ocfs2: replace CURRENT_TIME macro
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
ef8f2327 135struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
bb4cc1a8
AM
140struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142};
143
144static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
9490ff27
KH
146/* for OOM */
147struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150};
2e72b634 151
79bd9814
TH
152/*
153 * cgroup_event represents events which userspace want to receive.
154 */
3bc942f3 155struct mem_cgroup_event {
79bd9814 156 /*
59b6f873 157 * memcg which the event belongs to.
79bd9814 158 */
59b6f873 159 struct mem_cgroup *memcg;
79bd9814
TH
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
fba94807
TH
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
59b6f873 173 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 174 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
59b6f873 180 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 181 struct eventfd_ctx *eventfd);
79bd9814
TH
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190};
191
c0ff4b85
R
192static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 194
7dc74be0
DN
195/* Stuffs for move charges at task migration. */
196/*
1dfab5ab 197 * Types of charges to be moved.
7dc74be0 198 */
1dfab5ab
JW
199#define MOVE_ANON 0x1U
200#define MOVE_FILE 0x2U
201#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 202
4ffef5fe
DN
203/* "mc" and its members are protected by cgroup_mutex */
204static struct move_charge_struct {
b1dd693e 205 spinlock_t lock; /* for from, to */
264a0ae1 206 struct mm_struct *mm;
4ffef5fe
DN
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
1dfab5ab 209 unsigned long flags;
4ffef5fe 210 unsigned long precharge;
854ffa8d 211 unsigned long moved_charge;
483c30b5 212 unsigned long moved_swap;
8033b97c
DN
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215} mc = {
2bd9bb20 216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218};
4ffef5fe 219
4e416953
BS
220/*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
a0db00fc 224#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 225#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 226
217bc319
KH
227enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 229 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
232 NR_CHARGE_TYPE,
233};
234
8c7c6e34 235/* for encoding cft->private value on file */
86ae53e1
GC
236enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
510fc4e1 240 _KMEM,
d55f90bf 241 _TCP,
86ae53e1
GC
242};
243
a0db00fc
KS
244#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 246#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
247/* Used for OOM nofiier */
248#define OOM_CONTROL (0)
8c7c6e34 249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
7ffc0edc
MH
263static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264{
265 return (memcg == root_mem_cgroup);
266}
267
127424c8 268#ifndef CONFIG_SLOB
55007d84 269/*
f7ce3190 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
55007d84 276 *
dbcf73e2
VD
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
55007d84 279 */
dbcf73e2
VD
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
749c5415 282
05257a1a
VD
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
55007d84
GC
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
b8627835 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
b8627835 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 310
d7f25f8a
GC
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
ef12947c 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 319
127424c8 320#endif /* !CONFIG_SLOB */
a8964b9b 321
ad7fa852
TH
322/**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
ad7fa852
TH
332 */
333struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334{
335 struct mem_cgroup *memcg;
336
ad7fa852
TH
337 memcg = page->mem_cgroup;
338
9e10a130 339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
340 memcg = root_mem_cgroup;
341
ad7fa852
TH
342 return &memcg->css;
343}
344
2fc04524
VD
345/**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358ino_t page_cgroup_ino(struct page *page)
359{
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371}
372
ef8f2327
MG
373static struct mem_cgroup_per_node *
374mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 375{
97a6c37b 376 int nid = page_to_nid(page);
f64c3f54 377
ef8f2327 378 return memcg->nodeinfo[nid];
f64c3f54
BS
379}
380
ef8f2327
MG
381static struct mem_cgroup_tree_per_node *
382soft_limit_tree_node(int nid)
bb4cc1a8 383{
ef8f2327 384 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
385}
386
ef8f2327 387static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
388soft_limit_tree_from_page(struct page *page)
389{
390 int nid = page_to_nid(page);
bb4cc1a8 391
ef8f2327 392 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
393}
394
ef8f2327
MG
395static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 397 unsigned long new_usage_in_excess)
bb4cc1a8
AM
398{
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
ef8f2327 401 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
ef8f2327 411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425}
426
ef8f2327
MG
427static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
429{
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
ef8f2327
MG
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 438{
0a31bc97
JW
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 442 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 443 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
444}
445
3e32cb2e
JW
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
bb4cc1a8
AM
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
3e32cb2e 460 unsigned long excess;
ef8f2327
MG
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 463
e231875b 464 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 470 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 471 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
0a31bc97
JW
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
480 /* if on-tree, remove it */
481 if (mz->on_tree)
cf2c8127 482 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
cf2c8127 487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 488 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
489 }
490 }
491}
492
493static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494{
ef8f2327
MG
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
bb4cc1a8 498
e231875b 499 for_each_node(nid) {
ef8f2327
MG
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
503 }
504}
505
ef8f2327
MG
506static struct mem_cgroup_per_node *
507__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
508{
509 struct rb_node *rightmost = NULL;
ef8f2327 510 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
511
512retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
ef8f2327 518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
cf2c8127 524 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 525 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 526 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
527 goto retry;
528done:
529 return mz;
530}
531
ef8f2327
MG
532static struct mem_cgroup_per_node *
533mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 534{
ef8f2327 535 struct mem_cgroup_per_node *mz;
bb4cc1a8 536
0a31bc97 537 spin_lock_irq(&mctz->lock);
bb4cc1a8 538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 539 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
540 return mz;
541}
542
711d3d2c 543/*
484ebb3b
GT
544 * Return page count for single (non recursive) @memcg.
545 *
711d3d2c
KH
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 551 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 561 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
562 * implemented.
563 */
484ebb3b
GT
564static unsigned long
565mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 566{
7a159cc9 567 long val = 0;
c62b1a3b 568 int cpu;
c62b1a3b 569
484ebb3b 570 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 571 for_each_possible_cpu(cpu)
c0ff4b85 572 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
c62b1a3b
KH
579 return val;
580}
581
c0ff4b85 582static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
583 enum mem_cgroup_events_index idx)
584{
585 unsigned long val = 0;
586 int cpu;
587
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
590 return val;
591}
592
c0ff4b85 593static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 594 struct page *page,
f627c2f5 595 bool compound, int nr_pages)
d52aa412 596{
b2402857
KH
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
0a31bc97 601 if (PageAnon(page))
b2402857 602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 603 nr_pages);
d52aa412 604 else
b2402857 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 606 nr_pages);
55e462b0 607
f627c2f5
KS
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
f627c2f5 612 }
b070e65c 613
e401f176
KH
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
c0ff4b85 616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 617 else {
c0ff4b85 618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
619 nr_pages = -nr_pages; /* for event */
620 }
e401f176 621
13114716 622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
623}
624
0a6b76dd
VD
625unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
bb2a0de9 627{
e231875b 628 unsigned long nr = 0;
ef8f2327
MG
629 struct mem_cgroup_per_node *mz;
630 enum lru_list lru;
889976db 631
e231875b 632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 633
ef8f2327
MG
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
e231875b
JZ
639 }
640 return nr;
889976db 641}
bb2a0de9 642
c0ff4b85 643static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 644 unsigned int lru_mask)
6d12e2d8 645{
e231875b 646 unsigned long nr = 0;
889976db 647 int nid;
6d12e2d8 648
31aaea4a 649 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 return nr;
d52aa412
KH
652}
653
f53d7ce3
JW
654static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
7a159cc9
JW
656{
657 unsigned long val, next;
658
13114716 659 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 660 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 661 /* from time_after() in jiffies.h */
f53d7ce3
JW
662 if ((long)next - (long)val < 0) {
663 switch (target) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
666 break;
bb4cc1a8
AM
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
669 break;
f53d7ce3
JW
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
672 break;
673 default:
674 break;
675 }
676 __this_cpu_write(memcg->stat->targets[target], next);
677 return true;
7a159cc9 678 }
f53d7ce3 679 return false;
d2265e6f
KH
680}
681
682/*
683 * Check events in order.
684 *
685 */
c0ff4b85 686static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
687{
688 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 691 bool do_softlimit;
82b3f2a7 692 bool do_numainfo __maybe_unused;
f53d7ce3 693
bb4cc1a8
AM
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
696#if MAX_NUMNODES > 1
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
699#endif
c0ff4b85 700 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
453a9bf3 703#if MAX_NUMNODES > 1
f53d7ce3 704 if (unlikely(do_numainfo))
c0ff4b85 705 atomic_inc(&memcg->numainfo_events);
453a9bf3 706#endif
0a31bc97 707 }
d2265e6f
KH
708}
709
cf475ad2 710struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 711{
31a78f23
BS
712 /*
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
716 */
717 if (unlikely(!p))
718 return NULL;
719
073219e9 720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 721}
33398cf2 722EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 723
df381975 724static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 725{
c0ff4b85 726 struct mem_cgroup *memcg = NULL;
0b7f569e 727
54595fe2
KH
728 rcu_read_lock();
729 do {
6f6acb00
MH
730 /*
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
734 */
735 if (unlikely(!mm))
df381975 736 memcg = root_mem_cgroup;
6f6acb00
MH
737 else {
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
741 }
ec903c0c 742 } while (!css_tryget_online(&memcg->css));
54595fe2 743 rcu_read_unlock();
c0ff4b85 744 return memcg;
54595fe2
KH
745}
746
5660048c
JW
747/**
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 *
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
755 *
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
759 *
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
763 */
694fbc0f 764struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 765 struct mem_cgroup *prev,
694fbc0f 766 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 767{
33398cf2 768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 769 struct cgroup_subsys_state *css = NULL;
9f3a0d09 770 struct mem_cgroup *memcg = NULL;
5ac8fb31 771 struct mem_cgroup *pos = NULL;
711d3d2c 772
694fbc0f
AM
773 if (mem_cgroup_disabled())
774 return NULL;
5660048c 775
9f3a0d09
JW
776 if (!root)
777 root = root_mem_cgroup;
7d74b06f 778
9f3a0d09 779 if (prev && !reclaim)
5ac8fb31 780 pos = prev;
14067bb3 781
9f3a0d09
JW
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
783 if (prev)
5ac8fb31 784 goto out;
694fbc0f 785 return root;
9f3a0d09 786 }
14067bb3 787
542f85f9 788 rcu_read_lock();
5f578161 789
5ac8fb31 790 if (reclaim) {
ef8f2327 791 struct mem_cgroup_per_node *mz;
5ac8fb31 792
ef8f2327 793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
794 iter = &mz->iter[reclaim->priority];
795
796 if (prev && reclaim->generation != iter->generation)
797 goto out_unlock;
798
6df38689 799 while (1) {
4db0c3c2 800 pos = READ_ONCE(iter->position);
6df38689
VD
801 if (!pos || css_tryget(&pos->css))
802 break;
5ac8fb31 803 /*
6df38689
VD
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
809 * away.
5ac8fb31 810 */
6df38689
VD
811 (void)cmpxchg(&iter->position, pos, NULL);
812 }
5ac8fb31
JW
813 }
814
815 if (pos)
816 css = &pos->css;
817
818 for (;;) {
819 css = css_next_descendant_pre(css, &root->css);
820 if (!css) {
821 /*
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
826 */
827 if (!prev)
828 continue;
829 break;
527a5ec9 830 }
7d74b06f 831
5ac8fb31
JW
832 /*
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
836 */
837 memcg = mem_cgroup_from_css(css);
14067bb3 838
5ac8fb31
JW
839 if (css == &root->css)
840 break;
14067bb3 841
0b8f73e1
JW
842 if (css_tryget(css))
843 break;
9f3a0d09 844
5ac8fb31 845 memcg = NULL;
9f3a0d09 846 }
5ac8fb31
JW
847
848 if (reclaim) {
5ac8fb31 849 /*
6df38689
VD
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 853 */
6df38689
VD
854 (void)cmpxchg(&iter->position, pos, memcg);
855
5ac8fb31
JW
856 if (pos)
857 css_put(&pos->css);
858
859 if (!memcg)
860 iter->generation++;
861 else if (!prev)
862 reclaim->generation = iter->generation;
9f3a0d09 863 }
5ac8fb31 864
542f85f9
MH
865out_unlock:
866 rcu_read_unlock();
5ac8fb31 867out:
c40046f3
MH
868 if (prev && prev != root)
869 css_put(&prev->css);
870
9f3a0d09 871 return memcg;
14067bb3 872}
7d74b06f 873
5660048c
JW
874/**
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 */
879void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
9f3a0d09
JW
881{
882 if (!root)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
885 css_put(&prev->css);
886}
7d74b06f 887
6df38689
VD
888static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889{
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
892 struct mem_cgroup_per_node *mz;
893 int nid;
6df38689
VD
894 int i;
895
896 while ((memcg = parent_mem_cgroup(memcg))) {
897 for_each_node(nid) {
ef8f2327
MG
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
900 iter = &mz->iter[i];
901 cmpxchg(&iter->position,
902 dead_memcg, NULL);
6df38689
VD
903 }
904 }
905 }
906}
907
9f3a0d09
JW
908/*
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
912 */
913#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 915 iter != NULL; \
527a5ec9 916 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 917
9f3a0d09 918#define for_each_mem_cgroup(iter) \
527a5ec9 919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 920 iter != NULL; \
527a5ec9 921 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 922
7c5f64f8
VD
923/**
924 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
925 * @memcg: hierarchy root
926 * @fn: function to call for each task
927 * @arg: argument passed to @fn
928 *
929 * This function iterates over tasks attached to @memcg or to any of its
930 * descendants and calls @fn for each task. If @fn returns a non-zero
931 * value, the function breaks the iteration loop and returns the value.
932 * Otherwise, it will iterate over all tasks and return 0.
933 *
934 * This function must not be called for the root memory cgroup.
935 */
936int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
937 int (*fn)(struct task_struct *, void *), void *arg)
938{
939 struct mem_cgroup *iter;
940 int ret = 0;
941
942 BUG_ON(memcg == root_mem_cgroup);
943
944 for_each_mem_cgroup_tree(iter, memcg) {
945 struct css_task_iter it;
946 struct task_struct *task;
947
948 css_task_iter_start(&iter->css, &it);
949 while (!ret && (task = css_task_iter_next(&it)))
950 ret = fn(task, arg);
951 css_task_iter_end(&it);
952 if (ret) {
953 mem_cgroup_iter_break(memcg, iter);
954 break;
955 }
956 }
957 return ret;
958}
959
925b7673 960/**
dfe0e773 961 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 962 * @page: the page
fa9add64 963 * @zone: zone of the page
dfe0e773
JW
964 *
965 * This function is only safe when following the LRU page isolation
966 * and putback protocol: the LRU lock must be held, and the page must
967 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 968 */
599d0c95 969struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 970{
ef8f2327 971 struct mem_cgroup_per_node *mz;
925b7673 972 struct mem_cgroup *memcg;
bea8c150 973 struct lruvec *lruvec;
6d12e2d8 974
bea8c150 975 if (mem_cgroup_disabled()) {
599d0c95 976 lruvec = &pgdat->lruvec;
bea8c150
HD
977 goto out;
978 }
925b7673 979
1306a85a 980 memcg = page->mem_cgroup;
7512102c 981 /*
dfe0e773 982 * Swapcache readahead pages are added to the LRU - and
29833315 983 * possibly migrated - before they are charged.
7512102c 984 */
29833315
JW
985 if (!memcg)
986 memcg = root_mem_cgroup;
7512102c 987
ef8f2327 988 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
989 lruvec = &mz->lruvec;
990out:
991 /*
992 * Since a node can be onlined after the mem_cgroup was created,
993 * we have to be prepared to initialize lruvec->zone here;
994 * and if offlined then reonlined, we need to reinitialize it.
995 */
599d0c95
MG
996 if (unlikely(lruvec->pgdat != pgdat))
997 lruvec->pgdat = pgdat;
bea8c150 998 return lruvec;
08e552c6 999}
b69408e8 1000
925b7673 1001/**
fa9add64
HD
1002 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1003 * @lruvec: mem_cgroup per zone lru vector
1004 * @lru: index of lru list the page is sitting on
1005 * @nr_pages: positive when adding or negative when removing
925b7673 1006 *
ca707239
HD
1007 * This function must be called under lru_lock, just before a page is added
1008 * to or just after a page is removed from an lru list (that ordering being
1009 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1010 */
fa9add64 1011void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
7ee36a14 1012 int nr_pages)
3f58a829 1013{
ef8f2327 1014 struct mem_cgroup_per_node *mz;
fa9add64 1015 unsigned long *lru_size;
ca707239
HD
1016 long size;
1017 bool empty;
3f58a829
MK
1018
1019 if (mem_cgroup_disabled())
1020 return;
1021
ef8f2327 1022 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
fa9add64 1023 lru_size = mz->lru_size + lru;
ca707239
HD
1024 empty = list_empty(lruvec->lists + lru);
1025
1026 if (nr_pages < 0)
1027 *lru_size += nr_pages;
1028
1029 size = *lru_size;
1030 if (WARN_ONCE(size < 0 || empty != !size,
1031 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1032 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1033 VM_BUG_ON(1);
1034 *lru_size = 0;
1035 }
1036
1037 if (nr_pages > 0)
1038 *lru_size += nr_pages;
08e552c6 1039}
544122e5 1040
2314b42d 1041bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1042{
2314b42d 1043 struct mem_cgroup *task_memcg;
158e0a2d 1044 struct task_struct *p;
ffbdccf5 1045 bool ret;
4c4a2214 1046
158e0a2d 1047 p = find_lock_task_mm(task);
de077d22 1048 if (p) {
2314b42d 1049 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1050 task_unlock(p);
1051 } else {
1052 /*
1053 * All threads may have already detached their mm's, but the oom
1054 * killer still needs to detect if they have already been oom
1055 * killed to prevent needlessly killing additional tasks.
1056 */
ffbdccf5 1057 rcu_read_lock();
2314b42d
JW
1058 task_memcg = mem_cgroup_from_task(task);
1059 css_get(&task_memcg->css);
ffbdccf5 1060 rcu_read_unlock();
de077d22 1061 }
2314b42d
JW
1062 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1063 css_put(&task_memcg->css);
4c4a2214
DR
1064 return ret;
1065}
1066
19942822 1067/**
9d11ea9f 1068 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1069 * @memcg: the memory cgroup
19942822 1070 *
9d11ea9f 1071 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1072 * pages.
19942822 1073 */
c0ff4b85 1074static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1075{
3e32cb2e
JW
1076 unsigned long margin = 0;
1077 unsigned long count;
1078 unsigned long limit;
9d11ea9f 1079
3e32cb2e 1080 count = page_counter_read(&memcg->memory);
4db0c3c2 1081 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1082 if (count < limit)
1083 margin = limit - count;
1084
7941d214 1085 if (do_memsw_account()) {
3e32cb2e 1086 count = page_counter_read(&memcg->memsw);
4db0c3c2 1087 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1088 if (count <= limit)
1089 margin = min(margin, limit - count);
cbedbac3
LR
1090 else
1091 margin = 0;
3e32cb2e
JW
1092 }
1093
1094 return margin;
19942822
JW
1095}
1096
32047e2a 1097/*
bdcbb659 1098 * A routine for checking "mem" is under move_account() or not.
32047e2a 1099 *
bdcbb659
QH
1100 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101 * moving cgroups. This is for waiting at high-memory pressure
1102 * caused by "move".
32047e2a 1103 */
c0ff4b85 1104static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1105{
2bd9bb20
KH
1106 struct mem_cgroup *from;
1107 struct mem_cgroup *to;
4b534334 1108 bool ret = false;
2bd9bb20
KH
1109 /*
1110 * Unlike task_move routines, we access mc.to, mc.from not under
1111 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112 */
1113 spin_lock(&mc.lock);
1114 from = mc.from;
1115 to = mc.to;
1116 if (!from)
1117 goto unlock;
3e92041d 1118
2314b42d
JW
1119 ret = mem_cgroup_is_descendant(from, memcg) ||
1120 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1121unlock:
1122 spin_unlock(&mc.lock);
4b534334
KH
1123 return ret;
1124}
1125
c0ff4b85 1126static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1127{
1128 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1129 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1130 DEFINE_WAIT(wait);
1131 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132 /* moving charge context might have finished. */
1133 if (mc.moving_task)
1134 schedule();
1135 finish_wait(&mc.waitq, &wait);
1136 return true;
1137 }
1138 }
1139 return false;
1140}
1141
58cf188e 1142#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1143/**
58cf188e 1144 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1145 * @memcg: The memory cgroup that went over limit
1146 * @p: Task that is going to be killed
1147 *
1148 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149 * enabled
1150 */
1151void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152{
58cf188e
SZ
1153 struct mem_cgroup *iter;
1154 unsigned int i;
e222432b 1155
e222432b
BS
1156 rcu_read_lock();
1157
2415b9f5
BV
1158 if (p) {
1159 pr_info("Task in ");
1160 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1161 pr_cont(" killed as a result of limit of ");
1162 } else {
1163 pr_info("Memory limit reached of cgroup ");
1164 }
1165
e61734c5 1166 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1167 pr_cont("\n");
e222432b 1168
e222432b
BS
1169 rcu_read_unlock();
1170
3e32cb2e
JW
1171 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1172 K((u64)page_counter_read(&memcg->memory)),
1173 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1174 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1175 K((u64)page_counter_read(&memcg->memsw)),
1176 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1177 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1178 K((u64)page_counter_read(&memcg->kmem)),
1179 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1180
1181 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1182 pr_info("Memory cgroup stats for ");
1183 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1184 pr_cont(":");
1185
1186 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1187 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1188 continue;
484ebb3b 1189 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1190 K(mem_cgroup_read_stat(iter, i)));
1191 }
1192
1193 for (i = 0; i < NR_LRU_LISTS; i++)
1194 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1195 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1196
1197 pr_cont("\n");
1198 }
e222432b
BS
1199}
1200
81d39c20
KH
1201/*
1202 * This function returns the number of memcg under hierarchy tree. Returns
1203 * 1(self count) if no children.
1204 */
c0ff4b85 1205static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1206{
1207 int num = 0;
7d74b06f
KH
1208 struct mem_cgroup *iter;
1209
c0ff4b85 1210 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1211 num++;
81d39c20
KH
1212 return num;
1213}
1214
a63d83f4
DR
1215/*
1216 * Return the memory (and swap, if configured) limit for a memcg.
1217 */
7c5f64f8 1218unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1219{
3e32cb2e 1220 unsigned long limit;
f3e8eb70 1221
3e32cb2e 1222 limit = memcg->memory.limit;
9a5a8f19 1223 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1224 unsigned long memsw_limit;
37e84351 1225 unsigned long swap_limit;
9a5a8f19 1226
3e32cb2e 1227 memsw_limit = memcg->memsw.limit;
37e84351
VD
1228 swap_limit = memcg->swap.limit;
1229 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1230 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1231 }
9a5a8f19 1232 return limit;
a63d83f4
DR
1233}
1234
b6e6edcf 1235static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1236 int order)
9cbb78bb 1237{
6e0fc46d
DR
1238 struct oom_control oc = {
1239 .zonelist = NULL,
1240 .nodemask = NULL,
2a966b77 1241 .memcg = memcg,
6e0fc46d
DR
1242 .gfp_mask = gfp_mask,
1243 .order = order,
6e0fc46d 1244 };
7c5f64f8 1245 bool ret;
9cbb78bb 1246
dc56401f 1247 mutex_lock(&oom_lock);
7c5f64f8 1248 ret = out_of_memory(&oc);
dc56401f 1249 mutex_unlock(&oom_lock);
7c5f64f8 1250 return ret;
9cbb78bb
DR
1251}
1252
ae6e71d3
MC
1253#if MAX_NUMNODES > 1
1254
4d0c066d
KH
1255/**
1256 * test_mem_cgroup_node_reclaimable
dad7557e 1257 * @memcg: the target memcg
4d0c066d
KH
1258 * @nid: the node ID to be checked.
1259 * @noswap : specify true here if the user wants flle only information.
1260 *
1261 * This function returns whether the specified memcg contains any
1262 * reclaimable pages on a node. Returns true if there are any reclaimable
1263 * pages in the node.
1264 */
c0ff4b85 1265static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1266 int nid, bool noswap)
1267{
c0ff4b85 1268 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1269 return true;
1270 if (noswap || !total_swap_pages)
1271 return false;
c0ff4b85 1272 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1273 return true;
1274 return false;
1275
1276}
889976db
YH
1277
1278/*
1279 * Always updating the nodemask is not very good - even if we have an empty
1280 * list or the wrong list here, we can start from some node and traverse all
1281 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1282 *
1283 */
c0ff4b85 1284static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1285{
1286 int nid;
453a9bf3
KH
1287 /*
1288 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1289 * pagein/pageout changes since the last update.
1290 */
c0ff4b85 1291 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1292 return;
c0ff4b85 1293 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1294 return;
1295
889976db 1296 /* make a nodemask where this memcg uses memory from */
31aaea4a 1297 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1298
31aaea4a 1299 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1300
c0ff4b85
R
1301 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1302 node_clear(nid, memcg->scan_nodes);
889976db 1303 }
453a9bf3 1304
c0ff4b85
R
1305 atomic_set(&memcg->numainfo_events, 0);
1306 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1307}
1308
1309/*
1310 * Selecting a node where we start reclaim from. Because what we need is just
1311 * reducing usage counter, start from anywhere is O,K. Considering
1312 * memory reclaim from current node, there are pros. and cons.
1313 *
1314 * Freeing memory from current node means freeing memory from a node which
1315 * we'll use or we've used. So, it may make LRU bad. And if several threads
1316 * hit limits, it will see a contention on a node. But freeing from remote
1317 * node means more costs for memory reclaim because of memory latency.
1318 *
1319 * Now, we use round-robin. Better algorithm is welcomed.
1320 */
c0ff4b85 1321int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1322{
1323 int node;
1324
c0ff4b85
R
1325 mem_cgroup_may_update_nodemask(memcg);
1326 node = memcg->last_scanned_node;
889976db 1327
0edaf86c 1328 node = next_node_in(node, memcg->scan_nodes);
889976db 1329 /*
fda3d69b
MH
1330 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1331 * last time it really checked all the LRUs due to rate limiting.
1332 * Fallback to the current node in that case for simplicity.
889976db
YH
1333 */
1334 if (unlikely(node == MAX_NUMNODES))
1335 node = numa_node_id();
1336
c0ff4b85 1337 memcg->last_scanned_node = node;
889976db
YH
1338 return node;
1339}
889976db 1340#else
c0ff4b85 1341int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1342{
1343 return 0;
1344}
1345#endif
1346
0608f43d 1347static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1348 pg_data_t *pgdat,
0608f43d
AM
1349 gfp_t gfp_mask,
1350 unsigned long *total_scanned)
1351{
1352 struct mem_cgroup *victim = NULL;
1353 int total = 0;
1354 int loop = 0;
1355 unsigned long excess;
1356 unsigned long nr_scanned;
1357 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1358 .pgdat = pgdat,
0608f43d
AM
1359 .priority = 0,
1360 };
1361
3e32cb2e 1362 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1363
1364 while (1) {
1365 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1366 if (!victim) {
1367 loop++;
1368 if (loop >= 2) {
1369 /*
1370 * If we have not been able to reclaim
1371 * anything, it might because there are
1372 * no reclaimable pages under this hierarchy
1373 */
1374 if (!total)
1375 break;
1376 /*
1377 * We want to do more targeted reclaim.
1378 * excess >> 2 is not to excessive so as to
1379 * reclaim too much, nor too less that we keep
1380 * coming back to reclaim from this cgroup
1381 */
1382 if (total >= (excess >> 2) ||
1383 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1384 break;
1385 }
1386 continue;
1387 }
a9dd0a83 1388 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1389 pgdat, &nr_scanned);
0608f43d 1390 *total_scanned += nr_scanned;
3e32cb2e 1391 if (!soft_limit_excess(root_memcg))
0608f43d 1392 break;
6d61ef40 1393 }
0608f43d
AM
1394 mem_cgroup_iter_break(root_memcg, victim);
1395 return total;
6d61ef40
BS
1396}
1397
0056f4e6
JW
1398#ifdef CONFIG_LOCKDEP
1399static struct lockdep_map memcg_oom_lock_dep_map = {
1400 .name = "memcg_oom_lock",
1401};
1402#endif
1403
fb2a6fc5
JW
1404static DEFINE_SPINLOCK(memcg_oom_lock);
1405
867578cb
KH
1406/*
1407 * Check OOM-Killer is already running under our hierarchy.
1408 * If someone is running, return false.
1409 */
fb2a6fc5 1410static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1411{
79dfdacc 1412 struct mem_cgroup *iter, *failed = NULL;
a636b327 1413
fb2a6fc5
JW
1414 spin_lock(&memcg_oom_lock);
1415
9f3a0d09 1416 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1417 if (iter->oom_lock) {
79dfdacc
MH
1418 /*
1419 * this subtree of our hierarchy is already locked
1420 * so we cannot give a lock.
1421 */
79dfdacc 1422 failed = iter;
9f3a0d09
JW
1423 mem_cgroup_iter_break(memcg, iter);
1424 break;
23751be0
JW
1425 } else
1426 iter->oom_lock = true;
7d74b06f 1427 }
867578cb 1428
fb2a6fc5
JW
1429 if (failed) {
1430 /*
1431 * OK, we failed to lock the whole subtree so we have
1432 * to clean up what we set up to the failing subtree
1433 */
1434 for_each_mem_cgroup_tree(iter, memcg) {
1435 if (iter == failed) {
1436 mem_cgroup_iter_break(memcg, iter);
1437 break;
1438 }
1439 iter->oom_lock = false;
79dfdacc 1440 }
0056f4e6
JW
1441 } else
1442 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1443
1444 spin_unlock(&memcg_oom_lock);
1445
1446 return !failed;
a636b327 1447}
0b7f569e 1448
fb2a6fc5 1449static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1450{
7d74b06f
KH
1451 struct mem_cgroup *iter;
1452
fb2a6fc5 1453 spin_lock(&memcg_oom_lock);
0056f4e6 1454 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1455 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1456 iter->oom_lock = false;
fb2a6fc5 1457 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1458}
1459
c0ff4b85 1460static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1461{
1462 struct mem_cgroup *iter;
1463
c2b42d3c 1464 spin_lock(&memcg_oom_lock);
c0ff4b85 1465 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1466 iter->under_oom++;
1467 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1468}
1469
c0ff4b85 1470static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1471{
1472 struct mem_cgroup *iter;
1473
867578cb
KH
1474 /*
1475 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1476 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1477 */
c2b42d3c 1478 spin_lock(&memcg_oom_lock);
c0ff4b85 1479 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1480 if (iter->under_oom > 0)
1481 iter->under_oom--;
1482 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1483}
1484
867578cb
KH
1485static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1486
dc98df5a 1487struct oom_wait_info {
d79154bb 1488 struct mem_cgroup *memcg;
dc98df5a
KH
1489 wait_queue_t wait;
1490};
1491
1492static int memcg_oom_wake_function(wait_queue_t *wait,
1493 unsigned mode, int sync, void *arg)
1494{
d79154bb
HD
1495 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1496 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1497 struct oom_wait_info *oom_wait_info;
1498
1499 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1500 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1501
2314b42d
JW
1502 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1503 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1504 return 0;
dc98df5a
KH
1505 return autoremove_wake_function(wait, mode, sync, arg);
1506}
1507
c0ff4b85 1508static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1509{
c2b42d3c
TH
1510 /*
1511 * For the following lockless ->under_oom test, the only required
1512 * guarantee is that it must see the state asserted by an OOM when
1513 * this function is called as a result of userland actions
1514 * triggered by the notification of the OOM. This is trivially
1515 * achieved by invoking mem_cgroup_mark_under_oom() before
1516 * triggering notification.
1517 */
1518 if (memcg && memcg->under_oom)
f4b90b70 1519 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1520}
1521
3812c8c8 1522static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1523{
d0db7afa 1524 if (!current->memcg_may_oom)
3812c8c8 1525 return;
867578cb 1526 /*
49426420
JW
1527 * We are in the middle of the charge context here, so we
1528 * don't want to block when potentially sitting on a callstack
1529 * that holds all kinds of filesystem and mm locks.
1530 *
1531 * Also, the caller may handle a failed allocation gracefully
1532 * (like optional page cache readahead) and so an OOM killer
1533 * invocation might not even be necessary.
1534 *
1535 * That's why we don't do anything here except remember the
1536 * OOM context and then deal with it at the end of the page
1537 * fault when the stack is unwound, the locks are released,
1538 * and when we know whether the fault was overall successful.
867578cb 1539 */
49426420 1540 css_get(&memcg->css);
626ebc41
TH
1541 current->memcg_in_oom = memcg;
1542 current->memcg_oom_gfp_mask = mask;
1543 current->memcg_oom_order = order;
3812c8c8
JW
1544}
1545
1546/**
1547 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1548 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1549 *
49426420
JW
1550 * This has to be called at the end of a page fault if the memcg OOM
1551 * handler was enabled.
3812c8c8 1552 *
49426420 1553 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1554 * sleep on a waitqueue until the userspace task resolves the
1555 * situation. Sleeping directly in the charge context with all kinds
1556 * of locks held is not a good idea, instead we remember an OOM state
1557 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1558 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1559 *
1560 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1561 * completed, %false otherwise.
3812c8c8 1562 */
49426420 1563bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1564{
626ebc41 1565 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1566 struct oom_wait_info owait;
49426420 1567 bool locked;
3812c8c8
JW
1568
1569 /* OOM is global, do not handle */
3812c8c8 1570 if (!memcg)
49426420 1571 return false;
3812c8c8 1572
7c5f64f8 1573 if (!handle)
49426420 1574 goto cleanup;
3812c8c8
JW
1575
1576 owait.memcg = memcg;
1577 owait.wait.flags = 0;
1578 owait.wait.func = memcg_oom_wake_function;
1579 owait.wait.private = current;
1580 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1581
3812c8c8 1582 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1583 mem_cgroup_mark_under_oom(memcg);
1584
1585 locked = mem_cgroup_oom_trylock(memcg);
1586
1587 if (locked)
1588 mem_cgroup_oom_notify(memcg);
1589
1590 if (locked && !memcg->oom_kill_disable) {
1591 mem_cgroup_unmark_under_oom(memcg);
1592 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1593 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1594 current->memcg_oom_order);
49426420 1595 } else {
3812c8c8 1596 schedule();
49426420
JW
1597 mem_cgroup_unmark_under_oom(memcg);
1598 finish_wait(&memcg_oom_waitq, &owait.wait);
1599 }
1600
1601 if (locked) {
fb2a6fc5
JW
1602 mem_cgroup_oom_unlock(memcg);
1603 /*
1604 * There is no guarantee that an OOM-lock contender
1605 * sees the wakeups triggered by the OOM kill
1606 * uncharges. Wake any sleepers explicitely.
1607 */
1608 memcg_oom_recover(memcg);
1609 }
49426420 1610cleanup:
626ebc41 1611 current->memcg_in_oom = NULL;
3812c8c8 1612 css_put(&memcg->css);
867578cb 1613 return true;
0b7f569e
KH
1614}
1615
d7365e78 1616/**
81f8c3a4
JW
1617 * lock_page_memcg - lock a page->mem_cgroup binding
1618 * @page: the page
32047e2a 1619 *
81f8c3a4
JW
1620 * This function protects unlocked LRU pages from being moved to
1621 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1622 */
62cccb8c 1623void lock_page_memcg(struct page *page)
89c06bd5
KH
1624{
1625 struct mem_cgroup *memcg;
6de22619 1626 unsigned long flags;
89c06bd5 1627
6de22619
JW
1628 /*
1629 * The RCU lock is held throughout the transaction. The fast
1630 * path can get away without acquiring the memcg->move_lock
1631 * because page moving starts with an RCU grace period.
6de22619 1632 */
d7365e78
JW
1633 rcu_read_lock();
1634
1635 if (mem_cgroup_disabled())
62cccb8c 1636 return;
89c06bd5 1637again:
1306a85a 1638 memcg = page->mem_cgroup;
29833315 1639 if (unlikely(!memcg))
62cccb8c 1640 return;
d7365e78 1641
bdcbb659 1642 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1643 return;
89c06bd5 1644
6de22619 1645 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1646 if (memcg != page->mem_cgroup) {
6de22619 1647 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1648 goto again;
1649 }
6de22619
JW
1650
1651 /*
1652 * When charge migration first begins, we can have locked and
1653 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1654 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1655 */
1656 memcg->move_lock_task = current;
1657 memcg->move_lock_flags = flags;
d7365e78 1658
62cccb8c 1659 return;
89c06bd5 1660}
81f8c3a4 1661EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1662
d7365e78 1663/**
81f8c3a4 1664 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1665 * @page: the page
d7365e78 1666 */
62cccb8c 1667void unlock_page_memcg(struct page *page)
89c06bd5 1668{
62cccb8c
JW
1669 struct mem_cgroup *memcg = page->mem_cgroup;
1670
6de22619
JW
1671 if (memcg && memcg->move_lock_task == current) {
1672 unsigned long flags = memcg->move_lock_flags;
1673
1674 memcg->move_lock_task = NULL;
1675 memcg->move_lock_flags = 0;
1676
1677 spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 }
89c06bd5 1679
d7365e78 1680 rcu_read_unlock();
89c06bd5 1681}
81f8c3a4 1682EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1683
cdec2e42
KH
1684/*
1685 * size of first charge trial. "32" comes from vmscan.c's magic value.
1686 * TODO: maybe necessary to use big numbers in big irons.
1687 */
7ec99d62 1688#define CHARGE_BATCH 32U
cdec2e42
KH
1689struct memcg_stock_pcp {
1690 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1691 unsigned int nr_pages;
cdec2e42 1692 struct work_struct work;
26fe6168 1693 unsigned long flags;
a0db00fc 1694#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1695};
1696static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1697static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1698
a0956d54
SS
1699/**
1700 * consume_stock: Try to consume stocked charge on this cpu.
1701 * @memcg: memcg to consume from.
1702 * @nr_pages: how many pages to charge.
1703 *
1704 * The charges will only happen if @memcg matches the current cpu's memcg
1705 * stock, and at least @nr_pages are available in that stock. Failure to
1706 * service an allocation will refill the stock.
1707 *
1708 * returns true if successful, false otherwise.
cdec2e42 1709 */
a0956d54 1710static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1711{
1712 struct memcg_stock_pcp *stock;
db2ba40c 1713 unsigned long flags;
3e32cb2e 1714 bool ret = false;
cdec2e42 1715
a0956d54 1716 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1717 return ret;
a0956d54 1718
db2ba40c
JW
1719 local_irq_save(flags);
1720
1721 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1722 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1723 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1724 ret = true;
1725 }
db2ba40c
JW
1726
1727 local_irq_restore(flags);
1728
cdec2e42
KH
1729 return ret;
1730}
1731
1732/*
3e32cb2e 1733 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1734 */
1735static void drain_stock(struct memcg_stock_pcp *stock)
1736{
1737 struct mem_cgroup *old = stock->cached;
1738
11c9ea4e 1739 if (stock->nr_pages) {
3e32cb2e 1740 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1741 if (do_memsw_account())
3e32cb2e 1742 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1743 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1744 stock->nr_pages = 0;
cdec2e42
KH
1745 }
1746 stock->cached = NULL;
cdec2e42
KH
1747}
1748
cdec2e42
KH
1749static void drain_local_stock(struct work_struct *dummy)
1750{
db2ba40c
JW
1751 struct memcg_stock_pcp *stock;
1752 unsigned long flags;
1753
1754 local_irq_save(flags);
1755
1756 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1757 drain_stock(stock);
26fe6168 1758 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1759
1760 local_irq_restore(flags);
cdec2e42
KH
1761}
1762
1763/*
3e32cb2e 1764 * Cache charges(val) to local per_cpu area.
320cc51d 1765 * This will be consumed by consume_stock() function, later.
cdec2e42 1766 */
c0ff4b85 1767static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1768{
db2ba40c
JW
1769 struct memcg_stock_pcp *stock;
1770 unsigned long flags;
1771
1772 local_irq_save(flags);
cdec2e42 1773
db2ba40c 1774 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1775 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1776 drain_stock(stock);
c0ff4b85 1777 stock->cached = memcg;
cdec2e42 1778 }
11c9ea4e 1779 stock->nr_pages += nr_pages;
db2ba40c
JW
1780
1781 local_irq_restore(flags);
cdec2e42
KH
1782}
1783
1784/*
c0ff4b85 1785 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1786 * of the hierarchy under it.
cdec2e42 1787 */
6d3d6aa2 1788static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1789{
26fe6168 1790 int cpu, curcpu;
d38144b7 1791
6d3d6aa2
JW
1792 /* If someone's already draining, avoid adding running more workers. */
1793 if (!mutex_trylock(&percpu_charge_mutex))
1794 return;
cdec2e42 1795 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1796 get_online_cpus();
5af12d0e 1797 curcpu = get_cpu();
cdec2e42
KH
1798 for_each_online_cpu(cpu) {
1799 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1800 struct mem_cgroup *memcg;
26fe6168 1801
c0ff4b85
R
1802 memcg = stock->cached;
1803 if (!memcg || !stock->nr_pages)
26fe6168 1804 continue;
2314b42d 1805 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1806 continue;
d1a05b69
MH
1807 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1808 if (cpu == curcpu)
1809 drain_local_stock(&stock->work);
1810 else
1811 schedule_work_on(cpu, &stock->work);
1812 }
cdec2e42 1813 }
5af12d0e 1814 put_cpu();
f894ffa8 1815 put_online_cpus();
9f50fad6 1816 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1817}
1818
0db0628d 1819static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1820 unsigned long action,
1821 void *hcpu)
1822{
1823 int cpu = (unsigned long)hcpu;
1824 struct memcg_stock_pcp *stock;
1825
619d094b 1826 if (action == CPU_ONLINE)
1489ebad 1827 return NOTIFY_OK;
1489ebad 1828
d833049b 1829 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1830 return NOTIFY_OK;
711d3d2c 1831
cdec2e42
KH
1832 stock = &per_cpu(memcg_stock, cpu);
1833 drain_stock(stock);
1834 return NOTIFY_OK;
1835}
1836
f7e1cb6e
JW
1837static void reclaim_high(struct mem_cgroup *memcg,
1838 unsigned int nr_pages,
1839 gfp_t gfp_mask)
1840{
1841 do {
1842 if (page_counter_read(&memcg->memory) <= memcg->high)
1843 continue;
1844 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1845 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1846 } while ((memcg = parent_mem_cgroup(memcg)));
1847}
1848
1849static void high_work_func(struct work_struct *work)
1850{
1851 struct mem_cgroup *memcg;
1852
1853 memcg = container_of(work, struct mem_cgroup, high_work);
1854 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1855}
1856
b23afb93
TH
1857/*
1858 * Scheduled by try_charge() to be executed from the userland return path
1859 * and reclaims memory over the high limit.
1860 */
1861void mem_cgroup_handle_over_high(void)
1862{
1863 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1864 struct mem_cgroup *memcg;
b23afb93
TH
1865
1866 if (likely(!nr_pages))
1867 return;
1868
f7e1cb6e
JW
1869 memcg = get_mem_cgroup_from_mm(current->mm);
1870 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1871 css_put(&memcg->css);
1872 current->memcg_nr_pages_over_high = 0;
1873}
1874
00501b53
JW
1875static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1876 unsigned int nr_pages)
8a9f3ccd 1877{
7ec99d62 1878 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1879 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1880 struct mem_cgroup *mem_over_limit;
3e32cb2e 1881 struct page_counter *counter;
6539cc05 1882 unsigned long nr_reclaimed;
b70a2a21
JW
1883 bool may_swap = true;
1884 bool drained = false;
a636b327 1885
ce00a967 1886 if (mem_cgroup_is_root(memcg))
10d53c74 1887 return 0;
6539cc05 1888retry:
b6b6cc72 1889 if (consume_stock(memcg, nr_pages))
10d53c74 1890 return 0;
8a9f3ccd 1891
7941d214 1892 if (!do_memsw_account() ||
6071ca52
JW
1893 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1894 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1895 goto done_restock;
7941d214 1896 if (do_memsw_account())
3e32cb2e
JW
1897 page_counter_uncharge(&memcg->memsw, batch);
1898 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1899 } else {
3e32cb2e 1900 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1901 may_swap = false;
3fbe7244 1902 }
7a81b88c 1903
6539cc05
JW
1904 if (batch > nr_pages) {
1905 batch = nr_pages;
1906 goto retry;
1907 }
6d61ef40 1908
06b078fc
JW
1909 /*
1910 * Unlike in global OOM situations, memcg is not in a physical
1911 * memory shortage. Allow dying and OOM-killed tasks to
1912 * bypass the last charges so that they can exit quickly and
1913 * free their memory.
1914 */
1915 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1916 fatal_signal_pending(current) ||
1917 current->flags & PF_EXITING))
10d53c74 1918 goto force;
06b078fc 1919
89a28483
JW
1920 /*
1921 * Prevent unbounded recursion when reclaim operations need to
1922 * allocate memory. This might exceed the limits temporarily,
1923 * but we prefer facilitating memory reclaim and getting back
1924 * under the limit over triggering OOM kills in these cases.
1925 */
1926 if (unlikely(current->flags & PF_MEMALLOC))
1927 goto force;
1928
06b078fc
JW
1929 if (unlikely(task_in_memcg_oom(current)))
1930 goto nomem;
1931
d0164adc 1932 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1933 goto nomem;
4b534334 1934
241994ed
JW
1935 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1936
b70a2a21
JW
1937 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1938 gfp_mask, may_swap);
6539cc05 1939
61e02c74 1940 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1941 goto retry;
28c34c29 1942
b70a2a21 1943 if (!drained) {
6d3d6aa2 1944 drain_all_stock(mem_over_limit);
b70a2a21
JW
1945 drained = true;
1946 goto retry;
1947 }
1948
28c34c29
JW
1949 if (gfp_mask & __GFP_NORETRY)
1950 goto nomem;
6539cc05
JW
1951 /*
1952 * Even though the limit is exceeded at this point, reclaim
1953 * may have been able to free some pages. Retry the charge
1954 * before killing the task.
1955 *
1956 * Only for regular pages, though: huge pages are rather
1957 * unlikely to succeed so close to the limit, and we fall back
1958 * to regular pages anyway in case of failure.
1959 */
61e02c74 1960 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1961 goto retry;
1962 /*
1963 * At task move, charge accounts can be doubly counted. So, it's
1964 * better to wait until the end of task_move if something is going on.
1965 */
1966 if (mem_cgroup_wait_acct_move(mem_over_limit))
1967 goto retry;
1968
9b130619
JW
1969 if (nr_retries--)
1970 goto retry;
1971
06b078fc 1972 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1973 goto force;
06b078fc 1974
6539cc05 1975 if (fatal_signal_pending(current))
10d53c74 1976 goto force;
6539cc05 1977
241994ed
JW
1978 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1979
3608de07
JM
1980 mem_cgroup_oom(mem_over_limit, gfp_mask,
1981 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1982nomem:
6d1fdc48 1983 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 1984 return -ENOMEM;
10d53c74
TH
1985force:
1986 /*
1987 * The allocation either can't fail or will lead to more memory
1988 * being freed very soon. Allow memory usage go over the limit
1989 * temporarily by force charging it.
1990 */
1991 page_counter_charge(&memcg->memory, nr_pages);
7941d214 1992 if (do_memsw_account())
10d53c74
TH
1993 page_counter_charge(&memcg->memsw, nr_pages);
1994 css_get_many(&memcg->css, nr_pages);
1995
1996 return 0;
6539cc05
JW
1997
1998done_restock:
e8ea14cc 1999 css_get_many(&memcg->css, batch);
6539cc05
JW
2000 if (batch > nr_pages)
2001 refill_stock(memcg, batch - nr_pages);
b23afb93 2002
241994ed 2003 /*
b23afb93
TH
2004 * If the hierarchy is above the normal consumption range, schedule
2005 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2006 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2007 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2008 * not recorded as it most likely matches current's and won't
2009 * change in the meantime. As high limit is checked again before
2010 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2011 */
2012 do {
b23afb93 2013 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2014 /* Don't bother a random interrupted task */
2015 if (in_interrupt()) {
2016 schedule_work(&memcg->high_work);
2017 break;
2018 }
9516a18a 2019 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2020 set_notify_resume(current);
2021 break;
2022 }
241994ed 2023 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2024
2025 return 0;
7a81b88c 2026}
8a9f3ccd 2027
00501b53 2028static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2029{
ce00a967
JW
2030 if (mem_cgroup_is_root(memcg))
2031 return;
2032
3e32cb2e 2033 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2034 if (do_memsw_account())
3e32cb2e 2035 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2036
e8ea14cc 2037 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2038}
2039
0a31bc97
JW
2040static void lock_page_lru(struct page *page, int *isolated)
2041{
2042 struct zone *zone = page_zone(page);
2043
a52633d8 2044 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2045 if (PageLRU(page)) {
2046 struct lruvec *lruvec;
2047
599d0c95 2048 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2049 ClearPageLRU(page);
2050 del_page_from_lru_list(page, lruvec, page_lru(page));
2051 *isolated = 1;
2052 } else
2053 *isolated = 0;
2054}
2055
2056static void unlock_page_lru(struct page *page, int isolated)
2057{
2058 struct zone *zone = page_zone(page);
2059
2060 if (isolated) {
2061 struct lruvec *lruvec;
2062
599d0c95 2063 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2064 VM_BUG_ON_PAGE(PageLRU(page), page);
2065 SetPageLRU(page);
2066 add_page_to_lru_list(page, lruvec, page_lru(page));
2067 }
a52633d8 2068 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2069}
2070
00501b53 2071static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2072 bool lrucare)
7a81b88c 2073{
0a31bc97 2074 int isolated;
9ce70c02 2075
1306a85a 2076 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2077
2078 /*
2079 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2080 * may already be on some other mem_cgroup's LRU. Take care of it.
2081 */
0a31bc97
JW
2082 if (lrucare)
2083 lock_page_lru(page, &isolated);
9ce70c02 2084
0a31bc97
JW
2085 /*
2086 * Nobody should be changing or seriously looking at
1306a85a 2087 * page->mem_cgroup at this point:
0a31bc97
JW
2088 *
2089 * - the page is uncharged
2090 *
2091 * - the page is off-LRU
2092 *
2093 * - an anonymous fault has exclusive page access, except for
2094 * a locked page table
2095 *
2096 * - a page cache insertion, a swapin fault, or a migration
2097 * have the page locked
2098 */
1306a85a 2099 page->mem_cgroup = memcg;
9ce70c02 2100
0a31bc97
JW
2101 if (lrucare)
2102 unlock_page_lru(page, isolated);
7a81b88c 2103}
66e1707b 2104
127424c8 2105#ifndef CONFIG_SLOB
f3bb3043 2106static int memcg_alloc_cache_id(void)
55007d84 2107{
f3bb3043
VD
2108 int id, size;
2109 int err;
2110
dbcf73e2 2111 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2112 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2113 if (id < 0)
2114 return id;
55007d84 2115
dbcf73e2 2116 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2117 return id;
2118
2119 /*
2120 * There's no space for the new id in memcg_caches arrays,
2121 * so we have to grow them.
2122 */
05257a1a 2123 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2124
2125 size = 2 * (id + 1);
55007d84
GC
2126 if (size < MEMCG_CACHES_MIN_SIZE)
2127 size = MEMCG_CACHES_MIN_SIZE;
2128 else if (size > MEMCG_CACHES_MAX_SIZE)
2129 size = MEMCG_CACHES_MAX_SIZE;
2130
f3bb3043 2131 err = memcg_update_all_caches(size);
60d3fd32
VD
2132 if (!err)
2133 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2134 if (!err)
2135 memcg_nr_cache_ids = size;
2136
2137 up_write(&memcg_cache_ids_sem);
2138
f3bb3043 2139 if (err) {
dbcf73e2 2140 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2141 return err;
2142 }
2143 return id;
2144}
2145
2146static void memcg_free_cache_id(int id)
2147{
dbcf73e2 2148 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2149}
2150
d5b3cf71 2151struct memcg_kmem_cache_create_work {
5722d094
VD
2152 struct mem_cgroup *memcg;
2153 struct kmem_cache *cachep;
2154 struct work_struct work;
2155};
2156
d5b3cf71 2157static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2158{
d5b3cf71
VD
2159 struct memcg_kmem_cache_create_work *cw =
2160 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2161 struct mem_cgroup *memcg = cw->memcg;
2162 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2163
d5b3cf71 2164 memcg_create_kmem_cache(memcg, cachep);
bd673145 2165
5722d094 2166 css_put(&memcg->css);
d7f25f8a
GC
2167 kfree(cw);
2168}
2169
2170/*
2171 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2172 */
d5b3cf71
VD
2173static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2174 struct kmem_cache *cachep)
d7f25f8a 2175{
d5b3cf71 2176 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2177
776ed0f0 2178 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2179 if (!cw)
d7f25f8a 2180 return;
8135be5a
VD
2181
2182 css_get(&memcg->css);
d7f25f8a
GC
2183
2184 cw->memcg = memcg;
2185 cw->cachep = cachep;
d5b3cf71 2186 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2187
d7f25f8a
GC
2188 schedule_work(&cw->work);
2189}
2190
d5b3cf71
VD
2191static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2192 struct kmem_cache *cachep)
0e9d92f2
GC
2193{
2194 /*
2195 * We need to stop accounting when we kmalloc, because if the
2196 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2197 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2198 *
2199 * However, it is better to enclose the whole function. Depending on
2200 * the debugging options enabled, INIT_WORK(), for instance, can
2201 * trigger an allocation. This too, will make us recurse. Because at
2202 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2203 * the safest choice is to do it like this, wrapping the whole function.
2204 */
6f185c29 2205 current->memcg_kmem_skip_account = 1;
d5b3cf71 2206 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2207 current->memcg_kmem_skip_account = 0;
0e9d92f2 2208}
c67a8a68 2209
45264778
VD
2210static inline bool memcg_kmem_bypass(void)
2211{
2212 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2213 return true;
2214 return false;
2215}
2216
2217/**
2218 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2219 * @cachep: the original global kmem cache
2220 *
d7f25f8a
GC
2221 * Return the kmem_cache we're supposed to use for a slab allocation.
2222 * We try to use the current memcg's version of the cache.
2223 *
45264778
VD
2224 * If the cache does not exist yet, if we are the first user of it, we
2225 * create it asynchronously in a workqueue and let the current allocation
2226 * go through with the original cache.
d7f25f8a 2227 *
45264778
VD
2228 * This function takes a reference to the cache it returns to assure it
2229 * won't get destroyed while we are working with it. Once the caller is
2230 * done with it, memcg_kmem_put_cache() must be called to release the
2231 * reference.
d7f25f8a 2232 */
45264778 2233struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2234{
2235 struct mem_cgroup *memcg;
959c8963 2236 struct kmem_cache *memcg_cachep;
2a4db7eb 2237 int kmemcg_id;
d7f25f8a 2238
f7ce3190 2239 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2240
45264778 2241 if (memcg_kmem_bypass())
230e9fc2
VD
2242 return cachep;
2243
9d100c5e 2244 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2245 return cachep;
2246
8135be5a 2247 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2248 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2249 if (kmemcg_id < 0)
ca0dde97 2250 goto out;
d7f25f8a 2251
2a4db7eb 2252 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2253 if (likely(memcg_cachep))
2254 return memcg_cachep;
ca0dde97
LZ
2255
2256 /*
2257 * If we are in a safe context (can wait, and not in interrupt
2258 * context), we could be be predictable and return right away.
2259 * This would guarantee that the allocation being performed
2260 * already belongs in the new cache.
2261 *
2262 * However, there are some clashes that can arrive from locking.
2263 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2264 * memcg_create_kmem_cache, this means no further allocation
2265 * could happen with the slab_mutex held. So it's better to
2266 * defer everything.
ca0dde97 2267 */
d5b3cf71 2268 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2269out:
8135be5a 2270 css_put(&memcg->css);
ca0dde97 2271 return cachep;
d7f25f8a 2272}
d7f25f8a 2273
45264778
VD
2274/**
2275 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2276 * @cachep: the cache returned by memcg_kmem_get_cache
2277 */
2278void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2279{
2280 if (!is_root_cache(cachep))
f7ce3190 2281 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2282}
2283
45264778
VD
2284/**
2285 * memcg_kmem_charge: charge a kmem page
2286 * @page: page to charge
2287 * @gfp: reclaim mode
2288 * @order: allocation order
2289 * @memcg: memory cgroup to charge
2290 *
2291 * Returns 0 on success, an error code on failure.
2292 */
2293int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2294 struct mem_cgroup *memcg)
7ae1e1d0 2295{
f3ccb2c4
VD
2296 unsigned int nr_pages = 1 << order;
2297 struct page_counter *counter;
7ae1e1d0
GC
2298 int ret;
2299
f3ccb2c4 2300 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2301 if (ret)
f3ccb2c4 2302 return ret;
52c29b04
JW
2303
2304 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2305 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2306 cancel_charge(memcg, nr_pages);
2307 return -ENOMEM;
7ae1e1d0
GC
2308 }
2309
f3ccb2c4 2310 page->mem_cgroup = memcg;
7ae1e1d0 2311
f3ccb2c4 2312 return 0;
7ae1e1d0
GC
2313}
2314
45264778
VD
2315/**
2316 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2317 * @page: page to charge
2318 * @gfp: reclaim mode
2319 * @order: allocation order
2320 *
2321 * Returns 0 on success, an error code on failure.
2322 */
2323int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2324{
f3ccb2c4 2325 struct mem_cgroup *memcg;
fcff7d7e 2326 int ret = 0;
7ae1e1d0 2327
45264778
VD
2328 if (memcg_kmem_bypass())
2329 return 0;
2330
f3ccb2c4 2331 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2332 if (!mem_cgroup_is_root(memcg)) {
45264778 2333 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2334 if (!ret)
2335 __SetPageKmemcg(page);
2336 }
7ae1e1d0 2337 css_put(&memcg->css);
d05e83a6 2338 return ret;
7ae1e1d0 2339}
45264778
VD
2340/**
2341 * memcg_kmem_uncharge: uncharge a kmem page
2342 * @page: page to uncharge
2343 * @order: allocation order
2344 */
2345void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2346{
1306a85a 2347 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2348 unsigned int nr_pages = 1 << order;
7ae1e1d0 2349
7ae1e1d0
GC
2350 if (!memcg)
2351 return;
2352
309381fe 2353 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2354
52c29b04
JW
2355 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2356 page_counter_uncharge(&memcg->kmem, nr_pages);
2357
f3ccb2c4 2358 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2359 if (do_memsw_account())
f3ccb2c4 2360 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2361
1306a85a 2362 page->mem_cgroup = NULL;
c4159a75
VD
2363
2364 /* slab pages do not have PageKmemcg flag set */
2365 if (PageKmemcg(page))
2366 __ClearPageKmemcg(page);
2367
f3ccb2c4 2368 css_put_many(&memcg->css, nr_pages);
60d3fd32 2369}
127424c8 2370#endif /* !CONFIG_SLOB */
7ae1e1d0 2371
ca3e0214
KH
2372#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2373
ca3e0214
KH
2374/*
2375 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2376 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2377 */
e94c8a9c 2378void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2379{
e94c8a9c 2380 int i;
ca3e0214 2381
3d37c4a9
KH
2382 if (mem_cgroup_disabled())
2383 return;
b070e65c 2384
29833315 2385 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2386 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2387
1306a85a 2388 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2389 HPAGE_PMD_NR);
ca3e0214 2390}
12d27107 2391#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2392
c255a458 2393#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2394static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2395 bool charge)
d13d1443 2396{
0a31bc97
JW
2397 int val = (charge) ? 1 : -1;
2398 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2399}
02491447
DN
2400
2401/**
2402 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2403 * @entry: swap entry to be moved
2404 * @from: mem_cgroup which the entry is moved from
2405 * @to: mem_cgroup which the entry is moved to
2406 *
2407 * It succeeds only when the swap_cgroup's record for this entry is the same
2408 * as the mem_cgroup's id of @from.
2409 *
2410 * Returns 0 on success, -EINVAL on failure.
2411 *
3e32cb2e 2412 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2413 * both res and memsw, and called css_get().
2414 */
2415static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2416 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2417{
2418 unsigned short old_id, new_id;
2419
34c00c31
LZ
2420 old_id = mem_cgroup_id(from);
2421 new_id = mem_cgroup_id(to);
02491447
DN
2422
2423 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2424 mem_cgroup_swap_statistics(from, false);
483c30b5 2425 mem_cgroup_swap_statistics(to, true);
02491447
DN
2426 return 0;
2427 }
2428 return -EINVAL;
2429}
2430#else
2431static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2432 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2433{
2434 return -EINVAL;
2435}
8c7c6e34 2436#endif
d13d1443 2437
3e32cb2e 2438static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2439
d38d2a75 2440static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2441 unsigned long limit)
628f4235 2442{
3e32cb2e
JW
2443 unsigned long curusage;
2444 unsigned long oldusage;
2445 bool enlarge = false;
81d39c20 2446 int retry_count;
3e32cb2e 2447 int ret;
81d39c20
KH
2448
2449 /*
2450 * For keeping hierarchical_reclaim simple, how long we should retry
2451 * is depends on callers. We set our retry-count to be function
2452 * of # of children which we should visit in this loop.
2453 */
3e32cb2e
JW
2454 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2455 mem_cgroup_count_children(memcg);
81d39c20 2456
3e32cb2e 2457 oldusage = page_counter_read(&memcg->memory);
628f4235 2458
3e32cb2e 2459 do {
628f4235
KH
2460 if (signal_pending(current)) {
2461 ret = -EINTR;
2462 break;
2463 }
3e32cb2e
JW
2464
2465 mutex_lock(&memcg_limit_mutex);
2466 if (limit > memcg->memsw.limit) {
2467 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2468 ret = -EINVAL;
628f4235
KH
2469 break;
2470 }
3e32cb2e
JW
2471 if (limit > memcg->memory.limit)
2472 enlarge = true;
2473 ret = page_counter_limit(&memcg->memory, limit);
2474 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2475
2476 if (!ret)
2477 break;
2478
b70a2a21
JW
2479 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2480
3e32cb2e 2481 curusage = page_counter_read(&memcg->memory);
81d39c20 2482 /* Usage is reduced ? */
f894ffa8 2483 if (curusage >= oldusage)
81d39c20
KH
2484 retry_count--;
2485 else
2486 oldusage = curusage;
3e32cb2e
JW
2487 } while (retry_count);
2488
3c11ecf4
KH
2489 if (!ret && enlarge)
2490 memcg_oom_recover(memcg);
14797e23 2491
8c7c6e34
KH
2492 return ret;
2493}
2494
338c8431 2495static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2496 unsigned long limit)
8c7c6e34 2497{
3e32cb2e
JW
2498 unsigned long curusage;
2499 unsigned long oldusage;
2500 bool enlarge = false;
81d39c20 2501 int retry_count;
3e32cb2e 2502 int ret;
8c7c6e34 2503
81d39c20 2504 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2505 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2506 mem_cgroup_count_children(memcg);
2507
2508 oldusage = page_counter_read(&memcg->memsw);
2509
2510 do {
8c7c6e34
KH
2511 if (signal_pending(current)) {
2512 ret = -EINTR;
2513 break;
2514 }
3e32cb2e
JW
2515
2516 mutex_lock(&memcg_limit_mutex);
2517 if (limit < memcg->memory.limit) {
2518 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2519 ret = -EINVAL;
8c7c6e34
KH
2520 break;
2521 }
3e32cb2e
JW
2522 if (limit > memcg->memsw.limit)
2523 enlarge = true;
2524 ret = page_counter_limit(&memcg->memsw, limit);
2525 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2526
2527 if (!ret)
2528 break;
2529
b70a2a21
JW
2530 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2531
3e32cb2e 2532 curusage = page_counter_read(&memcg->memsw);
81d39c20 2533 /* Usage is reduced ? */
8c7c6e34 2534 if (curusage >= oldusage)
628f4235 2535 retry_count--;
81d39c20
KH
2536 else
2537 oldusage = curusage;
3e32cb2e
JW
2538 } while (retry_count);
2539
3c11ecf4
KH
2540 if (!ret && enlarge)
2541 memcg_oom_recover(memcg);
3e32cb2e 2542
628f4235
KH
2543 return ret;
2544}
2545
ef8f2327 2546unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2547 gfp_t gfp_mask,
2548 unsigned long *total_scanned)
2549{
2550 unsigned long nr_reclaimed = 0;
ef8f2327 2551 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2552 unsigned long reclaimed;
2553 int loop = 0;
ef8f2327 2554 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2555 unsigned long excess;
0608f43d
AM
2556 unsigned long nr_scanned;
2557
2558 if (order > 0)
2559 return 0;
2560
ef8f2327 2561 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2562
2563 /*
2564 * Do not even bother to check the largest node if the root
2565 * is empty. Do it lockless to prevent lock bouncing. Races
2566 * are acceptable as soft limit is best effort anyway.
2567 */
2568 if (RB_EMPTY_ROOT(&mctz->rb_root))
2569 return 0;
2570
0608f43d
AM
2571 /*
2572 * This loop can run a while, specially if mem_cgroup's continuously
2573 * keep exceeding their soft limit and putting the system under
2574 * pressure
2575 */
2576 do {
2577 if (next_mz)
2578 mz = next_mz;
2579 else
2580 mz = mem_cgroup_largest_soft_limit_node(mctz);
2581 if (!mz)
2582 break;
2583
2584 nr_scanned = 0;
ef8f2327 2585 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2586 gfp_mask, &nr_scanned);
2587 nr_reclaimed += reclaimed;
2588 *total_scanned += nr_scanned;
0a31bc97 2589 spin_lock_irq(&mctz->lock);
bc2f2e7f 2590 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2591
2592 /*
2593 * If we failed to reclaim anything from this memory cgroup
2594 * it is time to move on to the next cgroup
2595 */
2596 next_mz = NULL;
bc2f2e7f
VD
2597 if (!reclaimed)
2598 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2599
3e32cb2e 2600 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2601 /*
2602 * One school of thought says that we should not add
2603 * back the node to the tree if reclaim returns 0.
2604 * But our reclaim could return 0, simply because due
2605 * to priority we are exposing a smaller subset of
2606 * memory to reclaim from. Consider this as a longer
2607 * term TODO.
2608 */
2609 /* If excess == 0, no tree ops */
cf2c8127 2610 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2611 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2612 css_put(&mz->memcg->css);
2613 loop++;
2614 /*
2615 * Could not reclaim anything and there are no more
2616 * mem cgroups to try or we seem to be looping without
2617 * reclaiming anything.
2618 */
2619 if (!nr_reclaimed &&
2620 (next_mz == NULL ||
2621 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2622 break;
2623 } while (!nr_reclaimed);
2624 if (next_mz)
2625 css_put(&next_mz->memcg->css);
2626 return nr_reclaimed;
2627}
2628
ea280e7b
TH
2629/*
2630 * Test whether @memcg has children, dead or alive. Note that this
2631 * function doesn't care whether @memcg has use_hierarchy enabled and
2632 * returns %true if there are child csses according to the cgroup
2633 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2634 */
b5f99b53
GC
2635static inline bool memcg_has_children(struct mem_cgroup *memcg)
2636{
ea280e7b
TH
2637 bool ret;
2638
ea280e7b
TH
2639 rcu_read_lock();
2640 ret = css_next_child(NULL, &memcg->css);
2641 rcu_read_unlock();
2642 return ret;
b5f99b53
GC
2643}
2644
c26251f9 2645/*
51038171 2646 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2647 *
2648 * Caller is responsible for holding css reference for memcg.
2649 */
2650static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2651{
2652 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2653
c1e862c1
KH
2654 /* we call try-to-free pages for make this cgroup empty */
2655 lru_add_drain_all();
f817ed48 2656 /* try to free all pages in this cgroup */
3e32cb2e 2657 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2658 int progress;
c1e862c1 2659
c26251f9
MH
2660 if (signal_pending(current))
2661 return -EINTR;
2662
b70a2a21
JW
2663 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2664 GFP_KERNEL, true);
c1e862c1 2665 if (!progress) {
f817ed48 2666 nr_retries--;
c1e862c1 2667 /* maybe some writeback is necessary */
8aa7e847 2668 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2669 }
f817ed48
KH
2670
2671 }
ab5196c2
MH
2672
2673 return 0;
cc847582
KH
2674}
2675
6770c64e
TH
2676static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2677 char *buf, size_t nbytes,
2678 loff_t off)
c1e862c1 2679{
6770c64e 2680 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2681
d8423011
MH
2682 if (mem_cgroup_is_root(memcg))
2683 return -EINVAL;
6770c64e 2684 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2685}
2686
182446d0
TH
2687static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2688 struct cftype *cft)
18f59ea7 2689{
182446d0 2690 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2691}
2692
182446d0
TH
2693static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2694 struct cftype *cft, u64 val)
18f59ea7
BS
2695{
2696 int retval = 0;
182446d0 2697 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2698 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2699
567fb435 2700 if (memcg->use_hierarchy == val)
0b8f73e1 2701 return 0;
567fb435 2702
18f59ea7 2703 /*
af901ca1 2704 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2705 * in the child subtrees. If it is unset, then the change can
2706 * occur, provided the current cgroup has no children.
2707 *
2708 * For the root cgroup, parent_mem is NULL, we allow value to be
2709 * set if there are no children.
2710 */
c0ff4b85 2711 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2712 (val == 1 || val == 0)) {
ea280e7b 2713 if (!memcg_has_children(memcg))
c0ff4b85 2714 memcg->use_hierarchy = val;
18f59ea7
BS
2715 else
2716 retval = -EBUSY;
2717 } else
2718 retval = -EINVAL;
567fb435 2719
18f59ea7
BS
2720 return retval;
2721}
2722
72b54e73 2723static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2724{
2725 struct mem_cgroup *iter;
72b54e73 2726 int i;
ce00a967 2727
72b54e73 2728 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2729
72b54e73
VD
2730 for_each_mem_cgroup_tree(iter, memcg) {
2731 for (i = 0; i < MEMCG_NR_STAT; i++)
2732 stat[i] += mem_cgroup_read_stat(iter, i);
2733 }
ce00a967
JW
2734}
2735
72b54e73 2736static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2737{
2738 struct mem_cgroup *iter;
72b54e73 2739 int i;
587d9f72 2740
72b54e73 2741 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2742
72b54e73
VD
2743 for_each_mem_cgroup_tree(iter, memcg) {
2744 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2745 events[i] += mem_cgroup_read_events(iter, i);
2746 }
587d9f72
JW
2747}
2748
6f646156 2749static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2750{
72b54e73 2751 unsigned long val = 0;
ce00a967 2752
3e32cb2e 2753 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2754 struct mem_cgroup *iter;
2755
2756 for_each_mem_cgroup_tree(iter, memcg) {
2757 val += mem_cgroup_read_stat(iter,
2758 MEM_CGROUP_STAT_CACHE);
2759 val += mem_cgroup_read_stat(iter,
2760 MEM_CGROUP_STAT_RSS);
2761 if (swap)
2762 val += mem_cgroup_read_stat(iter,
2763 MEM_CGROUP_STAT_SWAP);
2764 }
3e32cb2e 2765 } else {
ce00a967 2766 if (!swap)
3e32cb2e 2767 val = page_counter_read(&memcg->memory);
ce00a967 2768 else
3e32cb2e 2769 val = page_counter_read(&memcg->memsw);
ce00a967 2770 }
c12176d3 2771 return val;
ce00a967
JW
2772}
2773
3e32cb2e
JW
2774enum {
2775 RES_USAGE,
2776 RES_LIMIT,
2777 RES_MAX_USAGE,
2778 RES_FAILCNT,
2779 RES_SOFT_LIMIT,
2780};
ce00a967 2781
791badbd 2782static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2783 struct cftype *cft)
8cdea7c0 2784{
182446d0 2785 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2786 struct page_counter *counter;
af36f906 2787
3e32cb2e 2788 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2789 case _MEM:
3e32cb2e
JW
2790 counter = &memcg->memory;
2791 break;
8c7c6e34 2792 case _MEMSWAP:
3e32cb2e
JW
2793 counter = &memcg->memsw;
2794 break;
510fc4e1 2795 case _KMEM:
3e32cb2e 2796 counter = &memcg->kmem;
510fc4e1 2797 break;
d55f90bf 2798 case _TCP:
0db15298 2799 counter = &memcg->tcpmem;
d55f90bf 2800 break;
8c7c6e34
KH
2801 default:
2802 BUG();
8c7c6e34 2803 }
3e32cb2e
JW
2804
2805 switch (MEMFILE_ATTR(cft->private)) {
2806 case RES_USAGE:
2807 if (counter == &memcg->memory)
c12176d3 2808 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2809 if (counter == &memcg->memsw)
c12176d3 2810 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2811 return (u64)page_counter_read(counter) * PAGE_SIZE;
2812 case RES_LIMIT:
2813 return (u64)counter->limit * PAGE_SIZE;
2814 case RES_MAX_USAGE:
2815 return (u64)counter->watermark * PAGE_SIZE;
2816 case RES_FAILCNT:
2817 return counter->failcnt;
2818 case RES_SOFT_LIMIT:
2819 return (u64)memcg->soft_limit * PAGE_SIZE;
2820 default:
2821 BUG();
2822 }
8cdea7c0 2823}
510fc4e1 2824
127424c8 2825#ifndef CONFIG_SLOB
567e9ab2 2826static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2827{
d6441637
VD
2828 int memcg_id;
2829
b313aeee
VD
2830 if (cgroup_memory_nokmem)
2831 return 0;
2832
2a4db7eb 2833 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2834 BUG_ON(memcg->kmem_state);
d6441637 2835
f3bb3043 2836 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2837 if (memcg_id < 0)
2838 return memcg_id;
d6441637 2839
ef12947c 2840 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2841 /*
567e9ab2 2842 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2843 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2844 * guarantee no one starts accounting before all call sites are
2845 * patched.
2846 */
900a38f0 2847 memcg->kmemcg_id = memcg_id;
567e9ab2 2848 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2849
2850 return 0;
d6441637
VD
2851}
2852
8e0a8912
JW
2853static void memcg_offline_kmem(struct mem_cgroup *memcg)
2854{
2855 struct cgroup_subsys_state *css;
2856 struct mem_cgroup *parent, *child;
2857 int kmemcg_id;
2858
2859 if (memcg->kmem_state != KMEM_ONLINE)
2860 return;
2861 /*
2862 * Clear the online state before clearing memcg_caches array
2863 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2864 * guarantees that no cache will be created for this cgroup
2865 * after we are done (see memcg_create_kmem_cache()).
2866 */
2867 memcg->kmem_state = KMEM_ALLOCATED;
2868
2869 memcg_deactivate_kmem_caches(memcg);
2870
2871 kmemcg_id = memcg->kmemcg_id;
2872 BUG_ON(kmemcg_id < 0);
2873
2874 parent = parent_mem_cgroup(memcg);
2875 if (!parent)
2876 parent = root_mem_cgroup;
2877
2878 /*
2879 * Change kmemcg_id of this cgroup and all its descendants to the
2880 * parent's id, and then move all entries from this cgroup's list_lrus
2881 * to ones of the parent. After we have finished, all list_lrus
2882 * corresponding to this cgroup are guaranteed to remain empty. The
2883 * ordering is imposed by list_lru_node->lock taken by
2884 * memcg_drain_all_list_lrus().
2885 */
3a06bb78 2886 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2887 css_for_each_descendant_pre(css, &memcg->css) {
2888 child = mem_cgroup_from_css(css);
2889 BUG_ON(child->kmemcg_id != kmemcg_id);
2890 child->kmemcg_id = parent->kmemcg_id;
2891 if (!memcg->use_hierarchy)
2892 break;
2893 }
3a06bb78
TH
2894 rcu_read_unlock();
2895
8e0a8912
JW
2896 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2897
2898 memcg_free_cache_id(kmemcg_id);
2899}
2900
2901static void memcg_free_kmem(struct mem_cgroup *memcg)
2902{
0b8f73e1
JW
2903 /* css_alloc() failed, offlining didn't happen */
2904 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2905 memcg_offline_kmem(memcg);
2906
8e0a8912
JW
2907 if (memcg->kmem_state == KMEM_ALLOCATED) {
2908 memcg_destroy_kmem_caches(memcg);
2909 static_branch_dec(&memcg_kmem_enabled_key);
2910 WARN_ON(page_counter_read(&memcg->kmem));
2911 }
8e0a8912 2912}
d6441637 2913#else
0b8f73e1 2914static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2915{
2916 return 0;
2917}
2918static void memcg_offline_kmem(struct mem_cgroup *memcg)
2919{
2920}
2921static void memcg_free_kmem(struct mem_cgroup *memcg)
2922{
2923}
2924#endif /* !CONFIG_SLOB */
2925
d6441637 2926static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2927 unsigned long limit)
d6441637 2928{
b313aeee 2929 int ret;
127424c8
JW
2930
2931 mutex_lock(&memcg_limit_mutex);
127424c8 2932 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2933 mutex_unlock(&memcg_limit_mutex);
2934 return ret;
d6441637 2935}
510fc4e1 2936
d55f90bf
VD
2937static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2938{
2939 int ret;
2940
2941 mutex_lock(&memcg_limit_mutex);
2942
0db15298 2943 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2944 if (ret)
2945 goto out;
2946
0db15298 2947 if (!memcg->tcpmem_active) {
d55f90bf
VD
2948 /*
2949 * The active flag needs to be written after the static_key
2950 * update. This is what guarantees that the socket activation
2d758073
JW
2951 * function is the last one to run. See mem_cgroup_sk_alloc()
2952 * for details, and note that we don't mark any socket as
2953 * belonging to this memcg until that flag is up.
d55f90bf
VD
2954 *
2955 * We need to do this, because static_keys will span multiple
2956 * sites, but we can't control their order. If we mark a socket
2957 * as accounted, but the accounting functions are not patched in
2958 * yet, we'll lose accounting.
2959 *
2d758073 2960 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
2961 * because when this value change, the code to process it is not
2962 * patched in yet.
2963 */
2964 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2965 memcg->tcpmem_active = true;
d55f90bf
VD
2966 }
2967out:
2968 mutex_unlock(&memcg_limit_mutex);
2969 return ret;
2970}
d55f90bf 2971
628f4235
KH
2972/*
2973 * The user of this function is...
2974 * RES_LIMIT.
2975 */
451af504
TH
2976static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2977 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2978{
451af504 2979 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2980 unsigned long nr_pages;
628f4235
KH
2981 int ret;
2982
451af504 2983 buf = strstrip(buf);
650c5e56 2984 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2985 if (ret)
2986 return ret;
af36f906 2987
3e32cb2e 2988 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2989 case RES_LIMIT:
4b3bde4c
BS
2990 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2991 ret = -EINVAL;
2992 break;
2993 }
3e32cb2e
JW
2994 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2995 case _MEM:
2996 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2997 break;
3e32cb2e
JW
2998 case _MEMSWAP:
2999 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3000 break;
3e32cb2e
JW
3001 case _KMEM:
3002 ret = memcg_update_kmem_limit(memcg, nr_pages);
3003 break;
d55f90bf
VD
3004 case _TCP:
3005 ret = memcg_update_tcp_limit(memcg, nr_pages);
3006 break;
3e32cb2e 3007 }
296c81d8 3008 break;
3e32cb2e
JW
3009 case RES_SOFT_LIMIT:
3010 memcg->soft_limit = nr_pages;
3011 ret = 0;
628f4235
KH
3012 break;
3013 }
451af504 3014 return ret ?: nbytes;
8cdea7c0
BS
3015}
3016
6770c64e
TH
3017static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3018 size_t nbytes, loff_t off)
c84872e1 3019{
6770c64e 3020 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3021 struct page_counter *counter;
c84872e1 3022
3e32cb2e
JW
3023 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3024 case _MEM:
3025 counter = &memcg->memory;
3026 break;
3027 case _MEMSWAP:
3028 counter = &memcg->memsw;
3029 break;
3030 case _KMEM:
3031 counter = &memcg->kmem;
3032 break;
d55f90bf 3033 case _TCP:
0db15298 3034 counter = &memcg->tcpmem;
d55f90bf 3035 break;
3e32cb2e
JW
3036 default:
3037 BUG();
3038 }
af36f906 3039
3e32cb2e 3040 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3041 case RES_MAX_USAGE:
3e32cb2e 3042 page_counter_reset_watermark(counter);
29f2a4da
PE
3043 break;
3044 case RES_FAILCNT:
3e32cb2e 3045 counter->failcnt = 0;
29f2a4da 3046 break;
3e32cb2e
JW
3047 default:
3048 BUG();
29f2a4da 3049 }
f64c3f54 3050
6770c64e 3051 return nbytes;
c84872e1
PE
3052}
3053
182446d0 3054static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3055 struct cftype *cft)
3056{
182446d0 3057 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3058}
3059
02491447 3060#ifdef CONFIG_MMU
182446d0 3061static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3062 struct cftype *cft, u64 val)
3063{
182446d0 3064 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3065
1dfab5ab 3066 if (val & ~MOVE_MASK)
7dc74be0 3067 return -EINVAL;
ee5e8472 3068
7dc74be0 3069 /*
ee5e8472
GC
3070 * No kind of locking is needed in here, because ->can_attach() will
3071 * check this value once in the beginning of the process, and then carry
3072 * on with stale data. This means that changes to this value will only
3073 * affect task migrations starting after the change.
7dc74be0 3074 */
c0ff4b85 3075 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3076 return 0;
3077}
02491447 3078#else
182446d0 3079static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3080 struct cftype *cft, u64 val)
3081{
3082 return -ENOSYS;
3083}
3084#endif
7dc74be0 3085
406eb0c9 3086#ifdef CONFIG_NUMA
2da8ca82 3087static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3088{
25485de6
GT
3089 struct numa_stat {
3090 const char *name;
3091 unsigned int lru_mask;
3092 };
3093
3094 static const struct numa_stat stats[] = {
3095 { "total", LRU_ALL },
3096 { "file", LRU_ALL_FILE },
3097 { "anon", LRU_ALL_ANON },
3098 { "unevictable", BIT(LRU_UNEVICTABLE) },
3099 };
3100 const struct numa_stat *stat;
406eb0c9 3101 int nid;
25485de6 3102 unsigned long nr;
2da8ca82 3103 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3104
25485de6
GT
3105 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3106 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3107 seq_printf(m, "%s=%lu", stat->name, nr);
3108 for_each_node_state(nid, N_MEMORY) {
3109 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3110 stat->lru_mask);
3111 seq_printf(m, " N%d=%lu", nid, nr);
3112 }
3113 seq_putc(m, '\n');
406eb0c9 3114 }
406eb0c9 3115
071aee13
YH
3116 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3117 struct mem_cgroup *iter;
3118
3119 nr = 0;
3120 for_each_mem_cgroup_tree(iter, memcg)
3121 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3122 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3123 for_each_node_state(nid, N_MEMORY) {
3124 nr = 0;
3125 for_each_mem_cgroup_tree(iter, memcg)
3126 nr += mem_cgroup_node_nr_lru_pages(
3127 iter, nid, stat->lru_mask);
3128 seq_printf(m, " N%d=%lu", nid, nr);
3129 }
3130 seq_putc(m, '\n');
406eb0c9 3131 }
406eb0c9 3132
406eb0c9
YH
3133 return 0;
3134}
3135#endif /* CONFIG_NUMA */
3136
2da8ca82 3137static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3138{
2da8ca82 3139 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3140 unsigned long memory, memsw;
af7c4b0e
JW
3141 struct mem_cgroup *mi;
3142 unsigned int i;
406eb0c9 3143
0ca44b14
GT
3144 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3145 MEM_CGROUP_STAT_NSTATS);
3146 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3147 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3148 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3149
af7c4b0e 3150 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3151 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3152 continue;
484ebb3b 3153 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3154 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3155 }
7b854121 3156
af7c4b0e
JW
3157 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3158 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3159 mem_cgroup_read_events(memcg, i));
3160
3161 for (i = 0; i < NR_LRU_LISTS; i++)
3162 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3163 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3164
14067bb3 3165 /* Hierarchical information */
3e32cb2e
JW
3166 memory = memsw = PAGE_COUNTER_MAX;
3167 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3168 memory = min(memory, mi->memory.limit);
3169 memsw = min(memsw, mi->memsw.limit);
fee7b548 3170 }
3e32cb2e
JW
3171 seq_printf(m, "hierarchical_memory_limit %llu\n",
3172 (u64)memory * PAGE_SIZE);
7941d214 3173 if (do_memsw_account())
3e32cb2e
JW
3174 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3175 (u64)memsw * PAGE_SIZE);
7f016ee8 3176
af7c4b0e 3177 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3178 unsigned long long val = 0;
af7c4b0e 3179
7941d214 3180 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3181 continue;
af7c4b0e
JW
3182 for_each_mem_cgroup_tree(mi, memcg)
3183 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3184 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3185 }
3186
3187 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3188 unsigned long long val = 0;
3189
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_read_events(mi, i);
3192 seq_printf(m, "total_%s %llu\n",
3193 mem_cgroup_events_names[i], val);
3194 }
3195
3196 for (i = 0; i < NR_LRU_LISTS; i++) {
3197 unsigned long long val = 0;
3198
3199 for_each_mem_cgroup_tree(mi, memcg)
3200 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3201 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3202 }
14067bb3 3203
7f016ee8 3204#ifdef CONFIG_DEBUG_VM
7f016ee8 3205 {
ef8f2327
MG
3206 pg_data_t *pgdat;
3207 struct mem_cgroup_per_node *mz;
89abfab1 3208 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3209 unsigned long recent_rotated[2] = {0, 0};
3210 unsigned long recent_scanned[2] = {0, 0};
3211
ef8f2327
MG
3212 for_each_online_pgdat(pgdat) {
3213 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3214 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3215
ef8f2327
MG
3216 recent_rotated[0] += rstat->recent_rotated[0];
3217 recent_rotated[1] += rstat->recent_rotated[1];
3218 recent_scanned[0] += rstat->recent_scanned[0];
3219 recent_scanned[1] += rstat->recent_scanned[1];
3220 }
78ccf5b5
JW
3221 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3222 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3223 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3224 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3225 }
3226#endif
3227
d2ceb9b7
KH
3228 return 0;
3229}
3230
182446d0
TH
3231static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3232 struct cftype *cft)
a7885eb8 3233{
182446d0 3234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3235
1f4c025b 3236 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3237}
3238
182446d0
TH
3239static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3240 struct cftype *cft, u64 val)
a7885eb8 3241{
182446d0 3242 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3243
3dae7fec 3244 if (val > 100)
a7885eb8
KM
3245 return -EINVAL;
3246
14208b0e 3247 if (css->parent)
3dae7fec
JW
3248 memcg->swappiness = val;
3249 else
3250 vm_swappiness = val;
068b38c1 3251
a7885eb8
KM
3252 return 0;
3253}
3254
2e72b634
KS
3255static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3256{
3257 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3258 unsigned long usage;
2e72b634
KS
3259 int i;
3260
3261 rcu_read_lock();
3262 if (!swap)
2c488db2 3263 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3264 else
2c488db2 3265 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3266
3267 if (!t)
3268 goto unlock;
3269
ce00a967 3270 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3271
3272 /*
748dad36 3273 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3274 * If it's not true, a threshold was crossed after last
3275 * call of __mem_cgroup_threshold().
3276 */
5407a562 3277 i = t->current_threshold;
2e72b634
KS
3278
3279 /*
3280 * Iterate backward over array of thresholds starting from
3281 * current_threshold and check if a threshold is crossed.
3282 * If none of thresholds below usage is crossed, we read
3283 * only one element of the array here.
3284 */
3285 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3286 eventfd_signal(t->entries[i].eventfd, 1);
3287
3288 /* i = current_threshold + 1 */
3289 i++;
3290
3291 /*
3292 * Iterate forward over array of thresholds starting from
3293 * current_threshold+1 and check if a threshold is crossed.
3294 * If none of thresholds above usage is crossed, we read
3295 * only one element of the array here.
3296 */
3297 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3298 eventfd_signal(t->entries[i].eventfd, 1);
3299
3300 /* Update current_threshold */
5407a562 3301 t->current_threshold = i - 1;
2e72b634
KS
3302unlock:
3303 rcu_read_unlock();
3304}
3305
3306static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3307{
ad4ca5f4
KS
3308 while (memcg) {
3309 __mem_cgroup_threshold(memcg, false);
7941d214 3310 if (do_memsw_account())
ad4ca5f4
KS
3311 __mem_cgroup_threshold(memcg, true);
3312
3313 memcg = parent_mem_cgroup(memcg);
3314 }
2e72b634
KS
3315}
3316
3317static int compare_thresholds(const void *a, const void *b)
3318{
3319 const struct mem_cgroup_threshold *_a = a;
3320 const struct mem_cgroup_threshold *_b = b;
3321
2bff24a3
GT
3322 if (_a->threshold > _b->threshold)
3323 return 1;
3324
3325 if (_a->threshold < _b->threshold)
3326 return -1;
3327
3328 return 0;
2e72b634
KS
3329}
3330
c0ff4b85 3331static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3332{
3333 struct mem_cgroup_eventfd_list *ev;
3334
2bcf2e92
MH
3335 spin_lock(&memcg_oom_lock);
3336
c0ff4b85 3337 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3338 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3339
3340 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3341 return 0;
3342}
3343
c0ff4b85 3344static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3345{
7d74b06f
KH
3346 struct mem_cgroup *iter;
3347
c0ff4b85 3348 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3349 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3350}
3351
59b6f873 3352static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3353 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3354{
2c488db2
KS
3355 struct mem_cgroup_thresholds *thresholds;
3356 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3357 unsigned long threshold;
3358 unsigned long usage;
2c488db2 3359 int i, size, ret;
2e72b634 3360
650c5e56 3361 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3362 if (ret)
3363 return ret;
3364
3365 mutex_lock(&memcg->thresholds_lock);
2c488db2 3366
05b84301 3367 if (type == _MEM) {
2c488db2 3368 thresholds = &memcg->thresholds;
ce00a967 3369 usage = mem_cgroup_usage(memcg, false);
05b84301 3370 } else if (type == _MEMSWAP) {
2c488db2 3371 thresholds = &memcg->memsw_thresholds;
ce00a967 3372 usage = mem_cgroup_usage(memcg, true);
05b84301 3373 } else
2e72b634
KS
3374 BUG();
3375
2e72b634 3376 /* Check if a threshold crossed before adding a new one */
2c488db2 3377 if (thresholds->primary)
2e72b634
KS
3378 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3379
2c488db2 3380 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3381
3382 /* Allocate memory for new array of thresholds */
2c488db2 3383 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3384 GFP_KERNEL);
2c488db2 3385 if (!new) {
2e72b634
KS
3386 ret = -ENOMEM;
3387 goto unlock;
3388 }
2c488db2 3389 new->size = size;
2e72b634
KS
3390
3391 /* Copy thresholds (if any) to new array */
2c488db2
KS
3392 if (thresholds->primary) {
3393 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3394 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3395 }
3396
2e72b634 3397 /* Add new threshold */
2c488db2
KS
3398 new->entries[size - 1].eventfd = eventfd;
3399 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3400
3401 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3402 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3403 compare_thresholds, NULL);
3404
3405 /* Find current threshold */
2c488db2 3406 new->current_threshold = -1;
2e72b634 3407 for (i = 0; i < size; i++) {
748dad36 3408 if (new->entries[i].threshold <= usage) {
2e72b634 3409 /*
2c488db2
KS
3410 * new->current_threshold will not be used until
3411 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3412 * it here.
3413 */
2c488db2 3414 ++new->current_threshold;
748dad36
SZ
3415 } else
3416 break;
2e72b634
KS
3417 }
3418
2c488db2
KS
3419 /* Free old spare buffer and save old primary buffer as spare */
3420 kfree(thresholds->spare);
3421 thresholds->spare = thresholds->primary;
3422
3423 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3424
907860ed 3425 /* To be sure that nobody uses thresholds */
2e72b634
KS
3426 synchronize_rcu();
3427
2e72b634
KS
3428unlock:
3429 mutex_unlock(&memcg->thresholds_lock);
3430
3431 return ret;
3432}
3433
59b6f873 3434static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3435 struct eventfd_ctx *eventfd, const char *args)
3436{
59b6f873 3437 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3438}
3439
59b6f873 3440static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3441 struct eventfd_ctx *eventfd, const char *args)
3442{
59b6f873 3443 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3444}
3445
59b6f873 3446static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3447 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3448{
2c488db2
KS
3449 struct mem_cgroup_thresholds *thresholds;
3450 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3451 unsigned long usage;
2c488db2 3452 int i, j, size;
2e72b634
KS
3453
3454 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3455
3456 if (type == _MEM) {
2c488db2 3457 thresholds = &memcg->thresholds;
ce00a967 3458 usage = mem_cgroup_usage(memcg, false);
05b84301 3459 } else if (type == _MEMSWAP) {
2c488db2 3460 thresholds = &memcg->memsw_thresholds;
ce00a967 3461 usage = mem_cgroup_usage(memcg, true);
05b84301 3462 } else
2e72b634
KS
3463 BUG();
3464
371528ca
AV
3465 if (!thresholds->primary)
3466 goto unlock;
3467
2e72b634
KS
3468 /* Check if a threshold crossed before removing */
3469 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3470
3471 /* Calculate new number of threshold */
2c488db2
KS
3472 size = 0;
3473 for (i = 0; i < thresholds->primary->size; i++) {
3474 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3475 size++;
3476 }
3477
2c488db2 3478 new = thresholds->spare;
907860ed 3479
2e72b634
KS
3480 /* Set thresholds array to NULL if we don't have thresholds */
3481 if (!size) {
2c488db2
KS
3482 kfree(new);
3483 new = NULL;
907860ed 3484 goto swap_buffers;
2e72b634
KS
3485 }
3486
2c488db2 3487 new->size = size;
2e72b634
KS
3488
3489 /* Copy thresholds and find current threshold */
2c488db2
KS
3490 new->current_threshold = -1;
3491 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3492 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3493 continue;
3494
2c488db2 3495 new->entries[j] = thresholds->primary->entries[i];
748dad36 3496 if (new->entries[j].threshold <= usage) {
2e72b634 3497 /*
2c488db2 3498 * new->current_threshold will not be used
2e72b634
KS
3499 * until rcu_assign_pointer(), so it's safe to increment
3500 * it here.
3501 */
2c488db2 3502 ++new->current_threshold;
2e72b634
KS
3503 }
3504 j++;
3505 }
3506
907860ed 3507swap_buffers:
2c488db2
KS
3508 /* Swap primary and spare array */
3509 thresholds->spare = thresholds->primary;
8c757763 3510
2c488db2 3511 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3512
907860ed 3513 /* To be sure that nobody uses thresholds */
2e72b634 3514 synchronize_rcu();
6611d8d7
MC
3515
3516 /* If all events are unregistered, free the spare array */
3517 if (!new) {
3518 kfree(thresholds->spare);
3519 thresholds->spare = NULL;
3520 }
371528ca 3521unlock:
2e72b634 3522 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3523}
c1e862c1 3524
59b6f873 3525static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3526 struct eventfd_ctx *eventfd)
3527{
59b6f873 3528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3529}
3530
59b6f873 3531static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3532 struct eventfd_ctx *eventfd)
3533{
59b6f873 3534 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3535}
3536
59b6f873 3537static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3538 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3539{
9490ff27 3540 struct mem_cgroup_eventfd_list *event;
9490ff27 3541
9490ff27
KH
3542 event = kmalloc(sizeof(*event), GFP_KERNEL);
3543 if (!event)
3544 return -ENOMEM;
3545
1af8efe9 3546 spin_lock(&memcg_oom_lock);
9490ff27
KH
3547
3548 event->eventfd = eventfd;
3549 list_add(&event->list, &memcg->oom_notify);
3550
3551 /* already in OOM ? */
c2b42d3c 3552 if (memcg->under_oom)
9490ff27 3553 eventfd_signal(eventfd, 1);
1af8efe9 3554 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3555
3556 return 0;
3557}
3558
59b6f873 3559static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3560 struct eventfd_ctx *eventfd)
9490ff27 3561{
9490ff27 3562 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3563
1af8efe9 3564 spin_lock(&memcg_oom_lock);
9490ff27 3565
c0ff4b85 3566 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3567 if (ev->eventfd == eventfd) {
3568 list_del(&ev->list);
3569 kfree(ev);
3570 }
3571 }
3572
1af8efe9 3573 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3574}
3575
2da8ca82 3576static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3577{
2da8ca82 3578 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3579
791badbd 3580 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3581 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3582 return 0;
3583}
3584
182446d0 3585static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3586 struct cftype *cft, u64 val)
3587{
182446d0 3588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3589
3590 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3591 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3592 return -EINVAL;
3593
c0ff4b85 3594 memcg->oom_kill_disable = val;
4d845ebf 3595 if (!val)
c0ff4b85 3596 memcg_oom_recover(memcg);
3dae7fec 3597
3c11ecf4
KH
3598 return 0;
3599}
3600
52ebea74
TH
3601#ifdef CONFIG_CGROUP_WRITEBACK
3602
3603struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3604{
3605 return &memcg->cgwb_list;
3606}
3607
841710aa
TH
3608static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3609{
3610 return wb_domain_init(&memcg->cgwb_domain, gfp);
3611}
3612
3613static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3614{
3615 wb_domain_exit(&memcg->cgwb_domain);
3616}
3617
2529bb3a
TH
3618static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3619{
3620 wb_domain_size_changed(&memcg->cgwb_domain);
3621}
3622
841710aa
TH
3623struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3624{
3625 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3626
3627 if (!memcg->css.parent)
3628 return NULL;
3629
3630 return &memcg->cgwb_domain;
3631}
3632
c2aa723a
TH
3633/**
3634 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3635 * @wb: bdi_writeback in question
c5edf9cd
TH
3636 * @pfilepages: out parameter for number of file pages
3637 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3638 * @pdirty: out parameter for number of dirty pages
3639 * @pwriteback: out parameter for number of pages under writeback
3640 *
c5edf9cd
TH
3641 * Determine the numbers of file, headroom, dirty, and writeback pages in
3642 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3643 * is a bit more involved.
c2aa723a 3644 *
c5edf9cd
TH
3645 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3646 * headroom is calculated as the lowest headroom of itself and the
3647 * ancestors. Note that this doesn't consider the actual amount of
3648 * available memory in the system. The caller should further cap
3649 * *@pheadroom accordingly.
c2aa723a 3650 */
c5edf9cd
TH
3651void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3652 unsigned long *pheadroom, unsigned long *pdirty,
3653 unsigned long *pwriteback)
c2aa723a
TH
3654{
3655 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3656 struct mem_cgroup *parent;
c2aa723a
TH
3657
3658 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3659
3660 /* this should eventually include NR_UNSTABLE_NFS */
3661 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3662 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3663 (1 << LRU_ACTIVE_FILE));
3664 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3665
c2aa723a
TH
3666 while ((parent = parent_mem_cgroup(memcg))) {
3667 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3668 unsigned long used = page_counter_read(&memcg->memory);
3669
c5edf9cd 3670 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3671 memcg = parent;
3672 }
c2aa723a
TH
3673}
3674
841710aa
TH
3675#else /* CONFIG_CGROUP_WRITEBACK */
3676
3677static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3678{
3679 return 0;
3680}
3681
3682static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3683{
3684}
3685
2529bb3a
TH
3686static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3687{
3688}
3689
52ebea74
TH
3690#endif /* CONFIG_CGROUP_WRITEBACK */
3691
3bc942f3
TH
3692/*
3693 * DO NOT USE IN NEW FILES.
3694 *
3695 * "cgroup.event_control" implementation.
3696 *
3697 * This is way over-engineered. It tries to support fully configurable
3698 * events for each user. Such level of flexibility is completely
3699 * unnecessary especially in the light of the planned unified hierarchy.
3700 *
3701 * Please deprecate this and replace with something simpler if at all
3702 * possible.
3703 */
3704
79bd9814
TH
3705/*
3706 * Unregister event and free resources.
3707 *
3708 * Gets called from workqueue.
3709 */
3bc942f3 3710static void memcg_event_remove(struct work_struct *work)
79bd9814 3711{
3bc942f3
TH
3712 struct mem_cgroup_event *event =
3713 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3714 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3715
3716 remove_wait_queue(event->wqh, &event->wait);
3717
59b6f873 3718 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3719
3720 /* Notify userspace the event is going away. */
3721 eventfd_signal(event->eventfd, 1);
3722
3723 eventfd_ctx_put(event->eventfd);
3724 kfree(event);
59b6f873 3725 css_put(&memcg->css);
79bd9814
TH
3726}
3727
3728/*
3729 * Gets called on POLLHUP on eventfd when user closes it.
3730 *
3731 * Called with wqh->lock held and interrupts disabled.
3732 */
3bc942f3
TH
3733static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3734 int sync, void *key)
79bd9814 3735{
3bc942f3
TH
3736 struct mem_cgroup_event *event =
3737 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3738 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3739 unsigned long flags = (unsigned long)key;
3740
3741 if (flags & POLLHUP) {
3742 /*
3743 * If the event has been detached at cgroup removal, we
3744 * can simply return knowing the other side will cleanup
3745 * for us.
3746 *
3747 * We can't race against event freeing since the other
3748 * side will require wqh->lock via remove_wait_queue(),
3749 * which we hold.
3750 */
fba94807 3751 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3752 if (!list_empty(&event->list)) {
3753 list_del_init(&event->list);
3754 /*
3755 * We are in atomic context, but cgroup_event_remove()
3756 * may sleep, so we have to call it in workqueue.
3757 */
3758 schedule_work(&event->remove);
3759 }
fba94807 3760 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3761 }
3762
3763 return 0;
3764}
3765
3bc942f3 3766static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3767 wait_queue_head_t *wqh, poll_table *pt)
3768{
3bc942f3
TH
3769 struct mem_cgroup_event *event =
3770 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3771
3772 event->wqh = wqh;
3773 add_wait_queue(wqh, &event->wait);
3774}
3775
3776/*
3bc942f3
TH
3777 * DO NOT USE IN NEW FILES.
3778 *
79bd9814
TH
3779 * Parse input and register new cgroup event handler.
3780 *
3781 * Input must be in format '<event_fd> <control_fd> <args>'.
3782 * Interpretation of args is defined by control file implementation.
3783 */
451af504
TH
3784static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3785 char *buf, size_t nbytes, loff_t off)
79bd9814 3786{
451af504 3787 struct cgroup_subsys_state *css = of_css(of);
fba94807 3788 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3789 struct mem_cgroup_event *event;
79bd9814
TH
3790 struct cgroup_subsys_state *cfile_css;
3791 unsigned int efd, cfd;
3792 struct fd efile;
3793 struct fd cfile;
fba94807 3794 const char *name;
79bd9814
TH
3795 char *endp;
3796 int ret;
3797
451af504
TH
3798 buf = strstrip(buf);
3799
3800 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3801 if (*endp != ' ')
3802 return -EINVAL;
451af504 3803 buf = endp + 1;
79bd9814 3804
451af504 3805 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3806 if ((*endp != ' ') && (*endp != '\0'))
3807 return -EINVAL;
451af504 3808 buf = endp + 1;
79bd9814
TH
3809
3810 event = kzalloc(sizeof(*event), GFP_KERNEL);
3811 if (!event)
3812 return -ENOMEM;
3813
59b6f873 3814 event->memcg = memcg;
79bd9814 3815 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3816 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3817 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3818 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3819
3820 efile = fdget(efd);
3821 if (!efile.file) {
3822 ret = -EBADF;
3823 goto out_kfree;
3824 }
3825
3826 event->eventfd = eventfd_ctx_fileget(efile.file);
3827 if (IS_ERR(event->eventfd)) {
3828 ret = PTR_ERR(event->eventfd);
3829 goto out_put_efile;
3830 }
3831
3832 cfile = fdget(cfd);
3833 if (!cfile.file) {
3834 ret = -EBADF;
3835 goto out_put_eventfd;
3836 }
3837
3838 /* the process need read permission on control file */
3839 /* AV: shouldn't we check that it's been opened for read instead? */
3840 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3841 if (ret < 0)
3842 goto out_put_cfile;
3843
fba94807
TH
3844 /*
3845 * Determine the event callbacks and set them in @event. This used
3846 * to be done via struct cftype but cgroup core no longer knows
3847 * about these events. The following is crude but the whole thing
3848 * is for compatibility anyway.
3bc942f3
TH
3849 *
3850 * DO NOT ADD NEW FILES.
fba94807 3851 */
b583043e 3852 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3853
3854 if (!strcmp(name, "memory.usage_in_bytes")) {
3855 event->register_event = mem_cgroup_usage_register_event;
3856 event->unregister_event = mem_cgroup_usage_unregister_event;
3857 } else if (!strcmp(name, "memory.oom_control")) {
3858 event->register_event = mem_cgroup_oom_register_event;
3859 event->unregister_event = mem_cgroup_oom_unregister_event;
3860 } else if (!strcmp(name, "memory.pressure_level")) {
3861 event->register_event = vmpressure_register_event;
3862 event->unregister_event = vmpressure_unregister_event;
3863 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3864 event->register_event = memsw_cgroup_usage_register_event;
3865 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3866 } else {
3867 ret = -EINVAL;
3868 goto out_put_cfile;
3869 }
3870
79bd9814 3871 /*
b5557c4c
TH
3872 * Verify @cfile should belong to @css. Also, remaining events are
3873 * automatically removed on cgroup destruction but the removal is
3874 * asynchronous, so take an extra ref on @css.
79bd9814 3875 */
b583043e 3876 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3877 &memory_cgrp_subsys);
79bd9814 3878 ret = -EINVAL;
5a17f543 3879 if (IS_ERR(cfile_css))
79bd9814 3880 goto out_put_cfile;
5a17f543
TH
3881 if (cfile_css != css) {
3882 css_put(cfile_css);
79bd9814 3883 goto out_put_cfile;
5a17f543 3884 }
79bd9814 3885
451af504 3886 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3887 if (ret)
3888 goto out_put_css;
3889
3890 efile.file->f_op->poll(efile.file, &event->pt);
3891
fba94807
TH
3892 spin_lock(&memcg->event_list_lock);
3893 list_add(&event->list, &memcg->event_list);
3894 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3895
3896 fdput(cfile);
3897 fdput(efile);
3898
451af504 3899 return nbytes;
79bd9814
TH
3900
3901out_put_css:
b5557c4c 3902 css_put(css);
79bd9814
TH
3903out_put_cfile:
3904 fdput(cfile);
3905out_put_eventfd:
3906 eventfd_ctx_put(event->eventfd);
3907out_put_efile:
3908 fdput(efile);
3909out_kfree:
3910 kfree(event);
3911
3912 return ret;
3913}
3914
241994ed 3915static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3916 {
0eea1030 3917 .name = "usage_in_bytes",
8c7c6e34 3918 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3919 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3920 },
c84872e1
PE
3921 {
3922 .name = "max_usage_in_bytes",
8c7c6e34 3923 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3924 .write = mem_cgroup_reset,
791badbd 3925 .read_u64 = mem_cgroup_read_u64,
c84872e1 3926 },
8cdea7c0 3927 {
0eea1030 3928 .name = "limit_in_bytes",
8c7c6e34 3929 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3930 .write = mem_cgroup_write,
791badbd 3931 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3932 },
296c81d8
BS
3933 {
3934 .name = "soft_limit_in_bytes",
3935 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3936 .write = mem_cgroup_write,
791badbd 3937 .read_u64 = mem_cgroup_read_u64,
296c81d8 3938 },
8cdea7c0
BS
3939 {
3940 .name = "failcnt",
8c7c6e34 3941 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3942 .write = mem_cgroup_reset,
791badbd 3943 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3944 },
d2ceb9b7
KH
3945 {
3946 .name = "stat",
2da8ca82 3947 .seq_show = memcg_stat_show,
d2ceb9b7 3948 },
c1e862c1
KH
3949 {
3950 .name = "force_empty",
6770c64e 3951 .write = mem_cgroup_force_empty_write,
c1e862c1 3952 },
18f59ea7
BS
3953 {
3954 .name = "use_hierarchy",
3955 .write_u64 = mem_cgroup_hierarchy_write,
3956 .read_u64 = mem_cgroup_hierarchy_read,
3957 },
79bd9814 3958 {
3bc942f3 3959 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3960 .write = memcg_write_event_control,
7dbdb199 3961 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3962 },
a7885eb8
KM
3963 {
3964 .name = "swappiness",
3965 .read_u64 = mem_cgroup_swappiness_read,
3966 .write_u64 = mem_cgroup_swappiness_write,
3967 },
7dc74be0
DN
3968 {
3969 .name = "move_charge_at_immigrate",
3970 .read_u64 = mem_cgroup_move_charge_read,
3971 .write_u64 = mem_cgroup_move_charge_write,
3972 },
9490ff27
KH
3973 {
3974 .name = "oom_control",
2da8ca82 3975 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3976 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3977 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3978 },
70ddf637
AV
3979 {
3980 .name = "pressure_level",
70ddf637 3981 },
406eb0c9
YH
3982#ifdef CONFIG_NUMA
3983 {
3984 .name = "numa_stat",
2da8ca82 3985 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3986 },
3987#endif
510fc4e1
GC
3988 {
3989 .name = "kmem.limit_in_bytes",
3990 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3991 .write = mem_cgroup_write,
791badbd 3992 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3993 },
3994 {
3995 .name = "kmem.usage_in_bytes",
3996 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3997 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3998 },
3999 {
4000 .name = "kmem.failcnt",
4001 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4002 .write = mem_cgroup_reset,
791badbd 4003 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4004 },
4005 {
4006 .name = "kmem.max_usage_in_bytes",
4007 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4008 .write = mem_cgroup_reset,
791badbd 4009 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4010 },
749c5415
GC
4011#ifdef CONFIG_SLABINFO
4012 {
4013 .name = "kmem.slabinfo",
b047501c
VD
4014 .seq_start = slab_start,
4015 .seq_next = slab_next,
4016 .seq_stop = slab_stop,
4017 .seq_show = memcg_slab_show,
749c5415
GC
4018 },
4019#endif
d55f90bf
VD
4020 {
4021 .name = "kmem.tcp.limit_in_bytes",
4022 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4023 .write = mem_cgroup_write,
4024 .read_u64 = mem_cgroup_read_u64,
4025 },
4026 {
4027 .name = "kmem.tcp.usage_in_bytes",
4028 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4029 .read_u64 = mem_cgroup_read_u64,
4030 },
4031 {
4032 .name = "kmem.tcp.failcnt",
4033 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4034 .write = mem_cgroup_reset,
4035 .read_u64 = mem_cgroup_read_u64,
4036 },
4037 {
4038 .name = "kmem.tcp.max_usage_in_bytes",
4039 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4040 .write = mem_cgroup_reset,
4041 .read_u64 = mem_cgroup_read_u64,
4042 },
6bc10349 4043 { }, /* terminate */
af36f906 4044};
8c7c6e34 4045
73f576c0
JW
4046/*
4047 * Private memory cgroup IDR
4048 *
4049 * Swap-out records and page cache shadow entries need to store memcg
4050 * references in constrained space, so we maintain an ID space that is
4051 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4052 * memory-controlled cgroups to 64k.
4053 *
4054 * However, there usually are many references to the oflline CSS after
4055 * the cgroup has been destroyed, such as page cache or reclaimable
4056 * slab objects, that don't need to hang on to the ID. We want to keep
4057 * those dead CSS from occupying IDs, or we might quickly exhaust the
4058 * relatively small ID space and prevent the creation of new cgroups
4059 * even when there are much fewer than 64k cgroups - possibly none.
4060 *
4061 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4062 * be freed and recycled when it's no longer needed, which is usually
4063 * when the CSS is offlined.
4064 *
4065 * The only exception to that are records of swapped out tmpfs/shmem
4066 * pages that need to be attributed to live ancestors on swapin. But
4067 * those references are manageable from userspace.
4068 */
4069
4070static DEFINE_IDR(mem_cgroup_idr);
4071
615d66c3 4072static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4073{
58fa2a55 4074 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4075 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4076}
4077
615d66c3 4078static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4079{
58fa2a55 4080 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4081 if (atomic_sub_and_test(n, &memcg->id.ref)) {
73f576c0
JW
4082 idr_remove(&mem_cgroup_idr, memcg->id.id);
4083 memcg->id.id = 0;
4084
4085 /* Memcg ID pins CSS */
4086 css_put(&memcg->css);
4087 }
4088}
4089
615d66c3
VD
4090static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4091{
4092 mem_cgroup_id_get_many(memcg, 1);
4093}
4094
4095static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4096{
4097 mem_cgroup_id_put_many(memcg, 1);
4098}
4099
73f576c0
JW
4100/**
4101 * mem_cgroup_from_id - look up a memcg from a memcg id
4102 * @id: the memcg id to look up
4103 *
4104 * Caller must hold rcu_read_lock().
4105 */
4106struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4107{
4108 WARN_ON_ONCE(!rcu_read_lock_held());
4109 return idr_find(&mem_cgroup_idr, id);
4110}
4111
ef8f2327 4112static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4113{
4114 struct mem_cgroup_per_node *pn;
ef8f2327 4115 int tmp = node;
1ecaab2b
KH
4116 /*
4117 * This routine is called against possible nodes.
4118 * But it's BUG to call kmalloc() against offline node.
4119 *
4120 * TODO: this routine can waste much memory for nodes which will
4121 * never be onlined. It's better to use memory hotplug callback
4122 * function.
4123 */
41e3355d
KH
4124 if (!node_state(node, N_NORMAL_MEMORY))
4125 tmp = -1;
17295c88 4126 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4127 if (!pn)
4128 return 1;
1ecaab2b 4129
ef8f2327
MG
4130 lruvec_init(&pn->lruvec);
4131 pn->usage_in_excess = 0;
4132 pn->on_tree = false;
4133 pn->memcg = memcg;
4134
54f72fe0 4135 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4136 return 0;
4137}
4138
ef8f2327 4139static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4140{
54f72fe0 4141 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4142}
4143
0b8f73e1 4144static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4145{
c8b2a36f 4146 int node;
59927fb9 4147
0b8f73e1 4148 memcg_wb_domain_exit(memcg);
c8b2a36f 4149 for_each_node(node)
ef8f2327 4150 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4151 free_percpu(memcg->stat);
8ff69e2c 4152 kfree(memcg);
59927fb9 4153}
3afe36b1 4154
0b8f73e1 4155static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4156{
d142e3e6 4157 struct mem_cgroup *memcg;
0b8f73e1 4158 size_t size;
6d12e2d8 4159 int node;
8cdea7c0 4160
0b8f73e1
JW
4161 size = sizeof(struct mem_cgroup);
4162 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4163
4164 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4165 if (!memcg)
0b8f73e1
JW
4166 return NULL;
4167
73f576c0
JW
4168 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4169 1, MEM_CGROUP_ID_MAX,
4170 GFP_KERNEL);
4171 if (memcg->id.id < 0)
4172 goto fail;
4173
0b8f73e1
JW
4174 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4175 if (!memcg->stat)
4176 goto fail;
78fb7466 4177
3ed28fa1 4178 for_each_node(node)
ef8f2327 4179 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4180 goto fail;
f64c3f54 4181
0b8f73e1
JW
4182 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4183 goto fail;
28dbc4b6 4184
f7e1cb6e 4185 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4186 memcg->last_scanned_node = MAX_NUMNODES;
4187 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4188 mutex_init(&memcg->thresholds_lock);
4189 spin_lock_init(&memcg->move_lock);
70ddf637 4190 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4191 INIT_LIST_HEAD(&memcg->event_list);
4192 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4193 memcg->socket_pressure = jiffies;
127424c8 4194#ifndef CONFIG_SLOB
900a38f0 4195 memcg->kmemcg_id = -1;
900a38f0 4196#endif
52ebea74
TH
4197#ifdef CONFIG_CGROUP_WRITEBACK
4198 INIT_LIST_HEAD(&memcg->cgwb_list);
4199#endif
73f576c0 4200 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4201 return memcg;
4202fail:
73f576c0
JW
4203 if (memcg->id.id > 0)
4204 idr_remove(&mem_cgroup_idr, memcg->id.id);
0b8f73e1
JW
4205 mem_cgroup_free(memcg);
4206 return NULL;
d142e3e6
GC
4207}
4208
0b8f73e1
JW
4209static struct cgroup_subsys_state * __ref
4210mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4211{
0b8f73e1
JW
4212 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4213 struct mem_cgroup *memcg;
4214 long error = -ENOMEM;
d142e3e6 4215
0b8f73e1
JW
4216 memcg = mem_cgroup_alloc();
4217 if (!memcg)
4218 return ERR_PTR(error);
d142e3e6 4219
0b8f73e1
JW
4220 memcg->high = PAGE_COUNTER_MAX;
4221 memcg->soft_limit = PAGE_COUNTER_MAX;
4222 if (parent) {
4223 memcg->swappiness = mem_cgroup_swappiness(parent);
4224 memcg->oom_kill_disable = parent->oom_kill_disable;
4225 }
4226 if (parent && parent->use_hierarchy) {
4227 memcg->use_hierarchy = true;
3e32cb2e 4228 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4229 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4230 page_counter_init(&memcg->memsw, &parent->memsw);
4231 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4232 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4233 } else {
3e32cb2e 4234 page_counter_init(&memcg->memory, NULL);
37e84351 4235 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4236 page_counter_init(&memcg->memsw, NULL);
4237 page_counter_init(&memcg->kmem, NULL);
0db15298 4238 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4239 /*
4240 * Deeper hierachy with use_hierarchy == false doesn't make
4241 * much sense so let cgroup subsystem know about this
4242 * unfortunate state in our controller.
4243 */
d142e3e6 4244 if (parent != root_mem_cgroup)
073219e9 4245 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4246 }
d6441637 4247
0b8f73e1
JW
4248 /* The following stuff does not apply to the root */
4249 if (!parent) {
4250 root_mem_cgroup = memcg;
4251 return &memcg->css;
4252 }
4253
b313aeee 4254 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4255 if (error)
4256 goto fail;
127424c8 4257
f7e1cb6e 4258 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4259 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4260
0b8f73e1
JW
4261 return &memcg->css;
4262fail:
4263 mem_cgroup_free(memcg);
ea3a9645 4264 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4265}
4266
73f576c0 4267static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4268{
58fa2a55
VD
4269 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4270
73f576c0 4271 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4272 atomic_set(&memcg->id.ref, 1);
73f576c0 4273 css_get(css);
2f7dd7a4 4274 return 0;
8cdea7c0
BS
4275}
4276
eb95419b 4277static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4278{
eb95419b 4279 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4280 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4281
4282 /*
4283 * Unregister events and notify userspace.
4284 * Notify userspace about cgroup removing only after rmdir of cgroup
4285 * directory to avoid race between userspace and kernelspace.
4286 */
fba94807
TH
4287 spin_lock(&memcg->event_list_lock);
4288 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4289 list_del_init(&event->list);
4290 schedule_work(&event->remove);
4291 }
fba94807 4292 spin_unlock(&memcg->event_list_lock);
ec64f515 4293
567e9ab2 4294 memcg_offline_kmem(memcg);
52ebea74 4295 wb_memcg_offline(memcg);
73f576c0
JW
4296
4297 mem_cgroup_id_put(memcg);
df878fb0
KH
4298}
4299
6df38689
VD
4300static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4301{
4302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4303
4304 invalidate_reclaim_iterators(memcg);
4305}
4306
eb95419b 4307static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4308{
eb95419b 4309 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4310
f7e1cb6e 4311 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4312 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4313
0db15298 4314 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4315 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4316
0b8f73e1
JW
4317 vmpressure_cleanup(&memcg->vmpressure);
4318 cancel_work_sync(&memcg->high_work);
4319 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4320 memcg_free_kmem(memcg);
0b8f73e1 4321 mem_cgroup_free(memcg);
8cdea7c0
BS
4322}
4323
1ced953b
TH
4324/**
4325 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4326 * @css: the target css
4327 *
4328 * Reset the states of the mem_cgroup associated with @css. This is
4329 * invoked when the userland requests disabling on the default hierarchy
4330 * but the memcg is pinned through dependency. The memcg should stop
4331 * applying policies and should revert to the vanilla state as it may be
4332 * made visible again.
4333 *
4334 * The current implementation only resets the essential configurations.
4335 * This needs to be expanded to cover all the visible parts.
4336 */
4337static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4338{
4339 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4340
d334c9bc
VD
4341 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4342 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4343 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4344 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4345 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4346 memcg->low = 0;
4347 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4348 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4349 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4350}
4351
02491447 4352#ifdef CONFIG_MMU
7dc74be0 4353/* Handlers for move charge at task migration. */
854ffa8d 4354static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4355{
05b84301 4356 int ret;
9476db97 4357
d0164adc
MG
4358 /* Try a single bulk charge without reclaim first, kswapd may wake */
4359 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4360 if (!ret) {
854ffa8d 4361 mc.precharge += count;
854ffa8d
DN
4362 return ret;
4363 }
9476db97
JW
4364
4365 /* Try charges one by one with reclaim */
854ffa8d 4366 while (count--) {
00501b53 4367 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4368 if (ret)
38c5d72f 4369 return ret;
854ffa8d 4370 mc.precharge++;
9476db97 4371 cond_resched();
854ffa8d 4372 }
9476db97 4373 return 0;
4ffef5fe
DN
4374}
4375
4ffef5fe
DN
4376union mc_target {
4377 struct page *page;
02491447 4378 swp_entry_t ent;
4ffef5fe
DN
4379};
4380
4ffef5fe 4381enum mc_target_type {
8d32ff84 4382 MC_TARGET_NONE = 0,
4ffef5fe 4383 MC_TARGET_PAGE,
02491447 4384 MC_TARGET_SWAP,
4ffef5fe
DN
4385};
4386
90254a65
DN
4387static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4388 unsigned long addr, pte_t ptent)
4ffef5fe 4389{
90254a65 4390 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4391
90254a65
DN
4392 if (!page || !page_mapped(page))
4393 return NULL;
4394 if (PageAnon(page)) {
1dfab5ab 4395 if (!(mc.flags & MOVE_ANON))
90254a65 4396 return NULL;
1dfab5ab
JW
4397 } else {
4398 if (!(mc.flags & MOVE_FILE))
4399 return NULL;
4400 }
90254a65
DN
4401 if (!get_page_unless_zero(page))
4402 return NULL;
4403
4404 return page;
4405}
4406
4b91355e 4407#ifdef CONFIG_SWAP
90254a65 4408static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4409 pte_t ptent, swp_entry_t *entry)
90254a65 4410{
90254a65
DN
4411 struct page *page = NULL;
4412 swp_entry_t ent = pte_to_swp_entry(ptent);
4413
1dfab5ab 4414 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4415 return NULL;
4b91355e
KH
4416 /*
4417 * Because lookup_swap_cache() updates some statistics counter,
4418 * we call find_get_page() with swapper_space directly.
4419 */
f6ab1f7f 4420 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4421 if (do_memsw_account())
90254a65
DN
4422 entry->val = ent.val;
4423
4424 return page;
4425}
4b91355e
KH
4426#else
4427static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4428 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4429{
4430 return NULL;
4431}
4432#endif
90254a65 4433
87946a72
DN
4434static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4435 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4436{
4437 struct page *page = NULL;
87946a72
DN
4438 struct address_space *mapping;
4439 pgoff_t pgoff;
4440
4441 if (!vma->vm_file) /* anonymous vma */
4442 return NULL;
1dfab5ab 4443 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4444 return NULL;
4445
87946a72 4446 mapping = vma->vm_file->f_mapping;
0661a336 4447 pgoff = linear_page_index(vma, addr);
87946a72
DN
4448
4449 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4450#ifdef CONFIG_SWAP
4451 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4452 if (shmem_mapping(mapping)) {
4453 page = find_get_entry(mapping, pgoff);
4454 if (radix_tree_exceptional_entry(page)) {
4455 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4456 if (do_memsw_account())
139b6a6f 4457 *entry = swp;
f6ab1f7f
HY
4458 page = find_get_page(swap_address_space(swp),
4459 swp_offset(swp));
139b6a6f
JW
4460 }
4461 } else
4462 page = find_get_page(mapping, pgoff);
4463#else
4464 page = find_get_page(mapping, pgoff);
aa3b1895 4465#endif
87946a72
DN
4466 return page;
4467}
4468
b1b0deab
CG
4469/**
4470 * mem_cgroup_move_account - move account of the page
4471 * @page: the page
25843c2b 4472 * @compound: charge the page as compound or small page
b1b0deab
CG
4473 * @from: mem_cgroup which the page is moved from.
4474 * @to: mem_cgroup which the page is moved to. @from != @to.
4475 *
3ac808fd 4476 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4477 *
4478 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4479 * from old cgroup.
4480 */
4481static int mem_cgroup_move_account(struct page *page,
f627c2f5 4482 bool compound,
b1b0deab
CG
4483 struct mem_cgroup *from,
4484 struct mem_cgroup *to)
4485{
4486 unsigned long flags;
f627c2f5 4487 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4488 int ret;
c4843a75 4489 bool anon;
b1b0deab
CG
4490
4491 VM_BUG_ON(from == to);
4492 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4493 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4494
4495 /*
6a93ca8f 4496 * Prevent mem_cgroup_migrate() from looking at
45637bab 4497 * page->mem_cgroup of its source page while we change it.
b1b0deab 4498 */
f627c2f5 4499 ret = -EBUSY;
b1b0deab
CG
4500 if (!trylock_page(page))
4501 goto out;
4502
4503 ret = -EINVAL;
4504 if (page->mem_cgroup != from)
4505 goto out_unlock;
4506
c4843a75
GT
4507 anon = PageAnon(page);
4508
b1b0deab
CG
4509 spin_lock_irqsave(&from->move_lock, flags);
4510
c4843a75 4511 if (!anon && page_mapped(page)) {
b1b0deab
CG
4512 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4513 nr_pages);
4514 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4515 nr_pages);
4516 }
4517
c4843a75
GT
4518 /*
4519 * move_lock grabbed above and caller set from->moving_account, so
4520 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4521 * So mapping should be stable for dirty pages.
4522 */
4523 if (!anon && PageDirty(page)) {
4524 struct address_space *mapping = page_mapping(page);
4525
4526 if (mapping_cap_account_dirty(mapping)) {
4527 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4528 nr_pages);
4529 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4530 nr_pages);
4531 }
4532 }
4533
b1b0deab
CG
4534 if (PageWriteback(page)) {
4535 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4536 nr_pages);
4537 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4538 nr_pages);
4539 }
4540
4541 /*
4542 * It is safe to change page->mem_cgroup here because the page
4543 * is referenced, charged, and isolated - we can't race with
4544 * uncharging, charging, migration, or LRU putback.
4545 */
4546
4547 /* caller should have done css_get */
4548 page->mem_cgroup = to;
4549 spin_unlock_irqrestore(&from->move_lock, flags);
4550
4551 ret = 0;
4552
4553 local_irq_disable();
f627c2f5 4554 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4555 memcg_check_events(to, page);
f627c2f5 4556 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4557 memcg_check_events(from, page);
4558 local_irq_enable();
4559out_unlock:
4560 unlock_page(page);
4561out:
4562 return ret;
4563}
4564
7cf7806c
LR
4565/**
4566 * get_mctgt_type - get target type of moving charge
4567 * @vma: the vma the pte to be checked belongs
4568 * @addr: the address corresponding to the pte to be checked
4569 * @ptent: the pte to be checked
4570 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4571 *
4572 * Returns
4573 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4574 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4575 * move charge. if @target is not NULL, the page is stored in target->page
4576 * with extra refcnt got(Callers should handle it).
4577 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4578 * target for charge migration. if @target is not NULL, the entry is stored
4579 * in target->ent.
4580 *
4581 * Called with pte lock held.
4582 */
4583
8d32ff84 4584static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4585 unsigned long addr, pte_t ptent, union mc_target *target)
4586{
4587 struct page *page = NULL;
8d32ff84 4588 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4589 swp_entry_t ent = { .val = 0 };
4590
4591 if (pte_present(ptent))
4592 page = mc_handle_present_pte(vma, addr, ptent);
4593 else if (is_swap_pte(ptent))
48406ef8 4594 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4595 else if (pte_none(ptent))
87946a72 4596 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4597
4598 if (!page && !ent.val)
8d32ff84 4599 return ret;
02491447 4600 if (page) {
02491447 4601 /*
0a31bc97 4602 * Do only loose check w/o serialization.
1306a85a 4603 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4604 * not under LRU exclusion.
02491447 4605 */
1306a85a 4606 if (page->mem_cgroup == mc.from) {
02491447
DN
4607 ret = MC_TARGET_PAGE;
4608 if (target)
4609 target->page = page;
4610 }
4611 if (!ret || !target)
4612 put_page(page);
4613 }
90254a65
DN
4614 /* There is a swap entry and a page doesn't exist or isn't charged */
4615 if (ent.val && !ret &&
34c00c31 4616 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4617 ret = MC_TARGET_SWAP;
4618 if (target)
4619 target->ent = ent;
4ffef5fe 4620 }
4ffef5fe
DN
4621 return ret;
4622}
4623
12724850
NH
4624#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4625/*
4626 * We don't consider swapping or file mapped pages because THP does not
4627 * support them for now.
4628 * Caller should make sure that pmd_trans_huge(pmd) is true.
4629 */
4630static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4631 unsigned long addr, pmd_t pmd, union mc_target *target)
4632{
4633 struct page *page = NULL;
12724850
NH
4634 enum mc_target_type ret = MC_TARGET_NONE;
4635
4636 page = pmd_page(pmd);
309381fe 4637 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4638 if (!(mc.flags & MOVE_ANON))
12724850 4639 return ret;
1306a85a 4640 if (page->mem_cgroup == mc.from) {
12724850
NH
4641 ret = MC_TARGET_PAGE;
4642 if (target) {
4643 get_page(page);
4644 target->page = page;
4645 }
4646 }
4647 return ret;
4648}
4649#else
4650static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4651 unsigned long addr, pmd_t pmd, union mc_target *target)
4652{
4653 return MC_TARGET_NONE;
4654}
4655#endif
4656
4ffef5fe
DN
4657static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4658 unsigned long addr, unsigned long end,
4659 struct mm_walk *walk)
4660{
26bcd64a 4661 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4662 pte_t *pte;
4663 spinlock_t *ptl;
4664
b6ec57f4
KS
4665 ptl = pmd_trans_huge_lock(pmd, vma);
4666 if (ptl) {
12724850
NH
4667 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4668 mc.precharge += HPAGE_PMD_NR;
bf929152 4669 spin_unlock(ptl);
1a5a9906 4670 return 0;
12724850 4671 }
03319327 4672
45f83cef
AA
4673 if (pmd_trans_unstable(pmd))
4674 return 0;
4ffef5fe
DN
4675 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4676 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4677 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4678 mc.precharge++; /* increment precharge temporarily */
4679 pte_unmap_unlock(pte - 1, ptl);
4680 cond_resched();
4681
7dc74be0
DN
4682 return 0;
4683}
4684
4ffef5fe
DN
4685static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4686{
4687 unsigned long precharge;
4ffef5fe 4688
26bcd64a
NH
4689 struct mm_walk mem_cgroup_count_precharge_walk = {
4690 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4691 .mm = mm,
4692 };
dfe076b0 4693 down_read(&mm->mmap_sem);
0247f3f4
JM
4694 walk_page_range(0, mm->highest_vm_end,
4695 &mem_cgroup_count_precharge_walk);
dfe076b0 4696 up_read(&mm->mmap_sem);
4ffef5fe
DN
4697
4698 precharge = mc.precharge;
4699 mc.precharge = 0;
4700
4701 return precharge;
4702}
4703
4ffef5fe
DN
4704static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4705{
dfe076b0
DN
4706 unsigned long precharge = mem_cgroup_count_precharge(mm);
4707
4708 VM_BUG_ON(mc.moving_task);
4709 mc.moving_task = current;
4710 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4711}
4712
dfe076b0
DN
4713/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4714static void __mem_cgroup_clear_mc(void)
4ffef5fe 4715{
2bd9bb20
KH
4716 struct mem_cgroup *from = mc.from;
4717 struct mem_cgroup *to = mc.to;
4718
4ffef5fe 4719 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4720 if (mc.precharge) {
00501b53 4721 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4722 mc.precharge = 0;
4723 }
4724 /*
4725 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4726 * we must uncharge here.
4727 */
4728 if (mc.moved_charge) {
00501b53 4729 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4730 mc.moved_charge = 0;
4ffef5fe 4731 }
483c30b5
DN
4732 /* we must fixup refcnts and charges */
4733 if (mc.moved_swap) {
483c30b5 4734 /* uncharge swap account from the old cgroup */
ce00a967 4735 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4736 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4737
615d66c3
VD
4738 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4739
05b84301 4740 /*
3e32cb2e
JW
4741 * we charged both to->memory and to->memsw, so we
4742 * should uncharge to->memory.
05b84301 4743 */
ce00a967 4744 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4745 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4746
615d66c3
VD
4747 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4748 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4749
483c30b5
DN
4750 mc.moved_swap = 0;
4751 }
dfe076b0
DN
4752 memcg_oom_recover(from);
4753 memcg_oom_recover(to);
4754 wake_up_all(&mc.waitq);
4755}
4756
4757static void mem_cgroup_clear_mc(void)
4758{
264a0ae1
TH
4759 struct mm_struct *mm = mc.mm;
4760
dfe076b0
DN
4761 /*
4762 * we must clear moving_task before waking up waiters at the end of
4763 * task migration.
4764 */
4765 mc.moving_task = NULL;
4766 __mem_cgroup_clear_mc();
2bd9bb20 4767 spin_lock(&mc.lock);
4ffef5fe
DN
4768 mc.from = NULL;
4769 mc.to = NULL;
264a0ae1 4770 mc.mm = NULL;
2bd9bb20 4771 spin_unlock(&mc.lock);
264a0ae1
TH
4772
4773 mmput(mm);
4ffef5fe
DN
4774}
4775
1f7dd3e5 4776static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4777{
1f7dd3e5 4778 struct cgroup_subsys_state *css;
eed67d75 4779 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4780 struct mem_cgroup *from;
4530eddb 4781 struct task_struct *leader, *p;
9f2115f9 4782 struct mm_struct *mm;
1dfab5ab 4783 unsigned long move_flags;
9f2115f9 4784 int ret = 0;
7dc74be0 4785
1f7dd3e5
TH
4786 /* charge immigration isn't supported on the default hierarchy */
4787 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4788 return 0;
4789
4530eddb
TH
4790 /*
4791 * Multi-process migrations only happen on the default hierarchy
4792 * where charge immigration is not used. Perform charge
4793 * immigration if @tset contains a leader and whine if there are
4794 * multiple.
4795 */
4796 p = NULL;
1f7dd3e5 4797 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4798 WARN_ON_ONCE(p);
4799 p = leader;
1f7dd3e5 4800 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4801 }
4802 if (!p)
4803 return 0;
4804
1f7dd3e5
TH
4805 /*
4806 * We are now commited to this value whatever it is. Changes in this
4807 * tunable will only affect upcoming migrations, not the current one.
4808 * So we need to save it, and keep it going.
4809 */
4810 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4811 if (!move_flags)
4812 return 0;
4813
9f2115f9
TH
4814 from = mem_cgroup_from_task(p);
4815
4816 VM_BUG_ON(from == memcg);
4817
4818 mm = get_task_mm(p);
4819 if (!mm)
4820 return 0;
4821 /* We move charges only when we move a owner of the mm */
4822 if (mm->owner == p) {
4823 VM_BUG_ON(mc.from);
4824 VM_BUG_ON(mc.to);
4825 VM_BUG_ON(mc.precharge);
4826 VM_BUG_ON(mc.moved_charge);
4827 VM_BUG_ON(mc.moved_swap);
4828
4829 spin_lock(&mc.lock);
264a0ae1 4830 mc.mm = mm;
9f2115f9
TH
4831 mc.from = from;
4832 mc.to = memcg;
4833 mc.flags = move_flags;
4834 spin_unlock(&mc.lock);
4835 /* We set mc.moving_task later */
4836
4837 ret = mem_cgroup_precharge_mc(mm);
4838 if (ret)
4839 mem_cgroup_clear_mc();
264a0ae1
TH
4840 } else {
4841 mmput(mm);
7dc74be0
DN
4842 }
4843 return ret;
4844}
4845
1f7dd3e5 4846static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4847{
4e2f245d
JW
4848 if (mc.to)
4849 mem_cgroup_clear_mc();
7dc74be0
DN
4850}
4851
4ffef5fe
DN
4852static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4853 unsigned long addr, unsigned long end,
4854 struct mm_walk *walk)
7dc74be0 4855{
4ffef5fe 4856 int ret = 0;
26bcd64a 4857 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4858 pte_t *pte;
4859 spinlock_t *ptl;
12724850
NH
4860 enum mc_target_type target_type;
4861 union mc_target target;
4862 struct page *page;
4ffef5fe 4863
b6ec57f4
KS
4864 ptl = pmd_trans_huge_lock(pmd, vma);
4865 if (ptl) {
62ade86a 4866 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4867 spin_unlock(ptl);
12724850
NH
4868 return 0;
4869 }
4870 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4871 if (target_type == MC_TARGET_PAGE) {
4872 page = target.page;
4873 if (!isolate_lru_page(page)) {
f627c2f5 4874 if (!mem_cgroup_move_account(page, true,
1306a85a 4875 mc.from, mc.to)) {
12724850
NH
4876 mc.precharge -= HPAGE_PMD_NR;
4877 mc.moved_charge += HPAGE_PMD_NR;
4878 }
4879 putback_lru_page(page);
4880 }
4881 put_page(page);
4882 }
bf929152 4883 spin_unlock(ptl);
1a5a9906 4884 return 0;
12724850
NH
4885 }
4886
45f83cef
AA
4887 if (pmd_trans_unstable(pmd))
4888 return 0;
4ffef5fe
DN
4889retry:
4890 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4891 for (; addr != end; addr += PAGE_SIZE) {
4892 pte_t ptent = *(pte++);
02491447 4893 swp_entry_t ent;
4ffef5fe
DN
4894
4895 if (!mc.precharge)
4896 break;
4897
8d32ff84 4898 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4899 case MC_TARGET_PAGE:
4900 page = target.page;
53f9263b
KS
4901 /*
4902 * We can have a part of the split pmd here. Moving it
4903 * can be done but it would be too convoluted so simply
4904 * ignore such a partial THP and keep it in original
4905 * memcg. There should be somebody mapping the head.
4906 */
4907 if (PageTransCompound(page))
4908 goto put;
4ffef5fe
DN
4909 if (isolate_lru_page(page))
4910 goto put;
f627c2f5
KS
4911 if (!mem_cgroup_move_account(page, false,
4912 mc.from, mc.to)) {
4ffef5fe 4913 mc.precharge--;
854ffa8d
DN
4914 /* we uncharge from mc.from later. */
4915 mc.moved_charge++;
4ffef5fe
DN
4916 }
4917 putback_lru_page(page);
8d32ff84 4918put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4919 put_page(page);
4920 break;
02491447
DN
4921 case MC_TARGET_SWAP:
4922 ent = target.ent;
e91cbb42 4923 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4924 mc.precharge--;
483c30b5
DN
4925 /* we fixup refcnts and charges later. */
4926 mc.moved_swap++;
4927 }
02491447 4928 break;
4ffef5fe
DN
4929 default:
4930 break;
4931 }
4932 }
4933 pte_unmap_unlock(pte - 1, ptl);
4934 cond_resched();
4935
4936 if (addr != end) {
4937 /*
4938 * We have consumed all precharges we got in can_attach().
4939 * We try charge one by one, but don't do any additional
4940 * charges to mc.to if we have failed in charge once in attach()
4941 * phase.
4942 */
854ffa8d 4943 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4944 if (!ret)
4945 goto retry;
4946 }
4947
4948 return ret;
4949}
4950
264a0ae1 4951static void mem_cgroup_move_charge(void)
4ffef5fe 4952{
26bcd64a
NH
4953 struct mm_walk mem_cgroup_move_charge_walk = {
4954 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4955 .mm = mc.mm,
26bcd64a 4956 };
4ffef5fe
DN
4957
4958 lru_add_drain_all();
312722cb 4959 /*
81f8c3a4
JW
4960 * Signal lock_page_memcg() to take the memcg's move_lock
4961 * while we're moving its pages to another memcg. Then wait
4962 * for already started RCU-only updates to finish.
312722cb
JW
4963 */
4964 atomic_inc(&mc.from->moving_account);
4965 synchronize_rcu();
dfe076b0 4966retry:
264a0ae1 4967 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4968 /*
4969 * Someone who are holding the mmap_sem might be waiting in
4970 * waitq. So we cancel all extra charges, wake up all waiters,
4971 * and retry. Because we cancel precharges, we might not be able
4972 * to move enough charges, but moving charge is a best-effort
4973 * feature anyway, so it wouldn't be a big problem.
4974 */
4975 __mem_cgroup_clear_mc();
4976 cond_resched();
4977 goto retry;
4978 }
26bcd64a
NH
4979 /*
4980 * When we have consumed all precharges and failed in doing
4981 * additional charge, the page walk just aborts.
4982 */
0247f3f4
JM
4983 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4984
264a0ae1 4985 up_read(&mc.mm->mmap_sem);
312722cb 4986 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4987}
4988
264a0ae1 4989static void mem_cgroup_move_task(void)
67e465a7 4990{
264a0ae1
TH
4991 if (mc.to) {
4992 mem_cgroup_move_charge();
a433658c 4993 mem_cgroup_clear_mc();
264a0ae1 4994 }
67e465a7 4995}
5cfb80a7 4996#else /* !CONFIG_MMU */
1f7dd3e5 4997static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4998{
4999 return 0;
5000}
1f7dd3e5 5001static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5002{
5003}
264a0ae1 5004static void mem_cgroup_move_task(void)
5cfb80a7
DN
5005{
5006}
5007#endif
67e465a7 5008
f00baae7
TH
5009/*
5010 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5011 * to verify whether we're attached to the default hierarchy on each mount
5012 * attempt.
f00baae7 5013 */
eb95419b 5014static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5015{
5016 /*
aa6ec29b 5017 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5018 * guarantees that @root doesn't have any children, so turning it
5019 * on for the root memcg is enough.
5020 */
9e10a130 5021 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5022 root_mem_cgroup->use_hierarchy = true;
5023 else
5024 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5025}
5026
241994ed
JW
5027static u64 memory_current_read(struct cgroup_subsys_state *css,
5028 struct cftype *cft)
5029{
f5fc3c5d
JW
5030 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5031
5032 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5033}
5034
5035static int memory_low_show(struct seq_file *m, void *v)
5036{
5037 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5038 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5039
5040 if (low == PAGE_COUNTER_MAX)
d2973697 5041 seq_puts(m, "max\n");
241994ed
JW
5042 else
5043 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5044
5045 return 0;
5046}
5047
5048static ssize_t memory_low_write(struct kernfs_open_file *of,
5049 char *buf, size_t nbytes, loff_t off)
5050{
5051 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5052 unsigned long low;
5053 int err;
5054
5055 buf = strstrip(buf);
d2973697 5056 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5057 if (err)
5058 return err;
5059
5060 memcg->low = low;
5061
5062 return nbytes;
5063}
5064
5065static int memory_high_show(struct seq_file *m, void *v)
5066{
5067 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5068 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5069
5070 if (high == PAGE_COUNTER_MAX)
d2973697 5071 seq_puts(m, "max\n");
241994ed
JW
5072 else
5073 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5074
5075 return 0;
5076}
5077
5078static ssize_t memory_high_write(struct kernfs_open_file *of,
5079 char *buf, size_t nbytes, loff_t off)
5080{
5081 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5082 unsigned long nr_pages;
241994ed
JW
5083 unsigned long high;
5084 int err;
5085
5086 buf = strstrip(buf);
d2973697 5087 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5088 if (err)
5089 return err;
5090
5091 memcg->high = high;
5092
588083bb
JW
5093 nr_pages = page_counter_read(&memcg->memory);
5094 if (nr_pages > high)
5095 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5096 GFP_KERNEL, true);
5097
2529bb3a 5098 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5099 return nbytes;
5100}
5101
5102static int memory_max_show(struct seq_file *m, void *v)
5103{
5104 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5105 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5106
5107 if (max == PAGE_COUNTER_MAX)
d2973697 5108 seq_puts(m, "max\n");
241994ed
JW
5109 else
5110 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5111
5112 return 0;
5113}
5114
5115static ssize_t memory_max_write(struct kernfs_open_file *of,
5116 char *buf, size_t nbytes, loff_t off)
5117{
5118 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5119 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5120 bool drained = false;
241994ed
JW
5121 unsigned long max;
5122 int err;
5123
5124 buf = strstrip(buf);
d2973697 5125 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5126 if (err)
5127 return err;
5128
b6e6edcf
JW
5129 xchg(&memcg->memory.limit, max);
5130
5131 for (;;) {
5132 unsigned long nr_pages = page_counter_read(&memcg->memory);
5133
5134 if (nr_pages <= max)
5135 break;
5136
5137 if (signal_pending(current)) {
5138 err = -EINTR;
5139 break;
5140 }
5141
5142 if (!drained) {
5143 drain_all_stock(memcg);
5144 drained = true;
5145 continue;
5146 }
5147
5148 if (nr_reclaims) {
5149 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5150 GFP_KERNEL, true))
5151 nr_reclaims--;
5152 continue;
5153 }
5154
5155 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5156 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5157 break;
5158 }
241994ed 5159
2529bb3a 5160 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5161 return nbytes;
5162}
5163
5164static int memory_events_show(struct seq_file *m, void *v)
5165{
5166 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5167
5168 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5169 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5170 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5171 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5172
5173 return 0;
5174}
5175
587d9f72
JW
5176static int memory_stat_show(struct seq_file *m, void *v)
5177{
5178 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5179 unsigned long stat[MEMCG_NR_STAT];
5180 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5181 int i;
5182
5183 /*
5184 * Provide statistics on the state of the memory subsystem as
5185 * well as cumulative event counters that show past behavior.
5186 *
5187 * This list is ordered following a combination of these gradients:
5188 * 1) generic big picture -> specifics and details
5189 * 2) reflecting userspace activity -> reflecting kernel heuristics
5190 *
5191 * Current memory state:
5192 */
5193
72b54e73
VD
5194 tree_stat(memcg, stat);
5195 tree_events(memcg, events);
5196
587d9f72 5197 seq_printf(m, "anon %llu\n",
72b54e73 5198 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5199 seq_printf(m, "file %llu\n",
72b54e73 5200 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b 5201 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5202 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9
VD
5203 seq_printf(m, "slab %llu\n",
5204 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5205 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5206 seq_printf(m, "sock %llu\n",
72b54e73 5207 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5208
5209 seq_printf(m, "file_mapped %llu\n",
72b54e73 5210 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5211 seq_printf(m, "file_dirty %llu\n",
72b54e73 5212 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5213 seq_printf(m, "file_writeback %llu\n",
72b54e73 5214 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5215
5216 for (i = 0; i < NR_LRU_LISTS; i++) {
5217 struct mem_cgroup *mi;
5218 unsigned long val = 0;
5219
5220 for_each_mem_cgroup_tree(mi, memcg)
5221 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5222 seq_printf(m, "%s %llu\n",
5223 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5224 }
5225
27ee57c9
VD
5226 seq_printf(m, "slab_reclaimable %llu\n",
5227 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5228 seq_printf(m, "slab_unreclaimable %llu\n",
5229 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5230
587d9f72
JW
5231 /* Accumulated memory events */
5232
5233 seq_printf(m, "pgfault %lu\n",
72b54e73 5234 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5235 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5236 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5237
5238 return 0;
5239}
5240
241994ed
JW
5241static struct cftype memory_files[] = {
5242 {
5243 .name = "current",
f5fc3c5d 5244 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5245 .read_u64 = memory_current_read,
5246 },
5247 {
5248 .name = "low",
5249 .flags = CFTYPE_NOT_ON_ROOT,
5250 .seq_show = memory_low_show,
5251 .write = memory_low_write,
5252 },
5253 {
5254 .name = "high",
5255 .flags = CFTYPE_NOT_ON_ROOT,
5256 .seq_show = memory_high_show,
5257 .write = memory_high_write,
5258 },
5259 {
5260 .name = "max",
5261 .flags = CFTYPE_NOT_ON_ROOT,
5262 .seq_show = memory_max_show,
5263 .write = memory_max_write,
5264 },
5265 {
5266 .name = "events",
5267 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5268 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5269 .seq_show = memory_events_show,
5270 },
587d9f72
JW
5271 {
5272 .name = "stat",
5273 .flags = CFTYPE_NOT_ON_ROOT,
5274 .seq_show = memory_stat_show,
5275 },
241994ed
JW
5276 { } /* terminate */
5277};
5278
073219e9 5279struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5280 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5281 .css_online = mem_cgroup_css_online,
92fb9748 5282 .css_offline = mem_cgroup_css_offline,
6df38689 5283 .css_released = mem_cgroup_css_released,
92fb9748 5284 .css_free = mem_cgroup_css_free,
1ced953b 5285 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5286 .can_attach = mem_cgroup_can_attach,
5287 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5288 .post_attach = mem_cgroup_move_task,
f00baae7 5289 .bind = mem_cgroup_bind,
241994ed
JW
5290 .dfl_cftypes = memory_files,
5291 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5292 .early_init = 0,
8cdea7c0 5293};
c077719b 5294
241994ed
JW
5295/**
5296 * mem_cgroup_low - check if memory consumption is below the normal range
5297 * @root: the highest ancestor to consider
5298 * @memcg: the memory cgroup to check
5299 *
5300 * Returns %true if memory consumption of @memcg, and that of all
5301 * configurable ancestors up to @root, is below the normal range.
5302 */
5303bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5304{
5305 if (mem_cgroup_disabled())
5306 return false;
5307
5308 /*
5309 * The toplevel group doesn't have a configurable range, so
5310 * it's never low when looked at directly, and it is not
5311 * considered an ancestor when assessing the hierarchy.
5312 */
5313
5314 if (memcg == root_mem_cgroup)
5315 return false;
5316
4e54dede 5317 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5318 return false;
5319
5320 while (memcg != root) {
5321 memcg = parent_mem_cgroup(memcg);
5322
5323 if (memcg == root_mem_cgroup)
5324 break;
5325
4e54dede 5326 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5327 return false;
5328 }
5329 return true;
5330}
5331
00501b53
JW
5332/**
5333 * mem_cgroup_try_charge - try charging a page
5334 * @page: page to charge
5335 * @mm: mm context of the victim
5336 * @gfp_mask: reclaim mode
5337 * @memcgp: charged memcg return
25843c2b 5338 * @compound: charge the page as compound or small page
00501b53
JW
5339 *
5340 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5341 * pages according to @gfp_mask if necessary.
5342 *
5343 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5344 * Otherwise, an error code is returned.
5345 *
5346 * After page->mapping has been set up, the caller must finalize the
5347 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5348 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5349 */
5350int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5351 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5352 bool compound)
00501b53
JW
5353{
5354 struct mem_cgroup *memcg = NULL;
f627c2f5 5355 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5356 int ret = 0;
5357
5358 if (mem_cgroup_disabled())
5359 goto out;
5360
5361 if (PageSwapCache(page)) {
00501b53
JW
5362 /*
5363 * Every swap fault against a single page tries to charge the
5364 * page, bail as early as possible. shmem_unuse() encounters
5365 * already charged pages, too. The USED bit is protected by
5366 * the page lock, which serializes swap cache removal, which
5367 * in turn serializes uncharging.
5368 */
e993d905 5369 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5370 if (page->mem_cgroup)
00501b53 5371 goto out;
e993d905 5372
37e84351 5373 if (do_swap_account) {
e993d905
VD
5374 swp_entry_t ent = { .val = page_private(page), };
5375 unsigned short id = lookup_swap_cgroup_id(ent);
5376
5377 rcu_read_lock();
5378 memcg = mem_cgroup_from_id(id);
5379 if (memcg && !css_tryget_online(&memcg->css))
5380 memcg = NULL;
5381 rcu_read_unlock();
5382 }
00501b53
JW
5383 }
5384
00501b53
JW
5385 if (!memcg)
5386 memcg = get_mem_cgroup_from_mm(mm);
5387
5388 ret = try_charge(memcg, gfp_mask, nr_pages);
5389
5390 css_put(&memcg->css);
00501b53
JW
5391out:
5392 *memcgp = memcg;
5393 return ret;
5394}
5395
5396/**
5397 * mem_cgroup_commit_charge - commit a page charge
5398 * @page: page to charge
5399 * @memcg: memcg to charge the page to
5400 * @lrucare: page might be on LRU already
25843c2b 5401 * @compound: charge the page as compound or small page
00501b53
JW
5402 *
5403 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5404 * after page->mapping has been set up. This must happen atomically
5405 * as part of the page instantiation, i.e. under the page table lock
5406 * for anonymous pages, under the page lock for page and swap cache.
5407 *
5408 * In addition, the page must not be on the LRU during the commit, to
5409 * prevent racing with task migration. If it might be, use @lrucare.
5410 *
5411 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5412 */
5413void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5414 bool lrucare, bool compound)
00501b53 5415{
f627c2f5 5416 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5417
5418 VM_BUG_ON_PAGE(!page->mapping, page);
5419 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5420
5421 if (mem_cgroup_disabled())
5422 return;
5423 /*
5424 * Swap faults will attempt to charge the same page multiple
5425 * times. But reuse_swap_page() might have removed the page
5426 * from swapcache already, so we can't check PageSwapCache().
5427 */
5428 if (!memcg)
5429 return;
5430
6abb5a86
JW
5431 commit_charge(page, memcg, lrucare);
5432
6abb5a86 5433 local_irq_disable();
f627c2f5 5434 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5435 memcg_check_events(memcg, page);
5436 local_irq_enable();
00501b53 5437
7941d214 5438 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5439 swp_entry_t entry = { .val = page_private(page) };
5440 /*
5441 * The swap entry might not get freed for a long time,
5442 * let's not wait for it. The page already received a
5443 * memory+swap charge, drop the swap entry duplicate.
5444 */
5445 mem_cgroup_uncharge_swap(entry);
5446 }
5447}
5448
5449/**
5450 * mem_cgroup_cancel_charge - cancel a page charge
5451 * @page: page to charge
5452 * @memcg: memcg to charge the page to
25843c2b 5453 * @compound: charge the page as compound or small page
00501b53
JW
5454 *
5455 * Cancel a charge transaction started by mem_cgroup_try_charge().
5456 */
f627c2f5
KS
5457void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5458 bool compound)
00501b53 5459{
f627c2f5 5460 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5461
5462 if (mem_cgroup_disabled())
5463 return;
5464 /*
5465 * Swap faults will attempt to charge the same page multiple
5466 * times. But reuse_swap_page() might have removed the page
5467 * from swapcache already, so we can't check PageSwapCache().
5468 */
5469 if (!memcg)
5470 return;
5471
00501b53
JW
5472 cancel_charge(memcg, nr_pages);
5473}
5474
747db954 5475static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5476 unsigned long nr_anon, unsigned long nr_file,
5e8d35f8
VD
5477 unsigned long nr_huge, unsigned long nr_kmem,
5478 struct page *dummy_page)
747db954 5479{
5e8d35f8 5480 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5481 unsigned long flags;
5482
ce00a967 5483 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5484 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5485 if (do_memsw_account())
18eca2e6 5486 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5487 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5488 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5489 memcg_oom_recover(memcg);
5490 }
747db954
JW
5491
5492 local_irq_save(flags);
5493 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5494 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5495 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5496 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5497 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5498 memcg_check_events(memcg, dummy_page);
5499 local_irq_restore(flags);
e8ea14cc
JW
5500
5501 if (!mem_cgroup_is_root(memcg))
18eca2e6 5502 css_put_many(&memcg->css, nr_pages);
747db954
JW
5503}
5504
5505static void uncharge_list(struct list_head *page_list)
5506{
5507 struct mem_cgroup *memcg = NULL;
747db954
JW
5508 unsigned long nr_anon = 0;
5509 unsigned long nr_file = 0;
5510 unsigned long nr_huge = 0;
5e8d35f8 5511 unsigned long nr_kmem = 0;
747db954 5512 unsigned long pgpgout = 0;
747db954
JW
5513 struct list_head *next;
5514 struct page *page;
5515
8b592656
JW
5516 /*
5517 * Note that the list can be a single page->lru; hence the
5518 * do-while loop instead of a simple list_for_each_entry().
5519 */
747db954
JW
5520 next = page_list->next;
5521 do {
747db954
JW
5522 page = list_entry(next, struct page, lru);
5523 next = page->lru.next;
5524
5525 VM_BUG_ON_PAGE(PageLRU(page), page);
5526 VM_BUG_ON_PAGE(page_count(page), page);
5527
1306a85a 5528 if (!page->mem_cgroup)
747db954
JW
5529 continue;
5530
5531 /*
5532 * Nobody should be changing or seriously looking at
1306a85a 5533 * page->mem_cgroup at this point, we have fully
29833315 5534 * exclusive access to the page.
747db954
JW
5535 */
5536
1306a85a 5537 if (memcg != page->mem_cgroup) {
747db954 5538 if (memcg) {
18eca2e6 5539 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8
VD
5540 nr_huge, nr_kmem, page);
5541 pgpgout = nr_anon = nr_file =
5542 nr_huge = nr_kmem = 0;
747db954 5543 }
1306a85a 5544 memcg = page->mem_cgroup;
747db954
JW
5545 }
5546
5e8d35f8
VD
5547 if (!PageKmemcg(page)) {
5548 unsigned int nr_pages = 1;
747db954 5549
5e8d35f8
VD
5550 if (PageTransHuge(page)) {
5551 nr_pages <<= compound_order(page);
5e8d35f8
VD
5552 nr_huge += nr_pages;
5553 }
5554 if (PageAnon(page))
5555 nr_anon += nr_pages;
5556 else
5557 nr_file += nr_pages;
5558 pgpgout++;
c4159a75 5559 } else {
5e8d35f8 5560 nr_kmem += 1 << compound_order(page);
c4159a75
VD
5561 __ClearPageKmemcg(page);
5562 }
747db954 5563
1306a85a 5564 page->mem_cgroup = NULL;
747db954
JW
5565 } while (next != page_list);
5566
5567 if (memcg)
18eca2e6 5568 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8 5569 nr_huge, nr_kmem, page);
747db954
JW
5570}
5571
0a31bc97
JW
5572/**
5573 * mem_cgroup_uncharge - uncharge a page
5574 * @page: page to uncharge
5575 *
5576 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5577 * mem_cgroup_commit_charge().
5578 */
5579void mem_cgroup_uncharge(struct page *page)
5580{
0a31bc97
JW
5581 if (mem_cgroup_disabled())
5582 return;
5583
747db954 5584 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5585 if (!page->mem_cgroup)
0a31bc97
JW
5586 return;
5587
747db954
JW
5588 INIT_LIST_HEAD(&page->lru);
5589 uncharge_list(&page->lru);
5590}
0a31bc97 5591
747db954
JW
5592/**
5593 * mem_cgroup_uncharge_list - uncharge a list of page
5594 * @page_list: list of pages to uncharge
5595 *
5596 * Uncharge a list of pages previously charged with
5597 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5598 */
5599void mem_cgroup_uncharge_list(struct list_head *page_list)
5600{
5601 if (mem_cgroup_disabled())
5602 return;
0a31bc97 5603
747db954
JW
5604 if (!list_empty(page_list))
5605 uncharge_list(page_list);
0a31bc97
JW
5606}
5607
5608/**
6a93ca8f
JW
5609 * mem_cgroup_migrate - charge a page's replacement
5610 * @oldpage: currently circulating page
5611 * @newpage: replacement page
0a31bc97 5612 *
6a93ca8f
JW
5613 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5614 * be uncharged upon free.
0a31bc97
JW
5615 *
5616 * Both pages must be locked, @newpage->mapping must be set up.
5617 */
6a93ca8f 5618void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5619{
29833315 5620 struct mem_cgroup *memcg;
44b7a8d3
JW
5621 unsigned int nr_pages;
5622 bool compound;
d93c4130 5623 unsigned long flags;
0a31bc97
JW
5624
5625 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5626 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5627 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5628 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5629 newpage);
0a31bc97
JW
5630
5631 if (mem_cgroup_disabled())
5632 return;
5633
5634 /* Page cache replacement: new page already charged? */
1306a85a 5635 if (newpage->mem_cgroup)
0a31bc97
JW
5636 return;
5637
45637bab 5638 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5639 memcg = oldpage->mem_cgroup;
29833315 5640 if (!memcg)
0a31bc97
JW
5641 return;
5642
44b7a8d3
JW
5643 /* Force-charge the new page. The old one will be freed soon */
5644 compound = PageTransHuge(newpage);
5645 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5646
5647 page_counter_charge(&memcg->memory, nr_pages);
5648 if (do_memsw_account())
5649 page_counter_charge(&memcg->memsw, nr_pages);
5650 css_get_many(&memcg->css, nr_pages);
0a31bc97 5651
9cf7666a 5652 commit_charge(newpage, memcg, false);
44b7a8d3 5653
d93c4130 5654 local_irq_save(flags);
44b7a8d3
JW
5655 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5656 memcg_check_events(memcg, newpage);
d93c4130 5657 local_irq_restore(flags);
0a31bc97
JW
5658}
5659
ef12947c 5660DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5661EXPORT_SYMBOL(memcg_sockets_enabled_key);
5662
2d758073 5663void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5664{
5665 struct mem_cgroup *memcg;
5666
2d758073
JW
5667 if (!mem_cgroup_sockets_enabled)
5668 return;
5669
5670 /*
5671 * Socket cloning can throw us here with sk_memcg already
11092087
JW
5672 * filled. It won't however, necessarily happen from
5673 * process context. So the test for root memcg given
5674 * the current task's memcg won't help us in this case.
5675 *
5676 * Respecting the original socket's memcg is a better
5677 * decision in this case.
5678 */
5679 if (sk->sk_memcg) {
5680 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5681 css_get(&sk->sk_memcg->css);
5682 return;
5683 }
5684
5685 rcu_read_lock();
5686 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5687 if (memcg == root_mem_cgroup)
5688 goto out;
0db15298 5689 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5690 goto out;
f7e1cb6e 5691 if (css_tryget_online(&memcg->css))
11092087 5692 sk->sk_memcg = memcg;
f7e1cb6e 5693out:
11092087
JW
5694 rcu_read_unlock();
5695}
11092087 5696
2d758073 5697void mem_cgroup_sk_free(struct sock *sk)
11092087 5698{
2d758073
JW
5699 if (sk->sk_memcg)
5700 css_put(&sk->sk_memcg->css);
11092087
JW
5701}
5702
5703/**
5704 * mem_cgroup_charge_skmem - charge socket memory
5705 * @memcg: memcg to charge
5706 * @nr_pages: number of pages to charge
5707 *
5708 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5709 * @memcg's configured limit, %false if the charge had to be forced.
5710 */
5711bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5712{
f7e1cb6e 5713 gfp_t gfp_mask = GFP_KERNEL;
11092087 5714
f7e1cb6e 5715 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5716 struct page_counter *fail;
f7e1cb6e 5717
0db15298
JW
5718 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5719 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5720 return true;
5721 }
0db15298
JW
5722 page_counter_charge(&memcg->tcpmem, nr_pages);
5723 memcg->tcpmem_pressure = 1;
f7e1cb6e 5724 return false;
11092087 5725 }
d886f4e4 5726
f7e1cb6e
JW
5727 /* Don't block in the packet receive path */
5728 if (in_softirq())
5729 gfp_mask = GFP_NOWAIT;
5730
b2807f07
JW
5731 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5732
f7e1cb6e
JW
5733 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5734 return true;
5735
5736 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5737 return false;
5738}
5739
5740/**
5741 * mem_cgroup_uncharge_skmem - uncharge socket memory
5742 * @memcg - memcg to uncharge
5743 * @nr_pages - number of pages to uncharge
5744 */
5745void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5746{
f7e1cb6e 5747 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5748 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5749 return;
5750 }
d886f4e4 5751
b2807f07
JW
5752 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5753
f7e1cb6e
JW
5754 page_counter_uncharge(&memcg->memory, nr_pages);
5755 css_put_many(&memcg->css, nr_pages);
11092087
JW
5756}
5757
f7e1cb6e
JW
5758static int __init cgroup_memory(char *s)
5759{
5760 char *token;
5761
5762 while ((token = strsep(&s, ",")) != NULL) {
5763 if (!*token)
5764 continue;
5765 if (!strcmp(token, "nosocket"))
5766 cgroup_memory_nosocket = true;
04823c83
VD
5767 if (!strcmp(token, "nokmem"))
5768 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5769 }
5770 return 0;
5771}
5772__setup("cgroup.memory=", cgroup_memory);
11092087 5773
2d11085e 5774/*
1081312f
MH
5775 * subsys_initcall() for memory controller.
5776 *
5777 * Some parts like hotcpu_notifier() have to be initialized from this context
5778 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5779 * everything that doesn't depend on a specific mem_cgroup structure should
5780 * be initialized from here.
2d11085e
MH
5781 */
5782static int __init mem_cgroup_init(void)
5783{
95a045f6
JW
5784 int cpu, node;
5785
2d11085e 5786 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5787
5788 for_each_possible_cpu(cpu)
5789 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5790 drain_local_stock);
5791
5792 for_each_node(node) {
5793 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5794
5795 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5796 node_online(node) ? node : NUMA_NO_NODE);
5797
ef8f2327
MG
5798 rtpn->rb_root = RB_ROOT;
5799 spin_lock_init(&rtpn->lock);
95a045f6
JW
5800 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5801 }
5802
2d11085e
MH
5803 return 0;
5804}
5805subsys_initcall(mem_cgroup_init);
21afa38e
JW
5806
5807#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
5808static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5809{
5810 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5811 /*
5812 * The root cgroup cannot be destroyed, so it's refcount must
5813 * always be >= 1.
5814 */
5815 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5816 VM_BUG_ON(1);
5817 break;
5818 }
5819 memcg = parent_mem_cgroup(memcg);
5820 if (!memcg)
5821 memcg = root_mem_cgroup;
5822 }
5823 return memcg;
5824}
5825
21afa38e
JW
5826/**
5827 * mem_cgroup_swapout - transfer a memsw charge to swap
5828 * @page: page whose memsw charge to transfer
5829 * @entry: swap entry to move the charge to
5830 *
5831 * Transfer the memsw charge of @page to @entry.
5832 */
5833void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5834{
1f47b61f 5835 struct mem_cgroup *memcg, *swap_memcg;
21afa38e
JW
5836 unsigned short oldid;
5837
5838 VM_BUG_ON_PAGE(PageLRU(page), page);
5839 VM_BUG_ON_PAGE(page_count(page), page);
5840
7941d214 5841 if (!do_memsw_account())
21afa38e
JW
5842 return;
5843
5844 memcg = page->mem_cgroup;
5845
5846 /* Readahead page, never charged */
5847 if (!memcg)
5848 return;
5849
1f47b61f
VD
5850 /*
5851 * In case the memcg owning these pages has been offlined and doesn't
5852 * have an ID allocated to it anymore, charge the closest online
5853 * ancestor for the swap instead and transfer the memory+swap charge.
5854 */
5855 swap_memcg = mem_cgroup_id_get_online(memcg);
5856 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
21afa38e 5857 VM_BUG_ON_PAGE(oldid, page);
1f47b61f 5858 mem_cgroup_swap_statistics(swap_memcg, true);
21afa38e
JW
5859
5860 page->mem_cgroup = NULL;
5861
5862 if (!mem_cgroup_is_root(memcg))
5863 page_counter_uncharge(&memcg->memory, 1);
5864
1f47b61f
VD
5865 if (memcg != swap_memcg) {
5866 if (!mem_cgroup_is_root(swap_memcg))
5867 page_counter_charge(&swap_memcg->memsw, 1);
5868 page_counter_uncharge(&memcg->memsw, 1);
5869 }
5870
ce9ce665
SAS
5871 /*
5872 * Interrupts should be disabled here because the caller holds the
5873 * mapping->tree_lock lock which is taken with interrupts-off. It is
5874 * important here to have the interrupts disabled because it is the
5875 * only synchronisation we have for udpating the per-CPU variables.
5876 */
5877 VM_BUG_ON(!irqs_disabled());
f627c2f5 5878 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5879 memcg_check_events(memcg, page);
73f576c0
JW
5880
5881 if (!mem_cgroup_is_root(memcg))
5882 css_put(&memcg->css);
21afa38e
JW
5883}
5884
37e84351
VD
5885/*
5886 * mem_cgroup_try_charge_swap - try charging a swap entry
5887 * @page: page being added to swap
5888 * @entry: swap entry to charge
5889 *
5890 * Try to charge @entry to the memcg that @page belongs to.
5891 *
5892 * Returns 0 on success, -ENOMEM on failure.
5893 */
5894int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5895{
5896 struct mem_cgroup *memcg;
5897 struct page_counter *counter;
5898 unsigned short oldid;
5899
5900 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5901 return 0;
5902
5903 memcg = page->mem_cgroup;
5904
5905 /* Readahead page, never charged */
5906 if (!memcg)
5907 return 0;
5908
1f47b61f
VD
5909 memcg = mem_cgroup_id_get_online(memcg);
5910
37e84351 5911 if (!mem_cgroup_is_root(memcg) &&
1f47b61f
VD
5912 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5913 mem_cgroup_id_put(memcg);
37e84351 5914 return -ENOMEM;
1f47b61f 5915 }
37e84351
VD
5916
5917 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5918 VM_BUG_ON_PAGE(oldid, page);
5919 mem_cgroup_swap_statistics(memcg, true);
5920
37e84351
VD
5921 return 0;
5922}
5923
21afa38e
JW
5924/**
5925 * mem_cgroup_uncharge_swap - uncharge a swap entry
5926 * @entry: swap entry to uncharge
5927 *
37e84351 5928 * Drop the swap charge associated with @entry.
21afa38e
JW
5929 */
5930void mem_cgroup_uncharge_swap(swp_entry_t entry)
5931{
5932 struct mem_cgroup *memcg;
5933 unsigned short id;
5934
37e84351 5935 if (!do_swap_account)
21afa38e
JW
5936 return;
5937
5938 id = swap_cgroup_record(entry, 0);
5939 rcu_read_lock();
adbe427b 5940 memcg = mem_cgroup_from_id(id);
21afa38e 5941 if (memcg) {
37e84351
VD
5942 if (!mem_cgroup_is_root(memcg)) {
5943 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5944 page_counter_uncharge(&memcg->swap, 1);
5945 else
5946 page_counter_uncharge(&memcg->memsw, 1);
5947 }
21afa38e 5948 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5949 mem_cgroup_id_put(memcg);
21afa38e
JW
5950 }
5951 rcu_read_unlock();
5952}
5953
d8b38438
VD
5954long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5955{
5956 long nr_swap_pages = get_nr_swap_pages();
5957
5958 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5959 return nr_swap_pages;
5960 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5961 nr_swap_pages = min_t(long, nr_swap_pages,
5962 READ_ONCE(memcg->swap.limit) -
5963 page_counter_read(&memcg->swap));
5964 return nr_swap_pages;
5965}
5966
5ccc5aba
VD
5967bool mem_cgroup_swap_full(struct page *page)
5968{
5969 struct mem_cgroup *memcg;
5970
5971 VM_BUG_ON_PAGE(!PageLocked(page), page);
5972
5973 if (vm_swap_full())
5974 return true;
5975 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5976 return false;
5977
5978 memcg = page->mem_cgroup;
5979 if (!memcg)
5980 return false;
5981
5982 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5983 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5984 return true;
5985
5986 return false;
5987}
5988
21afa38e
JW
5989/* for remember boot option*/
5990#ifdef CONFIG_MEMCG_SWAP_ENABLED
5991static int really_do_swap_account __initdata = 1;
5992#else
5993static int really_do_swap_account __initdata;
5994#endif
5995
5996static int __init enable_swap_account(char *s)
5997{
5998 if (!strcmp(s, "1"))
5999 really_do_swap_account = 1;
6000 else if (!strcmp(s, "0"))
6001 really_do_swap_account = 0;
6002 return 1;
6003}
6004__setup("swapaccount=", enable_swap_account);
6005
37e84351
VD
6006static u64 swap_current_read(struct cgroup_subsys_state *css,
6007 struct cftype *cft)
6008{
6009 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6010
6011 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6012}
6013
6014static int swap_max_show(struct seq_file *m, void *v)
6015{
6016 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6017 unsigned long max = READ_ONCE(memcg->swap.limit);
6018
6019 if (max == PAGE_COUNTER_MAX)
6020 seq_puts(m, "max\n");
6021 else
6022 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6023
6024 return 0;
6025}
6026
6027static ssize_t swap_max_write(struct kernfs_open_file *of,
6028 char *buf, size_t nbytes, loff_t off)
6029{
6030 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6031 unsigned long max;
6032 int err;
6033
6034 buf = strstrip(buf);
6035 err = page_counter_memparse(buf, "max", &max);
6036 if (err)
6037 return err;
6038
6039 mutex_lock(&memcg_limit_mutex);
6040 err = page_counter_limit(&memcg->swap, max);
6041 mutex_unlock(&memcg_limit_mutex);
6042 if (err)
6043 return err;
6044
6045 return nbytes;
6046}
6047
6048static struct cftype swap_files[] = {
6049 {
6050 .name = "swap.current",
6051 .flags = CFTYPE_NOT_ON_ROOT,
6052 .read_u64 = swap_current_read,
6053 },
6054 {
6055 .name = "swap.max",
6056 .flags = CFTYPE_NOT_ON_ROOT,
6057 .seq_show = swap_max_show,
6058 .write = swap_max_write,
6059 },
6060 { } /* terminate */
6061};
6062
21afa38e
JW
6063static struct cftype memsw_cgroup_files[] = {
6064 {
6065 .name = "memsw.usage_in_bytes",
6066 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6067 .read_u64 = mem_cgroup_read_u64,
6068 },
6069 {
6070 .name = "memsw.max_usage_in_bytes",
6071 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6072 .write = mem_cgroup_reset,
6073 .read_u64 = mem_cgroup_read_u64,
6074 },
6075 {
6076 .name = "memsw.limit_in_bytes",
6077 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6078 .write = mem_cgroup_write,
6079 .read_u64 = mem_cgroup_read_u64,
6080 },
6081 {
6082 .name = "memsw.failcnt",
6083 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6084 .write = mem_cgroup_reset,
6085 .read_u64 = mem_cgroup_read_u64,
6086 },
6087 { }, /* terminate */
6088};
6089
6090static int __init mem_cgroup_swap_init(void)
6091{
6092 if (!mem_cgroup_disabled() && really_do_swap_account) {
6093 do_swap_account = 1;
37e84351
VD
6094 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6095 swap_files));
21afa38e
JW
6096 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6097 memsw_cgroup_files));
6098 }
6099 return 0;
6100}
6101subsys_initcall(mem_cgroup_swap_init);
6102
6103#endif /* CONFIG_MEMCG_SWAP */