mm: memcontrol: continue cache reclaim from offlined groups
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
3812c8c8 303 atomic_t oom_wakeups;
79dfdacc 304
1f4c025b 305 int swappiness;
3c11ecf4
KH
306 /* OOM-Killer disable */
307 int oom_kill_disable;
a7885eb8 308
2e72b634
KS
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds thresholds;
907860ed 314
2e72b634 315 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 316 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 317
9490ff27
KH
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
185efc0f 320
7dc74be0
DN
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
f894ffa8 325 unsigned long move_charge_at_immigrate;
619d094b
KH
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
312734c0
KH
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
d52aa412 332 /*
c62b1a3b 333 * percpu counter.
d52aa412 334 */
3a7951b4 335 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
d1a4c0b3 342
4bd2c1ee 343#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 344 struct cg_proto tcp_mem;
d1a4c0b3 345#endif
2633d7a0 346#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
2633d7a0 349 struct list_head memcg_slab_caches;
2633d7a0
GC
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352#endif
45cf7ebd
GC
353
354 int last_scanned_node;
355#if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359#endif
70ddf637 360
fba94807
TH
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
510fc4e1
GC
369/* internal only representation about the status of kmem accounting. */
370enum {
6de64beb 371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
510fc4e1
GC
372};
373
510fc4e1
GC
374#ifdef CONFIG_MEMCG_KMEM
375static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376{
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378}
7de37682
GC
379
380static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381{
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383}
384
510fc4e1
GC
385#endif
386
7dc74be0
DN
387/* Stuffs for move charges at task migration. */
388/*
ee5e8472
GC
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
391 */
392enum move_type {
4ffef5fe 393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
395 NR_MOVE_TYPE,
396};
397
4ffef5fe
DN
398/* "mc" and its members are protected by cgroup_mutex */
399static struct move_charge_struct {
b1dd693e 400 spinlock_t lock; /* for from, to */
4ffef5fe
DN
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
ee5e8472 403 unsigned long immigrate_flags;
4ffef5fe 404 unsigned long precharge;
854ffa8d 405 unsigned long moved_charge;
483c30b5 406 unsigned long moved_swap;
8033b97c
DN
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409} mc = {
2bd9bb20 410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412};
4ffef5fe 413
90254a65
DN
414static bool move_anon(void)
415{
ee5e8472 416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
417}
418
87946a72
DN
419static bool move_file(void)
420{
ee5e8472 421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
422}
423
4e416953
BS
424/*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
a0db00fc 428#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 429#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 430
217bc319
KH
431enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 433 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
436 NR_CHARGE_TYPE,
437};
438
8c7c6e34 439/* for encoding cft->private value on file */
86ae53e1
GC
440enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
510fc4e1 444 _KMEM,
86ae53e1
GC
445};
446
a0db00fc
KS
447#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 449#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
450/* Used for OOM nofiier */
451#define OOM_CONTROL (0)
8c7c6e34 452
0999821b
GC
453/*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458static DEFINE_MUTEX(memcg_create_mutex);
459
b2145145
WL
460struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461{
a7c6d554 462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
463}
464
70ddf637
AV
465/* Some nice accessors for the vmpressure. */
466struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467{
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471}
472
473struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474{
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476}
477
7ffc0edc
MH
478static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479{
480 return (memcg == root_mem_cgroup);
481}
482
4219b2da
LZ
483/*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487#define MEM_CGROUP_ID_MAX USHRT_MAX
488
34c00c31
LZ
489static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490{
15a4c835 491 return memcg->css.id;
34c00c31
LZ
492}
493
494static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495{
496 struct cgroup_subsys_state *css;
497
7d699ddb 498 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
499 return mem_cgroup_from_css(css);
500}
501
e1aab161 502/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 503#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 504
e1aab161
GC
505void sock_update_memcg(struct sock *sk)
506{
376be5ff 507 if (mem_cgroup_sockets_enabled) {
e1aab161 508 struct mem_cgroup *memcg;
3f134619 509 struct cg_proto *cg_proto;
e1aab161
GC
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
f3f511e1
GC
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 523 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
524 return;
525 }
526
e1aab161
GC
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
3f134619 529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 530 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
3f134619 533 sk->sk_cgrp = cg_proto;
e1aab161
GC
534 }
535 rcu_read_unlock();
536 }
537}
538EXPORT_SYMBOL(sock_update_memcg);
539
540void sock_release_memcg(struct sock *sk)
541{
376be5ff 542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
5347e5ae 546 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
547 }
548}
d1a4c0b3
GC
549
550struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551{
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
2e685cad 555 return &memcg->tcp_mem;
d1a4c0b3
GC
556}
557EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 558
3f134619
GC
559static void disarm_sock_keys(struct mem_cgroup *memcg)
560{
2e685cad 561 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564}
565#else
566static void disarm_sock_keys(struct mem_cgroup *memcg)
567{
568}
569#endif
570
a8964b9b 571#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
572/*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
55007d84
GC
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
585int memcg_limited_groups_array_size;
586
55007d84
GC
587/*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
b8627835 593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
597 * increase ours as well if it increases.
598 */
599#define MEMCG_CACHES_MIN_SIZE 4
b8627835 600#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 601
d7f25f8a
GC
602/*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
a8964b9b 608struct static_key memcg_kmem_enabled_key;
d7f25f8a 609EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 610
f3bb3043
VD
611static void memcg_free_cache_id(int id);
612
a8964b9b
GC
613static void disarm_kmem_keys(struct mem_cgroup *memcg)
614{
55007d84 615 if (memcg_kmem_is_active(memcg)) {
a8964b9b 616 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 617 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 618 }
bea207c8
GC
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
3e32cb2e 623 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
624}
625#else
626static void disarm_kmem_keys(struct mem_cgroup *memcg)
627{
628}
629#endif /* CONFIG_MEMCG_KMEM */
630
631static void disarm_static_keys(struct mem_cgroup *memcg)
632{
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635}
636
c0ff4b85 637static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 638
f64c3f54 639static struct mem_cgroup_per_zone *
e231875b 640mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 641{
e231875b
JZ
642 int nid = zone_to_nid(zone);
643 int zid = zone_idx(zone);
644
54f72fe0 645 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
646}
647
c0ff4b85 648struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 649{
c0ff4b85 650 return &memcg->css;
d324236b
WF
651}
652
f64c3f54 653static struct mem_cgroup_per_zone *
e231875b 654mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 655{
97a6c37b
JW
656 int nid = page_to_nid(page);
657 int zid = page_zonenum(page);
f64c3f54 658
e231875b 659 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
660}
661
bb4cc1a8
AM
662static struct mem_cgroup_tree_per_zone *
663soft_limit_tree_node_zone(int nid, int zid)
664{
665 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
666}
667
668static struct mem_cgroup_tree_per_zone *
669soft_limit_tree_from_page(struct page *page)
670{
671 int nid = page_to_nid(page);
672 int zid = page_zonenum(page);
673
674 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
675}
676
cf2c8127
JW
677static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
678 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 679 unsigned long new_usage_in_excess)
bb4cc1a8
AM
680{
681 struct rb_node **p = &mctz->rb_root.rb_node;
682 struct rb_node *parent = NULL;
683 struct mem_cgroup_per_zone *mz_node;
684
685 if (mz->on_tree)
686 return;
687
688 mz->usage_in_excess = new_usage_in_excess;
689 if (!mz->usage_in_excess)
690 return;
691 while (*p) {
692 parent = *p;
693 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
694 tree_node);
695 if (mz->usage_in_excess < mz_node->usage_in_excess)
696 p = &(*p)->rb_left;
697 /*
698 * We can't avoid mem cgroups that are over their soft
699 * limit by the same amount
700 */
701 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
702 p = &(*p)->rb_right;
703 }
704 rb_link_node(&mz->tree_node, parent, p);
705 rb_insert_color(&mz->tree_node, &mctz->rb_root);
706 mz->on_tree = true;
707}
708
cf2c8127
JW
709static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
710 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
711{
712 if (!mz->on_tree)
713 return;
714 rb_erase(&mz->tree_node, &mctz->rb_root);
715 mz->on_tree = false;
716}
717
cf2c8127
JW
718static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
719 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 720{
0a31bc97
JW
721 unsigned long flags;
722
723 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 724 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 725 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
726}
727
3e32cb2e
JW
728static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
729{
730 unsigned long nr_pages = page_counter_read(&memcg->memory);
731 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
732 unsigned long excess = 0;
733
734 if (nr_pages > soft_limit)
735 excess = nr_pages - soft_limit;
736
737 return excess;
738}
bb4cc1a8
AM
739
740static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
741{
3e32cb2e 742 unsigned long excess;
bb4cc1a8
AM
743 struct mem_cgroup_per_zone *mz;
744 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 745
e231875b 746 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
747 /*
748 * Necessary to update all ancestors when hierarchy is used.
749 * because their event counter is not touched.
750 */
751 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 752 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 753 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
754 /*
755 * We have to update the tree if mz is on RB-tree or
756 * mem is over its softlimit.
757 */
758 if (excess || mz->on_tree) {
0a31bc97
JW
759 unsigned long flags;
760
761 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
762 /* if on-tree, remove it */
763 if (mz->on_tree)
cf2c8127 764 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
765 /*
766 * Insert again. mz->usage_in_excess will be updated.
767 * If excess is 0, no tree ops.
768 */
cf2c8127 769 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 770 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
771 }
772 }
773}
774
775static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
776{
bb4cc1a8 777 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
778 struct mem_cgroup_per_zone *mz;
779 int nid, zid;
bb4cc1a8 780
e231875b
JZ
781 for_each_node(nid) {
782 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
783 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
784 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 785 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
786 }
787 }
788}
789
790static struct mem_cgroup_per_zone *
791__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
792{
793 struct rb_node *rightmost = NULL;
794 struct mem_cgroup_per_zone *mz;
795
796retry:
797 mz = NULL;
798 rightmost = rb_last(&mctz->rb_root);
799 if (!rightmost)
800 goto done; /* Nothing to reclaim from */
801
802 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
803 /*
804 * Remove the node now but someone else can add it back,
805 * we will to add it back at the end of reclaim to its correct
806 * position in the tree.
807 */
cf2c8127 808 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 809 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 810 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
811 goto retry;
812done:
813 return mz;
814}
815
816static struct mem_cgroup_per_zone *
817mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
818{
819 struct mem_cgroup_per_zone *mz;
820
0a31bc97 821 spin_lock_irq(&mctz->lock);
bb4cc1a8 822 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 823 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
824 return mz;
825}
826
711d3d2c
KH
827/*
828 * Implementation Note: reading percpu statistics for memcg.
829 *
830 * Both of vmstat[] and percpu_counter has threshold and do periodic
831 * synchronization to implement "quick" read. There are trade-off between
832 * reading cost and precision of value. Then, we may have a chance to implement
833 * a periodic synchronizion of counter in memcg's counter.
834 *
835 * But this _read() function is used for user interface now. The user accounts
836 * memory usage by memory cgroup and he _always_ requires exact value because
837 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
838 * have to visit all online cpus and make sum. So, for now, unnecessary
839 * synchronization is not implemented. (just implemented for cpu hotplug)
840 *
841 * If there are kernel internal actions which can make use of some not-exact
842 * value, and reading all cpu value can be performance bottleneck in some
843 * common workload, threashold and synchonization as vmstat[] should be
844 * implemented.
845 */
c0ff4b85 846static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 847 enum mem_cgroup_stat_index idx)
c62b1a3b 848{
7a159cc9 849 long val = 0;
c62b1a3b 850 int cpu;
c62b1a3b 851
711d3d2c
KH
852 get_online_cpus();
853 for_each_online_cpu(cpu)
c0ff4b85 854 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 855#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
856 spin_lock(&memcg->pcp_counter_lock);
857 val += memcg->nocpu_base.count[idx];
858 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
859#endif
860 put_online_cpus();
c62b1a3b
KH
861 return val;
862}
863
c0ff4b85 864static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
865 enum mem_cgroup_events_index idx)
866{
867 unsigned long val = 0;
868 int cpu;
869
9c567512 870 get_online_cpus();
e9f8974f 871 for_each_online_cpu(cpu)
c0ff4b85 872 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 873#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
874 spin_lock(&memcg->pcp_counter_lock);
875 val += memcg->nocpu_base.events[idx];
876 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 877#endif
9c567512 878 put_online_cpus();
e9f8974f
JW
879 return val;
880}
881
c0ff4b85 882static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 883 struct page *page,
0a31bc97 884 int nr_pages)
d52aa412 885{
b2402857
KH
886 /*
887 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
888 * counted as CACHE even if it's on ANON LRU.
889 */
0a31bc97 890 if (PageAnon(page))
b2402857 891 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 892 nr_pages);
d52aa412 893 else
b2402857 894 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 895 nr_pages);
55e462b0 896
b070e65c
DR
897 if (PageTransHuge(page))
898 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
899 nr_pages);
900
e401f176
KH
901 /* pagein of a big page is an event. So, ignore page size */
902 if (nr_pages > 0)
c0ff4b85 903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 904 else {
c0ff4b85 905 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
906 nr_pages = -nr_pages; /* for event */
907 }
e401f176 908
13114716 909 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
910}
911
e231875b 912unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
913{
914 struct mem_cgroup_per_zone *mz;
915
916 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
917 return mz->lru_size[lru];
918}
919
e231875b
JZ
920static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
921 int nid,
922 unsigned int lru_mask)
bb2a0de9 923{
e231875b 924 unsigned long nr = 0;
889976db
YH
925 int zid;
926
e231875b 927 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 928
e231875b
JZ
929 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
930 struct mem_cgroup_per_zone *mz;
931 enum lru_list lru;
932
933 for_each_lru(lru) {
934 if (!(BIT(lru) & lru_mask))
935 continue;
936 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
937 nr += mz->lru_size[lru];
938 }
939 }
940 return nr;
889976db 941}
bb2a0de9 942
c0ff4b85 943static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 944 unsigned int lru_mask)
6d12e2d8 945{
e231875b 946 unsigned long nr = 0;
889976db 947 int nid;
6d12e2d8 948
31aaea4a 949 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
950 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
951 return nr;
d52aa412
KH
952}
953
f53d7ce3
JW
954static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
955 enum mem_cgroup_events_target target)
7a159cc9
JW
956{
957 unsigned long val, next;
958
13114716 959 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 960 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 961 /* from time_after() in jiffies.h */
f53d7ce3
JW
962 if ((long)next - (long)val < 0) {
963 switch (target) {
964 case MEM_CGROUP_TARGET_THRESH:
965 next = val + THRESHOLDS_EVENTS_TARGET;
966 break;
bb4cc1a8
AM
967 case MEM_CGROUP_TARGET_SOFTLIMIT:
968 next = val + SOFTLIMIT_EVENTS_TARGET;
969 break;
f53d7ce3
JW
970 case MEM_CGROUP_TARGET_NUMAINFO:
971 next = val + NUMAINFO_EVENTS_TARGET;
972 break;
973 default:
974 break;
975 }
976 __this_cpu_write(memcg->stat->targets[target], next);
977 return true;
7a159cc9 978 }
f53d7ce3 979 return false;
d2265e6f
KH
980}
981
982/*
983 * Check events in order.
984 *
985 */
c0ff4b85 986static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
987{
988 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
989 if (unlikely(mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 991 bool do_softlimit;
82b3f2a7 992 bool do_numainfo __maybe_unused;
f53d7ce3 993
bb4cc1a8
AM
994 do_softlimit = mem_cgroup_event_ratelimit(memcg,
995 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
996#if MAX_NUMNODES > 1
997 do_numainfo = mem_cgroup_event_ratelimit(memcg,
998 MEM_CGROUP_TARGET_NUMAINFO);
999#endif
c0ff4b85 1000 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1001 if (unlikely(do_softlimit))
1002 mem_cgroup_update_tree(memcg, page);
453a9bf3 1003#if MAX_NUMNODES > 1
f53d7ce3 1004 if (unlikely(do_numainfo))
c0ff4b85 1005 atomic_inc(&memcg->numainfo_events);
453a9bf3 1006#endif
0a31bc97 1007 }
d2265e6f
KH
1008}
1009
cf475ad2 1010struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1011{
31a78f23
BS
1012 /*
1013 * mm_update_next_owner() may clear mm->owner to NULL
1014 * if it races with swapoff, page migration, etc.
1015 * So this can be called with p == NULL.
1016 */
1017 if (unlikely(!p))
1018 return NULL;
1019
073219e9 1020 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1021}
1022
df381975 1023static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1024{
c0ff4b85 1025 struct mem_cgroup *memcg = NULL;
0b7f569e 1026
54595fe2
KH
1027 rcu_read_lock();
1028 do {
6f6acb00
MH
1029 /*
1030 * Page cache insertions can happen withou an
1031 * actual mm context, e.g. during disk probing
1032 * on boot, loopback IO, acct() writes etc.
1033 */
1034 if (unlikely(!mm))
df381975 1035 memcg = root_mem_cgroup;
6f6acb00
MH
1036 else {
1037 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1038 if (unlikely(!memcg))
1039 memcg = root_mem_cgroup;
1040 }
ec903c0c 1041 } while (!css_tryget_online(&memcg->css));
54595fe2 1042 rcu_read_unlock();
c0ff4b85 1043 return memcg;
54595fe2
KH
1044}
1045
5660048c
JW
1046/**
1047 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1048 * @root: hierarchy root
1049 * @prev: previously returned memcg, NULL on first invocation
1050 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1051 *
1052 * Returns references to children of the hierarchy below @root, or
1053 * @root itself, or %NULL after a full round-trip.
1054 *
1055 * Caller must pass the return value in @prev on subsequent
1056 * invocations for reference counting, or use mem_cgroup_iter_break()
1057 * to cancel a hierarchy walk before the round-trip is complete.
1058 *
1059 * Reclaimers can specify a zone and a priority level in @reclaim to
1060 * divide up the memcgs in the hierarchy among all concurrent
1061 * reclaimers operating on the same zone and priority.
1062 */
694fbc0f 1063struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1064 struct mem_cgroup *prev,
694fbc0f 1065 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1066{
5ac8fb31
JW
1067 struct reclaim_iter *uninitialized_var(iter);
1068 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1069 struct mem_cgroup *memcg = NULL;
5ac8fb31 1070 struct mem_cgroup *pos = NULL;
711d3d2c 1071
694fbc0f
AM
1072 if (mem_cgroup_disabled())
1073 return NULL;
5660048c 1074
9f3a0d09
JW
1075 if (!root)
1076 root = root_mem_cgroup;
7d74b06f 1077
9f3a0d09 1078 if (prev && !reclaim)
5ac8fb31 1079 pos = prev;
14067bb3 1080
9f3a0d09
JW
1081 if (!root->use_hierarchy && root != root_mem_cgroup) {
1082 if (prev)
5ac8fb31 1083 goto out;
694fbc0f 1084 return root;
9f3a0d09 1085 }
14067bb3 1086
542f85f9 1087 rcu_read_lock();
5f578161 1088
5ac8fb31
JW
1089 if (reclaim) {
1090 struct mem_cgroup_per_zone *mz;
1091
1092 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1093 iter = &mz->iter[reclaim->priority];
1094
1095 if (prev && reclaim->generation != iter->generation)
1096 goto out_unlock;
1097
1098 do {
1099 pos = ACCESS_ONCE(iter->position);
1100 /*
1101 * A racing update may change the position and
1102 * put the last reference, hence css_tryget(),
1103 * or retry to see the updated position.
1104 */
1105 } while (pos && !css_tryget(&pos->css));
1106 }
1107
1108 if (pos)
1109 css = &pos->css;
1110
1111 for (;;) {
1112 css = css_next_descendant_pre(css, &root->css);
1113 if (!css) {
1114 /*
1115 * Reclaimers share the hierarchy walk, and a
1116 * new one might jump in right at the end of
1117 * the hierarchy - make sure they see at least
1118 * one group and restart from the beginning.
1119 */
1120 if (!prev)
1121 continue;
1122 break;
527a5ec9 1123 }
7d74b06f 1124
5ac8fb31
JW
1125 /*
1126 * Verify the css and acquire a reference. The root
1127 * is provided by the caller, so we know it's alive
1128 * and kicking, and don't take an extra reference.
1129 */
1130 memcg = mem_cgroup_from_css(css);
14067bb3 1131
5ac8fb31
JW
1132 if (css == &root->css)
1133 break;
542f85f9 1134
b2052564 1135 if (css_tryget(css)) {
5ac8fb31
JW
1136 /*
1137 * Make sure the memcg is initialized:
1138 * mem_cgroup_css_online() orders the the
1139 * initialization against setting the flag.
1140 */
1141 if (smp_load_acquire(&memcg->initialized))
1142 break;
1143
1144 css_put(css);
527a5ec9 1145 }
9f3a0d09 1146
5ac8fb31
JW
1147 memcg = NULL;
1148 }
1149
1150 if (reclaim) {
1151 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1152 if (memcg)
1153 css_get(&memcg->css);
1154 if (pos)
1155 css_put(&pos->css);
1156 }
1157
1158 /*
1159 * pairs with css_tryget when dereferencing iter->position
1160 * above.
1161 */
1162 if (pos)
1163 css_put(&pos->css);
1164
1165 if (!memcg)
1166 iter->generation++;
1167 else if (!prev)
1168 reclaim->generation = iter->generation;
9f3a0d09 1169 }
5ac8fb31 1170
542f85f9
MH
1171out_unlock:
1172 rcu_read_unlock();
5ac8fb31 1173out:
c40046f3
MH
1174 if (prev && prev != root)
1175 css_put(&prev->css);
1176
9f3a0d09 1177 return memcg;
14067bb3 1178}
7d74b06f 1179
5660048c
JW
1180/**
1181 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1182 * @root: hierarchy root
1183 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1184 */
1185void mem_cgroup_iter_break(struct mem_cgroup *root,
1186 struct mem_cgroup *prev)
9f3a0d09
JW
1187{
1188 if (!root)
1189 root = root_mem_cgroup;
1190 if (prev && prev != root)
1191 css_put(&prev->css);
1192}
7d74b06f 1193
9f3a0d09
JW
1194/*
1195 * Iteration constructs for visiting all cgroups (under a tree). If
1196 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1197 * be used for reference counting.
1198 */
1199#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1200 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1201 iter != NULL; \
527a5ec9 1202 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1203
9f3a0d09 1204#define for_each_mem_cgroup(iter) \
527a5ec9 1205 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1206 iter != NULL; \
527a5ec9 1207 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1208
68ae564b 1209void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1210{
c0ff4b85 1211 struct mem_cgroup *memcg;
456f998e 1212
456f998e 1213 rcu_read_lock();
c0ff4b85
R
1214 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1215 if (unlikely(!memcg))
456f998e
YH
1216 goto out;
1217
1218 switch (idx) {
456f998e 1219 case PGFAULT:
0e574a93
JW
1220 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1221 break;
1222 case PGMAJFAULT:
1223 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1224 break;
1225 default:
1226 BUG();
1227 }
1228out:
1229 rcu_read_unlock();
1230}
68ae564b 1231EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1232
925b7673
JW
1233/**
1234 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1235 * @zone: zone of the wanted lruvec
fa9add64 1236 * @memcg: memcg of the wanted lruvec
925b7673
JW
1237 *
1238 * Returns the lru list vector holding pages for the given @zone and
1239 * @mem. This can be the global zone lruvec, if the memory controller
1240 * is disabled.
1241 */
1242struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1243 struct mem_cgroup *memcg)
1244{
1245 struct mem_cgroup_per_zone *mz;
bea8c150 1246 struct lruvec *lruvec;
925b7673 1247
bea8c150
HD
1248 if (mem_cgroup_disabled()) {
1249 lruvec = &zone->lruvec;
1250 goto out;
1251 }
925b7673 1252
e231875b 1253 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1254 lruvec = &mz->lruvec;
1255out:
1256 /*
1257 * Since a node can be onlined after the mem_cgroup was created,
1258 * we have to be prepared to initialize lruvec->zone here;
1259 * and if offlined then reonlined, we need to reinitialize it.
1260 */
1261 if (unlikely(lruvec->zone != zone))
1262 lruvec->zone = zone;
1263 return lruvec;
925b7673
JW
1264}
1265
925b7673 1266/**
fa9add64 1267 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1268 * @page: the page
fa9add64 1269 * @zone: zone of the page
925b7673 1270 */
fa9add64 1271struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1272{
08e552c6 1273 struct mem_cgroup_per_zone *mz;
925b7673
JW
1274 struct mem_cgroup *memcg;
1275 struct page_cgroup *pc;
bea8c150 1276 struct lruvec *lruvec;
6d12e2d8 1277
bea8c150
HD
1278 if (mem_cgroup_disabled()) {
1279 lruvec = &zone->lruvec;
1280 goto out;
1281 }
925b7673 1282
08e552c6 1283 pc = lookup_page_cgroup(page);
38c5d72f 1284 memcg = pc->mem_cgroup;
7512102c
HD
1285
1286 /*
fa9add64 1287 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1288 * an uncharged page off lru does nothing to secure
1289 * its former mem_cgroup from sudden removal.
1290 *
1291 * Our caller holds lru_lock, and PageCgroupUsed is updated
1292 * under page_cgroup lock: between them, they make all uses
1293 * of pc->mem_cgroup safe.
1294 */
fa9add64 1295 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1296 pc->mem_cgroup = memcg = root_mem_cgroup;
1297
e231875b 1298 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1299 lruvec = &mz->lruvec;
1300out:
1301 /*
1302 * Since a node can be onlined after the mem_cgroup was created,
1303 * we have to be prepared to initialize lruvec->zone here;
1304 * and if offlined then reonlined, we need to reinitialize it.
1305 */
1306 if (unlikely(lruvec->zone != zone))
1307 lruvec->zone = zone;
1308 return lruvec;
08e552c6 1309}
b69408e8 1310
925b7673 1311/**
fa9add64
HD
1312 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1313 * @lruvec: mem_cgroup per zone lru vector
1314 * @lru: index of lru list the page is sitting on
1315 * @nr_pages: positive when adding or negative when removing
925b7673 1316 *
fa9add64
HD
1317 * This function must be called when a page is added to or removed from an
1318 * lru list.
3f58a829 1319 */
fa9add64
HD
1320void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1321 int nr_pages)
3f58a829
MK
1322{
1323 struct mem_cgroup_per_zone *mz;
fa9add64 1324 unsigned long *lru_size;
3f58a829
MK
1325
1326 if (mem_cgroup_disabled())
1327 return;
1328
fa9add64
HD
1329 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1330 lru_size = mz->lru_size + lru;
1331 *lru_size += nr_pages;
1332 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1333}
544122e5 1334
3e92041d 1335/*
c0ff4b85 1336 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1337 * hierarchy subtree
1338 */
c3ac9a8a
JW
1339bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1340 struct mem_cgroup *memcg)
3e92041d 1341{
91c63734
JW
1342 if (root_memcg == memcg)
1343 return true;
3a981f48 1344 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1345 return false;
b47f77b5 1346 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1347}
1348
1349static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1350 struct mem_cgroup *memcg)
1351{
1352 bool ret;
1353
91c63734 1354 rcu_read_lock();
c3ac9a8a 1355 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1356 rcu_read_unlock();
1357 return ret;
3e92041d
MH
1358}
1359
ffbdccf5
DR
1360bool task_in_mem_cgroup(struct task_struct *task,
1361 const struct mem_cgroup *memcg)
4c4a2214 1362{
0b7f569e 1363 struct mem_cgroup *curr = NULL;
158e0a2d 1364 struct task_struct *p;
ffbdccf5 1365 bool ret;
4c4a2214 1366
158e0a2d 1367 p = find_lock_task_mm(task);
de077d22 1368 if (p) {
df381975 1369 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1370 task_unlock(p);
1371 } else {
1372 /*
1373 * All threads may have already detached their mm's, but the oom
1374 * killer still needs to detect if they have already been oom
1375 * killed to prevent needlessly killing additional tasks.
1376 */
ffbdccf5 1377 rcu_read_lock();
de077d22
DR
1378 curr = mem_cgroup_from_task(task);
1379 if (curr)
1380 css_get(&curr->css);
ffbdccf5 1381 rcu_read_unlock();
de077d22 1382 }
d31f56db 1383 /*
c0ff4b85 1384 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1385 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1386 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1387 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1388 */
c0ff4b85 1389 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1390 css_put(&curr->css);
4c4a2214
DR
1391 return ret;
1392}
1393
c56d5c7d 1394int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1395{
9b272977 1396 unsigned long inactive_ratio;
14797e23 1397 unsigned long inactive;
9b272977 1398 unsigned long active;
c772be93 1399 unsigned long gb;
14797e23 1400
4d7dcca2
HD
1401 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1402 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1403
c772be93
KM
1404 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1405 if (gb)
1406 inactive_ratio = int_sqrt(10 * gb);
1407 else
1408 inactive_ratio = 1;
1409
9b272977 1410 return inactive * inactive_ratio < active;
14797e23
KM
1411}
1412
3e32cb2e 1413#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1414 container_of(counter, struct mem_cgroup, member)
1415
19942822 1416/**
9d11ea9f 1417 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1418 * @memcg: the memory cgroup
19942822 1419 *
9d11ea9f 1420 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1421 * pages.
19942822 1422 */
c0ff4b85 1423static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1424{
3e32cb2e
JW
1425 unsigned long margin = 0;
1426 unsigned long count;
1427 unsigned long limit;
9d11ea9f 1428
3e32cb2e
JW
1429 count = page_counter_read(&memcg->memory);
1430 limit = ACCESS_ONCE(memcg->memory.limit);
1431 if (count < limit)
1432 margin = limit - count;
1433
1434 if (do_swap_account) {
1435 count = page_counter_read(&memcg->memsw);
1436 limit = ACCESS_ONCE(memcg->memsw.limit);
1437 if (count <= limit)
1438 margin = min(margin, limit - count);
1439 }
1440
1441 return margin;
19942822
JW
1442}
1443
1f4c025b 1444int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1445{
a7885eb8 1446 /* root ? */
14208b0e 1447 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1448 return vm_swappiness;
1449
bf1ff263 1450 return memcg->swappiness;
a7885eb8
KM
1451}
1452
619d094b
KH
1453/*
1454 * memcg->moving_account is used for checking possibility that some thread is
1455 * calling move_account(). When a thread on CPU-A starts moving pages under
1456 * a memcg, other threads should check memcg->moving_account under
1457 * rcu_read_lock(), like this:
1458 *
1459 * CPU-A CPU-B
1460 * rcu_read_lock()
1461 * memcg->moving_account+1 if (memcg->mocing_account)
1462 * take heavy locks.
1463 * synchronize_rcu() update something.
1464 * rcu_read_unlock()
1465 * start move here.
1466 */
4331f7d3 1467
c0ff4b85 1468static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1469{
619d094b 1470 atomic_inc(&memcg->moving_account);
32047e2a
KH
1471 synchronize_rcu();
1472}
1473
c0ff4b85 1474static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1475{
619d094b
KH
1476 /*
1477 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1478 * We check NULL in callee rather than caller.
1479 */
d7365e78 1480 if (memcg)
619d094b 1481 atomic_dec(&memcg->moving_account);
32047e2a 1482}
619d094b 1483
32047e2a 1484/*
bdcbb659 1485 * A routine for checking "mem" is under move_account() or not.
32047e2a 1486 *
bdcbb659
QH
1487 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1488 * moving cgroups. This is for waiting at high-memory pressure
1489 * caused by "move".
32047e2a 1490 */
c0ff4b85 1491static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1492{
2bd9bb20
KH
1493 struct mem_cgroup *from;
1494 struct mem_cgroup *to;
4b534334 1495 bool ret = false;
2bd9bb20
KH
1496 /*
1497 * Unlike task_move routines, we access mc.to, mc.from not under
1498 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1499 */
1500 spin_lock(&mc.lock);
1501 from = mc.from;
1502 to = mc.to;
1503 if (!from)
1504 goto unlock;
3e92041d 1505
c0ff4b85
R
1506 ret = mem_cgroup_same_or_subtree(memcg, from)
1507 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1508unlock:
1509 spin_unlock(&mc.lock);
4b534334
KH
1510 return ret;
1511}
1512
c0ff4b85 1513static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1514{
1515 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1516 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1517 DEFINE_WAIT(wait);
1518 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1519 /* moving charge context might have finished. */
1520 if (mc.moving_task)
1521 schedule();
1522 finish_wait(&mc.waitq, &wait);
1523 return true;
1524 }
1525 }
1526 return false;
1527}
1528
312734c0
KH
1529/*
1530 * Take this lock when
1531 * - a code tries to modify page's memcg while it's USED.
1532 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1533 */
1534static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1535 unsigned long *flags)
1536{
1537 spin_lock_irqsave(&memcg->move_lock, *flags);
1538}
1539
1540static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1541 unsigned long *flags)
1542{
1543 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1544}
1545
58cf188e 1546#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1547/**
58cf188e 1548 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1549 * @memcg: The memory cgroup that went over limit
1550 * @p: Task that is going to be killed
1551 *
1552 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1553 * enabled
1554 */
1555void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1556{
e61734c5 1557 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1558 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1559 struct mem_cgroup *iter;
1560 unsigned int i;
e222432b 1561
58cf188e 1562 if (!p)
e222432b
BS
1563 return;
1564
08088cb9 1565 mutex_lock(&oom_info_lock);
e222432b
BS
1566 rcu_read_lock();
1567
e61734c5
TH
1568 pr_info("Task in ");
1569 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1570 pr_info(" killed as a result of limit of ");
1571 pr_cont_cgroup_path(memcg->css.cgroup);
1572 pr_info("\n");
e222432b 1573
e222432b
BS
1574 rcu_read_unlock();
1575
3e32cb2e
JW
1576 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1577 K((u64)page_counter_read(&memcg->memory)),
1578 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1579 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1580 K((u64)page_counter_read(&memcg->memsw)),
1581 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1582 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1583 K((u64)page_counter_read(&memcg->kmem)),
1584 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1585
1586 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1587 pr_info("Memory cgroup stats for ");
1588 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1589 pr_cont(":");
1590
1591 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1592 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1593 continue;
1594 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1595 K(mem_cgroup_read_stat(iter, i)));
1596 }
1597
1598 for (i = 0; i < NR_LRU_LISTS; i++)
1599 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1600 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1601
1602 pr_cont("\n");
1603 }
08088cb9 1604 mutex_unlock(&oom_info_lock);
e222432b
BS
1605}
1606
81d39c20
KH
1607/*
1608 * This function returns the number of memcg under hierarchy tree. Returns
1609 * 1(self count) if no children.
1610 */
c0ff4b85 1611static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1612{
1613 int num = 0;
7d74b06f
KH
1614 struct mem_cgroup *iter;
1615
c0ff4b85 1616 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1617 num++;
81d39c20
KH
1618 return num;
1619}
1620
a63d83f4
DR
1621/*
1622 * Return the memory (and swap, if configured) limit for a memcg.
1623 */
3e32cb2e 1624static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1625{
3e32cb2e 1626 unsigned long limit;
a63d83f4 1627
3e32cb2e 1628 limit = memcg->memory.limit;
9a5a8f19 1629 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1630 unsigned long memsw_limit;
9a5a8f19 1631
3e32cb2e
JW
1632 memsw_limit = memcg->memsw.limit;
1633 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1634 }
9a5a8f19 1635 return limit;
a63d83f4
DR
1636}
1637
19965460
DR
1638static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1639 int order)
9cbb78bb
DR
1640{
1641 struct mem_cgroup *iter;
1642 unsigned long chosen_points = 0;
1643 unsigned long totalpages;
1644 unsigned int points = 0;
1645 struct task_struct *chosen = NULL;
1646
876aafbf 1647 /*
465adcf1
DR
1648 * If current has a pending SIGKILL or is exiting, then automatically
1649 * select it. The goal is to allow it to allocate so that it may
1650 * quickly exit and free its memory.
876aafbf 1651 */
465adcf1 1652 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1653 set_thread_flag(TIF_MEMDIE);
1654 return;
1655 }
1656
1657 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1658 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1659 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1660 struct css_task_iter it;
9cbb78bb
DR
1661 struct task_struct *task;
1662
72ec7029
TH
1663 css_task_iter_start(&iter->css, &it);
1664 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1665 switch (oom_scan_process_thread(task, totalpages, NULL,
1666 false)) {
1667 case OOM_SCAN_SELECT:
1668 if (chosen)
1669 put_task_struct(chosen);
1670 chosen = task;
1671 chosen_points = ULONG_MAX;
1672 get_task_struct(chosen);
1673 /* fall through */
1674 case OOM_SCAN_CONTINUE:
1675 continue;
1676 case OOM_SCAN_ABORT:
72ec7029 1677 css_task_iter_end(&it);
9cbb78bb
DR
1678 mem_cgroup_iter_break(memcg, iter);
1679 if (chosen)
1680 put_task_struct(chosen);
1681 return;
1682 case OOM_SCAN_OK:
1683 break;
1684 };
1685 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1686 if (!points || points < chosen_points)
1687 continue;
1688 /* Prefer thread group leaders for display purposes */
1689 if (points == chosen_points &&
1690 thread_group_leader(chosen))
1691 continue;
1692
1693 if (chosen)
1694 put_task_struct(chosen);
1695 chosen = task;
1696 chosen_points = points;
1697 get_task_struct(chosen);
9cbb78bb 1698 }
72ec7029 1699 css_task_iter_end(&it);
9cbb78bb
DR
1700 }
1701
1702 if (!chosen)
1703 return;
1704 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1705 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1706 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1707}
1708
4d0c066d
KH
1709/**
1710 * test_mem_cgroup_node_reclaimable
dad7557e 1711 * @memcg: the target memcg
4d0c066d
KH
1712 * @nid: the node ID to be checked.
1713 * @noswap : specify true here if the user wants flle only information.
1714 *
1715 * This function returns whether the specified memcg contains any
1716 * reclaimable pages on a node. Returns true if there are any reclaimable
1717 * pages in the node.
1718 */
c0ff4b85 1719static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1720 int nid, bool noswap)
1721{
c0ff4b85 1722 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1723 return true;
1724 if (noswap || !total_swap_pages)
1725 return false;
c0ff4b85 1726 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1727 return true;
1728 return false;
1729
1730}
bb4cc1a8 1731#if MAX_NUMNODES > 1
889976db
YH
1732
1733/*
1734 * Always updating the nodemask is not very good - even if we have an empty
1735 * list or the wrong list here, we can start from some node and traverse all
1736 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1737 *
1738 */
c0ff4b85 1739static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1740{
1741 int nid;
453a9bf3
KH
1742 /*
1743 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1744 * pagein/pageout changes since the last update.
1745 */
c0ff4b85 1746 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1747 return;
c0ff4b85 1748 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1749 return;
1750
889976db 1751 /* make a nodemask where this memcg uses memory from */
31aaea4a 1752 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1753
31aaea4a 1754 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1755
c0ff4b85
R
1756 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1757 node_clear(nid, memcg->scan_nodes);
889976db 1758 }
453a9bf3 1759
c0ff4b85
R
1760 atomic_set(&memcg->numainfo_events, 0);
1761 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1762}
1763
1764/*
1765 * Selecting a node where we start reclaim from. Because what we need is just
1766 * reducing usage counter, start from anywhere is O,K. Considering
1767 * memory reclaim from current node, there are pros. and cons.
1768 *
1769 * Freeing memory from current node means freeing memory from a node which
1770 * we'll use or we've used. So, it may make LRU bad. And if several threads
1771 * hit limits, it will see a contention on a node. But freeing from remote
1772 * node means more costs for memory reclaim because of memory latency.
1773 *
1774 * Now, we use round-robin. Better algorithm is welcomed.
1775 */
c0ff4b85 1776int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1777{
1778 int node;
1779
c0ff4b85
R
1780 mem_cgroup_may_update_nodemask(memcg);
1781 node = memcg->last_scanned_node;
889976db 1782
c0ff4b85 1783 node = next_node(node, memcg->scan_nodes);
889976db 1784 if (node == MAX_NUMNODES)
c0ff4b85 1785 node = first_node(memcg->scan_nodes);
889976db
YH
1786 /*
1787 * We call this when we hit limit, not when pages are added to LRU.
1788 * No LRU may hold pages because all pages are UNEVICTABLE or
1789 * memcg is too small and all pages are not on LRU. In that case,
1790 * we use curret node.
1791 */
1792 if (unlikely(node == MAX_NUMNODES))
1793 node = numa_node_id();
1794
c0ff4b85 1795 memcg->last_scanned_node = node;
889976db
YH
1796 return node;
1797}
1798
bb4cc1a8
AM
1799/*
1800 * Check all nodes whether it contains reclaimable pages or not.
1801 * For quick scan, we make use of scan_nodes. This will allow us to skip
1802 * unused nodes. But scan_nodes is lazily updated and may not cotain
1803 * enough new information. We need to do double check.
1804 */
1805static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1806{
1807 int nid;
1808
1809 /*
1810 * quick check...making use of scan_node.
1811 * We can skip unused nodes.
1812 */
1813 if (!nodes_empty(memcg->scan_nodes)) {
1814 for (nid = first_node(memcg->scan_nodes);
1815 nid < MAX_NUMNODES;
1816 nid = next_node(nid, memcg->scan_nodes)) {
1817
1818 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1819 return true;
1820 }
1821 }
1822 /*
1823 * Check rest of nodes.
1824 */
1825 for_each_node_state(nid, N_MEMORY) {
1826 if (node_isset(nid, memcg->scan_nodes))
1827 continue;
1828 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1829 return true;
1830 }
1831 return false;
1832}
1833
889976db 1834#else
c0ff4b85 1835int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1836{
1837 return 0;
1838}
4d0c066d 1839
bb4cc1a8
AM
1840static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1841{
1842 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1843}
889976db
YH
1844#endif
1845
0608f43d
AM
1846static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1847 struct zone *zone,
1848 gfp_t gfp_mask,
1849 unsigned long *total_scanned)
1850{
1851 struct mem_cgroup *victim = NULL;
1852 int total = 0;
1853 int loop = 0;
1854 unsigned long excess;
1855 unsigned long nr_scanned;
1856 struct mem_cgroup_reclaim_cookie reclaim = {
1857 .zone = zone,
1858 .priority = 0,
1859 };
1860
3e32cb2e 1861 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1862
1863 while (1) {
1864 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1865 if (!victim) {
1866 loop++;
1867 if (loop >= 2) {
1868 /*
1869 * If we have not been able to reclaim
1870 * anything, it might because there are
1871 * no reclaimable pages under this hierarchy
1872 */
1873 if (!total)
1874 break;
1875 /*
1876 * We want to do more targeted reclaim.
1877 * excess >> 2 is not to excessive so as to
1878 * reclaim too much, nor too less that we keep
1879 * coming back to reclaim from this cgroup
1880 */
1881 if (total >= (excess >> 2) ||
1882 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1883 break;
1884 }
1885 continue;
1886 }
1887 if (!mem_cgroup_reclaimable(victim, false))
1888 continue;
1889 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1890 zone, &nr_scanned);
1891 *total_scanned += nr_scanned;
3e32cb2e 1892 if (!soft_limit_excess(root_memcg))
0608f43d 1893 break;
6d61ef40 1894 }
0608f43d
AM
1895 mem_cgroup_iter_break(root_memcg, victim);
1896 return total;
6d61ef40
BS
1897}
1898
0056f4e6
JW
1899#ifdef CONFIG_LOCKDEP
1900static struct lockdep_map memcg_oom_lock_dep_map = {
1901 .name = "memcg_oom_lock",
1902};
1903#endif
1904
fb2a6fc5
JW
1905static DEFINE_SPINLOCK(memcg_oom_lock);
1906
867578cb
KH
1907/*
1908 * Check OOM-Killer is already running under our hierarchy.
1909 * If someone is running, return false.
1910 */
fb2a6fc5 1911static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1912{
79dfdacc 1913 struct mem_cgroup *iter, *failed = NULL;
a636b327 1914
fb2a6fc5
JW
1915 spin_lock(&memcg_oom_lock);
1916
9f3a0d09 1917 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1918 if (iter->oom_lock) {
79dfdacc
MH
1919 /*
1920 * this subtree of our hierarchy is already locked
1921 * so we cannot give a lock.
1922 */
79dfdacc 1923 failed = iter;
9f3a0d09
JW
1924 mem_cgroup_iter_break(memcg, iter);
1925 break;
23751be0
JW
1926 } else
1927 iter->oom_lock = true;
7d74b06f 1928 }
867578cb 1929
fb2a6fc5
JW
1930 if (failed) {
1931 /*
1932 * OK, we failed to lock the whole subtree so we have
1933 * to clean up what we set up to the failing subtree
1934 */
1935 for_each_mem_cgroup_tree(iter, memcg) {
1936 if (iter == failed) {
1937 mem_cgroup_iter_break(memcg, iter);
1938 break;
1939 }
1940 iter->oom_lock = false;
79dfdacc 1941 }
0056f4e6
JW
1942 } else
1943 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1944
1945 spin_unlock(&memcg_oom_lock);
1946
1947 return !failed;
a636b327 1948}
0b7f569e 1949
fb2a6fc5 1950static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1951{
7d74b06f
KH
1952 struct mem_cgroup *iter;
1953
fb2a6fc5 1954 spin_lock(&memcg_oom_lock);
0056f4e6 1955 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1956 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1957 iter->oom_lock = false;
fb2a6fc5 1958 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1959}
1960
c0ff4b85 1961static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1962{
1963 struct mem_cgroup *iter;
1964
c0ff4b85 1965 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1966 atomic_inc(&iter->under_oom);
1967}
1968
c0ff4b85 1969static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1970{
1971 struct mem_cgroup *iter;
1972
867578cb
KH
1973 /*
1974 * When a new child is created while the hierarchy is under oom,
1975 * mem_cgroup_oom_lock() may not be called. We have to use
1976 * atomic_add_unless() here.
1977 */
c0ff4b85 1978 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1979 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1980}
1981
867578cb
KH
1982static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1983
dc98df5a 1984struct oom_wait_info {
d79154bb 1985 struct mem_cgroup *memcg;
dc98df5a
KH
1986 wait_queue_t wait;
1987};
1988
1989static int memcg_oom_wake_function(wait_queue_t *wait,
1990 unsigned mode, int sync, void *arg)
1991{
d79154bb
HD
1992 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1993 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1994 struct oom_wait_info *oom_wait_info;
1995
1996 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1997 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1998
dc98df5a 1999 /*
d79154bb 2000 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2001 * Then we can use css_is_ancestor without taking care of RCU.
2002 */
c0ff4b85
R
2003 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2004 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2005 return 0;
dc98df5a
KH
2006 return autoremove_wake_function(wait, mode, sync, arg);
2007}
2008
c0ff4b85 2009static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2010{
3812c8c8 2011 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2012 /* for filtering, pass "memcg" as argument. */
2013 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2014}
2015
c0ff4b85 2016static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2017{
c0ff4b85
R
2018 if (memcg && atomic_read(&memcg->under_oom))
2019 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2020}
2021
3812c8c8 2022static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2023{
3812c8c8
JW
2024 if (!current->memcg_oom.may_oom)
2025 return;
867578cb 2026 /*
49426420
JW
2027 * We are in the middle of the charge context here, so we
2028 * don't want to block when potentially sitting on a callstack
2029 * that holds all kinds of filesystem and mm locks.
2030 *
2031 * Also, the caller may handle a failed allocation gracefully
2032 * (like optional page cache readahead) and so an OOM killer
2033 * invocation might not even be necessary.
2034 *
2035 * That's why we don't do anything here except remember the
2036 * OOM context and then deal with it at the end of the page
2037 * fault when the stack is unwound, the locks are released,
2038 * and when we know whether the fault was overall successful.
867578cb 2039 */
49426420
JW
2040 css_get(&memcg->css);
2041 current->memcg_oom.memcg = memcg;
2042 current->memcg_oom.gfp_mask = mask;
2043 current->memcg_oom.order = order;
3812c8c8
JW
2044}
2045
2046/**
2047 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2048 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2049 *
49426420
JW
2050 * This has to be called at the end of a page fault if the memcg OOM
2051 * handler was enabled.
3812c8c8 2052 *
49426420 2053 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2054 * sleep on a waitqueue until the userspace task resolves the
2055 * situation. Sleeping directly in the charge context with all kinds
2056 * of locks held is not a good idea, instead we remember an OOM state
2057 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2058 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2059 *
2060 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2061 * completed, %false otherwise.
3812c8c8 2062 */
49426420 2063bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2064{
49426420 2065 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2066 struct oom_wait_info owait;
49426420 2067 bool locked;
3812c8c8
JW
2068
2069 /* OOM is global, do not handle */
3812c8c8 2070 if (!memcg)
49426420 2071 return false;
3812c8c8 2072
49426420
JW
2073 if (!handle)
2074 goto cleanup;
3812c8c8
JW
2075
2076 owait.memcg = memcg;
2077 owait.wait.flags = 0;
2078 owait.wait.func = memcg_oom_wake_function;
2079 owait.wait.private = current;
2080 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2081
3812c8c8 2082 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2083 mem_cgroup_mark_under_oom(memcg);
2084
2085 locked = mem_cgroup_oom_trylock(memcg);
2086
2087 if (locked)
2088 mem_cgroup_oom_notify(memcg);
2089
2090 if (locked && !memcg->oom_kill_disable) {
2091 mem_cgroup_unmark_under_oom(memcg);
2092 finish_wait(&memcg_oom_waitq, &owait.wait);
2093 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2094 current->memcg_oom.order);
2095 } else {
3812c8c8 2096 schedule();
49426420
JW
2097 mem_cgroup_unmark_under_oom(memcg);
2098 finish_wait(&memcg_oom_waitq, &owait.wait);
2099 }
2100
2101 if (locked) {
fb2a6fc5
JW
2102 mem_cgroup_oom_unlock(memcg);
2103 /*
2104 * There is no guarantee that an OOM-lock contender
2105 * sees the wakeups triggered by the OOM kill
2106 * uncharges. Wake any sleepers explicitely.
2107 */
2108 memcg_oom_recover(memcg);
2109 }
49426420
JW
2110cleanup:
2111 current->memcg_oom.memcg = NULL;
3812c8c8 2112 css_put(&memcg->css);
867578cb 2113 return true;
0b7f569e
KH
2114}
2115
d7365e78
JW
2116/**
2117 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2118 * @page: page that is going to change accounted state
2119 * @locked: &memcg->move_lock slowpath was taken
2120 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 2121 *
d7365e78
JW
2122 * This function must mark the beginning of an accounted page state
2123 * change to prevent double accounting when the page is concurrently
2124 * being moved to another memcg:
32047e2a 2125 *
d7365e78
JW
2126 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2127 * if (TestClearPageState(page))
2128 * mem_cgroup_update_page_stat(memcg, state, -1);
2129 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 2130 *
d7365e78
JW
2131 * The RCU lock is held throughout the transaction. The fast path can
2132 * get away without acquiring the memcg->move_lock (@locked is false)
2133 * because page moving starts with an RCU grace period.
32047e2a 2134 *
d7365e78
JW
2135 * The RCU lock also protects the memcg from being freed when the page
2136 * state that is going to change is the only thing preventing the page
2137 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2138 * which allows migration to go ahead and uncharge the page before the
2139 * account transaction might be complete.
d69b042f 2140 */
d7365e78
JW
2141struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2142 bool *locked,
2143 unsigned long *flags)
89c06bd5
KH
2144{
2145 struct mem_cgroup *memcg;
2146 struct page_cgroup *pc;
2147
d7365e78
JW
2148 rcu_read_lock();
2149
2150 if (mem_cgroup_disabled())
2151 return NULL;
2152
89c06bd5
KH
2153 pc = lookup_page_cgroup(page);
2154again:
2155 memcg = pc->mem_cgroup;
2156 if (unlikely(!memcg || !PageCgroupUsed(pc)))
d7365e78
JW
2157 return NULL;
2158
2159 *locked = false;
bdcbb659 2160 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2161 return memcg;
89c06bd5
KH
2162
2163 move_lock_mem_cgroup(memcg, flags);
2164 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2165 move_unlock_mem_cgroup(memcg, flags);
2166 goto again;
2167 }
2168 *locked = true;
d7365e78
JW
2169
2170 return memcg;
89c06bd5
KH
2171}
2172
d7365e78
JW
2173/**
2174 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2175 * @memcg: the memcg that was accounted against
2176 * @locked: value received from mem_cgroup_begin_page_stat()
2177 * @flags: value received from mem_cgroup_begin_page_stat()
2178 */
2179void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2180 unsigned long flags)
89c06bd5 2181{
d7365e78
JW
2182 if (memcg && locked)
2183 move_unlock_mem_cgroup(memcg, &flags);
89c06bd5 2184
d7365e78 2185 rcu_read_unlock();
89c06bd5
KH
2186}
2187
d7365e78
JW
2188/**
2189 * mem_cgroup_update_page_stat - update page state statistics
2190 * @memcg: memcg to account against
2191 * @idx: page state item to account
2192 * @val: number of pages (positive or negative)
2193 *
2194 * See mem_cgroup_begin_page_stat() for locking requirements.
2195 */
2196void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2197 enum mem_cgroup_stat_index idx, int val)
d69b042f 2198{
658b72c5 2199 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2200
d7365e78
JW
2201 if (memcg)
2202 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2203}
26174efd 2204
cdec2e42
KH
2205/*
2206 * size of first charge trial. "32" comes from vmscan.c's magic value.
2207 * TODO: maybe necessary to use big numbers in big irons.
2208 */
7ec99d62 2209#define CHARGE_BATCH 32U
cdec2e42
KH
2210struct memcg_stock_pcp {
2211 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2212 unsigned int nr_pages;
cdec2e42 2213 struct work_struct work;
26fe6168 2214 unsigned long flags;
a0db00fc 2215#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2216};
2217static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2218static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2219
a0956d54
SS
2220/**
2221 * consume_stock: Try to consume stocked charge on this cpu.
2222 * @memcg: memcg to consume from.
2223 * @nr_pages: how many pages to charge.
2224 *
2225 * The charges will only happen if @memcg matches the current cpu's memcg
2226 * stock, and at least @nr_pages are available in that stock. Failure to
2227 * service an allocation will refill the stock.
2228 *
2229 * returns true if successful, false otherwise.
cdec2e42 2230 */
a0956d54 2231static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2232{
2233 struct memcg_stock_pcp *stock;
3e32cb2e 2234 bool ret = false;
cdec2e42 2235
a0956d54 2236 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2237 return ret;
a0956d54 2238
cdec2e42 2239 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2240 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2241 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2242 ret = true;
2243 }
cdec2e42
KH
2244 put_cpu_var(memcg_stock);
2245 return ret;
2246}
2247
2248/*
3e32cb2e 2249 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2250 */
2251static void drain_stock(struct memcg_stock_pcp *stock)
2252{
2253 struct mem_cgroup *old = stock->cached;
2254
11c9ea4e 2255 if (stock->nr_pages) {
3e32cb2e 2256 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2257 if (do_swap_account)
3e32cb2e 2258 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2259 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2260 stock->nr_pages = 0;
cdec2e42
KH
2261 }
2262 stock->cached = NULL;
cdec2e42
KH
2263}
2264
2265/*
2266 * This must be called under preempt disabled or must be called by
2267 * a thread which is pinned to local cpu.
2268 */
2269static void drain_local_stock(struct work_struct *dummy)
2270{
7c8e0181 2271 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2272 drain_stock(stock);
26fe6168 2273 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2274}
2275
e4777496
MH
2276static void __init memcg_stock_init(void)
2277{
2278 int cpu;
2279
2280 for_each_possible_cpu(cpu) {
2281 struct memcg_stock_pcp *stock =
2282 &per_cpu(memcg_stock, cpu);
2283 INIT_WORK(&stock->work, drain_local_stock);
2284 }
2285}
2286
cdec2e42 2287/*
3e32cb2e 2288 * Cache charges(val) to local per_cpu area.
320cc51d 2289 * This will be consumed by consume_stock() function, later.
cdec2e42 2290 */
c0ff4b85 2291static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2292{
2293 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2294
c0ff4b85 2295 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2296 drain_stock(stock);
c0ff4b85 2297 stock->cached = memcg;
cdec2e42 2298 }
11c9ea4e 2299 stock->nr_pages += nr_pages;
cdec2e42
KH
2300 put_cpu_var(memcg_stock);
2301}
2302
2303/*
c0ff4b85 2304 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2305 * of the hierarchy under it. sync flag says whether we should block
2306 * until the work is done.
cdec2e42 2307 */
c0ff4b85 2308static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2309{
26fe6168 2310 int cpu, curcpu;
d38144b7 2311
cdec2e42 2312 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2313 get_online_cpus();
5af12d0e 2314 curcpu = get_cpu();
cdec2e42
KH
2315 for_each_online_cpu(cpu) {
2316 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2317 struct mem_cgroup *memcg;
26fe6168 2318
c0ff4b85
R
2319 memcg = stock->cached;
2320 if (!memcg || !stock->nr_pages)
26fe6168 2321 continue;
c0ff4b85 2322 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2323 continue;
d1a05b69
MH
2324 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2325 if (cpu == curcpu)
2326 drain_local_stock(&stock->work);
2327 else
2328 schedule_work_on(cpu, &stock->work);
2329 }
cdec2e42 2330 }
5af12d0e 2331 put_cpu();
d38144b7
MH
2332
2333 if (!sync)
2334 goto out;
2335
2336 for_each_online_cpu(cpu) {
2337 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2338 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2339 flush_work(&stock->work);
2340 }
2341out:
f894ffa8 2342 put_online_cpus();
d38144b7
MH
2343}
2344
2345/*
2346 * Tries to drain stocked charges in other cpus. This function is asynchronous
2347 * and just put a work per cpu for draining localy on each cpu. Caller can
3e32cb2e 2348 * expects some charges will be back later but cannot wait for it.
d38144b7 2349 */
c0ff4b85 2350static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2351{
9f50fad6
MH
2352 /*
2353 * If someone calls draining, avoid adding more kworker runs.
2354 */
2355 if (!mutex_trylock(&percpu_charge_mutex))
2356 return;
c0ff4b85 2357 drain_all_stock(root_memcg, false);
9f50fad6 2358 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2359}
2360
2361/* This is a synchronous drain interface. */
c0ff4b85 2362static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2363{
2364 /* called when force_empty is called */
9f50fad6 2365 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2366 drain_all_stock(root_memcg, true);
9f50fad6 2367 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2368}
2369
711d3d2c
KH
2370/*
2371 * This function drains percpu counter value from DEAD cpu and
2372 * move it to local cpu. Note that this function can be preempted.
2373 */
c0ff4b85 2374static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2375{
2376 int i;
2377
c0ff4b85 2378 spin_lock(&memcg->pcp_counter_lock);
6104621d 2379 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2380 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2381
c0ff4b85
R
2382 per_cpu(memcg->stat->count[i], cpu) = 0;
2383 memcg->nocpu_base.count[i] += x;
711d3d2c 2384 }
e9f8974f 2385 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2386 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2387
c0ff4b85
R
2388 per_cpu(memcg->stat->events[i], cpu) = 0;
2389 memcg->nocpu_base.events[i] += x;
e9f8974f 2390 }
c0ff4b85 2391 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2392}
2393
0db0628d 2394static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2395 unsigned long action,
2396 void *hcpu)
2397{
2398 int cpu = (unsigned long)hcpu;
2399 struct memcg_stock_pcp *stock;
711d3d2c 2400 struct mem_cgroup *iter;
cdec2e42 2401
619d094b 2402 if (action == CPU_ONLINE)
1489ebad 2403 return NOTIFY_OK;
1489ebad 2404
d833049b 2405 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2406 return NOTIFY_OK;
711d3d2c 2407
9f3a0d09 2408 for_each_mem_cgroup(iter)
711d3d2c
KH
2409 mem_cgroup_drain_pcp_counter(iter, cpu);
2410
cdec2e42
KH
2411 stock = &per_cpu(memcg_stock, cpu);
2412 drain_stock(stock);
2413 return NOTIFY_OK;
2414}
2415
00501b53
JW
2416static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2417 unsigned int nr_pages)
8a9f3ccd 2418{
7ec99d62 2419 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2420 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2421 struct mem_cgroup *mem_over_limit;
3e32cb2e 2422 struct page_counter *counter;
6539cc05 2423 unsigned long nr_reclaimed;
b70a2a21
JW
2424 bool may_swap = true;
2425 bool drained = false;
05b84301 2426 int ret = 0;
a636b327 2427
ce00a967
JW
2428 if (mem_cgroup_is_root(memcg))
2429 goto done;
6539cc05 2430retry:
b6b6cc72
MH
2431 if (consume_stock(memcg, nr_pages))
2432 goto done;
8a9f3ccd 2433
3fbe7244 2434 if (!do_swap_account ||
3e32cb2e
JW
2435 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2436 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2437 goto done_restock;
3fbe7244 2438 if (do_swap_account)
3e32cb2e
JW
2439 page_counter_uncharge(&memcg->memsw, batch);
2440 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2441 } else {
3e32cb2e 2442 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2443 may_swap = false;
3fbe7244 2444 }
7a81b88c 2445
6539cc05
JW
2446 if (batch > nr_pages) {
2447 batch = nr_pages;
2448 goto retry;
2449 }
6d61ef40 2450
06b078fc
JW
2451 /*
2452 * Unlike in global OOM situations, memcg is not in a physical
2453 * memory shortage. Allow dying and OOM-killed tasks to
2454 * bypass the last charges so that they can exit quickly and
2455 * free their memory.
2456 */
2457 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2458 fatal_signal_pending(current) ||
2459 current->flags & PF_EXITING))
2460 goto bypass;
2461
2462 if (unlikely(task_in_memcg_oom(current)))
2463 goto nomem;
2464
6539cc05
JW
2465 if (!(gfp_mask & __GFP_WAIT))
2466 goto nomem;
4b534334 2467
b70a2a21
JW
2468 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2469 gfp_mask, may_swap);
6539cc05 2470
61e02c74 2471 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2472 goto retry;
28c34c29 2473
b70a2a21
JW
2474 if (!drained) {
2475 drain_all_stock_async(mem_over_limit);
2476 drained = true;
2477 goto retry;
2478 }
2479
28c34c29
JW
2480 if (gfp_mask & __GFP_NORETRY)
2481 goto nomem;
6539cc05
JW
2482 /*
2483 * Even though the limit is exceeded at this point, reclaim
2484 * may have been able to free some pages. Retry the charge
2485 * before killing the task.
2486 *
2487 * Only for regular pages, though: huge pages are rather
2488 * unlikely to succeed so close to the limit, and we fall back
2489 * to regular pages anyway in case of failure.
2490 */
61e02c74 2491 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2492 goto retry;
2493 /*
2494 * At task move, charge accounts can be doubly counted. So, it's
2495 * better to wait until the end of task_move if something is going on.
2496 */
2497 if (mem_cgroup_wait_acct_move(mem_over_limit))
2498 goto retry;
2499
9b130619
JW
2500 if (nr_retries--)
2501 goto retry;
2502
06b078fc
JW
2503 if (gfp_mask & __GFP_NOFAIL)
2504 goto bypass;
2505
6539cc05
JW
2506 if (fatal_signal_pending(current))
2507 goto bypass;
2508
61e02c74 2509 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2510nomem:
6d1fdc48 2511 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2512 return -ENOMEM;
867578cb 2513bypass:
ce00a967 2514 return -EINTR;
6539cc05
JW
2515
2516done_restock:
e8ea14cc 2517 css_get_many(&memcg->css, batch);
6539cc05
JW
2518 if (batch > nr_pages)
2519 refill_stock(memcg, batch - nr_pages);
2520done:
05b84301 2521 return ret;
7a81b88c 2522}
8a9f3ccd 2523
00501b53 2524static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2525{
ce00a967
JW
2526 if (mem_cgroup_is_root(memcg))
2527 return;
2528
3e32cb2e 2529 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2530 if (do_swap_account)
3e32cb2e 2531 page_counter_uncharge(&memcg->memsw, nr_pages);
e8ea14cc
JW
2532
2533 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2534}
2535
a3b2d692
KH
2536/*
2537 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2538 * rcu_read_lock(). The caller is responsible for calling
2539 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2540 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2541 */
2542static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2543{
a3b2d692
KH
2544 /* ID 0 is unused ID */
2545 if (!id)
2546 return NULL;
34c00c31 2547 return mem_cgroup_from_id(id);
a3b2d692
KH
2548}
2549
0a31bc97
JW
2550/*
2551 * try_get_mem_cgroup_from_page - look up page's memcg association
2552 * @page: the page
2553 *
2554 * Look up, get a css reference, and return the memcg that owns @page.
2555 *
2556 * The page must be locked to prevent racing with swap-in and page
2557 * cache charges. If coming from an unlocked page table, the caller
2558 * must ensure the page is on the LRU or this can race with charging.
2559 */
e42d9d5d 2560struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2561{
c0ff4b85 2562 struct mem_cgroup *memcg = NULL;
3c776e64 2563 struct page_cgroup *pc;
a3b2d692 2564 unsigned short id;
b5a84319
KH
2565 swp_entry_t ent;
2566
309381fe 2567 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2568
3c776e64 2569 pc = lookup_page_cgroup(page);
a3b2d692 2570 if (PageCgroupUsed(pc)) {
c0ff4b85 2571 memcg = pc->mem_cgroup;
ec903c0c 2572 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2573 memcg = NULL;
e42d9d5d 2574 } else if (PageSwapCache(page)) {
3c776e64 2575 ent.val = page_private(page);
9fb4b7cc 2576 id = lookup_swap_cgroup_id(ent);
a3b2d692 2577 rcu_read_lock();
c0ff4b85 2578 memcg = mem_cgroup_lookup(id);
ec903c0c 2579 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2580 memcg = NULL;
a3b2d692 2581 rcu_read_unlock();
3c776e64 2582 }
c0ff4b85 2583 return memcg;
b5a84319
KH
2584}
2585
0a31bc97
JW
2586static void lock_page_lru(struct page *page, int *isolated)
2587{
2588 struct zone *zone = page_zone(page);
2589
2590 spin_lock_irq(&zone->lru_lock);
2591 if (PageLRU(page)) {
2592 struct lruvec *lruvec;
2593
2594 lruvec = mem_cgroup_page_lruvec(page, zone);
2595 ClearPageLRU(page);
2596 del_page_from_lru_list(page, lruvec, page_lru(page));
2597 *isolated = 1;
2598 } else
2599 *isolated = 0;
2600}
2601
2602static void unlock_page_lru(struct page *page, int isolated)
2603{
2604 struct zone *zone = page_zone(page);
2605
2606 if (isolated) {
2607 struct lruvec *lruvec;
2608
2609 lruvec = mem_cgroup_page_lruvec(page, zone);
2610 VM_BUG_ON_PAGE(PageLRU(page), page);
2611 SetPageLRU(page);
2612 add_page_to_lru_list(page, lruvec, page_lru(page));
2613 }
2614 spin_unlock_irq(&zone->lru_lock);
2615}
2616
00501b53 2617static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2618 bool lrucare)
7a81b88c 2619{
ce587e65 2620 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2621 int isolated;
9ce70c02 2622
309381fe 2623 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2624 /*
2625 * we don't need page_cgroup_lock about tail pages, becase they are not
2626 * accessed by any other context at this point.
2627 */
9ce70c02
HD
2628
2629 /*
2630 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2631 * may already be on some other mem_cgroup's LRU. Take care of it.
2632 */
0a31bc97
JW
2633 if (lrucare)
2634 lock_page_lru(page, &isolated);
9ce70c02 2635
0a31bc97
JW
2636 /*
2637 * Nobody should be changing or seriously looking at
2638 * pc->mem_cgroup and pc->flags at this point:
2639 *
2640 * - the page is uncharged
2641 *
2642 * - the page is off-LRU
2643 *
2644 * - an anonymous fault has exclusive page access, except for
2645 * a locked page table
2646 *
2647 * - a page cache insertion, a swapin fault, or a migration
2648 * have the page locked
2649 */
c0ff4b85 2650 pc->mem_cgroup = memcg;
0a31bc97 2651 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
9ce70c02 2652
0a31bc97
JW
2653 if (lrucare)
2654 unlock_page_lru(page, isolated);
7a81b88c 2655}
66e1707b 2656
7ae1e1d0 2657#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2658/*
2659 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2660 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2661 */
2662static DEFINE_MUTEX(memcg_slab_mutex);
2663
d6441637
VD
2664static DEFINE_MUTEX(activate_kmem_mutex);
2665
1f458cbf
GC
2666/*
2667 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2668 * in the memcg_cache_params struct.
2669 */
2670static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2671{
2672 struct kmem_cache *cachep;
2673
2674 VM_BUG_ON(p->is_root_cache);
2675 cachep = p->root_cache;
7a67d7ab 2676 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2677}
2678
749c5415 2679#ifdef CONFIG_SLABINFO
2da8ca82 2680static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2681{
2da8ca82 2682 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2683 struct memcg_cache_params *params;
2684
cf2b8fbf 2685 if (!memcg_kmem_is_active(memcg))
749c5415
GC
2686 return -EIO;
2687
2688 print_slabinfo_header(m);
2689
bd673145 2690 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2691 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2692 cache_show(memcg_params_to_cache(params), m);
bd673145 2693 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2694
2695 return 0;
2696}
2697#endif
2698
3e32cb2e
JW
2699static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2700 unsigned long nr_pages)
7ae1e1d0 2701{
3e32cb2e 2702 struct page_counter *counter;
7ae1e1d0 2703 int ret = 0;
7ae1e1d0 2704
3e32cb2e
JW
2705 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2706 if (ret < 0)
7ae1e1d0
GC
2707 return ret;
2708
3e32cb2e 2709 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2710 if (ret == -EINTR) {
2711 /*
00501b53
JW
2712 * try_charge() chose to bypass to root due to OOM kill or
2713 * fatal signal. Since our only options are to either fail
2714 * the allocation or charge it to this cgroup, do it as a
2715 * temporary condition. But we can't fail. From a kmem/slab
2716 * perspective, the cache has already been selected, by
2717 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2718 * our minds.
2719 *
2720 * This condition will only trigger if the task entered
00501b53
JW
2721 * memcg_charge_kmem in a sane state, but was OOM-killed
2722 * during try_charge() above. Tasks that were already dying
2723 * when the allocation triggers should have been already
7ae1e1d0
GC
2724 * directed to the root cgroup in memcontrol.h
2725 */
3e32cb2e 2726 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2727 if (do_swap_account)
3e32cb2e 2728 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2729 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2730 ret = 0;
2731 } else if (ret)
3e32cb2e 2732 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2733
2734 return ret;
2735}
2736
3e32cb2e
JW
2737static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2738 unsigned long nr_pages)
7ae1e1d0 2739{
3e32cb2e 2740 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2741 if (do_swap_account)
3e32cb2e 2742 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2743
64f21993 2744 page_counter_uncharge(&memcg->kmem, nr_pages);
e8ea14cc
JW
2745
2746 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2747}
2748
2633d7a0
GC
2749/*
2750 * helper for acessing a memcg's index. It will be used as an index in the
2751 * child cache array in kmem_cache, and also to derive its name. This function
2752 * will return -1 when this is not a kmem-limited memcg.
2753 */
2754int memcg_cache_id(struct mem_cgroup *memcg)
2755{
2756 return memcg ? memcg->kmemcg_id : -1;
2757}
2758
f3bb3043 2759static int memcg_alloc_cache_id(void)
55007d84 2760{
f3bb3043
VD
2761 int id, size;
2762 int err;
2763
2764 id = ida_simple_get(&kmem_limited_groups,
2765 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2766 if (id < 0)
2767 return id;
55007d84 2768
f3bb3043
VD
2769 if (id < memcg_limited_groups_array_size)
2770 return id;
2771
2772 /*
2773 * There's no space for the new id in memcg_caches arrays,
2774 * so we have to grow them.
2775 */
2776
2777 size = 2 * (id + 1);
55007d84
GC
2778 if (size < MEMCG_CACHES_MIN_SIZE)
2779 size = MEMCG_CACHES_MIN_SIZE;
2780 else if (size > MEMCG_CACHES_MAX_SIZE)
2781 size = MEMCG_CACHES_MAX_SIZE;
2782
f3bb3043
VD
2783 mutex_lock(&memcg_slab_mutex);
2784 err = memcg_update_all_caches(size);
2785 mutex_unlock(&memcg_slab_mutex);
2786
2787 if (err) {
2788 ida_simple_remove(&kmem_limited_groups, id);
2789 return err;
2790 }
2791 return id;
2792}
2793
2794static void memcg_free_cache_id(int id)
2795{
2796 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2797}
2798
2799/*
2800 * We should update the current array size iff all caches updates succeed. This
2801 * can only be done from the slab side. The slab mutex needs to be held when
2802 * calling this.
2803 */
2804void memcg_update_array_size(int num)
2805{
f3bb3043 2806 memcg_limited_groups_array_size = num;
55007d84
GC
2807}
2808
776ed0f0
VD
2809static void memcg_register_cache(struct mem_cgroup *memcg,
2810 struct kmem_cache *root_cache)
2633d7a0 2811{
93f39eea
VD
2812 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2813 memcg_slab_mutex */
bd673145 2814 struct kmem_cache *cachep;
d7f25f8a
GC
2815 int id;
2816
bd673145
VD
2817 lockdep_assert_held(&memcg_slab_mutex);
2818
2819 id = memcg_cache_id(memcg);
2820
2821 /*
2822 * Since per-memcg caches are created asynchronously on first
2823 * allocation (see memcg_kmem_get_cache()), several threads can try to
2824 * create the same cache, but only one of them may succeed.
2825 */
2826 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2827 return;
2828
073ee1c6 2829 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2830 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2831 /*
bd673145
VD
2832 * If we could not create a memcg cache, do not complain, because
2833 * that's not critical at all as we can always proceed with the root
2834 * cache.
2edefe11 2835 */
bd673145
VD
2836 if (!cachep)
2837 return;
2edefe11 2838
33a690c4 2839 css_get(&memcg->css);
bd673145 2840 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2841
d7f25f8a 2842 /*
959c8963
VD
2843 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2844 * barrier here to ensure nobody will see the kmem_cache partially
2845 * initialized.
d7f25f8a 2846 */
959c8963
VD
2847 smp_wmb();
2848
bd673145
VD
2849 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2850 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2851}
d7f25f8a 2852
776ed0f0 2853static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2854{
bd673145 2855 struct kmem_cache *root_cache;
1aa13254
VD
2856 struct mem_cgroup *memcg;
2857 int id;
2858
bd673145 2859 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2860
bd673145 2861 BUG_ON(is_root_cache(cachep));
2edefe11 2862
bd673145
VD
2863 root_cache = cachep->memcg_params->root_cache;
2864 memcg = cachep->memcg_params->memcg;
96403da2 2865 id = memcg_cache_id(memcg);
d7f25f8a 2866
bd673145
VD
2867 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2868 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2869
bd673145
VD
2870 list_del(&cachep->memcg_params->list);
2871
2872 kmem_cache_destroy(cachep);
33a690c4
VD
2873
2874 /* drop the reference taken in memcg_register_cache */
2875 css_put(&memcg->css);
2633d7a0
GC
2876}
2877
0e9d92f2
GC
2878/*
2879 * During the creation a new cache, we need to disable our accounting mechanism
2880 * altogether. This is true even if we are not creating, but rather just
2881 * enqueing new caches to be created.
2882 *
2883 * This is because that process will trigger allocations; some visible, like
2884 * explicit kmallocs to auxiliary data structures, name strings and internal
2885 * cache structures; some well concealed, like INIT_WORK() that can allocate
2886 * objects during debug.
2887 *
2888 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2889 * to it. This may not be a bounded recursion: since the first cache creation
2890 * failed to complete (waiting on the allocation), we'll just try to create the
2891 * cache again, failing at the same point.
2892 *
2893 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2894 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2895 * inside the following two functions.
2896 */
2897static inline void memcg_stop_kmem_account(void)
2898{
2899 VM_BUG_ON(!current->mm);
2900 current->memcg_kmem_skip_account++;
2901}
2902
2903static inline void memcg_resume_kmem_account(void)
2904{
2905 VM_BUG_ON(!current->mm);
2906 current->memcg_kmem_skip_account--;
2907}
2908
776ed0f0 2909int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2910{
2911 struct kmem_cache *c;
b8529907 2912 int i, failed = 0;
7cf27982 2913
bd673145 2914 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2915 for_each_memcg_cache_index(i) {
2916 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2917 if (!c)
2918 continue;
2919
776ed0f0 2920 memcg_unregister_cache(c);
b8529907
VD
2921
2922 if (cache_from_memcg_idx(s, i))
2923 failed++;
7cf27982 2924 }
bd673145 2925 mutex_unlock(&memcg_slab_mutex);
b8529907 2926 return failed;
7cf27982
GC
2927}
2928
776ed0f0 2929static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2930{
2931 struct kmem_cache *cachep;
bd673145 2932 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2933
2934 if (!memcg_kmem_is_active(memcg))
2935 return;
2936
bd673145
VD
2937 mutex_lock(&memcg_slab_mutex);
2938 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2939 cachep = memcg_params_to_cache(params);
bd673145
VD
2940 kmem_cache_shrink(cachep);
2941 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 2942 memcg_unregister_cache(cachep);
1f458cbf 2943 }
bd673145 2944 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2945}
2946
776ed0f0 2947struct memcg_register_cache_work {
5722d094
VD
2948 struct mem_cgroup *memcg;
2949 struct kmem_cache *cachep;
2950 struct work_struct work;
2951};
2952
776ed0f0 2953static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2954{
776ed0f0
VD
2955 struct memcg_register_cache_work *cw =
2956 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2957 struct mem_cgroup *memcg = cw->memcg;
2958 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2959
bd673145 2960 mutex_lock(&memcg_slab_mutex);
776ed0f0 2961 memcg_register_cache(memcg, cachep);
bd673145
VD
2962 mutex_unlock(&memcg_slab_mutex);
2963
5722d094 2964 css_put(&memcg->css);
d7f25f8a
GC
2965 kfree(cw);
2966}
2967
2968/*
2969 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2970 */
776ed0f0
VD
2971static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2972 struct kmem_cache *cachep)
d7f25f8a 2973{
776ed0f0 2974 struct memcg_register_cache_work *cw;
d7f25f8a 2975
776ed0f0 2976 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
2977 if (cw == NULL) {
2978 css_put(&memcg->css);
d7f25f8a
GC
2979 return;
2980 }
2981
2982 cw->memcg = memcg;
2983 cw->cachep = cachep;
2984
776ed0f0 2985 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
2986 schedule_work(&cw->work);
2987}
2988
776ed0f0
VD
2989static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2990 struct kmem_cache *cachep)
0e9d92f2
GC
2991{
2992 /*
2993 * We need to stop accounting when we kmalloc, because if the
2994 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 2995 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
2996 *
2997 * However, it is better to enclose the whole function. Depending on
2998 * the debugging options enabled, INIT_WORK(), for instance, can
2999 * trigger an allocation. This too, will make us recurse. Because at
3000 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3001 * the safest choice is to do it like this, wrapping the whole function.
3002 */
3003 memcg_stop_kmem_account();
776ed0f0 3004 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
3005 memcg_resume_kmem_account();
3006}
c67a8a68
VD
3007
3008int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3009{
3e32cb2e 3010 unsigned int nr_pages = 1 << order;
c67a8a68
VD
3011 int res;
3012
3e32cb2e 3013 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 3014 if (!res)
3e32cb2e 3015 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
3016 return res;
3017}
3018
3019void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3020{
3e32cb2e
JW
3021 unsigned int nr_pages = 1 << order;
3022
3023 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
3024 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
3025}
3026
d7f25f8a
GC
3027/*
3028 * Return the kmem_cache we're supposed to use for a slab allocation.
3029 * We try to use the current memcg's version of the cache.
3030 *
3031 * If the cache does not exist yet, if we are the first user of it,
3032 * we either create it immediately, if possible, or create it asynchronously
3033 * in a workqueue.
3034 * In the latter case, we will let the current allocation go through with
3035 * the original cache.
3036 *
3037 * Can't be called in interrupt context or from kernel threads.
3038 * This function needs to be called with rcu_read_lock() held.
3039 */
3040struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3041 gfp_t gfp)
3042{
3043 struct mem_cgroup *memcg;
959c8963 3044 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3045
3046 VM_BUG_ON(!cachep->memcg_params);
3047 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3048
0e9d92f2
GC
3049 if (!current->mm || current->memcg_kmem_skip_account)
3050 return cachep;
3051
d7f25f8a
GC
3052 rcu_read_lock();
3053 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 3054
cf2b8fbf 3055 if (!memcg_kmem_is_active(memcg))
ca0dde97 3056 goto out;
d7f25f8a 3057
959c8963
VD
3058 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3059 if (likely(memcg_cachep)) {
3060 cachep = memcg_cachep;
ca0dde97 3061 goto out;
d7f25f8a
GC
3062 }
3063
ca0dde97 3064 /* The corresponding put will be done in the workqueue. */
ec903c0c 3065 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3066 goto out;
3067 rcu_read_unlock();
3068
3069 /*
3070 * If we are in a safe context (can wait, and not in interrupt
3071 * context), we could be be predictable and return right away.
3072 * This would guarantee that the allocation being performed
3073 * already belongs in the new cache.
3074 *
3075 * However, there are some clashes that can arrive from locking.
3076 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3077 * memcg_create_kmem_cache, this means no further allocation
3078 * could happen with the slab_mutex held. So it's better to
3079 * defer everything.
ca0dde97 3080 */
776ed0f0 3081 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3082 return cachep;
3083out:
3084 rcu_read_unlock();
3085 return cachep;
d7f25f8a 3086}
d7f25f8a 3087
7ae1e1d0
GC
3088/*
3089 * We need to verify if the allocation against current->mm->owner's memcg is
3090 * possible for the given order. But the page is not allocated yet, so we'll
3091 * need a further commit step to do the final arrangements.
3092 *
3093 * It is possible for the task to switch cgroups in this mean time, so at
3094 * commit time, we can't rely on task conversion any longer. We'll then use
3095 * the handle argument to return to the caller which cgroup we should commit
3096 * against. We could also return the memcg directly and avoid the pointer
3097 * passing, but a boolean return value gives better semantics considering
3098 * the compiled-out case as well.
3099 *
3100 * Returning true means the allocation is possible.
3101 */
3102bool
3103__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3104{
3105 struct mem_cgroup *memcg;
3106 int ret;
3107
3108 *_memcg = NULL;
6d42c232
GC
3109
3110 /*
3111 * Disabling accounting is only relevant for some specific memcg
3112 * internal allocations. Therefore we would initially not have such
52383431
VD
3113 * check here, since direct calls to the page allocator that are
3114 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3115 * outside memcg core. We are mostly concerned with cache allocations,
3116 * and by having this test at memcg_kmem_get_cache, we are already able
3117 * to relay the allocation to the root cache and bypass the memcg cache
3118 * altogether.
6d42c232
GC
3119 *
3120 * There is one exception, though: the SLUB allocator does not create
3121 * large order caches, but rather service large kmallocs directly from
3122 * the page allocator. Therefore, the following sequence when backed by
3123 * the SLUB allocator:
3124 *
f894ffa8
AM
3125 * memcg_stop_kmem_account();
3126 * kmalloc(<large_number>)
3127 * memcg_resume_kmem_account();
6d42c232
GC
3128 *
3129 * would effectively ignore the fact that we should skip accounting,
3130 * since it will drive us directly to this function without passing
3131 * through the cache selector memcg_kmem_get_cache. Such large
3132 * allocations are extremely rare but can happen, for instance, for the
3133 * cache arrays. We bring this test here.
3134 */
3135 if (!current->mm || current->memcg_kmem_skip_account)
3136 return true;
3137
df381975 3138 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 3139
cf2b8fbf 3140 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
3141 css_put(&memcg->css);
3142 return true;
3143 }
3144
3e32cb2e 3145 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
3146 if (!ret)
3147 *_memcg = memcg;
7ae1e1d0
GC
3148
3149 css_put(&memcg->css);
3150 return (ret == 0);
3151}
3152
3153void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3154 int order)
3155{
3156 struct page_cgroup *pc;
3157
3158 VM_BUG_ON(mem_cgroup_is_root(memcg));
3159
3160 /* The page allocation failed. Revert */
3161 if (!page) {
3e32cb2e 3162 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
3163 return;
3164 }
a840cda6
JW
3165 /*
3166 * The page is freshly allocated and not visible to any
3167 * outside callers yet. Set up pc non-atomically.
3168 */
7ae1e1d0 3169 pc = lookup_page_cgroup(page);
7ae1e1d0 3170 pc->mem_cgroup = memcg;
a840cda6 3171 pc->flags = PCG_USED;
7ae1e1d0
GC
3172}
3173
3174void __memcg_kmem_uncharge_pages(struct page *page, int order)
3175{
3176 struct mem_cgroup *memcg = NULL;
3177 struct page_cgroup *pc;
3178
3179
3180 pc = lookup_page_cgroup(page);
7ae1e1d0
GC
3181 if (!PageCgroupUsed(pc))
3182 return;
3183
a840cda6
JW
3184 memcg = pc->mem_cgroup;
3185 pc->flags = 0;
7ae1e1d0
GC
3186
3187 /*
3188 * We trust that only if there is a memcg associated with the page, it
3189 * is a valid allocation
3190 */
3191 if (!memcg)
3192 return;
3193
309381fe 3194 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3e32cb2e 3195 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0 3196}
1f458cbf 3197#else
776ed0f0 3198static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3199{
3200}
7ae1e1d0
GC
3201#endif /* CONFIG_MEMCG_KMEM */
3202
ca3e0214
KH
3203#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3204
ca3e0214
KH
3205/*
3206 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3207 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3208 * charge/uncharge will be never happen and move_account() is done under
3209 * compound_lock(), so we don't have to take care of races.
ca3e0214 3210 */
e94c8a9c 3211void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3212{
3213 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3214 struct page_cgroup *pc;
b070e65c 3215 struct mem_cgroup *memcg;
e94c8a9c 3216 int i;
ca3e0214 3217
3d37c4a9
KH
3218 if (mem_cgroup_disabled())
3219 return;
b070e65c
DR
3220
3221 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3222 for (i = 1; i < HPAGE_PMD_NR; i++) {
3223 pc = head_pc + i;
b070e65c 3224 pc->mem_cgroup = memcg;
0a31bc97 3225 pc->flags = head_pc->flags;
e94c8a9c 3226 }
b070e65c
DR
3227 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3228 HPAGE_PMD_NR);
ca3e0214 3229}
12d27107 3230#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3231
f817ed48 3232/**
de3638d9 3233 * mem_cgroup_move_account - move account of the page
5564e88b 3234 * @page: the page
7ec99d62 3235 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3236 * @pc: page_cgroup of the page.
3237 * @from: mem_cgroup which the page is moved from.
3238 * @to: mem_cgroup which the page is moved to. @from != @to.
3239 *
3240 * The caller must confirm following.
08e552c6 3241 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3242 * - compound_lock is held when nr_pages > 1
f817ed48 3243 *
2f3479b1
KH
3244 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3245 * from old cgroup.
f817ed48 3246 */
7ec99d62
JW
3247static int mem_cgroup_move_account(struct page *page,
3248 unsigned int nr_pages,
3249 struct page_cgroup *pc,
3250 struct mem_cgroup *from,
2f3479b1 3251 struct mem_cgroup *to)
f817ed48 3252{
de3638d9
JW
3253 unsigned long flags;
3254 int ret;
987eba66 3255
f817ed48 3256 VM_BUG_ON(from == to);
309381fe 3257 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3258 /*
3259 * The page is isolated from LRU. So, collapse function
3260 * will not handle this page. But page splitting can happen.
3261 * Do this check under compound_page_lock(). The caller should
3262 * hold it.
3263 */
3264 ret = -EBUSY;
7ec99d62 3265 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3266 goto out;
3267
0a31bc97
JW
3268 /*
3269 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3270 * of its source page while we change it: page migration takes
3271 * both pages off the LRU, but page cache replacement doesn't.
3272 */
3273 if (!trylock_page(page))
3274 goto out;
de3638d9
JW
3275
3276 ret = -EINVAL;
3277 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
0a31bc97 3278 goto out_unlock;
de3638d9 3279
312734c0 3280 move_lock_mem_cgroup(from, &flags);
f817ed48 3281
0a31bc97 3282 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3283 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3284 nr_pages);
3285 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3286 nr_pages);
3287 }
3ea67d06 3288
59d1d256
JW
3289 if (PageWriteback(page)) {
3290 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3291 nr_pages);
3292 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3293 nr_pages);
3294 }
3ea67d06 3295
0a31bc97
JW
3296 /*
3297 * It is safe to change pc->mem_cgroup here because the page
3298 * is referenced, charged, and isolated - we can't race with
3299 * uncharging, charging, migration, or LRU putback.
3300 */
d69b042f 3301
854ffa8d 3302 /* caller should have done css_get */
08e552c6 3303 pc->mem_cgroup = to;
312734c0 3304 move_unlock_mem_cgroup(from, &flags);
de3638d9 3305 ret = 0;
0a31bc97
JW
3306
3307 local_irq_disable();
3308 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3309 memcg_check_events(to, page);
0a31bc97 3310 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3311 memcg_check_events(from, page);
0a31bc97
JW
3312 local_irq_enable();
3313out_unlock:
3314 unlock_page(page);
de3638d9 3315out:
f817ed48
KH
3316 return ret;
3317}
3318
c255a458 3319#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3320static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3321 bool charge)
d13d1443 3322{
0a31bc97
JW
3323 int val = (charge) ? 1 : -1;
3324 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3325}
02491447
DN
3326
3327/**
3328 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3329 * @entry: swap entry to be moved
3330 * @from: mem_cgroup which the entry is moved from
3331 * @to: mem_cgroup which the entry is moved to
3332 *
3333 * It succeeds only when the swap_cgroup's record for this entry is the same
3334 * as the mem_cgroup's id of @from.
3335 *
3336 * Returns 0 on success, -EINVAL on failure.
3337 *
3e32cb2e 3338 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3339 * both res and memsw, and called css_get().
3340 */
3341static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3342 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3343{
3344 unsigned short old_id, new_id;
3345
34c00c31
LZ
3346 old_id = mem_cgroup_id(from);
3347 new_id = mem_cgroup_id(to);
02491447
DN
3348
3349 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3350 mem_cgroup_swap_statistics(from, false);
483c30b5 3351 mem_cgroup_swap_statistics(to, true);
02491447 3352 /*
483c30b5 3353 * This function is only called from task migration context now.
3e32cb2e 3354 * It postpones page_counter and refcount handling till the end
483c30b5 3355 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3356 * improvement. But we cannot postpone css_get(to) because if
3357 * the process that has been moved to @to does swap-in, the
3358 * refcount of @to might be decreased to 0.
3359 *
3360 * We are in attach() phase, so the cgroup is guaranteed to be
3361 * alive, so we can just call css_get().
02491447 3362 */
4050377b 3363 css_get(&to->css);
02491447
DN
3364 return 0;
3365 }
3366 return -EINVAL;
3367}
3368#else
3369static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3370 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3371{
3372 return -EINVAL;
3373}
8c7c6e34 3374#endif
d13d1443 3375
f212ad7c
DN
3376#ifdef CONFIG_DEBUG_VM
3377static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3378{
3379 struct page_cgroup *pc;
3380
3381 pc = lookup_page_cgroup(page);
cfa44946
JW
3382 /*
3383 * Can be NULL while feeding pages into the page allocator for
3384 * the first time, i.e. during boot or memory hotplug;
3385 * or when mem_cgroup_disabled().
3386 */
f212ad7c
DN
3387 if (likely(pc) && PageCgroupUsed(pc))
3388 return pc;
3389 return NULL;
3390}
3391
3392bool mem_cgroup_bad_page_check(struct page *page)
3393{
3394 if (mem_cgroup_disabled())
3395 return false;
3396
3397 return lookup_page_cgroup_used(page) != NULL;
3398}
3399
3400void mem_cgroup_print_bad_page(struct page *page)
3401{
3402 struct page_cgroup *pc;
3403
3404 pc = lookup_page_cgroup_used(page);
3405 if (pc) {
d045197f
AM
3406 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3407 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3408 }
3409}
3410#endif
3411
3e32cb2e
JW
3412static DEFINE_MUTEX(memcg_limit_mutex);
3413
d38d2a75 3414static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3415 unsigned long limit)
628f4235 3416{
3e32cb2e
JW
3417 unsigned long curusage;
3418 unsigned long oldusage;
3419 bool enlarge = false;
81d39c20 3420 int retry_count;
3e32cb2e 3421 int ret;
81d39c20
KH
3422
3423 /*
3424 * For keeping hierarchical_reclaim simple, how long we should retry
3425 * is depends on callers. We set our retry-count to be function
3426 * of # of children which we should visit in this loop.
3427 */
3e32cb2e
JW
3428 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3429 mem_cgroup_count_children(memcg);
81d39c20 3430
3e32cb2e 3431 oldusage = page_counter_read(&memcg->memory);
628f4235 3432
3e32cb2e 3433 do {
628f4235
KH
3434 if (signal_pending(current)) {
3435 ret = -EINTR;
3436 break;
3437 }
3e32cb2e
JW
3438
3439 mutex_lock(&memcg_limit_mutex);
3440 if (limit > memcg->memsw.limit) {
3441 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3442 ret = -EINVAL;
628f4235
KH
3443 break;
3444 }
3e32cb2e
JW
3445 if (limit > memcg->memory.limit)
3446 enlarge = true;
3447 ret = page_counter_limit(&memcg->memory, limit);
3448 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3449
3450 if (!ret)
3451 break;
3452
b70a2a21
JW
3453 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3454
3e32cb2e 3455 curusage = page_counter_read(&memcg->memory);
81d39c20 3456 /* Usage is reduced ? */
f894ffa8 3457 if (curusage >= oldusage)
81d39c20
KH
3458 retry_count--;
3459 else
3460 oldusage = curusage;
3e32cb2e
JW
3461 } while (retry_count);
3462
3c11ecf4
KH
3463 if (!ret && enlarge)
3464 memcg_oom_recover(memcg);
14797e23 3465
8c7c6e34
KH
3466 return ret;
3467}
3468
338c8431 3469static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3470 unsigned long limit)
8c7c6e34 3471{
3e32cb2e
JW
3472 unsigned long curusage;
3473 unsigned long oldusage;
3474 bool enlarge = false;
81d39c20 3475 int retry_count;
3e32cb2e 3476 int ret;
8c7c6e34 3477
81d39c20 3478 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3479 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3480 mem_cgroup_count_children(memcg);
3481
3482 oldusage = page_counter_read(&memcg->memsw);
3483
3484 do {
8c7c6e34
KH
3485 if (signal_pending(current)) {
3486 ret = -EINTR;
3487 break;
3488 }
3e32cb2e
JW
3489
3490 mutex_lock(&memcg_limit_mutex);
3491 if (limit < memcg->memory.limit) {
3492 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3493 ret = -EINVAL;
8c7c6e34
KH
3494 break;
3495 }
3e32cb2e
JW
3496 if (limit > memcg->memsw.limit)
3497 enlarge = true;
3498 ret = page_counter_limit(&memcg->memsw, limit);
3499 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3500
3501 if (!ret)
3502 break;
3503
b70a2a21
JW
3504 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3505
3e32cb2e 3506 curusage = page_counter_read(&memcg->memsw);
81d39c20 3507 /* Usage is reduced ? */
8c7c6e34 3508 if (curusage >= oldusage)
628f4235 3509 retry_count--;
81d39c20
KH
3510 else
3511 oldusage = curusage;
3e32cb2e
JW
3512 } while (retry_count);
3513
3c11ecf4
KH
3514 if (!ret && enlarge)
3515 memcg_oom_recover(memcg);
3e32cb2e 3516
628f4235
KH
3517 return ret;
3518}
3519
0608f43d
AM
3520unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3521 gfp_t gfp_mask,
3522 unsigned long *total_scanned)
3523{
3524 unsigned long nr_reclaimed = 0;
3525 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3526 unsigned long reclaimed;
3527 int loop = 0;
3528 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3529 unsigned long excess;
0608f43d
AM
3530 unsigned long nr_scanned;
3531
3532 if (order > 0)
3533 return 0;
3534
3535 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3536 /*
3537 * This loop can run a while, specially if mem_cgroup's continuously
3538 * keep exceeding their soft limit and putting the system under
3539 * pressure
3540 */
3541 do {
3542 if (next_mz)
3543 mz = next_mz;
3544 else
3545 mz = mem_cgroup_largest_soft_limit_node(mctz);
3546 if (!mz)
3547 break;
3548
3549 nr_scanned = 0;
3550 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3551 gfp_mask, &nr_scanned);
3552 nr_reclaimed += reclaimed;
3553 *total_scanned += nr_scanned;
0a31bc97 3554 spin_lock_irq(&mctz->lock);
0608f43d
AM
3555
3556 /*
3557 * If we failed to reclaim anything from this memory cgroup
3558 * it is time to move on to the next cgroup
3559 */
3560 next_mz = NULL;
3561 if (!reclaimed) {
3562 do {
3563 /*
3564 * Loop until we find yet another one.
3565 *
3566 * By the time we get the soft_limit lock
3567 * again, someone might have aded the
3568 * group back on the RB tree. Iterate to
3569 * make sure we get a different mem.
3570 * mem_cgroup_largest_soft_limit_node returns
3571 * NULL if no other cgroup is present on
3572 * the tree
3573 */
3574 next_mz =
3575 __mem_cgroup_largest_soft_limit_node(mctz);
3576 if (next_mz == mz)
3577 css_put(&next_mz->memcg->css);
3578 else /* next_mz == NULL or other memcg */
3579 break;
3580 } while (1);
3581 }
cf2c8127 3582 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 3583 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3584 /*
3585 * One school of thought says that we should not add
3586 * back the node to the tree if reclaim returns 0.
3587 * But our reclaim could return 0, simply because due
3588 * to priority we are exposing a smaller subset of
3589 * memory to reclaim from. Consider this as a longer
3590 * term TODO.
3591 */
3592 /* If excess == 0, no tree ops */
cf2c8127 3593 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3594 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3595 css_put(&mz->memcg->css);
3596 loop++;
3597 /*
3598 * Could not reclaim anything and there are no more
3599 * mem cgroups to try or we seem to be looping without
3600 * reclaiming anything.
3601 */
3602 if (!nr_reclaimed &&
3603 (next_mz == NULL ||
3604 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3605 break;
3606 } while (!nr_reclaimed);
3607 if (next_mz)
3608 css_put(&next_mz->memcg->css);
3609 return nr_reclaimed;
3610}
3611
ea280e7b
TH
3612/*
3613 * Test whether @memcg has children, dead or alive. Note that this
3614 * function doesn't care whether @memcg has use_hierarchy enabled and
3615 * returns %true if there are child csses according to the cgroup
3616 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3617 */
b5f99b53
GC
3618static inline bool memcg_has_children(struct mem_cgroup *memcg)
3619{
ea280e7b
TH
3620 bool ret;
3621
696ac172 3622 /*
ea280e7b
TH
3623 * The lock does not prevent addition or deletion of children, but
3624 * it prevents a new child from being initialized based on this
3625 * parent in css_online(), so it's enough to decide whether
3626 * hierarchically inherited attributes can still be changed or not.
696ac172 3627 */
ea280e7b
TH
3628 lockdep_assert_held(&memcg_create_mutex);
3629
3630 rcu_read_lock();
3631 ret = css_next_child(NULL, &memcg->css);
3632 rcu_read_unlock();
3633 return ret;
b5f99b53
GC
3634}
3635
c26251f9
MH
3636/*
3637 * Reclaims as many pages from the given memcg as possible and moves
3638 * the rest to the parent.
3639 *
3640 * Caller is responsible for holding css reference for memcg.
3641 */
3642static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3643{
3644 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3645
c1e862c1
KH
3646 /* we call try-to-free pages for make this cgroup empty */
3647 lru_add_drain_all();
f817ed48 3648 /* try to free all pages in this cgroup */
3e32cb2e 3649 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3650 int progress;
c1e862c1 3651
c26251f9
MH
3652 if (signal_pending(current))
3653 return -EINTR;
3654
b70a2a21
JW
3655 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3656 GFP_KERNEL, true);
c1e862c1 3657 if (!progress) {
f817ed48 3658 nr_retries--;
c1e862c1 3659 /* maybe some writeback is necessary */
8aa7e847 3660 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3661 }
f817ed48
KH
3662
3663 }
ab5196c2
MH
3664
3665 return 0;
cc847582
KH
3666}
3667
6770c64e
TH
3668static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3669 char *buf, size_t nbytes,
3670 loff_t off)
c1e862c1 3671{
6770c64e 3672 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3673
d8423011
MH
3674 if (mem_cgroup_is_root(memcg))
3675 return -EINVAL;
6770c64e 3676 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3677}
3678
182446d0
TH
3679static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3680 struct cftype *cft)
18f59ea7 3681{
182446d0 3682 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3683}
3684
182446d0
TH
3685static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3686 struct cftype *cft, u64 val)
18f59ea7
BS
3687{
3688 int retval = 0;
182446d0 3689 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3690 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3691
0999821b 3692 mutex_lock(&memcg_create_mutex);
567fb435
GC
3693
3694 if (memcg->use_hierarchy == val)
3695 goto out;
3696
18f59ea7 3697 /*
af901ca1 3698 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3699 * in the child subtrees. If it is unset, then the change can
3700 * occur, provided the current cgroup has no children.
3701 *
3702 * For the root cgroup, parent_mem is NULL, we allow value to be
3703 * set if there are no children.
3704 */
c0ff4b85 3705 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3706 (val == 1 || val == 0)) {
ea280e7b 3707 if (!memcg_has_children(memcg))
c0ff4b85 3708 memcg->use_hierarchy = val;
18f59ea7
BS
3709 else
3710 retval = -EBUSY;
3711 } else
3712 retval = -EINVAL;
567fb435
GC
3713
3714out:
0999821b 3715 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3716
3717 return retval;
3718}
3719
3e32cb2e
JW
3720static unsigned long tree_stat(struct mem_cgroup *memcg,
3721 enum mem_cgroup_stat_index idx)
ce00a967
JW
3722{
3723 struct mem_cgroup *iter;
3724 long val = 0;
3725
3726 /* Per-cpu values can be negative, use a signed accumulator */
3727 for_each_mem_cgroup_tree(iter, memcg)
3728 val += mem_cgroup_read_stat(iter, idx);
3729
3730 if (val < 0) /* race ? */
3731 val = 0;
3732 return val;
3733}
3734
3735static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3736{
3737 u64 val;
3738
3e32cb2e
JW
3739 if (mem_cgroup_is_root(memcg)) {
3740 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3741 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3742 if (swap)
3743 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3744 } else {
ce00a967 3745 if (!swap)
3e32cb2e 3746 val = page_counter_read(&memcg->memory);
ce00a967 3747 else
3e32cb2e 3748 val = page_counter_read(&memcg->memsw);
ce00a967 3749 }
ce00a967
JW
3750 return val << PAGE_SHIFT;
3751}
3752
3e32cb2e
JW
3753enum {
3754 RES_USAGE,
3755 RES_LIMIT,
3756 RES_MAX_USAGE,
3757 RES_FAILCNT,
3758 RES_SOFT_LIMIT,
3759};
ce00a967 3760
791badbd 3761static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3762 struct cftype *cft)
8cdea7c0 3763{
182446d0 3764 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3765 struct page_counter *counter;
af36f906 3766
3e32cb2e 3767 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3768 case _MEM:
3e32cb2e
JW
3769 counter = &memcg->memory;
3770 break;
8c7c6e34 3771 case _MEMSWAP:
3e32cb2e
JW
3772 counter = &memcg->memsw;
3773 break;
510fc4e1 3774 case _KMEM:
3e32cb2e 3775 counter = &memcg->kmem;
510fc4e1 3776 break;
8c7c6e34
KH
3777 default:
3778 BUG();
8c7c6e34 3779 }
3e32cb2e
JW
3780
3781 switch (MEMFILE_ATTR(cft->private)) {
3782 case RES_USAGE:
3783 if (counter == &memcg->memory)
3784 return mem_cgroup_usage(memcg, false);
3785 if (counter == &memcg->memsw)
3786 return mem_cgroup_usage(memcg, true);
3787 return (u64)page_counter_read(counter) * PAGE_SIZE;
3788 case RES_LIMIT:
3789 return (u64)counter->limit * PAGE_SIZE;
3790 case RES_MAX_USAGE:
3791 return (u64)counter->watermark * PAGE_SIZE;
3792 case RES_FAILCNT:
3793 return counter->failcnt;
3794 case RES_SOFT_LIMIT:
3795 return (u64)memcg->soft_limit * PAGE_SIZE;
3796 default:
3797 BUG();
3798 }
8cdea7c0 3799}
510fc4e1 3800
510fc4e1 3801#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
3802/* should be called with activate_kmem_mutex held */
3803static int __memcg_activate_kmem(struct mem_cgroup *memcg,
3e32cb2e 3804 unsigned long nr_pages)
d6441637
VD
3805{
3806 int err = 0;
3807 int memcg_id;
3808
3809 if (memcg_kmem_is_active(memcg))
3810 return 0;
3811
3812 /*
3813 * We are going to allocate memory for data shared by all memory
3814 * cgroups so let's stop accounting here.
3815 */
3816 memcg_stop_kmem_account();
3817
510fc4e1
GC
3818 /*
3819 * For simplicity, we won't allow this to be disabled. It also can't
3820 * be changed if the cgroup has children already, or if tasks had
3821 * already joined.
3822 *
3823 * If tasks join before we set the limit, a person looking at
3824 * kmem.usage_in_bytes will have no way to determine when it took
3825 * place, which makes the value quite meaningless.
3826 *
3827 * After it first became limited, changes in the value of the limit are
3828 * of course permitted.
510fc4e1 3829 */
0999821b 3830 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3831 if (cgroup_has_tasks(memcg->css.cgroup) ||
3832 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3833 err = -EBUSY;
3834 mutex_unlock(&memcg_create_mutex);
3835 if (err)
3836 goto out;
510fc4e1 3837
f3bb3043 3838 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3839 if (memcg_id < 0) {
3840 err = memcg_id;
3841 goto out;
3842 }
3843
d6441637
VD
3844 memcg->kmemcg_id = memcg_id;
3845 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
3846
3847 /*
3848 * We couldn't have accounted to this cgroup, because it hasn't got the
3849 * active bit set yet, so this should succeed.
3850 */
3e32cb2e 3851 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3852 VM_BUG_ON(err);
3853
3854 static_key_slow_inc(&memcg_kmem_enabled_key);
3855 /*
3856 * Setting the active bit after enabling static branching will
3857 * guarantee no one starts accounting before all call sites are
3858 * patched.
3859 */
3860 memcg_kmem_set_active(memcg);
510fc4e1 3861out:
d6441637
VD
3862 memcg_resume_kmem_account();
3863 return err;
d6441637
VD
3864}
3865
3866static int memcg_activate_kmem(struct mem_cgroup *memcg,
3e32cb2e 3867 unsigned long nr_pages)
d6441637
VD
3868{
3869 int ret;
3870
3871 mutex_lock(&activate_kmem_mutex);
3e32cb2e 3872 ret = __memcg_activate_kmem(memcg, nr_pages);
d6441637
VD
3873 mutex_unlock(&activate_kmem_mutex);
3874 return ret;
3875}
3876
3877static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3878 unsigned long limit)
d6441637
VD
3879{
3880 int ret;
3881
3e32cb2e 3882 mutex_lock(&memcg_limit_mutex);
d6441637 3883 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3884 ret = memcg_activate_kmem(memcg, limit);
d6441637 3885 else
3e32cb2e
JW
3886 ret = page_counter_limit(&memcg->kmem, limit);
3887 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3888 return ret;
3889}
3890
55007d84 3891static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3892{
55007d84 3893 int ret = 0;
510fc4e1 3894 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3895
d6441637
VD
3896 if (!parent)
3897 return 0;
55007d84 3898
d6441637 3899 mutex_lock(&activate_kmem_mutex);
55007d84 3900 /*
d6441637
VD
3901 * If the parent cgroup is not kmem-active now, it cannot be activated
3902 * after this point, because it has at least one child already.
55007d84 3903 */
d6441637 3904 if (memcg_kmem_is_active(parent))
3e32cb2e 3905 ret = __memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
d6441637 3906 mutex_unlock(&activate_kmem_mutex);
55007d84 3907 return ret;
510fc4e1 3908}
d6441637
VD
3909#else
3910static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3911 unsigned long limit)
d6441637
VD
3912{
3913 return -EINVAL;
3914}
6d043990 3915#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3916
628f4235
KH
3917/*
3918 * The user of this function is...
3919 * RES_LIMIT.
3920 */
451af504
TH
3921static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3922 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3923{
451af504 3924 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3925 unsigned long nr_pages;
628f4235
KH
3926 int ret;
3927
451af504 3928 buf = strstrip(buf);
3e32cb2e
JW
3929 ret = page_counter_memparse(buf, &nr_pages);
3930 if (ret)
3931 return ret;
af36f906 3932
3e32cb2e 3933 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3934 case RES_LIMIT:
4b3bde4c
BS
3935 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3936 ret = -EINVAL;
3937 break;
3938 }
3e32cb2e
JW
3939 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3940 case _MEM:
3941 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3942 break;
3e32cb2e
JW
3943 case _MEMSWAP:
3944 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3945 break;
3e32cb2e
JW
3946 case _KMEM:
3947 ret = memcg_update_kmem_limit(memcg, nr_pages);
3948 break;
3949 }
296c81d8 3950 break;
3e32cb2e
JW
3951 case RES_SOFT_LIMIT:
3952 memcg->soft_limit = nr_pages;
3953 ret = 0;
628f4235
KH
3954 break;
3955 }
451af504 3956 return ret ?: nbytes;
8cdea7c0
BS
3957}
3958
6770c64e
TH
3959static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3960 size_t nbytes, loff_t off)
c84872e1 3961{
6770c64e 3962 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3963 struct page_counter *counter;
c84872e1 3964
3e32cb2e
JW
3965 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3966 case _MEM:
3967 counter = &memcg->memory;
3968 break;
3969 case _MEMSWAP:
3970 counter = &memcg->memsw;
3971 break;
3972 case _KMEM:
3973 counter = &memcg->kmem;
3974 break;
3975 default:
3976 BUG();
3977 }
af36f906 3978
3e32cb2e 3979 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3980 case RES_MAX_USAGE:
3e32cb2e 3981 page_counter_reset_watermark(counter);
29f2a4da
PE
3982 break;
3983 case RES_FAILCNT:
3e32cb2e 3984 counter->failcnt = 0;
29f2a4da 3985 break;
3e32cb2e
JW
3986 default:
3987 BUG();
29f2a4da 3988 }
f64c3f54 3989
6770c64e 3990 return nbytes;
c84872e1
PE
3991}
3992
182446d0 3993static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3994 struct cftype *cft)
3995{
182446d0 3996 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3997}
3998
02491447 3999#ifdef CONFIG_MMU
182446d0 4000static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
4001 struct cftype *cft, u64 val)
4002{
182446d0 4003 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
4004
4005 if (val >= (1 << NR_MOVE_TYPE))
4006 return -EINVAL;
ee5e8472 4007
7dc74be0 4008 /*
ee5e8472
GC
4009 * No kind of locking is needed in here, because ->can_attach() will
4010 * check this value once in the beginning of the process, and then carry
4011 * on with stale data. This means that changes to this value will only
4012 * affect task migrations starting after the change.
7dc74be0 4013 */
c0ff4b85 4014 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4015 return 0;
4016}
02491447 4017#else
182446d0 4018static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4019 struct cftype *cft, u64 val)
4020{
4021 return -ENOSYS;
4022}
4023#endif
7dc74be0 4024
406eb0c9 4025#ifdef CONFIG_NUMA
2da8ca82 4026static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4027{
25485de6
GT
4028 struct numa_stat {
4029 const char *name;
4030 unsigned int lru_mask;
4031 };
4032
4033 static const struct numa_stat stats[] = {
4034 { "total", LRU_ALL },
4035 { "file", LRU_ALL_FILE },
4036 { "anon", LRU_ALL_ANON },
4037 { "unevictable", BIT(LRU_UNEVICTABLE) },
4038 };
4039 const struct numa_stat *stat;
406eb0c9 4040 int nid;
25485de6 4041 unsigned long nr;
2da8ca82 4042 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 4043
25485de6
GT
4044 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4045 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4046 seq_printf(m, "%s=%lu", stat->name, nr);
4047 for_each_node_state(nid, N_MEMORY) {
4048 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4049 stat->lru_mask);
4050 seq_printf(m, " N%d=%lu", nid, nr);
4051 }
4052 seq_putc(m, '\n');
406eb0c9 4053 }
406eb0c9 4054
071aee13
YH
4055 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4056 struct mem_cgroup *iter;
4057
4058 nr = 0;
4059 for_each_mem_cgroup_tree(iter, memcg)
4060 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4061 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4062 for_each_node_state(nid, N_MEMORY) {
4063 nr = 0;
4064 for_each_mem_cgroup_tree(iter, memcg)
4065 nr += mem_cgroup_node_nr_lru_pages(
4066 iter, nid, stat->lru_mask);
4067 seq_printf(m, " N%d=%lu", nid, nr);
4068 }
4069 seq_putc(m, '\n');
406eb0c9 4070 }
406eb0c9 4071
406eb0c9
YH
4072 return 0;
4073}
4074#endif /* CONFIG_NUMA */
4075
af7c4b0e
JW
4076static inline void mem_cgroup_lru_names_not_uptodate(void)
4077{
4078 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4079}
4080
2da8ca82 4081static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4082{
2da8ca82 4083 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 4084 unsigned long memory, memsw;
af7c4b0e
JW
4085 struct mem_cgroup *mi;
4086 unsigned int i;
406eb0c9 4087
af7c4b0e 4088 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4089 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4090 continue;
af7c4b0e
JW
4091 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4092 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4093 }
7b854121 4094
af7c4b0e
JW
4095 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4096 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4097 mem_cgroup_read_events(memcg, i));
4098
4099 for (i = 0; i < NR_LRU_LISTS; i++)
4100 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4101 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4102
14067bb3 4103 /* Hierarchical information */
3e32cb2e
JW
4104 memory = memsw = PAGE_COUNTER_MAX;
4105 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4106 memory = min(memory, mi->memory.limit);
4107 memsw = min(memsw, mi->memsw.limit);
fee7b548 4108 }
3e32cb2e
JW
4109 seq_printf(m, "hierarchical_memory_limit %llu\n",
4110 (u64)memory * PAGE_SIZE);
4111 if (do_swap_account)
4112 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4113 (u64)memsw * PAGE_SIZE);
7f016ee8 4114
af7c4b0e
JW
4115 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4116 long long val = 0;
4117
bff6bb83 4118 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4119 continue;
af7c4b0e
JW
4120 for_each_mem_cgroup_tree(mi, memcg)
4121 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4122 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4123 }
4124
4125 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4126 unsigned long long val = 0;
4127
4128 for_each_mem_cgroup_tree(mi, memcg)
4129 val += mem_cgroup_read_events(mi, i);
4130 seq_printf(m, "total_%s %llu\n",
4131 mem_cgroup_events_names[i], val);
4132 }
4133
4134 for (i = 0; i < NR_LRU_LISTS; i++) {
4135 unsigned long long val = 0;
4136
4137 for_each_mem_cgroup_tree(mi, memcg)
4138 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4139 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4140 }
14067bb3 4141
7f016ee8 4142#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4143 {
4144 int nid, zid;
4145 struct mem_cgroup_per_zone *mz;
89abfab1 4146 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4147 unsigned long recent_rotated[2] = {0, 0};
4148 unsigned long recent_scanned[2] = {0, 0};
4149
4150 for_each_online_node(nid)
4151 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 4152 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 4153 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4154
89abfab1
HD
4155 recent_rotated[0] += rstat->recent_rotated[0];
4156 recent_rotated[1] += rstat->recent_rotated[1];
4157 recent_scanned[0] += rstat->recent_scanned[0];
4158 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4159 }
78ccf5b5
JW
4160 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4161 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4162 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4163 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4164 }
4165#endif
4166
d2ceb9b7
KH
4167 return 0;
4168}
4169
182446d0
TH
4170static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4171 struct cftype *cft)
a7885eb8 4172{
182446d0 4173 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4174
1f4c025b 4175 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4176}
4177
182446d0
TH
4178static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4179 struct cftype *cft, u64 val)
a7885eb8 4180{
182446d0 4181 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4182
3dae7fec 4183 if (val > 100)
a7885eb8
KM
4184 return -EINVAL;
4185
14208b0e 4186 if (css->parent)
3dae7fec
JW
4187 memcg->swappiness = val;
4188 else
4189 vm_swappiness = val;
068b38c1 4190
a7885eb8
KM
4191 return 0;
4192}
4193
2e72b634
KS
4194static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4195{
4196 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4197 unsigned long usage;
2e72b634
KS
4198 int i;
4199
4200 rcu_read_lock();
4201 if (!swap)
2c488db2 4202 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4203 else
2c488db2 4204 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4205
4206 if (!t)
4207 goto unlock;
4208
ce00a967 4209 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4210
4211 /*
748dad36 4212 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4213 * If it's not true, a threshold was crossed after last
4214 * call of __mem_cgroup_threshold().
4215 */
5407a562 4216 i = t->current_threshold;
2e72b634
KS
4217
4218 /*
4219 * Iterate backward over array of thresholds starting from
4220 * current_threshold and check if a threshold is crossed.
4221 * If none of thresholds below usage is crossed, we read
4222 * only one element of the array here.
4223 */
4224 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4225 eventfd_signal(t->entries[i].eventfd, 1);
4226
4227 /* i = current_threshold + 1 */
4228 i++;
4229
4230 /*
4231 * Iterate forward over array of thresholds starting from
4232 * current_threshold+1 and check if a threshold is crossed.
4233 * If none of thresholds above usage is crossed, we read
4234 * only one element of the array here.
4235 */
4236 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4237 eventfd_signal(t->entries[i].eventfd, 1);
4238
4239 /* Update current_threshold */
5407a562 4240 t->current_threshold = i - 1;
2e72b634
KS
4241unlock:
4242 rcu_read_unlock();
4243}
4244
4245static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4246{
ad4ca5f4
KS
4247 while (memcg) {
4248 __mem_cgroup_threshold(memcg, false);
4249 if (do_swap_account)
4250 __mem_cgroup_threshold(memcg, true);
4251
4252 memcg = parent_mem_cgroup(memcg);
4253 }
2e72b634
KS
4254}
4255
4256static int compare_thresholds(const void *a, const void *b)
4257{
4258 const struct mem_cgroup_threshold *_a = a;
4259 const struct mem_cgroup_threshold *_b = b;
4260
2bff24a3
GT
4261 if (_a->threshold > _b->threshold)
4262 return 1;
4263
4264 if (_a->threshold < _b->threshold)
4265 return -1;
4266
4267 return 0;
2e72b634
KS
4268}
4269
c0ff4b85 4270static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4271{
4272 struct mem_cgroup_eventfd_list *ev;
4273
2bcf2e92
MH
4274 spin_lock(&memcg_oom_lock);
4275
c0ff4b85 4276 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4277 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4278
4279 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4280 return 0;
4281}
4282
c0ff4b85 4283static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4284{
7d74b06f
KH
4285 struct mem_cgroup *iter;
4286
c0ff4b85 4287 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4288 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4289}
4290
59b6f873 4291static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4292 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4293{
2c488db2
KS
4294 struct mem_cgroup_thresholds *thresholds;
4295 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4296 unsigned long threshold;
4297 unsigned long usage;
2c488db2 4298 int i, size, ret;
2e72b634 4299
3e32cb2e 4300 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
4301 if (ret)
4302 return ret;
4303
4304 mutex_lock(&memcg->thresholds_lock);
2c488db2 4305
05b84301 4306 if (type == _MEM) {
2c488db2 4307 thresholds = &memcg->thresholds;
ce00a967 4308 usage = mem_cgroup_usage(memcg, false);
05b84301 4309 } else if (type == _MEMSWAP) {
2c488db2 4310 thresholds = &memcg->memsw_thresholds;
ce00a967 4311 usage = mem_cgroup_usage(memcg, true);
05b84301 4312 } else
2e72b634
KS
4313 BUG();
4314
2e72b634 4315 /* Check if a threshold crossed before adding a new one */
2c488db2 4316 if (thresholds->primary)
2e72b634
KS
4317 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4318
2c488db2 4319 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4320
4321 /* Allocate memory for new array of thresholds */
2c488db2 4322 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4323 GFP_KERNEL);
2c488db2 4324 if (!new) {
2e72b634
KS
4325 ret = -ENOMEM;
4326 goto unlock;
4327 }
2c488db2 4328 new->size = size;
2e72b634
KS
4329
4330 /* Copy thresholds (if any) to new array */
2c488db2
KS
4331 if (thresholds->primary) {
4332 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4333 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4334 }
4335
2e72b634 4336 /* Add new threshold */
2c488db2
KS
4337 new->entries[size - 1].eventfd = eventfd;
4338 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4339
4340 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4341 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4342 compare_thresholds, NULL);
4343
4344 /* Find current threshold */
2c488db2 4345 new->current_threshold = -1;
2e72b634 4346 for (i = 0; i < size; i++) {
748dad36 4347 if (new->entries[i].threshold <= usage) {
2e72b634 4348 /*
2c488db2
KS
4349 * new->current_threshold will not be used until
4350 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4351 * it here.
4352 */
2c488db2 4353 ++new->current_threshold;
748dad36
SZ
4354 } else
4355 break;
2e72b634
KS
4356 }
4357
2c488db2
KS
4358 /* Free old spare buffer and save old primary buffer as spare */
4359 kfree(thresholds->spare);
4360 thresholds->spare = thresholds->primary;
4361
4362 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4363
907860ed 4364 /* To be sure that nobody uses thresholds */
2e72b634
KS
4365 synchronize_rcu();
4366
2e72b634
KS
4367unlock:
4368 mutex_unlock(&memcg->thresholds_lock);
4369
4370 return ret;
4371}
4372
59b6f873 4373static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4374 struct eventfd_ctx *eventfd, const char *args)
4375{
59b6f873 4376 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4377}
4378
59b6f873 4379static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4380 struct eventfd_ctx *eventfd, const char *args)
4381{
59b6f873 4382 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4383}
4384
59b6f873 4385static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4386 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4387{
2c488db2
KS
4388 struct mem_cgroup_thresholds *thresholds;
4389 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4390 unsigned long usage;
2c488db2 4391 int i, j, size;
2e72b634
KS
4392
4393 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4394
4395 if (type == _MEM) {
2c488db2 4396 thresholds = &memcg->thresholds;
ce00a967 4397 usage = mem_cgroup_usage(memcg, false);
05b84301 4398 } else if (type == _MEMSWAP) {
2c488db2 4399 thresholds = &memcg->memsw_thresholds;
ce00a967 4400 usage = mem_cgroup_usage(memcg, true);
05b84301 4401 } else
2e72b634
KS
4402 BUG();
4403
371528ca
AV
4404 if (!thresholds->primary)
4405 goto unlock;
4406
2e72b634
KS
4407 /* Check if a threshold crossed before removing */
4408 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4409
4410 /* Calculate new number of threshold */
2c488db2
KS
4411 size = 0;
4412 for (i = 0; i < thresholds->primary->size; i++) {
4413 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4414 size++;
4415 }
4416
2c488db2 4417 new = thresholds->spare;
907860ed 4418
2e72b634
KS
4419 /* Set thresholds array to NULL if we don't have thresholds */
4420 if (!size) {
2c488db2
KS
4421 kfree(new);
4422 new = NULL;
907860ed 4423 goto swap_buffers;
2e72b634
KS
4424 }
4425
2c488db2 4426 new->size = size;
2e72b634
KS
4427
4428 /* Copy thresholds and find current threshold */
2c488db2
KS
4429 new->current_threshold = -1;
4430 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4431 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4432 continue;
4433
2c488db2 4434 new->entries[j] = thresholds->primary->entries[i];
748dad36 4435 if (new->entries[j].threshold <= usage) {
2e72b634 4436 /*
2c488db2 4437 * new->current_threshold will not be used
2e72b634
KS
4438 * until rcu_assign_pointer(), so it's safe to increment
4439 * it here.
4440 */
2c488db2 4441 ++new->current_threshold;
2e72b634
KS
4442 }
4443 j++;
4444 }
4445
907860ed 4446swap_buffers:
2c488db2
KS
4447 /* Swap primary and spare array */
4448 thresholds->spare = thresholds->primary;
8c757763
SZ
4449 /* If all events are unregistered, free the spare array */
4450 if (!new) {
4451 kfree(thresholds->spare);
4452 thresholds->spare = NULL;
4453 }
4454
2c488db2 4455 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4456
907860ed 4457 /* To be sure that nobody uses thresholds */
2e72b634 4458 synchronize_rcu();
371528ca 4459unlock:
2e72b634 4460 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4461}
c1e862c1 4462
59b6f873 4463static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4464 struct eventfd_ctx *eventfd)
4465{
59b6f873 4466 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4467}
4468
59b6f873 4469static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4470 struct eventfd_ctx *eventfd)
4471{
59b6f873 4472 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4473}
4474
59b6f873 4475static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4476 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4477{
9490ff27 4478 struct mem_cgroup_eventfd_list *event;
9490ff27 4479
9490ff27
KH
4480 event = kmalloc(sizeof(*event), GFP_KERNEL);
4481 if (!event)
4482 return -ENOMEM;
4483
1af8efe9 4484 spin_lock(&memcg_oom_lock);
9490ff27
KH
4485
4486 event->eventfd = eventfd;
4487 list_add(&event->list, &memcg->oom_notify);
4488
4489 /* already in OOM ? */
79dfdacc 4490 if (atomic_read(&memcg->under_oom))
9490ff27 4491 eventfd_signal(eventfd, 1);
1af8efe9 4492 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4493
4494 return 0;
4495}
4496
59b6f873 4497static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4498 struct eventfd_ctx *eventfd)
9490ff27 4499{
9490ff27 4500 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4501
1af8efe9 4502 spin_lock(&memcg_oom_lock);
9490ff27 4503
c0ff4b85 4504 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4505 if (ev->eventfd == eventfd) {
4506 list_del(&ev->list);
4507 kfree(ev);
4508 }
4509 }
4510
1af8efe9 4511 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4512}
4513
2da8ca82 4514static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4515{
2da8ca82 4516 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4517
791badbd
TH
4518 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4519 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4520 return 0;
4521}
4522
182446d0 4523static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4524 struct cftype *cft, u64 val)
4525{
182446d0 4526 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4527
4528 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4529 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4530 return -EINVAL;
4531
c0ff4b85 4532 memcg->oom_kill_disable = val;
4d845ebf 4533 if (!val)
c0ff4b85 4534 memcg_oom_recover(memcg);
3dae7fec 4535
3c11ecf4
KH
4536 return 0;
4537}
4538
c255a458 4539#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4540static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4541{
55007d84
GC
4542 int ret;
4543
2633d7a0 4544 memcg->kmemcg_id = -1;
55007d84
GC
4545 ret = memcg_propagate_kmem(memcg);
4546 if (ret)
4547 return ret;
2633d7a0 4548
1d62e436 4549 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4550}
e5671dfa 4551
10d5ebf4 4552static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4553{
1d62e436 4554 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4555}
e5671dfa 4556#else
cbe128e3 4557static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4558{
4559 return 0;
4560}
d1a4c0b3 4561
10d5ebf4
LZ
4562static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4563{
4564}
e5671dfa
GC
4565#endif
4566
3bc942f3
TH
4567/*
4568 * DO NOT USE IN NEW FILES.
4569 *
4570 * "cgroup.event_control" implementation.
4571 *
4572 * This is way over-engineered. It tries to support fully configurable
4573 * events for each user. Such level of flexibility is completely
4574 * unnecessary especially in the light of the planned unified hierarchy.
4575 *
4576 * Please deprecate this and replace with something simpler if at all
4577 * possible.
4578 */
4579
79bd9814
TH
4580/*
4581 * Unregister event and free resources.
4582 *
4583 * Gets called from workqueue.
4584 */
3bc942f3 4585static void memcg_event_remove(struct work_struct *work)
79bd9814 4586{
3bc942f3
TH
4587 struct mem_cgroup_event *event =
4588 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4589 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4590
4591 remove_wait_queue(event->wqh, &event->wait);
4592
59b6f873 4593 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4594
4595 /* Notify userspace the event is going away. */
4596 eventfd_signal(event->eventfd, 1);
4597
4598 eventfd_ctx_put(event->eventfd);
4599 kfree(event);
59b6f873 4600 css_put(&memcg->css);
79bd9814
TH
4601}
4602
4603/*
4604 * Gets called on POLLHUP on eventfd when user closes it.
4605 *
4606 * Called with wqh->lock held and interrupts disabled.
4607 */
3bc942f3
TH
4608static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4609 int sync, void *key)
79bd9814 4610{
3bc942f3
TH
4611 struct mem_cgroup_event *event =
4612 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4613 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4614 unsigned long flags = (unsigned long)key;
4615
4616 if (flags & POLLHUP) {
4617 /*
4618 * If the event has been detached at cgroup removal, we
4619 * can simply return knowing the other side will cleanup
4620 * for us.
4621 *
4622 * We can't race against event freeing since the other
4623 * side will require wqh->lock via remove_wait_queue(),
4624 * which we hold.
4625 */
fba94807 4626 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4627 if (!list_empty(&event->list)) {
4628 list_del_init(&event->list);
4629 /*
4630 * We are in atomic context, but cgroup_event_remove()
4631 * may sleep, so we have to call it in workqueue.
4632 */
4633 schedule_work(&event->remove);
4634 }
fba94807 4635 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4636 }
4637
4638 return 0;
4639}
4640
3bc942f3 4641static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4642 wait_queue_head_t *wqh, poll_table *pt)
4643{
3bc942f3
TH
4644 struct mem_cgroup_event *event =
4645 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4646
4647 event->wqh = wqh;
4648 add_wait_queue(wqh, &event->wait);
4649}
4650
4651/*
3bc942f3
TH
4652 * DO NOT USE IN NEW FILES.
4653 *
79bd9814
TH
4654 * Parse input and register new cgroup event handler.
4655 *
4656 * Input must be in format '<event_fd> <control_fd> <args>'.
4657 * Interpretation of args is defined by control file implementation.
4658 */
451af504
TH
4659static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4660 char *buf, size_t nbytes, loff_t off)
79bd9814 4661{
451af504 4662 struct cgroup_subsys_state *css = of_css(of);
fba94807 4663 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4664 struct mem_cgroup_event *event;
79bd9814
TH
4665 struct cgroup_subsys_state *cfile_css;
4666 unsigned int efd, cfd;
4667 struct fd efile;
4668 struct fd cfile;
fba94807 4669 const char *name;
79bd9814
TH
4670 char *endp;
4671 int ret;
4672
451af504
TH
4673 buf = strstrip(buf);
4674
4675 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4676 if (*endp != ' ')
4677 return -EINVAL;
451af504 4678 buf = endp + 1;
79bd9814 4679
451af504 4680 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4681 if ((*endp != ' ') && (*endp != '\0'))
4682 return -EINVAL;
451af504 4683 buf = endp + 1;
79bd9814
TH
4684
4685 event = kzalloc(sizeof(*event), GFP_KERNEL);
4686 if (!event)
4687 return -ENOMEM;
4688
59b6f873 4689 event->memcg = memcg;
79bd9814 4690 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4691 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4692 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4693 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4694
4695 efile = fdget(efd);
4696 if (!efile.file) {
4697 ret = -EBADF;
4698 goto out_kfree;
4699 }
4700
4701 event->eventfd = eventfd_ctx_fileget(efile.file);
4702 if (IS_ERR(event->eventfd)) {
4703 ret = PTR_ERR(event->eventfd);
4704 goto out_put_efile;
4705 }
4706
4707 cfile = fdget(cfd);
4708 if (!cfile.file) {
4709 ret = -EBADF;
4710 goto out_put_eventfd;
4711 }
4712
4713 /* the process need read permission on control file */
4714 /* AV: shouldn't we check that it's been opened for read instead? */
4715 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4716 if (ret < 0)
4717 goto out_put_cfile;
4718
fba94807
TH
4719 /*
4720 * Determine the event callbacks and set them in @event. This used
4721 * to be done via struct cftype but cgroup core no longer knows
4722 * about these events. The following is crude but the whole thing
4723 * is for compatibility anyway.
3bc942f3
TH
4724 *
4725 * DO NOT ADD NEW FILES.
fba94807
TH
4726 */
4727 name = cfile.file->f_dentry->d_name.name;
4728
4729 if (!strcmp(name, "memory.usage_in_bytes")) {
4730 event->register_event = mem_cgroup_usage_register_event;
4731 event->unregister_event = mem_cgroup_usage_unregister_event;
4732 } else if (!strcmp(name, "memory.oom_control")) {
4733 event->register_event = mem_cgroup_oom_register_event;
4734 event->unregister_event = mem_cgroup_oom_unregister_event;
4735 } else if (!strcmp(name, "memory.pressure_level")) {
4736 event->register_event = vmpressure_register_event;
4737 event->unregister_event = vmpressure_unregister_event;
4738 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4739 event->register_event = memsw_cgroup_usage_register_event;
4740 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4741 } else {
4742 ret = -EINVAL;
4743 goto out_put_cfile;
4744 }
4745
79bd9814 4746 /*
b5557c4c
TH
4747 * Verify @cfile should belong to @css. Also, remaining events are
4748 * automatically removed on cgroup destruction but the removal is
4749 * asynchronous, so take an extra ref on @css.
79bd9814 4750 */
ec903c0c
TH
4751 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4752 &memory_cgrp_subsys);
79bd9814 4753 ret = -EINVAL;
5a17f543 4754 if (IS_ERR(cfile_css))
79bd9814 4755 goto out_put_cfile;
5a17f543
TH
4756 if (cfile_css != css) {
4757 css_put(cfile_css);
79bd9814 4758 goto out_put_cfile;
5a17f543 4759 }
79bd9814 4760
451af504 4761 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4762 if (ret)
4763 goto out_put_css;
4764
4765 efile.file->f_op->poll(efile.file, &event->pt);
4766
fba94807
TH
4767 spin_lock(&memcg->event_list_lock);
4768 list_add(&event->list, &memcg->event_list);
4769 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4770
4771 fdput(cfile);
4772 fdput(efile);
4773
451af504 4774 return nbytes;
79bd9814
TH
4775
4776out_put_css:
b5557c4c 4777 css_put(css);
79bd9814
TH
4778out_put_cfile:
4779 fdput(cfile);
4780out_put_eventfd:
4781 eventfd_ctx_put(event->eventfd);
4782out_put_efile:
4783 fdput(efile);
4784out_kfree:
4785 kfree(event);
4786
4787 return ret;
4788}
4789
8cdea7c0
BS
4790static struct cftype mem_cgroup_files[] = {
4791 {
0eea1030 4792 .name = "usage_in_bytes",
8c7c6e34 4793 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4794 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4795 },
c84872e1
PE
4796 {
4797 .name = "max_usage_in_bytes",
8c7c6e34 4798 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4799 .write = mem_cgroup_reset,
791badbd 4800 .read_u64 = mem_cgroup_read_u64,
c84872e1 4801 },
8cdea7c0 4802 {
0eea1030 4803 .name = "limit_in_bytes",
8c7c6e34 4804 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4805 .write = mem_cgroup_write,
791badbd 4806 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4807 },
296c81d8
BS
4808 {
4809 .name = "soft_limit_in_bytes",
4810 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4811 .write = mem_cgroup_write,
791badbd 4812 .read_u64 = mem_cgroup_read_u64,
296c81d8 4813 },
8cdea7c0
BS
4814 {
4815 .name = "failcnt",
8c7c6e34 4816 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4817 .write = mem_cgroup_reset,
791badbd 4818 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4819 },
d2ceb9b7
KH
4820 {
4821 .name = "stat",
2da8ca82 4822 .seq_show = memcg_stat_show,
d2ceb9b7 4823 },
c1e862c1
KH
4824 {
4825 .name = "force_empty",
6770c64e 4826 .write = mem_cgroup_force_empty_write,
c1e862c1 4827 },
18f59ea7
BS
4828 {
4829 .name = "use_hierarchy",
4830 .write_u64 = mem_cgroup_hierarchy_write,
4831 .read_u64 = mem_cgroup_hierarchy_read,
4832 },
79bd9814 4833 {
3bc942f3 4834 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4835 .write = memcg_write_event_control,
79bd9814
TH
4836 .flags = CFTYPE_NO_PREFIX,
4837 .mode = S_IWUGO,
4838 },
a7885eb8
KM
4839 {
4840 .name = "swappiness",
4841 .read_u64 = mem_cgroup_swappiness_read,
4842 .write_u64 = mem_cgroup_swappiness_write,
4843 },
7dc74be0
DN
4844 {
4845 .name = "move_charge_at_immigrate",
4846 .read_u64 = mem_cgroup_move_charge_read,
4847 .write_u64 = mem_cgroup_move_charge_write,
4848 },
9490ff27
KH
4849 {
4850 .name = "oom_control",
2da8ca82 4851 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4852 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4853 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4854 },
70ddf637
AV
4855 {
4856 .name = "pressure_level",
70ddf637 4857 },
406eb0c9
YH
4858#ifdef CONFIG_NUMA
4859 {
4860 .name = "numa_stat",
2da8ca82 4861 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4862 },
4863#endif
510fc4e1
GC
4864#ifdef CONFIG_MEMCG_KMEM
4865 {
4866 .name = "kmem.limit_in_bytes",
4867 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4868 .write = mem_cgroup_write,
791badbd 4869 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4870 },
4871 {
4872 .name = "kmem.usage_in_bytes",
4873 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4874 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4875 },
4876 {
4877 .name = "kmem.failcnt",
4878 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4879 .write = mem_cgroup_reset,
791badbd 4880 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4881 },
4882 {
4883 .name = "kmem.max_usage_in_bytes",
4884 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4885 .write = mem_cgroup_reset,
791badbd 4886 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4887 },
749c5415
GC
4888#ifdef CONFIG_SLABINFO
4889 {
4890 .name = "kmem.slabinfo",
2da8ca82 4891 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
4892 },
4893#endif
8c7c6e34 4894#endif
6bc10349 4895 { }, /* terminate */
af36f906 4896};
8c7c6e34 4897
2d11085e
MH
4898#ifdef CONFIG_MEMCG_SWAP
4899static struct cftype memsw_cgroup_files[] = {
4900 {
4901 .name = "memsw.usage_in_bytes",
4902 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4903 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4904 },
4905 {
4906 .name = "memsw.max_usage_in_bytes",
4907 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4908 .write = mem_cgroup_reset,
791badbd 4909 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4910 },
4911 {
4912 .name = "memsw.limit_in_bytes",
4913 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4914 .write = mem_cgroup_write,
791badbd 4915 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4916 },
4917 {
4918 .name = "memsw.failcnt",
4919 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4920 .write = mem_cgroup_reset,
791badbd 4921 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4922 },
4923 { }, /* terminate */
4924};
4925#endif
c0ff4b85 4926static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4927{
4928 struct mem_cgroup_per_node *pn;
1ecaab2b 4929 struct mem_cgroup_per_zone *mz;
41e3355d 4930 int zone, tmp = node;
1ecaab2b
KH
4931 /*
4932 * This routine is called against possible nodes.
4933 * But it's BUG to call kmalloc() against offline node.
4934 *
4935 * TODO: this routine can waste much memory for nodes which will
4936 * never be onlined. It's better to use memory hotplug callback
4937 * function.
4938 */
41e3355d
KH
4939 if (!node_state(node, N_NORMAL_MEMORY))
4940 tmp = -1;
17295c88 4941 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4942 if (!pn)
4943 return 1;
1ecaab2b 4944
1ecaab2b
KH
4945 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4946 mz = &pn->zoneinfo[zone];
bea8c150 4947 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4948 mz->usage_in_excess = 0;
4949 mz->on_tree = false;
d79154bb 4950 mz->memcg = memcg;
1ecaab2b 4951 }
54f72fe0 4952 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4953 return 0;
4954}
4955
c0ff4b85 4956static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4957{
54f72fe0 4958 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4959}
4960
33327948
KH
4961static struct mem_cgroup *mem_cgroup_alloc(void)
4962{
d79154bb 4963 struct mem_cgroup *memcg;
8ff69e2c 4964 size_t size;
33327948 4965
8ff69e2c
VD
4966 size = sizeof(struct mem_cgroup);
4967 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4968
8ff69e2c 4969 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4970 if (!memcg)
e7bbcdf3
DC
4971 return NULL;
4972
d79154bb
HD
4973 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4974 if (!memcg->stat)
d2e61b8d 4975 goto out_free;
d79154bb
HD
4976 spin_lock_init(&memcg->pcp_counter_lock);
4977 return memcg;
d2e61b8d
DC
4978
4979out_free:
8ff69e2c 4980 kfree(memcg);
d2e61b8d 4981 return NULL;
33327948
KH
4982}
4983
59927fb9 4984/*
c8b2a36f
GC
4985 * At destroying mem_cgroup, references from swap_cgroup can remain.
4986 * (scanning all at force_empty is too costly...)
4987 *
4988 * Instead of clearing all references at force_empty, we remember
4989 * the number of reference from swap_cgroup and free mem_cgroup when
4990 * it goes down to 0.
4991 *
4992 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4993 */
c8b2a36f
GC
4994
4995static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4996{
c8b2a36f 4997 int node;
59927fb9 4998
bb4cc1a8 4999 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
5000
5001 for_each_node(node)
5002 free_mem_cgroup_per_zone_info(memcg, node);
5003
5004 free_percpu(memcg->stat);
5005
3f134619
GC
5006 /*
5007 * We need to make sure that (at least for now), the jump label
5008 * destruction code runs outside of the cgroup lock. This is because
5009 * get_online_cpus(), which is called from the static_branch update,
5010 * can't be called inside the cgroup_lock. cpusets are the ones
5011 * enforcing this dependency, so if they ever change, we might as well.
5012 *
5013 * schedule_work() will guarantee this happens. Be careful if you need
5014 * to move this code around, and make sure it is outside
5015 * the cgroup_lock.
5016 */
a8964b9b 5017 disarm_static_keys(memcg);
8ff69e2c 5018 kfree(memcg);
59927fb9 5019}
3afe36b1 5020
7bcc1bb1
DN
5021/*
5022 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5023 */
e1aab161 5024struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5025{
3e32cb2e 5026 if (!memcg->memory.parent)
7bcc1bb1 5027 return NULL;
3e32cb2e 5028 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 5029}
e1aab161 5030EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5031
bb4cc1a8
AM
5032static void __init mem_cgroup_soft_limit_tree_init(void)
5033{
5034 struct mem_cgroup_tree_per_node *rtpn;
5035 struct mem_cgroup_tree_per_zone *rtpz;
5036 int tmp, node, zone;
5037
5038 for_each_node(node) {
5039 tmp = node;
5040 if (!node_state(node, N_NORMAL_MEMORY))
5041 tmp = -1;
5042 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5043 BUG_ON(!rtpn);
5044
5045 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5046
5047 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5048 rtpz = &rtpn->rb_tree_per_zone[zone];
5049 rtpz->rb_root = RB_ROOT;
5050 spin_lock_init(&rtpz->lock);
5051 }
5052 }
5053}
5054
0eb253e2 5055static struct cgroup_subsys_state * __ref
eb95419b 5056mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 5057{
d142e3e6 5058 struct mem_cgroup *memcg;
04046e1a 5059 long error = -ENOMEM;
6d12e2d8 5060 int node;
8cdea7c0 5061
c0ff4b85
R
5062 memcg = mem_cgroup_alloc();
5063 if (!memcg)
04046e1a 5064 return ERR_PTR(error);
78fb7466 5065
3ed28fa1 5066 for_each_node(node)
c0ff4b85 5067 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5068 goto free_out;
f64c3f54 5069
c077719b 5070 /* root ? */
eb95419b 5071 if (parent_css == NULL) {
a41c58a6 5072 root_mem_cgroup = memcg;
3e32cb2e
JW
5073 page_counter_init(&memcg->memory, NULL);
5074 page_counter_init(&memcg->memsw, NULL);
5075 page_counter_init(&memcg->kmem, NULL);
18f59ea7 5076 }
28dbc4b6 5077
d142e3e6
GC
5078 memcg->last_scanned_node = MAX_NUMNODES;
5079 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5080 memcg->move_charge_at_immigrate = 0;
5081 mutex_init(&memcg->thresholds_lock);
5082 spin_lock_init(&memcg->move_lock);
70ddf637 5083 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5084 INIT_LIST_HEAD(&memcg->event_list);
5085 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
5086
5087 return &memcg->css;
5088
5089free_out:
5090 __mem_cgroup_free(memcg);
5091 return ERR_PTR(error);
5092}
5093
5094static int
eb95419b 5095mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 5096{
eb95419b 5097 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 5098 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 5099 int ret;
d142e3e6 5100
15a4c835 5101 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
5102 return -ENOSPC;
5103
63876986 5104 if (!parent)
d142e3e6
GC
5105 return 0;
5106
0999821b 5107 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
5108
5109 memcg->use_hierarchy = parent->use_hierarchy;
5110 memcg->oom_kill_disable = parent->oom_kill_disable;
5111 memcg->swappiness = mem_cgroup_swappiness(parent);
5112
5113 if (parent->use_hierarchy) {
3e32cb2e
JW
5114 page_counter_init(&memcg->memory, &parent->memory);
5115 page_counter_init(&memcg->memsw, &parent->memsw);
5116 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5117
7bcc1bb1 5118 /*
8d76a979
LZ
5119 * No need to take a reference to the parent because cgroup
5120 * core guarantees its existence.
7bcc1bb1 5121 */
18f59ea7 5122 } else {
3e32cb2e
JW
5123 page_counter_init(&memcg->memory, NULL);
5124 page_counter_init(&memcg->memsw, NULL);
5125 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5126 /*
5127 * Deeper hierachy with use_hierarchy == false doesn't make
5128 * much sense so let cgroup subsystem know about this
5129 * unfortunate state in our controller.
5130 */
d142e3e6 5131 if (parent != root_mem_cgroup)
073219e9 5132 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5133 }
0999821b 5134 mutex_unlock(&memcg_create_mutex);
d6441637 5135
2f7dd7a4
JW
5136 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5137 if (ret)
5138 return ret;
5139
5140 /*
5141 * Make sure the memcg is initialized: mem_cgroup_iter()
5142 * orders reading memcg->initialized against its callers
5143 * reading the memcg members.
5144 */
5145 smp_store_release(&memcg->initialized, 1);
5146
5147 return 0;
8cdea7c0
BS
5148}
5149
eb95419b 5150static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5151{
eb95419b 5152 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5153 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5154
5155 /*
5156 * Unregister events and notify userspace.
5157 * Notify userspace about cgroup removing only after rmdir of cgroup
5158 * directory to avoid race between userspace and kernelspace.
5159 */
fba94807
TH
5160 spin_lock(&memcg->event_list_lock);
5161 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5162 list_del_init(&event->list);
5163 schedule_work(&event->remove);
5164 }
fba94807 5165 spin_unlock(&memcg->event_list_lock);
ec64f515 5166
776ed0f0 5167 memcg_unregister_all_caches(memcg);
33cb876e 5168 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
5169}
5170
eb95419b 5171static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5172{
eb95419b 5173 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 5174
10d5ebf4 5175 memcg_destroy_kmem(memcg);
465939a1 5176 __mem_cgroup_free(memcg);
8cdea7c0
BS
5177}
5178
1ced953b
TH
5179/**
5180 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5181 * @css: the target css
5182 *
5183 * Reset the states of the mem_cgroup associated with @css. This is
5184 * invoked when the userland requests disabling on the default hierarchy
5185 * but the memcg is pinned through dependency. The memcg should stop
5186 * applying policies and should revert to the vanilla state as it may be
5187 * made visible again.
5188 *
5189 * The current implementation only resets the essential configurations.
5190 * This needs to be expanded to cover all the visible parts.
5191 */
5192static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5193{
5194 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5195
3e32cb2e
JW
5196 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
5197 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5198 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5199 memcg->soft_limit = 0;
1ced953b
TH
5200}
5201
02491447 5202#ifdef CONFIG_MMU
7dc74be0 5203/* Handlers for move charge at task migration. */
854ffa8d 5204static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5205{
05b84301 5206 int ret;
9476db97
JW
5207
5208 /* Try a single bulk charge without reclaim first */
00501b53 5209 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5210 if (!ret) {
854ffa8d 5211 mc.precharge += count;
854ffa8d
DN
5212 return ret;
5213 }
692e7c45 5214 if (ret == -EINTR) {
00501b53 5215 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5216 return ret;
5217 }
9476db97
JW
5218
5219 /* Try charges one by one with reclaim */
854ffa8d 5220 while (count--) {
00501b53 5221 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5222 /*
5223 * In case of failure, any residual charges against
5224 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5225 * later on. However, cancel any charges that are
5226 * bypassed to root right away or they'll be lost.
9476db97 5227 */
692e7c45 5228 if (ret == -EINTR)
00501b53 5229 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5230 if (ret)
38c5d72f 5231 return ret;
854ffa8d 5232 mc.precharge++;
9476db97 5233 cond_resched();
854ffa8d 5234 }
9476db97 5235 return 0;
4ffef5fe
DN
5236}
5237
5238/**
8d32ff84 5239 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5240 * @vma: the vma the pte to be checked belongs
5241 * @addr: the address corresponding to the pte to be checked
5242 * @ptent: the pte to be checked
02491447 5243 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5244 *
5245 * Returns
5246 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5247 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5248 * move charge. if @target is not NULL, the page is stored in target->page
5249 * with extra refcnt got(Callers should handle it).
02491447
DN
5250 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5251 * target for charge migration. if @target is not NULL, the entry is stored
5252 * in target->ent.
4ffef5fe
DN
5253 *
5254 * Called with pte lock held.
5255 */
4ffef5fe
DN
5256union mc_target {
5257 struct page *page;
02491447 5258 swp_entry_t ent;
4ffef5fe
DN
5259};
5260
4ffef5fe 5261enum mc_target_type {
8d32ff84 5262 MC_TARGET_NONE = 0,
4ffef5fe 5263 MC_TARGET_PAGE,
02491447 5264 MC_TARGET_SWAP,
4ffef5fe
DN
5265};
5266
90254a65
DN
5267static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5268 unsigned long addr, pte_t ptent)
4ffef5fe 5269{
90254a65 5270 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5271
90254a65
DN
5272 if (!page || !page_mapped(page))
5273 return NULL;
5274 if (PageAnon(page)) {
5275 /* we don't move shared anon */
4b91355e 5276 if (!move_anon())
90254a65 5277 return NULL;
87946a72
DN
5278 } else if (!move_file())
5279 /* we ignore mapcount for file pages */
90254a65
DN
5280 return NULL;
5281 if (!get_page_unless_zero(page))
5282 return NULL;
5283
5284 return page;
5285}
5286
4b91355e 5287#ifdef CONFIG_SWAP
90254a65
DN
5288static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5289 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5290{
90254a65
DN
5291 struct page *page = NULL;
5292 swp_entry_t ent = pte_to_swp_entry(ptent);
5293
5294 if (!move_anon() || non_swap_entry(ent))
5295 return NULL;
4b91355e
KH
5296 /*
5297 * Because lookup_swap_cache() updates some statistics counter,
5298 * we call find_get_page() with swapper_space directly.
5299 */
33806f06 5300 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5301 if (do_swap_account)
5302 entry->val = ent.val;
5303
5304 return page;
5305}
4b91355e
KH
5306#else
5307static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5308 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5309{
5310 return NULL;
5311}
5312#endif
90254a65 5313
87946a72
DN
5314static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5315 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5316{
5317 struct page *page = NULL;
87946a72
DN
5318 struct address_space *mapping;
5319 pgoff_t pgoff;
5320
5321 if (!vma->vm_file) /* anonymous vma */
5322 return NULL;
5323 if (!move_file())
5324 return NULL;
5325
87946a72
DN
5326 mapping = vma->vm_file->f_mapping;
5327 if (pte_none(ptent))
5328 pgoff = linear_page_index(vma, addr);
5329 else /* pte_file(ptent) is true */
5330 pgoff = pte_to_pgoff(ptent);
5331
5332 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5333#ifdef CONFIG_SWAP
5334 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5335 if (shmem_mapping(mapping)) {
5336 page = find_get_entry(mapping, pgoff);
5337 if (radix_tree_exceptional_entry(page)) {
5338 swp_entry_t swp = radix_to_swp_entry(page);
5339 if (do_swap_account)
5340 *entry = swp;
5341 page = find_get_page(swap_address_space(swp), swp.val);
5342 }
5343 } else
5344 page = find_get_page(mapping, pgoff);
5345#else
5346 page = find_get_page(mapping, pgoff);
aa3b1895 5347#endif
87946a72
DN
5348 return page;
5349}
5350
8d32ff84 5351static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5352 unsigned long addr, pte_t ptent, union mc_target *target)
5353{
5354 struct page *page = NULL;
5355 struct page_cgroup *pc;
8d32ff84 5356 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5357 swp_entry_t ent = { .val = 0 };
5358
5359 if (pte_present(ptent))
5360 page = mc_handle_present_pte(vma, addr, ptent);
5361 else if (is_swap_pte(ptent))
5362 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5363 else if (pte_none(ptent) || pte_file(ptent))
5364 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5365
5366 if (!page && !ent.val)
8d32ff84 5367 return ret;
02491447
DN
5368 if (page) {
5369 pc = lookup_page_cgroup(page);
5370 /*
0a31bc97
JW
5371 * Do only loose check w/o serialization.
5372 * mem_cgroup_move_account() checks the pc is valid or
5373 * not under LRU exclusion.
02491447
DN
5374 */
5375 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5376 ret = MC_TARGET_PAGE;
5377 if (target)
5378 target->page = page;
5379 }
5380 if (!ret || !target)
5381 put_page(page);
5382 }
90254a65
DN
5383 /* There is a swap entry and a page doesn't exist or isn't charged */
5384 if (ent.val && !ret &&
34c00c31 5385 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5386 ret = MC_TARGET_SWAP;
5387 if (target)
5388 target->ent = ent;
4ffef5fe 5389 }
4ffef5fe
DN
5390 return ret;
5391}
5392
12724850
NH
5393#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5394/*
5395 * We don't consider swapping or file mapped pages because THP does not
5396 * support them for now.
5397 * Caller should make sure that pmd_trans_huge(pmd) is true.
5398 */
5399static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5400 unsigned long addr, pmd_t pmd, union mc_target *target)
5401{
5402 struct page *page = NULL;
5403 struct page_cgroup *pc;
5404 enum mc_target_type ret = MC_TARGET_NONE;
5405
5406 page = pmd_page(pmd);
309381fe 5407 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5408 if (!move_anon())
5409 return ret;
5410 pc = lookup_page_cgroup(page);
5411 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5412 ret = MC_TARGET_PAGE;
5413 if (target) {
5414 get_page(page);
5415 target->page = page;
5416 }
5417 }
5418 return ret;
5419}
5420#else
5421static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5422 unsigned long addr, pmd_t pmd, union mc_target *target)
5423{
5424 return MC_TARGET_NONE;
5425}
5426#endif
5427
4ffef5fe
DN
5428static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5429 unsigned long addr, unsigned long end,
5430 struct mm_walk *walk)
5431{
5432 struct vm_area_struct *vma = walk->private;
5433 pte_t *pte;
5434 spinlock_t *ptl;
5435
bf929152 5436 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5437 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5438 mc.precharge += HPAGE_PMD_NR;
bf929152 5439 spin_unlock(ptl);
1a5a9906 5440 return 0;
12724850 5441 }
03319327 5442
45f83cef
AA
5443 if (pmd_trans_unstable(pmd))
5444 return 0;
4ffef5fe
DN
5445 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5446 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5447 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5448 mc.precharge++; /* increment precharge temporarily */
5449 pte_unmap_unlock(pte - 1, ptl);
5450 cond_resched();
5451
7dc74be0
DN
5452 return 0;
5453}
5454
4ffef5fe
DN
5455static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5456{
5457 unsigned long precharge;
5458 struct vm_area_struct *vma;
5459
dfe076b0 5460 down_read(&mm->mmap_sem);
4ffef5fe
DN
5461 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5462 struct mm_walk mem_cgroup_count_precharge_walk = {
5463 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5464 .mm = mm,
5465 .private = vma,
5466 };
5467 if (is_vm_hugetlb_page(vma))
5468 continue;
4ffef5fe
DN
5469 walk_page_range(vma->vm_start, vma->vm_end,
5470 &mem_cgroup_count_precharge_walk);
5471 }
dfe076b0 5472 up_read(&mm->mmap_sem);
4ffef5fe
DN
5473
5474 precharge = mc.precharge;
5475 mc.precharge = 0;
5476
5477 return precharge;
5478}
5479
4ffef5fe
DN
5480static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5481{
dfe076b0
DN
5482 unsigned long precharge = mem_cgroup_count_precharge(mm);
5483
5484 VM_BUG_ON(mc.moving_task);
5485 mc.moving_task = current;
5486 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5487}
5488
dfe076b0
DN
5489/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5490static void __mem_cgroup_clear_mc(void)
4ffef5fe 5491{
2bd9bb20
KH
5492 struct mem_cgroup *from = mc.from;
5493 struct mem_cgroup *to = mc.to;
5494
4ffef5fe 5495 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5496 if (mc.precharge) {
00501b53 5497 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5498 mc.precharge = 0;
5499 }
5500 /*
5501 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5502 * we must uncharge here.
5503 */
5504 if (mc.moved_charge) {
00501b53 5505 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5506 mc.moved_charge = 0;
4ffef5fe 5507 }
483c30b5
DN
5508 /* we must fixup refcnts and charges */
5509 if (mc.moved_swap) {
483c30b5 5510 /* uncharge swap account from the old cgroup */
ce00a967 5511 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5512 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5513
05b84301 5514 /*
3e32cb2e
JW
5515 * we charged both to->memory and to->memsw, so we
5516 * should uncharge to->memory.
05b84301 5517 */
ce00a967 5518 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5519 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5520
e8ea14cc 5521 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5522
4050377b 5523 /* we've already done css_get(mc.to) */
483c30b5
DN
5524 mc.moved_swap = 0;
5525 }
dfe076b0
DN
5526 memcg_oom_recover(from);
5527 memcg_oom_recover(to);
5528 wake_up_all(&mc.waitq);
5529}
5530
5531static void mem_cgroup_clear_mc(void)
5532{
5533 struct mem_cgroup *from = mc.from;
5534
5535 /*
5536 * we must clear moving_task before waking up waiters at the end of
5537 * task migration.
5538 */
5539 mc.moving_task = NULL;
5540 __mem_cgroup_clear_mc();
2bd9bb20 5541 spin_lock(&mc.lock);
4ffef5fe
DN
5542 mc.from = NULL;
5543 mc.to = NULL;
2bd9bb20 5544 spin_unlock(&mc.lock);
32047e2a 5545 mem_cgroup_end_move(from);
4ffef5fe
DN
5546}
5547
eb95419b 5548static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5549 struct cgroup_taskset *tset)
7dc74be0 5550{
2f7ee569 5551 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5552 int ret = 0;
eb95419b 5553 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5554 unsigned long move_charge_at_immigrate;
7dc74be0 5555
ee5e8472
GC
5556 /*
5557 * We are now commited to this value whatever it is. Changes in this
5558 * tunable will only affect upcoming migrations, not the current one.
5559 * So we need to save it, and keep it going.
5560 */
5561 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5562 if (move_charge_at_immigrate) {
7dc74be0
DN
5563 struct mm_struct *mm;
5564 struct mem_cgroup *from = mem_cgroup_from_task(p);
5565
c0ff4b85 5566 VM_BUG_ON(from == memcg);
7dc74be0
DN
5567
5568 mm = get_task_mm(p);
5569 if (!mm)
5570 return 0;
7dc74be0 5571 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5572 if (mm->owner == p) {
5573 VM_BUG_ON(mc.from);
5574 VM_BUG_ON(mc.to);
5575 VM_BUG_ON(mc.precharge);
854ffa8d 5576 VM_BUG_ON(mc.moved_charge);
483c30b5 5577 VM_BUG_ON(mc.moved_swap);
32047e2a 5578 mem_cgroup_start_move(from);
2bd9bb20 5579 spin_lock(&mc.lock);
4ffef5fe 5580 mc.from = from;
c0ff4b85 5581 mc.to = memcg;
ee5e8472 5582 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5583 spin_unlock(&mc.lock);
dfe076b0 5584 /* We set mc.moving_task later */
4ffef5fe
DN
5585
5586 ret = mem_cgroup_precharge_mc(mm);
5587 if (ret)
5588 mem_cgroup_clear_mc();
dfe076b0
DN
5589 }
5590 mmput(mm);
7dc74be0
DN
5591 }
5592 return ret;
5593}
5594
eb95419b 5595static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5596 struct cgroup_taskset *tset)
7dc74be0 5597{
4ffef5fe 5598 mem_cgroup_clear_mc();
7dc74be0
DN
5599}
5600
4ffef5fe
DN
5601static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5602 unsigned long addr, unsigned long end,
5603 struct mm_walk *walk)
7dc74be0 5604{
4ffef5fe
DN
5605 int ret = 0;
5606 struct vm_area_struct *vma = walk->private;
5607 pte_t *pte;
5608 spinlock_t *ptl;
12724850
NH
5609 enum mc_target_type target_type;
5610 union mc_target target;
5611 struct page *page;
5612 struct page_cgroup *pc;
4ffef5fe 5613
12724850
NH
5614 /*
5615 * We don't take compound_lock() here but no race with splitting thp
5616 * happens because:
5617 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5618 * under splitting, which means there's no concurrent thp split,
5619 * - if another thread runs into split_huge_page() just after we
5620 * entered this if-block, the thread must wait for page table lock
5621 * to be unlocked in __split_huge_page_splitting(), where the main
5622 * part of thp split is not executed yet.
5623 */
bf929152 5624 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5625 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5626 spin_unlock(ptl);
12724850
NH
5627 return 0;
5628 }
5629 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5630 if (target_type == MC_TARGET_PAGE) {
5631 page = target.page;
5632 if (!isolate_lru_page(page)) {
5633 pc = lookup_page_cgroup(page);
5634 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5635 pc, mc.from, mc.to)) {
12724850
NH
5636 mc.precharge -= HPAGE_PMD_NR;
5637 mc.moved_charge += HPAGE_PMD_NR;
5638 }
5639 putback_lru_page(page);
5640 }
5641 put_page(page);
5642 }
bf929152 5643 spin_unlock(ptl);
1a5a9906 5644 return 0;
12724850
NH
5645 }
5646
45f83cef
AA
5647 if (pmd_trans_unstable(pmd))
5648 return 0;
4ffef5fe
DN
5649retry:
5650 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5651 for (; addr != end; addr += PAGE_SIZE) {
5652 pte_t ptent = *(pte++);
02491447 5653 swp_entry_t ent;
4ffef5fe
DN
5654
5655 if (!mc.precharge)
5656 break;
5657
8d32ff84 5658 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5659 case MC_TARGET_PAGE:
5660 page = target.page;
5661 if (isolate_lru_page(page))
5662 goto put;
5663 pc = lookup_page_cgroup(page);
7ec99d62 5664 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5665 mc.from, mc.to)) {
4ffef5fe 5666 mc.precharge--;
854ffa8d
DN
5667 /* we uncharge from mc.from later. */
5668 mc.moved_charge++;
4ffef5fe
DN
5669 }
5670 putback_lru_page(page);
8d32ff84 5671put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5672 put_page(page);
5673 break;
02491447
DN
5674 case MC_TARGET_SWAP:
5675 ent = target.ent;
e91cbb42 5676 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5677 mc.precharge--;
483c30b5
DN
5678 /* we fixup refcnts and charges later. */
5679 mc.moved_swap++;
5680 }
02491447 5681 break;
4ffef5fe
DN
5682 default:
5683 break;
5684 }
5685 }
5686 pte_unmap_unlock(pte - 1, ptl);
5687 cond_resched();
5688
5689 if (addr != end) {
5690 /*
5691 * We have consumed all precharges we got in can_attach().
5692 * We try charge one by one, but don't do any additional
5693 * charges to mc.to if we have failed in charge once in attach()
5694 * phase.
5695 */
854ffa8d 5696 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5697 if (!ret)
5698 goto retry;
5699 }
5700
5701 return ret;
5702}
5703
5704static void mem_cgroup_move_charge(struct mm_struct *mm)
5705{
5706 struct vm_area_struct *vma;
5707
5708 lru_add_drain_all();
dfe076b0
DN
5709retry:
5710 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5711 /*
5712 * Someone who are holding the mmap_sem might be waiting in
5713 * waitq. So we cancel all extra charges, wake up all waiters,
5714 * and retry. Because we cancel precharges, we might not be able
5715 * to move enough charges, but moving charge is a best-effort
5716 * feature anyway, so it wouldn't be a big problem.
5717 */
5718 __mem_cgroup_clear_mc();
5719 cond_resched();
5720 goto retry;
5721 }
4ffef5fe
DN
5722 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5723 int ret;
5724 struct mm_walk mem_cgroup_move_charge_walk = {
5725 .pmd_entry = mem_cgroup_move_charge_pte_range,
5726 .mm = mm,
5727 .private = vma,
5728 };
5729 if (is_vm_hugetlb_page(vma))
5730 continue;
4ffef5fe
DN
5731 ret = walk_page_range(vma->vm_start, vma->vm_end,
5732 &mem_cgroup_move_charge_walk);
5733 if (ret)
5734 /*
5735 * means we have consumed all precharges and failed in
5736 * doing additional charge. Just abandon here.
5737 */
5738 break;
5739 }
dfe076b0 5740 up_read(&mm->mmap_sem);
7dc74be0
DN
5741}
5742
eb95419b 5743static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5744 struct cgroup_taskset *tset)
67e465a7 5745{
2f7ee569 5746 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5747 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5748
dfe076b0 5749 if (mm) {
a433658c
KM
5750 if (mc.to)
5751 mem_cgroup_move_charge(mm);
dfe076b0
DN
5752 mmput(mm);
5753 }
a433658c
KM
5754 if (mc.to)
5755 mem_cgroup_clear_mc();
67e465a7 5756}
5cfb80a7 5757#else /* !CONFIG_MMU */
eb95419b 5758static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5759 struct cgroup_taskset *tset)
5cfb80a7
DN
5760{
5761 return 0;
5762}
eb95419b 5763static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5764 struct cgroup_taskset *tset)
5cfb80a7
DN
5765{
5766}
eb95419b 5767static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5768 struct cgroup_taskset *tset)
5cfb80a7
DN
5769{
5770}
5771#endif
67e465a7 5772
f00baae7
TH
5773/*
5774 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5775 * to verify whether we're attached to the default hierarchy on each mount
5776 * attempt.
f00baae7 5777 */
eb95419b 5778static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5779{
5780 /*
aa6ec29b 5781 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5782 * guarantees that @root doesn't have any children, so turning it
5783 * on for the root memcg is enough.
5784 */
aa6ec29b 5785 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5786 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5787}
5788
073219e9 5789struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5790 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5791 .css_online = mem_cgroup_css_online,
92fb9748
TH
5792 .css_offline = mem_cgroup_css_offline,
5793 .css_free = mem_cgroup_css_free,
1ced953b 5794 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5795 .can_attach = mem_cgroup_can_attach,
5796 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5797 .attach = mem_cgroup_move_task,
f00baae7 5798 .bind = mem_cgroup_bind,
5577964e 5799 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5800 .early_init = 0,
8cdea7c0 5801};
c077719b 5802
c255a458 5803#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5804static int __init enable_swap_account(char *s)
5805{
a2c8990a 5806 if (!strcmp(s, "1"))
a42c390c 5807 really_do_swap_account = 1;
a2c8990a 5808 else if (!strcmp(s, "0"))
a42c390c
MH
5809 really_do_swap_account = 0;
5810 return 1;
5811}
a2c8990a 5812__setup("swapaccount=", enable_swap_account);
c077719b 5813
2d11085e
MH
5814static void __init memsw_file_init(void)
5815{
2cf669a5
TH
5816 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5817 memsw_cgroup_files));
6acc8b02
MH
5818}
5819
5820static void __init enable_swap_cgroup(void)
5821{
5822 if (!mem_cgroup_disabled() && really_do_swap_account) {
5823 do_swap_account = 1;
5824 memsw_file_init();
5825 }
2d11085e 5826}
6acc8b02 5827
2d11085e 5828#else
6acc8b02 5829static void __init enable_swap_cgroup(void)
2d11085e
MH
5830{
5831}
c077719b 5832#endif
2d11085e 5833
0a31bc97
JW
5834#ifdef CONFIG_MEMCG_SWAP
5835/**
5836 * mem_cgroup_swapout - transfer a memsw charge to swap
5837 * @page: page whose memsw charge to transfer
5838 * @entry: swap entry to move the charge to
5839 *
5840 * Transfer the memsw charge of @page to @entry.
5841 */
5842void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5843{
5844 struct page_cgroup *pc;
5845 unsigned short oldid;
5846
5847 VM_BUG_ON_PAGE(PageLRU(page), page);
5848 VM_BUG_ON_PAGE(page_count(page), page);
5849
5850 if (!do_swap_account)
5851 return;
5852
5853 pc = lookup_page_cgroup(page);
5854
5855 /* Readahead page, never charged */
5856 if (!PageCgroupUsed(pc))
5857 return;
5858
5859 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
5860
5861 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
5862 VM_BUG_ON_PAGE(oldid, page);
5863
5864 pc->flags &= ~PCG_MEMSW;
5865 css_get(&pc->mem_cgroup->css);
5866 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
5867}
5868
5869/**
5870 * mem_cgroup_uncharge_swap - uncharge a swap entry
5871 * @entry: swap entry to uncharge
5872 *
5873 * Drop the memsw charge associated with @entry.
5874 */
5875void mem_cgroup_uncharge_swap(swp_entry_t entry)
5876{
5877 struct mem_cgroup *memcg;
5878 unsigned short id;
5879
5880 if (!do_swap_account)
5881 return;
5882
5883 id = swap_cgroup_record(entry, 0);
5884 rcu_read_lock();
5885 memcg = mem_cgroup_lookup(id);
5886 if (memcg) {
ce00a967 5887 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5888 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5889 mem_cgroup_swap_statistics(memcg, false);
5890 css_put(&memcg->css);
5891 }
5892 rcu_read_unlock();
5893}
5894#endif
5895
00501b53
JW
5896/**
5897 * mem_cgroup_try_charge - try charging a page
5898 * @page: page to charge
5899 * @mm: mm context of the victim
5900 * @gfp_mask: reclaim mode
5901 * @memcgp: charged memcg return
5902 *
5903 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5904 * pages according to @gfp_mask if necessary.
5905 *
5906 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5907 * Otherwise, an error code is returned.
5908 *
5909 * After page->mapping has been set up, the caller must finalize the
5910 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5911 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5912 */
5913int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5914 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5915{
5916 struct mem_cgroup *memcg = NULL;
5917 unsigned int nr_pages = 1;
5918 int ret = 0;
5919
5920 if (mem_cgroup_disabled())
5921 goto out;
5922
5923 if (PageSwapCache(page)) {
5924 struct page_cgroup *pc = lookup_page_cgroup(page);
5925 /*
5926 * Every swap fault against a single page tries to charge the
5927 * page, bail as early as possible. shmem_unuse() encounters
5928 * already charged pages, too. The USED bit is protected by
5929 * the page lock, which serializes swap cache removal, which
5930 * in turn serializes uncharging.
5931 */
5932 if (PageCgroupUsed(pc))
5933 goto out;
5934 }
5935
5936 if (PageTransHuge(page)) {
5937 nr_pages <<= compound_order(page);
5938 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5939 }
5940
5941 if (do_swap_account && PageSwapCache(page))
5942 memcg = try_get_mem_cgroup_from_page(page);
5943 if (!memcg)
5944 memcg = get_mem_cgroup_from_mm(mm);
5945
5946 ret = try_charge(memcg, gfp_mask, nr_pages);
5947
5948 css_put(&memcg->css);
5949
5950 if (ret == -EINTR) {
5951 memcg = root_mem_cgroup;
5952 ret = 0;
5953 }
5954out:
5955 *memcgp = memcg;
5956 return ret;
5957}
5958
5959/**
5960 * mem_cgroup_commit_charge - commit a page charge
5961 * @page: page to charge
5962 * @memcg: memcg to charge the page to
5963 * @lrucare: page might be on LRU already
5964 *
5965 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5966 * after page->mapping has been set up. This must happen atomically
5967 * as part of the page instantiation, i.e. under the page table lock
5968 * for anonymous pages, under the page lock for page and swap cache.
5969 *
5970 * In addition, the page must not be on the LRU during the commit, to
5971 * prevent racing with task migration. If it might be, use @lrucare.
5972 *
5973 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5974 */
5975void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5976 bool lrucare)
5977{
5978 unsigned int nr_pages = 1;
5979
5980 VM_BUG_ON_PAGE(!page->mapping, page);
5981 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5982
5983 if (mem_cgroup_disabled())
5984 return;
5985 /*
5986 * Swap faults will attempt to charge the same page multiple
5987 * times. But reuse_swap_page() might have removed the page
5988 * from swapcache already, so we can't check PageSwapCache().
5989 */
5990 if (!memcg)
5991 return;
5992
6abb5a86
JW
5993 commit_charge(page, memcg, lrucare);
5994
00501b53
JW
5995 if (PageTransHuge(page)) {
5996 nr_pages <<= compound_order(page);
5997 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5998 }
5999
6abb5a86
JW
6000 local_irq_disable();
6001 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6002 memcg_check_events(memcg, page);
6003 local_irq_enable();
00501b53
JW
6004
6005 if (do_swap_account && PageSwapCache(page)) {
6006 swp_entry_t entry = { .val = page_private(page) };
6007 /*
6008 * The swap entry might not get freed for a long time,
6009 * let's not wait for it. The page already received a
6010 * memory+swap charge, drop the swap entry duplicate.
6011 */
6012 mem_cgroup_uncharge_swap(entry);
6013 }
6014}
6015
6016/**
6017 * mem_cgroup_cancel_charge - cancel a page charge
6018 * @page: page to charge
6019 * @memcg: memcg to charge the page to
6020 *
6021 * Cancel a charge transaction started by mem_cgroup_try_charge().
6022 */
6023void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6024{
6025 unsigned int nr_pages = 1;
6026
6027 if (mem_cgroup_disabled())
6028 return;
6029 /*
6030 * Swap faults will attempt to charge the same page multiple
6031 * times. But reuse_swap_page() might have removed the page
6032 * from swapcache already, so we can't check PageSwapCache().
6033 */
6034 if (!memcg)
6035 return;
6036
6037 if (PageTransHuge(page)) {
6038 nr_pages <<= compound_order(page);
6039 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6040 }
6041
6042 cancel_charge(memcg, nr_pages);
6043}
6044
747db954
JW
6045static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6046 unsigned long nr_mem, unsigned long nr_memsw,
6047 unsigned long nr_anon, unsigned long nr_file,
6048 unsigned long nr_huge, struct page *dummy_page)
6049{
6050 unsigned long flags;
6051
ce00a967
JW
6052 if (!mem_cgroup_is_root(memcg)) {
6053 if (nr_mem)
3e32cb2e 6054 page_counter_uncharge(&memcg->memory, nr_mem);
ce00a967 6055 if (nr_memsw)
3e32cb2e 6056 page_counter_uncharge(&memcg->memsw, nr_memsw);
ce00a967
JW
6057 memcg_oom_recover(memcg);
6058 }
747db954
JW
6059
6060 local_irq_save(flags);
6061 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6062 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6063 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6064 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6065 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6066 memcg_check_events(memcg, dummy_page);
6067 local_irq_restore(flags);
e8ea14cc
JW
6068
6069 if (!mem_cgroup_is_root(memcg))
6070 css_put_many(&memcg->css, max(nr_mem, nr_memsw));
747db954
JW
6071}
6072
6073static void uncharge_list(struct list_head *page_list)
6074{
6075 struct mem_cgroup *memcg = NULL;
6076 unsigned long nr_memsw = 0;
6077 unsigned long nr_anon = 0;
6078 unsigned long nr_file = 0;
6079 unsigned long nr_huge = 0;
6080 unsigned long pgpgout = 0;
6081 unsigned long nr_mem = 0;
6082 struct list_head *next;
6083 struct page *page;
6084
6085 next = page_list->next;
6086 do {
6087 unsigned int nr_pages = 1;
6088 struct page_cgroup *pc;
6089
6090 page = list_entry(next, struct page, lru);
6091 next = page->lru.next;
6092
6093 VM_BUG_ON_PAGE(PageLRU(page), page);
6094 VM_BUG_ON_PAGE(page_count(page), page);
6095
6096 pc = lookup_page_cgroup(page);
6097 if (!PageCgroupUsed(pc))
6098 continue;
6099
6100 /*
6101 * Nobody should be changing or seriously looking at
6102 * pc->mem_cgroup and pc->flags at this point, we have
6103 * fully exclusive access to the page.
6104 */
6105
6106 if (memcg != pc->mem_cgroup) {
6107 if (memcg) {
6108 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6109 nr_anon, nr_file, nr_huge, page);
6110 pgpgout = nr_mem = nr_memsw = 0;
6111 nr_anon = nr_file = nr_huge = 0;
6112 }
6113 memcg = pc->mem_cgroup;
6114 }
6115
6116 if (PageTransHuge(page)) {
6117 nr_pages <<= compound_order(page);
6118 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6119 nr_huge += nr_pages;
6120 }
6121
6122 if (PageAnon(page))
6123 nr_anon += nr_pages;
6124 else
6125 nr_file += nr_pages;
6126
6127 if (pc->flags & PCG_MEM)
6128 nr_mem += nr_pages;
6129 if (pc->flags & PCG_MEMSW)
6130 nr_memsw += nr_pages;
6131 pc->flags = 0;
6132
6133 pgpgout++;
6134 } while (next != page_list);
6135
6136 if (memcg)
6137 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6138 nr_anon, nr_file, nr_huge, page);
6139}
6140
0a31bc97
JW
6141/**
6142 * mem_cgroup_uncharge - uncharge a page
6143 * @page: page to uncharge
6144 *
6145 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6146 * mem_cgroup_commit_charge().
6147 */
6148void mem_cgroup_uncharge(struct page *page)
6149{
0a31bc97 6150 struct page_cgroup *pc;
0a31bc97
JW
6151
6152 if (mem_cgroup_disabled())
6153 return;
6154
747db954 6155 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 6156 pc = lookup_page_cgroup(page);
0a31bc97
JW
6157 if (!PageCgroupUsed(pc))
6158 return;
6159
747db954
JW
6160 INIT_LIST_HEAD(&page->lru);
6161 uncharge_list(&page->lru);
6162}
0a31bc97 6163
747db954
JW
6164/**
6165 * mem_cgroup_uncharge_list - uncharge a list of page
6166 * @page_list: list of pages to uncharge
6167 *
6168 * Uncharge a list of pages previously charged with
6169 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6170 */
6171void mem_cgroup_uncharge_list(struct list_head *page_list)
6172{
6173 if (mem_cgroup_disabled())
6174 return;
0a31bc97 6175
747db954
JW
6176 if (!list_empty(page_list))
6177 uncharge_list(page_list);
0a31bc97
JW
6178}
6179
6180/**
6181 * mem_cgroup_migrate - migrate a charge to another page
6182 * @oldpage: currently charged page
6183 * @newpage: page to transfer the charge to
6184 * @lrucare: both pages might be on the LRU already
6185 *
6186 * Migrate the charge from @oldpage to @newpage.
6187 *
6188 * Both pages must be locked, @newpage->mapping must be set up.
6189 */
6190void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6191 bool lrucare)
6192{
0a31bc97
JW
6193 struct page_cgroup *pc;
6194 int isolated;
6195
6196 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6197 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6198 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6199 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6200 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6201 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6202 newpage);
0a31bc97
JW
6203
6204 if (mem_cgroup_disabled())
6205 return;
6206
6207 /* Page cache replacement: new page already charged? */
6208 pc = lookup_page_cgroup(newpage);
6209 if (PageCgroupUsed(pc))
6210 return;
6211
6212 /* Re-entrant migration: old page already uncharged? */
6213 pc = lookup_page_cgroup(oldpage);
6214 if (!PageCgroupUsed(pc))
6215 return;
6216
6217 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6218 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6219
0a31bc97
JW
6220 if (lrucare)
6221 lock_page_lru(oldpage, &isolated);
6222
6223 pc->flags = 0;
6224
6225 if (lrucare)
6226 unlock_page_lru(oldpage, isolated);
6227
6abb5a86 6228 commit_charge(newpage, pc->mem_cgroup, lrucare);
0a31bc97
JW
6229}
6230
2d11085e 6231/*
1081312f
MH
6232 * subsys_initcall() for memory controller.
6233 *
6234 * Some parts like hotcpu_notifier() have to be initialized from this context
6235 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6236 * everything that doesn't depend on a specific mem_cgroup structure should
6237 * be initialized from here.
2d11085e
MH
6238 */
6239static int __init mem_cgroup_init(void)
6240{
6241 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6242 enable_swap_cgroup();
bb4cc1a8 6243 mem_cgroup_soft_limit_tree_init();
e4777496 6244 memcg_stock_init();
2d11085e
MH
6245 return 0;
6246}
6247subsys_initcall(mem_cgroup_init);