mm/cma: silence warnings due to max() usage
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
264a0ae1 210 struct mm_struct *mm;
4ffef5fe
DN
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
1dfab5ab 213 unsigned long flags;
4ffef5fe 214 unsigned long precharge;
854ffa8d 215 unsigned long moved_charge;
483c30b5 216 unsigned long moved_swap;
8033b97c
DN
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
2bd9bb20 220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
4ffef5fe 223
4e416953
BS
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
a0db00fc 228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 230
217bc319
KH
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 233 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
236 NR_CHARGE_TYPE,
237};
238
8c7c6e34 239/* for encoding cft->private value on file */
86ae53e1
GC
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
510fc4e1 244 _KMEM,
d55f90bf 245 _TCP,
86ae53e1
GC
246};
247
a0db00fc
KS
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 250#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
8c7c6e34 253
70ddf637
AV
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
7ffc0edc
MH
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
127424c8 272#ifndef CONFIG_SLOB
55007d84 273/*
f7ce3190 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
55007d84 280 *
dbcf73e2
VD
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
55007d84 283 */
dbcf73e2
VD
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
749c5415 286
05257a1a
VD
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
55007d84
GC
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
b8627835 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
b8627835 313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 314
d7f25f8a
GC
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
ef12947c 321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 322EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 323
127424c8 324#endif /* !CONFIG_SLOB */
a8964b9b 325
f64c3f54 326static struct mem_cgroup_per_zone *
e231875b 327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 328{
e231875b
JZ
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
54f72fe0 332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
333}
334
ad7fa852
TH
335/**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
ad7fa852
TH
345 */
346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347{
348 struct mem_cgroup *memcg;
349
ad7fa852
TH
350 memcg = page->mem_cgroup;
351
9e10a130 352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
353 memcg = root_mem_cgroup;
354
ad7fa852
TH
355 return &memcg->css;
356}
357
2fc04524
VD
358/**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371ino_t page_cgroup_ino(struct page *page)
372{
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384}
385
f64c3f54 386static struct mem_cgroup_per_zone *
e231875b 387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 388{
97a6c37b
JW
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
f64c3f54 391
e231875b 392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
393}
394
bb4cc1a8
AM
395static struct mem_cgroup_tree_per_zone *
396soft_limit_tree_node_zone(int nid, int zid)
397{
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static struct mem_cgroup_tree_per_zone *
402soft_limit_tree_from_page(struct page *page)
403{
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408}
409
cf2c8127
JW
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 412 unsigned long new_usage_in_excess)
bb4cc1a8
AM
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440}
441
cf2c8127
JW
442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
444{
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449}
450
cf2c8127
JW
451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 453{
0a31bc97
JW
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 457 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 458 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
459}
460
3e32cb2e
JW
461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462{
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471}
bb4cc1a8
AM
472
473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474{
3e32cb2e 475 unsigned long excess;
bb4cc1a8
AM
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 478
e231875b 479 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 485 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 486 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
0a31bc97
JW
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
495 /* if on-tree, remove it */
496 if (mz->on_tree)
cf2c8127 497 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
cf2c8127 502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 503 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
504 }
505 }
506}
507
508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509{
bb4cc1a8 510 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
bb4cc1a8 513
e231875b
JZ
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 518 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
519 }
520 }
521}
522
523static struct mem_cgroup_per_zone *
524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
cf2c8127 541 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 542 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 543 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
544 goto retry;
545done:
546 return mz;
547}
548
549static struct mem_cgroup_per_zone *
550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551{
552 struct mem_cgroup_per_zone *mz;
553
0a31bc97 554 spin_lock_irq(&mctz->lock);
bb4cc1a8 555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 556 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
557 return mz;
558}
559
711d3d2c 560/*
484ebb3b
GT
561 * Return page count for single (non recursive) @memcg.
562 *
711d3d2c
KH
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 568 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 578 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
579 * implemented.
580 */
484ebb3b
GT
581static unsigned long
582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 583{
7a159cc9 584 long val = 0;
c62b1a3b 585 int cpu;
c62b1a3b 586
484ebb3b 587 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
c62b1a3b
KH
596 return val;
597}
598
c0ff4b85 599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
600 enum mem_cgroup_events_index idx)
601{
602 unsigned long val = 0;
603 int cpu;
604
733a572e 605 for_each_possible_cpu(cpu)
c0ff4b85 606 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
607 return val;
608}
609
c0ff4b85 610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 611 struct page *page,
f627c2f5 612 bool compound, int nr_pages)
d52aa412 613{
b2402857
KH
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
0a31bc97 618 if (PageAnon(page))
b2402857 619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 620 nr_pages);
d52aa412 621 else
b2402857 622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 623 nr_pages);
55e462b0 624
f627c2f5
KS
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
f627c2f5 629 }
b070e65c 630
e401f176
KH
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
c0ff4b85 633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 634 else {
c0ff4b85 635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
636 nr_pages = -nr_pages; /* for event */
637 }
e401f176 638
13114716 639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
640}
641
0a6b76dd
VD
642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
bb2a0de9 644{
e231875b 645 unsigned long nr = 0;
889976db
YH
646 int zid;
647
e231875b 648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 649
e231875b
JZ
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
889976db 662}
bb2a0de9 663
c0ff4b85 664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 665 unsigned int lru_mask)
6d12e2d8 666{
e231875b 667 unsigned long nr = 0;
889976db 668 int nid;
6d12e2d8 669
31aaea4a 670 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
d52aa412
KH
673}
674
f53d7ce3
JW
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
7a159cc9
JW
677{
678 unsigned long val, next;
679
13114716 680 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 681 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 682 /* from time_after() in jiffies.h */
f53d7ce3
JW
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
bb4cc1a8
AM
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
f53d7ce3
JW
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
7a159cc9 699 }
f53d7ce3 700 return false;
d2265e6f
KH
701}
702
703/*
704 * Check events in order.
705 *
706 */
c0ff4b85 707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
708{
709 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 712 bool do_softlimit;
82b3f2a7 713 bool do_numainfo __maybe_unused;
f53d7ce3 714
bb4cc1a8
AM
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
c0ff4b85 721 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
453a9bf3 724#if MAX_NUMNODES > 1
f53d7ce3 725 if (unlikely(do_numainfo))
c0ff4b85 726 atomic_inc(&memcg->numainfo_events);
453a9bf3 727#endif
0a31bc97 728 }
d2265e6f
KH
729}
730
cf475ad2 731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 732{
31a78f23
BS
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
073219e9 741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 742}
33398cf2 743EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 744
df381975 745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 746{
c0ff4b85 747 struct mem_cgroup *memcg = NULL;
0b7f569e 748
54595fe2
KH
749 rcu_read_lock();
750 do {
6f6acb00
MH
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
df381975 757 memcg = root_mem_cgroup;
6f6acb00
MH
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
ec903c0c 763 } while (!css_tryget_online(&memcg->css));
54595fe2 764 rcu_read_unlock();
c0ff4b85 765 return memcg;
54595fe2
KH
766}
767
5660048c
JW
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
694fbc0f 785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 786 struct mem_cgroup *prev,
694fbc0f 787 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 788{
33398cf2 789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 790 struct cgroup_subsys_state *css = NULL;
9f3a0d09 791 struct mem_cgroup *memcg = NULL;
5ac8fb31 792 struct mem_cgroup *pos = NULL;
711d3d2c 793
694fbc0f
AM
794 if (mem_cgroup_disabled())
795 return NULL;
5660048c 796
9f3a0d09
JW
797 if (!root)
798 root = root_mem_cgroup;
7d74b06f 799
9f3a0d09 800 if (prev && !reclaim)
5ac8fb31 801 pos = prev;
14067bb3 802
9f3a0d09
JW
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
5ac8fb31 805 goto out;
694fbc0f 806 return root;
9f3a0d09 807 }
14067bb3 808
542f85f9 809 rcu_read_lock();
5f578161 810
5ac8fb31
JW
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
6df38689 820 while (1) {
4db0c3c2 821 pos = READ_ONCE(iter->position);
6df38689
VD
822 if (!pos || css_tryget(&pos->css))
823 break;
5ac8fb31 824 /*
6df38689
VD
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
5ac8fb31 831 */
6df38689
VD
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
5ac8fb31
JW
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
527a5ec9 851 }
7d74b06f 852
5ac8fb31
JW
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
14067bb3 859
5ac8fb31
JW
860 if (css == &root->css)
861 break;
14067bb3 862
0b8f73e1
JW
863 if (css_tryget(css))
864 break;
9f3a0d09 865
5ac8fb31 866 memcg = NULL;
9f3a0d09 867 }
5ac8fb31
JW
868
869 if (reclaim) {
5ac8fb31 870 /*
6df38689
VD
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 874 */
6df38689
VD
875 (void)cmpxchg(&iter->position, pos, memcg);
876
5ac8fb31
JW
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
9f3a0d09 884 }
5ac8fb31 885
542f85f9
MH
886out_unlock:
887 rcu_read_unlock();
5ac8fb31 888out:
c40046f3
MH
889 if (prev && prev != root)
890 css_put(&prev->css);
891
9f3a0d09 892 return memcg;
14067bb3 893}
7d74b06f 894
5660048c
JW
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
9f3a0d09
JW
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
7d74b06f 908
6df38689
VD
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
9f3a0d09
JW
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 938 iter != NULL; \
527a5ec9 939 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 940
9f3a0d09 941#define for_each_mem_cgroup(iter) \
527a5ec9 942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 943 iter != NULL; \
527a5ec9 944 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 945
925b7673
JW
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
fa9add64 949 * @memcg: memcg of the wanted lruvec
925b7673
JW
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
bea8c150 959 struct lruvec *lruvec;
925b7673 960
bea8c150
HD
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
925b7673 965
e231875b 966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
925b7673
JW
977}
978
925b7673 979/**
dfe0e773 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 981 * @page: the page
fa9add64 982 * @zone: zone of the page
dfe0e773
JW
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 987 */
fa9add64 988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 989{
08e552c6 990 struct mem_cgroup_per_zone *mz;
925b7673 991 struct mem_cgroup *memcg;
bea8c150 992 struct lruvec *lruvec;
6d12e2d8 993
bea8c150
HD
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
925b7673 998
1306a85a 999 memcg = page->mem_cgroup;
7512102c 1000 /*
dfe0e773 1001 * Swapcache readahead pages are added to the LRU - and
29833315 1002 * possibly migrated - before they are charged.
7512102c 1003 */
29833315
JW
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
7512102c 1006
e231875b 1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
08e552c6 1018}
b69408e8 1019
925b7673 1020/**
fa9add64
HD
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
925b7673 1025 *
ca707239
HD
1026 * This function must be called under lru_lock, just before a page is added
1027 * to or just after a page is removed from an lru list (that ordering being
1028 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1029 */
fa9add64
HD
1030void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031 int nr_pages)
3f58a829
MK
1032{
1033 struct mem_cgroup_per_zone *mz;
fa9add64 1034 unsigned long *lru_size;
ca707239
HD
1035 long size;
1036 bool empty;
3f58a829 1037
9d5e6a9f
HD
1038 __update_lru_size(lruvec, lru, nr_pages);
1039
3f58a829
MK
1040 if (mem_cgroup_disabled())
1041 return;
1042
fa9add64
HD
1043 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044 lru_size = mz->lru_size + lru;
ca707239
HD
1045 empty = list_empty(lruvec->lists + lru);
1046
1047 if (nr_pages < 0)
1048 *lru_size += nr_pages;
1049
1050 size = *lru_size;
1051 if (WARN_ONCE(size < 0 || empty != !size,
1052 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054 VM_BUG_ON(1);
1055 *lru_size = 0;
1056 }
1057
1058 if (nr_pages > 0)
1059 *lru_size += nr_pages;
08e552c6 1060}
544122e5 1061
2314b42d 1062bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1063{
2314b42d 1064 struct mem_cgroup *task_memcg;
158e0a2d 1065 struct task_struct *p;
ffbdccf5 1066 bool ret;
4c4a2214 1067
158e0a2d 1068 p = find_lock_task_mm(task);
de077d22 1069 if (p) {
2314b42d 1070 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1071 task_unlock(p);
1072 } else {
1073 /*
1074 * All threads may have already detached their mm's, but the oom
1075 * killer still needs to detect if they have already been oom
1076 * killed to prevent needlessly killing additional tasks.
1077 */
ffbdccf5 1078 rcu_read_lock();
2314b42d
JW
1079 task_memcg = mem_cgroup_from_task(task);
1080 css_get(&task_memcg->css);
ffbdccf5 1081 rcu_read_unlock();
de077d22 1082 }
2314b42d
JW
1083 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084 css_put(&task_memcg->css);
4c4a2214
DR
1085 return ret;
1086}
1087
19942822 1088/**
9d11ea9f 1089 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1090 * @memcg: the memory cgroup
19942822 1091 *
9d11ea9f 1092 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1093 * pages.
19942822 1094 */
c0ff4b85 1095static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1096{
3e32cb2e
JW
1097 unsigned long margin = 0;
1098 unsigned long count;
1099 unsigned long limit;
9d11ea9f 1100
3e32cb2e 1101 count = page_counter_read(&memcg->memory);
4db0c3c2 1102 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1103 if (count < limit)
1104 margin = limit - count;
1105
7941d214 1106 if (do_memsw_account()) {
3e32cb2e 1107 count = page_counter_read(&memcg->memsw);
4db0c3c2 1108 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1109 if (count <= limit)
1110 margin = min(margin, limit - count);
1111 }
1112
1113 return margin;
19942822
JW
1114}
1115
32047e2a 1116/*
bdcbb659 1117 * A routine for checking "mem" is under move_account() or not.
32047e2a 1118 *
bdcbb659
QH
1119 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1120 * moving cgroups. This is for waiting at high-memory pressure
1121 * caused by "move".
32047e2a 1122 */
c0ff4b85 1123static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1124{
2bd9bb20
KH
1125 struct mem_cgroup *from;
1126 struct mem_cgroup *to;
4b534334 1127 bool ret = false;
2bd9bb20
KH
1128 /*
1129 * Unlike task_move routines, we access mc.to, mc.from not under
1130 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1131 */
1132 spin_lock(&mc.lock);
1133 from = mc.from;
1134 to = mc.to;
1135 if (!from)
1136 goto unlock;
3e92041d 1137
2314b42d
JW
1138 ret = mem_cgroup_is_descendant(from, memcg) ||
1139 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1140unlock:
1141 spin_unlock(&mc.lock);
4b534334
KH
1142 return ret;
1143}
1144
c0ff4b85 1145static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1146{
1147 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1148 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1149 DEFINE_WAIT(wait);
1150 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1151 /* moving charge context might have finished. */
1152 if (mc.moving_task)
1153 schedule();
1154 finish_wait(&mc.waitq, &wait);
1155 return true;
1156 }
1157 }
1158 return false;
1159}
1160
58cf188e 1161#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1162/**
58cf188e 1163 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1164 * @memcg: The memory cgroup that went over limit
1165 * @p: Task that is going to be killed
1166 *
1167 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1168 * enabled
1169 */
1170void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1171{
58cf188e
SZ
1172 struct mem_cgroup *iter;
1173 unsigned int i;
e222432b 1174
e222432b
BS
1175 rcu_read_lock();
1176
2415b9f5
BV
1177 if (p) {
1178 pr_info("Task in ");
1179 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1180 pr_cont(" killed as a result of limit of ");
1181 } else {
1182 pr_info("Memory limit reached of cgroup ");
1183 }
1184
e61734c5 1185 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1186 pr_cont("\n");
e222432b 1187
e222432b
BS
1188 rcu_read_unlock();
1189
3e32cb2e
JW
1190 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1191 K((u64)page_counter_read(&memcg->memory)),
1192 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1193 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1194 K((u64)page_counter_read(&memcg->memsw)),
1195 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1196 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1197 K((u64)page_counter_read(&memcg->kmem)),
1198 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1199
1200 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1201 pr_info("Memory cgroup stats for ");
1202 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1203 pr_cont(":");
1204
1205 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1206 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1207 continue;
484ebb3b 1208 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1209 K(mem_cgroup_read_stat(iter, i)));
1210 }
1211
1212 for (i = 0; i < NR_LRU_LISTS; i++)
1213 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1214 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1215
1216 pr_cont("\n");
1217 }
e222432b
BS
1218}
1219
81d39c20
KH
1220/*
1221 * This function returns the number of memcg under hierarchy tree. Returns
1222 * 1(self count) if no children.
1223 */
c0ff4b85 1224static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1225{
1226 int num = 0;
7d74b06f
KH
1227 struct mem_cgroup *iter;
1228
c0ff4b85 1229 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1230 num++;
81d39c20
KH
1231 return num;
1232}
1233
a63d83f4
DR
1234/*
1235 * Return the memory (and swap, if configured) limit for a memcg.
1236 */
3e32cb2e 1237static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1238{
3e32cb2e 1239 unsigned long limit;
f3e8eb70 1240
3e32cb2e 1241 limit = memcg->memory.limit;
9a5a8f19 1242 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1243 unsigned long memsw_limit;
37e84351 1244 unsigned long swap_limit;
9a5a8f19 1245
3e32cb2e 1246 memsw_limit = memcg->memsw.limit;
37e84351
VD
1247 swap_limit = memcg->swap.limit;
1248 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1249 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1250 }
9a5a8f19 1251 return limit;
a63d83f4
DR
1252}
1253
b6e6edcf 1254static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1255 int order)
9cbb78bb 1256{
6e0fc46d
DR
1257 struct oom_control oc = {
1258 .zonelist = NULL,
1259 .nodemask = NULL,
1260 .gfp_mask = gfp_mask,
1261 .order = order,
6e0fc46d 1262 };
9cbb78bb
DR
1263 struct mem_cgroup *iter;
1264 unsigned long chosen_points = 0;
1265 unsigned long totalpages;
1266 unsigned int points = 0;
1267 struct task_struct *chosen = NULL;
1268
dc56401f
JW
1269 mutex_lock(&oom_lock);
1270
876aafbf 1271 /*
465adcf1
DR
1272 * If current has a pending SIGKILL or is exiting, then automatically
1273 * select it. The goal is to allow it to allocate so that it may
1274 * quickly exit and free its memory.
876aafbf 1275 */
d003f371 1276 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1277 mark_oom_victim(current);
3ef22dff 1278 try_oom_reaper(current);
dc56401f 1279 goto unlock;
876aafbf
DR
1280 }
1281
6e0fc46d 1282 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1283 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1284 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1285 struct css_task_iter it;
9cbb78bb
DR
1286 struct task_struct *task;
1287
72ec7029
TH
1288 css_task_iter_start(&iter->css, &it);
1289 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1290 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1291 case OOM_SCAN_SELECT:
1292 if (chosen)
1293 put_task_struct(chosen);
1294 chosen = task;
1295 chosen_points = ULONG_MAX;
1296 get_task_struct(chosen);
1297 /* fall through */
1298 case OOM_SCAN_CONTINUE:
1299 continue;
1300 case OOM_SCAN_ABORT:
72ec7029 1301 css_task_iter_end(&it);
9cbb78bb
DR
1302 mem_cgroup_iter_break(memcg, iter);
1303 if (chosen)
1304 put_task_struct(chosen);
1ebab2db
TH
1305 /* Set a dummy value to return "true". */
1306 chosen = (void *) 1;
dc56401f 1307 goto unlock;
9cbb78bb
DR
1308 case OOM_SCAN_OK:
1309 break;
1310 };
1311 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1312 if (!points || points < chosen_points)
1313 continue;
1314 /* Prefer thread group leaders for display purposes */
1315 if (points == chosen_points &&
1316 thread_group_leader(chosen))
1317 continue;
1318
1319 if (chosen)
1320 put_task_struct(chosen);
1321 chosen = task;
1322 chosen_points = points;
1323 get_task_struct(chosen);
9cbb78bb 1324 }
72ec7029 1325 css_task_iter_end(&it);
9cbb78bb
DR
1326 }
1327
dc56401f
JW
1328 if (chosen) {
1329 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1330 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1331 "Memory cgroup out of memory");
dc56401f
JW
1332 }
1333unlock:
1334 mutex_unlock(&oom_lock);
b6e6edcf 1335 return chosen;
9cbb78bb
DR
1336}
1337
ae6e71d3
MC
1338#if MAX_NUMNODES > 1
1339
4d0c066d
KH
1340/**
1341 * test_mem_cgroup_node_reclaimable
dad7557e 1342 * @memcg: the target memcg
4d0c066d
KH
1343 * @nid: the node ID to be checked.
1344 * @noswap : specify true here if the user wants flle only information.
1345 *
1346 * This function returns whether the specified memcg contains any
1347 * reclaimable pages on a node. Returns true if there are any reclaimable
1348 * pages in the node.
1349 */
c0ff4b85 1350static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1351 int nid, bool noswap)
1352{
c0ff4b85 1353 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1354 return true;
1355 if (noswap || !total_swap_pages)
1356 return false;
c0ff4b85 1357 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1358 return true;
1359 return false;
1360
1361}
889976db
YH
1362
1363/*
1364 * Always updating the nodemask is not very good - even if we have an empty
1365 * list or the wrong list here, we can start from some node and traverse all
1366 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1367 *
1368 */
c0ff4b85 1369static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1370{
1371 int nid;
453a9bf3
KH
1372 /*
1373 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1374 * pagein/pageout changes since the last update.
1375 */
c0ff4b85 1376 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1377 return;
c0ff4b85 1378 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1379 return;
1380
889976db 1381 /* make a nodemask where this memcg uses memory from */
31aaea4a 1382 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1383
31aaea4a 1384 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1385
c0ff4b85
R
1386 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1387 node_clear(nid, memcg->scan_nodes);
889976db 1388 }
453a9bf3 1389
c0ff4b85
R
1390 atomic_set(&memcg->numainfo_events, 0);
1391 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1392}
1393
1394/*
1395 * Selecting a node where we start reclaim from. Because what we need is just
1396 * reducing usage counter, start from anywhere is O,K. Considering
1397 * memory reclaim from current node, there are pros. and cons.
1398 *
1399 * Freeing memory from current node means freeing memory from a node which
1400 * we'll use or we've used. So, it may make LRU bad. And if several threads
1401 * hit limits, it will see a contention on a node. But freeing from remote
1402 * node means more costs for memory reclaim because of memory latency.
1403 *
1404 * Now, we use round-robin. Better algorithm is welcomed.
1405 */
c0ff4b85 1406int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1407{
1408 int node;
1409
c0ff4b85
R
1410 mem_cgroup_may_update_nodemask(memcg);
1411 node = memcg->last_scanned_node;
889976db 1412
0edaf86c 1413 node = next_node_in(node, memcg->scan_nodes);
889976db 1414 /*
fda3d69b
MH
1415 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1416 * last time it really checked all the LRUs due to rate limiting.
1417 * Fallback to the current node in that case for simplicity.
889976db
YH
1418 */
1419 if (unlikely(node == MAX_NUMNODES))
1420 node = numa_node_id();
1421
c0ff4b85 1422 memcg->last_scanned_node = node;
889976db
YH
1423 return node;
1424}
889976db 1425#else
c0ff4b85 1426int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1427{
1428 return 0;
1429}
1430#endif
1431
0608f43d
AM
1432static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1433 struct zone *zone,
1434 gfp_t gfp_mask,
1435 unsigned long *total_scanned)
1436{
1437 struct mem_cgroup *victim = NULL;
1438 int total = 0;
1439 int loop = 0;
1440 unsigned long excess;
1441 unsigned long nr_scanned;
1442 struct mem_cgroup_reclaim_cookie reclaim = {
1443 .zone = zone,
1444 .priority = 0,
1445 };
1446
3e32cb2e 1447 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1448
1449 while (1) {
1450 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1451 if (!victim) {
1452 loop++;
1453 if (loop >= 2) {
1454 /*
1455 * If we have not been able to reclaim
1456 * anything, it might because there are
1457 * no reclaimable pages under this hierarchy
1458 */
1459 if (!total)
1460 break;
1461 /*
1462 * We want to do more targeted reclaim.
1463 * excess >> 2 is not to excessive so as to
1464 * reclaim too much, nor too less that we keep
1465 * coming back to reclaim from this cgroup
1466 */
1467 if (total >= (excess >> 2) ||
1468 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1469 break;
1470 }
1471 continue;
1472 }
0608f43d
AM
1473 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1474 zone, &nr_scanned);
1475 *total_scanned += nr_scanned;
3e32cb2e 1476 if (!soft_limit_excess(root_memcg))
0608f43d 1477 break;
6d61ef40 1478 }
0608f43d
AM
1479 mem_cgroup_iter_break(root_memcg, victim);
1480 return total;
6d61ef40
BS
1481}
1482
0056f4e6
JW
1483#ifdef CONFIG_LOCKDEP
1484static struct lockdep_map memcg_oom_lock_dep_map = {
1485 .name = "memcg_oom_lock",
1486};
1487#endif
1488
fb2a6fc5
JW
1489static DEFINE_SPINLOCK(memcg_oom_lock);
1490
867578cb
KH
1491/*
1492 * Check OOM-Killer is already running under our hierarchy.
1493 * If someone is running, return false.
1494 */
fb2a6fc5 1495static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1496{
79dfdacc 1497 struct mem_cgroup *iter, *failed = NULL;
a636b327 1498
fb2a6fc5
JW
1499 spin_lock(&memcg_oom_lock);
1500
9f3a0d09 1501 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1502 if (iter->oom_lock) {
79dfdacc
MH
1503 /*
1504 * this subtree of our hierarchy is already locked
1505 * so we cannot give a lock.
1506 */
79dfdacc 1507 failed = iter;
9f3a0d09
JW
1508 mem_cgroup_iter_break(memcg, iter);
1509 break;
23751be0
JW
1510 } else
1511 iter->oom_lock = true;
7d74b06f 1512 }
867578cb 1513
fb2a6fc5
JW
1514 if (failed) {
1515 /*
1516 * OK, we failed to lock the whole subtree so we have
1517 * to clean up what we set up to the failing subtree
1518 */
1519 for_each_mem_cgroup_tree(iter, memcg) {
1520 if (iter == failed) {
1521 mem_cgroup_iter_break(memcg, iter);
1522 break;
1523 }
1524 iter->oom_lock = false;
79dfdacc 1525 }
0056f4e6
JW
1526 } else
1527 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1528
1529 spin_unlock(&memcg_oom_lock);
1530
1531 return !failed;
a636b327 1532}
0b7f569e 1533
fb2a6fc5 1534static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1535{
7d74b06f
KH
1536 struct mem_cgroup *iter;
1537
fb2a6fc5 1538 spin_lock(&memcg_oom_lock);
0056f4e6 1539 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1540 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1541 iter->oom_lock = false;
fb2a6fc5 1542 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1543}
1544
c0ff4b85 1545static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1546{
1547 struct mem_cgroup *iter;
1548
c2b42d3c 1549 spin_lock(&memcg_oom_lock);
c0ff4b85 1550 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1551 iter->under_oom++;
1552 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1553}
1554
c0ff4b85 1555static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1556{
1557 struct mem_cgroup *iter;
1558
867578cb
KH
1559 /*
1560 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1561 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1562 */
c2b42d3c 1563 spin_lock(&memcg_oom_lock);
c0ff4b85 1564 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1565 if (iter->under_oom > 0)
1566 iter->under_oom--;
1567 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1568}
1569
867578cb
KH
1570static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1571
dc98df5a 1572struct oom_wait_info {
d79154bb 1573 struct mem_cgroup *memcg;
dc98df5a
KH
1574 wait_queue_t wait;
1575};
1576
1577static int memcg_oom_wake_function(wait_queue_t *wait,
1578 unsigned mode, int sync, void *arg)
1579{
d79154bb
HD
1580 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1581 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1582 struct oom_wait_info *oom_wait_info;
1583
1584 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1585 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1586
2314b42d
JW
1587 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1588 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1589 return 0;
dc98df5a
KH
1590 return autoremove_wake_function(wait, mode, sync, arg);
1591}
1592
c0ff4b85 1593static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1594{
c2b42d3c
TH
1595 /*
1596 * For the following lockless ->under_oom test, the only required
1597 * guarantee is that it must see the state asserted by an OOM when
1598 * this function is called as a result of userland actions
1599 * triggered by the notification of the OOM. This is trivially
1600 * achieved by invoking mem_cgroup_mark_under_oom() before
1601 * triggering notification.
1602 */
1603 if (memcg && memcg->under_oom)
f4b90b70 1604 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1605}
1606
3812c8c8 1607static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1608{
1383399d 1609 if (!current->memcg_may_oom || current->memcg_in_oom)
3812c8c8 1610 return;
867578cb 1611 /*
49426420
JW
1612 * We are in the middle of the charge context here, so we
1613 * don't want to block when potentially sitting on a callstack
1614 * that holds all kinds of filesystem and mm locks.
1615 *
1616 * Also, the caller may handle a failed allocation gracefully
1617 * (like optional page cache readahead) and so an OOM killer
1618 * invocation might not even be necessary.
1619 *
1620 * That's why we don't do anything here except remember the
1621 * OOM context and then deal with it at the end of the page
1622 * fault when the stack is unwound, the locks are released,
1623 * and when we know whether the fault was overall successful.
867578cb 1624 */
49426420 1625 css_get(&memcg->css);
626ebc41
TH
1626 current->memcg_in_oom = memcg;
1627 current->memcg_oom_gfp_mask = mask;
1628 current->memcg_oom_order = order;
3812c8c8
JW
1629}
1630
1631/**
1632 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1633 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1634 *
49426420
JW
1635 * This has to be called at the end of a page fault if the memcg OOM
1636 * handler was enabled.
3812c8c8 1637 *
49426420 1638 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1639 * sleep on a waitqueue until the userspace task resolves the
1640 * situation. Sleeping directly in the charge context with all kinds
1641 * of locks held is not a good idea, instead we remember an OOM state
1642 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1643 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1644 *
1645 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1646 * completed, %false otherwise.
3812c8c8 1647 */
49426420 1648bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1649{
626ebc41 1650 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1651 struct oom_wait_info owait;
49426420 1652 bool locked;
3812c8c8
JW
1653
1654 /* OOM is global, do not handle */
3812c8c8 1655 if (!memcg)
49426420 1656 return false;
3812c8c8 1657
c32b3cbe 1658 if (!handle || oom_killer_disabled)
49426420 1659 goto cleanup;
3812c8c8
JW
1660
1661 owait.memcg = memcg;
1662 owait.wait.flags = 0;
1663 owait.wait.func = memcg_oom_wake_function;
1664 owait.wait.private = current;
1665 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1666
3812c8c8 1667 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1668 mem_cgroup_mark_under_oom(memcg);
1669
1670 locked = mem_cgroup_oom_trylock(memcg);
1671
1672 if (locked)
1673 mem_cgroup_oom_notify(memcg);
1674
1675 if (locked && !memcg->oom_kill_disable) {
1676 mem_cgroup_unmark_under_oom(memcg);
1677 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1678 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1679 current->memcg_oom_order);
49426420 1680 } else {
3812c8c8 1681 schedule();
49426420
JW
1682 mem_cgroup_unmark_under_oom(memcg);
1683 finish_wait(&memcg_oom_waitq, &owait.wait);
1684 }
1685
1686 if (locked) {
fb2a6fc5
JW
1687 mem_cgroup_oom_unlock(memcg);
1688 /*
1689 * There is no guarantee that an OOM-lock contender
1690 * sees the wakeups triggered by the OOM kill
1691 * uncharges. Wake any sleepers explicitely.
1692 */
1693 memcg_oom_recover(memcg);
1694 }
49426420 1695cleanup:
626ebc41 1696 current->memcg_in_oom = NULL;
3812c8c8 1697 css_put(&memcg->css);
867578cb 1698 return true;
0b7f569e
KH
1699}
1700
d7365e78 1701/**
81f8c3a4
JW
1702 * lock_page_memcg - lock a page->mem_cgroup binding
1703 * @page: the page
32047e2a 1704 *
81f8c3a4
JW
1705 * This function protects unlocked LRU pages from being moved to
1706 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1707 */
62cccb8c 1708void lock_page_memcg(struct page *page)
89c06bd5
KH
1709{
1710 struct mem_cgroup *memcg;
6de22619 1711 unsigned long flags;
89c06bd5 1712
6de22619
JW
1713 /*
1714 * The RCU lock is held throughout the transaction. The fast
1715 * path can get away without acquiring the memcg->move_lock
1716 * because page moving starts with an RCU grace period.
6de22619 1717 */
d7365e78
JW
1718 rcu_read_lock();
1719
1720 if (mem_cgroup_disabled())
62cccb8c 1721 return;
89c06bd5 1722again:
1306a85a 1723 memcg = page->mem_cgroup;
29833315 1724 if (unlikely(!memcg))
62cccb8c 1725 return;
d7365e78 1726
bdcbb659 1727 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1728 return;
89c06bd5 1729
6de22619 1730 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1731 if (memcg != page->mem_cgroup) {
6de22619 1732 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1733 goto again;
1734 }
6de22619
JW
1735
1736 /*
1737 * When charge migration first begins, we can have locked and
1738 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1739 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1740 */
1741 memcg->move_lock_task = current;
1742 memcg->move_lock_flags = flags;
d7365e78 1743
62cccb8c 1744 return;
89c06bd5 1745}
81f8c3a4 1746EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1747
d7365e78 1748/**
81f8c3a4 1749 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1750 * @page: the page
d7365e78 1751 */
62cccb8c 1752void unlock_page_memcg(struct page *page)
89c06bd5 1753{
62cccb8c
JW
1754 struct mem_cgroup *memcg = page->mem_cgroup;
1755
6de22619
JW
1756 if (memcg && memcg->move_lock_task == current) {
1757 unsigned long flags = memcg->move_lock_flags;
1758
1759 memcg->move_lock_task = NULL;
1760 memcg->move_lock_flags = 0;
1761
1762 spin_unlock_irqrestore(&memcg->move_lock, flags);
1763 }
89c06bd5 1764
d7365e78 1765 rcu_read_unlock();
89c06bd5 1766}
81f8c3a4 1767EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1768
cdec2e42
KH
1769/*
1770 * size of first charge trial. "32" comes from vmscan.c's magic value.
1771 * TODO: maybe necessary to use big numbers in big irons.
1772 */
7ec99d62 1773#define CHARGE_BATCH 32U
cdec2e42
KH
1774struct memcg_stock_pcp {
1775 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1776 unsigned int nr_pages;
cdec2e42 1777 struct work_struct work;
26fe6168 1778 unsigned long flags;
a0db00fc 1779#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1780};
1781static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1782static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1783
a0956d54
SS
1784/**
1785 * consume_stock: Try to consume stocked charge on this cpu.
1786 * @memcg: memcg to consume from.
1787 * @nr_pages: how many pages to charge.
1788 *
1789 * The charges will only happen if @memcg matches the current cpu's memcg
1790 * stock, and at least @nr_pages are available in that stock. Failure to
1791 * service an allocation will refill the stock.
1792 *
1793 * returns true if successful, false otherwise.
cdec2e42 1794 */
a0956d54 1795static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1796{
1797 struct memcg_stock_pcp *stock;
3e32cb2e 1798 bool ret = false;
cdec2e42 1799
a0956d54 1800 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1801 return ret;
a0956d54 1802
cdec2e42 1803 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1804 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1805 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1806 ret = true;
1807 }
cdec2e42
KH
1808 put_cpu_var(memcg_stock);
1809 return ret;
1810}
1811
1812/*
3e32cb2e 1813 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1814 */
1815static void drain_stock(struct memcg_stock_pcp *stock)
1816{
1817 struct mem_cgroup *old = stock->cached;
1818
11c9ea4e 1819 if (stock->nr_pages) {
3e32cb2e 1820 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1821 if (do_memsw_account())
3e32cb2e 1822 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1823 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1824 stock->nr_pages = 0;
cdec2e42
KH
1825 }
1826 stock->cached = NULL;
cdec2e42
KH
1827}
1828
1829/*
1830 * This must be called under preempt disabled or must be called by
1831 * a thread which is pinned to local cpu.
1832 */
1833static void drain_local_stock(struct work_struct *dummy)
1834{
7c8e0181 1835 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1836 drain_stock(stock);
26fe6168 1837 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1838}
1839
1840/*
3e32cb2e 1841 * Cache charges(val) to local per_cpu area.
320cc51d 1842 * This will be consumed by consume_stock() function, later.
cdec2e42 1843 */
c0ff4b85 1844static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1845{
1846 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1847
c0ff4b85 1848 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1849 drain_stock(stock);
c0ff4b85 1850 stock->cached = memcg;
cdec2e42 1851 }
11c9ea4e 1852 stock->nr_pages += nr_pages;
cdec2e42
KH
1853 put_cpu_var(memcg_stock);
1854}
1855
1856/*
c0ff4b85 1857 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1858 * of the hierarchy under it.
cdec2e42 1859 */
6d3d6aa2 1860static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1861{
26fe6168 1862 int cpu, curcpu;
d38144b7 1863
6d3d6aa2
JW
1864 /* If someone's already draining, avoid adding running more workers. */
1865 if (!mutex_trylock(&percpu_charge_mutex))
1866 return;
cdec2e42 1867 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1868 get_online_cpus();
5af12d0e 1869 curcpu = get_cpu();
cdec2e42
KH
1870 for_each_online_cpu(cpu) {
1871 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1872 struct mem_cgroup *memcg;
26fe6168 1873
c0ff4b85
R
1874 memcg = stock->cached;
1875 if (!memcg || !stock->nr_pages)
26fe6168 1876 continue;
2314b42d 1877 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1878 continue;
d1a05b69
MH
1879 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1880 if (cpu == curcpu)
1881 drain_local_stock(&stock->work);
1882 else
1883 schedule_work_on(cpu, &stock->work);
1884 }
cdec2e42 1885 }
5af12d0e 1886 put_cpu();
f894ffa8 1887 put_online_cpus();
9f50fad6 1888 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1889}
1890
0db0628d 1891static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1892 unsigned long action,
1893 void *hcpu)
1894{
1895 int cpu = (unsigned long)hcpu;
1896 struct memcg_stock_pcp *stock;
1897
619d094b 1898 if (action == CPU_ONLINE)
1489ebad 1899 return NOTIFY_OK;
1489ebad 1900
d833049b 1901 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1902 return NOTIFY_OK;
711d3d2c 1903
cdec2e42
KH
1904 stock = &per_cpu(memcg_stock, cpu);
1905 drain_stock(stock);
1906 return NOTIFY_OK;
1907}
1908
f7e1cb6e
JW
1909static void reclaim_high(struct mem_cgroup *memcg,
1910 unsigned int nr_pages,
1911 gfp_t gfp_mask)
1912{
1913 do {
1914 if (page_counter_read(&memcg->memory) <= memcg->high)
1915 continue;
1916 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1917 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1918 } while ((memcg = parent_mem_cgroup(memcg)));
1919}
1920
1921static void high_work_func(struct work_struct *work)
1922{
1923 struct mem_cgroup *memcg;
1924
1925 memcg = container_of(work, struct mem_cgroup, high_work);
1926 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1927}
1928
b23afb93
TH
1929/*
1930 * Scheduled by try_charge() to be executed from the userland return path
1931 * and reclaims memory over the high limit.
1932 */
1933void mem_cgroup_handle_over_high(void)
1934{
1935 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1936 struct mem_cgroup *memcg;
b23afb93
TH
1937
1938 if (likely(!nr_pages))
1939 return;
1940
f7e1cb6e
JW
1941 memcg = get_mem_cgroup_from_mm(current->mm);
1942 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1943 css_put(&memcg->css);
1944 current->memcg_nr_pages_over_high = 0;
1945}
1946
00501b53
JW
1947static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1948 unsigned int nr_pages)
8a9f3ccd 1949{
7ec99d62 1950 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1951 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1952 struct mem_cgroup *mem_over_limit;
3e32cb2e 1953 struct page_counter *counter;
6539cc05 1954 unsigned long nr_reclaimed;
b70a2a21
JW
1955 bool may_swap = true;
1956 bool drained = false;
a636b327 1957
ce00a967 1958 if (mem_cgroup_is_root(memcg))
10d53c74 1959 return 0;
6539cc05 1960retry:
b6b6cc72 1961 if (consume_stock(memcg, nr_pages))
10d53c74 1962 return 0;
8a9f3ccd 1963
7941d214 1964 if (!do_memsw_account() ||
6071ca52
JW
1965 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1966 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1967 goto done_restock;
7941d214 1968 if (do_memsw_account())
3e32cb2e
JW
1969 page_counter_uncharge(&memcg->memsw, batch);
1970 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1971 } else {
3e32cb2e 1972 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1973 may_swap = false;
3fbe7244 1974 }
7a81b88c 1975
6539cc05
JW
1976 if (batch > nr_pages) {
1977 batch = nr_pages;
1978 goto retry;
1979 }
6d61ef40 1980
06b078fc
JW
1981 /*
1982 * Unlike in global OOM situations, memcg is not in a physical
1983 * memory shortage. Allow dying and OOM-killed tasks to
1984 * bypass the last charges so that they can exit quickly and
1985 * free their memory.
1986 */
1987 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1988 fatal_signal_pending(current) ||
1989 current->flags & PF_EXITING))
10d53c74 1990 goto force;
06b078fc
JW
1991
1992 if (unlikely(task_in_memcg_oom(current)))
1993 goto nomem;
1994
d0164adc 1995 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1996 goto nomem;
4b534334 1997
241994ed
JW
1998 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1999
b70a2a21
JW
2000 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2001 gfp_mask, may_swap);
6539cc05 2002
61e02c74 2003 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2004 goto retry;
28c34c29 2005
b70a2a21 2006 if (!drained) {
6d3d6aa2 2007 drain_all_stock(mem_over_limit);
b70a2a21
JW
2008 drained = true;
2009 goto retry;
2010 }
2011
28c34c29
JW
2012 if (gfp_mask & __GFP_NORETRY)
2013 goto nomem;
6539cc05
JW
2014 /*
2015 * Even though the limit is exceeded at this point, reclaim
2016 * may have been able to free some pages. Retry the charge
2017 * before killing the task.
2018 *
2019 * Only for regular pages, though: huge pages are rather
2020 * unlikely to succeed so close to the limit, and we fall back
2021 * to regular pages anyway in case of failure.
2022 */
61e02c74 2023 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2024 goto retry;
2025 /*
2026 * At task move, charge accounts can be doubly counted. So, it's
2027 * better to wait until the end of task_move if something is going on.
2028 */
2029 if (mem_cgroup_wait_acct_move(mem_over_limit))
2030 goto retry;
2031
9b130619
JW
2032 if (nr_retries--)
2033 goto retry;
2034
06b078fc 2035 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2036 goto force;
06b078fc 2037
6539cc05 2038 if (fatal_signal_pending(current))
10d53c74 2039 goto force;
6539cc05 2040
241994ed
JW
2041 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2042
3608de07
JM
2043 mem_cgroup_oom(mem_over_limit, gfp_mask,
2044 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2045nomem:
6d1fdc48 2046 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2047 return -ENOMEM;
10d53c74
TH
2048force:
2049 /*
2050 * The allocation either can't fail or will lead to more memory
2051 * being freed very soon. Allow memory usage go over the limit
2052 * temporarily by force charging it.
2053 */
2054 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2055 if (do_memsw_account())
10d53c74
TH
2056 page_counter_charge(&memcg->memsw, nr_pages);
2057 css_get_many(&memcg->css, nr_pages);
2058
2059 return 0;
6539cc05
JW
2060
2061done_restock:
e8ea14cc 2062 css_get_many(&memcg->css, batch);
6539cc05
JW
2063 if (batch > nr_pages)
2064 refill_stock(memcg, batch - nr_pages);
b23afb93 2065
241994ed 2066 /*
b23afb93
TH
2067 * If the hierarchy is above the normal consumption range, schedule
2068 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2069 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2070 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2071 * not recorded as it most likely matches current's and won't
2072 * change in the meantime. As high limit is checked again before
2073 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2074 */
2075 do {
b23afb93 2076 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2077 /* Don't bother a random interrupted task */
2078 if (in_interrupt()) {
2079 schedule_work(&memcg->high_work);
2080 break;
2081 }
9516a18a 2082 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2083 set_notify_resume(current);
2084 break;
2085 }
241994ed 2086 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2087
2088 return 0;
7a81b88c 2089}
8a9f3ccd 2090
00501b53 2091static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2092{
ce00a967
JW
2093 if (mem_cgroup_is_root(memcg))
2094 return;
2095
3e32cb2e 2096 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2097 if (do_memsw_account())
3e32cb2e 2098 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2099
e8ea14cc 2100 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2101}
2102
0a31bc97
JW
2103static void lock_page_lru(struct page *page, int *isolated)
2104{
2105 struct zone *zone = page_zone(page);
2106
2107 spin_lock_irq(&zone->lru_lock);
2108 if (PageLRU(page)) {
2109 struct lruvec *lruvec;
2110
2111 lruvec = mem_cgroup_page_lruvec(page, zone);
2112 ClearPageLRU(page);
2113 del_page_from_lru_list(page, lruvec, page_lru(page));
2114 *isolated = 1;
2115 } else
2116 *isolated = 0;
2117}
2118
2119static void unlock_page_lru(struct page *page, int isolated)
2120{
2121 struct zone *zone = page_zone(page);
2122
2123 if (isolated) {
2124 struct lruvec *lruvec;
2125
2126 lruvec = mem_cgroup_page_lruvec(page, zone);
2127 VM_BUG_ON_PAGE(PageLRU(page), page);
2128 SetPageLRU(page);
2129 add_page_to_lru_list(page, lruvec, page_lru(page));
2130 }
2131 spin_unlock_irq(&zone->lru_lock);
2132}
2133
00501b53 2134static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2135 bool lrucare)
7a81b88c 2136{
0a31bc97 2137 int isolated;
9ce70c02 2138
1306a85a 2139 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2140
2141 /*
2142 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2143 * may already be on some other mem_cgroup's LRU. Take care of it.
2144 */
0a31bc97
JW
2145 if (lrucare)
2146 lock_page_lru(page, &isolated);
9ce70c02 2147
0a31bc97
JW
2148 /*
2149 * Nobody should be changing or seriously looking at
1306a85a 2150 * page->mem_cgroup at this point:
0a31bc97
JW
2151 *
2152 * - the page is uncharged
2153 *
2154 * - the page is off-LRU
2155 *
2156 * - an anonymous fault has exclusive page access, except for
2157 * a locked page table
2158 *
2159 * - a page cache insertion, a swapin fault, or a migration
2160 * have the page locked
2161 */
1306a85a 2162 page->mem_cgroup = memcg;
9ce70c02 2163
0a31bc97
JW
2164 if (lrucare)
2165 unlock_page_lru(page, isolated);
7a81b88c 2166}
66e1707b 2167
127424c8 2168#ifndef CONFIG_SLOB
f3bb3043 2169static int memcg_alloc_cache_id(void)
55007d84 2170{
f3bb3043
VD
2171 int id, size;
2172 int err;
2173
dbcf73e2 2174 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2175 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2176 if (id < 0)
2177 return id;
55007d84 2178
dbcf73e2 2179 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2180 return id;
2181
2182 /*
2183 * There's no space for the new id in memcg_caches arrays,
2184 * so we have to grow them.
2185 */
05257a1a 2186 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2187
2188 size = 2 * (id + 1);
55007d84
GC
2189 if (size < MEMCG_CACHES_MIN_SIZE)
2190 size = MEMCG_CACHES_MIN_SIZE;
2191 else if (size > MEMCG_CACHES_MAX_SIZE)
2192 size = MEMCG_CACHES_MAX_SIZE;
2193
f3bb3043 2194 err = memcg_update_all_caches(size);
60d3fd32
VD
2195 if (!err)
2196 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2197 if (!err)
2198 memcg_nr_cache_ids = size;
2199
2200 up_write(&memcg_cache_ids_sem);
2201
f3bb3043 2202 if (err) {
dbcf73e2 2203 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2204 return err;
2205 }
2206 return id;
2207}
2208
2209static void memcg_free_cache_id(int id)
2210{
dbcf73e2 2211 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2212}
2213
d5b3cf71 2214struct memcg_kmem_cache_create_work {
5722d094
VD
2215 struct mem_cgroup *memcg;
2216 struct kmem_cache *cachep;
2217 struct work_struct work;
2218};
2219
d5b3cf71 2220static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2221{
d5b3cf71
VD
2222 struct memcg_kmem_cache_create_work *cw =
2223 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2224 struct mem_cgroup *memcg = cw->memcg;
2225 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2226
d5b3cf71 2227 memcg_create_kmem_cache(memcg, cachep);
bd673145 2228
5722d094 2229 css_put(&memcg->css);
d7f25f8a
GC
2230 kfree(cw);
2231}
2232
2233/*
2234 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2235 */
d5b3cf71
VD
2236static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237 struct kmem_cache *cachep)
d7f25f8a 2238{
d5b3cf71 2239 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2240
776ed0f0 2241 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2242 if (!cw)
d7f25f8a 2243 return;
8135be5a
VD
2244
2245 css_get(&memcg->css);
d7f25f8a
GC
2246
2247 cw->memcg = memcg;
2248 cw->cachep = cachep;
d5b3cf71 2249 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2250
d7f25f8a
GC
2251 schedule_work(&cw->work);
2252}
2253
d5b3cf71
VD
2254static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2255 struct kmem_cache *cachep)
0e9d92f2
GC
2256{
2257 /*
2258 * We need to stop accounting when we kmalloc, because if the
2259 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2260 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2261 *
2262 * However, it is better to enclose the whole function. Depending on
2263 * the debugging options enabled, INIT_WORK(), for instance, can
2264 * trigger an allocation. This too, will make us recurse. Because at
2265 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2266 * the safest choice is to do it like this, wrapping the whole function.
2267 */
6f185c29 2268 current->memcg_kmem_skip_account = 1;
d5b3cf71 2269 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2270 current->memcg_kmem_skip_account = 0;
0e9d92f2 2271}
c67a8a68 2272
d7f25f8a
GC
2273/*
2274 * Return the kmem_cache we're supposed to use for a slab allocation.
2275 * We try to use the current memcg's version of the cache.
2276 *
2277 * If the cache does not exist yet, if we are the first user of it,
2278 * we either create it immediately, if possible, or create it asynchronously
2279 * in a workqueue.
2280 * In the latter case, we will let the current allocation go through with
2281 * the original cache.
2282 *
2283 * Can't be called in interrupt context or from kernel threads.
2284 * This function needs to be called with rcu_read_lock() held.
2285 */
230e9fc2 2286struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2287{
2288 struct mem_cgroup *memcg;
959c8963 2289 struct kmem_cache *memcg_cachep;
2a4db7eb 2290 int kmemcg_id;
d7f25f8a 2291
f7ce3190 2292 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2293
230e9fc2
VD
2294 if (cachep->flags & SLAB_ACCOUNT)
2295 gfp |= __GFP_ACCOUNT;
2296
2297 if (!(gfp & __GFP_ACCOUNT))
2298 return cachep;
2299
9d100c5e 2300 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2301 return cachep;
2302
8135be5a 2303 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2304 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2305 if (kmemcg_id < 0)
ca0dde97 2306 goto out;
d7f25f8a 2307
2a4db7eb 2308 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2309 if (likely(memcg_cachep))
2310 return memcg_cachep;
ca0dde97
LZ
2311
2312 /*
2313 * If we are in a safe context (can wait, and not in interrupt
2314 * context), we could be be predictable and return right away.
2315 * This would guarantee that the allocation being performed
2316 * already belongs in the new cache.
2317 *
2318 * However, there are some clashes that can arrive from locking.
2319 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2320 * memcg_create_kmem_cache, this means no further allocation
2321 * could happen with the slab_mutex held. So it's better to
2322 * defer everything.
ca0dde97 2323 */
d5b3cf71 2324 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2325out:
8135be5a 2326 css_put(&memcg->css);
ca0dde97 2327 return cachep;
d7f25f8a 2328}
d7f25f8a 2329
8135be5a
VD
2330void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2331{
2332 if (!is_root_cache(cachep))
f7ce3190 2333 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2334}
2335
f3ccb2c4
VD
2336int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2337 struct mem_cgroup *memcg)
7ae1e1d0 2338{
f3ccb2c4
VD
2339 unsigned int nr_pages = 1 << order;
2340 struct page_counter *counter;
7ae1e1d0
GC
2341 int ret;
2342
f3ccb2c4 2343 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2344 if (ret)
f3ccb2c4 2345 return ret;
52c29b04
JW
2346
2347 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2348 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2349 cancel_charge(memcg, nr_pages);
2350 return -ENOMEM;
7ae1e1d0
GC
2351 }
2352
f3ccb2c4 2353 page->mem_cgroup = memcg;
7ae1e1d0 2354
f3ccb2c4 2355 return 0;
7ae1e1d0
GC
2356}
2357
f3ccb2c4 2358int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2359{
f3ccb2c4 2360 struct mem_cgroup *memcg;
fcff7d7e 2361 int ret = 0;
7ae1e1d0 2362
f3ccb2c4 2363 memcg = get_mem_cgroup_from_mm(current->mm);
b6ecd2de 2364 if (!mem_cgroup_is_root(memcg))
fcff7d7e 2365 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2366 css_put(&memcg->css);
d05e83a6 2367 return ret;
7ae1e1d0
GC
2368}
2369
d05e83a6 2370void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2371{
1306a85a 2372 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2373 unsigned int nr_pages = 1 << order;
7ae1e1d0 2374
7ae1e1d0
GC
2375 if (!memcg)
2376 return;
2377
309381fe 2378 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2379
52c29b04
JW
2380 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2381 page_counter_uncharge(&memcg->kmem, nr_pages);
2382
f3ccb2c4 2383 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2384 if (do_memsw_account())
f3ccb2c4 2385 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2386
1306a85a 2387 page->mem_cgroup = NULL;
f3ccb2c4 2388 css_put_many(&memcg->css, nr_pages);
60d3fd32 2389}
127424c8 2390#endif /* !CONFIG_SLOB */
7ae1e1d0 2391
ca3e0214
KH
2392#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2393
ca3e0214
KH
2394/*
2395 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2396 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2397 */
e94c8a9c 2398void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2399{
e94c8a9c 2400 int i;
ca3e0214 2401
3d37c4a9
KH
2402 if (mem_cgroup_disabled())
2403 return;
b070e65c 2404
29833315 2405 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2406 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2407
1306a85a 2408 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2409 HPAGE_PMD_NR);
ca3e0214 2410}
12d27107 2411#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2412
c255a458 2413#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2414static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2415 bool charge)
d13d1443 2416{
0a31bc97
JW
2417 int val = (charge) ? 1 : -1;
2418 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2419}
02491447
DN
2420
2421/**
2422 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2423 * @entry: swap entry to be moved
2424 * @from: mem_cgroup which the entry is moved from
2425 * @to: mem_cgroup which the entry is moved to
2426 *
2427 * It succeeds only when the swap_cgroup's record for this entry is the same
2428 * as the mem_cgroup's id of @from.
2429 *
2430 * Returns 0 on success, -EINVAL on failure.
2431 *
3e32cb2e 2432 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2433 * both res and memsw, and called css_get().
2434 */
2435static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2436 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2437{
2438 unsigned short old_id, new_id;
2439
34c00c31
LZ
2440 old_id = mem_cgroup_id(from);
2441 new_id = mem_cgroup_id(to);
02491447
DN
2442
2443 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2444 mem_cgroup_swap_statistics(from, false);
483c30b5 2445 mem_cgroup_swap_statistics(to, true);
02491447
DN
2446 return 0;
2447 }
2448 return -EINVAL;
2449}
2450#else
2451static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2452 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2453{
2454 return -EINVAL;
2455}
8c7c6e34 2456#endif
d13d1443 2457
3e32cb2e 2458static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2459
d38d2a75 2460static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2461 unsigned long limit)
628f4235 2462{
3e32cb2e
JW
2463 unsigned long curusage;
2464 unsigned long oldusage;
2465 bool enlarge = false;
81d39c20 2466 int retry_count;
3e32cb2e 2467 int ret;
81d39c20
KH
2468
2469 /*
2470 * For keeping hierarchical_reclaim simple, how long we should retry
2471 * is depends on callers. We set our retry-count to be function
2472 * of # of children which we should visit in this loop.
2473 */
3e32cb2e
JW
2474 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2475 mem_cgroup_count_children(memcg);
81d39c20 2476
3e32cb2e 2477 oldusage = page_counter_read(&memcg->memory);
628f4235 2478
3e32cb2e 2479 do {
628f4235
KH
2480 if (signal_pending(current)) {
2481 ret = -EINTR;
2482 break;
2483 }
3e32cb2e
JW
2484
2485 mutex_lock(&memcg_limit_mutex);
2486 if (limit > memcg->memsw.limit) {
2487 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2488 ret = -EINVAL;
628f4235
KH
2489 break;
2490 }
3e32cb2e
JW
2491 if (limit > memcg->memory.limit)
2492 enlarge = true;
2493 ret = page_counter_limit(&memcg->memory, limit);
2494 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2495
2496 if (!ret)
2497 break;
2498
b70a2a21
JW
2499 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2500
3e32cb2e 2501 curusage = page_counter_read(&memcg->memory);
81d39c20 2502 /* Usage is reduced ? */
f894ffa8 2503 if (curusage >= oldusage)
81d39c20
KH
2504 retry_count--;
2505 else
2506 oldusage = curusage;
3e32cb2e
JW
2507 } while (retry_count);
2508
3c11ecf4
KH
2509 if (!ret && enlarge)
2510 memcg_oom_recover(memcg);
14797e23 2511
8c7c6e34
KH
2512 return ret;
2513}
2514
338c8431 2515static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2516 unsigned long limit)
8c7c6e34 2517{
3e32cb2e
JW
2518 unsigned long curusage;
2519 unsigned long oldusage;
2520 bool enlarge = false;
81d39c20 2521 int retry_count;
3e32cb2e 2522 int ret;
8c7c6e34 2523
81d39c20 2524 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2525 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2526 mem_cgroup_count_children(memcg);
2527
2528 oldusage = page_counter_read(&memcg->memsw);
2529
2530 do {
8c7c6e34
KH
2531 if (signal_pending(current)) {
2532 ret = -EINTR;
2533 break;
2534 }
3e32cb2e
JW
2535
2536 mutex_lock(&memcg_limit_mutex);
2537 if (limit < memcg->memory.limit) {
2538 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2539 ret = -EINVAL;
8c7c6e34
KH
2540 break;
2541 }
3e32cb2e
JW
2542 if (limit > memcg->memsw.limit)
2543 enlarge = true;
2544 ret = page_counter_limit(&memcg->memsw, limit);
2545 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2546
2547 if (!ret)
2548 break;
2549
b70a2a21
JW
2550 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2551
3e32cb2e 2552 curusage = page_counter_read(&memcg->memsw);
81d39c20 2553 /* Usage is reduced ? */
8c7c6e34 2554 if (curusage >= oldusage)
628f4235 2555 retry_count--;
81d39c20
KH
2556 else
2557 oldusage = curusage;
3e32cb2e
JW
2558 } while (retry_count);
2559
3c11ecf4
KH
2560 if (!ret && enlarge)
2561 memcg_oom_recover(memcg);
3e32cb2e 2562
628f4235
KH
2563 return ret;
2564}
2565
0608f43d
AM
2566unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2567 gfp_t gfp_mask,
2568 unsigned long *total_scanned)
2569{
2570 unsigned long nr_reclaimed = 0;
2571 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2572 unsigned long reclaimed;
2573 int loop = 0;
2574 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2575 unsigned long excess;
0608f43d
AM
2576 unsigned long nr_scanned;
2577
2578 if (order > 0)
2579 return 0;
2580
2581 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2582 /*
2583 * This loop can run a while, specially if mem_cgroup's continuously
2584 * keep exceeding their soft limit and putting the system under
2585 * pressure
2586 */
2587 do {
2588 if (next_mz)
2589 mz = next_mz;
2590 else
2591 mz = mem_cgroup_largest_soft_limit_node(mctz);
2592 if (!mz)
2593 break;
2594
2595 nr_scanned = 0;
2596 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2597 gfp_mask, &nr_scanned);
2598 nr_reclaimed += reclaimed;
2599 *total_scanned += nr_scanned;
0a31bc97 2600 spin_lock_irq(&mctz->lock);
bc2f2e7f 2601 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2602
2603 /*
2604 * If we failed to reclaim anything from this memory cgroup
2605 * it is time to move on to the next cgroup
2606 */
2607 next_mz = NULL;
bc2f2e7f
VD
2608 if (!reclaimed)
2609 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2610
3e32cb2e 2611 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2612 /*
2613 * One school of thought says that we should not add
2614 * back the node to the tree if reclaim returns 0.
2615 * But our reclaim could return 0, simply because due
2616 * to priority we are exposing a smaller subset of
2617 * memory to reclaim from. Consider this as a longer
2618 * term TODO.
2619 */
2620 /* If excess == 0, no tree ops */
cf2c8127 2621 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2622 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2623 css_put(&mz->memcg->css);
2624 loop++;
2625 /*
2626 * Could not reclaim anything and there are no more
2627 * mem cgroups to try or we seem to be looping without
2628 * reclaiming anything.
2629 */
2630 if (!nr_reclaimed &&
2631 (next_mz == NULL ||
2632 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2633 break;
2634 } while (!nr_reclaimed);
2635 if (next_mz)
2636 css_put(&next_mz->memcg->css);
2637 return nr_reclaimed;
2638}
2639
ea280e7b
TH
2640/*
2641 * Test whether @memcg has children, dead or alive. Note that this
2642 * function doesn't care whether @memcg has use_hierarchy enabled and
2643 * returns %true if there are child csses according to the cgroup
2644 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2645 */
b5f99b53
GC
2646static inline bool memcg_has_children(struct mem_cgroup *memcg)
2647{
ea280e7b
TH
2648 bool ret;
2649
ea280e7b
TH
2650 rcu_read_lock();
2651 ret = css_next_child(NULL, &memcg->css);
2652 rcu_read_unlock();
2653 return ret;
b5f99b53
GC
2654}
2655
c26251f9 2656/*
51038171 2657 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2658 *
2659 * Caller is responsible for holding css reference for memcg.
2660 */
2661static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2662{
2663 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2664
c1e862c1
KH
2665 /* we call try-to-free pages for make this cgroup empty */
2666 lru_add_drain_all();
f817ed48 2667 /* try to free all pages in this cgroup */
3e32cb2e 2668 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2669 int progress;
c1e862c1 2670
c26251f9
MH
2671 if (signal_pending(current))
2672 return -EINTR;
2673
b70a2a21
JW
2674 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2675 GFP_KERNEL, true);
c1e862c1 2676 if (!progress) {
f817ed48 2677 nr_retries--;
c1e862c1 2678 /* maybe some writeback is necessary */
8aa7e847 2679 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2680 }
f817ed48
KH
2681
2682 }
ab5196c2
MH
2683
2684 return 0;
cc847582
KH
2685}
2686
6770c64e
TH
2687static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2688 char *buf, size_t nbytes,
2689 loff_t off)
c1e862c1 2690{
6770c64e 2691 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2692
d8423011
MH
2693 if (mem_cgroup_is_root(memcg))
2694 return -EINVAL;
6770c64e 2695 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2696}
2697
182446d0
TH
2698static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2699 struct cftype *cft)
18f59ea7 2700{
182446d0 2701 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2702}
2703
182446d0
TH
2704static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2705 struct cftype *cft, u64 val)
18f59ea7
BS
2706{
2707 int retval = 0;
182446d0 2708 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2709 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2710
567fb435 2711 if (memcg->use_hierarchy == val)
0b8f73e1 2712 return 0;
567fb435 2713
18f59ea7 2714 /*
af901ca1 2715 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2716 * in the child subtrees. If it is unset, then the change can
2717 * occur, provided the current cgroup has no children.
2718 *
2719 * For the root cgroup, parent_mem is NULL, we allow value to be
2720 * set if there are no children.
2721 */
c0ff4b85 2722 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2723 (val == 1 || val == 0)) {
ea280e7b 2724 if (!memcg_has_children(memcg))
c0ff4b85 2725 memcg->use_hierarchy = val;
18f59ea7
BS
2726 else
2727 retval = -EBUSY;
2728 } else
2729 retval = -EINVAL;
567fb435 2730
18f59ea7
BS
2731 return retval;
2732}
2733
72b54e73 2734static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2735{
2736 struct mem_cgroup *iter;
72b54e73 2737 int i;
ce00a967 2738
72b54e73 2739 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2740
72b54e73
VD
2741 for_each_mem_cgroup_tree(iter, memcg) {
2742 for (i = 0; i < MEMCG_NR_STAT; i++)
2743 stat[i] += mem_cgroup_read_stat(iter, i);
2744 }
ce00a967
JW
2745}
2746
72b54e73 2747static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2748{
2749 struct mem_cgroup *iter;
72b54e73 2750 int i;
587d9f72 2751
72b54e73 2752 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2753
72b54e73
VD
2754 for_each_mem_cgroup_tree(iter, memcg) {
2755 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2756 events[i] += mem_cgroup_read_events(iter, i);
2757 }
587d9f72
JW
2758}
2759
6f646156 2760static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2761{
72b54e73 2762 unsigned long val = 0;
ce00a967 2763
3e32cb2e 2764 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2765 struct mem_cgroup *iter;
2766
2767 for_each_mem_cgroup_tree(iter, memcg) {
2768 val += mem_cgroup_read_stat(iter,
2769 MEM_CGROUP_STAT_CACHE);
2770 val += mem_cgroup_read_stat(iter,
2771 MEM_CGROUP_STAT_RSS);
2772 if (swap)
2773 val += mem_cgroup_read_stat(iter,
2774 MEM_CGROUP_STAT_SWAP);
2775 }
3e32cb2e 2776 } else {
ce00a967 2777 if (!swap)
3e32cb2e 2778 val = page_counter_read(&memcg->memory);
ce00a967 2779 else
3e32cb2e 2780 val = page_counter_read(&memcg->memsw);
ce00a967 2781 }
c12176d3 2782 return val;
ce00a967
JW
2783}
2784
3e32cb2e
JW
2785enum {
2786 RES_USAGE,
2787 RES_LIMIT,
2788 RES_MAX_USAGE,
2789 RES_FAILCNT,
2790 RES_SOFT_LIMIT,
2791};
ce00a967 2792
791badbd 2793static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2794 struct cftype *cft)
8cdea7c0 2795{
182446d0 2796 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2797 struct page_counter *counter;
af36f906 2798
3e32cb2e 2799 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2800 case _MEM:
3e32cb2e
JW
2801 counter = &memcg->memory;
2802 break;
8c7c6e34 2803 case _MEMSWAP:
3e32cb2e
JW
2804 counter = &memcg->memsw;
2805 break;
510fc4e1 2806 case _KMEM:
3e32cb2e 2807 counter = &memcg->kmem;
510fc4e1 2808 break;
d55f90bf 2809 case _TCP:
0db15298 2810 counter = &memcg->tcpmem;
d55f90bf 2811 break;
8c7c6e34
KH
2812 default:
2813 BUG();
8c7c6e34 2814 }
3e32cb2e
JW
2815
2816 switch (MEMFILE_ATTR(cft->private)) {
2817 case RES_USAGE:
2818 if (counter == &memcg->memory)
c12176d3 2819 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2820 if (counter == &memcg->memsw)
c12176d3 2821 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2822 return (u64)page_counter_read(counter) * PAGE_SIZE;
2823 case RES_LIMIT:
2824 return (u64)counter->limit * PAGE_SIZE;
2825 case RES_MAX_USAGE:
2826 return (u64)counter->watermark * PAGE_SIZE;
2827 case RES_FAILCNT:
2828 return counter->failcnt;
2829 case RES_SOFT_LIMIT:
2830 return (u64)memcg->soft_limit * PAGE_SIZE;
2831 default:
2832 BUG();
2833 }
8cdea7c0 2834}
510fc4e1 2835
127424c8 2836#ifndef CONFIG_SLOB
567e9ab2 2837static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2838{
d6441637
VD
2839 int memcg_id;
2840
b313aeee
VD
2841 if (cgroup_memory_nokmem)
2842 return 0;
2843
2a4db7eb 2844 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2845 BUG_ON(memcg->kmem_state);
d6441637 2846
f3bb3043 2847 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2848 if (memcg_id < 0)
2849 return memcg_id;
d6441637 2850
ef12947c 2851 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2852 /*
567e9ab2 2853 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2854 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2855 * guarantee no one starts accounting before all call sites are
2856 * patched.
2857 */
900a38f0 2858 memcg->kmemcg_id = memcg_id;
567e9ab2 2859 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2860
2861 return 0;
d6441637
VD
2862}
2863
8e0a8912
JW
2864static void memcg_offline_kmem(struct mem_cgroup *memcg)
2865{
2866 struct cgroup_subsys_state *css;
2867 struct mem_cgroup *parent, *child;
2868 int kmemcg_id;
2869
2870 if (memcg->kmem_state != KMEM_ONLINE)
2871 return;
2872 /*
2873 * Clear the online state before clearing memcg_caches array
2874 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2875 * guarantees that no cache will be created for this cgroup
2876 * after we are done (see memcg_create_kmem_cache()).
2877 */
2878 memcg->kmem_state = KMEM_ALLOCATED;
2879
2880 memcg_deactivate_kmem_caches(memcg);
2881
2882 kmemcg_id = memcg->kmemcg_id;
2883 BUG_ON(kmemcg_id < 0);
2884
2885 parent = parent_mem_cgroup(memcg);
2886 if (!parent)
2887 parent = root_mem_cgroup;
2888
2889 /*
2890 * Change kmemcg_id of this cgroup and all its descendants to the
2891 * parent's id, and then move all entries from this cgroup's list_lrus
2892 * to ones of the parent. After we have finished, all list_lrus
2893 * corresponding to this cgroup are guaranteed to remain empty. The
2894 * ordering is imposed by list_lru_node->lock taken by
2895 * memcg_drain_all_list_lrus().
2896 */
2897 css_for_each_descendant_pre(css, &memcg->css) {
2898 child = mem_cgroup_from_css(css);
2899 BUG_ON(child->kmemcg_id != kmemcg_id);
2900 child->kmemcg_id = parent->kmemcg_id;
2901 if (!memcg->use_hierarchy)
2902 break;
2903 }
2904 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2905
2906 memcg_free_cache_id(kmemcg_id);
2907}
2908
2909static void memcg_free_kmem(struct mem_cgroup *memcg)
2910{
0b8f73e1
JW
2911 /* css_alloc() failed, offlining didn't happen */
2912 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2913 memcg_offline_kmem(memcg);
2914
8e0a8912
JW
2915 if (memcg->kmem_state == KMEM_ALLOCATED) {
2916 memcg_destroy_kmem_caches(memcg);
2917 static_branch_dec(&memcg_kmem_enabled_key);
2918 WARN_ON(page_counter_read(&memcg->kmem));
2919 }
8e0a8912 2920}
d6441637 2921#else
0b8f73e1 2922static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2923{
2924 return 0;
2925}
2926static void memcg_offline_kmem(struct mem_cgroup *memcg)
2927{
2928}
2929static void memcg_free_kmem(struct mem_cgroup *memcg)
2930{
2931}
2932#endif /* !CONFIG_SLOB */
2933
d6441637 2934static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2935 unsigned long limit)
d6441637 2936{
b313aeee 2937 int ret;
127424c8
JW
2938
2939 mutex_lock(&memcg_limit_mutex);
127424c8 2940 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2941 mutex_unlock(&memcg_limit_mutex);
2942 return ret;
d6441637 2943}
510fc4e1 2944
d55f90bf
VD
2945static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2946{
2947 int ret;
2948
2949 mutex_lock(&memcg_limit_mutex);
2950
0db15298 2951 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2952 if (ret)
2953 goto out;
2954
0db15298 2955 if (!memcg->tcpmem_active) {
d55f90bf
VD
2956 /*
2957 * The active flag needs to be written after the static_key
2958 * update. This is what guarantees that the socket activation
2959 * function is the last one to run. See sock_update_memcg() for
2960 * details, and note that we don't mark any socket as belonging
2961 * to this memcg until that flag is up.
2962 *
2963 * We need to do this, because static_keys will span multiple
2964 * sites, but we can't control their order. If we mark a socket
2965 * as accounted, but the accounting functions are not patched in
2966 * yet, we'll lose accounting.
2967 *
2968 * We never race with the readers in sock_update_memcg(),
2969 * because when this value change, the code to process it is not
2970 * patched in yet.
2971 */
2972 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2973 memcg->tcpmem_active = true;
d55f90bf
VD
2974 }
2975out:
2976 mutex_unlock(&memcg_limit_mutex);
2977 return ret;
2978}
d55f90bf 2979
628f4235
KH
2980/*
2981 * The user of this function is...
2982 * RES_LIMIT.
2983 */
451af504
TH
2984static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2985 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2986{
451af504 2987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2988 unsigned long nr_pages;
628f4235
KH
2989 int ret;
2990
451af504 2991 buf = strstrip(buf);
650c5e56 2992 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2993 if (ret)
2994 return ret;
af36f906 2995
3e32cb2e 2996 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2997 case RES_LIMIT:
4b3bde4c
BS
2998 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2999 ret = -EINVAL;
3000 break;
3001 }
3e32cb2e
JW
3002 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3003 case _MEM:
3004 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3005 break;
3e32cb2e
JW
3006 case _MEMSWAP:
3007 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3008 break;
3e32cb2e
JW
3009 case _KMEM:
3010 ret = memcg_update_kmem_limit(memcg, nr_pages);
3011 break;
d55f90bf
VD
3012 case _TCP:
3013 ret = memcg_update_tcp_limit(memcg, nr_pages);
3014 break;
3e32cb2e 3015 }
296c81d8 3016 break;
3e32cb2e
JW
3017 case RES_SOFT_LIMIT:
3018 memcg->soft_limit = nr_pages;
3019 ret = 0;
628f4235
KH
3020 break;
3021 }
451af504 3022 return ret ?: nbytes;
8cdea7c0
BS
3023}
3024
6770c64e
TH
3025static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3026 size_t nbytes, loff_t off)
c84872e1 3027{
6770c64e 3028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3029 struct page_counter *counter;
c84872e1 3030
3e32cb2e
JW
3031 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3032 case _MEM:
3033 counter = &memcg->memory;
3034 break;
3035 case _MEMSWAP:
3036 counter = &memcg->memsw;
3037 break;
3038 case _KMEM:
3039 counter = &memcg->kmem;
3040 break;
d55f90bf 3041 case _TCP:
0db15298 3042 counter = &memcg->tcpmem;
d55f90bf 3043 break;
3e32cb2e
JW
3044 default:
3045 BUG();
3046 }
af36f906 3047
3e32cb2e 3048 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3049 case RES_MAX_USAGE:
3e32cb2e 3050 page_counter_reset_watermark(counter);
29f2a4da
PE
3051 break;
3052 case RES_FAILCNT:
3e32cb2e 3053 counter->failcnt = 0;
29f2a4da 3054 break;
3e32cb2e
JW
3055 default:
3056 BUG();
29f2a4da 3057 }
f64c3f54 3058
6770c64e 3059 return nbytes;
c84872e1
PE
3060}
3061
182446d0 3062static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3063 struct cftype *cft)
3064{
182446d0 3065 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3066}
3067
02491447 3068#ifdef CONFIG_MMU
182446d0 3069static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3070 struct cftype *cft, u64 val)
3071{
182446d0 3072 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3073
1dfab5ab 3074 if (val & ~MOVE_MASK)
7dc74be0 3075 return -EINVAL;
ee5e8472 3076
7dc74be0 3077 /*
ee5e8472
GC
3078 * No kind of locking is needed in here, because ->can_attach() will
3079 * check this value once in the beginning of the process, and then carry
3080 * on with stale data. This means that changes to this value will only
3081 * affect task migrations starting after the change.
7dc74be0 3082 */
c0ff4b85 3083 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3084 return 0;
3085}
02491447 3086#else
182446d0 3087static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3088 struct cftype *cft, u64 val)
3089{
3090 return -ENOSYS;
3091}
3092#endif
7dc74be0 3093
406eb0c9 3094#ifdef CONFIG_NUMA
2da8ca82 3095static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3096{
25485de6
GT
3097 struct numa_stat {
3098 const char *name;
3099 unsigned int lru_mask;
3100 };
3101
3102 static const struct numa_stat stats[] = {
3103 { "total", LRU_ALL },
3104 { "file", LRU_ALL_FILE },
3105 { "anon", LRU_ALL_ANON },
3106 { "unevictable", BIT(LRU_UNEVICTABLE) },
3107 };
3108 const struct numa_stat *stat;
406eb0c9 3109 int nid;
25485de6 3110 unsigned long nr;
2da8ca82 3111 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3112
25485de6
GT
3113 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3114 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3115 seq_printf(m, "%s=%lu", stat->name, nr);
3116 for_each_node_state(nid, N_MEMORY) {
3117 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3118 stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
406eb0c9 3122 }
406eb0c9 3123
071aee13
YH
3124 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3125 struct mem_cgroup *iter;
3126
3127 nr = 0;
3128 for_each_mem_cgroup_tree(iter, memcg)
3129 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3130 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3131 for_each_node_state(nid, N_MEMORY) {
3132 nr = 0;
3133 for_each_mem_cgroup_tree(iter, memcg)
3134 nr += mem_cgroup_node_nr_lru_pages(
3135 iter, nid, stat->lru_mask);
3136 seq_printf(m, " N%d=%lu", nid, nr);
3137 }
3138 seq_putc(m, '\n');
406eb0c9 3139 }
406eb0c9 3140
406eb0c9
YH
3141 return 0;
3142}
3143#endif /* CONFIG_NUMA */
3144
2da8ca82 3145static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3146{
2da8ca82 3147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3148 unsigned long memory, memsw;
af7c4b0e
JW
3149 struct mem_cgroup *mi;
3150 unsigned int i;
406eb0c9 3151
0ca44b14
GT
3152 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3153 MEM_CGROUP_STAT_NSTATS);
3154 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3155 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3156 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3157
af7c4b0e 3158 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3159 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3160 continue;
484ebb3b 3161 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3162 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3163 }
7b854121 3164
af7c4b0e
JW
3165 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3166 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3167 mem_cgroup_read_events(memcg, i));
3168
3169 for (i = 0; i < NR_LRU_LISTS; i++)
3170 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3171 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3172
14067bb3 3173 /* Hierarchical information */
3e32cb2e
JW
3174 memory = memsw = PAGE_COUNTER_MAX;
3175 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3176 memory = min(memory, mi->memory.limit);
3177 memsw = min(memsw, mi->memsw.limit);
fee7b548 3178 }
3e32cb2e
JW
3179 seq_printf(m, "hierarchical_memory_limit %llu\n",
3180 (u64)memory * PAGE_SIZE);
7941d214 3181 if (do_memsw_account())
3e32cb2e
JW
3182 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3183 (u64)memsw * PAGE_SIZE);
7f016ee8 3184
af7c4b0e 3185 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3186 unsigned long long val = 0;
af7c4b0e 3187
7941d214 3188 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3189 continue;
af7c4b0e
JW
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3193 }
3194
3195 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3196 unsigned long long val = 0;
3197
3198 for_each_mem_cgroup_tree(mi, memcg)
3199 val += mem_cgroup_read_events(mi, i);
3200 seq_printf(m, "total_%s %llu\n",
3201 mem_cgroup_events_names[i], val);
3202 }
3203
3204 for (i = 0; i < NR_LRU_LISTS; i++) {
3205 unsigned long long val = 0;
3206
3207 for_each_mem_cgroup_tree(mi, memcg)
3208 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3209 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3210 }
14067bb3 3211
7f016ee8 3212#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3213 {
3214 int nid, zid;
3215 struct mem_cgroup_per_zone *mz;
89abfab1 3216 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3217 unsigned long recent_rotated[2] = {0, 0};
3218 unsigned long recent_scanned[2] = {0, 0};
3219
3220 for_each_online_node(nid)
3221 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3222 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3223 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3224
89abfab1
HD
3225 recent_rotated[0] += rstat->recent_rotated[0];
3226 recent_rotated[1] += rstat->recent_rotated[1];
3227 recent_scanned[0] += rstat->recent_scanned[0];
3228 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3229 }
78ccf5b5
JW
3230 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3231 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3232 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3233 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3234 }
3235#endif
3236
d2ceb9b7
KH
3237 return 0;
3238}
3239
182446d0
TH
3240static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3241 struct cftype *cft)
a7885eb8 3242{
182446d0 3243 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3244
1f4c025b 3245 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3246}
3247
182446d0
TH
3248static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3249 struct cftype *cft, u64 val)
a7885eb8 3250{
182446d0 3251 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3252
3dae7fec 3253 if (val > 100)
a7885eb8
KM
3254 return -EINVAL;
3255
14208b0e 3256 if (css->parent)
3dae7fec
JW
3257 memcg->swappiness = val;
3258 else
3259 vm_swappiness = val;
068b38c1 3260
a7885eb8
KM
3261 return 0;
3262}
3263
2e72b634
KS
3264static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3265{
3266 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3267 unsigned long usage;
2e72b634
KS
3268 int i;
3269
3270 rcu_read_lock();
3271 if (!swap)
2c488db2 3272 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3273 else
2c488db2 3274 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3275
3276 if (!t)
3277 goto unlock;
3278
ce00a967 3279 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3280
3281 /*
748dad36 3282 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3283 * If it's not true, a threshold was crossed after last
3284 * call of __mem_cgroup_threshold().
3285 */
5407a562 3286 i = t->current_threshold;
2e72b634
KS
3287
3288 /*
3289 * Iterate backward over array of thresholds starting from
3290 * current_threshold and check if a threshold is crossed.
3291 * If none of thresholds below usage is crossed, we read
3292 * only one element of the array here.
3293 */
3294 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3295 eventfd_signal(t->entries[i].eventfd, 1);
3296
3297 /* i = current_threshold + 1 */
3298 i++;
3299
3300 /*
3301 * Iterate forward over array of thresholds starting from
3302 * current_threshold+1 and check if a threshold is crossed.
3303 * If none of thresholds above usage is crossed, we read
3304 * only one element of the array here.
3305 */
3306 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3307 eventfd_signal(t->entries[i].eventfd, 1);
3308
3309 /* Update current_threshold */
5407a562 3310 t->current_threshold = i - 1;
2e72b634
KS
3311unlock:
3312 rcu_read_unlock();
3313}
3314
3315static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3316{
ad4ca5f4
KS
3317 while (memcg) {
3318 __mem_cgroup_threshold(memcg, false);
7941d214 3319 if (do_memsw_account())
ad4ca5f4
KS
3320 __mem_cgroup_threshold(memcg, true);
3321
3322 memcg = parent_mem_cgroup(memcg);
3323 }
2e72b634
KS
3324}
3325
3326static int compare_thresholds(const void *a, const void *b)
3327{
3328 const struct mem_cgroup_threshold *_a = a;
3329 const struct mem_cgroup_threshold *_b = b;
3330
2bff24a3
GT
3331 if (_a->threshold > _b->threshold)
3332 return 1;
3333
3334 if (_a->threshold < _b->threshold)
3335 return -1;
3336
3337 return 0;
2e72b634
KS
3338}
3339
c0ff4b85 3340static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3341{
3342 struct mem_cgroup_eventfd_list *ev;
3343
2bcf2e92
MH
3344 spin_lock(&memcg_oom_lock);
3345
c0ff4b85 3346 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3347 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3348
3349 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3350 return 0;
3351}
3352
c0ff4b85 3353static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3354{
7d74b06f
KH
3355 struct mem_cgroup *iter;
3356
c0ff4b85 3357 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3358 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3359}
3360
59b6f873 3361static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3362 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3363{
2c488db2
KS
3364 struct mem_cgroup_thresholds *thresholds;
3365 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3366 unsigned long threshold;
3367 unsigned long usage;
2c488db2 3368 int i, size, ret;
2e72b634 3369
650c5e56 3370 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3371 if (ret)
3372 return ret;
3373
3374 mutex_lock(&memcg->thresholds_lock);
2c488db2 3375
05b84301 3376 if (type == _MEM) {
2c488db2 3377 thresholds = &memcg->thresholds;
ce00a967 3378 usage = mem_cgroup_usage(memcg, false);
05b84301 3379 } else if (type == _MEMSWAP) {
2c488db2 3380 thresholds = &memcg->memsw_thresholds;
ce00a967 3381 usage = mem_cgroup_usage(memcg, true);
05b84301 3382 } else
2e72b634
KS
3383 BUG();
3384
2e72b634 3385 /* Check if a threshold crossed before adding a new one */
2c488db2 3386 if (thresholds->primary)
2e72b634
KS
3387 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3388
2c488db2 3389 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3390
3391 /* Allocate memory for new array of thresholds */
2c488db2 3392 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3393 GFP_KERNEL);
2c488db2 3394 if (!new) {
2e72b634
KS
3395 ret = -ENOMEM;
3396 goto unlock;
3397 }
2c488db2 3398 new->size = size;
2e72b634
KS
3399
3400 /* Copy thresholds (if any) to new array */
2c488db2
KS
3401 if (thresholds->primary) {
3402 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3403 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3404 }
3405
2e72b634 3406 /* Add new threshold */
2c488db2
KS
3407 new->entries[size - 1].eventfd = eventfd;
3408 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3409
3410 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3411 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3412 compare_thresholds, NULL);
3413
3414 /* Find current threshold */
2c488db2 3415 new->current_threshold = -1;
2e72b634 3416 for (i = 0; i < size; i++) {
748dad36 3417 if (new->entries[i].threshold <= usage) {
2e72b634 3418 /*
2c488db2
KS
3419 * new->current_threshold will not be used until
3420 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3421 * it here.
3422 */
2c488db2 3423 ++new->current_threshold;
748dad36
SZ
3424 } else
3425 break;
2e72b634
KS
3426 }
3427
2c488db2
KS
3428 /* Free old spare buffer and save old primary buffer as spare */
3429 kfree(thresholds->spare);
3430 thresholds->spare = thresholds->primary;
3431
3432 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3433
907860ed 3434 /* To be sure that nobody uses thresholds */
2e72b634
KS
3435 synchronize_rcu();
3436
2e72b634
KS
3437unlock:
3438 mutex_unlock(&memcg->thresholds_lock);
3439
3440 return ret;
3441}
3442
59b6f873 3443static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3444 struct eventfd_ctx *eventfd, const char *args)
3445{
59b6f873 3446 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3447}
3448
59b6f873 3449static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3450 struct eventfd_ctx *eventfd, const char *args)
3451{
59b6f873 3452 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3453}
3454
59b6f873 3455static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3456 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3457{
2c488db2
KS
3458 struct mem_cgroup_thresholds *thresholds;
3459 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3460 unsigned long usage;
2c488db2 3461 int i, j, size;
2e72b634
KS
3462
3463 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3464
3465 if (type == _MEM) {
2c488db2 3466 thresholds = &memcg->thresholds;
ce00a967 3467 usage = mem_cgroup_usage(memcg, false);
05b84301 3468 } else if (type == _MEMSWAP) {
2c488db2 3469 thresholds = &memcg->memsw_thresholds;
ce00a967 3470 usage = mem_cgroup_usage(memcg, true);
05b84301 3471 } else
2e72b634
KS
3472 BUG();
3473
371528ca
AV
3474 if (!thresholds->primary)
3475 goto unlock;
3476
2e72b634
KS
3477 /* Check if a threshold crossed before removing */
3478 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3479
3480 /* Calculate new number of threshold */
2c488db2
KS
3481 size = 0;
3482 for (i = 0; i < thresholds->primary->size; i++) {
3483 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3484 size++;
3485 }
3486
2c488db2 3487 new = thresholds->spare;
907860ed 3488
2e72b634
KS
3489 /* Set thresholds array to NULL if we don't have thresholds */
3490 if (!size) {
2c488db2
KS
3491 kfree(new);
3492 new = NULL;
907860ed 3493 goto swap_buffers;
2e72b634
KS
3494 }
3495
2c488db2 3496 new->size = size;
2e72b634
KS
3497
3498 /* Copy thresholds and find current threshold */
2c488db2
KS
3499 new->current_threshold = -1;
3500 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3501 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3502 continue;
3503
2c488db2 3504 new->entries[j] = thresholds->primary->entries[i];
748dad36 3505 if (new->entries[j].threshold <= usage) {
2e72b634 3506 /*
2c488db2 3507 * new->current_threshold will not be used
2e72b634
KS
3508 * until rcu_assign_pointer(), so it's safe to increment
3509 * it here.
3510 */
2c488db2 3511 ++new->current_threshold;
2e72b634
KS
3512 }
3513 j++;
3514 }
3515
907860ed 3516swap_buffers:
2c488db2
KS
3517 /* Swap primary and spare array */
3518 thresholds->spare = thresholds->primary;
8c757763 3519
2c488db2 3520 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3521
907860ed 3522 /* To be sure that nobody uses thresholds */
2e72b634 3523 synchronize_rcu();
6611d8d7
MC
3524
3525 /* If all events are unregistered, free the spare array */
3526 if (!new) {
3527 kfree(thresholds->spare);
3528 thresholds->spare = NULL;
3529 }
371528ca 3530unlock:
2e72b634 3531 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3532}
c1e862c1 3533
59b6f873 3534static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3535 struct eventfd_ctx *eventfd)
3536{
59b6f873 3537 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3538}
3539
59b6f873 3540static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3541 struct eventfd_ctx *eventfd)
3542{
59b6f873 3543 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3544}
3545
59b6f873 3546static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3547 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3548{
9490ff27 3549 struct mem_cgroup_eventfd_list *event;
9490ff27 3550
9490ff27
KH
3551 event = kmalloc(sizeof(*event), GFP_KERNEL);
3552 if (!event)
3553 return -ENOMEM;
3554
1af8efe9 3555 spin_lock(&memcg_oom_lock);
9490ff27
KH
3556
3557 event->eventfd = eventfd;
3558 list_add(&event->list, &memcg->oom_notify);
3559
3560 /* already in OOM ? */
c2b42d3c 3561 if (memcg->under_oom)
9490ff27 3562 eventfd_signal(eventfd, 1);
1af8efe9 3563 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3564
3565 return 0;
3566}
3567
59b6f873 3568static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3569 struct eventfd_ctx *eventfd)
9490ff27 3570{
9490ff27 3571 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3572
1af8efe9 3573 spin_lock(&memcg_oom_lock);
9490ff27 3574
c0ff4b85 3575 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3576 if (ev->eventfd == eventfd) {
3577 list_del(&ev->list);
3578 kfree(ev);
3579 }
3580 }
3581
1af8efe9 3582 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3583}
3584
2da8ca82 3585static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3586{
2da8ca82 3587 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3588
791badbd 3589 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3590 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3591 return 0;
3592}
3593
182446d0 3594static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3595 struct cftype *cft, u64 val)
3596{
182446d0 3597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3598
3599 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3600 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3601 return -EINVAL;
3602
c0ff4b85 3603 memcg->oom_kill_disable = val;
4d845ebf 3604 if (!val)
c0ff4b85 3605 memcg_oom_recover(memcg);
3dae7fec 3606
3c11ecf4
KH
3607 return 0;
3608}
3609
52ebea74
TH
3610#ifdef CONFIG_CGROUP_WRITEBACK
3611
3612struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3613{
3614 return &memcg->cgwb_list;
3615}
3616
841710aa
TH
3617static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3618{
3619 return wb_domain_init(&memcg->cgwb_domain, gfp);
3620}
3621
3622static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3623{
3624 wb_domain_exit(&memcg->cgwb_domain);
3625}
3626
2529bb3a
TH
3627static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3628{
3629 wb_domain_size_changed(&memcg->cgwb_domain);
3630}
3631
841710aa
TH
3632struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3633{
3634 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3635
3636 if (!memcg->css.parent)
3637 return NULL;
3638
3639 return &memcg->cgwb_domain;
3640}
3641
c2aa723a
TH
3642/**
3643 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3644 * @wb: bdi_writeback in question
c5edf9cd
TH
3645 * @pfilepages: out parameter for number of file pages
3646 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3647 * @pdirty: out parameter for number of dirty pages
3648 * @pwriteback: out parameter for number of pages under writeback
3649 *
c5edf9cd
TH
3650 * Determine the numbers of file, headroom, dirty, and writeback pages in
3651 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3652 * is a bit more involved.
c2aa723a 3653 *
c5edf9cd
TH
3654 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3655 * headroom is calculated as the lowest headroom of itself and the
3656 * ancestors. Note that this doesn't consider the actual amount of
3657 * available memory in the system. The caller should further cap
3658 * *@pheadroom accordingly.
c2aa723a 3659 */
c5edf9cd
TH
3660void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3661 unsigned long *pheadroom, unsigned long *pdirty,
3662 unsigned long *pwriteback)
c2aa723a
TH
3663{
3664 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3665 struct mem_cgroup *parent;
c2aa723a
TH
3666
3667 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3668
3669 /* this should eventually include NR_UNSTABLE_NFS */
3670 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3671 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3672 (1 << LRU_ACTIVE_FILE));
3673 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3674
c2aa723a
TH
3675 while ((parent = parent_mem_cgroup(memcg))) {
3676 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3677 unsigned long used = page_counter_read(&memcg->memory);
3678
c5edf9cd 3679 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3680 memcg = parent;
3681 }
c2aa723a
TH
3682}
3683
841710aa
TH
3684#else /* CONFIG_CGROUP_WRITEBACK */
3685
3686static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3687{
3688 return 0;
3689}
3690
3691static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3692{
3693}
3694
2529bb3a
TH
3695static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3696{
3697}
3698
52ebea74
TH
3699#endif /* CONFIG_CGROUP_WRITEBACK */
3700
3bc942f3
TH
3701/*
3702 * DO NOT USE IN NEW FILES.
3703 *
3704 * "cgroup.event_control" implementation.
3705 *
3706 * This is way over-engineered. It tries to support fully configurable
3707 * events for each user. Such level of flexibility is completely
3708 * unnecessary especially in the light of the planned unified hierarchy.
3709 *
3710 * Please deprecate this and replace with something simpler if at all
3711 * possible.
3712 */
3713
79bd9814
TH
3714/*
3715 * Unregister event and free resources.
3716 *
3717 * Gets called from workqueue.
3718 */
3bc942f3 3719static void memcg_event_remove(struct work_struct *work)
79bd9814 3720{
3bc942f3
TH
3721 struct mem_cgroup_event *event =
3722 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3723 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3724
3725 remove_wait_queue(event->wqh, &event->wait);
3726
59b6f873 3727 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3728
3729 /* Notify userspace the event is going away. */
3730 eventfd_signal(event->eventfd, 1);
3731
3732 eventfd_ctx_put(event->eventfd);
3733 kfree(event);
59b6f873 3734 css_put(&memcg->css);
79bd9814
TH
3735}
3736
3737/*
3738 * Gets called on POLLHUP on eventfd when user closes it.
3739 *
3740 * Called with wqh->lock held and interrupts disabled.
3741 */
3bc942f3
TH
3742static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3743 int sync, void *key)
79bd9814 3744{
3bc942f3
TH
3745 struct mem_cgroup_event *event =
3746 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3747 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3748 unsigned long flags = (unsigned long)key;
3749
3750 if (flags & POLLHUP) {
3751 /*
3752 * If the event has been detached at cgroup removal, we
3753 * can simply return knowing the other side will cleanup
3754 * for us.
3755 *
3756 * We can't race against event freeing since the other
3757 * side will require wqh->lock via remove_wait_queue(),
3758 * which we hold.
3759 */
fba94807 3760 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3761 if (!list_empty(&event->list)) {
3762 list_del_init(&event->list);
3763 /*
3764 * We are in atomic context, but cgroup_event_remove()
3765 * may sleep, so we have to call it in workqueue.
3766 */
3767 schedule_work(&event->remove);
3768 }
fba94807 3769 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3770 }
3771
3772 return 0;
3773}
3774
3bc942f3 3775static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3776 wait_queue_head_t *wqh, poll_table *pt)
3777{
3bc942f3
TH
3778 struct mem_cgroup_event *event =
3779 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3780
3781 event->wqh = wqh;
3782 add_wait_queue(wqh, &event->wait);
3783}
3784
3785/*
3bc942f3
TH
3786 * DO NOT USE IN NEW FILES.
3787 *
79bd9814
TH
3788 * Parse input and register new cgroup event handler.
3789 *
3790 * Input must be in format '<event_fd> <control_fd> <args>'.
3791 * Interpretation of args is defined by control file implementation.
3792 */
451af504
TH
3793static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3794 char *buf, size_t nbytes, loff_t off)
79bd9814 3795{
451af504 3796 struct cgroup_subsys_state *css = of_css(of);
fba94807 3797 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3798 struct mem_cgroup_event *event;
79bd9814
TH
3799 struct cgroup_subsys_state *cfile_css;
3800 unsigned int efd, cfd;
3801 struct fd efile;
3802 struct fd cfile;
fba94807 3803 const char *name;
79bd9814
TH
3804 char *endp;
3805 int ret;
3806
451af504
TH
3807 buf = strstrip(buf);
3808
3809 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3810 if (*endp != ' ')
3811 return -EINVAL;
451af504 3812 buf = endp + 1;
79bd9814 3813
451af504 3814 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3815 if ((*endp != ' ') && (*endp != '\0'))
3816 return -EINVAL;
451af504 3817 buf = endp + 1;
79bd9814
TH
3818
3819 event = kzalloc(sizeof(*event), GFP_KERNEL);
3820 if (!event)
3821 return -ENOMEM;
3822
59b6f873 3823 event->memcg = memcg;
79bd9814 3824 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3825 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3826 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3827 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3828
3829 efile = fdget(efd);
3830 if (!efile.file) {
3831 ret = -EBADF;
3832 goto out_kfree;
3833 }
3834
3835 event->eventfd = eventfd_ctx_fileget(efile.file);
3836 if (IS_ERR(event->eventfd)) {
3837 ret = PTR_ERR(event->eventfd);
3838 goto out_put_efile;
3839 }
3840
3841 cfile = fdget(cfd);
3842 if (!cfile.file) {
3843 ret = -EBADF;
3844 goto out_put_eventfd;
3845 }
3846
3847 /* the process need read permission on control file */
3848 /* AV: shouldn't we check that it's been opened for read instead? */
3849 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3850 if (ret < 0)
3851 goto out_put_cfile;
3852
fba94807
TH
3853 /*
3854 * Determine the event callbacks and set them in @event. This used
3855 * to be done via struct cftype but cgroup core no longer knows
3856 * about these events. The following is crude but the whole thing
3857 * is for compatibility anyway.
3bc942f3
TH
3858 *
3859 * DO NOT ADD NEW FILES.
fba94807 3860 */
b583043e 3861 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3862
3863 if (!strcmp(name, "memory.usage_in_bytes")) {
3864 event->register_event = mem_cgroup_usage_register_event;
3865 event->unregister_event = mem_cgroup_usage_unregister_event;
3866 } else if (!strcmp(name, "memory.oom_control")) {
3867 event->register_event = mem_cgroup_oom_register_event;
3868 event->unregister_event = mem_cgroup_oom_unregister_event;
3869 } else if (!strcmp(name, "memory.pressure_level")) {
3870 event->register_event = vmpressure_register_event;
3871 event->unregister_event = vmpressure_unregister_event;
3872 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3873 event->register_event = memsw_cgroup_usage_register_event;
3874 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3875 } else {
3876 ret = -EINVAL;
3877 goto out_put_cfile;
3878 }
3879
79bd9814 3880 /*
b5557c4c
TH
3881 * Verify @cfile should belong to @css. Also, remaining events are
3882 * automatically removed on cgroup destruction but the removal is
3883 * asynchronous, so take an extra ref on @css.
79bd9814 3884 */
b583043e 3885 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3886 &memory_cgrp_subsys);
79bd9814 3887 ret = -EINVAL;
5a17f543 3888 if (IS_ERR(cfile_css))
79bd9814 3889 goto out_put_cfile;
5a17f543
TH
3890 if (cfile_css != css) {
3891 css_put(cfile_css);
79bd9814 3892 goto out_put_cfile;
5a17f543 3893 }
79bd9814 3894
451af504 3895 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3896 if (ret)
3897 goto out_put_css;
3898
3899 efile.file->f_op->poll(efile.file, &event->pt);
3900
fba94807
TH
3901 spin_lock(&memcg->event_list_lock);
3902 list_add(&event->list, &memcg->event_list);
3903 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3904
3905 fdput(cfile);
3906 fdput(efile);
3907
451af504 3908 return nbytes;
79bd9814
TH
3909
3910out_put_css:
b5557c4c 3911 css_put(css);
79bd9814
TH
3912out_put_cfile:
3913 fdput(cfile);
3914out_put_eventfd:
3915 eventfd_ctx_put(event->eventfd);
3916out_put_efile:
3917 fdput(efile);
3918out_kfree:
3919 kfree(event);
3920
3921 return ret;
3922}
3923
241994ed 3924static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3925 {
0eea1030 3926 .name = "usage_in_bytes",
8c7c6e34 3927 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3928 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3929 },
c84872e1
PE
3930 {
3931 .name = "max_usage_in_bytes",
8c7c6e34 3932 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3933 .write = mem_cgroup_reset,
791badbd 3934 .read_u64 = mem_cgroup_read_u64,
c84872e1 3935 },
8cdea7c0 3936 {
0eea1030 3937 .name = "limit_in_bytes",
8c7c6e34 3938 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3939 .write = mem_cgroup_write,
791badbd 3940 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3941 },
296c81d8
BS
3942 {
3943 .name = "soft_limit_in_bytes",
3944 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3945 .write = mem_cgroup_write,
791badbd 3946 .read_u64 = mem_cgroup_read_u64,
296c81d8 3947 },
8cdea7c0
BS
3948 {
3949 .name = "failcnt",
8c7c6e34 3950 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3951 .write = mem_cgroup_reset,
791badbd 3952 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3953 },
d2ceb9b7
KH
3954 {
3955 .name = "stat",
2da8ca82 3956 .seq_show = memcg_stat_show,
d2ceb9b7 3957 },
c1e862c1
KH
3958 {
3959 .name = "force_empty",
6770c64e 3960 .write = mem_cgroup_force_empty_write,
c1e862c1 3961 },
18f59ea7
BS
3962 {
3963 .name = "use_hierarchy",
3964 .write_u64 = mem_cgroup_hierarchy_write,
3965 .read_u64 = mem_cgroup_hierarchy_read,
3966 },
79bd9814 3967 {
3bc942f3 3968 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3969 .write = memcg_write_event_control,
7dbdb199 3970 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3971 },
a7885eb8
KM
3972 {
3973 .name = "swappiness",
3974 .read_u64 = mem_cgroup_swappiness_read,
3975 .write_u64 = mem_cgroup_swappiness_write,
3976 },
7dc74be0
DN
3977 {
3978 .name = "move_charge_at_immigrate",
3979 .read_u64 = mem_cgroup_move_charge_read,
3980 .write_u64 = mem_cgroup_move_charge_write,
3981 },
9490ff27
KH
3982 {
3983 .name = "oom_control",
2da8ca82 3984 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3985 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3986 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3987 },
70ddf637
AV
3988 {
3989 .name = "pressure_level",
70ddf637 3990 },
406eb0c9
YH
3991#ifdef CONFIG_NUMA
3992 {
3993 .name = "numa_stat",
2da8ca82 3994 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3995 },
3996#endif
510fc4e1
GC
3997 {
3998 .name = "kmem.limit_in_bytes",
3999 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4000 .write = mem_cgroup_write,
791badbd 4001 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4002 },
4003 {
4004 .name = "kmem.usage_in_bytes",
4005 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4006 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4007 },
4008 {
4009 .name = "kmem.failcnt",
4010 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4011 .write = mem_cgroup_reset,
791badbd 4012 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4013 },
4014 {
4015 .name = "kmem.max_usage_in_bytes",
4016 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4017 .write = mem_cgroup_reset,
791badbd 4018 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4019 },
749c5415
GC
4020#ifdef CONFIG_SLABINFO
4021 {
4022 .name = "kmem.slabinfo",
b047501c
VD
4023 .seq_start = slab_start,
4024 .seq_next = slab_next,
4025 .seq_stop = slab_stop,
4026 .seq_show = memcg_slab_show,
749c5415
GC
4027 },
4028#endif
d55f90bf
VD
4029 {
4030 .name = "kmem.tcp.limit_in_bytes",
4031 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4032 .write = mem_cgroup_write,
4033 .read_u64 = mem_cgroup_read_u64,
4034 },
4035 {
4036 .name = "kmem.tcp.usage_in_bytes",
4037 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4038 .read_u64 = mem_cgroup_read_u64,
4039 },
4040 {
4041 .name = "kmem.tcp.failcnt",
4042 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4043 .write = mem_cgroup_reset,
4044 .read_u64 = mem_cgroup_read_u64,
4045 },
4046 {
4047 .name = "kmem.tcp.max_usage_in_bytes",
4048 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4049 .write = mem_cgroup_reset,
4050 .read_u64 = mem_cgroup_read_u64,
4051 },
6bc10349 4052 { }, /* terminate */
af36f906 4053};
8c7c6e34 4054
c0ff4b85 4055static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4056{
4057 struct mem_cgroup_per_node *pn;
1ecaab2b 4058 struct mem_cgroup_per_zone *mz;
41e3355d 4059 int zone, tmp = node;
1ecaab2b
KH
4060 /*
4061 * This routine is called against possible nodes.
4062 * But it's BUG to call kmalloc() against offline node.
4063 *
4064 * TODO: this routine can waste much memory for nodes which will
4065 * never be onlined. It's better to use memory hotplug callback
4066 * function.
4067 */
41e3355d
KH
4068 if (!node_state(node, N_NORMAL_MEMORY))
4069 tmp = -1;
17295c88 4070 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4071 if (!pn)
4072 return 1;
1ecaab2b 4073
1ecaab2b
KH
4074 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4075 mz = &pn->zoneinfo[zone];
bea8c150 4076 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4077 mz->usage_in_excess = 0;
4078 mz->on_tree = false;
d79154bb 4079 mz->memcg = memcg;
1ecaab2b 4080 }
54f72fe0 4081 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4082 return 0;
4083}
4084
c0ff4b85 4085static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4086{
54f72fe0 4087 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4088}
4089
0b8f73e1 4090static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4091{
c8b2a36f 4092 int node;
59927fb9 4093
0b8f73e1 4094 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4095 for_each_node(node)
4096 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4097 free_percpu(memcg->stat);
8ff69e2c 4098 kfree(memcg);
59927fb9 4099}
3afe36b1 4100
0b8f73e1 4101static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4102{
d142e3e6 4103 struct mem_cgroup *memcg;
0b8f73e1 4104 size_t size;
6d12e2d8 4105 int node;
8cdea7c0 4106
0b8f73e1
JW
4107 size = sizeof(struct mem_cgroup);
4108 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4109
4110 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4111 if (!memcg)
0b8f73e1
JW
4112 return NULL;
4113
4114 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4115 if (!memcg->stat)
4116 goto fail;
78fb7466 4117
3ed28fa1 4118 for_each_node(node)
c0ff4b85 4119 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4120 goto fail;
f64c3f54 4121
0b8f73e1
JW
4122 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4123 goto fail;
28dbc4b6 4124
f7e1cb6e 4125 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4126 memcg->last_scanned_node = MAX_NUMNODES;
4127 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4128 mutex_init(&memcg->thresholds_lock);
4129 spin_lock_init(&memcg->move_lock);
70ddf637 4130 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4131 INIT_LIST_HEAD(&memcg->event_list);
4132 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4133 memcg->socket_pressure = jiffies;
127424c8 4134#ifndef CONFIG_SLOB
900a38f0 4135 memcg->kmemcg_id = -1;
900a38f0 4136#endif
52ebea74
TH
4137#ifdef CONFIG_CGROUP_WRITEBACK
4138 INIT_LIST_HEAD(&memcg->cgwb_list);
4139#endif
0b8f73e1
JW
4140 return memcg;
4141fail:
4142 mem_cgroup_free(memcg);
4143 return NULL;
d142e3e6
GC
4144}
4145
0b8f73e1
JW
4146static struct cgroup_subsys_state * __ref
4147mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4148{
0b8f73e1
JW
4149 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4150 struct mem_cgroup *memcg;
4151 long error = -ENOMEM;
d142e3e6 4152
0b8f73e1
JW
4153 memcg = mem_cgroup_alloc();
4154 if (!memcg)
4155 return ERR_PTR(error);
d142e3e6 4156
0b8f73e1
JW
4157 memcg->high = PAGE_COUNTER_MAX;
4158 memcg->soft_limit = PAGE_COUNTER_MAX;
4159 if (parent) {
4160 memcg->swappiness = mem_cgroup_swappiness(parent);
4161 memcg->oom_kill_disable = parent->oom_kill_disable;
4162 }
4163 if (parent && parent->use_hierarchy) {
4164 memcg->use_hierarchy = true;
3e32cb2e 4165 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4166 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4167 page_counter_init(&memcg->memsw, &parent->memsw);
4168 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4169 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4170 } else {
3e32cb2e 4171 page_counter_init(&memcg->memory, NULL);
37e84351 4172 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4173 page_counter_init(&memcg->memsw, NULL);
4174 page_counter_init(&memcg->kmem, NULL);
0db15298 4175 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4176 /*
4177 * Deeper hierachy with use_hierarchy == false doesn't make
4178 * much sense so let cgroup subsystem know about this
4179 * unfortunate state in our controller.
4180 */
d142e3e6 4181 if (parent != root_mem_cgroup)
073219e9 4182 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4183 }
d6441637 4184
0b8f73e1
JW
4185 /* The following stuff does not apply to the root */
4186 if (!parent) {
4187 root_mem_cgroup = memcg;
4188 return &memcg->css;
4189 }
4190
b313aeee 4191 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4192 if (error)
4193 goto fail;
127424c8 4194
f7e1cb6e 4195 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4196 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4197
0b8f73e1
JW
4198 return &memcg->css;
4199fail:
4200 mem_cgroup_free(memcg);
4201 return NULL;
4202}
4203
4204static int
4205mem_cgroup_css_online(struct cgroup_subsys_state *css)
4206{
4207 if (css->id > MEM_CGROUP_ID_MAX)
4208 return -ENOSPC;
2f7dd7a4
JW
4209
4210 return 0;
8cdea7c0
BS
4211}
4212
eb95419b 4213static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4214{
eb95419b 4215 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4216 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4217
4218 /*
4219 * Unregister events and notify userspace.
4220 * Notify userspace about cgroup removing only after rmdir of cgroup
4221 * directory to avoid race between userspace and kernelspace.
4222 */
fba94807
TH
4223 spin_lock(&memcg->event_list_lock);
4224 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4225 list_del_init(&event->list);
4226 schedule_work(&event->remove);
4227 }
fba94807 4228 spin_unlock(&memcg->event_list_lock);
ec64f515 4229
567e9ab2 4230 memcg_offline_kmem(memcg);
52ebea74 4231 wb_memcg_offline(memcg);
df878fb0
KH
4232}
4233
6df38689
VD
4234static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4235{
4236 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4237
4238 invalidate_reclaim_iterators(memcg);
4239}
4240
eb95419b 4241static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4242{
eb95419b 4243 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4244
f7e1cb6e 4245 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4246 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4247
0db15298 4248 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4249 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4250
0b8f73e1
JW
4251 vmpressure_cleanup(&memcg->vmpressure);
4252 cancel_work_sync(&memcg->high_work);
4253 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4254 memcg_free_kmem(memcg);
0b8f73e1 4255 mem_cgroup_free(memcg);
8cdea7c0
BS
4256}
4257
1ced953b
TH
4258/**
4259 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4260 * @css: the target css
4261 *
4262 * Reset the states of the mem_cgroup associated with @css. This is
4263 * invoked when the userland requests disabling on the default hierarchy
4264 * but the memcg is pinned through dependency. The memcg should stop
4265 * applying policies and should revert to the vanilla state as it may be
4266 * made visible again.
4267 *
4268 * The current implementation only resets the essential configurations.
4269 * This needs to be expanded to cover all the visible parts.
4270 */
4271static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4272{
4273 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4274
d334c9bc
VD
4275 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4276 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4277 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4278 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4279 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4280 memcg->low = 0;
4281 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4282 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4283 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4284}
4285
02491447 4286#ifdef CONFIG_MMU
7dc74be0 4287/* Handlers for move charge at task migration. */
854ffa8d 4288static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4289{
05b84301 4290 int ret;
9476db97 4291
d0164adc
MG
4292 /* Try a single bulk charge without reclaim first, kswapd may wake */
4293 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4294 if (!ret) {
854ffa8d 4295 mc.precharge += count;
854ffa8d
DN
4296 return ret;
4297 }
9476db97
JW
4298
4299 /* Try charges one by one with reclaim */
854ffa8d 4300 while (count--) {
00501b53 4301 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4302 if (ret)
38c5d72f 4303 return ret;
854ffa8d 4304 mc.precharge++;
9476db97 4305 cond_resched();
854ffa8d 4306 }
9476db97 4307 return 0;
4ffef5fe
DN
4308}
4309
4310/**
8d32ff84 4311 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4312 * @vma: the vma the pte to be checked belongs
4313 * @addr: the address corresponding to the pte to be checked
4314 * @ptent: the pte to be checked
02491447 4315 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4316 *
4317 * Returns
4318 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4319 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4320 * move charge. if @target is not NULL, the page is stored in target->page
4321 * with extra refcnt got(Callers should handle it).
02491447
DN
4322 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4323 * target for charge migration. if @target is not NULL, the entry is stored
4324 * in target->ent.
4ffef5fe
DN
4325 *
4326 * Called with pte lock held.
4327 */
4ffef5fe
DN
4328union mc_target {
4329 struct page *page;
02491447 4330 swp_entry_t ent;
4ffef5fe
DN
4331};
4332
4ffef5fe 4333enum mc_target_type {
8d32ff84 4334 MC_TARGET_NONE = 0,
4ffef5fe 4335 MC_TARGET_PAGE,
02491447 4336 MC_TARGET_SWAP,
4ffef5fe
DN
4337};
4338
90254a65
DN
4339static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4340 unsigned long addr, pte_t ptent)
4ffef5fe 4341{
90254a65 4342 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4343
90254a65
DN
4344 if (!page || !page_mapped(page))
4345 return NULL;
4346 if (PageAnon(page)) {
1dfab5ab 4347 if (!(mc.flags & MOVE_ANON))
90254a65 4348 return NULL;
1dfab5ab
JW
4349 } else {
4350 if (!(mc.flags & MOVE_FILE))
4351 return NULL;
4352 }
90254a65
DN
4353 if (!get_page_unless_zero(page))
4354 return NULL;
4355
4356 return page;
4357}
4358
4b91355e 4359#ifdef CONFIG_SWAP
90254a65
DN
4360static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4361 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4362{
90254a65
DN
4363 struct page *page = NULL;
4364 swp_entry_t ent = pte_to_swp_entry(ptent);
4365
1dfab5ab 4366 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4367 return NULL;
4b91355e
KH
4368 /*
4369 * Because lookup_swap_cache() updates some statistics counter,
4370 * we call find_get_page() with swapper_space directly.
4371 */
33806f06 4372 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4373 if (do_memsw_account())
90254a65
DN
4374 entry->val = ent.val;
4375
4376 return page;
4377}
4b91355e
KH
4378#else
4379static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4380 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4381{
4382 return NULL;
4383}
4384#endif
90254a65 4385
87946a72
DN
4386static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4387 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4388{
4389 struct page *page = NULL;
87946a72
DN
4390 struct address_space *mapping;
4391 pgoff_t pgoff;
4392
4393 if (!vma->vm_file) /* anonymous vma */
4394 return NULL;
1dfab5ab 4395 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4396 return NULL;
4397
87946a72 4398 mapping = vma->vm_file->f_mapping;
0661a336 4399 pgoff = linear_page_index(vma, addr);
87946a72
DN
4400
4401 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4402#ifdef CONFIG_SWAP
4403 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4404 if (shmem_mapping(mapping)) {
4405 page = find_get_entry(mapping, pgoff);
4406 if (radix_tree_exceptional_entry(page)) {
4407 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4408 if (do_memsw_account())
139b6a6f
JW
4409 *entry = swp;
4410 page = find_get_page(swap_address_space(swp), swp.val);
4411 }
4412 } else
4413 page = find_get_page(mapping, pgoff);
4414#else
4415 page = find_get_page(mapping, pgoff);
aa3b1895 4416#endif
87946a72
DN
4417 return page;
4418}
4419
b1b0deab
CG
4420/**
4421 * mem_cgroup_move_account - move account of the page
4422 * @page: the page
4423 * @nr_pages: number of regular pages (>1 for huge pages)
4424 * @from: mem_cgroup which the page is moved from.
4425 * @to: mem_cgroup which the page is moved to. @from != @to.
4426 *
3ac808fd 4427 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4428 *
4429 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4430 * from old cgroup.
4431 */
4432static int mem_cgroup_move_account(struct page *page,
f627c2f5 4433 bool compound,
b1b0deab
CG
4434 struct mem_cgroup *from,
4435 struct mem_cgroup *to)
4436{
4437 unsigned long flags;
f627c2f5 4438 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4439 int ret;
c4843a75 4440 bool anon;
b1b0deab
CG
4441
4442 VM_BUG_ON(from == to);
4443 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4444 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4445
4446 /*
6a93ca8f 4447 * Prevent mem_cgroup_migrate() from looking at
45637bab 4448 * page->mem_cgroup of its source page while we change it.
b1b0deab 4449 */
f627c2f5 4450 ret = -EBUSY;
b1b0deab
CG
4451 if (!trylock_page(page))
4452 goto out;
4453
4454 ret = -EINVAL;
4455 if (page->mem_cgroup != from)
4456 goto out_unlock;
4457
c4843a75
GT
4458 anon = PageAnon(page);
4459
b1b0deab
CG
4460 spin_lock_irqsave(&from->move_lock, flags);
4461
c4843a75 4462 if (!anon && page_mapped(page)) {
b1b0deab
CG
4463 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4464 nr_pages);
4465 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4466 nr_pages);
4467 }
4468
c4843a75
GT
4469 /*
4470 * move_lock grabbed above and caller set from->moving_account, so
4471 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4472 * So mapping should be stable for dirty pages.
4473 */
4474 if (!anon && PageDirty(page)) {
4475 struct address_space *mapping = page_mapping(page);
4476
4477 if (mapping_cap_account_dirty(mapping)) {
4478 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4479 nr_pages);
4480 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4481 nr_pages);
4482 }
4483 }
4484
b1b0deab
CG
4485 if (PageWriteback(page)) {
4486 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4487 nr_pages);
4488 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4489 nr_pages);
4490 }
4491
4492 /*
4493 * It is safe to change page->mem_cgroup here because the page
4494 * is referenced, charged, and isolated - we can't race with
4495 * uncharging, charging, migration, or LRU putback.
4496 */
4497
4498 /* caller should have done css_get */
4499 page->mem_cgroup = to;
4500 spin_unlock_irqrestore(&from->move_lock, flags);
4501
4502 ret = 0;
4503
4504 local_irq_disable();
f627c2f5 4505 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4506 memcg_check_events(to, page);
f627c2f5 4507 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4508 memcg_check_events(from, page);
4509 local_irq_enable();
4510out_unlock:
4511 unlock_page(page);
4512out:
4513 return ret;
4514}
4515
8d32ff84 4516static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4517 unsigned long addr, pte_t ptent, union mc_target *target)
4518{
4519 struct page *page = NULL;
8d32ff84 4520 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4521 swp_entry_t ent = { .val = 0 };
4522
4523 if (pte_present(ptent))
4524 page = mc_handle_present_pte(vma, addr, ptent);
4525 else if (is_swap_pte(ptent))
4526 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4527 else if (pte_none(ptent))
87946a72 4528 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4529
4530 if (!page && !ent.val)
8d32ff84 4531 return ret;
02491447 4532 if (page) {
02491447 4533 /*
0a31bc97 4534 * Do only loose check w/o serialization.
1306a85a 4535 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4536 * not under LRU exclusion.
02491447 4537 */
1306a85a 4538 if (page->mem_cgroup == mc.from) {
02491447
DN
4539 ret = MC_TARGET_PAGE;
4540 if (target)
4541 target->page = page;
4542 }
4543 if (!ret || !target)
4544 put_page(page);
4545 }
90254a65
DN
4546 /* There is a swap entry and a page doesn't exist or isn't charged */
4547 if (ent.val && !ret &&
34c00c31 4548 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4549 ret = MC_TARGET_SWAP;
4550 if (target)
4551 target->ent = ent;
4ffef5fe 4552 }
4ffef5fe
DN
4553 return ret;
4554}
4555
12724850
NH
4556#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4557/*
4558 * We don't consider swapping or file mapped pages because THP does not
4559 * support them for now.
4560 * Caller should make sure that pmd_trans_huge(pmd) is true.
4561 */
4562static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4563 unsigned long addr, pmd_t pmd, union mc_target *target)
4564{
4565 struct page *page = NULL;
12724850
NH
4566 enum mc_target_type ret = MC_TARGET_NONE;
4567
4568 page = pmd_page(pmd);
309381fe 4569 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4570 if (!(mc.flags & MOVE_ANON))
12724850 4571 return ret;
1306a85a 4572 if (page->mem_cgroup == mc.from) {
12724850
NH
4573 ret = MC_TARGET_PAGE;
4574 if (target) {
4575 get_page(page);
4576 target->page = page;
4577 }
4578 }
4579 return ret;
4580}
4581#else
4582static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4583 unsigned long addr, pmd_t pmd, union mc_target *target)
4584{
4585 return MC_TARGET_NONE;
4586}
4587#endif
4588
4ffef5fe
DN
4589static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4590 unsigned long addr, unsigned long end,
4591 struct mm_walk *walk)
4592{
26bcd64a 4593 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4594 pte_t *pte;
4595 spinlock_t *ptl;
4596
b6ec57f4
KS
4597 ptl = pmd_trans_huge_lock(pmd, vma);
4598 if (ptl) {
12724850
NH
4599 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4600 mc.precharge += HPAGE_PMD_NR;
bf929152 4601 spin_unlock(ptl);
1a5a9906 4602 return 0;
12724850 4603 }
03319327 4604
45f83cef
AA
4605 if (pmd_trans_unstable(pmd))
4606 return 0;
4ffef5fe
DN
4607 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4608 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4609 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4610 mc.precharge++; /* increment precharge temporarily */
4611 pte_unmap_unlock(pte - 1, ptl);
4612 cond_resched();
4613
7dc74be0
DN
4614 return 0;
4615}
4616
4ffef5fe
DN
4617static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4618{
4619 unsigned long precharge;
4ffef5fe 4620
26bcd64a
NH
4621 struct mm_walk mem_cgroup_count_precharge_walk = {
4622 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4623 .mm = mm,
4624 };
dfe076b0 4625 down_read(&mm->mmap_sem);
26bcd64a 4626 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4627 up_read(&mm->mmap_sem);
4ffef5fe
DN
4628
4629 precharge = mc.precharge;
4630 mc.precharge = 0;
4631
4632 return precharge;
4633}
4634
4ffef5fe
DN
4635static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4636{
dfe076b0
DN
4637 unsigned long precharge = mem_cgroup_count_precharge(mm);
4638
4639 VM_BUG_ON(mc.moving_task);
4640 mc.moving_task = current;
4641 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4642}
4643
dfe076b0
DN
4644/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4645static void __mem_cgroup_clear_mc(void)
4ffef5fe 4646{
2bd9bb20
KH
4647 struct mem_cgroup *from = mc.from;
4648 struct mem_cgroup *to = mc.to;
4649
4ffef5fe 4650 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4651 if (mc.precharge) {
00501b53 4652 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4653 mc.precharge = 0;
4654 }
4655 /*
4656 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4657 * we must uncharge here.
4658 */
4659 if (mc.moved_charge) {
00501b53 4660 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4661 mc.moved_charge = 0;
4ffef5fe 4662 }
483c30b5
DN
4663 /* we must fixup refcnts and charges */
4664 if (mc.moved_swap) {
483c30b5 4665 /* uncharge swap account from the old cgroup */
ce00a967 4666 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4667 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4668
05b84301 4669 /*
3e32cb2e
JW
4670 * we charged both to->memory and to->memsw, so we
4671 * should uncharge to->memory.
05b84301 4672 */
ce00a967 4673 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4674 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4675
e8ea14cc 4676 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4677
4050377b 4678 /* we've already done css_get(mc.to) */
483c30b5
DN
4679 mc.moved_swap = 0;
4680 }
dfe076b0
DN
4681 memcg_oom_recover(from);
4682 memcg_oom_recover(to);
4683 wake_up_all(&mc.waitq);
4684}
4685
4686static void mem_cgroup_clear_mc(void)
4687{
264a0ae1
TH
4688 struct mm_struct *mm = mc.mm;
4689
dfe076b0
DN
4690 /*
4691 * we must clear moving_task before waking up waiters at the end of
4692 * task migration.
4693 */
4694 mc.moving_task = NULL;
4695 __mem_cgroup_clear_mc();
2bd9bb20 4696 spin_lock(&mc.lock);
4ffef5fe
DN
4697 mc.from = NULL;
4698 mc.to = NULL;
264a0ae1 4699 mc.mm = NULL;
2bd9bb20 4700 spin_unlock(&mc.lock);
264a0ae1
TH
4701
4702 mmput(mm);
4ffef5fe
DN
4703}
4704
1f7dd3e5 4705static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4706{
1f7dd3e5 4707 struct cgroup_subsys_state *css;
eed67d75 4708 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4709 struct mem_cgroup *from;
4530eddb 4710 struct task_struct *leader, *p;
9f2115f9 4711 struct mm_struct *mm;
1dfab5ab 4712 unsigned long move_flags;
9f2115f9 4713 int ret = 0;
7dc74be0 4714
1f7dd3e5
TH
4715 /* charge immigration isn't supported on the default hierarchy */
4716 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4717 return 0;
4718
4530eddb
TH
4719 /*
4720 * Multi-process migrations only happen on the default hierarchy
4721 * where charge immigration is not used. Perform charge
4722 * immigration if @tset contains a leader and whine if there are
4723 * multiple.
4724 */
4725 p = NULL;
1f7dd3e5 4726 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4727 WARN_ON_ONCE(p);
4728 p = leader;
1f7dd3e5 4729 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4730 }
4731 if (!p)
4732 return 0;
4733
1f7dd3e5
TH
4734 /*
4735 * We are now commited to this value whatever it is. Changes in this
4736 * tunable will only affect upcoming migrations, not the current one.
4737 * So we need to save it, and keep it going.
4738 */
4739 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4740 if (!move_flags)
4741 return 0;
4742
9f2115f9
TH
4743 from = mem_cgroup_from_task(p);
4744
4745 VM_BUG_ON(from == memcg);
4746
4747 mm = get_task_mm(p);
4748 if (!mm)
4749 return 0;
4750 /* We move charges only when we move a owner of the mm */
4751 if (mm->owner == p) {
4752 VM_BUG_ON(mc.from);
4753 VM_BUG_ON(mc.to);
4754 VM_BUG_ON(mc.precharge);
4755 VM_BUG_ON(mc.moved_charge);
4756 VM_BUG_ON(mc.moved_swap);
4757
4758 spin_lock(&mc.lock);
264a0ae1 4759 mc.mm = mm;
9f2115f9
TH
4760 mc.from = from;
4761 mc.to = memcg;
4762 mc.flags = move_flags;
4763 spin_unlock(&mc.lock);
4764 /* We set mc.moving_task later */
4765
4766 ret = mem_cgroup_precharge_mc(mm);
4767 if (ret)
4768 mem_cgroup_clear_mc();
264a0ae1
TH
4769 } else {
4770 mmput(mm);
7dc74be0
DN
4771 }
4772 return ret;
4773}
4774
1f7dd3e5 4775static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4776{
4e2f245d
JW
4777 if (mc.to)
4778 mem_cgroup_clear_mc();
7dc74be0
DN
4779}
4780
4ffef5fe
DN
4781static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4782 unsigned long addr, unsigned long end,
4783 struct mm_walk *walk)
7dc74be0 4784{
4ffef5fe 4785 int ret = 0;
26bcd64a 4786 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4787 pte_t *pte;
4788 spinlock_t *ptl;
12724850
NH
4789 enum mc_target_type target_type;
4790 union mc_target target;
4791 struct page *page;
4ffef5fe 4792
b6ec57f4
KS
4793 ptl = pmd_trans_huge_lock(pmd, vma);
4794 if (ptl) {
62ade86a 4795 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4796 spin_unlock(ptl);
12724850
NH
4797 return 0;
4798 }
4799 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4800 if (target_type == MC_TARGET_PAGE) {
4801 page = target.page;
4802 if (!isolate_lru_page(page)) {
f627c2f5 4803 if (!mem_cgroup_move_account(page, true,
1306a85a 4804 mc.from, mc.to)) {
12724850
NH
4805 mc.precharge -= HPAGE_PMD_NR;
4806 mc.moved_charge += HPAGE_PMD_NR;
4807 }
4808 putback_lru_page(page);
4809 }
4810 put_page(page);
4811 }
bf929152 4812 spin_unlock(ptl);
1a5a9906 4813 return 0;
12724850
NH
4814 }
4815
45f83cef
AA
4816 if (pmd_trans_unstable(pmd))
4817 return 0;
4ffef5fe
DN
4818retry:
4819 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4820 for (; addr != end; addr += PAGE_SIZE) {
4821 pte_t ptent = *(pte++);
02491447 4822 swp_entry_t ent;
4ffef5fe
DN
4823
4824 if (!mc.precharge)
4825 break;
4826
8d32ff84 4827 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4828 case MC_TARGET_PAGE:
4829 page = target.page;
53f9263b
KS
4830 /*
4831 * We can have a part of the split pmd here. Moving it
4832 * can be done but it would be too convoluted so simply
4833 * ignore such a partial THP and keep it in original
4834 * memcg. There should be somebody mapping the head.
4835 */
4836 if (PageTransCompound(page))
4837 goto put;
4ffef5fe
DN
4838 if (isolate_lru_page(page))
4839 goto put;
f627c2f5
KS
4840 if (!mem_cgroup_move_account(page, false,
4841 mc.from, mc.to)) {
4ffef5fe 4842 mc.precharge--;
854ffa8d
DN
4843 /* we uncharge from mc.from later. */
4844 mc.moved_charge++;
4ffef5fe
DN
4845 }
4846 putback_lru_page(page);
8d32ff84 4847put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4848 put_page(page);
4849 break;
02491447
DN
4850 case MC_TARGET_SWAP:
4851 ent = target.ent;
e91cbb42 4852 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4853 mc.precharge--;
483c30b5
DN
4854 /* we fixup refcnts and charges later. */
4855 mc.moved_swap++;
4856 }
02491447 4857 break;
4ffef5fe
DN
4858 default:
4859 break;
4860 }
4861 }
4862 pte_unmap_unlock(pte - 1, ptl);
4863 cond_resched();
4864
4865 if (addr != end) {
4866 /*
4867 * We have consumed all precharges we got in can_attach().
4868 * We try charge one by one, but don't do any additional
4869 * charges to mc.to if we have failed in charge once in attach()
4870 * phase.
4871 */
854ffa8d 4872 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4873 if (!ret)
4874 goto retry;
4875 }
4876
4877 return ret;
4878}
4879
264a0ae1 4880static void mem_cgroup_move_charge(void)
4ffef5fe 4881{
26bcd64a
NH
4882 struct mm_walk mem_cgroup_move_charge_walk = {
4883 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4884 .mm = mc.mm,
26bcd64a 4885 };
4ffef5fe
DN
4886
4887 lru_add_drain_all();
312722cb 4888 /*
81f8c3a4
JW
4889 * Signal lock_page_memcg() to take the memcg's move_lock
4890 * while we're moving its pages to another memcg. Then wait
4891 * for already started RCU-only updates to finish.
312722cb
JW
4892 */
4893 atomic_inc(&mc.from->moving_account);
4894 synchronize_rcu();
dfe076b0 4895retry:
264a0ae1 4896 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4897 /*
4898 * Someone who are holding the mmap_sem might be waiting in
4899 * waitq. So we cancel all extra charges, wake up all waiters,
4900 * and retry. Because we cancel precharges, we might not be able
4901 * to move enough charges, but moving charge is a best-effort
4902 * feature anyway, so it wouldn't be a big problem.
4903 */
4904 __mem_cgroup_clear_mc();
4905 cond_resched();
4906 goto retry;
4907 }
26bcd64a
NH
4908 /*
4909 * When we have consumed all precharges and failed in doing
4910 * additional charge, the page walk just aborts.
4911 */
4912 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
264a0ae1 4913 up_read(&mc.mm->mmap_sem);
312722cb 4914 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4915}
4916
264a0ae1 4917static void mem_cgroup_move_task(void)
67e465a7 4918{
264a0ae1
TH
4919 if (mc.to) {
4920 mem_cgroup_move_charge();
a433658c 4921 mem_cgroup_clear_mc();
264a0ae1 4922 }
67e465a7 4923}
5cfb80a7 4924#else /* !CONFIG_MMU */
1f7dd3e5 4925static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4926{
4927 return 0;
4928}
1f7dd3e5 4929static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4930{
4931}
264a0ae1 4932static void mem_cgroup_move_task(void)
5cfb80a7
DN
4933{
4934}
4935#endif
67e465a7 4936
f00baae7
TH
4937/*
4938 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4939 * to verify whether we're attached to the default hierarchy on each mount
4940 * attempt.
f00baae7 4941 */
eb95419b 4942static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4943{
4944 /*
aa6ec29b 4945 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4946 * guarantees that @root doesn't have any children, so turning it
4947 * on for the root memcg is enough.
4948 */
9e10a130 4949 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4950 root_mem_cgroup->use_hierarchy = true;
4951 else
4952 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
4953}
4954
241994ed
JW
4955static u64 memory_current_read(struct cgroup_subsys_state *css,
4956 struct cftype *cft)
4957{
f5fc3c5d
JW
4958 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4959
4960 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
4961}
4962
4963static int memory_low_show(struct seq_file *m, void *v)
4964{
4965 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4966 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
4967
4968 if (low == PAGE_COUNTER_MAX)
d2973697 4969 seq_puts(m, "max\n");
241994ed
JW
4970 else
4971 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4972
4973 return 0;
4974}
4975
4976static ssize_t memory_low_write(struct kernfs_open_file *of,
4977 char *buf, size_t nbytes, loff_t off)
4978{
4979 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4980 unsigned long low;
4981 int err;
4982
4983 buf = strstrip(buf);
d2973697 4984 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
4985 if (err)
4986 return err;
4987
4988 memcg->low = low;
4989
4990 return nbytes;
4991}
4992
4993static int memory_high_show(struct seq_file *m, void *v)
4994{
4995 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4996 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
4997
4998 if (high == PAGE_COUNTER_MAX)
d2973697 4999 seq_puts(m, "max\n");
241994ed
JW
5000 else
5001 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5002
5003 return 0;
5004}
5005
5006static ssize_t memory_high_write(struct kernfs_open_file *of,
5007 char *buf, size_t nbytes, loff_t off)
5008{
5009 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5010 unsigned long nr_pages;
241994ed
JW
5011 unsigned long high;
5012 int err;
5013
5014 buf = strstrip(buf);
d2973697 5015 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5016 if (err)
5017 return err;
5018
5019 memcg->high = high;
5020
588083bb
JW
5021 nr_pages = page_counter_read(&memcg->memory);
5022 if (nr_pages > high)
5023 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5024 GFP_KERNEL, true);
5025
2529bb3a 5026 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5027 return nbytes;
5028}
5029
5030static int memory_max_show(struct seq_file *m, void *v)
5031{
5032 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5033 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5034
5035 if (max == PAGE_COUNTER_MAX)
d2973697 5036 seq_puts(m, "max\n");
241994ed
JW
5037 else
5038 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5039
5040 return 0;
5041}
5042
5043static ssize_t memory_max_write(struct kernfs_open_file *of,
5044 char *buf, size_t nbytes, loff_t off)
5045{
5046 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5047 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5048 bool drained = false;
241994ed
JW
5049 unsigned long max;
5050 int err;
5051
5052 buf = strstrip(buf);
d2973697 5053 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5054 if (err)
5055 return err;
5056
b6e6edcf
JW
5057 xchg(&memcg->memory.limit, max);
5058
5059 for (;;) {
5060 unsigned long nr_pages = page_counter_read(&memcg->memory);
5061
5062 if (nr_pages <= max)
5063 break;
5064
5065 if (signal_pending(current)) {
5066 err = -EINTR;
5067 break;
5068 }
5069
5070 if (!drained) {
5071 drain_all_stock(memcg);
5072 drained = true;
5073 continue;
5074 }
5075
5076 if (nr_reclaims) {
5077 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5078 GFP_KERNEL, true))
5079 nr_reclaims--;
5080 continue;
5081 }
5082
5083 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5084 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5085 break;
5086 }
241994ed 5087
2529bb3a 5088 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5089 return nbytes;
5090}
5091
5092static int memory_events_show(struct seq_file *m, void *v)
5093{
5094 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5095
5096 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5097 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5098 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5099 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5100
5101 return 0;
5102}
5103
587d9f72
JW
5104static int memory_stat_show(struct seq_file *m, void *v)
5105{
5106 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5107 unsigned long stat[MEMCG_NR_STAT];
5108 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5109 int i;
5110
5111 /*
5112 * Provide statistics on the state of the memory subsystem as
5113 * well as cumulative event counters that show past behavior.
5114 *
5115 * This list is ordered following a combination of these gradients:
5116 * 1) generic big picture -> specifics and details
5117 * 2) reflecting userspace activity -> reflecting kernel heuristics
5118 *
5119 * Current memory state:
5120 */
5121
72b54e73
VD
5122 tree_stat(memcg, stat);
5123 tree_events(memcg, events);
5124
587d9f72 5125 seq_printf(m, "anon %llu\n",
72b54e73 5126 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5127 seq_printf(m, "file %llu\n",
72b54e73 5128 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b
VD
5129 seq_printf(m, "kernel_stack %llu\n",
5130 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
27ee57c9
VD
5131 seq_printf(m, "slab %llu\n",
5132 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5133 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5134 seq_printf(m, "sock %llu\n",
72b54e73 5135 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5136
5137 seq_printf(m, "file_mapped %llu\n",
72b54e73 5138 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5139 seq_printf(m, "file_dirty %llu\n",
72b54e73 5140 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5141 seq_printf(m, "file_writeback %llu\n",
72b54e73 5142 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5143
5144 for (i = 0; i < NR_LRU_LISTS; i++) {
5145 struct mem_cgroup *mi;
5146 unsigned long val = 0;
5147
5148 for_each_mem_cgroup_tree(mi, memcg)
5149 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5150 seq_printf(m, "%s %llu\n",
5151 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5152 }
5153
27ee57c9
VD
5154 seq_printf(m, "slab_reclaimable %llu\n",
5155 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5156 seq_printf(m, "slab_unreclaimable %llu\n",
5157 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5158
587d9f72
JW
5159 /* Accumulated memory events */
5160
5161 seq_printf(m, "pgfault %lu\n",
72b54e73 5162 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5163 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5164 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5165
5166 return 0;
5167}
5168
241994ed
JW
5169static struct cftype memory_files[] = {
5170 {
5171 .name = "current",
f5fc3c5d 5172 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5173 .read_u64 = memory_current_read,
5174 },
5175 {
5176 .name = "low",
5177 .flags = CFTYPE_NOT_ON_ROOT,
5178 .seq_show = memory_low_show,
5179 .write = memory_low_write,
5180 },
5181 {
5182 .name = "high",
5183 .flags = CFTYPE_NOT_ON_ROOT,
5184 .seq_show = memory_high_show,
5185 .write = memory_high_write,
5186 },
5187 {
5188 .name = "max",
5189 .flags = CFTYPE_NOT_ON_ROOT,
5190 .seq_show = memory_max_show,
5191 .write = memory_max_write,
5192 },
5193 {
5194 .name = "events",
5195 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5196 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5197 .seq_show = memory_events_show,
5198 },
587d9f72
JW
5199 {
5200 .name = "stat",
5201 .flags = CFTYPE_NOT_ON_ROOT,
5202 .seq_show = memory_stat_show,
5203 },
241994ed
JW
5204 { } /* terminate */
5205};
5206
073219e9 5207struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5208 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5209 .css_online = mem_cgroup_css_online,
92fb9748 5210 .css_offline = mem_cgroup_css_offline,
6df38689 5211 .css_released = mem_cgroup_css_released,
92fb9748 5212 .css_free = mem_cgroup_css_free,
1ced953b 5213 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5214 .can_attach = mem_cgroup_can_attach,
5215 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5216 .post_attach = mem_cgroup_move_task,
f00baae7 5217 .bind = mem_cgroup_bind,
241994ed
JW
5218 .dfl_cftypes = memory_files,
5219 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5220 .early_init = 0,
8cdea7c0 5221};
c077719b 5222
241994ed
JW
5223/**
5224 * mem_cgroup_low - check if memory consumption is below the normal range
5225 * @root: the highest ancestor to consider
5226 * @memcg: the memory cgroup to check
5227 *
5228 * Returns %true if memory consumption of @memcg, and that of all
5229 * configurable ancestors up to @root, is below the normal range.
5230 */
5231bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5232{
5233 if (mem_cgroup_disabled())
5234 return false;
5235
5236 /*
5237 * The toplevel group doesn't have a configurable range, so
5238 * it's never low when looked at directly, and it is not
5239 * considered an ancestor when assessing the hierarchy.
5240 */
5241
5242 if (memcg == root_mem_cgroup)
5243 return false;
5244
4e54dede 5245 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5246 return false;
5247
5248 while (memcg != root) {
5249 memcg = parent_mem_cgroup(memcg);
5250
5251 if (memcg == root_mem_cgroup)
5252 break;
5253
4e54dede 5254 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5255 return false;
5256 }
5257 return true;
5258}
5259
00501b53
JW
5260/**
5261 * mem_cgroup_try_charge - try charging a page
5262 * @page: page to charge
5263 * @mm: mm context of the victim
5264 * @gfp_mask: reclaim mode
5265 * @memcgp: charged memcg return
5266 *
5267 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5268 * pages according to @gfp_mask if necessary.
5269 *
5270 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5271 * Otherwise, an error code is returned.
5272 *
5273 * After page->mapping has been set up, the caller must finalize the
5274 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5275 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5276 */
5277int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5278 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5279 bool compound)
00501b53
JW
5280{
5281 struct mem_cgroup *memcg = NULL;
f627c2f5 5282 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5283 int ret = 0;
5284
5285 if (mem_cgroup_disabled())
5286 goto out;
5287
5288 if (PageSwapCache(page)) {
00501b53
JW
5289 /*
5290 * Every swap fault against a single page tries to charge the
5291 * page, bail as early as possible. shmem_unuse() encounters
5292 * already charged pages, too. The USED bit is protected by
5293 * the page lock, which serializes swap cache removal, which
5294 * in turn serializes uncharging.
5295 */
e993d905 5296 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5297 if (page->mem_cgroup)
00501b53 5298 goto out;
e993d905 5299
37e84351 5300 if (do_swap_account) {
e993d905
VD
5301 swp_entry_t ent = { .val = page_private(page), };
5302 unsigned short id = lookup_swap_cgroup_id(ent);
5303
5304 rcu_read_lock();
5305 memcg = mem_cgroup_from_id(id);
5306 if (memcg && !css_tryget_online(&memcg->css))
5307 memcg = NULL;
5308 rcu_read_unlock();
5309 }
00501b53
JW
5310 }
5311
00501b53
JW
5312 if (!memcg)
5313 memcg = get_mem_cgroup_from_mm(mm);
5314
5315 ret = try_charge(memcg, gfp_mask, nr_pages);
5316
5317 css_put(&memcg->css);
00501b53
JW
5318out:
5319 *memcgp = memcg;
5320 return ret;
5321}
5322
5323/**
5324 * mem_cgroup_commit_charge - commit a page charge
5325 * @page: page to charge
5326 * @memcg: memcg to charge the page to
5327 * @lrucare: page might be on LRU already
5328 *
5329 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5330 * after page->mapping has been set up. This must happen atomically
5331 * as part of the page instantiation, i.e. under the page table lock
5332 * for anonymous pages, under the page lock for page and swap cache.
5333 *
5334 * In addition, the page must not be on the LRU during the commit, to
5335 * prevent racing with task migration. If it might be, use @lrucare.
5336 *
5337 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5338 */
5339void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5340 bool lrucare, bool compound)
00501b53 5341{
f627c2f5 5342 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5343
5344 VM_BUG_ON_PAGE(!page->mapping, page);
5345 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5346
5347 if (mem_cgroup_disabled())
5348 return;
5349 /*
5350 * Swap faults will attempt to charge the same page multiple
5351 * times. But reuse_swap_page() might have removed the page
5352 * from swapcache already, so we can't check PageSwapCache().
5353 */
5354 if (!memcg)
5355 return;
5356
6abb5a86
JW
5357 commit_charge(page, memcg, lrucare);
5358
6abb5a86 5359 local_irq_disable();
f627c2f5 5360 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5361 memcg_check_events(memcg, page);
5362 local_irq_enable();
00501b53 5363
7941d214 5364 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5365 swp_entry_t entry = { .val = page_private(page) };
5366 /*
5367 * The swap entry might not get freed for a long time,
5368 * let's not wait for it. The page already received a
5369 * memory+swap charge, drop the swap entry duplicate.
5370 */
5371 mem_cgroup_uncharge_swap(entry);
5372 }
5373}
5374
5375/**
5376 * mem_cgroup_cancel_charge - cancel a page charge
5377 * @page: page to charge
5378 * @memcg: memcg to charge the page to
5379 *
5380 * Cancel a charge transaction started by mem_cgroup_try_charge().
5381 */
f627c2f5
KS
5382void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5383 bool compound)
00501b53 5384{
f627c2f5 5385 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5386
5387 if (mem_cgroup_disabled())
5388 return;
5389 /*
5390 * Swap faults will attempt to charge the same page multiple
5391 * times. But reuse_swap_page() might have removed the page
5392 * from swapcache already, so we can't check PageSwapCache().
5393 */
5394 if (!memcg)
5395 return;
5396
00501b53
JW
5397 cancel_charge(memcg, nr_pages);
5398}
5399
747db954 5400static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5401 unsigned long nr_anon, unsigned long nr_file,
5402 unsigned long nr_huge, struct page *dummy_page)
5403{
18eca2e6 5404 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5405 unsigned long flags;
5406
ce00a967 5407 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5408 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5409 if (do_memsw_account())
18eca2e6 5410 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5411 memcg_oom_recover(memcg);
5412 }
747db954
JW
5413
5414 local_irq_save(flags);
5415 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5416 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5417 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5418 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5419 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5420 memcg_check_events(memcg, dummy_page);
5421 local_irq_restore(flags);
e8ea14cc
JW
5422
5423 if (!mem_cgroup_is_root(memcg))
18eca2e6 5424 css_put_many(&memcg->css, nr_pages);
747db954
JW
5425}
5426
5427static void uncharge_list(struct list_head *page_list)
5428{
5429 struct mem_cgroup *memcg = NULL;
747db954
JW
5430 unsigned long nr_anon = 0;
5431 unsigned long nr_file = 0;
5432 unsigned long nr_huge = 0;
5433 unsigned long pgpgout = 0;
747db954
JW
5434 struct list_head *next;
5435 struct page *page;
5436
8b592656
JW
5437 /*
5438 * Note that the list can be a single page->lru; hence the
5439 * do-while loop instead of a simple list_for_each_entry().
5440 */
747db954
JW
5441 next = page_list->next;
5442 do {
5443 unsigned int nr_pages = 1;
747db954
JW
5444
5445 page = list_entry(next, struct page, lru);
5446 next = page->lru.next;
5447
5448 VM_BUG_ON_PAGE(PageLRU(page), page);
5449 VM_BUG_ON_PAGE(page_count(page), page);
5450
1306a85a 5451 if (!page->mem_cgroup)
747db954
JW
5452 continue;
5453
5454 /*
5455 * Nobody should be changing or seriously looking at
1306a85a 5456 * page->mem_cgroup at this point, we have fully
29833315 5457 * exclusive access to the page.
747db954
JW
5458 */
5459
1306a85a 5460 if (memcg != page->mem_cgroup) {
747db954 5461 if (memcg) {
18eca2e6
JW
5462 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5463 nr_huge, page);
5464 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5465 }
1306a85a 5466 memcg = page->mem_cgroup;
747db954
JW
5467 }
5468
5469 if (PageTransHuge(page)) {
5470 nr_pages <<= compound_order(page);
5471 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5472 nr_huge += nr_pages;
5473 }
5474
5475 if (PageAnon(page))
5476 nr_anon += nr_pages;
5477 else
5478 nr_file += nr_pages;
5479
1306a85a 5480 page->mem_cgroup = NULL;
747db954
JW
5481
5482 pgpgout++;
5483 } while (next != page_list);
5484
5485 if (memcg)
18eca2e6
JW
5486 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5487 nr_huge, page);
747db954
JW
5488}
5489
0a31bc97
JW
5490/**
5491 * mem_cgroup_uncharge - uncharge a page
5492 * @page: page to uncharge
5493 *
5494 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5495 * mem_cgroup_commit_charge().
5496 */
5497void mem_cgroup_uncharge(struct page *page)
5498{
0a31bc97
JW
5499 if (mem_cgroup_disabled())
5500 return;
5501
747db954 5502 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5503 if (!page->mem_cgroup)
0a31bc97
JW
5504 return;
5505
747db954
JW
5506 INIT_LIST_HEAD(&page->lru);
5507 uncharge_list(&page->lru);
5508}
0a31bc97 5509
747db954
JW
5510/**
5511 * mem_cgroup_uncharge_list - uncharge a list of page
5512 * @page_list: list of pages to uncharge
5513 *
5514 * Uncharge a list of pages previously charged with
5515 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5516 */
5517void mem_cgroup_uncharge_list(struct list_head *page_list)
5518{
5519 if (mem_cgroup_disabled())
5520 return;
0a31bc97 5521
747db954
JW
5522 if (!list_empty(page_list))
5523 uncharge_list(page_list);
0a31bc97
JW
5524}
5525
5526/**
6a93ca8f
JW
5527 * mem_cgroup_migrate - charge a page's replacement
5528 * @oldpage: currently circulating page
5529 * @newpage: replacement page
0a31bc97 5530 *
6a93ca8f
JW
5531 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5532 * be uncharged upon free.
0a31bc97
JW
5533 *
5534 * Both pages must be locked, @newpage->mapping must be set up.
5535 */
6a93ca8f 5536void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5537{
29833315 5538 struct mem_cgroup *memcg;
44b7a8d3
JW
5539 unsigned int nr_pages;
5540 bool compound;
0a31bc97
JW
5541
5542 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5543 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5544 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5545 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5546 newpage);
0a31bc97
JW
5547
5548 if (mem_cgroup_disabled())
5549 return;
5550
5551 /* Page cache replacement: new page already charged? */
1306a85a 5552 if (newpage->mem_cgroup)
0a31bc97
JW
5553 return;
5554
45637bab 5555 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5556 memcg = oldpage->mem_cgroup;
29833315 5557 if (!memcg)
0a31bc97
JW
5558 return;
5559
44b7a8d3
JW
5560 /* Force-charge the new page. The old one will be freed soon */
5561 compound = PageTransHuge(newpage);
5562 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5563
5564 page_counter_charge(&memcg->memory, nr_pages);
5565 if (do_memsw_account())
5566 page_counter_charge(&memcg->memsw, nr_pages);
5567 css_get_many(&memcg->css, nr_pages);
0a31bc97 5568
9cf7666a 5569 commit_charge(newpage, memcg, false);
44b7a8d3
JW
5570
5571 local_irq_disable();
5572 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5573 memcg_check_events(memcg, newpage);
5574 local_irq_enable();
0a31bc97
JW
5575}
5576
ef12947c 5577DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5578EXPORT_SYMBOL(memcg_sockets_enabled_key);
5579
5580void sock_update_memcg(struct sock *sk)
5581{
5582 struct mem_cgroup *memcg;
5583
5584 /* Socket cloning can throw us here with sk_cgrp already
5585 * filled. It won't however, necessarily happen from
5586 * process context. So the test for root memcg given
5587 * the current task's memcg won't help us in this case.
5588 *
5589 * Respecting the original socket's memcg is a better
5590 * decision in this case.
5591 */
5592 if (sk->sk_memcg) {
5593 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5594 css_get(&sk->sk_memcg->css);
5595 return;
5596 }
5597
5598 rcu_read_lock();
5599 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5600 if (memcg == root_mem_cgroup)
5601 goto out;
0db15298 5602 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5603 goto out;
f7e1cb6e 5604 if (css_tryget_online(&memcg->css))
11092087 5605 sk->sk_memcg = memcg;
f7e1cb6e 5606out:
11092087
JW
5607 rcu_read_unlock();
5608}
5609EXPORT_SYMBOL(sock_update_memcg);
5610
5611void sock_release_memcg(struct sock *sk)
5612{
5613 WARN_ON(!sk->sk_memcg);
5614 css_put(&sk->sk_memcg->css);
5615}
5616
5617/**
5618 * mem_cgroup_charge_skmem - charge socket memory
5619 * @memcg: memcg to charge
5620 * @nr_pages: number of pages to charge
5621 *
5622 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5623 * @memcg's configured limit, %false if the charge had to be forced.
5624 */
5625bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5626{
f7e1cb6e 5627 gfp_t gfp_mask = GFP_KERNEL;
11092087 5628
f7e1cb6e 5629 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5630 struct page_counter *fail;
f7e1cb6e 5631
0db15298
JW
5632 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5633 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5634 return true;
5635 }
0db15298
JW
5636 page_counter_charge(&memcg->tcpmem, nr_pages);
5637 memcg->tcpmem_pressure = 1;
f7e1cb6e 5638 return false;
11092087 5639 }
d886f4e4 5640
f7e1cb6e
JW
5641 /* Don't block in the packet receive path */
5642 if (in_softirq())
5643 gfp_mask = GFP_NOWAIT;
5644
b2807f07
JW
5645 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5646
f7e1cb6e
JW
5647 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5648 return true;
5649
5650 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5651 return false;
5652}
5653
5654/**
5655 * mem_cgroup_uncharge_skmem - uncharge socket memory
5656 * @memcg - memcg to uncharge
5657 * @nr_pages - number of pages to uncharge
5658 */
5659void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5660{
f7e1cb6e 5661 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5662 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5663 return;
5664 }
d886f4e4 5665
b2807f07
JW
5666 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5667
f7e1cb6e
JW
5668 page_counter_uncharge(&memcg->memory, nr_pages);
5669 css_put_many(&memcg->css, nr_pages);
11092087
JW
5670}
5671
f7e1cb6e
JW
5672static int __init cgroup_memory(char *s)
5673{
5674 char *token;
5675
5676 while ((token = strsep(&s, ",")) != NULL) {
5677 if (!*token)
5678 continue;
5679 if (!strcmp(token, "nosocket"))
5680 cgroup_memory_nosocket = true;
04823c83
VD
5681 if (!strcmp(token, "nokmem"))
5682 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5683 }
5684 return 0;
5685}
5686__setup("cgroup.memory=", cgroup_memory);
11092087 5687
2d11085e 5688/*
1081312f
MH
5689 * subsys_initcall() for memory controller.
5690 *
5691 * Some parts like hotcpu_notifier() have to be initialized from this context
5692 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5693 * everything that doesn't depend on a specific mem_cgroup structure should
5694 * be initialized from here.
2d11085e
MH
5695 */
5696static int __init mem_cgroup_init(void)
5697{
95a045f6
JW
5698 int cpu, node;
5699
2d11085e 5700 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5701
5702 for_each_possible_cpu(cpu)
5703 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5704 drain_local_stock);
5705
5706 for_each_node(node) {
5707 struct mem_cgroup_tree_per_node *rtpn;
5708 int zone;
5709
5710 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5711 node_online(node) ? node : NUMA_NO_NODE);
5712
5713 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5714 struct mem_cgroup_tree_per_zone *rtpz;
5715
5716 rtpz = &rtpn->rb_tree_per_zone[zone];
5717 rtpz->rb_root = RB_ROOT;
5718 spin_lock_init(&rtpz->lock);
5719 }
5720 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5721 }
5722
2d11085e
MH
5723 return 0;
5724}
5725subsys_initcall(mem_cgroup_init);
21afa38e
JW
5726
5727#ifdef CONFIG_MEMCG_SWAP
5728/**
5729 * mem_cgroup_swapout - transfer a memsw charge to swap
5730 * @page: page whose memsw charge to transfer
5731 * @entry: swap entry to move the charge to
5732 *
5733 * Transfer the memsw charge of @page to @entry.
5734 */
5735void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5736{
5737 struct mem_cgroup *memcg;
5738 unsigned short oldid;
5739
5740 VM_BUG_ON_PAGE(PageLRU(page), page);
5741 VM_BUG_ON_PAGE(page_count(page), page);
5742
7941d214 5743 if (!do_memsw_account())
21afa38e
JW
5744 return;
5745
5746 memcg = page->mem_cgroup;
5747
5748 /* Readahead page, never charged */
5749 if (!memcg)
5750 return;
5751
5752 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5753 VM_BUG_ON_PAGE(oldid, page);
5754 mem_cgroup_swap_statistics(memcg, true);
5755
5756 page->mem_cgroup = NULL;
5757
5758 if (!mem_cgroup_is_root(memcg))
5759 page_counter_uncharge(&memcg->memory, 1);
5760
ce9ce665
SAS
5761 /*
5762 * Interrupts should be disabled here because the caller holds the
5763 * mapping->tree_lock lock which is taken with interrupts-off. It is
5764 * important here to have the interrupts disabled because it is the
5765 * only synchronisation we have for udpating the per-CPU variables.
5766 */
5767 VM_BUG_ON(!irqs_disabled());
f627c2f5 5768 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5769 memcg_check_events(memcg, page);
5770}
5771
37e84351
VD
5772/*
5773 * mem_cgroup_try_charge_swap - try charging a swap entry
5774 * @page: page being added to swap
5775 * @entry: swap entry to charge
5776 *
5777 * Try to charge @entry to the memcg that @page belongs to.
5778 *
5779 * Returns 0 on success, -ENOMEM on failure.
5780 */
5781int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5782{
5783 struct mem_cgroup *memcg;
5784 struct page_counter *counter;
5785 unsigned short oldid;
5786
5787 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5788 return 0;
5789
5790 memcg = page->mem_cgroup;
5791
5792 /* Readahead page, never charged */
5793 if (!memcg)
5794 return 0;
5795
5796 if (!mem_cgroup_is_root(memcg) &&
5797 !page_counter_try_charge(&memcg->swap, 1, &counter))
5798 return -ENOMEM;
5799
5800 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5801 VM_BUG_ON_PAGE(oldid, page);
5802 mem_cgroup_swap_statistics(memcg, true);
5803
5804 css_get(&memcg->css);
5805 return 0;
5806}
5807
21afa38e
JW
5808/**
5809 * mem_cgroup_uncharge_swap - uncharge a swap entry
5810 * @entry: swap entry to uncharge
5811 *
37e84351 5812 * Drop the swap charge associated with @entry.
21afa38e
JW
5813 */
5814void mem_cgroup_uncharge_swap(swp_entry_t entry)
5815{
5816 struct mem_cgroup *memcg;
5817 unsigned short id;
5818
37e84351 5819 if (!do_swap_account)
21afa38e
JW
5820 return;
5821
5822 id = swap_cgroup_record(entry, 0);
5823 rcu_read_lock();
adbe427b 5824 memcg = mem_cgroup_from_id(id);
21afa38e 5825 if (memcg) {
37e84351
VD
5826 if (!mem_cgroup_is_root(memcg)) {
5827 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5828 page_counter_uncharge(&memcg->swap, 1);
5829 else
5830 page_counter_uncharge(&memcg->memsw, 1);
5831 }
21afa38e
JW
5832 mem_cgroup_swap_statistics(memcg, false);
5833 css_put(&memcg->css);
5834 }
5835 rcu_read_unlock();
5836}
5837
d8b38438
VD
5838long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5839{
5840 long nr_swap_pages = get_nr_swap_pages();
5841
5842 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843 return nr_swap_pages;
5844 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5845 nr_swap_pages = min_t(long, nr_swap_pages,
5846 READ_ONCE(memcg->swap.limit) -
5847 page_counter_read(&memcg->swap));
5848 return nr_swap_pages;
5849}
5850
5ccc5aba
VD
5851bool mem_cgroup_swap_full(struct page *page)
5852{
5853 struct mem_cgroup *memcg;
5854
5855 VM_BUG_ON_PAGE(!PageLocked(page), page);
5856
5857 if (vm_swap_full())
5858 return true;
5859 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5860 return false;
5861
5862 memcg = page->mem_cgroup;
5863 if (!memcg)
5864 return false;
5865
5866 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5867 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5868 return true;
5869
5870 return false;
5871}
5872
21afa38e
JW
5873/* for remember boot option*/
5874#ifdef CONFIG_MEMCG_SWAP_ENABLED
5875static int really_do_swap_account __initdata = 1;
5876#else
5877static int really_do_swap_account __initdata;
5878#endif
5879
5880static int __init enable_swap_account(char *s)
5881{
5882 if (!strcmp(s, "1"))
5883 really_do_swap_account = 1;
5884 else if (!strcmp(s, "0"))
5885 really_do_swap_account = 0;
5886 return 1;
5887}
5888__setup("swapaccount=", enable_swap_account);
5889
37e84351
VD
5890static u64 swap_current_read(struct cgroup_subsys_state *css,
5891 struct cftype *cft)
5892{
5893 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5894
5895 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5896}
5897
5898static int swap_max_show(struct seq_file *m, void *v)
5899{
5900 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5901 unsigned long max = READ_ONCE(memcg->swap.limit);
5902
5903 if (max == PAGE_COUNTER_MAX)
5904 seq_puts(m, "max\n");
5905 else
5906 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5907
5908 return 0;
5909}
5910
5911static ssize_t swap_max_write(struct kernfs_open_file *of,
5912 char *buf, size_t nbytes, loff_t off)
5913{
5914 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5915 unsigned long max;
5916 int err;
5917
5918 buf = strstrip(buf);
5919 err = page_counter_memparse(buf, "max", &max);
5920 if (err)
5921 return err;
5922
5923 mutex_lock(&memcg_limit_mutex);
5924 err = page_counter_limit(&memcg->swap, max);
5925 mutex_unlock(&memcg_limit_mutex);
5926 if (err)
5927 return err;
5928
5929 return nbytes;
5930}
5931
5932static struct cftype swap_files[] = {
5933 {
5934 .name = "swap.current",
5935 .flags = CFTYPE_NOT_ON_ROOT,
5936 .read_u64 = swap_current_read,
5937 },
5938 {
5939 .name = "swap.max",
5940 .flags = CFTYPE_NOT_ON_ROOT,
5941 .seq_show = swap_max_show,
5942 .write = swap_max_write,
5943 },
5944 { } /* terminate */
5945};
5946
21afa38e
JW
5947static struct cftype memsw_cgroup_files[] = {
5948 {
5949 .name = "memsw.usage_in_bytes",
5950 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5951 .read_u64 = mem_cgroup_read_u64,
5952 },
5953 {
5954 .name = "memsw.max_usage_in_bytes",
5955 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5956 .write = mem_cgroup_reset,
5957 .read_u64 = mem_cgroup_read_u64,
5958 },
5959 {
5960 .name = "memsw.limit_in_bytes",
5961 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5962 .write = mem_cgroup_write,
5963 .read_u64 = mem_cgroup_read_u64,
5964 },
5965 {
5966 .name = "memsw.failcnt",
5967 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5968 .write = mem_cgroup_reset,
5969 .read_u64 = mem_cgroup_read_u64,
5970 },
5971 { }, /* terminate */
5972};
5973
5974static int __init mem_cgroup_swap_init(void)
5975{
5976 if (!mem_cgroup_disabled() && really_do_swap_account) {
5977 do_swap_account = 1;
37e84351
VD
5978 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5979 swap_files));
21afa38e
JW
5980 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5981 memsw_cgroup_files));
5982 }
5983 return 0;
5984}
5985subsys_initcall(mem_cgroup_swap_init);
5986
5987#endif /* CONFIG_MEMCG_SWAP */