa
TH
3814#else /* CONFIG_CGROUP_WRITEBACK */
3815
3816static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3817{
3818 return 0;
3819}
3820
3821static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3822{
3823}
3824
2529bb3a
TH
3825static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3826{
3827}
3828
52ebea74
TH
3829#endif /* CONFIG_CGROUP_WRITEBACK */
3830
3bc942f3
TH
3831/*
3832 * DO NOT USE IN NEW FILES.
3833 *
3834 * "cgroup.event_control" implementation.
3835 *
3836 * This is way over-engineered. It tries to support fully configurable
3837 * events for each user. Such level of flexibility is completely
3838 * unnecessary especially in the light of the planned unified hierarchy.
3839 *
3840 * Please deprecate this and replace with something simpler if at all
3841 * possible.
3842 */
3843
79bd9814
TH
3844/*
3845 * Unregister event and free resources.
3846 *
3847 * Gets called from workqueue.
3848 */
3bc942f3 3849static void memcg_event_remove(struct work_struct *work)
79bd9814 3850{
3bc942f3
TH
3851 struct mem_cgroup_event *event =
3852 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3853 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3854
3855 remove_wait_queue(event->wqh, &event->wait);
3856
59b6f873 3857 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3858
3859 /* Notify userspace the event is going away. */
3860 eventfd_signal(event->eventfd, 1);
3861
3862 eventfd_ctx_put(event->eventfd);
3863 kfree(event);
59b6f873 3864 css_put(&memcg->css);
79bd9814
TH
3865}
3866
3867/*
3868 * Gets called on POLLHUP on eventfd when user closes it.
3869 *
3870 * Called with wqh->lock held and interrupts disabled.
3871 */
3bc942f3
TH
3872static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3873 int sync, void *key)
79bd9814 3874{
3bc942f3
TH
3875 struct mem_cgroup_event *event =
3876 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3877 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3878 unsigned long flags = (unsigned long)key;
3879
3880 if (flags & POLLHUP) {
3881 /*
3882 * If the event has been detached at cgroup removal, we
3883 * can simply return knowing the other side will cleanup
3884 * for us.
3885 *
3886 * We can't race against event freeing since the other
3887 * side will require wqh->lock via remove_wait_queue(),
3888 * which we hold.
3889 */
fba94807 3890 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3891 if (!list_empty(&event->list)) {
3892 list_del_init(&event->list);
3893 /*
3894 * We are in atomic context, but cgroup_event_remove()
3895 * may sleep, so we have to call it in workqueue.
3896 */
3897 schedule_work(&event->remove);
3898 }
fba94807 3899 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3900 }
3901
3902 return 0;
3903}
3904
3bc942f3 3905static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3906 wait_queue_head_t *wqh, poll_table *pt)
3907{
3bc942f3
TH
3908 struct mem_cgroup_event *event =
3909 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3910
3911 event->wqh = wqh;
3912 add_wait_queue(wqh, &event->wait);
3913}
3914
3915/*
3bc942f3
TH
3916 * DO NOT USE IN NEW FILES.
3917 *
79bd9814
TH
3918 * Parse input and register new cgroup event handler.
3919 *
3920 * Input must be in format '<event_fd> <control_fd> <args>'.
3921 * Interpretation of args is defined by control file implementation.
3922 */
451af504
TH
3923static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3924 char *buf, size_t nbytes, loff_t off)
79bd9814 3925{
451af504 3926 struct cgroup_subsys_state *css = of_css(of);
fba94807 3927 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3928 struct mem_cgroup_event *event;
79bd9814
TH
3929 struct cgroup_subsys_state *cfile_css;
3930 unsigned int efd, cfd;
3931 struct fd efile;
3932 struct fd cfile;
fba94807 3933 const char *name;
79bd9814
TH
3934 char *endp;
3935 int ret;
3936
451af504
TH
3937 buf = strstrip(buf);
3938
3939 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3940 if (*endp != ' ')
3941 return -EINVAL;
451af504 3942 buf = endp + 1;
79bd9814 3943
451af504 3944 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3945 if ((*endp != ' ') && (*endp != '\0'))
3946 return -EINVAL;
451af504 3947 buf = endp + 1;
79bd9814
TH
3948
3949 event = kzalloc(sizeof(*event), GFP_KERNEL);
3950 if (!event)
3951 return -ENOMEM;
3952
59b6f873 3953 event->memcg = memcg;
79bd9814 3954 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3955 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3956 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3957 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3958
3959 efile = fdget(efd);
3960 if (!efile.file) {
3961 ret = -EBADF;
3962 goto out_kfree;
3963 }
3964
3965 event->eventfd = eventfd_ctx_fileget(efile.file);
3966 if (IS_ERR(event->eventfd)) {
3967 ret = PTR_ERR(event->eventfd);
3968 goto out_put_efile;
3969 }
3970
3971 cfile = fdget(cfd);
3972 if (!cfile.file) {
3973 ret = -EBADF;
3974 goto out_put_eventfd;
3975 }
3976
3977 /* the process need read permission on control file */
3978 /* AV: shouldn't we check that it's been opened for read instead? */
3979 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3980 if (ret < 0)
3981 goto out_put_cfile;
3982
fba94807
TH
3983 /*
3984 * Determine the event callbacks and set them in @event. This used
3985 * to be done via struct cftype but cgroup core no longer knows
3986 * about these events. The following is crude but the whole thing
3987 * is for compatibility anyway.
3bc942f3
TH
3988 *
3989 * DO NOT ADD NEW FILES.
fba94807 3990 */
b583043e 3991 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3992
3993 if (!strcmp(name, "memory.usage_in_bytes")) {
3994 event->register_event = mem_cgroup_usage_register_event;
3995 event->unregister_event = mem_cgroup_usage_unregister_event;
3996 } else if (!strcmp(name, "memory.oom_control")) {
3997 event->register_event = mem_cgroup_oom_register_event;
3998 event->unregister_event = mem_cgroup_oom_unregister_event;
3999 } else if (!strcmp(name, "memory.pressure_level")) {
4000 event->register_event = vmpressure_register_event;
4001 event->unregister_event = vmpressure_unregister_event;
4002 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4003 event->register_event = memsw_cgroup_usage_register_event;
4004 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4005 } else {
4006 ret = -EINVAL;
4007 goto out_put_cfile;
4008 }
4009
79bd9814 4010 /*
b5557c4c
TH
4011 * Verify @cfile should belong to @css. Also, remaining events are
4012 * automatically removed on cgroup destruction but the removal is
4013 * asynchronous, so take an extra ref on @css.
79bd9814 4014 */
b583043e 4015 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4016 &memory_cgrp_subsys);
79bd9814 4017 ret = -EINVAL;
5a17f543 4018 if (IS_ERR(cfile_css))
79bd9814 4019 goto out_put_cfile;
5a17f543
TH
4020 if (cfile_css != css) {
4021 css_put(cfile_css);
79bd9814 4022 goto out_put_cfile;
5a17f543 4023 }
79bd9814 4024
451af504 4025 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4026 if (ret)
4027 goto out_put_css;
4028
4029 efile.file->f_op->poll(efile.file, &event->pt);
4030
fba94807
TH
4031 spin_lock(&memcg->event_list_lock);
4032 list_add(&event->list, &memcg->event_list);
4033 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4034
4035 fdput(cfile);
4036 fdput(efile);
4037
451af504 4038 return nbytes;
79bd9814
TH
4039
4040out_put_css:
b5557c4c 4041 css_put(css);
79bd9814
TH
4042out_put_cfile:
4043 fdput(cfile);
4044out_put_eventfd:
4045 eventfd_ctx_put(event->eventfd);
4046out_put_efile:
4047 fdput(efile);
4048out_kfree:
4049 kfree(event);
4050
4051 return ret;
4052}
4053
241994ed 4054static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4055 {
0eea1030 4056 .name = "usage_in_bytes",
8c7c6e34 4057 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4058 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4059 },
c84872e1
PE
4060 {
4061 .name = "max_usage_in_bytes",
8c7c6e34 4062 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4063 .write = mem_cgroup_reset,
791badbd 4064 .read_u64 = mem_cgroup_read_u64,
c84872e1 4065 },
8cdea7c0 4066 {
0eea1030 4067 .name = "limit_in_bytes",
8c7c6e34 4068 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4069 .write = mem_cgroup_write,
791badbd 4070 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4071 },
296c81d8
BS
4072 {
4073 .name = "soft_limit_in_bytes",
4074 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4075 .write = mem_cgroup_write,
791badbd 4076 .read_u64 = mem_cgroup_read_u64,
296c81d8 4077 },
8cdea7c0
BS
4078 {
4079 .name = "failcnt",
8c7c6e34 4080 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4081 .write = mem_cgroup_reset,
791badbd 4082 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4083 },
d2ceb9b7
KH
4084 {
4085 .name = "stat",
2da8ca82 4086 .seq_show = memcg_stat_show,
d2ceb9b7 4087 },
c1e862c1
KH
4088 {
4089 .name = "force_empty",
6770c64e 4090 .write = mem_cgroup_force_empty_write,
c1e862c1 4091 },
18f59ea7
BS
4092 {
4093 .name = "use_hierarchy",
4094 .write_u64 = mem_cgroup_hierarchy_write,
4095 .read_u64 = mem_cgroup_hierarchy_read,
4096 },
79bd9814 4097 {
3bc942f3 4098 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4099 .write = memcg_write_event_control,
79bd9814
TH
4100 .flags = CFTYPE_NO_PREFIX,
4101 .mode = S_IWUGO,
4102 },
a7885eb8
KM
4103 {
4104 .name = "swappiness",
4105 .read_u64 = mem_cgroup_swappiness_read,
4106 .write_u64 = mem_cgroup_swappiness_write,
4107 },
7dc74be0
DN
4108 {
4109 .name = "move_charge_at_immigrate",
4110 .read_u64 = mem_cgroup_move_charge_read,
4111 .write_u64 = mem_cgroup_move_charge_write,
4112 },
9490ff27
KH
4113 {
4114 .name = "oom_control",
2da8ca82 4115 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4116 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4117 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4118 },
70ddf637
AV
4119 {
4120 .name = "pressure_level",
70ddf637 4121 },
406eb0c9
YH
4122#ifdef CONFIG_NUMA
4123 {
4124 .name = "numa_stat",
2da8ca82 4125 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4126 },
4127#endif
510fc4e1
GC
4128#ifdef CONFIG_MEMCG_KMEM
4129 {
4130 .name = "kmem.limit_in_bytes",
4131 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4132 .write = mem_cgroup_write,
791badbd 4133 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4134 },
4135 {
4136 .name = "kmem.usage_in_bytes",
4137 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4138 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4139 },
4140 {
4141 .name = "kmem.failcnt",
4142 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4143 .write = mem_cgroup_reset,
791badbd 4144 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4145 },
4146 {
4147 .name = "kmem.max_usage_in_bytes",
4148 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4149 .write = mem_cgroup_reset,
791badbd 4150 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4151 },
749c5415
GC
4152#ifdef CONFIG_SLABINFO
4153 {
4154 .name = "kmem.slabinfo",
b047501c
VD
4155 .seq_start = slab_start,
4156 .seq_next = slab_next,
4157 .seq_stop = slab_stop,
4158 .seq_show = memcg_slab_show,
749c5415
GC
4159 },
4160#endif
8c7c6e34 4161#endif
6bc10349 4162 { }, /* terminate */
af36f906 4163};
8c7c6e34 4164
c0ff4b85 4165static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4166{
4167 struct mem_cgroup_per_node *pn;
1ecaab2b 4168 struct mem_cgroup_per_zone *mz;
41e3355d 4169 int zone, tmp = node;
1ecaab2b
KH
4170 /*
4171 * This routine is called against possible nodes.
4172 * But it's BUG to call kmalloc() against offline node.
4173 *
4174 * TODO: this routine can waste much memory for nodes which will
4175 * never be onlined. It's better to use memory hotplug callback
4176 * function.
4177 */
41e3355d
KH
4178 if (!node_state(node, N_NORMAL_MEMORY))
4179 tmp = -1;
17295c88 4180 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4181 if (!pn)
4182 return 1;
1ecaab2b 4183
1ecaab2b
KH
4184 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4185 mz = &pn->zoneinfo[zone];
bea8c150 4186 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4187 mz->usage_in_excess = 0;
4188 mz->on_tree = false;
d79154bb 4189 mz->memcg = memcg;
1ecaab2b 4190 }
54f72fe0 4191 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4192 return 0;
4193}
4194
c0ff4b85 4195static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4196{
54f72fe0 4197 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4198}
4199
33327948
KH
4200static struct mem_cgroup *mem_cgroup_alloc(void)
4201{
d79154bb 4202 struct mem_cgroup *memcg;
8ff69e2c 4203 size_t size;
33327948 4204
8ff69e2c
VD
4205 size = sizeof(struct mem_cgroup);
4206 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4207
8ff69e2c 4208 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4209 if (!memcg)
e7bbcdf3
DC
4210 return NULL;
4211
d79154bb
HD
4212 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4213 if (!memcg->stat)
d2e61b8d 4214 goto out_free;
841710aa
TH
4215
4216 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4217 goto out_free_stat;
4218
d79154bb 4219 return memcg;
d2e61b8d 4220
841710aa
TH
4221out_free_stat:
4222 free_percpu(memcg->stat);
d2e61b8d 4223out_free:
8ff69e2c 4224 kfree(memcg);
d2e61b8d 4225 return NULL;
33327948
KH
4226}
4227
59927fb9 4228/*
c8b2a36f
GC
4229 * At destroying mem_cgroup, references from swap_cgroup can remain.
4230 * (scanning all at force_empty is too costly...)
4231 *
4232 * Instead of clearing all references at force_empty, we remember
4233 * the number of reference from swap_cgroup and free mem_cgroup when
4234 * it goes down to 0.
4235 *
4236 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4237 */
c8b2a36f
GC
4238
4239static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4240{
c8b2a36f 4241 int node;
59927fb9 4242
bb4cc1a8 4243 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4244
4245 for_each_node(node)
4246 free_mem_cgroup_per_zone_info(memcg, node);
4247
4248 free_percpu(memcg->stat);
841710aa 4249 memcg_wb_domain_exit(memcg);
8ff69e2c 4250 kfree(memcg);
59927fb9 4251}
3afe36b1 4252
7bcc1bb1
DN
4253/*
4254 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4255 */
e1aab161 4256struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4257{
3e32cb2e 4258 if (!memcg->memory.parent)
7bcc1bb1 4259 return NULL;
3e32cb2e 4260 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4261}
e1aab161 4262EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4263
0eb253e2 4264static struct cgroup_subsys_state * __ref
eb95419b 4265mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4266{
d142e3e6 4267 struct mem_cgroup *memcg;
04046e1a 4268 long error = -ENOMEM;
6d12e2d8 4269 int node;
8cdea7c0 4270
c0ff4b85
R
4271 memcg = mem_cgroup_alloc();
4272 if (!memcg)
04046e1a 4273 return ERR_PTR(error);
78fb7466 4274
3ed28fa1 4275 for_each_node(node)
c0ff4b85 4276 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4277 goto free_out;
f64c3f54 4278
c077719b 4279 /* root ? */
eb95419b 4280 if (parent_css == NULL) {
a41c58a6 4281 root_mem_cgroup = memcg;
56161634 4282 mem_cgroup_root_css = &memcg->css;
3e32cb2e 4283 page_counter_init(&memcg->memory, NULL);
241994ed 4284 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4285 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4286 page_counter_init(&memcg->memsw, NULL);
4287 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4288 }
28dbc4b6 4289
d142e3e6
GC
4290 memcg->last_scanned_node = MAX_NUMNODES;
4291 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4292 memcg->move_charge_at_immigrate = 0;
4293 mutex_init(&memcg->thresholds_lock);
4294 spin_lock_init(&memcg->move_lock);
70ddf637 4295 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4296 INIT_LIST_HEAD(&memcg->event_list);
4297 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4298#ifdef CONFIG_MEMCG_KMEM
4299 memcg->kmemcg_id = -1;
900a38f0 4300#endif
52ebea74
TH
4301#ifdef CONFIG_CGROUP_WRITEBACK
4302 INIT_LIST_HEAD(&memcg->cgwb_list);
4303#endif
d142e3e6
GC
4304 return &memcg->css;
4305
4306free_out:
4307 __mem_cgroup_free(memcg);
4308 return ERR_PTR(error);
4309}
4310
4311static int
eb95419b 4312mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4313{
eb95419b 4314 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4315 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4316 int ret;
d142e3e6 4317
15a4c835 4318 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4319 return -ENOSPC;
4320
63876986 4321 if (!parent)
d142e3e6
GC
4322 return 0;
4323
0999821b 4324 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4325
4326 memcg->use_hierarchy = parent->use_hierarchy;
4327 memcg->oom_kill_disable = parent->oom_kill_disable;
4328 memcg->swappiness = mem_cgroup_swappiness(parent);
4329
4330 if (parent->use_hierarchy) {
3e32cb2e 4331 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4332 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4333 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4334 page_counter_init(&memcg->memsw, &parent->memsw);
4335 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4336
7bcc1bb1 4337 /*
8d76a979
LZ
4338 * No need to take a reference to the parent because cgroup
4339 * core guarantees its existence.
7bcc1bb1 4340 */
18f59ea7 4341 } else {
3e32cb2e 4342 page_counter_init(&memcg->memory, NULL);
241994ed 4343 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4344 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4345 page_counter_init(&memcg->memsw, NULL);
4346 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4347 /*
4348 * Deeper hierachy with use_hierarchy == false doesn't make
4349 * much sense so let cgroup subsystem know about this
4350 * unfortunate state in our controller.
4351 */
d142e3e6 4352 if (parent != root_mem_cgroup)
073219e9 4353 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4354 }
0999821b 4355 mutex_unlock(&memcg_create_mutex);
d6441637 4356
2f7dd7a4
JW
4357 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4358 if (ret)
4359 return ret;
4360
4361 /*
4362 * Make sure the memcg is initialized: mem_cgroup_iter()
4363 * orders reading memcg->initialized against its callers
4364 * reading the memcg members.
4365 */
4366 smp_store_release(&memcg->initialized, 1);
4367
4368 return 0;
8cdea7c0
BS
4369}
4370
eb95419b 4371static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4372{
eb95419b 4373 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4374 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4375
4376 /*
4377 * Unregister events and notify userspace.
4378 * Notify userspace about cgroup removing only after rmdir of cgroup
4379 * directory to avoid race between userspace and kernelspace.
4380 */
fba94807
TH
4381 spin_lock(&memcg->event_list_lock);
4382 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4383 list_del_init(&event->list);
4384 schedule_work(&event->remove);
4385 }
fba94807 4386 spin_unlock(&memcg->event_list_lock);
ec64f515 4387
33cb876e 4388 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4389
4390 memcg_deactivate_kmem(memcg);
52ebea74
TH
4391
4392 wb_memcg_offline(memcg);
df878fb0
KH
4393}
4394
eb95419b 4395static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4396{
eb95419b 4397 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4398
10d5ebf4 4399 memcg_destroy_kmem(memcg);
465939a1 4400 __mem_cgroup_free(memcg);
8cdea7c0
BS
4401}
4402
1ced953b
TH
4403/**
4404 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4405 * @css: the target css
4406 *
4407 * Reset the states of the mem_cgroup associated with @css. This is
4408 * invoked when the userland requests disabling on the default hierarchy
4409 * but the memcg is pinned through dependency. The memcg should stop
4410 * applying policies and should revert to the vanilla state as it may be
4411 * made visible again.
4412 *
4413 * The current implementation only resets the essential configurations.
4414 * This needs to be expanded to cover all the visible parts.
4415 */
4416static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4417{
4418 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4419
3e32cb2e
JW
4420 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4421 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4422 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4423 memcg->low = 0;
4424 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4425 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4426 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4427}
4428
02491447 4429#ifdef CONFIG_MMU
7dc74be0 4430/* Handlers for move charge at task migration. */
854ffa8d 4431static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4432{
05b84301 4433 int ret;
9476db97
JW
4434
4435 /* Try a single bulk charge without reclaim first */
00501b53 4436 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4437 if (!ret) {
854ffa8d 4438 mc.precharge += count;
854ffa8d
DN
4439 return ret;
4440 }
692e7c45 4441 if (ret == -EINTR) {
00501b53 4442 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4443 return ret;
4444 }
9476db97
JW
4445
4446 /* Try charges one by one with reclaim */
854ffa8d 4447 while (count--) {
00501b53 4448 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4449 /*
4450 * In case of failure, any residual charges against
4451 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4452 * later on. However, cancel any charges that are
4453 * bypassed to root right away or they'll be lost.
9476db97 4454 */
692e7c45 4455 if (ret == -EINTR)
00501b53 4456 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4457 if (ret)
38c5d72f 4458 return ret;
854ffa8d 4459 mc.precharge++;
9476db97 4460 cond_resched();
854ffa8d 4461 }
9476db97 4462 return 0;
4ffef5fe
DN
4463}
4464
4465/**
8d32ff84 4466 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4467 * @vma: the vma the pte to be checked belongs
4468 * @addr: the address corresponding to the pte to be checked
4469 * @ptent: the pte to be checked
02491447 4470 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4471 *
4472 * Returns
4473 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4474 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4475 * move charge. if @target is not NULL, the page is stored in target->page
4476 * with extra refcnt got(Callers should handle it).
02491447
DN
4477 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4478 * target for charge migration. if @target is not NULL, the entry is stored
4479 * in target->ent.
4ffef5fe
DN
4480 *
4481 * Called with pte lock held.
4482 */
4ffef5fe
DN
4483union mc_target {
4484 struct page *page;
02491447 4485 swp_entry_t ent;
4ffef5fe
DN
4486};
4487
4ffef5fe 4488enum mc_target_type {
8d32ff84 4489 MC_TARGET_NONE = 0,
4ffef5fe 4490 MC_TARGET_PAGE,
02491447 4491 MC_TARGET_SWAP,
4ffef5fe
DN
4492};
4493
90254a65
DN
4494static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4495 unsigned long addr, pte_t ptent)
4ffef5fe 4496{
90254a65 4497 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4498
90254a65
DN
4499 if (!page || !page_mapped(page))
4500 return NULL;
4501 if (PageAnon(page)) {
1dfab5ab 4502 if (!(mc.flags & MOVE_ANON))
90254a65 4503 return NULL;
1dfab5ab
JW
4504 } else {
4505 if (!(mc.flags & MOVE_FILE))
4506 return NULL;
4507 }
90254a65
DN
4508 if (!get_page_unless_zero(page))
4509 return NULL;
4510
4511 return page;
4512}
4513
4b91355e 4514#ifdef CONFIG_SWAP
90254a65
DN
4515static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4516 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4517{
90254a65
DN
4518 struct page *page = NULL;
4519 swp_entry_t ent = pte_to_swp_entry(ptent);
4520
1dfab5ab 4521 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4522 return NULL;
4b91355e
KH
4523 /*
4524 * Because lookup_swap_cache() updates some statistics counter,
4525 * we call find_get_page() with swapper_space directly.
4526 */
33806f06 4527 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4528 if (do_swap_account)
4529 entry->val = ent.val;
4530
4531 return page;
4532}
4b91355e
KH
4533#else
4534static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4535 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4536{
4537 return NULL;
4538}
4539#endif
90254a65 4540
87946a72
DN
4541static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4542 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4543{
4544 struct page *page = NULL;
87946a72
DN
4545 struct address_space *mapping;
4546 pgoff_t pgoff;
4547
4548 if (!vma->vm_file) /* anonymous vma */
4549 return NULL;
1dfab5ab 4550 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4551 return NULL;
4552
87946a72 4553 mapping = vma->vm_file->f_mapping;
0661a336 4554 pgoff = linear_page_index(vma, addr);
87946a72
DN
4555
4556 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4557#ifdef CONFIG_SWAP
4558 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4559 if (shmem_mapping(mapping)) {
4560 page = find_get_entry(mapping, pgoff);
4561 if (radix_tree_exceptional_entry(page)) {
4562 swp_entry_t swp = radix_to_swp_entry(page);
4563 if (do_swap_account)
4564 *entry = swp;
4565 page = find_get_page(swap_address_space(swp), swp.val);
4566 }
4567 } else
4568 page = find_get_page(mapping, pgoff);
4569#else
4570 page = find_get_page(mapping, pgoff);
aa3b1895 4571#endif
87946a72
DN
4572 return page;
4573}
4574
b1b0deab
CG
4575/**
4576 * mem_cgroup_move_account - move account of the page
4577 * @page: the page
4578 * @nr_pages: number of regular pages (>1 for huge pages)
4579 * @from: mem_cgroup which the page is moved from.
4580 * @to: mem_cgroup which the page is moved to. @from != @to.
4581 *
4582 * The caller must confirm following.
4583 * - page is not on LRU (isolate_page() is useful.)
4584 * - compound_lock is held when nr_pages > 1
4585 *
4586 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4587 * from old cgroup.
4588 */
4589static int mem_cgroup_move_account(struct page *page,
4590 unsigned int nr_pages,
4591 struct mem_cgroup *from,
4592 struct mem_cgroup *to)
4593{
4594 unsigned long flags;
4595 int ret;
c4843a75 4596 bool anon;
b1b0deab
CG
4597
4598 VM_BUG_ON(from == to);
4599 VM_BUG_ON_PAGE(PageLRU(page), page);
4600 /*
4601 * The page is isolated from LRU. So, collapse function
4602 * will not handle this page. But page splitting can happen.
4603 * Do this check under compound_page_lock(). The caller should
4604 * hold it.
4605 */
4606 ret = -EBUSY;
4607 if (nr_pages > 1 && !PageTransHuge(page))
4608 goto out;
4609
4610 /*
4611 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4612 * of its source page while we change it: page migration takes
4613 * both pages off the LRU, but page cache replacement doesn't.
4614 */
4615 if (!trylock_page(page))
4616 goto out;
4617
4618 ret = -EINVAL;
4619 if (page->mem_cgroup != from)
4620 goto out_unlock;
4621
c4843a75
GT
4622 anon = PageAnon(page);
4623
b1b0deab
CG
4624 spin_lock_irqsave(&from->move_lock, flags);
4625
c4843a75 4626 if (!anon && page_mapped(page)) {
b1b0deab
CG
4627 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4628 nr_pages);
4629 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4630 nr_pages);
4631 }
4632
c4843a75
GT
4633 /*
4634 * move_lock grabbed above and caller set from->moving_account, so
4635 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4636 * So mapping should be stable for dirty pages.
4637 */
4638 if (!anon && PageDirty(page)) {
4639 struct address_space *mapping = page_mapping(page);
4640
4641 if (mapping_cap_account_dirty(mapping)) {
4642 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4643 nr_pages);
4644 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4645 nr_pages);
4646 }
4647 }
4648
b1b0deab
CG
4649 if (PageWriteback(page)) {
4650 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4651 nr_pages);
4652 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4653 nr_pages);
4654 }
4655
4656 /*
4657 * It is safe to change page->mem_cgroup here because the page
4658 * is referenced, charged, and isolated - we can't race with
4659 * uncharging, charging, migration, or LRU putback.
4660 */
4661
4662 /* caller should have done css_get */
4663 page->mem_cgroup = to;
4664 spin_unlock_irqrestore(&from->move_lock, flags);
4665
4666 ret = 0;
4667
4668 local_irq_disable();
4669 mem_cgroup_charge_statistics(to, page, nr_pages);
4670 memcg_check_events(to, page);
4671 mem_cgroup_charge_statistics(from, page, -nr_pages);
4672 memcg_check_events(from, page);
4673 local_irq_enable();
4674out_unlock:
4675 unlock_page(page);
4676out:
4677 return ret;
4678}
4679
8d32ff84 4680static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4681 unsigned long addr, pte_t ptent, union mc_target *target)
4682{
4683 struct page *page = NULL;
8d32ff84 4684 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4685 swp_entry_t ent = { .val = 0 };
4686
4687 if (pte_present(ptent))
4688 page = mc_handle_present_pte(vma, addr, ptent);
4689 else if (is_swap_pte(ptent))
4690 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4691 else if (pte_none(ptent))
87946a72 4692 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4693
4694 if (!page && !ent.val)
8d32ff84 4695 return ret;
02491447 4696 if (page) {
02491447 4697 /*
0a31bc97 4698 * Do only loose check w/o serialization.
1306a85a 4699 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4700 * not under LRU exclusion.
02491447 4701 */
1306a85a 4702 if (page->mem_cgroup == mc.from) {
02491447
DN
4703 ret = MC_TARGET_PAGE;
4704 if (target)
4705 target->page = page;
4706 }
4707 if (!ret || !target)
4708 put_page(page);
4709 }
90254a65
DN
4710 /* There is a swap entry and a page doesn't exist or isn't charged */
4711 if (ent.val && !ret &&
34c00c31 4712 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4713 ret = MC_TARGET_SWAP;
4714 if (target)
4715 target->ent = ent;
4ffef5fe 4716 }
4ffef5fe
DN
4717 return ret;
4718}
4719
12724850
NH
4720#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4721/*
4722 * We don't consider swapping or file mapped pages because THP does not
4723 * support them for now.
4724 * Caller should make sure that pmd_trans_huge(pmd) is true.
4725 */
4726static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4727 unsigned long addr, pmd_t pmd, union mc_target *target)
4728{
4729 struct page *page = NULL;
12724850
NH
4730 enum mc_target_type ret = MC_TARGET_NONE;
4731
4732 page = pmd_page(pmd);
309381fe 4733 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4734 if (!(mc.flags & MOVE_ANON))
12724850 4735 return ret;
1306a85a 4736 if (page->mem_cgroup == mc.from) {
12724850
NH
4737 ret = MC_TARGET_PAGE;
4738 if (target) {
4739 get_page(page);
4740 target->page = page;
4741 }
4742 }
4743 return ret;
4744}
4745#else
4746static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4747 unsigned long addr, pmd_t pmd, union mc_target *target)
4748{
4749 return MC_TARGET_NONE;
4750}
4751#endif
4752
4ffef5fe
DN
4753static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4754 unsigned long addr, unsigned long end,
4755 struct mm_walk *walk)
4756{
26bcd64a 4757 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4758 pte_t *pte;
4759 spinlock_t *ptl;
4760
bf929152 4761 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4762 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4763 mc.precharge += HPAGE_PMD_NR;
bf929152 4764 spin_unlock(ptl);
1a5a9906 4765 return 0;
12724850 4766 }
03319327 4767
45f83cef
AA
4768 if (pmd_trans_unstable(pmd))
4769 return 0;
4ffef5fe
DN
4770 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4771 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4772 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4773 mc.precharge++; /* increment precharge temporarily */
4774 pte_unmap_unlock(pte - 1, ptl);
4775 cond_resched();
4776
7dc74be0
DN
4777 return 0;
4778}
4779
4ffef5fe
DN
4780static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4781{
4782 unsigned long precharge;
4ffef5fe 4783
26bcd64a
NH
4784 struct mm_walk mem_cgroup_count_precharge_walk = {
4785 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4786 .mm = mm,
4787 };
dfe076b0 4788 down_read(&mm->mmap_sem);
26bcd64a 4789 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4790 up_read(&mm->mmap_sem);
4ffef5fe
DN
4791
4792 precharge = mc.precharge;
4793 mc.precharge = 0;
4794
4795 return precharge;
4796}
4797
4ffef5fe
DN
4798static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4799{
dfe076b0
DN
4800 unsigned long precharge = mem_cgroup_count_precharge(mm);
4801
4802 VM_BUG_ON(mc.moving_task);
4803 mc.moving_task = current;
4804 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4805}
4806
dfe076b0
DN
4807/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4808static void __mem_cgroup_clear_mc(void)
4ffef5fe 4809{
2bd9bb20
KH
4810 struct mem_cgroup *from = mc.from;
4811 struct mem_cgroup *to = mc.to;
4812
4ffef5fe 4813 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4814 if (mc.precharge) {
00501b53 4815 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4816 mc.precharge = 0;
4817 }
4818 /*
4819 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4820 * we must uncharge here.
4821 */
4822 if (mc.moved_charge) {
00501b53 4823 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4824 mc.moved_charge = 0;
4ffef5fe 4825 }
483c30b5
DN
4826 /* we must fixup refcnts and charges */
4827 if (mc.moved_swap) {
483c30b5 4828 /* uncharge swap account from the old cgroup */
ce00a967 4829 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4830 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4831
05b84301 4832 /*
3e32cb2e
JW
4833 * we charged both to->memory and to->memsw, so we
4834 * should uncharge to->memory.
05b84301 4835 */
ce00a967 4836 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4837 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4838
e8ea14cc 4839 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4840
4050377b 4841 /* we've already done css_get(mc.to) */
483c30b5
DN
4842 mc.moved_swap = 0;
4843 }
dfe076b0
DN
4844 memcg_oom_recover(from);
4845 memcg_oom_recover(to);
4846 wake_up_all(&mc.waitq);
4847}
4848
4849static void mem_cgroup_clear_mc(void)
4850{
dfe076b0
DN
4851 /*
4852 * we must clear moving_task before waking up waiters at the end of
4853 * task migration.
4854 */
4855 mc.moving_task = NULL;
4856 __mem_cgroup_clear_mc();
2bd9bb20 4857 spin_lock(&mc.lock);
4ffef5fe
DN
4858 mc.from = NULL;
4859 mc.to = NULL;
2bd9bb20 4860 spin_unlock(&mc.lock);
4ffef5fe
DN
4861}
4862
eb95419b 4863static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 4864 struct cgroup_taskset *tset)
7dc74be0 4865{
eb95419b 4866 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9f2115f9
TH
4867 struct mem_cgroup *from;
4868 struct task_struct *p;
4869 struct mm_struct *mm;
1dfab5ab 4870 unsigned long move_flags;
9f2115f9 4871 int ret = 0;
7dc74be0 4872
ee5e8472
GC
4873 /*
4874 * We are now commited to this value whatever it is. Changes in this
4875 * tunable will only affect upcoming migrations, not the current one.
4876 * So we need to save it, and keep it going.
4877 */
4db0c3c2 4878 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
9f2115f9
TH
4879 if (!move_flags)
4880 return 0;
4881
4882 p = cgroup_taskset_first(tset);
4883 from = mem_cgroup_from_task(p);
4884
4885 VM_BUG_ON(from == memcg);
4886
4887 mm = get_task_mm(p);
4888 if (!mm)
4889 return 0;
4890 /* We move charges only when we move a owner of the mm */
4891 if (mm->owner == p) {
4892 VM_BUG_ON(mc.from);
4893 VM_BUG_ON(mc.to);
4894 VM_BUG_ON(mc.precharge);
4895 VM_BUG_ON(mc.moved_charge);
4896 VM_BUG_ON(mc.moved_swap);
4897
4898 spin_lock(&mc.lock);
4899 mc.from = from;
4900 mc.to = memcg;
4901 mc.flags = move_flags;
4902 spin_unlock(&mc.lock);
4903 /* We set mc.moving_task later */
4904
4905 ret = mem_cgroup_precharge_mc(mm);
4906 if (ret)
4907 mem_cgroup_clear_mc();
7dc74be0 4908 }
9f2115f9 4909 mmput(mm);
7dc74be0
DN
4910 return ret;
4911}
4912
eb95419b 4913static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 4914 struct cgroup_taskset *tset)
7dc74be0 4915{
4e2f245d
JW
4916 if (mc.to)
4917 mem_cgroup_clear_mc();
7dc74be0
DN
4918}
4919
4ffef5fe
DN
4920static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4921 unsigned long addr, unsigned long end,
4922 struct mm_walk *walk)
7dc74be0 4923{
4ffef5fe 4924 int ret = 0;
26bcd64a 4925 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4926 pte_t *pte;
4927 spinlock_t *ptl;
12724850
NH
4928 enum mc_target_type target_type;
4929 union mc_target target;
4930 struct page *page;
4ffef5fe 4931
12724850
NH
4932 /*
4933 * We don't take compound_lock() here but no race with splitting thp
4934 * happens because:
4935 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4936 * under splitting, which means there's no concurrent thp split,
4937 * - if another thread runs into split_huge_page() just after we
4938 * entered this if-block, the thread must wait for page table lock
4939 * to be unlocked in __split_huge_page_splitting(), where the main
4940 * part of thp split is not executed yet.
4941 */
bf929152 4942 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 4943 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4944 spin_unlock(ptl);
12724850
NH
4945 return 0;
4946 }
4947 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4948 if (target_type == MC_TARGET_PAGE) {
4949 page = target.page;
4950 if (!isolate_lru_page(page)) {
12724850 4951 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 4952 mc.from, mc.to)) {
12724850
NH
4953 mc.precharge -= HPAGE_PMD_NR;
4954 mc.moved_charge += HPAGE_PMD_NR;
4955 }
4956 putback_lru_page(page);
4957 }
4958 put_page(page);
4959 }
bf929152 4960 spin_unlock(ptl);
1a5a9906 4961 return 0;
12724850
NH
4962 }
4963
45f83cef
AA
4964 if (pmd_trans_unstable(pmd))
4965 return 0;
4ffef5fe
DN
4966retry:
4967 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4968 for (; addr != end; addr += PAGE_SIZE) {
4969 pte_t ptent = *(pte++);
02491447 4970 swp_entry_t ent;
4ffef5fe
DN
4971
4972 if (!mc.precharge)
4973 break;
4974
8d32ff84 4975 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4976 case MC_TARGET_PAGE:
4977 page = target.page;
4978 if (isolate_lru_page(page))
4979 goto put;
1306a85a 4980 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 4981 mc.precharge--;
854ffa8d
DN
4982 /* we uncharge from mc.from later. */
4983 mc.moved_charge++;
4ffef5fe
DN
4984 }
4985 putback_lru_page(page);
8d32ff84 4986put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4987 put_page(page);
4988 break;
02491447
DN
4989 case MC_TARGET_SWAP:
4990 ent = target.ent;
e91cbb42 4991 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4992 mc.precharge--;
483c30b5
DN
4993 /* we fixup refcnts and charges later. */
4994 mc.moved_swap++;
4995 }
02491447 4996 break;
4ffef5fe
DN
4997 default:
4998 break;
4999 }
5000 }
5001 pte_unmap_unlock(pte - 1, ptl);
5002 cond_resched();
5003
5004 if (addr != end) {
5005 /*
5006 * We have consumed all precharges we got in can_attach().
5007 * We try charge one by one, but don't do any additional
5008 * charges to mc.to if we have failed in charge once in attach()
5009 * phase.
5010 */
854ffa8d 5011 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5012 if (!ret)
5013 goto retry;
5014 }
5015
5016 return ret;
5017}
5018
5019static void mem_cgroup_move_charge(struct mm_struct *mm)
5020{
26bcd64a
NH
5021 struct mm_walk mem_cgroup_move_charge_walk = {
5022 .pmd_entry = mem_cgroup_move_charge_pte_range,
5023 .mm = mm,
5024 };
4ffef5fe
DN
5025
5026 lru_add_drain_all();
312722cb
JW
5027 /*
5028 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5029 * move_lock while we're moving its pages to another memcg.
5030 * Then wait for already started RCU-only updates to finish.
5031 */
5032 atomic_inc(&mc.from->moving_account);
5033 synchronize_rcu();
dfe076b0
DN
5034retry:
5035 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5036 /*
5037 * Someone who are holding the mmap_sem might be waiting in
5038 * waitq. So we cancel all extra charges, wake up all waiters,
5039 * and retry. Because we cancel precharges, we might not be able
5040 * to move enough charges, but moving charge is a best-effort
5041 * feature anyway, so it wouldn't be a big problem.
5042 */
5043 __mem_cgroup_clear_mc();
5044 cond_resched();
5045 goto retry;
5046 }
26bcd64a
NH
5047 /*
5048 * When we have consumed all precharges and failed in doing
5049 * additional charge, the page walk just aborts.
5050 */
5051 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5052 up_read(&mm->mmap_sem);
312722cb 5053 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5054}
5055
eb95419b 5056static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5057 struct cgroup_taskset *tset)
67e465a7 5058{
2f7ee569 5059 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5060 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5061
dfe076b0 5062 if (mm) {
a433658c
KM
5063 if (mc.to)
5064 mem_cgroup_move_charge(mm);
dfe076b0
DN
5065 mmput(mm);
5066 }
a433658c
KM
5067 if (mc.to)
5068 mem_cgroup_clear_mc();
67e465a7 5069}
5cfb80a7 5070#else /* !CONFIG_MMU */
eb95419b 5071static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5072 struct cgroup_taskset *tset)
5cfb80a7
DN
5073{
5074 return 0;
5075}
eb95419b 5076static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5077 struct cgroup_taskset *tset)
5cfb80a7
DN
5078{
5079}
eb95419b 5080static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5081 struct cgroup_taskset *tset)
5cfb80a7
DN
5082{
5083}
5084#endif
67e465a7 5085
f00baae7
TH
5086/*
5087 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5088 * to verify whether we're attached to the default hierarchy on each mount
5089 * attempt.
f00baae7 5090 */
eb95419b 5091static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5092{
5093 /*
aa6ec29b 5094 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5095 * guarantees that @root doesn't have any children, so turning it
5096 * on for the root memcg is enough.
5097 */
aa6ec29b 5098 if (cgroup_on_dfl(root_css->cgroup))
7feee590
VD
5099 root_mem_cgroup->use_hierarchy = true;
5100 else
5101 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5102}
5103
241994ed
JW
5104static u64 memory_current_read(struct cgroup_subsys_state *css,
5105 struct cftype *cft)
5106{
5107 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5108}
5109
5110static int memory_low_show(struct seq_file *m, void *v)
5111{
5112 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5113 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5114
5115 if (low == PAGE_COUNTER_MAX)
d2973697 5116 seq_puts(m, "max\n");
241994ed
JW
5117 else
5118 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5119
5120 return 0;
5121}
5122
5123static ssize_t memory_low_write(struct kernfs_open_file *of,
5124 char *buf, size_t nbytes, loff_t off)
5125{
5126 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5127 unsigned long low;
5128 int err;
5129
5130 buf = strstrip(buf);
d2973697 5131 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5132 if (err)
5133 return err;
5134
5135 memcg->low = low;
5136
5137 return nbytes;
5138}
5139
5140static int memory_high_show(struct seq_file *m, void *v)
5141{
5142 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5143 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5144
5145 if (high == PAGE_COUNTER_MAX)
d2973697 5146 seq_puts(m, "max\n");
241994ed
JW
5147 else
5148 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5149
5150 return 0;
5151}
5152
5153static ssize_t memory_high_write(struct kernfs_open_file *of,
5154 char *buf, size_t nbytes, loff_t off)
5155{
5156 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5157 unsigned long high;
5158 int err;
5159
5160 buf = strstrip(buf);
d2973697 5161 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5162 if (err)
5163 return err;
5164
5165 memcg->high = high;
5166
2529bb3a 5167 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5168 return nbytes;
5169}
5170
5171static int memory_max_show(struct seq_file *m, void *v)
5172{
5173 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5174 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5175
5176 if (max == PAGE_COUNTER_MAX)
d2973697 5177 seq_puts(m, "max\n");
241994ed
JW
5178 else
5179 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5180
5181 return 0;
5182}
5183
5184static ssize_t memory_max_write(struct kernfs_open_file *of,
5185 char *buf, size_t nbytes, loff_t off)
5186{
5187 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5188 unsigned long max;
5189 int err;
5190
5191 buf = strstrip(buf);
d2973697 5192 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5193 if (err)
5194 return err;
5195
5196 err = mem_cgroup_resize_limit(memcg, max);
5197 if (err)
5198 return err;
5199
2529bb3a 5200 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5201 return nbytes;
5202}
5203
5204static int memory_events_show(struct seq_file *m, void *v)
5205{
5206 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5207
5208 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5209 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5210 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5211 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5212
5213 return 0;
5214}
5215
5216static struct cftype memory_files[] = {
5217 {
5218 .name = "current",
5219 .read_u64 = memory_current_read,
5220 },
5221 {
5222 .name = "low",
5223 .flags = CFTYPE_NOT_ON_ROOT,
5224 .seq_show = memory_low_show,
5225 .write = memory_low_write,
5226 },
5227 {
5228 .name = "high",
5229 .flags = CFTYPE_NOT_ON_ROOT,
5230 .seq_show = memory_high_show,
5231 .write = memory_high_write,
5232 },
5233 {
5234 .name = "max",
5235 .flags = CFTYPE_NOT_ON_ROOT,
5236 .seq_show = memory_max_show,
5237 .write = memory_max_write,
5238 },
5239 {
5240 .name = "events",
5241 .flags = CFTYPE_NOT_ON_ROOT,
5242 .seq_show = memory_events_show,
5243 },
5244 { } /* terminate */
5245};
5246
073219e9 5247struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5248 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5249 .css_online = mem_cgroup_css_online,
92fb9748
TH
5250 .css_offline = mem_cgroup_css_offline,
5251 .css_free = mem_cgroup_css_free,
1ced953b 5252 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5253 .can_attach = mem_cgroup_can_attach,
5254 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5255 .attach = mem_cgroup_move_task,
f00baae7 5256 .bind = mem_cgroup_bind,
241994ed
JW
5257 .dfl_cftypes = memory_files,
5258 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5259 .early_init = 0,
8cdea7c0 5260};
c077719b 5261
241994ed
JW
5262/**
5263 * mem_cgroup_low - check if memory consumption is below the normal range
5264 * @root: the highest ancestor to consider
5265 * @memcg: the memory cgroup to check
5266 *
5267 * Returns %true if memory consumption of @memcg, and that of all
5268 * configurable ancestors up to @root, is below the normal range.
5269 */
5270bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5271{
5272 if (mem_cgroup_disabled())
5273 return false;
5274
5275 /*
5276 * The toplevel group doesn't have a configurable range, so
5277 * it's never low when looked at directly, and it is not
5278 * considered an ancestor when assessing the hierarchy.
5279 */
5280
5281 if (memcg == root_mem_cgroup)
5282 return false;
5283
4e54dede 5284 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5285 return false;
5286
5287 while (memcg != root) {
5288 memcg = parent_mem_cgroup(memcg);
5289
5290 if (memcg == root_mem_cgroup)
5291 break;
5292
4e54dede 5293 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5294 return false;
5295 }
5296 return true;
5297}
5298
00501b53
JW
5299/**
5300 * mem_cgroup_try_charge - try charging a page
5301 * @page: page to charge
5302 * @mm: mm context of the victim
5303 * @gfp_mask: reclaim mode
5304 * @memcgp: charged memcg return
5305 *
5306 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5307 * pages according to @gfp_mask if necessary.
5308 *
5309 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5310 * Otherwise, an error code is returned.
5311 *
5312 * After page->mapping has been set up, the caller must finalize the
5313 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5314 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5315 */
5316int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5317 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5318{
5319 struct mem_cgroup *memcg = NULL;
5320 unsigned int nr_pages = 1;
5321 int ret = 0;
5322
5323 if (mem_cgroup_disabled())
5324 goto out;
5325
5326 if (PageSwapCache(page)) {
00501b53
JW
5327 /*
5328 * Every swap fault against a single page tries to charge the
5329 * page, bail as early as possible. shmem_unuse() encounters
5330 * already charged pages, too. The USED bit is protected by
5331 * the page lock, which serializes swap cache removal, which
5332 * in turn serializes uncharging.
5333 */
e993d905 5334 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5335 if (page->mem_cgroup)
00501b53 5336 goto out;
e993d905
VD
5337
5338 if (do_swap_account) {
5339 swp_entry_t ent = { .val = page_private(page), };
5340 unsigned short id = lookup_swap_cgroup_id(ent);
5341
5342 rcu_read_lock();
5343 memcg = mem_cgroup_from_id(id);
5344 if (memcg && !css_tryget_online(&memcg->css))
5345 memcg = NULL;
5346 rcu_read_unlock();
5347 }
00501b53
JW
5348 }
5349
5350 if (PageTransHuge(page)) {
5351 nr_pages <<= compound_order(page);
5352 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5353 }
5354
00501b53
JW
5355 if (!memcg)
5356 memcg = get_mem_cgroup_from_mm(mm);
5357
5358 ret = try_charge(memcg, gfp_mask, nr_pages);
5359
5360 css_put(&memcg->css);
5361
5362 if (ret == -EINTR) {
5363 memcg = root_mem_cgroup;
5364 ret = 0;
5365 }
5366out:
5367 *memcgp = memcg;
5368 return ret;
5369}
5370
5371/**
5372 * mem_cgroup_commit_charge - commit a page charge
5373 * @page: page to charge
5374 * @memcg: memcg to charge the page to
5375 * @lrucare: page might be on LRU already
5376 *
5377 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5378 * after page->mapping has been set up. This must happen atomically
5379 * as part of the page instantiation, i.e. under the page table lock
5380 * for anonymous pages, under the page lock for page and swap cache.
5381 *
5382 * In addition, the page must not be on the LRU during the commit, to
5383 * prevent racing with task migration. If it might be, use @lrucare.
5384 *
5385 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5386 */
5387void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5388 bool lrucare)
5389{
5390 unsigned int nr_pages = 1;
5391
5392 VM_BUG_ON_PAGE(!page->mapping, page);
5393 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5394
5395 if (mem_cgroup_disabled())
5396 return;
5397 /*
5398 * Swap faults will attempt to charge the same page multiple
5399 * times. But reuse_swap_page() might have removed the page
5400 * from swapcache already, so we can't check PageSwapCache().
5401 */
5402 if (!memcg)
5403 return;
5404
6abb5a86
JW
5405 commit_charge(page, memcg, lrucare);
5406
00501b53
JW
5407 if (PageTransHuge(page)) {
5408 nr_pages <<= compound_order(page);
5409 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5410 }
5411
6abb5a86
JW
5412 local_irq_disable();
5413 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5414 memcg_check_events(memcg, page);
5415 local_irq_enable();
00501b53
JW
5416
5417 if (do_swap_account && PageSwapCache(page)) {
5418 swp_entry_t entry = { .val = page_private(page) };
5419 /*
5420 * The swap entry might not get freed for a long time,
5421 * let's not wait for it. The page already received a
5422 * memory+swap charge, drop the swap entry duplicate.
5423 */
5424 mem_cgroup_uncharge_swap(entry);
5425 }
5426}
5427
5428/**
5429 * mem_cgroup_cancel_charge - cancel a page charge
5430 * @page: page to charge
5431 * @memcg: memcg to charge the page to
5432 *
5433 * Cancel a charge transaction started by mem_cgroup_try_charge().
5434 */
5435void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5436{
5437 unsigned int nr_pages = 1;
5438
5439 if (mem_cgroup_disabled())
5440 return;
5441 /*
5442 * Swap faults will attempt to charge the same page multiple
5443 * times. But reuse_swap_page() might have removed the page
5444 * from swapcache already, so we can't check PageSwapCache().
5445 */
5446 if (!memcg)
5447 return;
5448
5449 if (PageTransHuge(page)) {
5450 nr_pages <<= compound_order(page);
5451 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5452 }
5453
5454 cancel_charge(memcg, nr_pages);
5455}
5456
747db954 5457static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5458 unsigned long nr_anon, unsigned long nr_file,
5459 unsigned long nr_huge, struct page *dummy_page)
5460{
18eca2e6 5461 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5462 unsigned long flags;
5463
ce00a967 5464 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5465 page_counter_uncharge(&memcg->memory, nr_pages);
5466 if (do_swap_account)
5467 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5468 memcg_oom_recover(memcg);
5469 }
747db954
JW
5470
5471 local_irq_save(flags);
5472 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5473 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5474 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5475 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5476 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5477 memcg_check_events(memcg, dummy_page);
5478 local_irq_restore(flags);
e8ea14cc
JW
5479
5480 if (!mem_cgroup_is_root(memcg))
18eca2e6 5481 css_put_many(&memcg->css, nr_pages);
747db954
JW
5482}
5483
5484static void uncharge_list(struct list_head *page_list)
5485{
5486 struct mem_cgroup *memcg = NULL;
747db954
JW
5487 unsigned long nr_anon = 0;
5488 unsigned long nr_file = 0;
5489 unsigned long nr_huge = 0;
5490 unsigned long pgpgout = 0;
747db954
JW
5491 struct list_head *next;
5492 struct page *page;
5493
5494 next = page_list->next;
5495 do {
5496 unsigned int nr_pages = 1;
747db954
JW
5497
5498 page = list_entry(next, struct page, lru);
5499 next = page->lru.next;
5500
5501 VM_BUG_ON_PAGE(PageLRU(page), page);
5502 VM_BUG_ON_PAGE(page_count(page), page);
5503
1306a85a 5504 if (!page->mem_cgroup)
747db954
JW
5505 continue;
5506
5507 /*
5508 * Nobody should be changing or seriously looking at
1306a85a 5509 * page->mem_cgroup at this point, we have fully
29833315 5510 * exclusive access to the page.
747db954
JW
5511 */
5512
1306a85a 5513 if (memcg != page->mem_cgroup) {
747db954 5514 if (memcg) {
18eca2e6
JW
5515 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5516 nr_huge, page);
5517 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5518 }
1306a85a 5519 memcg = page->mem_cgroup;
747db954
JW
5520 }
5521
5522 if (PageTransHuge(page)) {
5523 nr_pages <<= compound_order(page);
5524 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5525 nr_huge += nr_pages;
5526 }
5527
5528 if (PageAnon(page))
5529 nr_anon += nr_pages;
5530 else
5531 nr_file += nr_pages;
5532
1306a85a 5533 page->mem_cgroup = NULL;
747db954
JW
5534
5535 pgpgout++;
5536 } while (next != page_list);
5537
5538 if (memcg)
18eca2e6
JW
5539 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5540 nr_huge, page);
747db954
JW
5541}
5542
0a31bc97
JW
5543/**
5544 * mem_cgroup_uncharge - uncharge a page
5545 * @page: page to uncharge
5546 *
5547 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5548 * mem_cgroup_commit_charge().
5549 */
5550void mem_cgroup_uncharge(struct page *page)
5551{
0a31bc97
JW
5552 if (mem_cgroup_disabled())
5553 return;
5554
747db954 5555 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5556 if (!page->mem_cgroup)
0a31bc97
JW
5557 return;
5558
747db954
JW
5559 INIT_LIST_HEAD(&page->lru);
5560 uncharge_list(&page->lru);
5561}
0a31bc97 5562
747db954
JW
5563/**
5564 * mem_cgroup_uncharge_list - uncharge a list of page
5565 * @page_list: list of pages to uncharge
5566 *
5567 * Uncharge a list of pages previously charged with
5568 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5569 */
5570void mem_cgroup_uncharge_list(struct list_head *page_list)
5571{
5572 if (mem_cgroup_disabled())
5573 return;
0a31bc97 5574
747db954
JW
5575 if (!list_empty(page_list))
5576 uncharge_list(page_list);
0a31bc97
JW
5577}
5578
5579/**
5580 * mem_cgroup_migrate - migrate a charge to another page
5581 * @oldpage: currently charged page
5582 * @newpage: page to transfer the charge to
f5e03a49 5583 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5584 *
5585 * Migrate the charge from @oldpage to @newpage.
5586 *
5587 * Both pages must be locked, @newpage->mapping must be set up.
5588 */
5589void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5590 bool lrucare)
5591{
29833315 5592 struct mem_cgroup *memcg;
0a31bc97
JW
5593 int isolated;
5594
5595 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5596 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5597 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5598 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5599 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5600 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5601 newpage);
0a31bc97
JW
5602
5603 if (mem_cgroup_disabled())
5604 return;
5605
5606 /* Page cache replacement: new page already charged? */
1306a85a 5607 if (newpage->mem_cgroup)
0a31bc97
JW
5608 return;
5609
7d5e3245
JW
5610 /*
5611 * Swapcache readahead pages can get migrated before being
5612 * charged, and migration from compaction can happen to an
5613 * uncharged page when the PFN walker finds a page that
5614 * reclaim just put back on the LRU but has not released yet.
5615 */
1306a85a 5616 memcg = oldpage->mem_cgroup;
29833315 5617 if (!memcg)
0a31bc97
JW
5618 return;
5619
0a31bc97
JW
5620 if (lrucare)
5621 lock_page_lru(oldpage, &isolated);
5622
1306a85a 5623 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5624
5625 if (lrucare)
5626 unlock_page_lru(oldpage, isolated);
5627
29833315 5628 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5629}
5630
2d11085e 5631/*
1081312f
MH
5632 * subsys_initcall() for memory controller.
5633 *
5634 * Some parts like hotcpu_notifier() have to be initialized from this context
5635 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5636 * everything that doesn't depend on a specific mem_cgroup structure should
5637 * be initialized from here.
2d11085e
MH
5638 */
5639static int __init mem_cgroup_init(void)
5640{
95a045f6
JW
5641 int cpu, node;
5642
2d11085e 5643 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5644
5645 for_each_possible_cpu(cpu)
5646 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5647 drain_local_stock);
5648
5649 for_each_node(node) {
5650 struct mem_cgroup_tree_per_node *rtpn;
5651 int zone;
5652
5653 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5654 node_online(node) ? node : NUMA_NO_NODE);
5655
5656 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5657 struct mem_cgroup_tree_per_zone *rtpz;
5658
5659 rtpz = &rtpn->rb_tree_per_zone[zone];
5660 rtpz->rb_root = RB_ROOT;
5661 spin_lock_init(&rtpz->lock);
5662 }
5663 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5664 }
5665
2d11085e
MH
5666 return 0;
5667}
5668subsys_initcall(mem_cgroup_init);
21afa38e
JW
5669
5670#ifdef CONFIG_MEMCG_SWAP
5671/**
5672 * mem_cgroup_swapout - transfer a memsw charge to swap
5673 * @page: page whose memsw charge to transfer
5674 * @entry: swap entry to move the charge to
5675 *
5676 * Transfer the memsw charge of @page to @entry.
5677 */
5678void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5679{
5680 struct mem_cgroup *memcg;
5681 unsigned short oldid;
5682
5683 VM_BUG_ON_PAGE(PageLRU(page), page);
5684 VM_BUG_ON_PAGE(page_count(page), page);
5685
5686 if (!do_swap_account)
5687 return;
5688
5689 memcg = page->mem_cgroup;
5690
5691 /* Readahead page, never charged */
5692 if (!memcg)
5693 return;
5694
5695 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5696 VM_BUG_ON_PAGE(oldid, page);
5697 mem_cgroup_swap_statistics(memcg, true);
5698
5699 page->mem_cgroup = NULL;
5700
5701 if (!mem_cgroup_is_root(memcg))
5702 page_counter_uncharge(&memcg->memory, 1);
5703
ce9ce665
SAS
5704 /*
5705 * Interrupts should be disabled here because the caller holds the
5706 * mapping->tree_lock lock which is taken with interrupts-off. It is
5707 * important here to have the interrupts disabled because it is the
5708 * only synchronisation we have for udpating the per-CPU variables.
5709 */
5710 VM_BUG_ON(!irqs_disabled());
21afa38e
JW
5711 mem_cgroup_charge_statistics(memcg, page, -1);
5712 memcg_check_events(memcg, page);
5713}
5714
5715/**
5716 * mem_cgroup_uncharge_swap - uncharge a swap entry
5717 * @entry: swap entry to uncharge
5718 *
5719 * Drop the memsw charge associated with @entry.
5720 */
5721void mem_cgroup_uncharge_swap(swp_entry_t entry)
5722{
5723 struct mem_cgroup *memcg;
5724 unsigned short id;
5725
5726 if (!do_swap_account)
5727 return;
5728
5729 id = swap_cgroup_record(entry, 0);
5730 rcu_read_lock();
adbe427b 5731 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5732 if (memcg) {
5733 if (!mem_cgroup_is_root(memcg))
5734 page_counter_uncharge(&memcg->memsw, 1);
5735 mem_cgroup_swap_statistics(memcg, false);
5736 css_put(&memcg->css);
5737 }
5738 rcu_read_unlock();
5739}
5740
5741/* for remember boot option*/
5742#ifdef CONFIG_MEMCG_SWAP_ENABLED
5743static int really_do_swap_account __initdata = 1;
5744#else
5745static int really_do_swap_account __initdata;
5746#endif
5747
5748static int __init enable_swap_account(char *s)
5749{
5750 if (!strcmp(s, "1"))
5751 really_do_swap_account = 1;
5752 else if (!strcmp(s, "0"))
5753 really_do_swap_account = 0;
5754 return 1;
5755}
5756__setup("swapaccount=", enable_swap_account);
5757
5758static struct cftype memsw_cgroup_files[] = {
5759 {
5760 .name = "memsw.usage_in_bytes",
5761 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5762 .read_u64 = mem_cgroup_read_u64,
5763 },
5764 {
5765 .name = "memsw.max_usage_in_bytes",
5766 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5767 .write = mem_cgroup_reset,
5768 .read_u64 = mem_cgroup_read_u64,
5769 },
5770 {
5771 .name = "memsw.limit_in_bytes",
5772 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5773 .write = mem_cgroup_write,
5774 .read_u64 = mem_cgroup_read_u64,
5775 },
5776 {
5777 .name = "memsw.failcnt",
5778 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5779 .write = mem_cgroup_reset,
5780 .read_u64 = mem_cgroup_read_u64,
5781 },
5782 { }, /* terminate */
5783};
5784
5785static int __init mem_cgroup_swap_init(void)
5786{
5787 if (!mem_cgroup_disabled() && really_do_swap_account) {
5788 do_swap_account = 1;
5789 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5790 memsw_cgroup_files));
5791 }
5792 return 0;
5793}
5794subsys_initcall(mem_cgroup_swap_init);
5795
5796#endif /* CONFIG_MEMCG_SWAP */