memcg: only account kmem allocations marked as __GFP_ACCOUNT
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
d1a4c0b3 69#include <net/tcp_memcontrol.h>
f35c3a8e 70#include "slab.h"
8cdea7c0 71
8697d331
BS
72#include <asm/uaccess.h>
73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
a181b0e8 79#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 80static struct mem_cgroup *root_mem_cgroup __read_mostly;
56161634 81struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
8cdea7c0 82
21afa38e 83/* Whether the swap controller is active */
c255a458 84#ifdef CONFIG_MEMCG_SWAP
c077719b 85int do_swap_account __read_mostly;
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
af7c4b0e
JW
90static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
b070e65c 93 "rss_huge",
af7c4b0e 94 "mapped_file",
c4843a75 95 "dirty",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
af7c4b0e
JW
100static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105};
106
58cf188e
SZ
107static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113};
114
a0db00fc
KS
115#define THRESHOLDS_EVENTS_TARGET 128
116#define SOFTLIMIT_EVENTS_TARGET 1024
117#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 118
bb4cc1a8
AM
119/*
120 * Cgroups above their limits are maintained in a RB-Tree, independent of
121 * their hierarchy representation
122 */
123
124struct mem_cgroup_tree_per_zone {
125 struct rb_root rb_root;
126 spinlock_t lock;
127};
128
129struct mem_cgroup_tree_per_node {
130 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
131};
132
133struct mem_cgroup_tree {
134 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
135};
136
137static struct mem_cgroup_tree soft_limit_tree __read_mostly;
138
9490ff27
KH
139/* for OOM */
140struct mem_cgroup_eventfd_list {
141 struct list_head list;
142 struct eventfd_ctx *eventfd;
143};
2e72b634 144
79bd9814
TH
145/*
146 * cgroup_event represents events which userspace want to receive.
147 */
3bc942f3 148struct mem_cgroup_event {
79bd9814 149 /*
59b6f873 150 * memcg which the event belongs to.
79bd9814 151 */
59b6f873 152 struct mem_cgroup *memcg;
79bd9814
TH
153 /*
154 * eventfd to signal userspace about the event.
155 */
156 struct eventfd_ctx *eventfd;
157 /*
158 * Each of these stored in a list by the cgroup.
159 */
160 struct list_head list;
fba94807
TH
161 /*
162 * register_event() callback will be used to add new userspace
163 * waiter for changes related to this event. Use eventfd_signal()
164 * on eventfd to send notification to userspace.
165 */
59b6f873 166 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 167 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
168 /*
169 * unregister_event() callback will be called when userspace closes
170 * the eventfd or on cgroup removing. This callback must be set,
171 * if you want provide notification functionality.
172 */
59b6f873 173 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 174 struct eventfd_ctx *eventfd);
79bd9814
TH
175 /*
176 * All fields below needed to unregister event when
177 * userspace closes eventfd.
178 */
179 poll_table pt;
180 wait_queue_head_t *wqh;
181 wait_queue_t wait;
182 struct work_struct remove;
183};
184
c0ff4b85
R
185static void mem_cgroup_threshold(struct mem_cgroup *memcg);
186static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 187
7dc74be0
DN
188/* Stuffs for move charges at task migration. */
189/*
1dfab5ab 190 * Types of charges to be moved.
7dc74be0 191 */
1dfab5ab
JW
192#define MOVE_ANON 0x1U
193#define MOVE_FILE 0x2U
194#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 195
4ffef5fe
DN
196/* "mc" and its members are protected by cgroup_mutex */
197static struct move_charge_struct {
b1dd693e 198 spinlock_t lock; /* for from, to */
4ffef5fe
DN
199 struct mem_cgroup *from;
200 struct mem_cgroup *to;
1dfab5ab 201 unsigned long flags;
4ffef5fe 202 unsigned long precharge;
854ffa8d 203 unsigned long moved_charge;
483c30b5 204 unsigned long moved_swap;
8033b97c
DN
205 struct task_struct *moving_task; /* a task moving charges */
206 wait_queue_head_t waitq; /* a waitq for other context */
207} mc = {
2bd9bb20 208 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
209 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
210};
4ffef5fe 211
4e416953
BS
212/*
213 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
214 * limit reclaim to prevent infinite loops, if they ever occur.
215 */
a0db00fc 216#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 217#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 218
217bc319
KH
219enum charge_type {
220 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 221 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 222 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 223 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
224 NR_CHARGE_TYPE,
225};
226
8c7c6e34 227/* for encoding cft->private value on file */
86ae53e1
GC
228enum res_type {
229 _MEM,
230 _MEMSWAP,
231 _OOM_TYPE,
510fc4e1 232 _KMEM,
86ae53e1
GC
233};
234
a0db00fc
KS
235#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
236#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 237#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
238/* Used for OOM nofiier */
239#define OOM_CONTROL (0)
8c7c6e34 240
0999821b
GC
241/*
242 * The memcg_create_mutex will be held whenever a new cgroup is created.
243 * As a consequence, any change that needs to protect against new child cgroups
244 * appearing has to hold it as well.
245 */
246static DEFINE_MUTEX(memcg_create_mutex);
247
70ddf637
AV
248/* Some nice accessors for the vmpressure. */
249struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250{
251 if (!memcg)
252 memcg = root_mem_cgroup;
253 return &memcg->vmpressure;
254}
255
256struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
257{
258 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259}
260
7ffc0edc
MH
261static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
262{
263 return (memcg == root_mem_cgroup);
264}
265
4219b2da
LZ
266/*
267 * We restrict the id in the range of [1, 65535], so it can fit into
268 * an unsigned short.
269 */
270#define MEM_CGROUP_ID_MAX USHRT_MAX
271
34c00c31
LZ
272static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
273{
15a4c835 274 return memcg->css.id;
34c00c31
LZ
275}
276
adbe427b
VD
277/*
278 * A helper function to get mem_cgroup from ID. must be called under
279 * rcu_read_lock(). The caller is responsible for calling
280 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
281 * refcnt from swap can be called against removed memcg.)
282 */
34c00c31
LZ
283static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
284{
285 struct cgroup_subsys_state *css;
286
7d699ddb 287 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
288 return mem_cgroup_from_css(css);
289}
290
e1aab161 291/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 292#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 293
e1aab161
GC
294void sock_update_memcg(struct sock *sk)
295{
376be5ff 296 if (mem_cgroup_sockets_enabled) {
e1aab161 297 struct mem_cgroup *memcg;
3f134619 298 struct cg_proto *cg_proto;
e1aab161
GC
299
300 BUG_ON(!sk->sk_prot->proto_cgroup);
301
f3f511e1
GC
302 /* Socket cloning can throw us here with sk_cgrp already
303 * filled. It won't however, necessarily happen from
304 * process context. So the test for root memcg given
305 * the current task's memcg won't help us in this case.
306 *
307 * Respecting the original socket's memcg is a better
308 * decision in this case.
309 */
310 if (sk->sk_cgrp) {
311 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 312 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
313 return;
314 }
315
e1aab161
GC
316 rcu_read_lock();
317 memcg = mem_cgroup_from_task(current);
3f134619 318 cg_proto = sk->sk_prot->proto_cgroup(memcg);
e752eb68 319 if (cg_proto && test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags) &&
ec903c0c 320 css_tryget_online(&memcg->css)) {
3f134619 321 sk->sk_cgrp = cg_proto;
e1aab161
GC
322 }
323 rcu_read_unlock();
324 }
325}
326EXPORT_SYMBOL(sock_update_memcg);
327
328void sock_release_memcg(struct sock *sk)
329{
376be5ff 330 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
331 struct mem_cgroup *memcg;
332 WARN_ON(!sk->sk_cgrp->memcg);
333 memcg = sk->sk_cgrp->memcg;
5347e5ae 334 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
335 }
336}
d1a4c0b3
GC
337
338struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
339{
340 if (!memcg || mem_cgroup_is_root(memcg))
341 return NULL;
342
2e685cad 343 return &memcg->tcp_mem;
d1a4c0b3
GC
344}
345EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 346
3f134619
GC
347#endif
348
a8964b9b 349#ifdef CONFIG_MEMCG_KMEM
55007d84 350/*
f7ce3190 351 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
55007d84 357 *
dbcf73e2
VD
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
55007d84 360 */
dbcf73e2
VD
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
749c5415 363
05257a1a
VD
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
55007d84
GC
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
b8627835 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
b8627835 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 391
d7f25f8a
GC
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
a8964b9b 398struct static_key memcg_kmem_enabled_key;
d7f25f8a 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 400
a8964b9b
GC
401#endif /* CONFIG_MEMCG_KMEM */
402
f64c3f54 403static struct mem_cgroup_per_zone *
e231875b 404mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 405{
e231875b
JZ
406 int nid = zone_to_nid(zone);
407 int zid = zone_idx(zone);
408
54f72fe0 409 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
410}
411
ad7fa852
TH
412/**
413 * mem_cgroup_css_from_page - css of the memcg associated with a page
414 * @page: page of interest
415 *
416 * If memcg is bound to the default hierarchy, css of the memcg associated
417 * with @page is returned. The returned css remains associated with @page
418 * until it is released.
419 *
420 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
421 * is returned.
422 *
423 * XXX: The above description of behavior on the default hierarchy isn't
424 * strictly true yet as replace_page_cache_page() can modify the
425 * association before @page is released even on the default hierarchy;
426 * however, the current and planned usages don't mix the the two functions
427 * and replace_page_cache_page() will soon be updated to make the invariant
428 * actually true.
429 */
430struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
431{
432 struct mem_cgroup *memcg;
433
434 rcu_read_lock();
435
436 memcg = page->mem_cgroup;
437
9e10a130 438 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
439 memcg = root_mem_cgroup;
440
441 rcu_read_unlock();
442 return &memcg->css;
443}
444
2fc04524
VD
445/**
446 * page_cgroup_ino - return inode number of the memcg a page is charged to
447 * @page: the page
448 *
449 * Look up the closest online ancestor of the memory cgroup @page is charged to
450 * and return its inode number or 0 if @page is not charged to any cgroup. It
451 * is safe to call this function without holding a reference to @page.
452 *
453 * Note, this function is inherently racy, because there is nothing to prevent
454 * the cgroup inode from getting torn down and potentially reallocated a moment
455 * after page_cgroup_ino() returns, so it only should be used by callers that
456 * do not care (such as procfs interfaces).
457 */
458ino_t page_cgroup_ino(struct page *page)
459{
460 struct mem_cgroup *memcg;
461 unsigned long ino = 0;
462
463 rcu_read_lock();
464 memcg = READ_ONCE(page->mem_cgroup);
465 while (memcg && !(memcg->css.flags & CSS_ONLINE))
466 memcg = parent_mem_cgroup(memcg);
467 if (memcg)
468 ino = cgroup_ino(memcg->css.cgroup);
469 rcu_read_unlock();
470 return ino;
471}
472
f64c3f54 473static struct mem_cgroup_per_zone *
e231875b 474mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 475{
97a6c37b
JW
476 int nid = page_to_nid(page);
477 int zid = page_zonenum(page);
f64c3f54 478
e231875b 479 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
480}
481
bb4cc1a8
AM
482static struct mem_cgroup_tree_per_zone *
483soft_limit_tree_node_zone(int nid, int zid)
484{
485 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
486}
487
488static struct mem_cgroup_tree_per_zone *
489soft_limit_tree_from_page(struct page *page)
490{
491 int nid = page_to_nid(page);
492 int zid = page_zonenum(page);
493
494 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
495}
496
cf2c8127
JW
497static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
498 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 499 unsigned long new_usage_in_excess)
bb4cc1a8
AM
500{
501 struct rb_node **p = &mctz->rb_root.rb_node;
502 struct rb_node *parent = NULL;
503 struct mem_cgroup_per_zone *mz_node;
504
505 if (mz->on_tree)
506 return;
507
508 mz->usage_in_excess = new_usage_in_excess;
509 if (!mz->usage_in_excess)
510 return;
511 while (*p) {
512 parent = *p;
513 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
514 tree_node);
515 if (mz->usage_in_excess < mz_node->usage_in_excess)
516 p = &(*p)->rb_left;
517 /*
518 * We can't avoid mem cgroups that are over their soft
519 * limit by the same amount
520 */
521 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
522 p = &(*p)->rb_right;
523 }
524 rb_link_node(&mz->tree_node, parent, p);
525 rb_insert_color(&mz->tree_node, &mctz->rb_root);
526 mz->on_tree = true;
527}
528
cf2c8127
JW
529static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
531{
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536}
537
cf2c8127
JW
538static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
539 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 540{
0a31bc97
JW
541 unsigned long flags;
542
543 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 544 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 545 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
546}
547
3e32cb2e
JW
548static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
549{
550 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 551 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
552 unsigned long excess = 0;
553
554 if (nr_pages > soft_limit)
555 excess = nr_pages - soft_limit;
556
557 return excess;
558}
bb4cc1a8
AM
559
560static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
561{
3e32cb2e 562 unsigned long excess;
bb4cc1a8
AM
563 struct mem_cgroup_per_zone *mz;
564 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 565
e231875b 566 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
567 /*
568 * Necessary to update all ancestors when hierarchy is used.
569 * because their event counter is not touched.
570 */
571 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 572 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 573 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
574 /*
575 * We have to update the tree if mz is on RB-tree or
576 * mem is over its softlimit.
577 */
578 if (excess || mz->on_tree) {
0a31bc97
JW
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
582 /* if on-tree, remove it */
583 if (mz->on_tree)
cf2c8127 584 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
585 /*
586 * Insert again. mz->usage_in_excess will be updated.
587 * If excess is 0, no tree ops.
588 */
cf2c8127 589 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 590 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
591 }
592 }
593}
594
595static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
596{
bb4cc1a8 597 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
598 struct mem_cgroup_per_zone *mz;
599 int nid, zid;
bb4cc1a8 600
e231875b
JZ
601 for_each_node(nid) {
602 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
603 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
604 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 605 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
606 }
607 }
608}
609
610static struct mem_cgroup_per_zone *
611__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
612{
613 struct rb_node *rightmost = NULL;
614 struct mem_cgroup_per_zone *mz;
615
616retry:
617 mz = NULL;
618 rightmost = rb_last(&mctz->rb_root);
619 if (!rightmost)
620 goto done; /* Nothing to reclaim from */
621
622 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
623 /*
624 * Remove the node now but someone else can add it back,
625 * we will to add it back at the end of reclaim to its correct
626 * position in the tree.
627 */
cf2c8127 628 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 629 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 630 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
631 goto retry;
632done:
633 return mz;
634}
635
636static struct mem_cgroup_per_zone *
637mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
638{
639 struct mem_cgroup_per_zone *mz;
640
0a31bc97 641 spin_lock_irq(&mctz->lock);
bb4cc1a8 642 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 643 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
644 return mz;
645}
646
711d3d2c 647/*
484ebb3b
GT
648 * Return page count for single (non recursive) @memcg.
649 *
711d3d2c
KH
650 * Implementation Note: reading percpu statistics for memcg.
651 *
652 * Both of vmstat[] and percpu_counter has threshold and do periodic
653 * synchronization to implement "quick" read. There are trade-off between
654 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 655 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
656 *
657 * But this _read() function is used for user interface now. The user accounts
658 * memory usage by memory cgroup and he _always_ requires exact value because
659 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
660 * have to visit all online cpus and make sum. So, for now, unnecessary
661 * synchronization is not implemented. (just implemented for cpu hotplug)
662 *
663 * If there are kernel internal actions which can make use of some not-exact
664 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 665 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
666 * implemented.
667 */
484ebb3b
GT
668static unsigned long
669mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 670{
7a159cc9 671 long val = 0;
c62b1a3b 672 int cpu;
c62b1a3b 673
484ebb3b 674 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 675 for_each_possible_cpu(cpu)
c0ff4b85 676 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
677 /*
678 * Summing races with updates, so val may be negative. Avoid exposing
679 * transient negative values.
680 */
681 if (val < 0)
682 val = 0;
c62b1a3b
KH
683 return val;
684}
685
c0ff4b85 686static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
687 enum mem_cgroup_events_index idx)
688{
689 unsigned long val = 0;
690 int cpu;
691
733a572e 692 for_each_possible_cpu(cpu)
c0ff4b85 693 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
694 return val;
695}
696
c0ff4b85 697static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 698 struct page *page,
0a31bc97 699 int nr_pages)
d52aa412 700{
b2402857
KH
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
0a31bc97 705 if (PageAnon(page))
b2402857 706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 707 nr_pages);
d52aa412 708 else
b2402857 709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 710 nr_pages);
55e462b0 711
b070e65c
DR
712 if (PageTransHuge(page))
713 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
714 nr_pages);
715
e401f176
KH
716 /* pagein of a big page is an event. So, ignore page size */
717 if (nr_pages > 0)
c0ff4b85 718 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 719 else {
c0ff4b85 720 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
721 nr_pages = -nr_pages; /* for event */
722 }
e401f176 723
13114716 724 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
725}
726
e231875b
JZ
727static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 int nid,
729 unsigned int lru_mask)
bb2a0de9 730{
e231875b 731 unsigned long nr = 0;
889976db
YH
732 int zid;
733
e231875b 734 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 735
e231875b
JZ
736 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
737 struct mem_cgroup_per_zone *mz;
738 enum lru_list lru;
739
740 for_each_lru(lru) {
741 if (!(BIT(lru) & lru_mask))
742 continue;
743 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
744 nr += mz->lru_size[lru];
745 }
746 }
747 return nr;
889976db 748}
bb2a0de9 749
c0ff4b85 750static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 751 unsigned int lru_mask)
6d12e2d8 752{
e231875b 753 unsigned long nr = 0;
889976db 754 int nid;
6d12e2d8 755
31aaea4a 756 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
757 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
758 return nr;
d52aa412
KH
759}
760
f53d7ce3
JW
761static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
762 enum mem_cgroup_events_target target)
7a159cc9
JW
763{
764 unsigned long val, next;
765
13114716 766 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 767 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 768 /* from time_after() in jiffies.h */
f53d7ce3
JW
769 if ((long)next - (long)val < 0) {
770 switch (target) {
771 case MEM_CGROUP_TARGET_THRESH:
772 next = val + THRESHOLDS_EVENTS_TARGET;
773 break;
bb4cc1a8
AM
774 case MEM_CGROUP_TARGET_SOFTLIMIT:
775 next = val + SOFTLIMIT_EVENTS_TARGET;
776 break;
f53d7ce3
JW
777 case MEM_CGROUP_TARGET_NUMAINFO:
778 next = val + NUMAINFO_EVENTS_TARGET;
779 break;
780 default:
781 break;
782 }
783 __this_cpu_write(memcg->stat->targets[target], next);
784 return true;
7a159cc9 785 }
f53d7ce3 786 return false;
d2265e6f
KH
787}
788
789/*
790 * Check events in order.
791 *
792 */
c0ff4b85 793static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
794{
795 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
796 if (unlikely(mem_cgroup_event_ratelimit(memcg,
797 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 798 bool do_softlimit;
82b3f2a7 799 bool do_numainfo __maybe_unused;
f53d7ce3 800
bb4cc1a8
AM
801 do_softlimit = mem_cgroup_event_ratelimit(memcg,
802 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
803#if MAX_NUMNODES > 1
804 do_numainfo = mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_NUMAINFO);
806#endif
c0ff4b85 807 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
808 if (unlikely(do_softlimit))
809 mem_cgroup_update_tree(memcg, page);
453a9bf3 810#if MAX_NUMNODES > 1
f53d7ce3 811 if (unlikely(do_numainfo))
c0ff4b85 812 atomic_inc(&memcg->numainfo_events);
453a9bf3 813#endif
0a31bc97 814 }
d2265e6f
KH
815}
816
cf475ad2 817struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 818{
31a78f23
BS
819 /*
820 * mm_update_next_owner() may clear mm->owner to NULL
821 * if it races with swapoff, page migration, etc.
822 * So this can be called with p == NULL.
823 */
824 if (unlikely(!p))
825 return NULL;
826
073219e9 827 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 828}
33398cf2 829EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 830
df381975 831static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 832{
c0ff4b85 833 struct mem_cgroup *memcg = NULL;
0b7f569e 834
54595fe2
KH
835 rcu_read_lock();
836 do {
6f6acb00
MH
837 /*
838 * Page cache insertions can happen withou an
839 * actual mm context, e.g. during disk probing
840 * on boot, loopback IO, acct() writes etc.
841 */
842 if (unlikely(!mm))
df381975 843 memcg = root_mem_cgroup;
6f6acb00
MH
844 else {
845 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
846 if (unlikely(!memcg))
847 memcg = root_mem_cgroup;
848 }
ec903c0c 849 } while (!css_tryget_online(&memcg->css));
54595fe2 850 rcu_read_unlock();
c0ff4b85 851 return memcg;
54595fe2
KH
852}
853
5660048c
JW
854/**
855 * mem_cgroup_iter - iterate over memory cgroup hierarchy
856 * @root: hierarchy root
857 * @prev: previously returned memcg, NULL on first invocation
858 * @reclaim: cookie for shared reclaim walks, NULL for full walks
859 *
860 * Returns references to children of the hierarchy below @root, or
861 * @root itself, or %NULL after a full round-trip.
862 *
863 * Caller must pass the return value in @prev on subsequent
864 * invocations for reference counting, or use mem_cgroup_iter_break()
865 * to cancel a hierarchy walk before the round-trip is complete.
866 *
867 * Reclaimers can specify a zone and a priority level in @reclaim to
868 * divide up the memcgs in the hierarchy among all concurrent
869 * reclaimers operating on the same zone and priority.
870 */
694fbc0f 871struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 872 struct mem_cgroup *prev,
694fbc0f 873 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 874{
33398cf2 875 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 876 struct cgroup_subsys_state *css = NULL;
9f3a0d09 877 struct mem_cgroup *memcg = NULL;
5ac8fb31 878 struct mem_cgroup *pos = NULL;
711d3d2c 879
694fbc0f
AM
880 if (mem_cgroup_disabled())
881 return NULL;
5660048c 882
9f3a0d09
JW
883 if (!root)
884 root = root_mem_cgroup;
7d74b06f 885
9f3a0d09 886 if (prev && !reclaim)
5ac8fb31 887 pos = prev;
14067bb3 888
9f3a0d09
JW
889 if (!root->use_hierarchy && root != root_mem_cgroup) {
890 if (prev)
5ac8fb31 891 goto out;
694fbc0f 892 return root;
9f3a0d09 893 }
14067bb3 894
542f85f9 895 rcu_read_lock();
5f578161 896
5ac8fb31
JW
897 if (reclaim) {
898 struct mem_cgroup_per_zone *mz;
899
900 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
901 iter = &mz->iter[reclaim->priority];
902
903 if (prev && reclaim->generation != iter->generation)
904 goto out_unlock;
905
6df38689 906 while (1) {
4db0c3c2 907 pos = READ_ONCE(iter->position);
6df38689
VD
908 if (!pos || css_tryget(&pos->css))
909 break;
5ac8fb31 910 /*
6df38689
VD
911 * css reference reached zero, so iter->position will
912 * be cleared by ->css_released. However, we should not
913 * rely on this happening soon, because ->css_released
914 * is called from a work queue, and by busy-waiting we
915 * might block it. So we clear iter->position right
916 * away.
5ac8fb31 917 */
6df38689
VD
918 (void)cmpxchg(&iter->position, pos, NULL);
919 }
5ac8fb31
JW
920 }
921
922 if (pos)
923 css = &pos->css;
924
925 for (;;) {
926 css = css_next_descendant_pre(css, &root->css);
927 if (!css) {
928 /*
929 * Reclaimers share the hierarchy walk, and a
930 * new one might jump in right at the end of
931 * the hierarchy - make sure they see at least
932 * one group and restart from the beginning.
933 */
934 if (!prev)
935 continue;
936 break;
527a5ec9 937 }
7d74b06f 938
5ac8fb31
JW
939 /*
940 * Verify the css and acquire a reference. The root
941 * is provided by the caller, so we know it's alive
942 * and kicking, and don't take an extra reference.
943 */
944 memcg = mem_cgroup_from_css(css);
14067bb3 945
5ac8fb31
JW
946 if (css == &root->css)
947 break;
14067bb3 948
b2052564 949 if (css_tryget(css)) {
5ac8fb31
JW
950 /*
951 * Make sure the memcg is initialized:
952 * mem_cgroup_css_online() orders the the
953 * initialization against setting the flag.
954 */
955 if (smp_load_acquire(&memcg->initialized))
956 break;
542f85f9 957
5ac8fb31 958 css_put(css);
527a5ec9 959 }
9f3a0d09 960
5ac8fb31 961 memcg = NULL;
9f3a0d09 962 }
5ac8fb31
JW
963
964 if (reclaim) {
5ac8fb31 965 /*
6df38689
VD
966 * The position could have already been updated by a competing
967 * thread, so check that the value hasn't changed since we read
968 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 969 */
6df38689
VD
970 (void)cmpxchg(&iter->position, pos, memcg);
971
5ac8fb31
JW
972 if (pos)
973 css_put(&pos->css);
974
975 if (!memcg)
976 iter->generation++;
977 else if (!prev)
978 reclaim->generation = iter->generation;
9f3a0d09 979 }
5ac8fb31 980
542f85f9
MH
981out_unlock:
982 rcu_read_unlock();
5ac8fb31 983out:
c40046f3
MH
984 if (prev && prev != root)
985 css_put(&prev->css);
986
9f3a0d09 987 return memcg;
14067bb3 988}
7d74b06f 989
5660048c
JW
990/**
991 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
992 * @root: hierarchy root
993 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
994 */
995void mem_cgroup_iter_break(struct mem_cgroup *root,
996 struct mem_cgroup *prev)
9f3a0d09
JW
997{
998 if (!root)
999 root = root_mem_cgroup;
1000 if (prev && prev != root)
1001 css_put(&prev->css);
1002}
7d74b06f 1003
6df38689
VD
1004static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1005{
1006 struct mem_cgroup *memcg = dead_memcg;
1007 struct mem_cgroup_reclaim_iter *iter;
1008 struct mem_cgroup_per_zone *mz;
1009 int nid, zid;
1010 int i;
1011
1012 while ((memcg = parent_mem_cgroup(memcg))) {
1013 for_each_node(nid) {
1014 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1015 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
1016 for (i = 0; i <= DEF_PRIORITY; i++) {
1017 iter = &mz->iter[i];
1018 cmpxchg(&iter->position,
1019 dead_memcg, NULL);
1020 }
1021 }
1022 }
1023 }
1024}
1025
9f3a0d09
JW
1026/*
1027 * Iteration constructs for visiting all cgroups (under a tree). If
1028 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1029 * be used for reference counting.
1030 */
1031#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1032 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1033 iter != NULL; \
527a5ec9 1034 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1035
9f3a0d09 1036#define for_each_mem_cgroup(iter) \
527a5ec9 1037 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1038 iter != NULL; \
527a5ec9 1039 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1040
925b7673
JW
1041/**
1042 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1043 * @zone: zone of the wanted lruvec
fa9add64 1044 * @memcg: memcg of the wanted lruvec
925b7673
JW
1045 *
1046 * Returns the lru list vector holding pages for the given @zone and
1047 * @mem. This can be the global zone lruvec, if the memory controller
1048 * is disabled.
1049 */
1050struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1051 struct mem_cgroup *memcg)
1052{
1053 struct mem_cgroup_per_zone *mz;
bea8c150 1054 struct lruvec *lruvec;
925b7673 1055
bea8c150
HD
1056 if (mem_cgroup_disabled()) {
1057 lruvec = &zone->lruvec;
1058 goto out;
1059 }
925b7673 1060
e231875b 1061 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1062 lruvec = &mz->lruvec;
1063out:
1064 /*
1065 * Since a node can be onlined after the mem_cgroup was created,
1066 * we have to be prepared to initialize lruvec->zone here;
1067 * and if offlined then reonlined, we need to reinitialize it.
1068 */
1069 if (unlikely(lruvec->zone != zone))
1070 lruvec->zone = zone;
1071 return lruvec;
925b7673
JW
1072}
1073
925b7673 1074/**
dfe0e773 1075 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1076 * @page: the page
fa9add64 1077 * @zone: zone of the page
dfe0e773
JW
1078 *
1079 * This function is only safe when following the LRU page isolation
1080 * and putback protocol: the LRU lock must be held, and the page must
1081 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1082 */
fa9add64 1083struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1084{
08e552c6 1085 struct mem_cgroup_per_zone *mz;
925b7673 1086 struct mem_cgroup *memcg;
bea8c150 1087 struct lruvec *lruvec;
6d12e2d8 1088
bea8c150
HD
1089 if (mem_cgroup_disabled()) {
1090 lruvec = &zone->lruvec;
1091 goto out;
1092 }
925b7673 1093
1306a85a 1094 memcg = page->mem_cgroup;
7512102c 1095 /*
dfe0e773 1096 * Swapcache readahead pages are added to the LRU - and
29833315 1097 * possibly migrated - before they are charged.
7512102c 1098 */
29833315
JW
1099 if (!memcg)
1100 memcg = root_mem_cgroup;
7512102c 1101
e231875b 1102 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1103 lruvec = &mz->lruvec;
1104out:
1105 /*
1106 * Since a node can be onlined after the mem_cgroup was created,
1107 * we have to be prepared to initialize lruvec->zone here;
1108 * and if offlined then reonlined, we need to reinitialize it.
1109 */
1110 if (unlikely(lruvec->zone != zone))
1111 lruvec->zone = zone;
1112 return lruvec;
08e552c6 1113}
b69408e8 1114
925b7673 1115/**
fa9add64
HD
1116 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1117 * @lruvec: mem_cgroup per zone lru vector
1118 * @lru: index of lru list the page is sitting on
1119 * @nr_pages: positive when adding or negative when removing
925b7673 1120 *
fa9add64
HD
1121 * This function must be called when a page is added to or removed from an
1122 * lru list.
3f58a829 1123 */
fa9add64
HD
1124void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1125 int nr_pages)
3f58a829
MK
1126{
1127 struct mem_cgroup_per_zone *mz;
fa9add64 1128 unsigned long *lru_size;
3f58a829
MK
1129
1130 if (mem_cgroup_disabled())
1131 return;
1132
fa9add64
HD
1133 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1134 lru_size = mz->lru_size + lru;
1135 *lru_size += nr_pages;
1136 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1137}
544122e5 1138
2314b42d 1139bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1140{
2314b42d 1141 struct mem_cgroup *task_memcg;
158e0a2d 1142 struct task_struct *p;
ffbdccf5 1143 bool ret;
4c4a2214 1144
158e0a2d 1145 p = find_lock_task_mm(task);
de077d22 1146 if (p) {
2314b42d 1147 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1148 task_unlock(p);
1149 } else {
1150 /*
1151 * All threads may have already detached their mm's, but the oom
1152 * killer still needs to detect if they have already been oom
1153 * killed to prevent needlessly killing additional tasks.
1154 */
ffbdccf5 1155 rcu_read_lock();
2314b42d
JW
1156 task_memcg = mem_cgroup_from_task(task);
1157 css_get(&task_memcg->css);
ffbdccf5 1158 rcu_read_unlock();
de077d22 1159 }
2314b42d
JW
1160 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1161 css_put(&task_memcg->css);
4c4a2214
DR
1162 return ret;
1163}
1164
3e32cb2e 1165#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1166 container_of(counter, struct mem_cgroup, member)
1167
19942822 1168/**
9d11ea9f 1169 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1170 * @memcg: the memory cgroup
19942822 1171 *
9d11ea9f 1172 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1173 * pages.
19942822 1174 */
c0ff4b85 1175static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1176{
3e32cb2e
JW
1177 unsigned long margin = 0;
1178 unsigned long count;
1179 unsigned long limit;
9d11ea9f 1180
3e32cb2e 1181 count = page_counter_read(&memcg->memory);
4db0c3c2 1182 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1183 if (count < limit)
1184 margin = limit - count;
1185
1186 if (do_swap_account) {
1187 count = page_counter_read(&memcg->memsw);
4db0c3c2 1188 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1189 if (count <= limit)
1190 margin = min(margin, limit - count);
1191 }
1192
1193 return margin;
19942822
JW
1194}
1195
32047e2a 1196/*
bdcbb659 1197 * A routine for checking "mem" is under move_account() or not.
32047e2a 1198 *
bdcbb659
QH
1199 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1200 * moving cgroups. This is for waiting at high-memory pressure
1201 * caused by "move".
32047e2a 1202 */
c0ff4b85 1203static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1204{
2bd9bb20
KH
1205 struct mem_cgroup *from;
1206 struct mem_cgroup *to;
4b534334 1207 bool ret = false;
2bd9bb20
KH
1208 /*
1209 * Unlike task_move routines, we access mc.to, mc.from not under
1210 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1211 */
1212 spin_lock(&mc.lock);
1213 from = mc.from;
1214 to = mc.to;
1215 if (!from)
1216 goto unlock;
3e92041d 1217
2314b42d
JW
1218 ret = mem_cgroup_is_descendant(from, memcg) ||
1219 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1220unlock:
1221 spin_unlock(&mc.lock);
4b534334
KH
1222 return ret;
1223}
1224
c0ff4b85 1225static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1226{
1227 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1228 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1229 DEFINE_WAIT(wait);
1230 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1231 /* moving charge context might have finished. */
1232 if (mc.moving_task)
1233 schedule();
1234 finish_wait(&mc.waitq, &wait);
1235 return true;
1236 }
1237 }
1238 return false;
1239}
1240
58cf188e 1241#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1242/**
58cf188e 1243 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1244 * @memcg: The memory cgroup that went over limit
1245 * @p: Task that is going to be killed
1246 *
1247 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1248 * enabled
1249 */
1250void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1251{
e61734c5 1252 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1253 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1254 struct mem_cgroup *iter;
1255 unsigned int i;
e222432b 1256
08088cb9 1257 mutex_lock(&oom_info_lock);
e222432b
BS
1258 rcu_read_lock();
1259
2415b9f5
BV
1260 if (p) {
1261 pr_info("Task in ");
1262 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1263 pr_cont(" killed as a result of limit of ");
1264 } else {
1265 pr_info("Memory limit reached of cgroup ");
1266 }
1267
e61734c5 1268 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1269 pr_cont("\n");
e222432b 1270
e222432b
BS
1271 rcu_read_unlock();
1272
3e32cb2e
JW
1273 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1274 K((u64)page_counter_read(&memcg->memory)),
1275 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1276 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1277 K((u64)page_counter_read(&memcg->memsw)),
1278 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1279 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1280 K((u64)page_counter_read(&memcg->kmem)),
1281 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1282
1283 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1284 pr_info("Memory cgroup stats for ");
1285 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1286 pr_cont(":");
1287
1288 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1289 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1290 continue;
484ebb3b 1291 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1292 K(mem_cgroup_read_stat(iter, i)));
1293 }
1294
1295 for (i = 0; i < NR_LRU_LISTS; i++)
1296 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1297 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1298
1299 pr_cont("\n");
1300 }
08088cb9 1301 mutex_unlock(&oom_info_lock);
e222432b
BS
1302}
1303
81d39c20
KH
1304/*
1305 * This function returns the number of memcg under hierarchy tree. Returns
1306 * 1(self count) if no children.
1307 */
c0ff4b85 1308static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1309{
1310 int num = 0;
7d74b06f
KH
1311 struct mem_cgroup *iter;
1312
c0ff4b85 1313 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1314 num++;
81d39c20
KH
1315 return num;
1316}
1317
a63d83f4
DR
1318/*
1319 * Return the memory (and swap, if configured) limit for a memcg.
1320 */
3e32cb2e 1321static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1322{
3e32cb2e 1323 unsigned long limit;
f3e8eb70 1324
3e32cb2e 1325 limit = memcg->memory.limit;
9a5a8f19 1326 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1327 unsigned long memsw_limit;
9a5a8f19 1328
3e32cb2e
JW
1329 memsw_limit = memcg->memsw.limit;
1330 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1331 }
9a5a8f19 1332 return limit;
a63d83f4
DR
1333}
1334
19965460
DR
1335static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1336 int order)
9cbb78bb 1337{
6e0fc46d
DR
1338 struct oom_control oc = {
1339 .zonelist = NULL,
1340 .nodemask = NULL,
1341 .gfp_mask = gfp_mask,
1342 .order = order,
6e0fc46d 1343 };
9cbb78bb
DR
1344 struct mem_cgroup *iter;
1345 unsigned long chosen_points = 0;
1346 unsigned long totalpages;
1347 unsigned int points = 0;
1348 struct task_struct *chosen = NULL;
1349
dc56401f
JW
1350 mutex_lock(&oom_lock);
1351
876aafbf 1352 /*
465adcf1
DR
1353 * If current has a pending SIGKILL or is exiting, then automatically
1354 * select it. The goal is to allow it to allocate so that it may
1355 * quickly exit and free its memory.
876aafbf 1356 */
d003f371 1357 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1358 mark_oom_victim(current);
dc56401f 1359 goto unlock;
876aafbf
DR
1360 }
1361
6e0fc46d 1362 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1363 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1364 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1365 struct css_task_iter it;
9cbb78bb
DR
1366 struct task_struct *task;
1367
72ec7029
TH
1368 css_task_iter_start(&iter->css, &it);
1369 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1370 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1371 case OOM_SCAN_SELECT:
1372 if (chosen)
1373 put_task_struct(chosen);
1374 chosen = task;
1375 chosen_points = ULONG_MAX;
1376 get_task_struct(chosen);
1377 /* fall through */
1378 case OOM_SCAN_CONTINUE:
1379 continue;
1380 case OOM_SCAN_ABORT:
72ec7029 1381 css_task_iter_end(&it);
9cbb78bb
DR
1382 mem_cgroup_iter_break(memcg, iter);
1383 if (chosen)
1384 put_task_struct(chosen);
dc56401f 1385 goto unlock;
9cbb78bb
DR
1386 case OOM_SCAN_OK:
1387 break;
1388 };
1389 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1390 if (!points || points < chosen_points)
1391 continue;
1392 /* Prefer thread group leaders for display purposes */
1393 if (points == chosen_points &&
1394 thread_group_leader(chosen))
1395 continue;
1396
1397 if (chosen)
1398 put_task_struct(chosen);
1399 chosen = task;
1400 chosen_points = points;
1401 get_task_struct(chosen);
9cbb78bb 1402 }
72ec7029 1403 css_task_iter_end(&it);
9cbb78bb
DR
1404 }
1405
dc56401f
JW
1406 if (chosen) {
1407 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1408 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1409 "Memory cgroup out of memory");
dc56401f
JW
1410 }
1411unlock:
1412 mutex_unlock(&oom_lock);
9cbb78bb
DR
1413}
1414
ae6e71d3
MC
1415#if MAX_NUMNODES > 1
1416
4d0c066d
KH
1417/**
1418 * test_mem_cgroup_node_reclaimable
dad7557e 1419 * @memcg: the target memcg
4d0c066d
KH
1420 * @nid: the node ID to be checked.
1421 * @noswap : specify true here if the user wants flle only information.
1422 *
1423 * This function returns whether the specified memcg contains any
1424 * reclaimable pages on a node. Returns true if there are any reclaimable
1425 * pages in the node.
1426 */
c0ff4b85 1427static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1428 int nid, bool noswap)
1429{
c0ff4b85 1430 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1431 return true;
1432 if (noswap || !total_swap_pages)
1433 return false;
c0ff4b85 1434 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1435 return true;
1436 return false;
1437
1438}
889976db
YH
1439
1440/*
1441 * Always updating the nodemask is not very good - even if we have an empty
1442 * list or the wrong list here, we can start from some node and traverse all
1443 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1444 *
1445 */
c0ff4b85 1446static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1447{
1448 int nid;
453a9bf3
KH
1449 /*
1450 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1451 * pagein/pageout changes since the last update.
1452 */
c0ff4b85 1453 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1454 return;
c0ff4b85 1455 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1456 return;
1457
889976db 1458 /* make a nodemask where this memcg uses memory from */
31aaea4a 1459 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1460
31aaea4a 1461 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1462
c0ff4b85
R
1463 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1464 node_clear(nid, memcg->scan_nodes);
889976db 1465 }
453a9bf3 1466
c0ff4b85
R
1467 atomic_set(&memcg->numainfo_events, 0);
1468 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1469}
1470
1471/*
1472 * Selecting a node where we start reclaim from. Because what we need is just
1473 * reducing usage counter, start from anywhere is O,K. Considering
1474 * memory reclaim from current node, there are pros. and cons.
1475 *
1476 * Freeing memory from current node means freeing memory from a node which
1477 * we'll use or we've used. So, it may make LRU bad. And if several threads
1478 * hit limits, it will see a contention on a node. But freeing from remote
1479 * node means more costs for memory reclaim because of memory latency.
1480 *
1481 * Now, we use round-robin. Better algorithm is welcomed.
1482 */
c0ff4b85 1483int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1484{
1485 int node;
1486
c0ff4b85
R
1487 mem_cgroup_may_update_nodemask(memcg);
1488 node = memcg->last_scanned_node;
889976db 1489
c0ff4b85 1490 node = next_node(node, memcg->scan_nodes);
889976db 1491 if (node == MAX_NUMNODES)
c0ff4b85 1492 node = first_node(memcg->scan_nodes);
889976db
YH
1493 /*
1494 * We call this when we hit limit, not when pages are added to LRU.
1495 * No LRU may hold pages because all pages are UNEVICTABLE or
1496 * memcg is too small and all pages are not on LRU. In that case,
1497 * we use curret node.
1498 */
1499 if (unlikely(node == MAX_NUMNODES))
1500 node = numa_node_id();
1501
c0ff4b85 1502 memcg->last_scanned_node = node;
889976db
YH
1503 return node;
1504}
889976db 1505#else
c0ff4b85 1506int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1507{
1508 return 0;
1509}
1510#endif
1511
0608f43d
AM
1512static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1513 struct zone *zone,
1514 gfp_t gfp_mask,
1515 unsigned long *total_scanned)
1516{
1517 struct mem_cgroup *victim = NULL;
1518 int total = 0;
1519 int loop = 0;
1520 unsigned long excess;
1521 unsigned long nr_scanned;
1522 struct mem_cgroup_reclaim_cookie reclaim = {
1523 .zone = zone,
1524 .priority = 0,
1525 };
1526
3e32cb2e 1527 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1528
1529 while (1) {
1530 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1531 if (!victim) {
1532 loop++;
1533 if (loop >= 2) {
1534 /*
1535 * If we have not been able to reclaim
1536 * anything, it might because there are
1537 * no reclaimable pages under this hierarchy
1538 */
1539 if (!total)
1540 break;
1541 /*
1542 * We want to do more targeted reclaim.
1543 * excess >> 2 is not to excessive so as to
1544 * reclaim too much, nor too less that we keep
1545 * coming back to reclaim from this cgroup
1546 */
1547 if (total >= (excess >> 2) ||
1548 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1549 break;
1550 }
1551 continue;
1552 }
0608f43d
AM
1553 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1554 zone, &nr_scanned);
1555 *total_scanned += nr_scanned;
3e32cb2e 1556 if (!soft_limit_excess(root_memcg))
0608f43d 1557 break;
6d61ef40 1558 }
0608f43d
AM
1559 mem_cgroup_iter_break(root_memcg, victim);
1560 return total;
6d61ef40
BS
1561}
1562
0056f4e6
JW
1563#ifdef CONFIG_LOCKDEP
1564static struct lockdep_map memcg_oom_lock_dep_map = {
1565 .name = "memcg_oom_lock",
1566};
1567#endif
1568
fb2a6fc5
JW
1569static DEFINE_SPINLOCK(memcg_oom_lock);
1570
867578cb
KH
1571/*
1572 * Check OOM-Killer is already running under our hierarchy.
1573 * If someone is running, return false.
1574 */
fb2a6fc5 1575static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1576{
79dfdacc 1577 struct mem_cgroup *iter, *failed = NULL;
a636b327 1578
fb2a6fc5
JW
1579 spin_lock(&memcg_oom_lock);
1580
9f3a0d09 1581 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1582 if (iter->oom_lock) {
79dfdacc
MH
1583 /*
1584 * this subtree of our hierarchy is already locked
1585 * so we cannot give a lock.
1586 */
79dfdacc 1587 failed = iter;
9f3a0d09
JW
1588 mem_cgroup_iter_break(memcg, iter);
1589 break;
23751be0
JW
1590 } else
1591 iter->oom_lock = true;
7d74b06f 1592 }
867578cb 1593
fb2a6fc5
JW
1594 if (failed) {
1595 /*
1596 * OK, we failed to lock the whole subtree so we have
1597 * to clean up what we set up to the failing subtree
1598 */
1599 for_each_mem_cgroup_tree(iter, memcg) {
1600 if (iter == failed) {
1601 mem_cgroup_iter_break(memcg, iter);
1602 break;
1603 }
1604 iter->oom_lock = false;
79dfdacc 1605 }
0056f4e6
JW
1606 } else
1607 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1608
1609 spin_unlock(&memcg_oom_lock);
1610
1611 return !failed;
a636b327 1612}
0b7f569e 1613
fb2a6fc5 1614static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1615{
7d74b06f
KH
1616 struct mem_cgroup *iter;
1617
fb2a6fc5 1618 spin_lock(&memcg_oom_lock);
0056f4e6 1619 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1620 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1621 iter->oom_lock = false;
fb2a6fc5 1622 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1623}
1624
c0ff4b85 1625static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1626{
1627 struct mem_cgroup *iter;
1628
c2b42d3c 1629 spin_lock(&memcg_oom_lock);
c0ff4b85 1630 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1631 iter->under_oom++;
1632 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1633}
1634
c0ff4b85 1635static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1636{
1637 struct mem_cgroup *iter;
1638
867578cb
KH
1639 /*
1640 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1641 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1642 */
c2b42d3c 1643 spin_lock(&memcg_oom_lock);
c0ff4b85 1644 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1645 if (iter->under_oom > 0)
1646 iter->under_oom--;
1647 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1648}
1649
867578cb
KH
1650static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1651
dc98df5a 1652struct oom_wait_info {
d79154bb 1653 struct mem_cgroup *memcg;
dc98df5a
KH
1654 wait_queue_t wait;
1655};
1656
1657static int memcg_oom_wake_function(wait_queue_t *wait,
1658 unsigned mode, int sync, void *arg)
1659{
d79154bb
HD
1660 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1661 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1662 struct oom_wait_info *oom_wait_info;
1663
1664 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1665 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1666
2314b42d
JW
1667 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1668 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1669 return 0;
dc98df5a
KH
1670 return autoremove_wake_function(wait, mode, sync, arg);
1671}
1672
c0ff4b85 1673static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1674{
c2b42d3c
TH
1675 /*
1676 * For the following lockless ->under_oom test, the only required
1677 * guarantee is that it must see the state asserted by an OOM when
1678 * this function is called as a result of userland actions
1679 * triggered by the notification of the OOM. This is trivially
1680 * achieved by invoking mem_cgroup_mark_under_oom() before
1681 * triggering notification.
1682 */
1683 if (memcg && memcg->under_oom)
f4b90b70 1684 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1685}
1686
3812c8c8 1687static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1688{
626ebc41 1689 if (!current->memcg_may_oom)
3812c8c8 1690 return;
867578cb 1691 /*
49426420
JW
1692 * We are in the middle of the charge context here, so we
1693 * don't want to block when potentially sitting on a callstack
1694 * that holds all kinds of filesystem and mm locks.
1695 *
1696 * Also, the caller may handle a failed allocation gracefully
1697 * (like optional page cache readahead) and so an OOM killer
1698 * invocation might not even be necessary.
1699 *
1700 * That's why we don't do anything here except remember the
1701 * OOM context and then deal with it at the end of the page
1702 * fault when the stack is unwound, the locks are released,
1703 * and when we know whether the fault was overall successful.
867578cb 1704 */
49426420 1705 css_get(&memcg->css);
626ebc41
TH
1706 current->memcg_in_oom = memcg;
1707 current->memcg_oom_gfp_mask = mask;
1708 current->memcg_oom_order = order;
3812c8c8
JW
1709}
1710
1711/**
1712 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1713 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1714 *
49426420
JW
1715 * This has to be called at the end of a page fault if the memcg OOM
1716 * handler was enabled.
3812c8c8 1717 *
49426420 1718 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1719 * sleep on a waitqueue until the userspace task resolves the
1720 * situation. Sleeping directly in the charge context with all kinds
1721 * of locks held is not a good idea, instead we remember an OOM state
1722 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1723 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1724 *
1725 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1726 * completed, %false otherwise.
3812c8c8 1727 */
49426420 1728bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1729{
626ebc41 1730 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1731 struct oom_wait_info owait;
49426420 1732 bool locked;
3812c8c8
JW
1733
1734 /* OOM is global, do not handle */
3812c8c8 1735 if (!memcg)
49426420 1736 return false;
3812c8c8 1737
c32b3cbe 1738 if (!handle || oom_killer_disabled)
49426420 1739 goto cleanup;
3812c8c8
JW
1740
1741 owait.memcg = memcg;
1742 owait.wait.flags = 0;
1743 owait.wait.func = memcg_oom_wake_function;
1744 owait.wait.private = current;
1745 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1746
3812c8c8 1747 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1748 mem_cgroup_mark_under_oom(memcg);
1749
1750 locked = mem_cgroup_oom_trylock(memcg);
1751
1752 if (locked)
1753 mem_cgroup_oom_notify(memcg);
1754
1755 if (locked && !memcg->oom_kill_disable) {
1756 mem_cgroup_unmark_under_oom(memcg);
1757 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1758 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1759 current->memcg_oom_order);
49426420 1760 } else {
3812c8c8 1761 schedule();
49426420
JW
1762 mem_cgroup_unmark_under_oom(memcg);
1763 finish_wait(&memcg_oom_waitq, &owait.wait);
1764 }
1765
1766 if (locked) {
fb2a6fc5
JW
1767 mem_cgroup_oom_unlock(memcg);
1768 /*
1769 * There is no guarantee that an OOM-lock contender
1770 * sees the wakeups triggered by the OOM kill
1771 * uncharges. Wake any sleepers explicitely.
1772 */
1773 memcg_oom_recover(memcg);
1774 }
49426420 1775cleanup:
626ebc41 1776 current->memcg_in_oom = NULL;
3812c8c8 1777 css_put(&memcg->css);
867578cb 1778 return true;
0b7f569e
KH
1779}
1780
d7365e78
JW
1781/**
1782 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1783 * @page: page that is going to change accounted state
32047e2a 1784 *
d7365e78
JW
1785 * This function must mark the beginning of an accounted page state
1786 * change to prevent double accounting when the page is concurrently
1787 * being moved to another memcg:
32047e2a 1788 *
6de22619 1789 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1790 * if (TestClearPageState(page))
1791 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1792 * mem_cgroup_end_page_stat(memcg);
d69b042f 1793 */
6de22619 1794struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1795{
1796 struct mem_cgroup *memcg;
6de22619 1797 unsigned long flags;
89c06bd5 1798
6de22619
JW
1799 /*
1800 * The RCU lock is held throughout the transaction. The fast
1801 * path can get away without acquiring the memcg->move_lock
1802 * because page moving starts with an RCU grace period.
1803 *
1804 * The RCU lock also protects the memcg from being freed when
1805 * the page state that is going to change is the only thing
1806 * preventing the page from being uncharged.
1807 * E.g. end-writeback clearing PageWriteback(), which allows
1808 * migration to go ahead and uncharge the page before the
1809 * account transaction might be complete.
1810 */
d7365e78
JW
1811 rcu_read_lock();
1812
1813 if (mem_cgroup_disabled())
1814 return NULL;
89c06bd5 1815again:
1306a85a 1816 memcg = page->mem_cgroup;
29833315 1817 if (unlikely(!memcg))
d7365e78
JW
1818 return NULL;
1819
bdcbb659 1820 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1821 return memcg;
89c06bd5 1822
6de22619 1823 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1824 if (memcg != page->mem_cgroup) {
6de22619 1825 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1826 goto again;
1827 }
6de22619
JW
1828
1829 /*
1830 * When charge migration first begins, we can have locked and
1831 * unlocked page stat updates happening concurrently. Track
1832 * the task who has the lock for mem_cgroup_end_page_stat().
1833 */
1834 memcg->move_lock_task = current;
1835 memcg->move_lock_flags = flags;
d7365e78
JW
1836
1837 return memcg;
89c06bd5 1838}
c4843a75 1839EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1840
d7365e78
JW
1841/**
1842 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1843 * @memcg: the memcg that was accounted against
d7365e78 1844 */
6de22619 1845void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1846{
6de22619
JW
1847 if (memcg && memcg->move_lock_task == current) {
1848 unsigned long flags = memcg->move_lock_flags;
1849
1850 memcg->move_lock_task = NULL;
1851 memcg->move_lock_flags = 0;
1852
1853 spin_unlock_irqrestore(&memcg->move_lock, flags);
1854 }
89c06bd5 1855
d7365e78 1856 rcu_read_unlock();
89c06bd5 1857}
c4843a75 1858EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1859
cdec2e42
KH
1860/*
1861 * size of first charge trial. "32" comes from vmscan.c's magic value.
1862 * TODO: maybe necessary to use big numbers in big irons.
1863 */
7ec99d62 1864#define CHARGE_BATCH 32U
cdec2e42
KH
1865struct memcg_stock_pcp {
1866 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1867 unsigned int nr_pages;
cdec2e42 1868 struct work_struct work;
26fe6168 1869 unsigned long flags;
a0db00fc 1870#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1871};
1872static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1873static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1874
a0956d54
SS
1875/**
1876 * consume_stock: Try to consume stocked charge on this cpu.
1877 * @memcg: memcg to consume from.
1878 * @nr_pages: how many pages to charge.
1879 *
1880 * The charges will only happen if @memcg matches the current cpu's memcg
1881 * stock, and at least @nr_pages are available in that stock. Failure to
1882 * service an allocation will refill the stock.
1883 *
1884 * returns true if successful, false otherwise.
cdec2e42 1885 */
a0956d54 1886static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1887{
1888 struct memcg_stock_pcp *stock;
3e32cb2e 1889 bool ret = false;
cdec2e42 1890
a0956d54 1891 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1892 return ret;
a0956d54 1893
cdec2e42 1894 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1895 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1896 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1897 ret = true;
1898 }
cdec2e42
KH
1899 put_cpu_var(memcg_stock);
1900 return ret;
1901}
1902
1903/*
3e32cb2e 1904 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1905 */
1906static void drain_stock(struct memcg_stock_pcp *stock)
1907{
1908 struct mem_cgroup *old = stock->cached;
1909
11c9ea4e 1910 if (stock->nr_pages) {
3e32cb2e 1911 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 1912 if (do_swap_account)
3e32cb2e 1913 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1914 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1915 stock->nr_pages = 0;
cdec2e42
KH
1916 }
1917 stock->cached = NULL;
cdec2e42
KH
1918}
1919
1920/*
1921 * This must be called under preempt disabled or must be called by
1922 * a thread which is pinned to local cpu.
1923 */
1924static void drain_local_stock(struct work_struct *dummy)
1925{
7c8e0181 1926 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1927 drain_stock(stock);
26fe6168 1928 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1929}
1930
1931/*
3e32cb2e 1932 * Cache charges(val) to local per_cpu area.
320cc51d 1933 * This will be consumed by consume_stock() function, later.
cdec2e42 1934 */
c0ff4b85 1935static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1936{
1937 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1938
c0ff4b85 1939 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1940 drain_stock(stock);
c0ff4b85 1941 stock->cached = memcg;
cdec2e42 1942 }
11c9ea4e 1943 stock->nr_pages += nr_pages;
cdec2e42
KH
1944 put_cpu_var(memcg_stock);
1945}
1946
1947/*
c0ff4b85 1948 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1949 * of the hierarchy under it.
cdec2e42 1950 */
6d3d6aa2 1951static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1952{
26fe6168 1953 int cpu, curcpu;
d38144b7 1954
6d3d6aa2
JW
1955 /* If someone's already draining, avoid adding running more workers. */
1956 if (!mutex_trylock(&percpu_charge_mutex))
1957 return;
cdec2e42 1958 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1959 get_online_cpus();
5af12d0e 1960 curcpu = get_cpu();
cdec2e42
KH
1961 for_each_online_cpu(cpu) {
1962 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1963 struct mem_cgroup *memcg;
26fe6168 1964
c0ff4b85
R
1965 memcg = stock->cached;
1966 if (!memcg || !stock->nr_pages)
26fe6168 1967 continue;
2314b42d 1968 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1969 continue;
d1a05b69
MH
1970 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1971 if (cpu == curcpu)
1972 drain_local_stock(&stock->work);
1973 else
1974 schedule_work_on(cpu, &stock->work);
1975 }
cdec2e42 1976 }
5af12d0e 1977 put_cpu();
f894ffa8 1978 put_online_cpus();
9f50fad6 1979 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1980}
1981
0db0628d 1982static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1983 unsigned long action,
1984 void *hcpu)
1985{
1986 int cpu = (unsigned long)hcpu;
1987 struct memcg_stock_pcp *stock;
1988
619d094b 1989 if (action == CPU_ONLINE)
1489ebad 1990 return NOTIFY_OK;
1489ebad 1991
d833049b 1992 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1993 return NOTIFY_OK;
711d3d2c 1994
cdec2e42
KH
1995 stock = &per_cpu(memcg_stock, cpu);
1996 drain_stock(stock);
1997 return NOTIFY_OK;
1998}
1999
b23afb93
TH
2000/*
2001 * Scheduled by try_charge() to be executed from the userland return path
2002 * and reclaims memory over the high limit.
2003 */
2004void mem_cgroup_handle_over_high(void)
2005{
2006 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2007 struct mem_cgroup *memcg, *pos;
2008
2009 if (likely(!nr_pages))
2010 return;
2011
2012 pos = memcg = get_mem_cgroup_from_mm(current->mm);
2013
2014 do {
2015 if (page_counter_read(&pos->memory) <= pos->high)
2016 continue;
2017 mem_cgroup_events(pos, MEMCG_HIGH, 1);
2018 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2019 } while ((pos = parent_mem_cgroup(pos)));
2020
2021 css_put(&memcg->css);
2022 current->memcg_nr_pages_over_high = 0;
2023}
2024
00501b53
JW
2025static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2026 unsigned int nr_pages)
8a9f3ccd 2027{
7ec99d62 2028 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2029 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2030 struct mem_cgroup *mem_over_limit;
3e32cb2e 2031 struct page_counter *counter;
6539cc05 2032 unsigned long nr_reclaimed;
b70a2a21
JW
2033 bool may_swap = true;
2034 bool drained = false;
a636b327 2035
ce00a967 2036 if (mem_cgroup_is_root(memcg))
10d53c74 2037 return 0;
6539cc05 2038retry:
b6b6cc72 2039 if (consume_stock(memcg, nr_pages))
10d53c74 2040 return 0;
8a9f3ccd 2041
3fbe7244 2042 if (!do_swap_account ||
6071ca52
JW
2043 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2044 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2045 goto done_restock;
3fbe7244 2046 if (do_swap_account)
3e32cb2e
JW
2047 page_counter_uncharge(&memcg->memsw, batch);
2048 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2049 } else {
3e32cb2e 2050 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2051 may_swap = false;
3fbe7244 2052 }
7a81b88c 2053
6539cc05
JW
2054 if (batch > nr_pages) {
2055 batch = nr_pages;
2056 goto retry;
2057 }
6d61ef40 2058
06b078fc
JW
2059 /*
2060 * Unlike in global OOM situations, memcg is not in a physical
2061 * memory shortage. Allow dying and OOM-killed tasks to
2062 * bypass the last charges so that they can exit quickly and
2063 * free their memory.
2064 */
2065 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2066 fatal_signal_pending(current) ||
2067 current->flags & PF_EXITING))
10d53c74 2068 goto force;
06b078fc
JW
2069
2070 if (unlikely(task_in_memcg_oom(current)))
2071 goto nomem;
2072
d0164adc 2073 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2074 goto nomem;
4b534334 2075
241994ed
JW
2076 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2077
b70a2a21
JW
2078 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2079 gfp_mask, may_swap);
6539cc05 2080
61e02c74 2081 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2082 goto retry;
28c34c29 2083
b70a2a21 2084 if (!drained) {
6d3d6aa2 2085 drain_all_stock(mem_over_limit);
b70a2a21
JW
2086 drained = true;
2087 goto retry;
2088 }
2089
28c34c29
JW
2090 if (gfp_mask & __GFP_NORETRY)
2091 goto nomem;
6539cc05
JW
2092 /*
2093 * Even though the limit is exceeded at this point, reclaim
2094 * may have been able to free some pages. Retry the charge
2095 * before killing the task.
2096 *
2097 * Only for regular pages, though: huge pages are rather
2098 * unlikely to succeed so close to the limit, and we fall back
2099 * to regular pages anyway in case of failure.
2100 */
61e02c74 2101 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2102 goto retry;
2103 /*
2104 * At task move, charge accounts can be doubly counted. So, it's
2105 * better to wait until the end of task_move if something is going on.
2106 */
2107 if (mem_cgroup_wait_acct_move(mem_over_limit))
2108 goto retry;
2109
9b130619
JW
2110 if (nr_retries--)
2111 goto retry;
2112
06b078fc 2113 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2114 goto force;
06b078fc 2115
6539cc05 2116 if (fatal_signal_pending(current))
10d53c74 2117 goto force;
6539cc05 2118
241994ed
JW
2119 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2120
3608de07
JM
2121 mem_cgroup_oom(mem_over_limit, gfp_mask,
2122 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2123nomem:
6d1fdc48 2124 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2125 return -ENOMEM;
10d53c74
TH
2126force:
2127 /*
2128 * The allocation either can't fail or will lead to more memory
2129 * being freed very soon. Allow memory usage go over the limit
2130 * temporarily by force charging it.
2131 */
2132 page_counter_charge(&memcg->memory, nr_pages);
2133 if (do_swap_account)
2134 page_counter_charge(&memcg->memsw, nr_pages);
2135 css_get_many(&memcg->css, nr_pages);
2136
2137 return 0;
6539cc05
JW
2138
2139done_restock:
e8ea14cc 2140 css_get_many(&memcg->css, batch);
6539cc05
JW
2141 if (batch > nr_pages)
2142 refill_stock(memcg, batch - nr_pages);
b23afb93 2143
241994ed 2144 /*
b23afb93
TH
2145 * If the hierarchy is above the normal consumption range, schedule
2146 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2147 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2148 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2149 * not recorded as it most likely matches current's and won't
2150 * change in the meantime. As high limit is checked again before
2151 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2152 */
2153 do {
b23afb93 2154 if (page_counter_read(&memcg->memory) > memcg->high) {
9516a18a 2155 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2156 set_notify_resume(current);
2157 break;
2158 }
241994ed 2159 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2160
2161 return 0;
7a81b88c 2162}
8a9f3ccd 2163
00501b53 2164static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2165{
ce00a967
JW
2166 if (mem_cgroup_is_root(memcg))
2167 return;
2168
3e32cb2e 2169 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2170 if (do_swap_account)
3e32cb2e 2171 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2172
e8ea14cc 2173 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2174}
2175
0a31bc97
JW
2176static void lock_page_lru(struct page *page, int *isolated)
2177{
2178 struct zone *zone = page_zone(page);
2179
2180 spin_lock_irq(&zone->lru_lock);
2181 if (PageLRU(page)) {
2182 struct lruvec *lruvec;
2183
2184 lruvec = mem_cgroup_page_lruvec(page, zone);
2185 ClearPageLRU(page);
2186 del_page_from_lru_list(page, lruvec, page_lru(page));
2187 *isolated = 1;
2188 } else
2189 *isolated = 0;
2190}
2191
2192static void unlock_page_lru(struct page *page, int isolated)
2193{
2194 struct zone *zone = page_zone(page);
2195
2196 if (isolated) {
2197 struct lruvec *lruvec;
2198
2199 lruvec = mem_cgroup_page_lruvec(page, zone);
2200 VM_BUG_ON_PAGE(PageLRU(page), page);
2201 SetPageLRU(page);
2202 add_page_to_lru_list(page, lruvec, page_lru(page));
2203 }
2204 spin_unlock_irq(&zone->lru_lock);
2205}
2206
00501b53 2207static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2208 bool lrucare)
7a81b88c 2209{
0a31bc97 2210 int isolated;
9ce70c02 2211
1306a85a 2212 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2213
2214 /*
2215 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2216 * may already be on some other mem_cgroup's LRU. Take care of it.
2217 */
0a31bc97
JW
2218 if (lrucare)
2219 lock_page_lru(page, &isolated);
9ce70c02 2220
0a31bc97
JW
2221 /*
2222 * Nobody should be changing or seriously looking at
1306a85a 2223 * page->mem_cgroup at this point:
0a31bc97
JW
2224 *
2225 * - the page is uncharged
2226 *
2227 * - the page is off-LRU
2228 *
2229 * - an anonymous fault has exclusive page access, except for
2230 * a locked page table
2231 *
2232 * - a page cache insertion, a swapin fault, or a migration
2233 * have the page locked
2234 */
1306a85a 2235 page->mem_cgroup = memcg;
9ce70c02 2236
0a31bc97
JW
2237 if (lrucare)
2238 unlock_page_lru(page, isolated);
7a81b88c 2239}
66e1707b 2240
7ae1e1d0 2241#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2242static int memcg_alloc_cache_id(void)
55007d84 2243{
f3bb3043
VD
2244 int id, size;
2245 int err;
2246
dbcf73e2 2247 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2248 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2249 if (id < 0)
2250 return id;
55007d84 2251
dbcf73e2 2252 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2253 return id;
2254
2255 /*
2256 * There's no space for the new id in memcg_caches arrays,
2257 * so we have to grow them.
2258 */
05257a1a 2259 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2260
2261 size = 2 * (id + 1);
55007d84
GC
2262 if (size < MEMCG_CACHES_MIN_SIZE)
2263 size = MEMCG_CACHES_MIN_SIZE;
2264 else if (size > MEMCG_CACHES_MAX_SIZE)
2265 size = MEMCG_CACHES_MAX_SIZE;
2266
f3bb3043 2267 err = memcg_update_all_caches(size);
60d3fd32
VD
2268 if (!err)
2269 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2270 if (!err)
2271 memcg_nr_cache_ids = size;
2272
2273 up_write(&memcg_cache_ids_sem);
2274
f3bb3043 2275 if (err) {
dbcf73e2 2276 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2277 return err;
2278 }
2279 return id;
2280}
2281
2282static void memcg_free_cache_id(int id)
2283{
dbcf73e2 2284 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2285}
2286
d5b3cf71 2287struct memcg_kmem_cache_create_work {
5722d094
VD
2288 struct mem_cgroup *memcg;
2289 struct kmem_cache *cachep;
2290 struct work_struct work;
2291};
2292
d5b3cf71 2293static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2294{
d5b3cf71
VD
2295 struct memcg_kmem_cache_create_work *cw =
2296 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2297 struct mem_cgroup *memcg = cw->memcg;
2298 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2299
d5b3cf71 2300 memcg_create_kmem_cache(memcg, cachep);
bd673145 2301
5722d094 2302 css_put(&memcg->css);
d7f25f8a
GC
2303 kfree(cw);
2304}
2305
2306/*
2307 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2308 */
d5b3cf71
VD
2309static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2310 struct kmem_cache *cachep)
d7f25f8a 2311{
d5b3cf71 2312 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2313
776ed0f0 2314 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2315 if (!cw)
d7f25f8a 2316 return;
8135be5a
VD
2317
2318 css_get(&memcg->css);
d7f25f8a
GC
2319
2320 cw->memcg = memcg;
2321 cw->cachep = cachep;
d5b3cf71 2322 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2323
d7f25f8a
GC
2324 schedule_work(&cw->work);
2325}
2326
d5b3cf71
VD
2327static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2328 struct kmem_cache *cachep)
0e9d92f2
GC
2329{
2330 /*
2331 * We need to stop accounting when we kmalloc, because if the
2332 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2333 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2334 *
2335 * However, it is better to enclose the whole function. Depending on
2336 * the debugging options enabled, INIT_WORK(), for instance, can
2337 * trigger an allocation. This too, will make us recurse. Because at
2338 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2339 * the safest choice is to do it like this, wrapping the whole function.
2340 */
6f185c29 2341 current->memcg_kmem_skip_account = 1;
d5b3cf71 2342 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2343 current->memcg_kmem_skip_account = 0;
0e9d92f2 2344}
c67a8a68 2345
d7f25f8a
GC
2346/*
2347 * Return the kmem_cache we're supposed to use for a slab allocation.
2348 * We try to use the current memcg's version of the cache.
2349 *
2350 * If the cache does not exist yet, if we are the first user of it,
2351 * we either create it immediately, if possible, or create it asynchronously
2352 * in a workqueue.
2353 * In the latter case, we will let the current allocation go through with
2354 * the original cache.
2355 *
2356 * Can't be called in interrupt context or from kernel threads.
2357 * This function needs to be called with rcu_read_lock() held.
2358 */
056b7cce 2359struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2360{
2361 struct mem_cgroup *memcg;
959c8963 2362 struct kmem_cache *memcg_cachep;
2a4db7eb 2363 int kmemcg_id;
d7f25f8a 2364
f7ce3190 2365 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2366
9d100c5e 2367 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2368 return cachep;
2369
8135be5a 2370 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2371 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2372 if (kmemcg_id < 0)
ca0dde97 2373 goto out;
d7f25f8a 2374
2a4db7eb 2375 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2376 if (likely(memcg_cachep))
2377 return memcg_cachep;
ca0dde97
LZ
2378
2379 /*
2380 * If we are in a safe context (can wait, and not in interrupt
2381 * context), we could be be predictable and return right away.
2382 * This would guarantee that the allocation being performed
2383 * already belongs in the new cache.
2384 *
2385 * However, there are some clashes that can arrive from locking.
2386 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2387 * memcg_create_kmem_cache, this means no further allocation
2388 * could happen with the slab_mutex held. So it's better to
2389 * defer everything.
ca0dde97 2390 */
d5b3cf71 2391 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2392out:
8135be5a 2393 css_put(&memcg->css);
ca0dde97 2394 return cachep;
d7f25f8a 2395}
d7f25f8a 2396
8135be5a
VD
2397void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2398{
2399 if (!is_root_cache(cachep))
f7ce3190 2400 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2401}
2402
f3ccb2c4
VD
2403int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2404 struct mem_cgroup *memcg)
7ae1e1d0 2405{
f3ccb2c4
VD
2406 unsigned int nr_pages = 1 << order;
2407 struct page_counter *counter;
7ae1e1d0
GC
2408 int ret;
2409
f3ccb2c4 2410 if (!memcg_kmem_is_active(memcg))
d05e83a6 2411 return 0;
6d42c232 2412
6071ca52
JW
2413 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2414 return -ENOMEM;
7ae1e1d0 2415
f3ccb2c4
VD
2416 ret = try_charge(memcg, gfp, nr_pages);
2417 if (ret) {
2418 page_counter_uncharge(&memcg->kmem, nr_pages);
2419 return ret;
7ae1e1d0
GC
2420 }
2421
f3ccb2c4 2422 page->mem_cgroup = memcg;
7ae1e1d0 2423
f3ccb2c4 2424 return 0;
7ae1e1d0
GC
2425}
2426
f3ccb2c4 2427int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2428{
f3ccb2c4
VD
2429 struct mem_cgroup *memcg;
2430 int ret;
7ae1e1d0 2431
f3ccb2c4
VD
2432 memcg = get_mem_cgroup_from_mm(current->mm);
2433 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2434 css_put(&memcg->css);
d05e83a6 2435 return ret;
7ae1e1d0
GC
2436}
2437
d05e83a6 2438void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2439{
1306a85a 2440 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2441 unsigned int nr_pages = 1 << order;
7ae1e1d0 2442
7ae1e1d0
GC
2443 if (!memcg)
2444 return;
2445
309381fe 2446 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2447
f3ccb2c4
VD
2448 page_counter_uncharge(&memcg->kmem, nr_pages);
2449 page_counter_uncharge(&memcg->memory, nr_pages);
2450 if (do_swap_account)
2451 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2452
1306a85a 2453 page->mem_cgroup = NULL;
f3ccb2c4 2454 css_put_many(&memcg->css, nr_pages);
60d3fd32 2455}
7ae1e1d0
GC
2456#endif /* CONFIG_MEMCG_KMEM */
2457
ca3e0214
KH
2458#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2459
ca3e0214
KH
2460/*
2461 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2462 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2463 * charge/uncharge will be never happen and move_account() is done under
2464 * compound_lock(), so we don't have to take care of races.
ca3e0214 2465 */
e94c8a9c 2466void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2467{
e94c8a9c 2468 int i;
ca3e0214 2469
3d37c4a9
KH
2470 if (mem_cgroup_disabled())
2471 return;
b070e65c 2472
29833315 2473 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2474 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2475
1306a85a 2476 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2477 HPAGE_PMD_NR);
ca3e0214 2478}
12d27107 2479#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2480
c255a458 2481#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2482static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2483 bool charge)
d13d1443 2484{
0a31bc97
JW
2485 int val = (charge) ? 1 : -1;
2486 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2487}
02491447
DN
2488
2489/**
2490 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2491 * @entry: swap entry to be moved
2492 * @from: mem_cgroup which the entry is moved from
2493 * @to: mem_cgroup which the entry is moved to
2494 *
2495 * It succeeds only when the swap_cgroup's record for this entry is the same
2496 * as the mem_cgroup's id of @from.
2497 *
2498 * Returns 0 on success, -EINVAL on failure.
2499 *
3e32cb2e 2500 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2501 * both res and memsw, and called css_get().
2502 */
2503static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2504 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2505{
2506 unsigned short old_id, new_id;
2507
34c00c31
LZ
2508 old_id = mem_cgroup_id(from);
2509 new_id = mem_cgroup_id(to);
02491447
DN
2510
2511 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2512 mem_cgroup_swap_statistics(from, false);
483c30b5 2513 mem_cgroup_swap_statistics(to, true);
02491447
DN
2514 return 0;
2515 }
2516 return -EINVAL;
2517}
2518#else
2519static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2520 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2521{
2522 return -EINVAL;
2523}
8c7c6e34 2524#endif
d13d1443 2525
3e32cb2e 2526static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2527
d38d2a75 2528static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2529 unsigned long limit)
628f4235 2530{
3e32cb2e
JW
2531 unsigned long curusage;
2532 unsigned long oldusage;
2533 bool enlarge = false;
81d39c20 2534 int retry_count;
3e32cb2e 2535 int ret;
81d39c20
KH
2536
2537 /*
2538 * For keeping hierarchical_reclaim simple, how long we should retry
2539 * is depends on callers. We set our retry-count to be function
2540 * of # of children which we should visit in this loop.
2541 */
3e32cb2e
JW
2542 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2543 mem_cgroup_count_children(memcg);
81d39c20 2544
3e32cb2e 2545 oldusage = page_counter_read(&memcg->memory);
628f4235 2546
3e32cb2e 2547 do {
628f4235
KH
2548 if (signal_pending(current)) {
2549 ret = -EINTR;
2550 break;
2551 }
3e32cb2e
JW
2552
2553 mutex_lock(&memcg_limit_mutex);
2554 if (limit > memcg->memsw.limit) {
2555 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2556 ret = -EINVAL;
628f4235
KH
2557 break;
2558 }
3e32cb2e
JW
2559 if (limit > memcg->memory.limit)
2560 enlarge = true;
2561 ret = page_counter_limit(&memcg->memory, limit);
2562 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2563
2564 if (!ret)
2565 break;
2566
b70a2a21
JW
2567 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2568
3e32cb2e 2569 curusage = page_counter_read(&memcg->memory);
81d39c20 2570 /* Usage is reduced ? */
f894ffa8 2571 if (curusage >= oldusage)
81d39c20
KH
2572 retry_count--;
2573 else
2574 oldusage = curusage;
3e32cb2e
JW
2575 } while (retry_count);
2576
3c11ecf4
KH
2577 if (!ret && enlarge)
2578 memcg_oom_recover(memcg);
14797e23 2579
8c7c6e34
KH
2580 return ret;
2581}
2582
338c8431 2583static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2584 unsigned long limit)
8c7c6e34 2585{
3e32cb2e
JW
2586 unsigned long curusage;
2587 unsigned long oldusage;
2588 bool enlarge = false;
81d39c20 2589 int retry_count;
3e32cb2e 2590 int ret;
8c7c6e34 2591
81d39c20 2592 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2593 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2594 mem_cgroup_count_children(memcg);
2595
2596 oldusage = page_counter_read(&memcg->memsw);
2597
2598 do {
8c7c6e34
KH
2599 if (signal_pending(current)) {
2600 ret = -EINTR;
2601 break;
2602 }
3e32cb2e
JW
2603
2604 mutex_lock(&memcg_limit_mutex);
2605 if (limit < memcg->memory.limit) {
2606 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2607 ret = -EINVAL;
8c7c6e34
KH
2608 break;
2609 }
3e32cb2e
JW
2610 if (limit > memcg->memsw.limit)
2611 enlarge = true;
2612 ret = page_counter_limit(&memcg->memsw, limit);
2613 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2614
2615 if (!ret)
2616 break;
2617
b70a2a21
JW
2618 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2619
3e32cb2e 2620 curusage = page_counter_read(&memcg->memsw);
81d39c20 2621 /* Usage is reduced ? */
8c7c6e34 2622 if (curusage >= oldusage)
628f4235 2623 retry_count--;
81d39c20
KH
2624 else
2625 oldusage = curusage;
3e32cb2e
JW
2626 } while (retry_count);
2627
3c11ecf4
KH
2628 if (!ret && enlarge)
2629 memcg_oom_recover(memcg);
3e32cb2e 2630
628f4235
KH
2631 return ret;
2632}
2633
0608f43d
AM
2634unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2635 gfp_t gfp_mask,
2636 unsigned long *total_scanned)
2637{
2638 unsigned long nr_reclaimed = 0;
2639 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2640 unsigned long reclaimed;
2641 int loop = 0;
2642 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2643 unsigned long excess;
0608f43d
AM
2644 unsigned long nr_scanned;
2645
2646 if (order > 0)
2647 return 0;
2648
2649 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2650 /*
2651 * This loop can run a while, specially if mem_cgroup's continuously
2652 * keep exceeding their soft limit and putting the system under
2653 * pressure
2654 */
2655 do {
2656 if (next_mz)
2657 mz = next_mz;
2658 else
2659 mz = mem_cgroup_largest_soft_limit_node(mctz);
2660 if (!mz)
2661 break;
2662
2663 nr_scanned = 0;
2664 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2665 gfp_mask, &nr_scanned);
2666 nr_reclaimed += reclaimed;
2667 *total_scanned += nr_scanned;
0a31bc97 2668 spin_lock_irq(&mctz->lock);
bc2f2e7f 2669 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2670
2671 /*
2672 * If we failed to reclaim anything from this memory cgroup
2673 * it is time to move on to the next cgroup
2674 */
2675 next_mz = NULL;
bc2f2e7f
VD
2676 if (!reclaimed)
2677 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2678
3e32cb2e 2679 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2680 /*
2681 * One school of thought says that we should not add
2682 * back the node to the tree if reclaim returns 0.
2683 * But our reclaim could return 0, simply because due
2684 * to priority we are exposing a smaller subset of
2685 * memory to reclaim from. Consider this as a longer
2686 * term TODO.
2687 */
2688 /* If excess == 0, no tree ops */
cf2c8127 2689 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2690 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2691 css_put(&mz->memcg->css);
2692 loop++;
2693 /*
2694 * Could not reclaim anything and there are no more
2695 * mem cgroups to try or we seem to be looping without
2696 * reclaiming anything.
2697 */
2698 if (!nr_reclaimed &&
2699 (next_mz == NULL ||
2700 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2701 break;
2702 } while (!nr_reclaimed);
2703 if (next_mz)
2704 css_put(&next_mz->memcg->css);
2705 return nr_reclaimed;
2706}
2707
ea280e7b
TH
2708/*
2709 * Test whether @memcg has children, dead or alive. Note that this
2710 * function doesn't care whether @memcg has use_hierarchy enabled and
2711 * returns %true if there are child csses according to the cgroup
2712 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2713 */
b5f99b53
GC
2714static inline bool memcg_has_children(struct mem_cgroup *memcg)
2715{
ea280e7b
TH
2716 bool ret;
2717
696ac172 2718 /*
ea280e7b
TH
2719 * The lock does not prevent addition or deletion of children, but
2720 * it prevents a new child from being initialized based on this
2721 * parent in css_online(), so it's enough to decide whether
2722 * hierarchically inherited attributes can still be changed or not.
696ac172 2723 */
ea280e7b
TH
2724 lockdep_assert_held(&memcg_create_mutex);
2725
2726 rcu_read_lock();
2727 ret = css_next_child(NULL, &memcg->css);
2728 rcu_read_unlock();
2729 return ret;
b5f99b53
GC
2730}
2731
c26251f9
MH
2732/*
2733 * Reclaims as many pages from the given memcg as possible and moves
2734 * the rest to the parent.
2735 *
2736 * Caller is responsible for holding css reference for memcg.
2737 */
2738static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2739{
2740 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2741
c1e862c1
KH
2742 /* we call try-to-free pages for make this cgroup empty */
2743 lru_add_drain_all();
f817ed48 2744 /* try to free all pages in this cgroup */
3e32cb2e 2745 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2746 int progress;
c1e862c1 2747
c26251f9
MH
2748 if (signal_pending(current))
2749 return -EINTR;
2750
b70a2a21
JW
2751 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2752 GFP_KERNEL, true);
c1e862c1 2753 if (!progress) {
f817ed48 2754 nr_retries--;
c1e862c1 2755 /* maybe some writeback is necessary */
8aa7e847 2756 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2757 }
f817ed48
KH
2758
2759 }
ab5196c2
MH
2760
2761 return 0;
cc847582
KH
2762}
2763
6770c64e
TH
2764static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2765 char *buf, size_t nbytes,
2766 loff_t off)
c1e862c1 2767{
6770c64e 2768 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2769
d8423011
MH
2770 if (mem_cgroup_is_root(memcg))
2771 return -EINVAL;
6770c64e 2772 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2773}
2774
182446d0
TH
2775static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2776 struct cftype *cft)
18f59ea7 2777{
182446d0 2778 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2779}
2780
182446d0
TH
2781static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2782 struct cftype *cft, u64 val)
18f59ea7
BS
2783{
2784 int retval = 0;
182446d0 2785 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2786 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2787
0999821b 2788 mutex_lock(&memcg_create_mutex);
567fb435
GC
2789
2790 if (memcg->use_hierarchy == val)
2791 goto out;
2792
18f59ea7 2793 /*
af901ca1 2794 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2795 * in the child subtrees. If it is unset, then the change can
2796 * occur, provided the current cgroup has no children.
2797 *
2798 * For the root cgroup, parent_mem is NULL, we allow value to be
2799 * set if there are no children.
2800 */
c0ff4b85 2801 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2802 (val == 1 || val == 0)) {
ea280e7b 2803 if (!memcg_has_children(memcg))
c0ff4b85 2804 memcg->use_hierarchy = val;
18f59ea7
BS
2805 else
2806 retval = -EBUSY;
2807 } else
2808 retval = -EINVAL;
567fb435
GC
2809
2810out:
0999821b 2811 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2812
2813 return retval;
2814}
2815
3e32cb2e
JW
2816static unsigned long tree_stat(struct mem_cgroup *memcg,
2817 enum mem_cgroup_stat_index idx)
ce00a967
JW
2818{
2819 struct mem_cgroup *iter;
484ebb3b 2820 unsigned long val = 0;
ce00a967 2821
ce00a967
JW
2822 for_each_mem_cgroup_tree(iter, memcg)
2823 val += mem_cgroup_read_stat(iter, idx);
2824
ce00a967
JW
2825 return val;
2826}
2827
6f646156 2828static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2829{
c12176d3 2830 unsigned long val;
ce00a967 2831
3e32cb2e
JW
2832 if (mem_cgroup_is_root(memcg)) {
2833 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2834 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2835 if (swap)
2836 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2837 } else {
ce00a967 2838 if (!swap)
3e32cb2e 2839 val = page_counter_read(&memcg->memory);
ce00a967 2840 else
3e32cb2e 2841 val = page_counter_read(&memcg->memsw);
ce00a967 2842 }
c12176d3 2843 return val;
ce00a967
JW
2844}
2845
3e32cb2e
JW
2846enum {
2847 RES_USAGE,
2848 RES_LIMIT,
2849 RES_MAX_USAGE,
2850 RES_FAILCNT,
2851 RES_SOFT_LIMIT,
2852};
ce00a967 2853
791badbd 2854static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2855 struct cftype *cft)
8cdea7c0 2856{
182446d0 2857 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2858 struct page_counter *counter;
af36f906 2859
3e32cb2e 2860 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2861 case _MEM:
3e32cb2e
JW
2862 counter = &memcg->memory;
2863 break;
8c7c6e34 2864 case _MEMSWAP:
3e32cb2e
JW
2865 counter = &memcg->memsw;
2866 break;
510fc4e1 2867 case _KMEM:
3e32cb2e 2868 counter = &memcg->kmem;
510fc4e1 2869 break;
8c7c6e34
KH
2870 default:
2871 BUG();
8c7c6e34 2872 }
3e32cb2e
JW
2873
2874 switch (MEMFILE_ATTR(cft->private)) {
2875 case RES_USAGE:
2876 if (counter == &memcg->memory)
c12176d3 2877 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2878 if (counter == &memcg->memsw)
c12176d3 2879 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2880 return (u64)page_counter_read(counter) * PAGE_SIZE;
2881 case RES_LIMIT:
2882 return (u64)counter->limit * PAGE_SIZE;
2883 case RES_MAX_USAGE:
2884 return (u64)counter->watermark * PAGE_SIZE;
2885 case RES_FAILCNT:
2886 return counter->failcnt;
2887 case RES_SOFT_LIMIT:
2888 return (u64)memcg->soft_limit * PAGE_SIZE;
2889 default:
2890 BUG();
2891 }
8cdea7c0 2892}
510fc4e1 2893
510fc4e1 2894#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
2895static int memcg_activate_kmem(struct mem_cgroup *memcg,
2896 unsigned long nr_pages)
d6441637
VD
2897{
2898 int err = 0;
2899 int memcg_id;
2900
2a4db7eb 2901 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 2902 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 2903 BUG_ON(memcg->kmem_acct_active);
d6441637 2904
510fc4e1
GC
2905 /*
2906 * For simplicity, we won't allow this to be disabled. It also can't
2907 * be changed if the cgroup has children already, or if tasks had
2908 * already joined.
2909 *
2910 * If tasks join before we set the limit, a person looking at
2911 * kmem.usage_in_bytes will have no way to determine when it took
2912 * place, which makes the value quite meaningless.
2913 *
2914 * After it first became limited, changes in the value of the limit are
2915 * of course permitted.
510fc4e1 2916 */
0999821b 2917 mutex_lock(&memcg_create_mutex);
27bd4dbb 2918 if (cgroup_is_populated(memcg->css.cgroup) ||
ea280e7b 2919 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2920 err = -EBUSY;
2921 mutex_unlock(&memcg_create_mutex);
2922 if (err)
2923 goto out;
510fc4e1 2924
f3bb3043 2925 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2926 if (memcg_id < 0) {
2927 err = memcg_id;
2928 goto out;
2929 }
2930
d6441637 2931 /*
900a38f0
VD
2932 * We couldn't have accounted to this cgroup, because it hasn't got
2933 * activated yet, so this should succeed.
d6441637 2934 */
3e32cb2e 2935 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
2936 VM_BUG_ON(err);
2937
2938 static_key_slow_inc(&memcg_kmem_enabled_key);
2939 /*
900a38f0
VD
2940 * A memory cgroup is considered kmem-active as soon as it gets
2941 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2942 * guarantee no one starts accounting before all call sites are
2943 * patched.
2944 */
900a38f0 2945 memcg->kmemcg_id = memcg_id;
2788cf0c 2946 memcg->kmem_acct_activated = true;
2a4db7eb 2947 memcg->kmem_acct_active = true;
510fc4e1 2948out:
d6441637 2949 return err;
d6441637
VD
2950}
2951
d6441637 2952static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2953 unsigned long limit)
d6441637
VD
2954{
2955 int ret;
2956
3e32cb2e 2957 mutex_lock(&memcg_limit_mutex);
d6441637 2958 if (!memcg_kmem_is_active(memcg))
3e32cb2e 2959 ret = memcg_activate_kmem(memcg, limit);
d6441637 2960 else
3e32cb2e
JW
2961 ret = page_counter_limit(&memcg->kmem, limit);
2962 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
2963 return ret;
2964}
2965
55007d84 2966static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 2967{
55007d84 2968 int ret = 0;
510fc4e1 2969 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 2970
d6441637
VD
2971 if (!parent)
2972 return 0;
55007d84 2973
8c0145b6 2974 mutex_lock(&memcg_limit_mutex);
55007d84 2975 /*
d6441637
VD
2976 * If the parent cgroup is not kmem-active now, it cannot be activated
2977 * after this point, because it has at least one child already.
55007d84 2978 */
d6441637 2979 if (memcg_kmem_is_active(parent))
8c0145b6
VD
2980 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2981 mutex_unlock(&memcg_limit_mutex);
55007d84 2982 return ret;
510fc4e1 2983}
d6441637
VD
2984#else
2985static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2986 unsigned long limit)
d6441637
VD
2987{
2988 return -EINVAL;
2989}
6d043990 2990#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 2991
628f4235
KH
2992/*
2993 * The user of this function is...
2994 * RES_LIMIT.
2995 */
451af504
TH
2996static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2997 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2998{
451af504 2999 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3000 unsigned long nr_pages;
628f4235
KH
3001 int ret;
3002
451af504 3003 buf = strstrip(buf);
650c5e56 3004 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3005 if (ret)
3006 return ret;
af36f906 3007
3e32cb2e 3008 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3009 case RES_LIMIT:
4b3bde4c
BS
3010 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3011 ret = -EINVAL;
3012 break;
3013 }
3e32cb2e
JW
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3017 break;
3e32cb2e
JW
3018 case _MEMSWAP:
3019 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3020 break;
3e32cb2e
JW
3021 case _KMEM:
3022 ret = memcg_update_kmem_limit(memcg, nr_pages);
3023 break;
3024 }
296c81d8 3025 break;
3e32cb2e
JW
3026 case RES_SOFT_LIMIT:
3027 memcg->soft_limit = nr_pages;
3028 ret = 0;
628f4235
KH
3029 break;
3030 }
451af504 3031 return ret ?: nbytes;
8cdea7c0
BS
3032}
3033
6770c64e
TH
3034static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3035 size_t nbytes, loff_t off)
c84872e1 3036{
6770c64e 3037 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3038 struct page_counter *counter;
c84872e1 3039
3e32cb2e
JW
3040 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3041 case _MEM:
3042 counter = &memcg->memory;
3043 break;
3044 case _MEMSWAP:
3045 counter = &memcg->memsw;
3046 break;
3047 case _KMEM:
3048 counter = &memcg->kmem;
3049 break;
3050 default:
3051 BUG();
3052 }
af36f906 3053
3e32cb2e 3054 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3055 case RES_MAX_USAGE:
3e32cb2e 3056 page_counter_reset_watermark(counter);
29f2a4da
PE
3057 break;
3058 case RES_FAILCNT:
3e32cb2e 3059 counter->failcnt = 0;
29f2a4da 3060 break;
3e32cb2e
JW
3061 default:
3062 BUG();
29f2a4da 3063 }
f64c3f54 3064
6770c64e 3065 return nbytes;
c84872e1
PE
3066}
3067
182446d0 3068static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3069 struct cftype *cft)
3070{
182446d0 3071 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3072}
3073
02491447 3074#ifdef CONFIG_MMU
182446d0 3075static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3076 struct cftype *cft, u64 val)
3077{
182446d0 3078 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3079
1dfab5ab 3080 if (val & ~MOVE_MASK)
7dc74be0 3081 return -EINVAL;
ee5e8472 3082
7dc74be0 3083 /*
ee5e8472
GC
3084 * No kind of locking is needed in here, because ->can_attach() will
3085 * check this value once in the beginning of the process, and then carry
3086 * on with stale data. This means that changes to this value will only
3087 * affect task migrations starting after the change.
7dc74be0 3088 */
c0ff4b85 3089 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3090 return 0;
3091}
02491447 3092#else
182446d0 3093static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3094 struct cftype *cft, u64 val)
3095{
3096 return -ENOSYS;
3097}
3098#endif
7dc74be0 3099
406eb0c9 3100#ifdef CONFIG_NUMA
2da8ca82 3101static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3102{
25485de6
GT
3103 struct numa_stat {
3104 const char *name;
3105 unsigned int lru_mask;
3106 };
3107
3108 static const struct numa_stat stats[] = {
3109 { "total", LRU_ALL },
3110 { "file", LRU_ALL_FILE },
3111 { "anon", LRU_ALL_ANON },
3112 { "unevictable", BIT(LRU_UNEVICTABLE) },
3113 };
3114 const struct numa_stat *stat;
406eb0c9 3115 int nid;
25485de6 3116 unsigned long nr;
2da8ca82 3117 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3118
25485de6
GT
3119 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3120 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3121 seq_printf(m, "%s=%lu", stat->name, nr);
3122 for_each_node_state(nid, N_MEMORY) {
3123 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3124 stat->lru_mask);
3125 seq_printf(m, " N%d=%lu", nid, nr);
3126 }
3127 seq_putc(m, '\n');
406eb0c9 3128 }
406eb0c9 3129
071aee13
YH
3130 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3131 struct mem_cgroup *iter;
3132
3133 nr = 0;
3134 for_each_mem_cgroup_tree(iter, memcg)
3135 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3136 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3137 for_each_node_state(nid, N_MEMORY) {
3138 nr = 0;
3139 for_each_mem_cgroup_tree(iter, memcg)
3140 nr += mem_cgroup_node_nr_lru_pages(
3141 iter, nid, stat->lru_mask);
3142 seq_printf(m, " N%d=%lu", nid, nr);
3143 }
3144 seq_putc(m, '\n');
406eb0c9 3145 }
406eb0c9 3146
406eb0c9
YH
3147 return 0;
3148}
3149#endif /* CONFIG_NUMA */
3150
2da8ca82 3151static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3152{
2da8ca82 3153 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3154 unsigned long memory, memsw;
af7c4b0e
JW
3155 struct mem_cgroup *mi;
3156 unsigned int i;
406eb0c9 3157
0ca44b14
GT
3158 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3159 MEM_CGROUP_STAT_NSTATS);
3160 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3161 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3162 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3163
af7c4b0e 3164 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3165 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3166 continue;
484ebb3b 3167 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3168 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3169 }
7b854121 3170
af7c4b0e
JW
3171 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3172 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3173 mem_cgroup_read_events(memcg, i));
3174
3175 for (i = 0; i < NR_LRU_LISTS; i++)
3176 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3177 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3178
14067bb3 3179 /* Hierarchical information */
3e32cb2e
JW
3180 memory = memsw = PAGE_COUNTER_MAX;
3181 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3182 memory = min(memory, mi->memory.limit);
3183 memsw = min(memsw, mi->memsw.limit);
fee7b548 3184 }
3e32cb2e
JW
3185 seq_printf(m, "hierarchical_memory_limit %llu\n",
3186 (u64)memory * PAGE_SIZE);
3187 if (do_swap_account)
3188 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3189 (u64)memsw * PAGE_SIZE);
7f016ee8 3190
af7c4b0e 3191 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3192 unsigned long long val = 0;
af7c4b0e 3193
bff6bb83 3194 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3195 continue;
af7c4b0e
JW
3196 for_each_mem_cgroup_tree(mi, memcg)
3197 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3198 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3199 }
3200
3201 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3202 unsigned long long val = 0;
3203
3204 for_each_mem_cgroup_tree(mi, memcg)
3205 val += mem_cgroup_read_events(mi, i);
3206 seq_printf(m, "total_%s %llu\n",
3207 mem_cgroup_events_names[i], val);
3208 }
3209
3210 for (i = 0; i < NR_LRU_LISTS; i++) {
3211 unsigned long long val = 0;
3212
3213 for_each_mem_cgroup_tree(mi, memcg)
3214 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3215 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3216 }
14067bb3 3217
7f016ee8 3218#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3219 {
3220 int nid, zid;
3221 struct mem_cgroup_per_zone *mz;
89abfab1 3222 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3223 unsigned long recent_rotated[2] = {0, 0};
3224 unsigned long recent_scanned[2] = {0, 0};
3225
3226 for_each_online_node(nid)
3227 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3228 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3229 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3230
89abfab1
HD
3231 recent_rotated[0] += rstat->recent_rotated[0];
3232 recent_rotated[1] += rstat->recent_rotated[1];
3233 recent_scanned[0] += rstat->recent_scanned[0];
3234 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3235 }
78ccf5b5
JW
3236 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3237 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3238 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3239 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3240 }
3241#endif
3242
d2ceb9b7
KH
3243 return 0;
3244}
3245
182446d0
TH
3246static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3247 struct cftype *cft)
a7885eb8 3248{
182446d0 3249 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3250
1f4c025b 3251 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3252}
3253
182446d0
TH
3254static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3255 struct cftype *cft, u64 val)
a7885eb8 3256{
182446d0 3257 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3258
3dae7fec 3259 if (val > 100)
a7885eb8
KM
3260 return -EINVAL;
3261
14208b0e 3262 if (css->parent)
3dae7fec
JW
3263 memcg->swappiness = val;
3264 else
3265 vm_swappiness = val;
068b38c1 3266
a7885eb8
KM
3267 return 0;
3268}
3269
2e72b634
KS
3270static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3271{
3272 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3273 unsigned long usage;
2e72b634
KS
3274 int i;
3275
3276 rcu_read_lock();
3277 if (!swap)
2c488db2 3278 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3279 else
2c488db2 3280 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3281
3282 if (!t)
3283 goto unlock;
3284
ce00a967 3285 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3286
3287 /*
748dad36 3288 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3289 * If it's not true, a threshold was crossed after last
3290 * call of __mem_cgroup_threshold().
3291 */
5407a562 3292 i = t->current_threshold;
2e72b634
KS
3293
3294 /*
3295 * Iterate backward over array of thresholds starting from
3296 * current_threshold and check if a threshold is crossed.
3297 * If none of thresholds below usage is crossed, we read
3298 * only one element of the array here.
3299 */
3300 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3301 eventfd_signal(t->entries[i].eventfd, 1);
3302
3303 /* i = current_threshold + 1 */
3304 i++;
3305
3306 /*
3307 * Iterate forward over array of thresholds starting from
3308 * current_threshold+1 and check if a threshold is crossed.
3309 * If none of thresholds above usage is crossed, we read
3310 * only one element of the array here.
3311 */
3312 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3313 eventfd_signal(t->entries[i].eventfd, 1);
3314
3315 /* Update current_threshold */
5407a562 3316 t->current_threshold = i - 1;
2e72b634
KS
3317unlock:
3318 rcu_read_unlock();
3319}
3320
3321static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3322{
ad4ca5f4
KS
3323 while (memcg) {
3324 __mem_cgroup_threshold(memcg, false);
3325 if (do_swap_account)
3326 __mem_cgroup_threshold(memcg, true);
3327
3328 memcg = parent_mem_cgroup(memcg);
3329 }
2e72b634
KS
3330}
3331
3332static int compare_thresholds(const void *a, const void *b)
3333{
3334 const struct mem_cgroup_threshold *_a = a;
3335 const struct mem_cgroup_threshold *_b = b;
3336
2bff24a3
GT
3337 if (_a->threshold > _b->threshold)
3338 return 1;
3339
3340 if (_a->threshold < _b->threshold)
3341 return -1;
3342
3343 return 0;
2e72b634
KS
3344}
3345
c0ff4b85 3346static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3347{
3348 struct mem_cgroup_eventfd_list *ev;
3349
2bcf2e92
MH
3350 spin_lock(&memcg_oom_lock);
3351
c0ff4b85 3352 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3353 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3354
3355 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3356 return 0;
3357}
3358
c0ff4b85 3359static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3360{
7d74b06f
KH
3361 struct mem_cgroup *iter;
3362
c0ff4b85 3363 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3364 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3365}
3366
59b6f873 3367static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3368 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3369{
2c488db2
KS
3370 struct mem_cgroup_thresholds *thresholds;
3371 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3372 unsigned long threshold;
3373 unsigned long usage;
2c488db2 3374 int i, size, ret;
2e72b634 3375
650c5e56 3376 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3377 if (ret)
3378 return ret;
3379
3380 mutex_lock(&memcg->thresholds_lock);
2c488db2 3381
05b84301 3382 if (type == _MEM) {
2c488db2 3383 thresholds = &memcg->thresholds;
ce00a967 3384 usage = mem_cgroup_usage(memcg, false);
05b84301 3385 } else if (type == _MEMSWAP) {
2c488db2 3386 thresholds = &memcg->memsw_thresholds;
ce00a967 3387 usage = mem_cgroup_usage(memcg, true);
05b84301 3388 } else
2e72b634
KS
3389 BUG();
3390
2e72b634 3391 /* Check if a threshold crossed before adding a new one */
2c488db2 3392 if (thresholds->primary)
2e72b634
KS
3393 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3394
2c488db2 3395 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3396
3397 /* Allocate memory for new array of thresholds */
2c488db2 3398 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3399 GFP_KERNEL);
2c488db2 3400 if (!new) {
2e72b634
KS
3401 ret = -ENOMEM;
3402 goto unlock;
3403 }
2c488db2 3404 new->size = size;
2e72b634
KS
3405
3406 /* Copy thresholds (if any) to new array */
2c488db2
KS
3407 if (thresholds->primary) {
3408 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3409 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3410 }
3411
2e72b634 3412 /* Add new threshold */
2c488db2
KS
3413 new->entries[size - 1].eventfd = eventfd;
3414 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3415
3416 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3417 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3418 compare_thresholds, NULL);
3419
3420 /* Find current threshold */
2c488db2 3421 new->current_threshold = -1;
2e72b634 3422 for (i = 0; i < size; i++) {
748dad36 3423 if (new->entries[i].threshold <= usage) {
2e72b634 3424 /*
2c488db2
KS
3425 * new->current_threshold will not be used until
3426 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3427 * it here.
3428 */
2c488db2 3429 ++new->current_threshold;
748dad36
SZ
3430 } else
3431 break;
2e72b634
KS
3432 }
3433
2c488db2
KS
3434 /* Free old spare buffer and save old primary buffer as spare */
3435 kfree(thresholds->spare);
3436 thresholds->spare = thresholds->primary;
3437
3438 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3439
907860ed 3440 /* To be sure that nobody uses thresholds */
2e72b634
KS
3441 synchronize_rcu();
3442
2e72b634
KS
3443unlock:
3444 mutex_unlock(&memcg->thresholds_lock);
3445
3446 return ret;
3447}
3448
59b6f873 3449static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3450 struct eventfd_ctx *eventfd, const char *args)
3451{
59b6f873 3452 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3453}
3454
59b6f873 3455static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3456 struct eventfd_ctx *eventfd, const char *args)
3457{
59b6f873 3458 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3459}
3460
59b6f873 3461static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3462 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3463{
2c488db2
KS
3464 struct mem_cgroup_thresholds *thresholds;
3465 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3466 unsigned long usage;
2c488db2 3467 int i, j, size;
2e72b634
KS
3468
3469 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3470
3471 if (type == _MEM) {
2c488db2 3472 thresholds = &memcg->thresholds;
ce00a967 3473 usage = mem_cgroup_usage(memcg, false);
05b84301 3474 } else if (type == _MEMSWAP) {
2c488db2 3475 thresholds = &memcg->memsw_thresholds;
ce00a967 3476 usage = mem_cgroup_usage(memcg, true);
05b84301 3477 } else
2e72b634
KS
3478 BUG();
3479
371528ca
AV
3480 if (!thresholds->primary)
3481 goto unlock;
3482
2e72b634
KS
3483 /* Check if a threshold crossed before removing */
3484 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3485
3486 /* Calculate new number of threshold */
2c488db2
KS
3487 size = 0;
3488 for (i = 0; i < thresholds->primary->size; i++) {
3489 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3490 size++;
3491 }
3492
2c488db2 3493 new = thresholds->spare;
907860ed 3494
2e72b634
KS
3495 /* Set thresholds array to NULL if we don't have thresholds */
3496 if (!size) {
2c488db2
KS
3497 kfree(new);
3498 new = NULL;
907860ed 3499 goto swap_buffers;
2e72b634
KS
3500 }
3501
2c488db2 3502 new->size = size;
2e72b634
KS
3503
3504 /* Copy thresholds and find current threshold */
2c488db2
KS
3505 new->current_threshold = -1;
3506 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3507 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3508 continue;
3509
2c488db2 3510 new->entries[j] = thresholds->primary->entries[i];
748dad36 3511 if (new->entries[j].threshold <= usage) {
2e72b634 3512 /*
2c488db2 3513 * new->current_threshold will not be used
2e72b634
KS
3514 * until rcu_assign_pointer(), so it's safe to increment
3515 * it here.
3516 */
2c488db2 3517 ++new->current_threshold;
2e72b634
KS
3518 }
3519 j++;
3520 }
3521
907860ed 3522swap_buffers:
2c488db2
KS
3523 /* Swap primary and spare array */
3524 thresholds->spare = thresholds->primary;
8c757763
SZ
3525 /* If all events are unregistered, free the spare array */
3526 if (!new) {
3527 kfree(thresholds->spare);
3528 thresholds->spare = NULL;
3529 }
3530
2c488db2 3531 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3532
907860ed 3533 /* To be sure that nobody uses thresholds */
2e72b634 3534 synchronize_rcu();
371528ca 3535unlock:
2e72b634 3536 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3537}
c1e862c1 3538
59b6f873 3539static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3540 struct eventfd_ctx *eventfd)
3541{
59b6f873 3542 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3543}
3544
59b6f873 3545static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3546 struct eventfd_ctx *eventfd)
3547{
59b6f873 3548 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3549}
3550
59b6f873 3551static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3552 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3553{
9490ff27 3554 struct mem_cgroup_eventfd_list *event;
9490ff27 3555
9490ff27
KH
3556 event = kmalloc(sizeof(*event), GFP_KERNEL);
3557 if (!event)
3558 return -ENOMEM;
3559
1af8efe9 3560 spin_lock(&memcg_oom_lock);
9490ff27
KH
3561
3562 event->eventfd = eventfd;
3563 list_add(&event->list, &memcg->oom_notify);
3564
3565 /* already in OOM ? */
c2b42d3c 3566 if (memcg->under_oom)
9490ff27 3567 eventfd_signal(eventfd, 1);
1af8efe9 3568 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3569
3570 return 0;
3571}
3572
59b6f873 3573static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3574 struct eventfd_ctx *eventfd)
9490ff27 3575{
9490ff27 3576 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3577
1af8efe9 3578 spin_lock(&memcg_oom_lock);
9490ff27 3579
c0ff4b85 3580 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3581 if (ev->eventfd == eventfd) {
3582 list_del(&ev->list);
3583 kfree(ev);
3584 }
3585 }
3586
1af8efe9 3587 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3588}
3589
2da8ca82 3590static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3591{
2da8ca82 3592 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3593
791badbd 3594 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3595 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3596 return 0;
3597}
3598
182446d0 3599static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3600 struct cftype *cft, u64 val)
3601{
182446d0 3602 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3603
3604 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3605 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3606 return -EINVAL;
3607
c0ff4b85 3608 memcg->oom_kill_disable = val;
4d845ebf 3609 if (!val)
c0ff4b85 3610 memcg_oom_recover(memcg);
3dae7fec 3611
3c11ecf4
KH
3612 return 0;
3613}
3614
c255a458 3615#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3616static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3617{
55007d84
GC
3618 int ret;
3619
55007d84
GC
3620 ret = memcg_propagate_kmem(memcg);
3621 if (ret)
3622 return ret;
2633d7a0 3623
1d62e436 3624 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3625}
e5671dfa 3626
2a4db7eb
VD
3627static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3628{
2788cf0c
VD
3629 struct cgroup_subsys_state *css;
3630 struct mem_cgroup *parent, *child;
3631 int kmemcg_id;
3632
2a4db7eb
VD
3633 if (!memcg->kmem_acct_active)
3634 return;
3635
3636 /*
3637 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3638 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3639 * guarantees no cache will be created for this cgroup after we are
3640 * done (see memcg_create_kmem_cache()).
3641 */
3642 memcg->kmem_acct_active = false;
3643
3644 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3645
3646 kmemcg_id = memcg->kmemcg_id;
3647 BUG_ON(kmemcg_id < 0);
3648
3649 parent = parent_mem_cgroup(memcg);
3650 if (!parent)
3651 parent = root_mem_cgroup;
3652
3653 /*
3654 * Change kmemcg_id of this cgroup and all its descendants to the
3655 * parent's id, and then move all entries from this cgroup's list_lrus
3656 * to ones of the parent. After we have finished, all list_lrus
3657 * corresponding to this cgroup are guaranteed to remain empty. The
3658 * ordering is imposed by list_lru_node->lock taken by
3659 * memcg_drain_all_list_lrus().
3660 */
3661 css_for_each_descendant_pre(css, &memcg->css) {
3662 child = mem_cgroup_from_css(css);
3663 BUG_ON(child->kmemcg_id != kmemcg_id);
3664 child->kmemcg_id = parent->kmemcg_id;
3665 if (!memcg->use_hierarchy)
3666 break;
3667 }
3668 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3669
3670 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3671}
3672
10d5ebf4 3673static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3674{
f48b80a5
VD
3675 if (memcg->kmem_acct_activated) {
3676 memcg_destroy_kmem_caches(memcg);
3677 static_key_slow_dec(&memcg_kmem_enabled_key);
3678 WARN_ON(page_counter_read(&memcg->kmem));
3679 }
1d62e436 3680 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3681}
e5671dfa 3682#else
cbe128e3 3683static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3684{
3685 return 0;
3686}
d1a4c0b3 3687
2a4db7eb
VD
3688static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3689{
3690}
3691
10d5ebf4
LZ
3692static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3693{
3694}
e5671dfa
GC
3695#endif
3696
52ebea74
TH
3697#ifdef CONFIG_CGROUP_WRITEBACK
3698
3699struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3700{
3701 return &memcg->cgwb_list;
3702}
3703
841710aa
TH
3704static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3705{
3706 return wb_domain_init(&memcg->cgwb_domain, gfp);
3707}
3708
3709static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3710{
3711 wb_domain_exit(&memcg->cgwb_domain);
3712}
3713
2529bb3a
TH
3714static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3715{
3716 wb_domain_size_changed(&memcg->cgwb_domain);
3717}
3718
841710aa
TH
3719struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3720{
3721 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3722
3723 if (!memcg->css.parent)
3724 return NULL;
3725
3726 return &memcg->cgwb_domain;
3727}
3728
c2aa723a
TH
3729/**
3730 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3731 * @wb: bdi_writeback in question
c5edf9cd
TH
3732 * @pfilepages: out parameter for number of file pages
3733 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3734 * @pdirty: out parameter for number of dirty pages
3735 * @pwriteback: out parameter for number of pages under writeback
3736 *
c5edf9cd
TH
3737 * Determine the numbers of file, headroom, dirty, and writeback pages in
3738 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3739 * is a bit more involved.
c2aa723a 3740 *
c5edf9cd
TH
3741 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3742 * headroom is calculated as the lowest headroom of itself and the
3743 * ancestors. Note that this doesn't consider the actual amount of
3744 * available memory in the system. The caller should further cap
3745 * *@pheadroom accordingly.
c2aa723a 3746 */
c5edf9cd
TH
3747void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3748 unsigned long *pheadroom, unsigned long *pdirty,
3749 unsigned long *pwriteback)
c2aa723a
TH
3750{
3751 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3752 struct mem_cgroup *parent;
c2aa723a
TH
3753
3754 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3755
3756 /* this should eventually include NR_UNSTABLE_NFS */
3757 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3758 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3759 (1 << LRU_ACTIVE_FILE));
3760 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3761
c2aa723a
TH
3762 while ((parent = parent_mem_cgroup(memcg))) {
3763 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3764 unsigned long used = page_counter_read(&memcg->memory);
3765
c5edf9cd 3766 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3767 memcg = parent;
3768 }
c2aa723a
TH
3769}
3770
841710aa
TH
3771#else /* CONFIG_CGROUP_WRITEBACK */
3772
3773static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3774{
3775 return 0;
3776}
3777
3778static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3779{
3780}
3781
2529bb3a
TH
3782static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3783{
3784}
3785
52ebea74
TH
3786#endif /* CONFIG_CGROUP_WRITEBACK */
3787
3bc942f3
TH
3788/*
3789 * DO NOT USE IN NEW FILES.
3790 *
3791 * "cgroup.event_control" implementation.
3792 *
3793 * This is way over-engineered. It tries to support fully configurable
3794 * events for each user. Such level of flexibility is completely
3795 * unnecessary especially in the light of the planned unified hierarchy.
3796 *
3797 * Please deprecate this and replace with something simpler if at all
3798 * possible.
3799 */
3800
79bd9814
TH
3801/*
3802 * Unregister event and free resources.
3803 *
3804 * Gets called from workqueue.
3805 */
3bc942f3 3806static void memcg_event_remove(struct work_struct *work)
79bd9814 3807{
3bc942f3
TH
3808 struct mem_cgroup_event *event =
3809 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3810 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3811
3812 remove_wait_queue(event->wqh, &event->wait);
3813
59b6f873 3814 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3815
3816 /* Notify userspace the event is going away. */
3817 eventfd_signal(event->eventfd, 1);
3818
3819 eventfd_ctx_put(event->eventfd);
3820 kfree(event);
59b6f873 3821 css_put(&memcg->css);
79bd9814
TH
3822}
3823
3824/*
3825 * Gets called on POLLHUP on eventfd when user closes it.
3826 *
3827 * Called with wqh->lock held and interrupts disabled.
3828 */
3bc942f3
TH
3829static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3830 int sync, void *key)
79bd9814 3831{
3bc942f3
TH
3832 struct mem_cgroup_event *event =
3833 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3834 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3835 unsigned long flags = (unsigned long)key;
3836
3837 if (flags & POLLHUP) {
3838 /*
3839 * If the event has been detached at cgroup removal, we
3840 * can simply return knowing the other side will cleanup
3841 * for us.
3842 *
3843 * We can't race against event freeing since the other
3844 * side will require wqh->lock via remove_wait_queue(),
3845 * which we hold.
3846 */
fba94807 3847 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3848 if (!list_empty(&event->list)) {
3849 list_del_init(&event->list);
3850 /*
3851 * We are in atomic context, but cgroup_event_remove()
3852 * may sleep, so we have to call it in workqueue.
3853 */
3854 schedule_work(&event->remove);
3855 }
fba94807 3856 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3857 }
3858
3859 return 0;
3860}
3861
3bc942f3 3862static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3863 wait_queue_head_t *wqh, poll_table *pt)
3864{
3bc942f3
TH
3865 struct mem_cgroup_event *event =
3866 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3867
3868 event->wqh = wqh;
3869 add_wait_queue(wqh, &event->wait);
3870}
3871
3872/*
3bc942f3
TH
3873 * DO NOT USE IN NEW FILES.
3874 *
79bd9814
TH
3875 * Parse input and register new cgroup event handler.
3876 *
3877 * Input must be in format '<event_fd> <control_fd> <args>'.
3878 * Interpretation of args is defined by control file implementation.
3879 */
451af504
TH
3880static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3881 char *buf, size_t nbytes, loff_t off)
79bd9814 3882{
451af504 3883 struct cgroup_subsys_state *css = of_css(of);
fba94807 3884 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3885 struct mem_cgroup_event *event;
79bd9814
TH
3886 struct cgroup_subsys_state *cfile_css;
3887 unsigned int efd, cfd;
3888 struct fd efile;
3889 struct fd cfile;
fba94807 3890 const char *name;
79bd9814
TH
3891 char *endp;
3892 int ret;
3893
451af504
TH
3894 buf = strstrip(buf);
3895
3896 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3897 if (*endp != ' ')
3898 return -EINVAL;
451af504 3899 buf = endp + 1;
79bd9814 3900
451af504 3901 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3902 if ((*endp != ' ') && (*endp != '\0'))
3903 return -EINVAL;
451af504 3904 buf = endp + 1;
79bd9814
TH
3905
3906 event = kzalloc(sizeof(*event), GFP_KERNEL);
3907 if (!event)
3908 return -ENOMEM;
3909
59b6f873 3910 event->memcg = memcg;
79bd9814 3911 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3912 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3913 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3914 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3915
3916 efile = fdget(efd);
3917 if (!efile.file) {
3918 ret = -EBADF;
3919 goto out_kfree;
3920 }
3921
3922 event->eventfd = eventfd_ctx_fileget(efile.file);
3923 if (IS_ERR(event->eventfd)) {
3924 ret = PTR_ERR(event->eventfd);
3925 goto out_put_efile;
3926 }
3927
3928 cfile = fdget(cfd);
3929 if (!cfile.file) {
3930 ret = -EBADF;
3931 goto out_put_eventfd;
3932 }
3933
3934 /* the process need read permission on control file */
3935 /* AV: shouldn't we check that it's been opened for read instead? */
3936 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3937 if (ret < 0)
3938 goto out_put_cfile;
3939
fba94807
TH
3940 /*
3941 * Determine the event callbacks and set them in @event. This used
3942 * to be done via struct cftype but cgroup core no longer knows
3943 * about these events. The following is crude but the whole thing
3944 * is for compatibility anyway.
3bc942f3
TH
3945 *
3946 * DO NOT ADD NEW FILES.
fba94807 3947 */
b583043e 3948 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3949
3950 if (!strcmp(name, "memory.usage_in_bytes")) {
3951 event->register_event = mem_cgroup_usage_register_event;
3952 event->unregister_event = mem_cgroup_usage_unregister_event;
3953 } else if (!strcmp(name, "memory.oom_control")) {
3954 event->register_event = mem_cgroup_oom_register_event;
3955 event->unregister_event = mem_cgroup_oom_unregister_event;
3956 } else if (!strcmp(name, "memory.pressure_level")) {
3957 event->register_event = vmpressure_register_event;
3958 event->unregister_event = vmpressure_unregister_event;
3959 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3960 event->register_event = memsw_cgroup_usage_register_event;
3961 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3962 } else {
3963 ret = -EINVAL;
3964 goto out_put_cfile;
3965 }
3966
79bd9814 3967 /*
b5557c4c
TH
3968 * Verify @cfile should belong to @css. Also, remaining events are
3969 * automatically removed on cgroup destruction but the removal is
3970 * asynchronous, so take an extra ref on @css.
79bd9814 3971 */
b583043e 3972 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3973 &memory_cgrp_subsys);
79bd9814 3974 ret = -EINVAL;
5a17f543 3975 if (IS_ERR(cfile_css))
79bd9814 3976 goto out_put_cfile;
5a17f543
TH
3977 if (cfile_css != css) {
3978 css_put(cfile_css);
79bd9814 3979 goto out_put_cfile;
5a17f543 3980 }
79bd9814 3981
451af504 3982 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3983 if (ret)
3984 goto out_put_css;
3985
3986 efile.file->f_op->poll(efile.file, &event->pt);
3987
fba94807
TH
3988 spin_lock(&memcg->event_list_lock);
3989 list_add(&event->list, &memcg->event_list);
3990 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3991
3992 fdput(cfile);
3993 fdput(efile);
3994
451af504 3995 return nbytes;
79bd9814
TH
3996
3997out_put_css:
b5557c4c 3998 css_put(css);
79bd9814
TH
3999out_put_cfile:
4000 fdput(cfile);
4001out_put_eventfd:
4002 eventfd_ctx_put(event->eventfd);
4003out_put_efile:
4004 fdput(efile);
4005out_kfree:
4006 kfree(event);
4007
4008 return ret;
4009}
4010
241994ed 4011static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4012 {
0eea1030 4013 .name = "usage_in_bytes",
8c7c6e34 4014 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4015 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4016 },
c84872e1
PE
4017 {
4018 .name = "max_usage_in_bytes",
8c7c6e34 4019 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4020 .write = mem_cgroup_reset,
791badbd 4021 .read_u64 = mem_cgroup_read_u64,
c84872e1 4022 },
8cdea7c0 4023 {
0eea1030 4024 .name = "limit_in_bytes",
8c7c6e34 4025 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4026 .write = mem_cgroup_write,
791badbd 4027 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4028 },
296c81d8
BS
4029 {
4030 .name = "soft_limit_in_bytes",
4031 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4032 .write = mem_cgroup_write,
791badbd 4033 .read_u64 = mem_cgroup_read_u64,
296c81d8 4034 },
8cdea7c0
BS
4035 {
4036 .name = "failcnt",
8c7c6e34 4037 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4038 .write = mem_cgroup_reset,
791badbd 4039 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4040 },
d2ceb9b7
KH
4041 {
4042 .name = "stat",
2da8ca82 4043 .seq_show = memcg_stat_show,
d2ceb9b7 4044 },
c1e862c1
KH
4045 {
4046 .name = "force_empty",
6770c64e 4047 .write = mem_cgroup_force_empty_write,
c1e862c1 4048 },
18f59ea7
BS
4049 {
4050 .name = "use_hierarchy",
4051 .write_u64 = mem_cgroup_hierarchy_write,
4052 .read_u64 = mem_cgroup_hierarchy_read,
4053 },
79bd9814 4054 {
3bc942f3 4055 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4056 .write = memcg_write_event_control,
7dbdb199 4057 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4058 },
a7885eb8
KM
4059 {
4060 .name = "swappiness",
4061 .read_u64 = mem_cgroup_swappiness_read,
4062 .write_u64 = mem_cgroup_swappiness_write,
4063 },
7dc74be0
DN
4064 {
4065 .name = "move_charge_at_immigrate",
4066 .read_u64 = mem_cgroup_move_charge_read,
4067 .write_u64 = mem_cgroup_move_charge_write,
4068 },
9490ff27
KH
4069 {
4070 .name = "oom_control",
2da8ca82 4071 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4072 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4073 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4074 },
70ddf637
AV
4075 {
4076 .name = "pressure_level",
70ddf637 4077 },
406eb0c9
YH
4078#ifdef CONFIG_NUMA
4079 {
4080 .name = "numa_stat",
2da8ca82 4081 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4082 },
4083#endif
510fc4e1
GC
4084#ifdef CONFIG_MEMCG_KMEM
4085 {
4086 .name = "kmem.limit_in_bytes",
4087 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4088 .write = mem_cgroup_write,
791badbd 4089 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4090 },
4091 {
4092 .name = "kmem.usage_in_bytes",
4093 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4094 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4095 },
4096 {
4097 .name = "kmem.failcnt",
4098 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4099 .write = mem_cgroup_reset,
791badbd 4100 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4101 },
4102 {
4103 .name = "kmem.max_usage_in_bytes",
4104 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4105 .write = mem_cgroup_reset,
791badbd 4106 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4107 },
749c5415
GC
4108#ifdef CONFIG_SLABINFO
4109 {
4110 .name = "kmem.slabinfo",
b047501c
VD
4111 .seq_start = slab_start,
4112 .seq_next = slab_next,
4113 .seq_stop = slab_stop,
4114 .seq_show = memcg_slab_show,
749c5415
GC
4115 },
4116#endif
8c7c6e34 4117#endif
6bc10349 4118 { }, /* terminate */
af36f906 4119};
8c7c6e34 4120
c0ff4b85 4121static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4122{
4123 struct mem_cgroup_per_node *pn;
1ecaab2b 4124 struct mem_cgroup_per_zone *mz;
41e3355d 4125 int zone, tmp = node;
1ecaab2b
KH
4126 /*
4127 * This routine is called against possible nodes.
4128 * But it's BUG to call kmalloc() against offline node.
4129 *
4130 * TODO: this routine can waste much memory for nodes which will
4131 * never be onlined. It's better to use memory hotplug callback
4132 * function.
4133 */
41e3355d
KH
4134 if (!node_state(node, N_NORMAL_MEMORY))
4135 tmp = -1;
17295c88 4136 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4137 if (!pn)
4138 return 1;
1ecaab2b 4139
1ecaab2b
KH
4140 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4141 mz = &pn->zoneinfo[zone];
bea8c150 4142 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4143 mz->usage_in_excess = 0;
4144 mz->on_tree = false;
d79154bb 4145 mz->memcg = memcg;
1ecaab2b 4146 }
54f72fe0 4147 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4148 return 0;
4149}
4150
c0ff4b85 4151static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4152{
54f72fe0 4153 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4154}
4155
33327948
KH
4156static struct mem_cgroup *mem_cgroup_alloc(void)
4157{
d79154bb 4158 struct mem_cgroup *memcg;
8ff69e2c 4159 size_t size;
33327948 4160
8ff69e2c
VD
4161 size = sizeof(struct mem_cgroup);
4162 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4163
8ff69e2c 4164 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4165 if (!memcg)
e7bbcdf3
DC
4166 return NULL;
4167
d79154bb
HD
4168 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4169 if (!memcg->stat)
d2e61b8d 4170 goto out_free;
841710aa
TH
4171
4172 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4173 goto out_free_stat;
4174
d79154bb 4175 return memcg;
d2e61b8d 4176
841710aa
TH
4177out_free_stat:
4178 free_percpu(memcg->stat);
d2e61b8d 4179out_free:
8ff69e2c 4180 kfree(memcg);
d2e61b8d 4181 return NULL;
33327948
KH
4182}
4183
59927fb9 4184/*
c8b2a36f
GC
4185 * At destroying mem_cgroup, references from swap_cgroup can remain.
4186 * (scanning all at force_empty is too costly...)
4187 *
4188 * Instead of clearing all references at force_empty, we remember
4189 * the number of reference from swap_cgroup and free mem_cgroup when
4190 * it goes down to 0.
4191 *
4192 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4193 */
c8b2a36f
GC
4194
4195static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4196{
c8b2a36f 4197 int node;
59927fb9 4198
bb4cc1a8 4199 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4200
4201 for_each_node(node)
4202 free_mem_cgroup_per_zone_info(memcg, node);
4203
4204 free_percpu(memcg->stat);
841710aa 4205 memcg_wb_domain_exit(memcg);
8ff69e2c 4206 kfree(memcg);
59927fb9 4207}
3afe36b1 4208
7bcc1bb1
DN
4209/*
4210 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4211 */
e1aab161 4212struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4213{
3e32cb2e 4214 if (!memcg->memory.parent)
7bcc1bb1 4215 return NULL;
3e32cb2e 4216 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4217}
e1aab161 4218EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4219
0eb253e2 4220static struct cgroup_subsys_state * __ref
eb95419b 4221mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4222{
d142e3e6 4223 struct mem_cgroup *memcg;
04046e1a 4224 long error = -ENOMEM;
6d12e2d8 4225 int node;
8cdea7c0 4226
c0ff4b85
R
4227 memcg = mem_cgroup_alloc();
4228 if (!memcg)
04046e1a 4229 return ERR_PTR(error);
78fb7466 4230
3ed28fa1 4231 for_each_node(node)
c0ff4b85 4232 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4233 goto free_out;
f64c3f54 4234
c077719b 4235 /* root ? */
eb95419b 4236 if (parent_css == NULL) {
a41c58a6 4237 root_mem_cgroup = memcg;
56161634 4238 mem_cgroup_root_css = &memcg->css;
3e32cb2e 4239 page_counter_init(&memcg->memory, NULL);
241994ed 4240 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4241 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4242 page_counter_init(&memcg->memsw, NULL);
4243 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4244 }
28dbc4b6 4245
d142e3e6
GC
4246 memcg->last_scanned_node = MAX_NUMNODES;
4247 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4248 memcg->move_charge_at_immigrate = 0;
4249 mutex_init(&memcg->thresholds_lock);
4250 spin_lock_init(&memcg->move_lock);
70ddf637 4251 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4252 INIT_LIST_HEAD(&memcg->event_list);
4253 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4254#ifdef CONFIG_MEMCG_KMEM
4255 memcg->kmemcg_id = -1;
900a38f0 4256#endif
52ebea74
TH
4257#ifdef CONFIG_CGROUP_WRITEBACK
4258 INIT_LIST_HEAD(&memcg->cgwb_list);
4259#endif
d142e3e6
GC
4260 return &memcg->css;
4261
4262free_out:
4263 __mem_cgroup_free(memcg);
4264 return ERR_PTR(error);
4265}
4266
4267static int
eb95419b 4268mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4269{
eb95419b 4270 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4271 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4272 int ret;
d142e3e6 4273
15a4c835 4274 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4275 return -ENOSPC;
4276
63876986 4277 if (!parent)
d142e3e6
GC
4278 return 0;
4279
0999821b 4280 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4281
4282 memcg->use_hierarchy = parent->use_hierarchy;
4283 memcg->oom_kill_disable = parent->oom_kill_disable;
4284 memcg->swappiness = mem_cgroup_swappiness(parent);
4285
4286 if (parent->use_hierarchy) {
3e32cb2e 4287 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4288 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4289 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4290 page_counter_init(&memcg->memsw, &parent->memsw);
4291 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4292
7bcc1bb1 4293 /*
8d76a979
LZ
4294 * No need to take a reference to the parent because cgroup
4295 * core guarantees its existence.
7bcc1bb1 4296 */
18f59ea7 4297 } else {
3e32cb2e 4298 page_counter_init(&memcg->memory, NULL);
241994ed 4299 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4300 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4301 page_counter_init(&memcg->memsw, NULL);
4302 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4303 /*
4304 * Deeper hierachy with use_hierarchy == false doesn't make
4305 * much sense so let cgroup subsystem know about this
4306 * unfortunate state in our controller.
4307 */
d142e3e6 4308 if (parent != root_mem_cgroup)
073219e9 4309 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4310 }
0999821b 4311 mutex_unlock(&memcg_create_mutex);
d6441637 4312
2f7dd7a4
JW
4313 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4314 if (ret)
4315 return ret;
4316
4317 /*
4318 * Make sure the memcg is initialized: mem_cgroup_iter()
4319 * orders reading memcg->initialized against its callers
4320 * reading the memcg members.
4321 */
4322 smp_store_release(&memcg->initialized, 1);
4323
4324 return 0;
8cdea7c0
BS
4325}
4326
eb95419b 4327static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4328{
eb95419b 4329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4330 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4331
4332 /*
4333 * Unregister events and notify userspace.
4334 * Notify userspace about cgroup removing only after rmdir of cgroup
4335 * directory to avoid race between userspace and kernelspace.
4336 */
fba94807
TH
4337 spin_lock(&memcg->event_list_lock);
4338 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4339 list_del_init(&event->list);
4340 schedule_work(&event->remove);
4341 }
fba94807 4342 spin_unlock(&memcg->event_list_lock);
ec64f515 4343
33cb876e 4344 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4345
4346 memcg_deactivate_kmem(memcg);
52ebea74
TH
4347
4348 wb_memcg_offline(memcg);
df878fb0
KH
4349}
4350
6df38689
VD
4351static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4352{
4353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4354
4355 invalidate_reclaim_iterators(memcg);
4356}
4357
eb95419b 4358static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4359{
eb95419b 4360 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4361
10d5ebf4 4362 memcg_destroy_kmem(memcg);
465939a1 4363 __mem_cgroup_free(memcg);
8cdea7c0
BS
4364}
4365
1ced953b
TH
4366/**
4367 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4368 * @css: the target css
4369 *
4370 * Reset the states of the mem_cgroup associated with @css. This is
4371 * invoked when the userland requests disabling on the default hierarchy
4372 * but the memcg is pinned through dependency. The memcg should stop
4373 * applying policies and should revert to the vanilla state as it may be
4374 * made visible again.
4375 *
4376 * The current implementation only resets the essential configurations.
4377 * This needs to be expanded to cover all the visible parts.
4378 */
4379static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4380{
4381 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4382
3e32cb2e
JW
4383 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4384 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4385 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4386 memcg->low = 0;
4387 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4388 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4389 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4390}
4391
02491447 4392#ifdef CONFIG_MMU
7dc74be0 4393/* Handlers for move charge at task migration. */
854ffa8d 4394static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4395{
05b84301 4396 int ret;
9476db97 4397
d0164adc
MG
4398 /* Try a single bulk charge without reclaim first, kswapd may wake */
4399 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4400 if (!ret) {
854ffa8d 4401 mc.precharge += count;
854ffa8d
DN
4402 return ret;
4403 }
9476db97
JW
4404
4405 /* Try charges one by one with reclaim */
854ffa8d 4406 while (count--) {
00501b53 4407 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4408 if (ret)
38c5d72f 4409 return ret;
854ffa8d 4410 mc.precharge++;
9476db97 4411 cond_resched();
854ffa8d 4412 }
9476db97 4413 return 0;
4ffef5fe
DN
4414}
4415
4416/**
8d32ff84 4417 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4418 * @vma: the vma the pte to be checked belongs
4419 * @addr: the address corresponding to the pte to be checked
4420 * @ptent: the pte to be checked
02491447 4421 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4422 *
4423 * Returns
4424 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4425 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4426 * move charge. if @target is not NULL, the page is stored in target->page
4427 * with extra refcnt got(Callers should handle it).
02491447
DN
4428 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4429 * target for charge migration. if @target is not NULL, the entry is stored
4430 * in target->ent.
4ffef5fe
DN
4431 *
4432 * Called with pte lock held.
4433 */
4ffef5fe
DN
4434union mc_target {
4435 struct page *page;
02491447 4436 swp_entry_t ent;
4ffef5fe
DN
4437};
4438
4ffef5fe 4439enum mc_target_type {
8d32ff84 4440 MC_TARGET_NONE = 0,
4ffef5fe 4441 MC_TARGET_PAGE,
02491447 4442 MC_TARGET_SWAP,
4ffef5fe
DN
4443};
4444
90254a65
DN
4445static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4446 unsigned long addr, pte_t ptent)
4ffef5fe 4447{
90254a65 4448 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4449
90254a65
DN
4450 if (!page || !page_mapped(page))
4451 return NULL;
4452 if (PageAnon(page)) {
1dfab5ab 4453 if (!(mc.flags & MOVE_ANON))
90254a65 4454 return NULL;
1dfab5ab
JW
4455 } else {
4456 if (!(mc.flags & MOVE_FILE))
4457 return NULL;
4458 }
90254a65
DN
4459 if (!get_page_unless_zero(page))
4460 return NULL;
4461
4462 return page;
4463}
4464
4b91355e 4465#ifdef CONFIG_SWAP
90254a65
DN
4466static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4467 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4468{
90254a65
DN
4469 struct page *page = NULL;
4470 swp_entry_t ent = pte_to_swp_entry(ptent);
4471
1dfab5ab 4472 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4473 return NULL;
4b91355e
KH
4474 /*
4475 * Because lookup_swap_cache() updates some statistics counter,
4476 * we call find_get_page() with swapper_space directly.
4477 */
33806f06 4478 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4479 if (do_swap_account)
4480 entry->val = ent.val;
4481
4482 return page;
4483}
4b91355e
KH
4484#else
4485static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4486 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4487{
4488 return NULL;
4489}
4490#endif
90254a65 4491
87946a72
DN
4492static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4493 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4494{
4495 struct page *page = NULL;
87946a72
DN
4496 struct address_space *mapping;
4497 pgoff_t pgoff;
4498
4499 if (!vma->vm_file) /* anonymous vma */
4500 return NULL;
1dfab5ab 4501 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4502 return NULL;
4503
87946a72 4504 mapping = vma->vm_file->f_mapping;
0661a336 4505 pgoff = linear_page_index(vma, addr);
87946a72
DN
4506
4507 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4508#ifdef CONFIG_SWAP
4509 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4510 if (shmem_mapping(mapping)) {
4511 page = find_get_entry(mapping, pgoff);
4512 if (radix_tree_exceptional_entry(page)) {
4513 swp_entry_t swp = radix_to_swp_entry(page);
4514 if (do_swap_account)
4515 *entry = swp;
4516 page = find_get_page(swap_address_space(swp), swp.val);
4517 }
4518 } else
4519 page = find_get_page(mapping, pgoff);
4520#else
4521 page = find_get_page(mapping, pgoff);
aa3b1895 4522#endif
87946a72
DN
4523 return page;
4524}
4525
b1b0deab
CG
4526/**
4527 * mem_cgroup_move_account - move account of the page
4528 * @page: the page
4529 * @nr_pages: number of regular pages (>1 for huge pages)
4530 * @from: mem_cgroup which the page is moved from.
4531 * @to: mem_cgroup which the page is moved to. @from != @to.
4532 *
4533 * The caller must confirm following.
4534 * - page is not on LRU (isolate_page() is useful.)
4535 * - compound_lock is held when nr_pages > 1
4536 *
4537 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4538 * from old cgroup.
4539 */
4540static int mem_cgroup_move_account(struct page *page,
4541 unsigned int nr_pages,
4542 struct mem_cgroup *from,
4543 struct mem_cgroup *to)
4544{
4545 unsigned long flags;
4546 int ret;
c4843a75 4547 bool anon;
b1b0deab
CG
4548
4549 VM_BUG_ON(from == to);
4550 VM_BUG_ON_PAGE(PageLRU(page), page);
4551 /*
4552 * The page is isolated from LRU. So, collapse function
4553 * will not handle this page. But page splitting can happen.
4554 * Do this check under compound_page_lock(). The caller should
4555 * hold it.
4556 */
4557 ret = -EBUSY;
4558 if (nr_pages > 1 && !PageTransHuge(page))
4559 goto out;
4560
4561 /*
45637bab
HD
4562 * Prevent mem_cgroup_replace_page() from looking at
4563 * page->mem_cgroup of its source page while we change it.
b1b0deab
CG
4564 */
4565 if (!trylock_page(page))
4566 goto out;
4567
4568 ret = -EINVAL;
4569 if (page->mem_cgroup != from)
4570 goto out_unlock;
4571
c4843a75
GT
4572 anon = PageAnon(page);
4573
b1b0deab
CG
4574 spin_lock_irqsave(&from->move_lock, flags);
4575
c4843a75 4576 if (!anon && page_mapped(page)) {
b1b0deab
CG
4577 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4578 nr_pages);
4579 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4580 nr_pages);
4581 }
4582
c4843a75
GT
4583 /*
4584 * move_lock grabbed above and caller set from->moving_account, so
4585 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4586 * So mapping should be stable for dirty pages.
4587 */
4588 if (!anon && PageDirty(page)) {
4589 struct address_space *mapping = page_mapping(page);
4590
4591 if (mapping_cap_account_dirty(mapping)) {
4592 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4593 nr_pages);
4594 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4595 nr_pages);
4596 }
4597 }
4598
b1b0deab
CG
4599 if (PageWriteback(page)) {
4600 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4601 nr_pages);
4602 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4603 nr_pages);
4604 }
4605
4606 /*
4607 * It is safe to change page->mem_cgroup here because the page
4608 * is referenced, charged, and isolated - we can't race with
4609 * uncharging, charging, migration, or LRU putback.
4610 */
4611
4612 /* caller should have done css_get */
4613 page->mem_cgroup = to;
4614 spin_unlock_irqrestore(&from->move_lock, flags);
4615
4616 ret = 0;
4617
4618 local_irq_disable();
4619 mem_cgroup_charge_statistics(to, page, nr_pages);
4620 memcg_check_events(to, page);
4621 mem_cgroup_charge_statistics(from, page, -nr_pages);
4622 memcg_check_events(from, page);
4623 local_irq_enable();
4624out_unlock:
4625 unlock_page(page);
4626out:
4627 return ret;
4628}
4629
8d32ff84 4630static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4631 unsigned long addr, pte_t ptent, union mc_target *target)
4632{
4633 struct page *page = NULL;
8d32ff84 4634 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4635 swp_entry_t ent = { .val = 0 };
4636
4637 if (pte_present(ptent))
4638 page = mc_handle_present_pte(vma, addr, ptent);
4639 else if (is_swap_pte(ptent))
4640 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4641 else if (pte_none(ptent))
87946a72 4642 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4643
4644 if (!page && !ent.val)
8d32ff84 4645 return ret;
02491447 4646 if (page) {
02491447 4647 /*
0a31bc97 4648 * Do only loose check w/o serialization.
1306a85a 4649 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4650 * not under LRU exclusion.
02491447 4651 */
1306a85a 4652 if (page->mem_cgroup == mc.from) {
02491447
DN
4653 ret = MC_TARGET_PAGE;
4654 if (target)
4655 target->page = page;
4656 }
4657 if (!ret || !target)
4658 put_page(page);
4659 }
90254a65
DN
4660 /* There is a swap entry and a page doesn't exist or isn't charged */
4661 if (ent.val && !ret &&
34c00c31 4662 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4663 ret = MC_TARGET_SWAP;
4664 if (target)
4665 target->ent = ent;
4ffef5fe 4666 }
4ffef5fe
DN
4667 return ret;
4668}
4669
12724850
NH
4670#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4671/*
4672 * We don't consider swapping or file mapped pages because THP does not
4673 * support them for now.
4674 * Caller should make sure that pmd_trans_huge(pmd) is true.
4675 */
4676static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4677 unsigned long addr, pmd_t pmd, union mc_target *target)
4678{
4679 struct page *page = NULL;
12724850
NH
4680 enum mc_target_type ret = MC_TARGET_NONE;
4681
4682 page = pmd_page(pmd);
309381fe 4683 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4684 if (!(mc.flags & MOVE_ANON))
12724850 4685 return ret;
1306a85a 4686 if (page->mem_cgroup == mc.from) {
12724850
NH
4687 ret = MC_TARGET_PAGE;
4688 if (target) {
4689 get_page(page);
4690 target->page = page;
4691 }
4692 }
4693 return ret;
4694}
4695#else
4696static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4697 unsigned long addr, pmd_t pmd, union mc_target *target)
4698{
4699 return MC_TARGET_NONE;
4700}
4701#endif
4702
4ffef5fe
DN
4703static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4704 unsigned long addr, unsigned long end,
4705 struct mm_walk *walk)
4706{
26bcd64a 4707 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4708 pte_t *pte;
4709 spinlock_t *ptl;
4710
bf929152 4711 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4712 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4713 mc.precharge += HPAGE_PMD_NR;
bf929152 4714 spin_unlock(ptl);
1a5a9906 4715 return 0;
12724850 4716 }
03319327 4717
45f83cef
AA
4718 if (pmd_trans_unstable(pmd))
4719 return 0;
4ffef5fe
DN
4720 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4721 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4722 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4723 mc.precharge++; /* increment precharge temporarily */
4724 pte_unmap_unlock(pte - 1, ptl);
4725 cond_resched();
4726
7dc74be0
DN
4727 return 0;
4728}
4729
4ffef5fe
DN
4730static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4731{
4732 unsigned long precharge;
4ffef5fe 4733
26bcd64a
NH
4734 struct mm_walk mem_cgroup_count_precharge_walk = {
4735 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4736 .mm = mm,
4737 };
dfe076b0 4738 down_read(&mm->mmap_sem);
26bcd64a 4739 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4740 up_read(&mm->mmap_sem);
4ffef5fe
DN
4741
4742 precharge = mc.precharge;
4743 mc.precharge = 0;
4744
4745 return precharge;
4746}
4747
4ffef5fe
DN
4748static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4749{
dfe076b0
DN
4750 unsigned long precharge = mem_cgroup_count_precharge(mm);
4751
4752 VM_BUG_ON(mc.moving_task);
4753 mc.moving_task = current;
4754 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4755}
4756
dfe076b0
DN
4757/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4758static void __mem_cgroup_clear_mc(void)
4ffef5fe 4759{
2bd9bb20
KH
4760 struct mem_cgroup *from = mc.from;
4761 struct mem_cgroup *to = mc.to;
4762
4ffef5fe 4763 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4764 if (mc.precharge) {
00501b53 4765 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4766 mc.precharge = 0;
4767 }
4768 /*
4769 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4770 * we must uncharge here.
4771 */
4772 if (mc.moved_charge) {
00501b53 4773 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4774 mc.moved_charge = 0;
4ffef5fe 4775 }
483c30b5
DN
4776 /* we must fixup refcnts and charges */
4777 if (mc.moved_swap) {
483c30b5 4778 /* uncharge swap account from the old cgroup */
ce00a967 4779 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4780 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4781
05b84301 4782 /*
3e32cb2e
JW
4783 * we charged both to->memory and to->memsw, so we
4784 * should uncharge to->memory.
05b84301 4785 */
ce00a967 4786 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4787 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4788
e8ea14cc 4789 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4790
4050377b 4791 /* we've already done css_get(mc.to) */
483c30b5
DN
4792 mc.moved_swap = 0;
4793 }
dfe076b0
DN
4794 memcg_oom_recover(from);
4795 memcg_oom_recover(to);
4796 wake_up_all(&mc.waitq);
4797}
4798
4799static void mem_cgroup_clear_mc(void)
4800{
dfe076b0
DN
4801 /*
4802 * we must clear moving_task before waking up waiters at the end of
4803 * task migration.
4804 */
4805 mc.moving_task = NULL;
4806 __mem_cgroup_clear_mc();
2bd9bb20 4807 spin_lock(&mc.lock);
4ffef5fe
DN
4808 mc.from = NULL;
4809 mc.to = NULL;
2bd9bb20 4810 spin_unlock(&mc.lock);
4ffef5fe
DN
4811}
4812
1f7dd3e5 4813static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4814{
1f7dd3e5 4815 struct cgroup_subsys_state *css;
eed67d75 4816 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4817 struct mem_cgroup *from;
4530eddb 4818 struct task_struct *leader, *p;
9f2115f9 4819 struct mm_struct *mm;
1dfab5ab 4820 unsigned long move_flags;
9f2115f9 4821 int ret = 0;
7dc74be0 4822
1f7dd3e5
TH
4823 /* charge immigration isn't supported on the default hierarchy */
4824 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4825 return 0;
4826
4530eddb
TH
4827 /*
4828 * Multi-process migrations only happen on the default hierarchy
4829 * where charge immigration is not used. Perform charge
4830 * immigration if @tset contains a leader and whine if there are
4831 * multiple.
4832 */
4833 p = NULL;
1f7dd3e5 4834 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4835 WARN_ON_ONCE(p);
4836 p = leader;
1f7dd3e5 4837 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4838 }
4839 if (!p)
4840 return 0;
4841
1f7dd3e5
TH
4842 /*
4843 * We are now commited to this value whatever it is. Changes in this
4844 * tunable will only affect upcoming migrations, not the current one.
4845 * So we need to save it, and keep it going.
4846 */
4847 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4848 if (!move_flags)
4849 return 0;
4850
9f2115f9
TH
4851 from = mem_cgroup_from_task(p);
4852
4853 VM_BUG_ON(from == memcg);
4854
4855 mm = get_task_mm(p);
4856 if (!mm)
4857 return 0;
4858 /* We move charges only when we move a owner of the mm */
4859 if (mm->owner == p) {
4860 VM_BUG_ON(mc.from);
4861 VM_BUG_ON(mc.to);
4862 VM_BUG_ON(mc.precharge);
4863 VM_BUG_ON(mc.moved_charge);
4864 VM_BUG_ON(mc.moved_swap);
4865
4866 spin_lock(&mc.lock);
4867 mc.from = from;
4868 mc.to = memcg;
4869 mc.flags = move_flags;
4870 spin_unlock(&mc.lock);
4871 /* We set mc.moving_task later */
4872
4873 ret = mem_cgroup_precharge_mc(mm);
4874 if (ret)
4875 mem_cgroup_clear_mc();
7dc74be0 4876 }
9f2115f9 4877 mmput(mm);
7dc74be0
DN
4878 return ret;
4879}
4880
1f7dd3e5 4881static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4882{
4e2f245d
JW
4883 if (mc.to)
4884 mem_cgroup_clear_mc();
7dc74be0
DN
4885}
4886
4ffef5fe
DN
4887static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4888 unsigned long addr, unsigned long end,
4889 struct mm_walk *walk)
7dc74be0 4890{
4ffef5fe 4891 int ret = 0;
26bcd64a 4892 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4893 pte_t *pte;
4894 spinlock_t *ptl;
12724850
NH
4895 enum mc_target_type target_type;
4896 union mc_target target;
4897 struct page *page;
4ffef5fe 4898
12724850
NH
4899 /*
4900 * We don't take compound_lock() here but no race with splitting thp
4901 * happens because:
4902 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4903 * under splitting, which means there's no concurrent thp split,
4904 * - if another thread runs into split_huge_page() just after we
4905 * entered this if-block, the thread must wait for page table lock
4906 * to be unlocked in __split_huge_page_splitting(), where the main
4907 * part of thp split is not executed yet.
4908 */
bf929152 4909 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 4910 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4911 spin_unlock(ptl);
12724850
NH
4912 return 0;
4913 }
4914 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4915 if (target_type == MC_TARGET_PAGE) {
4916 page = target.page;
4917 if (!isolate_lru_page(page)) {
12724850 4918 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 4919 mc.from, mc.to)) {
12724850
NH
4920 mc.precharge -= HPAGE_PMD_NR;
4921 mc.moved_charge += HPAGE_PMD_NR;
4922 }
4923 putback_lru_page(page);
4924 }
4925 put_page(page);
4926 }
bf929152 4927 spin_unlock(ptl);
1a5a9906 4928 return 0;
12724850
NH
4929 }
4930
45f83cef
AA
4931 if (pmd_trans_unstable(pmd))
4932 return 0;
4ffef5fe
DN
4933retry:
4934 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4935 for (; addr != end; addr += PAGE_SIZE) {
4936 pte_t ptent = *(pte++);
02491447 4937 swp_entry_t ent;
4ffef5fe
DN
4938
4939 if (!mc.precharge)
4940 break;
4941
8d32ff84 4942 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4943 case MC_TARGET_PAGE:
4944 page = target.page;
4945 if (isolate_lru_page(page))
4946 goto put;
1306a85a 4947 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 4948 mc.precharge--;
854ffa8d
DN
4949 /* we uncharge from mc.from later. */
4950 mc.moved_charge++;
4ffef5fe
DN
4951 }
4952 putback_lru_page(page);
8d32ff84 4953put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4954 put_page(page);
4955 break;
02491447
DN
4956 case MC_TARGET_SWAP:
4957 ent = target.ent;
e91cbb42 4958 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4959 mc.precharge--;
483c30b5
DN
4960 /* we fixup refcnts and charges later. */
4961 mc.moved_swap++;
4962 }
02491447 4963 break;
4ffef5fe
DN
4964 default:
4965 break;
4966 }
4967 }
4968 pte_unmap_unlock(pte - 1, ptl);
4969 cond_resched();
4970
4971 if (addr != end) {
4972 /*
4973 * We have consumed all precharges we got in can_attach().
4974 * We try charge one by one, but don't do any additional
4975 * charges to mc.to if we have failed in charge once in attach()
4976 * phase.
4977 */
854ffa8d 4978 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4979 if (!ret)
4980 goto retry;
4981 }
4982
4983 return ret;
4984}
4985
4986static void mem_cgroup_move_charge(struct mm_struct *mm)
4987{
26bcd64a
NH
4988 struct mm_walk mem_cgroup_move_charge_walk = {
4989 .pmd_entry = mem_cgroup_move_charge_pte_range,
4990 .mm = mm,
4991 };
4ffef5fe
DN
4992
4993 lru_add_drain_all();
312722cb
JW
4994 /*
4995 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4996 * move_lock while we're moving its pages to another memcg.
4997 * Then wait for already started RCU-only updates to finish.
4998 */
4999 atomic_inc(&mc.from->moving_account);
5000 synchronize_rcu();
dfe076b0
DN
5001retry:
5002 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5003 /*
5004 * Someone who are holding the mmap_sem might be waiting in
5005 * waitq. So we cancel all extra charges, wake up all waiters,
5006 * and retry. Because we cancel precharges, we might not be able
5007 * to move enough charges, but moving charge is a best-effort
5008 * feature anyway, so it wouldn't be a big problem.
5009 */
5010 __mem_cgroup_clear_mc();
5011 cond_resched();
5012 goto retry;
5013 }
26bcd64a
NH
5014 /*
5015 * When we have consumed all precharges and failed in doing
5016 * additional charge, the page walk just aborts.
5017 */
5018 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5019 up_read(&mm->mmap_sem);
312722cb 5020 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5021}
5022
1f7dd3e5 5023static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 5024{
1f7dd3e5
TH
5025 struct cgroup_subsys_state *css;
5026 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 5027 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5028
dfe076b0 5029 if (mm) {
a433658c
KM
5030 if (mc.to)
5031 mem_cgroup_move_charge(mm);
dfe076b0
DN
5032 mmput(mm);
5033 }
a433658c
KM
5034 if (mc.to)
5035 mem_cgroup_clear_mc();
67e465a7 5036}
5cfb80a7 5037#else /* !CONFIG_MMU */
1f7dd3e5 5038static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5039{
5040 return 0;
5041}
1f7dd3e5 5042static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5043{
5044}
1f7dd3e5 5045static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
5046{
5047}
5048#endif
67e465a7 5049
f00baae7
TH
5050/*
5051 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5052 * to verify whether we're attached to the default hierarchy on each mount
5053 * attempt.
f00baae7 5054 */
eb95419b 5055static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5056{
5057 /*
aa6ec29b 5058 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5059 * guarantees that @root doesn't have any children, so turning it
5060 * on for the root memcg is enough.
5061 */
9e10a130 5062 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5063 root_mem_cgroup->use_hierarchy = true;
5064 else
5065 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5066}
5067
241994ed
JW
5068static u64 memory_current_read(struct cgroup_subsys_state *css,
5069 struct cftype *cft)
5070{
f5fc3c5d
JW
5071 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5072
5073 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5074}
5075
5076static int memory_low_show(struct seq_file *m, void *v)
5077{
5078 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5079 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5080
5081 if (low == PAGE_COUNTER_MAX)
d2973697 5082 seq_puts(m, "max\n");
241994ed
JW
5083 else
5084 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5085
5086 return 0;
5087}
5088
5089static ssize_t memory_low_write(struct kernfs_open_file *of,
5090 char *buf, size_t nbytes, loff_t off)
5091{
5092 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5093 unsigned long low;
5094 int err;
5095
5096 buf = strstrip(buf);
d2973697 5097 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5098 if (err)
5099 return err;
5100
5101 memcg->low = low;
5102
5103 return nbytes;
5104}
5105
5106static int memory_high_show(struct seq_file *m, void *v)
5107{
5108 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5109 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5110
5111 if (high == PAGE_COUNTER_MAX)
d2973697 5112 seq_puts(m, "max\n");
241994ed
JW
5113 else
5114 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5115
5116 return 0;
5117}
5118
5119static ssize_t memory_high_write(struct kernfs_open_file *of,
5120 char *buf, size_t nbytes, loff_t off)
5121{
5122 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5123 unsigned long high;
5124 int err;
5125
5126 buf = strstrip(buf);
d2973697 5127 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5128 if (err)
5129 return err;
5130
5131 memcg->high = high;
5132
2529bb3a 5133 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5134 return nbytes;
5135}
5136
5137static int memory_max_show(struct seq_file *m, void *v)
5138{
5139 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5140 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5141
5142 if (max == PAGE_COUNTER_MAX)
d2973697 5143 seq_puts(m, "max\n");
241994ed
JW
5144 else
5145 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5146
5147 return 0;
5148}
5149
5150static ssize_t memory_max_write(struct kernfs_open_file *of,
5151 char *buf, size_t nbytes, loff_t off)
5152{
5153 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5154 unsigned long max;
5155 int err;
5156
5157 buf = strstrip(buf);
d2973697 5158 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5159 if (err)
5160 return err;
5161
5162 err = mem_cgroup_resize_limit(memcg, max);
5163 if (err)
5164 return err;
5165
2529bb3a 5166 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5167 return nbytes;
5168}
5169
5170static int memory_events_show(struct seq_file *m, void *v)
5171{
5172 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5173
5174 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5175 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5176 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5177 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5178
5179 return 0;
5180}
5181
5182static struct cftype memory_files[] = {
5183 {
5184 .name = "current",
f5fc3c5d 5185 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5186 .read_u64 = memory_current_read,
5187 },
5188 {
5189 .name = "low",
5190 .flags = CFTYPE_NOT_ON_ROOT,
5191 .seq_show = memory_low_show,
5192 .write = memory_low_write,
5193 },
5194 {
5195 .name = "high",
5196 .flags = CFTYPE_NOT_ON_ROOT,
5197 .seq_show = memory_high_show,
5198 .write = memory_high_write,
5199 },
5200 {
5201 .name = "max",
5202 .flags = CFTYPE_NOT_ON_ROOT,
5203 .seq_show = memory_max_show,
5204 .write = memory_max_write,
5205 },
5206 {
5207 .name = "events",
5208 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5209 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5210 .seq_show = memory_events_show,
5211 },
5212 { } /* terminate */
5213};
5214
073219e9 5215struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5216 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5217 .css_online = mem_cgroup_css_online,
92fb9748 5218 .css_offline = mem_cgroup_css_offline,
6df38689 5219 .css_released = mem_cgroup_css_released,
92fb9748 5220 .css_free = mem_cgroup_css_free,
1ced953b 5221 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5222 .can_attach = mem_cgroup_can_attach,
5223 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5224 .attach = mem_cgroup_move_task,
f00baae7 5225 .bind = mem_cgroup_bind,
241994ed
JW
5226 .dfl_cftypes = memory_files,
5227 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5228 .early_init = 0,
8cdea7c0 5229};
c077719b 5230
241994ed
JW
5231/**
5232 * mem_cgroup_low - check if memory consumption is below the normal range
5233 * @root: the highest ancestor to consider
5234 * @memcg: the memory cgroup to check
5235 *
5236 * Returns %true if memory consumption of @memcg, and that of all
5237 * configurable ancestors up to @root, is below the normal range.
5238 */
5239bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5240{
5241 if (mem_cgroup_disabled())
5242 return false;
5243
5244 /*
5245 * The toplevel group doesn't have a configurable range, so
5246 * it's never low when looked at directly, and it is not
5247 * considered an ancestor when assessing the hierarchy.
5248 */
5249
5250 if (memcg == root_mem_cgroup)
5251 return false;
5252
4e54dede 5253 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5254 return false;
5255
5256 while (memcg != root) {
5257 memcg = parent_mem_cgroup(memcg);
5258
5259 if (memcg == root_mem_cgroup)
5260 break;
5261
4e54dede 5262 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5263 return false;
5264 }
5265 return true;
5266}
5267
00501b53
JW
5268/**
5269 * mem_cgroup_try_charge - try charging a page
5270 * @page: page to charge
5271 * @mm: mm context of the victim
5272 * @gfp_mask: reclaim mode
5273 * @memcgp: charged memcg return
5274 *
5275 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5276 * pages according to @gfp_mask if necessary.
5277 *
5278 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5279 * Otherwise, an error code is returned.
5280 *
5281 * After page->mapping has been set up, the caller must finalize the
5282 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5283 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5284 */
5285int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5286 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5287{
5288 struct mem_cgroup *memcg = NULL;
5289 unsigned int nr_pages = 1;
5290 int ret = 0;
5291
5292 if (mem_cgroup_disabled())
5293 goto out;
5294
5295 if (PageSwapCache(page)) {
00501b53
JW
5296 /*
5297 * Every swap fault against a single page tries to charge the
5298 * page, bail as early as possible. shmem_unuse() encounters
5299 * already charged pages, too. The USED bit is protected by
5300 * the page lock, which serializes swap cache removal, which
5301 * in turn serializes uncharging.
5302 */
e993d905 5303 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5304 if (page->mem_cgroup)
00501b53 5305 goto out;
e993d905
VD
5306
5307 if (do_swap_account) {
5308 swp_entry_t ent = { .val = page_private(page), };
5309 unsigned short id = lookup_swap_cgroup_id(ent);
5310
5311 rcu_read_lock();
5312 memcg = mem_cgroup_from_id(id);
5313 if (memcg && !css_tryget_online(&memcg->css))
5314 memcg = NULL;
5315 rcu_read_unlock();
5316 }
00501b53
JW
5317 }
5318
5319 if (PageTransHuge(page)) {
5320 nr_pages <<= compound_order(page);
5321 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5322 }
5323
00501b53
JW
5324 if (!memcg)
5325 memcg = get_mem_cgroup_from_mm(mm);
5326
5327 ret = try_charge(memcg, gfp_mask, nr_pages);
5328
5329 css_put(&memcg->css);
00501b53
JW
5330out:
5331 *memcgp = memcg;
5332 return ret;
5333}
5334
5335/**
5336 * mem_cgroup_commit_charge - commit a page charge
5337 * @page: page to charge
5338 * @memcg: memcg to charge the page to
5339 * @lrucare: page might be on LRU already
5340 *
5341 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5342 * after page->mapping has been set up. This must happen atomically
5343 * as part of the page instantiation, i.e. under the page table lock
5344 * for anonymous pages, under the page lock for page and swap cache.
5345 *
5346 * In addition, the page must not be on the LRU during the commit, to
5347 * prevent racing with task migration. If it might be, use @lrucare.
5348 *
5349 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5350 */
5351void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5352 bool lrucare)
5353{
5354 unsigned int nr_pages = 1;
5355
5356 VM_BUG_ON_PAGE(!page->mapping, page);
5357 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5358
5359 if (mem_cgroup_disabled())
5360 return;
5361 /*
5362 * Swap faults will attempt to charge the same page multiple
5363 * times. But reuse_swap_page() might have removed the page
5364 * from swapcache already, so we can't check PageSwapCache().
5365 */
5366 if (!memcg)
5367 return;
5368
6abb5a86
JW
5369 commit_charge(page, memcg, lrucare);
5370
00501b53
JW
5371 if (PageTransHuge(page)) {
5372 nr_pages <<= compound_order(page);
5373 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5374 }
5375
6abb5a86
JW
5376 local_irq_disable();
5377 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5378 memcg_check_events(memcg, page);
5379 local_irq_enable();
00501b53
JW
5380
5381 if (do_swap_account && PageSwapCache(page)) {
5382 swp_entry_t entry = { .val = page_private(page) };
5383 /*
5384 * The swap entry might not get freed for a long time,
5385 * let's not wait for it. The page already received a
5386 * memory+swap charge, drop the swap entry duplicate.
5387 */
5388 mem_cgroup_uncharge_swap(entry);
5389 }
5390}
5391
5392/**
5393 * mem_cgroup_cancel_charge - cancel a page charge
5394 * @page: page to charge
5395 * @memcg: memcg to charge the page to
5396 *
5397 * Cancel a charge transaction started by mem_cgroup_try_charge().
5398 */
5399void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5400{
5401 unsigned int nr_pages = 1;
5402
5403 if (mem_cgroup_disabled())
5404 return;
5405 /*
5406 * Swap faults will attempt to charge the same page multiple
5407 * times. But reuse_swap_page() might have removed the page
5408 * from swapcache already, so we can't check PageSwapCache().
5409 */
5410 if (!memcg)
5411 return;
5412
5413 if (PageTransHuge(page)) {
5414 nr_pages <<= compound_order(page);
5415 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5416 }
5417
5418 cancel_charge(memcg, nr_pages);
5419}
5420
747db954 5421static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5422 unsigned long nr_anon, unsigned long nr_file,
5423 unsigned long nr_huge, struct page *dummy_page)
5424{
18eca2e6 5425 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5426 unsigned long flags;
5427
ce00a967 5428 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5429 page_counter_uncharge(&memcg->memory, nr_pages);
5430 if (do_swap_account)
5431 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5432 memcg_oom_recover(memcg);
5433 }
747db954
JW
5434
5435 local_irq_save(flags);
5436 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5437 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5438 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5439 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5440 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5441 memcg_check_events(memcg, dummy_page);
5442 local_irq_restore(flags);
e8ea14cc
JW
5443
5444 if (!mem_cgroup_is_root(memcg))
18eca2e6 5445 css_put_many(&memcg->css, nr_pages);
747db954
JW
5446}
5447
5448static void uncharge_list(struct list_head *page_list)
5449{
5450 struct mem_cgroup *memcg = NULL;
747db954
JW
5451 unsigned long nr_anon = 0;
5452 unsigned long nr_file = 0;
5453 unsigned long nr_huge = 0;
5454 unsigned long pgpgout = 0;
747db954
JW
5455 struct list_head *next;
5456 struct page *page;
5457
5458 next = page_list->next;
5459 do {
5460 unsigned int nr_pages = 1;
747db954
JW
5461
5462 page = list_entry(next, struct page, lru);
5463 next = page->lru.next;
5464
5465 VM_BUG_ON_PAGE(PageLRU(page), page);
5466 VM_BUG_ON_PAGE(page_count(page), page);
5467
1306a85a 5468 if (!page->mem_cgroup)
747db954
JW
5469 continue;
5470
5471 /*
5472 * Nobody should be changing or seriously looking at
1306a85a 5473 * page->mem_cgroup at this point, we have fully
29833315 5474 * exclusive access to the page.
747db954
JW
5475 */
5476
1306a85a 5477 if (memcg != page->mem_cgroup) {
747db954 5478 if (memcg) {
18eca2e6
JW
5479 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5480 nr_huge, page);
5481 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5482 }
1306a85a 5483 memcg = page->mem_cgroup;
747db954
JW
5484 }
5485
5486 if (PageTransHuge(page)) {
5487 nr_pages <<= compound_order(page);
5488 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5489 nr_huge += nr_pages;
5490 }
5491
5492 if (PageAnon(page))
5493 nr_anon += nr_pages;
5494 else
5495 nr_file += nr_pages;
5496
1306a85a 5497 page->mem_cgroup = NULL;
747db954
JW
5498
5499 pgpgout++;
5500 } while (next != page_list);
5501
5502 if (memcg)
18eca2e6
JW
5503 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5504 nr_huge, page);
747db954
JW
5505}
5506
0a31bc97
JW
5507/**
5508 * mem_cgroup_uncharge - uncharge a page
5509 * @page: page to uncharge
5510 *
5511 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5512 * mem_cgroup_commit_charge().
5513 */
5514void mem_cgroup_uncharge(struct page *page)
5515{
0a31bc97
JW
5516 if (mem_cgroup_disabled())
5517 return;
5518
747db954 5519 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5520 if (!page->mem_cgroup)
0a31bc97
JW
5521 return;
5522
747db954
JW
5523 INIT_LIST_HEAD(&page->lru);
5524 uncharge_list(&page->lru);
5525}
0a31bc97 5526
747db954
JW
5527/**
5528 * mem_cgroup_uncharge_list - uncharge a list of page
5529 * @page_list: list of pages to uncharge
5530 *
5531 * Uncharge a list of pages previously charged with
5532 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5533 */
5534void mem_cgroup_uncharge_list(struct list_head *page_list)
5535{
5536 if (mem_cgroup_disabled())
5537 return;
0a31bc97 5538
747db954
JW
5539 if (!list_empty(page_list))
5540 uncharge_list(page_list);
0a31bc97
JW
5541}
5542
5543/**
45637bab 5544 * mem_cgroup_replace_page - migrate a charge to another page
0a31bc97
JW
5545 * @oldpage: currently charged page
5546 * @newpage: page to transfer the charge to
0a31bc97
JW
5547 *
5548 * Migrate the charge from @oldpage to @newpage.
5549 *
5550 * Both pages must be locked, @newpage->mapping must be set up.
25be6a65 5551 * Either or both pages might be on the LRU already.
0a31bc97 5552 */
45637bab 5553void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
0a31bc97 5554{
29833315 5555 struct mem_cgroup *memcg;
0a31bc97
JW
5556 int isolated;
5557
5558 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5559 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5560 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5561 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5562 newpage);
0a31bc97
JW
5563
5564 if (mem_cgroup_disabled())
5565 return;
5566
5567 /* Page cache replacement: new page already charged? */
1306a85a 5568 if (newpage->mem_cgroup)
0a31bc97
JW
5569 return;
5570
45637bab 5571 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5572 memcg = oldpage->mem_cgroup;
29833315 5573 if (!memcg)
0a31bc97
JW
5574 return;
5575
45637bab 5576 lock_page_lru(oldpage, &isolated);
1306a85a 5577 oldpage->mem_cgroup = NULL;
45637bab 5578 unlock_page_lru(oldpage, isolated);
0a31bc97 5579
45637bab 5580 commit_charge(newpage, memcg, true);
0a31bc97
JW
5581}
5582
2d11085e 5583/*
1081312f
MH
5584 * subsys_initcall() for memory controller.
5585 *
5586 * Some parts like hotcpu_notifier() have to be initialized from this context
5587 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5588 * everything that doesn't depend on a specific mem_cgroup structure should
5589 * be initialized from here.
2d11085e
MH
5590 */
5591static int __init mem_cgroup_init(void)
5592{
95a045f6
JW
5593 int cpu, node;
5594
2d11085e 5595 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5596
5597 for_each_possible_cpu(cpu)
5598 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5599 drain_local_stock);
5600
5601 for_each_node(node) {
5602 struct mem_cgroup_tree_per_node *rtpn;
5603 int zone;
5604
5605 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5606 node_online(node) ? node : NUMA_NO_NODE);
5607
5608 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5609 struct mem_cgroup_tree_per_zone *rtpz;
5610
5611 rtpz = &rtpn->rb_tree_per_zone[zone];
5612 rtpz->rb_root = RB_ROOT;
5613 spin_lock_init(&rtpz->lock);
5614 }
5615 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5616 }
5617
2d11085e
MH
5618 return 0;
5619}
5620subsys_initcall(mem_cgroup_init);
21afa38e
JW
5621
5622#ifdef CONFIG_MEMCG_SWAP
5623/**
5624 * mem_cgroup_swapout - transfer a memsw charge to swap
5625 * @page: page whose memsw charge to transfer
5626 * @entry: swap entry to move the charge to
5627 *
5628 * Transfer the memsw charge of @page to @entry.
5629 */
5630void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5631{
5632 struct mem_cgroup *memcg;
5633 unsigned short oldid;
5634
5635 VM_BUG_ON_PAGE(PageLRU(page), page);
5636 VM_BUG_ON_PAGE(page_count(page), page);
5637
5638 if (!do_swap_account)
5639 return;
5640
5641 memcg = page->mem_cgroup;
5642
5643 /* Readahead page, never charged */
5644 if (!memcg)
5645 return;
5646
5647 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5648 VM_BUG_ON_PAGE(oldid, page);
5649 mem_cgroup_swap_statistics(memcg, true);
5650
5651 page->mem_cgroup = NULL;
5652
5653 if (!mem_cgroup_is_root(memcg))
5654 page_counter_uncharge(&memcg->memory, 1);
5655
ce9ce665
SAS
5656 /*
5657 * Interrupts should be disabled here because the caller holds the
5658 * mapping->tree_lock lock which is taken with interrupts-off. It is
5659 * important here to have the interrupts disabled because it is the
5660 * only synchronisation we have for udpating the per-CPU variables.
5661 */
5662 VM_BUG_ON(!irqs_disabled());
21afa38e
JW
5663 mem_cgroup_charge_statistics(memcg, page, -1);
5664 memcg_check_events(memcg, page);
5665}
5666
5667/**
5668 * mem_cgroup_uncharge_swap - uncharge a swap entry
5669 * @entry: swap entry to uncharge
5670 *
5671 * Drop the memsw charge associated with @entry.
5672 */
5673void mem_cgroup_uncharge_swap(swp_entry_t entry)
5674{
5675 struct mem_cgroup *memcg;
5676 unsigned short id;
5677
5678 if (!do_swap_account)
5679 return;
5680
5681 id = swap_cgroup_record(entry, 0);
5682 rcu_read_lock();
adbe427b 5683 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5684 if (memcg) {
5685 if (!mem_cgroup_is_root(memcg))
5686 page_counter_uncharge(&memcg->memsw, 1);
5687 mem_cgroup_swap_statistics(memcg, false);
5688 css_put(&memcg->css);
5689 }
5690 rcu_read_unlock();
5691}
5692
5693/* for remember boot option*/
5694#ifdef CONFIG_MEMCG_SWAP_ENABLED
5695static int really_do_swap_account __initdata = 1;
5696#else
5697static int really_do_swap_account __initdata;
5698#endif
5699
5700static int __init enable_swap_account(char *s)
5701{
5702 if (!strcmp(s, "1"))
5703 really_do_swap_account = 1;
5704 else if (!strcmp(s, "0"))
5705 really_do_swap_account = 0;
5706 return 1;
5707}
5708__setup("swapaccount=", enable_swap_account);
5709
5710static struct cftype memsw_cgroup_files[] = {
5711 {
5712 .name = "memsw.usage_in_bytes",
5713 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5714 .read_u64 = mem_cgroup_read_u64,
5715 },
5716 {
5717 .name = "memsw.max_usage_in_bytes",
5718 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5719 .write = mem_cgroup_reset,
5720 .read_u64 = mem_cgroup_read_u64,
5721 },
5722 {
5723 .name = "memsw.limit_in_bytes",
5724 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5725 .write = mem_cgroup_write,
5726 .read_u64 = mem_cgroup_read_u64,
5727 },
5728 {
5729 .name = "memsw.failcnt",
5730 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5731 .write = mem_cgroup_reset,
5732 .read_u64 = mem_cgroup_read_u64,
5733 },
5734 { }, /* terminate */
5735};
5736
5737static int __init mem_cgroup_swap_init(void)
5738{
5739 if (!mem_cgroup_disabled() && really_do_swap_account) {
5740 do_swap_account = 1;
5741 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5742 memsw_cgroup_files));
5743 }
5744 return 0;
5745}
5746subsys_initcall(mem_cgroup_swap_init);
5747
5748#endif /* CONFIG_MEMCG_SWAP */