cgroup, memcg: move cgroup_event implementation to memcg
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
33327948 52#include <linux/vmalloc.h>
70ddf637 53#include <linux/vmpressure.h>
b69408e8 54#include <linux/mm_inline.h>
52d4b9ac 55#include <linux/page_cgroup.h>
cdec2e42 56#include <linux/cpu.h>
158e0a2d 57#include <linux/oom.h>
0056f4e6 58#include <linux/lockdep.h>
79bd9814 59#include <linux/file.h>
08e552c6 60#include "internal.h"
d1a4c0b3 61#include <net/sock.h>
4bd2c1ee 62#include <net/ip.h>
d1a4c0b3 63#include <net/tcp_memcontrol.h>
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
a181b0e8 69struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
70EXPORT_SYMBOL(mem_cgroup_subsys);
71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
5f578161
MH
152 unsigned long last_dead_count;
153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
234struct cgroup_event {
235 /*
236 * css which the event belongs to.
237 */
238 struct cgroup_subsys_state *css;
239 /*
240 * Control file which the event associated.
241 */
242 struct cftype *cft;
243 /*
244 * eventfd to signal userspace about the event.
245 */
246 struct eventfd_ctx *eventfd;
247 /*
248 * Each of these stored in a list by the cgroup.
249 */
250 struct list_head list;
251 /*
252 * All fields below needed to unregister event when
253 * userspace closes eventfd.
254 */
255 poll_table pt;
256 wait_queue_head_t *wqh;
257 wait_queue_t wait;
258 struct work_struct remove;
259};
260
c0ff4b85
R
261static void mem_cgroup_threshold(struct mem_cgroup *memcg);
262static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 263
8cdea7c0
BS
264/*
265 * The memory controller data structure. The memory controller controls both
266 * page cache and RSS per cgroup. We would eventually like to provide
267 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
268 * to help the administrator determine what knobs to tune.
269 *
270 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
271 * we hit the water mark. May be even add a low water mark, such that
272 * no reclaim occurs from a cgroup at it's low water mark, this is
273 * a feature that will be implemented much later in the future.
8cdea7c0
BS
274 */
275struct mem_cgroup {
276 struct cgroup_subsys_state css;
277 /*
278 * the counter to account for memory usage
279 */
280 struct res_counter res;
59927fb9 281
70ddf637
AV
282 /* vmpressure notifications */
283 struct vmpressure vmpressure;
284
465939a1
LZ
285 /*
286 * the counter to account for mem+swap usage.
287 */
288 struct res_counter memsw;
59927fb9 289
510fc4e1
GC
290 /*
291 * the counter to account for kernel memory usage.
292 */
293 struct res_counter kmem;
18f59ea7
BS
294 /*
295 * Should the accounting and control be hierarchical, per subtree?
296 */
297 bool use_hierarchy;
510fc4e1 298 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
299
300 bool oom_lock;
301 atomic_t under_oom;
3812c8c8 302 atomic_t oom_wakeups;
79dfdacc 303
1f4c025b 304 int swappiness;
3c11ecf4
KH
305 /* OOM-Killer disable */
306 int oom_kill_disable;
a7885eb8 307
22a668d7
KH
308 /* set when res.limit == memsw.limit */
309 bool memsw_is_minimum;
310
2e72b634
KS
311 /* protect arrays of thresholds */
312 struct mutex thresholds_lock;
313
314 /* thresholds for memory usage. RCU-protected */
2c488db2 315 struct mem_cgroup_thresholds thresholds;
907860ed 316
2e72b634 317 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 318 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 319
9490ff27
KH
320 /* For oom notifier event fd */
321 struct list_head oom_notify;
185efc0f 322
7dc74be0
DN
323 /*
324 * Should we move charges of a task when a task is moved into this
325 * mem_cgroup ? And what type of charges should we move ?
326 */
f894ffa8 327 unsigned long move_charge_at_immigrate;
619d094b
KH
328 /*
329 * set > 0 if pages under this cgroup are moving to other cgroup.
330 */
331 atomic_t moving_account;
312734c0
KH
332 /* taken only while moving_account > 0 */
333 spinlock_t move_lock;
d52aa412 334 /*
c62b1a3b 335 * percpu counter.
d52aa412 336 */
3a7951b4 337 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
338 /*
339 * used when a cpu is offlined or other synchronizations
340 * See mem_cgroup_read_stat().
341 */
342 struct mem_cgroup_stat_cpu nocpu_base;
343 spinlock_t pcp_counter_lock;
d1a4c0b3 344
5f578161 345 atomic_t dead_count;
4bd2c1ee 346#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
347 struct tcp_memcontrol tcp_mem;
348#endif
2633d7a0
GC
349#if defined(CONFIG_MEMCG_KMEM)
350 /* analogous to slab_common's slab_caches list. per-memcg */
351 struct list_head memcg_slab_caches;
352 /* Not a spinlock, we can take a lot of time walking the list */
353 struct mutex slab_caches_mutex;
354 /* Index in the kmem_cache->memcg_params->memcg_caches array */
355 int kmemcg_id;
356#endif
45cf7ebd
GC
357
358 int last_scanned_node;
359#if MAX_NUMNODES > 1
360 nodemask_t scan_nodes;
361 atomic_t numainfo_events;
362 atomic_t numainfo_updating;
363#endif
70ddf637 364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
45cf7ebd
GC
369static size_t memcg_size(void)
370{
371 return sizeof(struct mem_cgroup) +
372 nr_node_ids * sizeof(struct mem_cgroup_per_node);
373}
374
510fc4e1
GC
375/* internal only representation about the status of kmem accounting. */
376enum {
377 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 378 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 379 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
380};
381
a8964b9b
GC
382/* We account when limit is on, but only after call sites are patched */
383#define KMEM_ACCOUNTED_MASK \
384 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
385
386#ifdef CONFIG_MEMCG_KMEM
387static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
388{
389 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
390}
7de37682
GC
391
392static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
393{
394 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
395}
396
a8964b9b
GC
397static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
398{
399 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
400}
401
55007d84
GC
402static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
403{
404 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
405}
406
7de37682
GC
407static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
408{
10d5ebf4
LZ
409 /*
410 * Our caller must use css_get() first, because memcg_uncharge_kmem()
411 * will call css_put() if it sees the memcg is dead.
412 */
413 smp_wmb();
7de37682
GC
414 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
415 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
416}
417
418static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
419{
420 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
421 &memcg->kmem_account_flags);
422}
510fc4e1
GC
423#endif
424
7dc74be0
DN
425/* Stuffs for move charges at task migration. */
426/*
ee5e8472
GC
427 * Types of charges to be moved. "move_charge_at_immitgrate" and
428 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
429 */
430enum move_type {
4ffef5fe 431 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 432 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
433 NR_MOVE_TYPE,
434};
435
4ffef5fe
DN
436/* "mc" and its members are protected by cgroup_mutex */
437static struct move_charge_struct {
b1dd693e 438 spinlock_t lock; /* for from, to */
4ffef5fe
DN
439 struct mem_cgroup *from;
440 struct mem_cgroup *to;
ee5e8472 441 unsigned long immigrate_flags;
4ffef5fe 442 unsigned long precharge;
854ffa8d 443 unsigned long moved_charge;
483c30b5 444 unsigned long moved_swap;
8033b97c
DN
445 struct task_struct *moving_task; /* a task moving charges */
446 wait_queue_head_t waitq; /* a waitq for other context */
447} mc = {
2bd9bb20 448 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
449 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
450};
4ffef5fe 451
90254a65
DN
452static bool move_anon(void)
453{
ee5e8472 454 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
455}
456
87946a72
DN
457static bool move_file(void)
458{
ee5e8472 459 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
460}
461
4e416953
BS
462/*
463 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
464 * limit reclaim to prevent infinite loops, if they ever occur.
465 */
a0db00fc 466#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 467#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 468
217bc319
KH
469enum charge_type {
470 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 471 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 472 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 473 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
474 NR_CHARGE_TYPE,
475};
476
8c7c6e34 477/* for encoding cft->private value on file */
86ae53e1
GC
478enum res_type {
479 _MEM,
480 _MEMSWAP,
481 _OOM_TYPE,
510fc4e1 482 _KMEM,
86ae53e1
GC
483};
484
a0db00fc
KS
485#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
486#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 487#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
488/* Used for OOM nofiier */
489#define OOM_CONTROL (0)
8c7c6e34 490
75822b44
BS
491/*
492 * Reclaim flags for mem_cgroup_hierarchical_reclaim
493 */
494#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
495#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
496#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
497#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
498
0999821b
GC
499/*
500 * The memcg_create_mutex will be held whenever a new cgroup is created.
501 * As a consequence, any change that needs to protect against new child cgroups
502 * appearing has to hold it as well.
503 */
504static DEFINE_MUTEX(memcg_create_mutex);
505
b2145145
WL
506struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
507{
a7c6d554 508 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
509}
510
70ddf637
AV
511/* Some nice accessors for the vmpressure. */
512struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
513{
514 if (!memcg)
515 memcg = root_mem_cgroup;
516 return &memcg->vmpressure;
517}
518
519struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
520{
521 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
522}
523
524struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
525{
526 return &mem_cgroup_from_css(css)->vmpressure;
527}
528
7ffc0edc
MH
529static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
530{
531 return (memcg == root_mem_cgroup);
532}
533
e1aab161 534/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 535#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 536
e1aab161
GC
537void sock_update_memcg(struct sock *sk)
538{
376be5ff 539 if (mem_cgroup_sockets_enabled) {
e1aab161 540 struct mem_cgroup *memcg;
3f134619 541 struct cg_proto *cg_proto;
e1aab161
GC
542
543 BUG_ON(!sk->sk_prot->proto_cgroup);
544
f3f511e1
GC
545 /* Socket cloning can throw us here with sk_cgrp already
546 * filled. It won't however, necessarily happen from
547 * process context. So the test for root memcg given
548 * the current task's memcg won't help us in this case.
549 *
550 * Respecting the original socket's memcg is a better
551 * decision in this case.
552 */
553 if (sk->sk_cgrp) {
554 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 555 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
556 return;
557 }
558
e1aab161
GC
559 rcu_read_lock();
560 memcg = mem_cgroup_from_task(current);
3f134619 561 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
562 if (!mem_cgroup_is_root(memcg) &&
563 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 564 sk->sk_cgrp = cg_proto;
e1aab161
GC
565 }
566 rcu_read_unlock();
567 }
568}
569EXPORT_SYMBOL(sock_update_memcg);
570
571void sock_release_memcg(struct sock *sk)
572{
376be5ff 573 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
574 struct mem_cgroup *memcg;
575 WARN_ON(!sk->sk_cgrp->memcg);
576 memcg = sk->sk_cgrp->memcg;
5347e5ae 577 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
578 }
579}
d1a4c0b3
GC
580
581struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
582{
583 if (!memcg || mem_cgroup_is_root(memcg))
584 return NULL;
585
586 return &memcg->tcp_mem.cg_proto;
587}
588EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 589
3f134619
GC
590static void disarm_sock_keys(struct mem_cgroup *memcg)
591{
592 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
593 return;
594 static_key_slow_dec(&memcg_socket_limit_enabled);
595}
596#else
597static void disarm_sock_keys(struct mem_cgroup *memcg)
598{
599}
600#endif
601
a8964b9b 602#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
603/*
604 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
605 * There are two main reasons for not using the css_id for this:
606 * 1) this works better in sparse environments, where we have a lot of memcgs,
607 * but only a few kmem-limited. Or also, if we have, for instance, 200
608 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
609 * 200 entry array for that.
610 *
611 * 2) In order not to violate the cgroup API, we would like to do all memory
612 * allocation in ->create(). At that point, we haven't yet allocated the
613 * css_id. Having a separate index prevents us from messing with the cgroup
614 * core for this
615 *
616 * The current size of the caches array is stored in
617 * memcg_limited_groups_array_size. It will double each time we have to
618 * increase it.
619 */
620static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
621int memcg_limited_groups_array_size;
622
55007d84
GC
623/*
624 * MIN_SIZE is different than 1, because we would like to avoid going through
625 * the alloc/free process all the time. In a small machine, 4 kmem-limited
626 * cgroups is a reasonable guess. In the future, it could be a parameter or
627 * tunable, but that is strictly not necessary.
628 *
629 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
630 * this constant directly from cgroup, but it is understandable that this is
631 * better kept as an internal representation in cgroup.c. In any case, the
632 * css_id space is not getting any smaller, and we don't have to necessarily
633 * increase ours as well if it increases.
634 */
635#define MEMCG_CACHES_MIN_SIZE 4
636#define MEMCG_CACHES_MAX_SIZE 65535
637
d7f25f8a
GC
638/*
639 * A lot of the calls to the cache allocation functions are expected to be
640 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
641 * conditional to this static branch, we'll have to allow modules that does
642 * kmem_cache_alloc and the such to see this symbol as well
643 */
a8964b9b 644struct static_key memcg_kmem_enabled_key;
d7f25f8a 645EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
646
647static void disarm_kmem_keys(struct mem_cgroup *memcg)
648{
55007d84 649 if (memcg_kmem_is_active(memcg)) {
a8964b9b 650 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
651 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
652 }
bea207c8
GC
653 /*
654 * This check can't live in kmem destruction function,
655 * since the charges will outlive the cgroup
656 */
657 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
658}
659#else
660static void disarm_kmem_keys(struct mem_cgroup *memcg)
661{
662}
663#endif /* CONFIG_MEMCG_KMEM */
664
665static void disarm_static_keys(struct mem_cgroup *memcg)
666{
667 disarm_sock_keys(memcg);
668 disarm_kmem_keys(memcg);
669}
670
c0ff4b85 671static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 672
f64c3f54 673static struct mem_cgroup_per_zone *
c0ff4b85 674mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 675{
45cf7ebd 676 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 677 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
678}
679
c0ff4b85 680struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 681{
c0ff4b85 682 return &memcg->css;
d324236b
WF
683}
684
f64c3f54 685static struct mem_cgroup_per_zone *
c0ff4b85 686page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 687{
97a6c37b
JW
688 int nid = page_to_nid(page);
689 int zid = page_zonenum(page);
f64c3f54 690
c0ff4b85 691 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
692}
693
bb4cc1a8
AM
694static struct mem_cgroup_tree_per_zone *
695soft_limit_tree_node_zone(int nid, int zid)
696{
697 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
698}
699
700static struct mem_cgroup_tree_per_zone *
701soft_limit_tree_from_page(struct page *page)
702{
703 int nid = page_to_nid(page);
704 int zid = page_zonenum(page);
705
706 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
707}
708
709static void
710__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
711 struct mem_cgroup_per_zone *mz,
712 struct mem_cgroup_tree_per_zone *mctz,
713 unsigned long long new_usage_in_excess)
714{
715 struct rb_node **p = &mctz->rb_root.rb_node;
716 struct rb_node *parent = NULL;
717 struct mem_cgroup_per_zone *mz_node;
718
719 if (mz->on_tree)
720 return;
721
722 mz->usage_in_excess = new_usage_in_excess;
723 if (!mz->usage_in_excess)
724 return;
725 while (*p) {
726 parent = *p;
727 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
728 tree_node);
729 if (mz->usage_in_excess < mz_node->usage_in_excess)
730 p = &(*p)->rb_left;
731 /*
732 * We can't avoid mem cgroups that are over their soft
733 * limit by the same amount
734 */
735 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
736 p = &(*p)->rb_right;
737 }
738 rb_link_node(&mz->tree_node, parent, p);
739 rb_insert_color(&mz->tree_node, &mctz->rb_root);
740 mz->on_tree = true;
741}
742
743static void
744__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
745 struct mem_cgroup_per_zone *mz,
746 struct mem_cgroup_tree_per_zone *mctz)
747{
748 if (!mz->on_tree)
749 return;
750 rb_erase(&mz->tree_node, &mctz->rb_root);
751 mz->on_tree = false;
752}
753
754static void
755mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
756 struct mem_cgroup_per_zone *mz,
757 struct mem_cgroup_tree_per_zone *mctz)
758{
759 spin_lock(&mctz->lock);
760 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
761 spin_unlock(&mctz->lock);
762}
763
764
765static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
766{
767 unsigned long long excess;
768 struct mem_cgroup_per_zone *mz;
769 struct mem_cgroup_tree_per_zone *mctz;
770 int nid = page_to_nid(page);
771 int zid = page_zonenum(page);
772 mctz = soft_limit_tree_from_page(page);
773
774 /*
775 * Necessary to update all ancestors when hierarchy is used.
776 * because their event counter is not touched.
777 */
778 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
779 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
780 excess = res_counter_soft_limit_excess(&memcg->res);
781 /*
782 * We have to update the tree if mz is on RB-tree or
783 * mem is over its softlimit.
784 */
785 if (excess || mz->on_tree) {
786 spin_lock(&mctz->lock);
787 /* if on-tree, remove it */
788 if (mz->on_tree)
789 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
790 /*
791 * Insert again. mz->usage_in_excess will be updated.
792 * If excess is 0, no tree ops.
793 */
794 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
795 spin_unlock(&mctz->lock);
796 }
797 }
798}
799
800static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
801{
802 int node, zone;
803 struct mem_cgroup_per_zone *mz;
804 struct mem_cgroup_tree_per_zone *mctz;
805
806 for_each_node(node) {
807 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
808 mz = mem_cgroup_zoneinfo(memcg, node, zone);
809 mctz = soft_limit_tree_node_zone(node, zone);
810 mem_cgroup_remove_exceeded(memcg, mz, mctz);
811 }
812 }
813}
814
815static struct mem_cgroup_per_zone *
816__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
817{
818 struct rb_node *rightmost = NULL;
819 struct mem_cgroup_per_zone *mz;
820
821retry:
822 mz = NULL;
823 rightmost = rb_last(&mctz->rb_root);
824 if (!rightmost)
825 goto done; /* Nothing to reclaim from */
826
827 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
828 /*
829 * Remove the node now but someone else can add it back,
830 * we will to add it back at the end of reclaim to its correct
831 * position in the tree.
832 */
833 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
834 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
835 !css_tryget(&mz->memcg->css))
836 goto retry;
837done:
838 return mz;
839}
840
841static struct mem_cgroup_per_zone *
842mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
843{
844 struct mem_cgroup_per_zone *mz;
845
846 spin_lock(&mctz->lock);
847 mz = __mem_cgroup_largest_soft_limit_node(mctz);
848 spin_unlock(&mctz->lock);
849 return mz;
850}
851
711d3d2c
KH
852/*
853 * Implementation Note: reading percpu statistics for memcg.
854 *
855 * Both of vmstat[] and percpu_counter has threshold and do periodic
856 * synchronization to implement "quick" read. There are trade-off between
857 * reading cost and precision of value. Then, we may have a chance to implement
858 * a periodic synchronizion of counter in memcg's counter.
859 *
860 * But this _read() function is used for user interface now. The user accounts
861 * memory usage by memory cgroup and he _always_ requires exact value because
862 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
863 * have to visit all online cpus and make sum. So, for now, unnecessary
864 * synchronization is not implemented. (just implemented for cpu hotplug)
865 *
866 * If there are kernel internal actions which can make use of some not-exact
867 * value, and reading all cpu value can be performance bottleneck in some
868 * common workload, threashold and synchonization as vmstat[] should be
869 * implemented.
870 */
c0ff4b85 871static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 872 enum mem_cgroup_stat_index idx)
c62b1a3b 873{
7a159cc9 874 long val = 0;
c62b1a3b 875 int cpu;
c62b1a3b 876
711d3d2c
KH
877 get_online_cpus();
878 for_each_online_cpu(cpu)
c0ff4b85 879 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 880#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
881 spin_lock(&memcg->pcp_counter_lock);
882 val += memcg->nocpu_base.count[idx];
883 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
884#endif
885 put_online_cpus();
c62b1a3b
KH
886 return val;
887}
888
c0ff4b85 889static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
890 bool charge)
891{
892 int val = (charge) ? 1 : -1;
bff6bb83 893 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
894}
895
c0ff4b85 896static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
897 enum mem_cgroup_events_index idx)
898{
899 unsigned long val = 0;
900 int cpu;
901
9c567512 902 get_online_cpus();
e9f8974f 903 for_each_online_cpu(cpu)
c0ff4b85 904 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 905#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
906 spin_lock(&memcg->pcp_counter_lock);
907 val += memcg->nocpu_base.events[idx];
908 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 909#endif
9c567512 910 put_online_cpus();
e9f8974f
JW
911 return val;
912}
913
c0ff4b85 914static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 915 struct page *page,
b2402857 916 bool anon, int nr_pages)
d52aa412 917{
c62b1a3b
KH
918 preempt_disable();
919
b2402857
KH
920 /*
921 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
922 * counted as CACHE even if it's on ANON LRU.
923 */
924 if (anon)
925 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 926 nr_pages);
d52aa412 927 else
b2402857 928 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 929 nr_pages);
55e462b0 930
b070e65c
DR
931 if (PageTransHuge(page))
932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
933 nr_pages);
934
e401f176
KH
935 /* pagein of a big page is an event. So, ignore page size */
936 if (nr_pages > 0)
c0ff4b85 937 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 938 else {
c0ff4b85 939 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
940 nr_pages = -nr_pages; /* for event */
941 }
e401f176 942
13114716 943 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 944
c62b1a3b 945 preempt_enable();
6d12e2d8
KH
946}
947
bb2a0de9 948unsigned long
4d7dcca2 949mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
950{
951 struct mem_cgroup_per_zone *mz;
952
953 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
954 return mz->lru_size[lru];
955}
956
957static unsigned long
c0ff4b85 958mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 959 unsigned int lru_mask)
889976db
YH
960{
961 struct mem_cgroup_per_zone *mz;
f156ab93 962 enum lru_list lru;
bb2a0de9
KH
963 unsigned long ret = 0;
964
c0ff4b85 965 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 966
f156ab93
HD
967 for_each_lru(lru) {
968 if (BIT(lru) & lru_mask)
969 ret += mz->lru_size[lru];
bb2a0de9
KH
970 }
971 return ret;
972}
973
974static unsigned long
c0ff4b85 975mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
976 int nid, unsigned int lru_mask)
977{
889976db
YH
978 u64 total = 0;
979 int zid;
980
bb2a0de9 981 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
982 total += mem_cgroup_zone_nr_lru_pages(memcg,
983 nid, zid, lru_mask);
bb2a0de9 984
889976db
YH
985 return total;
986}
bb2a0de9 987
c0ff4b85 988static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 989 unsigned int lru_mask)
6d12e2d8 990{
889976db 991 int nid;
6d12e2d8
KH
992 u64 total = 0;
993
31aaea4a 994 for_each_node_state(nid, N_MEMORY)
c0ff4b85 995 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 996 return total;
d52aa412
KH
997}
998
f53d7ce3
JW
999static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1000 enum mem_cgroup_events_target target)
7a159cc9
JW
1001{
1002 unsigned long val, next;
1003
13114716 1004 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1005 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1006 /* from time_after() in jiffies.h */
f53d7ce3
JW
1007 if ((long)next - (long)val < 0) {
1008 switch (target) {
1009 case MEM_CGROUP_TARGET_THRESH:
1010 next = val + THRESHOLDS_EVENTS_TARGET;
1011 break;
bb4cc1a8
AM
1012 case MEM_CGROUP_TARGET_SOFTLIMIT:
1013 next = val + SOFTLIMIT_EVENTS_TARGET;
1014 break;
f53d7ce3
JW
1015 case MEM_CGROUP_TARGET_NUMAINFO:
1016 next = val + NUMAINFO_EVENTS_TARGET;
1017 break;
1018 default:
1019 break;
1020 }
1021 __this_cpu_write(memcg->stat->targets[target], next);
1022 return true;
7a159cc9 1023 }
f53d7ce3 1024 return false;
d2265e6f
KH
1025}
1026
1027/*
1028 * Check events in order.
1029 *
1030 */
c0ff4b85 1031static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1032{
4799401f 1033 preempt_disable();
d2265e6f 1034 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1035 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1036 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1037 bool do_softlimit;
82b3f2a7 1038 bool do_numainfo __maybe_unused;
f53d7ce3 1039
bb4cc1a8
AM
1040 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1041 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1042#if MAX_NUMNODES > 1
1043 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1044 MEM_CGROUP_TARGET_NUMAINFO);
1045#endif
1046 preempt_enable();
1047
c0ff4b85 1048 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1049 if (unlikely(do_softlimit))
1050 mem_cgroup_update_tree(memcg, page);
453a9bf3 1051#if MAX_NUMNODES > 1
f53d7ce3 1052 if (unlikely(do_numainfo))
c0ff4b85 1053 atomic_inc(&memcg->numainfo_events);
453a9bf3 1054#endif
f53d7ce3
JW
1055 } else
1056 preempt_enable();
d2265e6f
KH
1057}
1058
cf475ad2 1059struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1060{
31a78f23
BS
1061 /*
1062 * mm_update_next_owner() may clear mm->owner to NULL
1063 * if it races with swapoff, page migration, etc.
1064 * So this can be called with p == NULL.
1065 */
1066 if (unlikely(!p))
1067 return NULL;
1068
8af01f56 1069 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1070}
1071
a433658c 1072struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1073{
c0ff4b85 1074 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1075
1076 if (!mm)
1077 return NULL;
54595fe2
KH
1078 /*
1079 * Because we have no locks, mm->owner's may be being moved to other
1080 * cgroup. We use css_tryget() here even if this looks
1081 * pessimistic (rather than adding locks here).
1082 */
1083 rcu_read_lock();
1084 do {
c0ff4b85
R
1085 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1086 if (unlikely(!memcg))
54595fe2 1087 break;
c0ff4b85 1088 } while (!css_tryget(&memcg->css));
54595fe2 1089 rcu_read_unlock();
c0ff4b85 1090 return memcg;
54595fe2
KH
1091}
1092
16248d8f
MH
1093/*
1094 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1095 * ref. count) or NULL if the whole root's subtree has been visited.
1096 *
1097 * helper function to be used by mem_cgroup_iter
1098 */
1099static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1100 struct mem_cgroup *last_visited)
16248d8f 1101{
492eb21b 1102 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1103
bd8815a6 1104 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1105skip_node:
492eb21b 1106 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1107
1108 /*
1109 * Even if we found a group we have to make sure it is
1110 * alive. css && !memcg means that the groups should be
1111 * skipped and we should continue the tree walk.
1112 * last_visited css is safe to use because it is
1113 * protected by css_get and the tree walk is rcu safe.
1114 */
492eb21b
TH
1115 if (next_css) {
1116 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1117
694fbc0f
AM
1118 if (css_tryget(&mem->css))
1119 return mem;
1120 else {
492eb21b 1121 prev_css = next_css;
16248d8f
MH
1122 goto skip_node;
1123 }
1124 }
1125
1126 return NULL;
1127}
1128
519ebea3
JW
1129static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1130{
1131 /*
1132 * When a group in the hierarchy below root is destroyed, the
1133 * hierarchy iterator can no longer be trusted since it might
1134 * have pointed to the destroyed group. Invalidate it.
1135 */
1136 atomic_inc(&root->dead_count);
1137}
1138
1139static struct mem_cgroup *
1140mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1141 struct mem_cgroup *root,
1142 int *sequence)
1143{
1144 struct mem_cgroup *position = NULL;
1145 /*
1146 * A cgroup destruction happens in two stages: offlining and
1147 * release. They are separated by a RCU grace period.
1148 *
1149 * If the iterator is valid, we may still race with an
1150 * offlining. The RCU lock ensures the object won't be
1151 * released, tryget will fail if we lost the race.
1152 */
1153 *sequence = atomic_read(&root->dead_count);
1154 if (iter->last_dead_count == *sequence) {
1155 smp_rmb();
1156 position = iter->last_visited;
1157 if (position && !css_tryget(&position->css))
1158 position = NULL;
1159 }
1160 return position;
1161}
1162
1163static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1164 struct mem_cgroup *last_visited,
1165 struct mem_cgroup *new_position,
1166 int sequence)
1167{
1168 if (last_visited)
1169 css_put(&last_visited->css);
1170 /*
1171 * We store the sequence count from the time @last_visited was
1172 * loaded successfully instead of rereading it here so that we
1173 * don't lose destruction events in between. We could have
1174 * raced with the destruction of @new_position after all.
1175 */
1176 iter->last_visited = new_position;
1177 smp_wmb();
1178 iter->last_dead_count = sequence;
1179}
1180
5660048c
JW
1181/**
1182 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1183 * @root: hierarchy root
1184 * @prev: previously returned memcg, NULL on first invocation
1185 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1186 *
1187 * Returns references to children of the hierarchy below @root, or
1188 * @root itself, or %NULL after a full round-trip.
1189 *
1190 * Caller must pass the return value in @prev on subsequent
1191 * invocations for reference counting, or use mem_cgroup_iter_break()
1192 * to cancel a hierarchy walk before the round-trip is complete.
1193 *
1194 * Reclaimers can specify a zone and a priority level in @reclaim to
1195 * divide up the memcgs in the hierarchy among all concurrent
1196 * reclaimers operating on the same zone and priority.
1197 */
694fbc0f 1198struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1199 struct mem_cgroup *prev,
694fbc0f 1200 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1201{
9f3a0d09 1202 struct mem_cgroup *memcg = NULL;
542f85f9 1203 struct mem_cgroup *last_visited = NULL;
711d3d2c 1204
694fbc0f
AM
1205 if (mem_cgroup_disabled())
1206 return NULL;
5660048c 1207
9f3a0d09
JW
1208 if (!root)
1209 root = root_mem_cgroup;
7d74b06f 1210
9f3a0d09 1211 if (prev && !reclaim)
542f85f9 1212 last_visited = prev;
14067bb3 1213
9f3a0d09
JW
1214 if (!root->use_hierarchy && root != root_mem_cgroup) {
1215 if (prev)
c40046f3 1216 goto out_css_put;
694fbc0f 1217 return root;
9f3a0d09 1218 }
14067bb3 1219
542f85f9 1220 rcu_read_lock();
9f3a0d09 1221 while (!memcg) {
527a5ec9 1222 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1223 int uninitialized_var(seq);
711d3d2c 1224
527a5ec9
JW
1225 if (reclaim) {
1226 int nid = zone_to_nid(reclaim->zone);
1227 int zid = zone_idx(reclaim->zone);
1228 struct mem_cgroup_per_zone *mz;
1229
1230 mz = mem_cgroup_zoneinfo(root, nid, zid);
1231 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1232 if (prev && reclaim->generation != iter->generation) {
5f578161 1233 iter->last_visited = NULL;
542f85f9
MH
1234 goto out_unlock;
1235 }
5f578161 1236
519ebea3 1237 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1238 }
7d74b06f 1239
694fbc0f 1240 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1241
527a5ec9 1242 if (reclaim) {
519ebea3 1243 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1244
19f39402 1245 if (!memcg)
527a5ec9
JW
1246 iter->generation++;
1247 else if (!prev && memcg)
1248 reclaim->generation = iter->generation;
1249 }
9f3a0d09 1250
694fbc0f 1251 if (prev && !memcg)
542f85f9 1252 goto out_unlock;
9f3a0d09 1253 }
542f85f9
MH
1254out_unlock:
1255 rcu_read_unlock();
c40046f3
MH
1256out_css_put:
1257 if (prev && prev != root)
1258 css_put(&prev->css);
1259
9f3a0d09 1260 return memcg;
14067bb3 1261}
7d74b06f 1262
5660048c
JW
1263/**
1264 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1265 * @root: hierarchy root
1266 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1267 */
1268void mem_cgroup_iter_break(struct mem_cgroup *root,
1269 struct mem_cgroup *prev)
9f3a0d09
JW
1270{
1271 if (!root)
1272 root = root_mem_cgroup;
1273 if (prev && prev != root)
1274 css_put(&prev->css);
1275}
7d74b06f 1276
9f3a0d09
JW
1277/*
1278 * Iteration constructs for visiting all cgroups (under a tree). If
1279 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1280 * be used for reference counting.
1281 */
1282#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1283 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1284 iter != NULL; \
527a5ec9 1285 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1286
9f3a0d09 1287#define for_each_mem_cgroup(iter) \
527a5ec9 1288 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1289 iter != NULL; \
527a5ec9 1290 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1291
68ae564b 1292void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1293{
c0ff4b85 1294 struct mem_cgroup *memcg;
456f998e 1295
456f998e 1296 rcu_read_lock();
c0ff4b85
R
1297 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1298 if (unlikely(!memcg))
456f998e
YH
1299 goto out;
1300
1301 switch (idx) {
456f998e 1302 case PGFAULT:
0e574a93
JW
1303 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1304 break;
1305 case PGMAJFAULT:
1306 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1307 break;
1308 default:
1309 BUG();
1310 }
1311out:
1312 rcu_read_unlock();
1313}
68ae564b 1314EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1315
925b7673
JW
1316/**
1317 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1318 * @zone: zone of the wanted lruvec
fa9add64 1319 * @memcg: memcg of the wanted lruvec
925b7673
JW
1320 *
1321 * Returns the lru list vector holding pages for the given @zone and
1322 * @mem. This can be the global zone lruvec, if the memory controller
1323 * is disabled.
1324 */
1325struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1326 struct mem_cgroup *memcg)
1327{
1328 struct mem_cgroup_per_zone *mz;
bea8c150 1329 struct lruvec *lruvec;
925b7673 1330
bea8c150
HD
1331 if (mem_cgroup_disabled()) {
1332 lruvec = &zone->lruvec;
1333 goto out;
1334 }
925b7673
JW
1335
1336 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1337 lruvec = &mz->lruvec;
1338out:
1339 /*
1340 * Since a node can be onlined after the mem_cgroup was created,
1341 * we have to be prepared to initialize lruvec->zone here;
1342 * and if offlined then reonlined, we need to reinitialize it.
1343 */
1344 if (unlikely(lruvec->zone != zone))
1345 lruvec->zone = zone;
1346 return lruvec;
925b7673
JW
1347}
1348
08e552c6
KH
1349/*
1350 * Following LRU functions are allowed to be used without PCG_LOCK.
1351 * Operations are called by routine of global LRU independently from memcg.
1352 * What we have to take care of here is validness of pc->mem_cgroup.
1353 *
1354 * Changes to pc->mem_cgroup happens when
1355 * 1. charge
1356 * 2. moving account
1357 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1358 * It is added to LRU before charge.
1359 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1360 * When moving account, the page is not on LRU. It's isolated.
1361 */
4f98a2fe 1362
925b7673 1363/**
fa9add64 1364 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1365 * @page: the page
fa9add64 1366 * @zone: zone of the page
925b7673 1367 */
fa9add64 1368struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1369{
08e552c6 1370 struct mem_cgroup_per_zone *mz;
925b7673
JW
1371 struct mem_cgroup *memcg;
1372 struct page_cgroup *pc;
bea8c150 1373 struct lruvec *lruvec;
6d12e2d8 1374
bea8c150
HD
1375 if (mem_cgroup_disabled()) {
1376 lruvec = &zone->lruvec;
1377 goto out;
1378 }
925b7673 1379
08e552c6 1380 pc = lookup_page_cgroup(page);
38c5d72f 1381 memcg = pc->mem_cgroup;
7512102c
HD
1382
1383 /*
fa9add64 1384 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1385 * an uncharged page off lru does nothing to secure
1386 * its former mem_cgroup from sudden removal.
1387 *
1388 * Our caller holds lru_lock, and PageCgroupUsed is updated
1389 * under page_cgroup lock: between them, they make all uses
1390 * of pc->mem_cgroup safe.
1391 */
fa9add64 1392 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1393 pc->mem_cgroup = memcg = root_mem_cgroup;
1394
925b7673 1395 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1396 lruvec = &mz->lruvec;
1397out:
1398 /*
1399 * Since a node can be onlined after the mem_cgroup was created,
1400 * we have to be prepared to initialize lruvec->zone here;
1401 * and if offlined then reonlined, we need to reinitialize it.
1402 */
1403 if (unlikely(lruvec->zone != zone))
1404 lruvec->zone = zone;
1405 return lruvec;
08e552c6 1406}
b69408e8 1407
925b7673 1408/**
fa9add64
HD
1409 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1410 * @lruvec: mem_cgroup per zone lru vector
1411 * @lru: index of lru list the page is sitting on
1412 * @nr_pages: positive when adding or negative when removing
925b7673 1413 *
fa9add64
HD
1414 * This function must be called when a page is added to or removed from an
1415 * lru list.
3f58a829 1416 */
fa9add64
HD
1417void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1418 int nr_pages)
3f58a829
MK
1419{
1420 struct mem_cgroup_per_zone *mz;
fa9add64 1421 unsigned long *lru_size;
3f58a829
MK
1422
1423 if (mem_cgroup_disabled())
1424 return;
1425
fa9add64
HD
1426 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1427 lru_size = mz->lru_size + lru;
1428 *lru_size += nr_pages;
1429 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1430}
544122e5 1431
3e92041d 1432/*
c0ff4b85 1433 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1434 * hierarchy subtree
1435 */
c3ac9a8a
JW
1436bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1437 struct mem_cgroup *memcg)
3e92041d 1438{
91c63734
JW
1439 if (root_memcg == memcg)
1440 return true;
3a981f48 1441 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1442 return false;
c3ac9a8a
JW
1443 return css_is_ancestor(&memcg->css, &root_memcg->css);
1444}
1445
1446static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1447 struct mem_cgroup *memcg)
1448{
1449 bool ret;
1450
91c63734 1451 rcu_read_lock();
c3ac9a8a 1452 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1453 rcu_read_unlock();
1454 return ret;
3e92041d
MH
1455}
1456
ffbdccf5
DR
1457bool task_in_mem_cgroup(struct task_struct *task,
1458 const struct mem_cgroup *memcg)
4c4a2214 1459{
0b7f569e 1460 struct mem_cgroup *curr = NULL;
158e0a2d 1461 struct task_struct *p;
ffbdccf5 1462 bool ret;
4c4a2214 1463
158e0a2d 1464 p = find_lock_task_mm(task);
de077d22
DR
1465 if (p) {
1466 curr = try_get_mem_cgroup_from_mm(p->mm);
1467 task_unlock(p);
1468 } else {
1469 /*
1470 * All threads may have already detached their mm's, but the oom
1471 * killer still needs to detect if they have already been oom
1472 * killed to prevent needlessly killing additional tasks.
1473 */
ffbdccf5 1474 rcu_read_lock();
de077d22
DR
1475 curr = mem_cgroup_from_task(task);
1476 if (curr)
1477 css_get(&curr->css);
ffbdccf5 1478 rcu_read_unlock();
de077d22 1479 }
0b7f569e 1480 if (!curr)
ffbdccf5 1481 return false;
d31f56db 1482 /*
c0ff4b85 1483 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1484 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1485 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1486 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1487 */
c0ff4b85 1488 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1489 css_put(&curr->css);
4c4a2214
DR
1490 return ret;
1491}
1492
c56d5c7d 1493int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1494{
9b272977 1495 unsigned long inactive_ratio;
14797e23 1496 unsigned long inactive;
9b272977 1497 unsigned long active;
c772be93 1498 unsigned long gb;
14797e23 1499
4d7dcca2
HD
1500 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1501 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1502
c772be93
KM
1503 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1504 if (gb)
1505 inactive_ratio = int_sqrt(10 * gb);
1506 else
1507 inactive_ratio = 1;
1508
9b272977 1509 return inactive * inactive_ratio < active;
14797e23
KM
1510}
1511
6d61ef40
BS
1512#define mem_cgroup_from_res_counter(counter, member) \
1513 container_of(counter, struct mem_cgroup, member)
1514
19942822 1515/**
9d11ea9f 1516 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1517 * @memcg: the memory cgroup
19942822 1518 *
9d11ea9f 1519 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1520 * pages.
19942822 1521 */
c0ff4b85 1522static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1523{
9d11ea9f
JW
1524 unsigned long long margin;
1525
c0ff4b85 1526 margin = res_counter_margin(&memcg->res);
9d11ea9f 1527 if (do_swap_account)
c0ff4b85 1528 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1529 return margin >> PAGE_SHIFT;
19942822
JW
1530}
1531
1f4c025b 1532int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1533{
a7885eb8 1534 /* root ? */
63876986 1535 if (!css_parent(&memcg->css))
a7885eb8
KM
1536 return vm_swappiness;
1537
bf1ff263 1538 return memcg->swappiness;
a7885eb8
KM
1539}
1540
619d094b
KH
1541/*
1542 * memcg->moving_account is used for checking possibility that some thread is
1543 * calling move_account(). When a thread on CPU-A starts moving pages under
1544 * a memcg, other threads should check memcg->moving_account under
1545 * rcu_read_lock(), like this:
1546 *
1547 * CPU-A CPU-B
1548 * rcu_read_lock()
1549 * memcg->moving_account+1 if (memcg->mocing_account)
1550 * take heavy locks.
1551 * synchronize_rcu() update something.
1552 * rcu_read_unlock()
1553 * start move here.
1554 */
4331f7d3
KH
1555
1556/* for quick checking without looking up memcg */
1557atomic_t memcg_moving __read_mostly;
1558
c0ff4b85 1559static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1560{
4331f7d3 1561 atomic_inc(&memcg_moving);
619d094b 1562 atomic_inc(&memcg->moving_account);
32047e2a
KH
1563 synchronize_rcu();
1564}
1565
c0ff4b85 1566static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1567{
619d094b
KH
1568 /*
1569 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1570 * We check NULL in callee rather than caller.
1571 */
4331f7d3
KH
1572 if (memcg) {
1573 atomic_dec(&memcg_moving);
619d094b 1574 atomic_dec(&memcg->moving_account);
4331f7d3 1575 }
32047e2a 1576}
619d094b 1577
32047e2a
KH
1578/*
1579 * 2 routines for checking "mem" is under move_account() or not.
1580 *
13fd1dd9
AM
1581 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1582 * is used for avoiding races in accounting. If true,
32047e2a
KH
1583 * pc->mem_cgroup may be overwritten.
1584 *
1585 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1586 * under hierarchy of moving cgroups. This is for
1587 * waiting at hith-memory prressure caused by "move".
1588 */
1589
13fd1dd9 1590static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1591{
1592 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1593 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1594}
4b534334 1595
c0ff4b85 1596static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1597{
2bd9bb20
KH
1598 struct mem_cgroup *from;
1599 struct mem_cgroup *to;
4b534334 1600 bool ret = false;
2bd9bb20
KH
1601 /*
1602 * Unlike task_move routines, we access mc.to, mc.from not under
1603 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1604 */
1605 spin_lock(&mc.lock);
1606 from = mc.from;
1607 to = mc.to;
1608 if (!from)
1609 goto unlock;
3e92041d 1610
c0ff4b85
R
1611 ret = mem_cgroup_same_or_subtree(memcg, from)
1612 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1613unlock:
1614 spin_unlock(&mc.lock);
4b534334
KH
1615 return ret;
1616}
1617
c0ff4b85 1618static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1619{
1620 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1621 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1622 DEFINE_WAIT(wait);
1623 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1624 /* moving charge context might have finished. */
1625 if (mc.moving_task)
1626 schedule();
1627 finish_wait(&mc.waitq, &wait);
1628 return true;
1629 }
1630 }
1631 return false;
1632}
1633
312734c0
KH
1634/*
1635 * Take this lock when
1636 * - a code tries to modify page's memcg while it's USED.
1637 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1638 * see mem_cgroup_stolen(), too.
312734c0
KH
1639 */
1640static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1641 unsigned long *flags)
1642{
1643 spin_lock_irqsave(&memcg->move_lock, *flags);
1644}
1645
1646static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1647 unsigned long *flags)
1648{
1649 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1650}
1651
58cf188e 1652#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1653/**
58cf188e 1654 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1655 * @memcg: The memory cgroup that went over limit
1656 * @p: Task that is going to be killed
1657 *
1658 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1659 * enabled
1660 */
1661void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1662{
1663 struct cgroup *task_cgrp;
1664 struct cgroup *mem_cgrp;
1665 /*
1666 * Need a buffer in BSS, can't rely on allocations. The code relies
1667 * on the assumption that OOM is serialized for memory controller.
1668 * If this assumption is broken, revisit this code.
1669 */
1670 static char memcg_name[PATH_MAX];
1671 int ret;
58cf188e
SZ
1672 struct mem_cgroup *iter;
1673 unsigned int i;
e222432b 1674
58cf188e 1675 if (!p)
e222432b
BS
1676 return;
1677
e222432b
BS
1678 rcu_read_lock();
1679
1680 mem_cgrp = memcg->css.cgroup;
1681 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1682
1683 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1684 if (ret < 0) {
1685 /*
1686 * Unfortunately, we are unable to convert to a useful name
1687 * But we'll still print out the usage information
1688 */
1689 rcu_read_unlock();
1690 goto done;
1691 }
1692 rcu_read_unlock();
1693
d045197f 1694 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1695
1696 rcu_read_lock();
1697 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1698 if (ret < 0) {
1699 rcu_read_unlock();
1700 goto done;
1701 }
1702 rcu_read_unlock();
1703
1704 /*
1705 * Continues from above, so we don't need an KERN_ level
1706 */
d045197f 1707 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1708done:
1709
d045197f 1710 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1711 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1712 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1713 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1714 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1715 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1716 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1717 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1718 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1719 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1720 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1721 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1722
1723 for_each_mem_cgroup_tree(iter, memcg) {
1724 pr_info("Memory cgroup stats");
1725
1726 rcu_read_lock();
1727 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1728 if (!ret)
1729 pr_cont(" for %s", memcg_name);
1730 rcu_read_unlock();
1731 pr_cont(":");
1732
1733 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1734 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1735 continue;
1736 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1737 K(mem_cgroup_read_stat(iter, i)));
1738 }
1739
1740 for (i = 0; i < NR_LRU_LISTS; i++)
1741 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1742 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1743
1744 pr_cont("\n");
1745 }
e222432b
BS
1746}
1747
81d39c20
KH
1748/*
1749 * This function returns the number of memcg under hierarchy tree. Returns
1750 * 1(self count) if no children.
1751 */
c0ff4b85 1752static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1753{
1754 int num = 0;
7d74b06f
KH
1755 struct mem_cgroup *iter;
1756
c0ff4b85 1757 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1758 num++;
81d39c20
KH
1759 return num;
1760}
1761
a63d83f4
DR
1762/*
1763 * Return the memory (and swap, if configured) limit for a memcg.
1764 */
9cbb78bb 1765static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1766{
1767 u64 limit;
a63d83f4 1768
f3e8eb70 1769 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1770
a63d83f4 1771 /*
9a5a8f19 1772 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1773 */
9a5a8f19
MH
1774 if (mem_cgroup_swappiness(memcg)) {
1775 u64 memsw;
1776
1777 limit += total_swap_pages << PAGE_SHIFT;
1778 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1779
1780 /*
1781 * If memsw is finite and limits the amount of swap space
1782 * available to this memcg, return that limit.
1783 */
1784 limit = min(limit, memsw);
1785 }
1786
1787 return limit;
a63d83f4
DR
1788}
1789
19965460
DR
1790static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1791 int order)
9cbb78bb
DR
1792{
1793 struct mem_cgroup *iter;
1794 unsigned long chosen_points = 0;
1795 unsigned long totalpages;
1796 unsigned int points = 0;
1797 struct task_struct *chosen = NULL;
1798
876aafbf 1799 /*
465adcf1
DR
1800 * If current has a pending SIGKILL or is exiting, then automatically
1801 * select it. The goal is to allow it to allocate so that it may
1802 * quickly exit and free its memory.
876aafbf 1803 */
465adcf1 1804 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1805 set_thread_flag(TIF_MEMDIE);
1806 return;
1807 }
1808
1809 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1810 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1811 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1812 struct css_task_iter it;
9cbb78bb
DR
1813 struct task_struct *task;
1814
72ec7029
TH
1815 css_task_iter_start(&iter->css, &it);
1816 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1817 switch (oom_scan_process_thread(task, totalpages, NULL,
1818 false)) {
1819 case OOM_SCAN_SELECT:
1820 if (chosen)
1821 put_task_struct(chosen);
1822 chosen = task;
1823 chosen_points = ULONG_MAX;
1824 get_task_struct(chosen);
1825 /* fall through */
1826 case OOM_SCAN_CONTINUE:
1827 continue;
1828 case OOM_SCAN_ABORT:
72ec7029 1829 css_task_iter_end(&it);
9cbb78bb
DR
1830 mem_cgroup_iter_break(memcg, iter);
1831 if (chosen)
1832 put_task_struct(chosen);
1833 return;
1834 case OOM_SCAN_OK:
1835 break;
1836 };
1837 points = oom_badness(task, memcg, NULL, totalpages);
1838 if (points > chosen_points) {
1839 if (chosen)
1840 put_task_struct(chosen);
1841 chosen = task;
1842 chosen_points = points;
1843 get_task_struct(chosen);
1844 }
1845 }
72ec7029 1846 css_task_iter_end(&it);
9cbb78bb
DR
1847 }
1848
1849 if (!chosen)
1850 return;
1851 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1852 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1853 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1854}
1855
5660048c
JW
1856static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1857 gfp_t gfp_mask,
1858 unsigned long flags)
1859{
1860 unsigned long total = 0;
1861 bool noswap = false;
1862 int loop;
1863
1864 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1865 noswap = true;
1866 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1867 noswap = true;
1868
1869 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1870 if (loop)
1871 drain_all_stock_async(memcg);
1872 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1873 /*
1874 * Allow limit shrinkers, which are triggered directly
1875 * by userspace, to catch signals and stop reclaim
1876 * after minimal progress, regardless of the margin.
1877 */
1878 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1879 break;
1880 if (mem_cgroup_margin(memcg))
1881 break;
1882 /*
1883 * If nothing was reclaimed after two attempts, there
1884 * may be no reclaimable pages in this hierarchy.
1885 */
1886 if (loop && !total)
1887 break;
1888 }
1889 return total;
1890}
1891
4d0c066d
KH
1892/**
1893 * test_mem_cgroup_node_reclaimable
dad7557e 1894 * @memcg: the target memcg
4d0c066d
KH
1895 * @nid: the node ID to be checked.
1896 * @noswap : specify true here if the user wants flle only information.
1897 *
1898 * This function returns whether the specified memcg contains any
1899 * reclaimable pages on a node. Returns true if there are any reclaimable
1900 * pages in the node.
1901 */
c0ff4b85 1902static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1903 int nid, bool noswap)
1904{
c0ff4b85 1905 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1906 return true;
1907 if (noswap || !total_swap_pages)
1908 return false;
c0ff4b85 1909 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1910 return true;
1911 return false;
1912
1913}
bb4cc1a8 1914#if MAX_NUMNODES > 1
889976db
YH
1915
1916/*
1917 * Always updating the nodemask is not very good - even if we have an empty
1918 * list or the wrong list here, we can start from some node and traverse all
1919 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1920 *
1921 */
c0ff4b85 1922static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1923{
1924 int nid;
453a9bf3
KH
1925 /*
1926 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1927 * pagein/pageout changes since the last update.
1928 */
c0ff4b85 1929 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1930 return;
c0ff4b85 1931 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1932 return;
1933
889976db 1934 /* make a nodemask where this memcg uses memory from */
31aaea4a 1935 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1936
31aaea4a 1937 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1938
c0ff4b85
R
1939 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1940 node_clear(nid, memcg->scan_nodes);
889976db 1941 }
453a9bf3 1942
c0ff4b85
R
1943 atomic_set(&memcg->numainfo_events, 0);
1944 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1945}
1946
1947/*
1948 * Selecting a node where we start reclaim from. Because what we need is just
1949 * reducing usage counter, start from anywhere is O,K. Considering
1950 * memory reclaim from current node, there are pros. and cons.
1951 *
1952 * Freeing memory from current node means freeing memory from a node which
1953 * we'll use or we've used. So, it may make LRU bad. And if several threads
1954 * hit limits, it will see a contention on a node. But freeing from remote
1955 * node means more costs for memory reclaim because of memory latency.
1956 *
1957 * Now, we use round-robin. Better algorithm is welcomed.
1958 */
c0ff4b85 1959int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1960{
1961 int node;
1962
c0ff4b85
R
1963 mem_cgroup_may_update_nodemask(memcg);
1964 node = memcg->last_scanned_node;
889976db 1965
c0ff4b85 1966 node = next_node(node, memcg->scan_nodes);
889976db 1967 if (node == MAX_NUMNODES)
c0ff4b85 1968 node = first_node(memcg->scan_nodes);
889976db
YH
1969 /*
1970 * We call this when we hit limit, not when pages are added to LRU.
1971 * No LRU may hold pages because all pages are UNEVICTABLE or
1972 * memcg is too small and all pages are not on LRU. In that case,
1973 * we use curret node.
1974 */
1975 if (unlikely(node == MAX_NUMNODES))
1976 node = numa_node_id();
1977
c0ff4b85 1978 memcg->last_scanned_node = node;
889976db
YH
1979 return node;
1980}
1981
bb4cc1a8
AM
1982/*
1983 * Check all nodes whether it contains reclaimable pages or not.
1984 * For quick scan, we make use of scan_nodes. This will allow us to skip
1985 * unused nodes. But scan_nodes is lazily updated and may not cotain
1986 * enough new information. We need to do double check.
1987 */
1988static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1989{
1990 int nid;
1991
1992 /*
1993 * quick check...making use of scan_node.
1994 * We can skip unused nodes.
1995 */
1996 if (!nodes_empty(memcg->scan_nodes)) {
1997 for (nid = first_node(memcg->scan_nodes);
1998 nid < MAX_NUMNODES;
1999 nid = next_node(nid, memcg->scan_nodes)) {
2000
2001 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2002 return true;
2003 }
2004 }
2005 /*
2006 * Check rest of nodes.
2007 */
2008 for_each_node_state(nid, N_MEMORY) {
2009 if (node_isset(nid, memcg->scan_nodes))
2010 continue;
2011 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2012 return true;
2013 }
2014 return false;
2015}
2016
889976db 2017#else
c0ff4b85 2018int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2019{
2020 return 0;
2021}
4d0c066d 2022
bb4cc1a8
AM
2023static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2024{
2025 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2026}
889976db
YH
2027#endif
2028
0608f43d
AM
2029static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2030 struct zone *zone,
2031 gfp_t gfp_mask,
2032 unsigned long *total_scanned)
2033{
2034 struct mem_cgroup *victim = NULL;
2035 int total = 0;
2036 int loop = 0;
2037 unsigned long excess;
2038 unsigned long nr_scanned;
2039 struct mem_cgroup_reclaim_cookie reclaim = {
2040 .zone = zone,
2041 .priority = 0,
2042 };
2043
2044 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2045
2046 while (1) {
2047 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2048 if (!victim) {
2049 loop++;
2050 if (loop >= 2) {
2051 /*
2052 * If we have not been able to reclaim
2053 * anything, it might because there are
2054 * no reclaimable pages under this hierarchy
2055 */
2056 if (!total)
2057 break;
2058 /*
2059 * We want to do more targeted reclaim.
2060 * excess >> 2 is not to excessive so as to
2061 * reclaim too much, nor too less that we keep
2062 * coming back to reclaim from this cgroup
2063 */
2064 if (total >= (excess >> 2) ||
2065 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2066 break;
2067 }
2068 continue;
2069 }
2070 if (!mem_cgroup_reclaimable(victim, false))
2071 continue;
2072 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2073 zone, &nr_scanned);
2074 *total_scanned += nr_scanned;
2075 if (!res_counter_soft_limit_excess(&root_memcg->res))
2076 break;
6d61ef40 2077 }
0608f43d
AM
2078 mem_cgroup_iter_break(root_memcg, victim);
2079 return total;
6d61ef40
BS
2080}
2081
0056f4e6
JW
2082#ifdef CONFIG_LOCKDEP
2083static struct lockdep_map memcg_oom_lock_dep_map = {
2084 .name = "memcg_oom_lock",
2085};
2086#endif
2087
fb2a6fc5
JW
2088static DEFINE_SPINLOCK(memcg_oom_lock);
2089
867578cb
KH
2090/*
2091 * Check OOM-Killer is already running under our hierarchy.
2092 * If someone is running, return false.
2093 */
fb2a6fc5 2094static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2095{
79dfdacc 2096 struct mem_cgroup *iter, *failed = NULL;
a636b327 2097
fb2a6fc5
JW
2098 spin_lock(&memcg_oom_lock);
2099
9f3a0d09 2100 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2101 if (iter->oom_lock) {
79dfdacc
MH
2102 /*
2103 * this subtree of our hierarchy is already locked
2104 * so we cannot give a lock.
2105 */
79dfdacc 2106 failed = iter;
9f3a0d09
JW
2107 mem_cgroup_iter_break(memcg, iter);
2108 break;
23751be0
JW
2109 } else
2110 iter->oom_lock = true;
7d74b06f 2111 }
867578cb 2112
fb2a6fc5
JW
2113 if (failed) {
2114 /*
2115 * OK, we failed to lock the whole subtree so we have
2116 * to clean up what we set up to the failing subtree
2117 */
2118 for_each_mem_cgroup_tree(iter, memcg) {
2119 if (iter == failed) {
2120 mem_cgroup_iter_break(memcg, iter);
2121 break;
2122 }
2123 iter->oom_lock = false;
79dfdacc 2124 }
0056f4e6
JW
2125 } else
2126 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2127
2128 spin_unlock(&memcg_oom_lock);
2129
2130 return !failed;
a636b327 2131}
0b7f569e 2132
fb2a6fc5 2133static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2134{
7d74b06f
KH
2135 struct mem_cgroup *iter;
2136
fb2a6fc5 2137 spin_lock(&memcg_oom_lock);
0056f4e6 2138 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2139 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2140 iter->oom_lock = false;
fb2a6fc5 2141 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2142}
2143
c0ff4b85 2144static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2145{
2146 struct mem_cgroup *iter;
2147
c0ff4b85 2148 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2149 atomic_inc(&iter->under_oom);
2150}
2151
c0ff4b85 2152static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2153{
2154 struct mem_cgroup *iter;
2155
867578cb
KH
2156 /*
2157 * When a new child is created while the hierarchy is under oom,
2158 * mem_cgroup_oom_lock() may not be called. We have to use
2159 * atomic_add_unless() here.
2160 */
c0ff4b85 2161 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2162 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2163}
2164
867578cb
KH
2165static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2166
dc98df5a 2167struct oom_wait_info {
d79154bb 2168 struct mem_cgroup *memcg;
dc98df5a
KH
2169 wait_queue_t wait;
2170};
2171
2172static int memcg_oom_wake_function(wait_queue_t *wait,
2173 unsigned mode, int sync, void *arg)
2174{
d79154bb
HD
2175 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2176 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2177 struct oom_wait_info *oom_wait_info;
2178
2179 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2180 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2181
dc98df5a 2182 /*
d79154bb 2183 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2184 * Then we can use css_is_ancestor without taking care of RCU.
2185 */
c0ff4b85
R
2186 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2187 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2188 return 0;
dc98df5a
KH
2189 return autoremove_wake_function(wait, mode, sync, arg);
2190}
2191
c0ff4b85 2192static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2193{
3812c8c8 2194 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2195 /* for filtering, pass "memcg" as argument. */
2196 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2197}
2198
c0ff4b85 2199static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2200{
c0ff4b85
R
2201 if (memcg && atomic_read(&memcg->under_oom))
2202 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2203}
2204
3812c8c8 2205static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2206{
3812c8c8
JW
2207 if (!current->memcg_oom.may_oom)
2208 return;
867578cb 2209 /*
49426420
JW
2210 * We are in the middle of the charge context here, so we
2211 * don't want to block when potentially sitting on a callstack
2212 * that holds all kinds of filesystem and mm locks.
2213 *
2214 * Also, the caller may handle a failed allocation gracefully
2215 * (like optional page cache readahead) and so an OOM killer
2216 * invocation might not even be necessary.
2217 *
2218 * That's why we don't do anything here except remember the
2219 * OOM context and then deal with it at the end of the page
2220 * fault when the stack is unwound, the locks are released,
2221 * and when we know whether the fault was overall successful.
867578cb 2222 */
49426420
JW
2223 css_get(&memcg->css);
2224 current->memcg_oom.memcg = memcg;
2225 current->memcg_oom.gfp_mask = mask;
2226 current->memcg_oom.order = order;
3812c8c8
JW
2227}
2228
2229/**
2230 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2231 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2232 *
49426420
JW
2233 * This has to be called at the end of a page fault if the memcg OOM
2234 * handler was enabled.
3812c8c8 2235 *
49426420 2236 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2237 * sleep on a waitqueue until the userspace task resolves the
2238 * situation. Sleeping directly in the charge context with all kinds
2239 * of locks held is not a good idea, instead we remember an OOM state
2240 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2241 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2242 *
2243 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2244 * completed, %false otherwise.
3812c8c8 2245 */
49426420 2246bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2247{
49426420 2248 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2249 struct oom_wait_info owait;
49426420 2250 bool locked;
3812c8c8
JW
2251
2252 /* OOM is global, do not handle */
3812c8c8 2253 if (!memcg)
49426420 2254 return false;
3812c8c8 2255
49426420
JW
2256 if (!handle)
2257 goto cleanup;
3812c8c8
JW
2258
2259 owait.memcg = memcg;
2260 owait.wait.flags = 0;
2261 owait.wait.func = memcg_oom_wake_function;
2262 owait.wait.private = current;
2263 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2264
3812c8c8 2265 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2266 mem_cgroup_mark_under_oom(memcg);
2267
2268 locked = mem_cgroup_oom_trylock(memcg);
2269
2270 if (locked)
2271 mem_cgroup_oom_notify(memcg);
2272
2273 if (locked && !memcg->oom_kill_disable) {
2274 mem_cgroup_unmark_under_oom(memcg);
2275 finish_wait(&memcg_oom_waitq, &owait.wait);
2276 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2277 current->memcg_oom.order);
2278 } else {
3812c8c8 2279 schedule();
49426420
JW
2280 mem_cgroup_unmark_under_oom(memcg);
2281 finish_wait(&memcg_oom_waitq, &owait.wait);
2282 }
2283
2284 if (locked) {
fb2a6fc5
JW
2285 mem_cgroup_oom_unlock(memcg);
2286 /*
2287 * There is no guarantee that an OOM-lock contender
2288 * sees the wakeups triggered by the OOM kill
2289 * uncharges. Wake any sleepers explicitely.
2290 */
2291 memcg_oom_recover(memcg);
2292 }
49426420
JW
2293cleanup:
2294 current->memcg_oom.memcg = NULL;
3812c8c8 2295 css_put(&memcg->css);
867578cb 2296 return true;
0b7f569e
KH
2297}
2298
d69b042f
BS
2299/*
2300 * Currently used to update mapped file statistics, but the routine can be
2301 * generalized to update other statistics as well.
32047e2a
KH
2302 *
2303 * Notes: Race condition
2304 *
2305 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2306 * it tends to be costly. But considering some conditions, we doesn't need
2307 * to do so _always_.
2308 *
2309 * Considering "charge", lock_page_cgroup() is not required because all
2310 * file-stat operations happen after a page is attached to radix-tree. There
2311 * are no race with "charge".
2312 *
2313 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2314 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2315 * if there are race with "uncharge". Statistics itself is properly handled
2316 * by flags.
2317 *
2318 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2319 * small, we check mm->moving_account and detect there are possibility of race
2320 * If there is, we take a lock.
d69b042f 2321 */
26174efd 2322
89c06bd5
KH
2323void __mem_cgroup_begin_update_page_stat(struct page *page,
2324 bool *locked, unsigned long *flags)
2325{
2326 struct mem_cgroup *memcg;
2327 struct page_cgroup *pc;
2328
2329 pc = lookup_page_cgroup(page);
2330again:
2331 memcg = pc->mem_cgroup;
2332 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2333 return;
2334 /*
2335 * If this memory cgroup is not under account moving, we don't
da92c47d 2336 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2337 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2338 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2339 */
13fd1dd9 2340 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2341 return;
2342
2343 move_lock_mem_cgroup(memcg, flags);
2344 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2345 move_unlock_mem_cgroup(memcg, flags);
2346 goto again;
2347 }
2348 *locked = true;
2349}
2350
2351void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2352{
2353 struct page_cgroup *pc = lookup_page_cgroup(page);
2354
2355 /*
2356 * It's guaranteed that pc->mem_cgroup never changes while
2357 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2358 * should take move_lock_mem_cgroup().
89c06bd5
KH
2359 */
2360 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2361}
2362
2a7106f2 2363void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2364 enum mem_cgroup_stat_index idx, int val)
d69b042f 2365{
c0ff4b85 2366 struct mem_cgroup *memcg;
32047e2a 2367 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2368 unsigned long uninitialized_var(flags);
d69b042f 2369
cfa44946 2370 if (mem_cgroup_disabled())
d69b042f 2371 return;
89c06bd5 2372
658b72c5 2373 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2374 memcg = pc->mem_cgroup;
2375 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2376 return;
26174efd 2377
c0ff4b85 2378 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2379}
26174efd 2380
cdec2e42
KH
2381/*
2382 * size of first charge trial. "32" comes from vmscan.c's magic value.
2383 * TODO: maybe necessary to use big numbers in big irons.
2384 */
7ec99d62 2385#define CHARGE_BATCH 32U
cdec2e42
KH
2386struct memcg_stock_pcp {
2387 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2388 unsigned int nr_pages;
cdec2e42 2389 struct work_struct work;
26fe6168 2390 unsigned long flags;
a0db00fc 2391#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2392};
2393static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2394static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2395
a0956d54
SS
2396/**
2397 * consume_stock: Try to consume stocked charge on this cpu.
2398 * @memcg: memcg to consume from.
2399 * @nr_pages: how many pages to charge.
2400 *
2401 * The charges will only happen if @memcg matches the current cpu's memcg
2402 * stock, and at least @nr_pages are available in that stock. Failure to
2403 * service an allocation will refill the stock.
2404 *
2405 * returns true if successful, false otherwise.
cdec2e42 2406 */
a0956d54 2407static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2408{
2409 struct memcg_stock_pcp *stock;
2410 bool ret = true;
2411
a0956d54
SS
2412 if (nr_pages > CHARGE_BATCH)
2413 return false;
2414
cdec2e42 2415 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2416 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2417 stock->nr_pages -= nr_pages;
cdec2e42
KH
2418 else /* need to call res_counter_charge */
2419 ret = false;
2420 put_cpu_var(memcg_stock);
2421 return ret;
2422}
2423
2424/*
2425 * Returns stocks cached in percpu to res_counter and reset cached information.
2426 */
2427static void drain_stock(struct memcg_stock_pcp *stock)
2428{
2429 struct mem_cgroup *old = stock->cached;
2430
11c9ea4e
JW
2431 if (stock->nr_pages) {
2432 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2433
2434 res_counter_uncharge(&old->res, bytes);
cdec2e42 2435 if (do_swap_account)
11c9ea4e
JW
2436 res_counter_uncharge(&old->memsw, bytes);
2437 stock->nr_pages = 0;
cdec2e42
KH
2438 }
2439 stock->cached = NULL;
cdec2e42
KH
2440}
2441
2442/*
2443 * This must be called under preempt disabled or must be called by
2444 * a thread which is pinned to local cpu.
2445 */
2446static void drain_local_stock(struct work_struct *dummy)
2447{
2448 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2449 drain_stock(stock);
26fe6168 2450 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2451}
2452
e4777496
MH
2453static void __init memcg_stock_init(void)
2454{
2455 int cpu;
2456
2457 for_each_possible_cpu(cpu) {
2458 struct memcg_stock_pcp *stock =
2459 &per_cpu(memcg_stock, cpu);
2460 INIT_WORK(&stock->work, drain_local_stock);
2461 }
2462}
2463
cdec2e42
KH
2464/*
2465 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2466 * This will be consumed by consume_stock() function, later.
cdec2e42 2467 */
c0ff4b85 2468static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2469{
2470 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2471
c0ff4b85 2472 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2473 drain_stock(stock);
c0ff4b85 2474 stock->cached = memcg;
cdec2e42 2475 }
11c9ea4e 2476 stock->nr_pages += nr_pages;
cdec2e42
KH
2477 put_cpu_var(memcg_stock);
2478}
2479
2480/*
c0ff4b85 2481 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2482 * of the hierarchy under it. sync flag says whether we should block
2483 * until the work is done.
cdec2e42 2484 */
c0ff4b85 2485static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2486{
26fe6168 2487 int cpu, curcpu;
d38144b7 2488
cdec2e42 2489 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2490 get_online_cpus();
5af12d0e 2491 curcpu = get_cpu();
cdec2e42
KH
2492 for_each_online_cpu(cpu) {
2493 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2494 struct mem_cgroup *memcg;
26fe6168 2495
c0ff4b85
R
2496 memcg = stock->cached;
2497 if (!memcg || !stock->nr_pages)
26fe6168 2498 continue;
c0ff4b85 2499 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2500 continue;
d1a05b69
MH
2501 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2502 if (cpu == curcpu)
2503 drain_local_stock(&stock->work);
2504 else
2505 schedule_work_on(cpu, &stock->work);
2506 }
cdec2e42 2507 }
5af12d0e 2508 put_cpu();
d38144b7
MH
2509
2510 if (!sync)
2511 goto out;
2512
2513 for_each_online_cpu(cpu) {
2514 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2515 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2516 flush_work(&stock->work);
2517 }
2518out:
f894ffa8 2519 put_online_cpus();
d38144b7
MH
2520}
2521
2522/*
2523 * Tries to drain stocked charges in other cpus. This function is asynchronous
2524 * and just put a work per cpu for draining localy on each cpu. Caller can
2525 * expects some charges will be back to res_counter later but cannot wait for
2526 * it.
2527 */
c0ff4b85 2528static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2529{
9f50fad6
MH
2530 /*
2531 * If someone calls draining, avoid adding more kworker runs.
2532 */
2533 if (!mutex_trylock(&percpu_charge_mutex))
2534 return;
c0ff4b85 2535 drain_all_stock(root_memcg, false);
9f50fad6 2536 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2537}
2538
2539/* This is a synchronous drain interface. */
c0ff4b85 2540static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2541{
2542 /* called when force_empty is called */
9f50fad6 2543 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2544 drain_all_stock(root_memcg, true);
9f50fad6 2545 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2546}
2547
711d3d2c
KH
2548/*
2549 * This function drains percpu counter value from DEAD cpu and
2550 * move it to local cpu. Note that this function can be preempted.
2551 */
c0ff4b85 2552static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2553{
2554 int i;
2555
c0ff4b85 2556 spin_lock(&memcg->pcp_counter_lock);
6104621d 2557 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2558 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2559
c0ff4b85
R
2560 per_cpu(memcg->stat->count[i], cpu) = 0;
2561 memcg->nocpu_base.count[i] += x;
711d3d2c 2562 }
e9f8974f 2563 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2564 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2565
c0ff4b85
R
2566 per_cpu(memcg->stat->events[i], cpu) = 0;
2567 memcg->nocpu_base.events[i] += x;
e9f8974f 2568 }
c0ff4b85 2569 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2570}
2571
0db0628d 2572static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2573 unsigned long action,
2574 void *hcpu)
2575{
2576 int cpu = (unsigned long)hcpu;
2577 struct memcg_stock_pcp *stock;
711d3d2c 2578 struct mem_cgroup *iter;
cdec2e42 2579
619d094b 2580 if (action == CPU_ONLINE)
1489ebad 2581 return NOTIFY_OK;
1489ebad 2582
d833049b 2583 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2584 return NOTIFY_OK;
711d3d2c 2585
9f3a0d09 2586 for_each_mem_cgroup(iter)
711d3d2c
KH
2587 mem_cgroup_drain_pcp_counter(iter, cpu);
2588
cdec2e42
KH
2589 stock = &per_cpu(memcg_stock, cpu);
2590 drain_stock(stock);
2591 return NOTIFY_OK;
2592}
2593
4b534334
KH
2594
2595/* See __mem_cgroup_try_charge() for details */
2596enum {
2597 CHARGE_OK, /* success */
2598 CHARGE_RETRY, /* need to retry but retry is not bad */
2599 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2600 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2601};
2602
c0ff4b85 2603static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2604 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2605 bool invoke_oom)
4b534334 2606{
7ec99d62 2607 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2608 struct mem_cgroup *mem_over_limit;
2609 struct res_counter *fail_res;
2610 unsigned long flags = 0;
2611 int ret;
2612
c0ff4b85 2613 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2614
2615 if (likely(!ret)) {
2616 if (!do_swap_account)
2617 return CHARGE_OK;
c0ff4b85 2618 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2619 if (likely(!ret))
2620 return CHARGE_OK;
2621
c0ff4b85 2622 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2623 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2624 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2625 } else
2626 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2627 /*
9221edb7
JW
2628 * Never reclaim on behalf of optional batching, retry with a
2629 * single page instead.
2630 */
4c9c5359 2631 if (nr_pages > min_pages)
4b534334
KH
2632 return CHARGE_RETRY;
2633
2634 if (!(gfp_mask & __GFP_WAIT))
2635 return CHARGE_WOULDBLOCK;
2636
4c9c5359
SS
2637 if (gfp_mask & __GFP_NORETRY)
2638 return CHARGE_NOMEM;
2639
5660048c 2640 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2641 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2642 return CHARGE_RETRY;
4b534334 2643 /*
19942822
JW
2644 * Even though the limit is exceeded at this point, reclaim
2645 * may have been able to free some pages. Retry the charge
2646 * before killing the task.
2647 *
2648 * Only for regular pages, though: huge pages are rather
2649 * unlikely to succeed so close to the limit, and we fall back
2650 * to regular pages anyway in case of failure.
4b534334 2651 */
4c9c5359 2652 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2653 return CHARGE_RETRY;
2654
2655 /*
2656 * At task move, charge accounts can be doubly counted. So, it's
2657 * better to wait until the end of task_move if something is going on.
2658 */
2659 if (mem_cgroup_wait_acct_move(mem_over_limit))
2660 return CHARGE_RETRY;
2661
3812c8c8
JW
2662 if (invoke_oom)
2663 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2664
3812c8c8 2665 return CHARGE_NOMEM;
4b534334
KH
2666}
2667
f817ed48 2668/*
38c5d72f
KH
2669 * __mem_cgroup_try_charge() does
2670 * 1. detect memcg to be charged against from passed *mm and *ptr,
2671 * 2. update res_counter
2672 * 3. call memory reclaim if necessary.
2673 *
2674 * In some special case, if the task is fatal, fatal_signal_pending() or
2675 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2676 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2677 * as possible without any hazards. 2: all pages should have a valid
2678 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2679 * pointer, that is treated as a charge to root_mem_cgroup.
2680 *
2681 * So __mem_cgroup_try_charge() will return
2682 * 0 ... on success, filling *ptr with a valid memcg pointer.
2683 * -ENOMEM ... charge failure because of resource limits.
2684 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2685 *
2686 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2687 * the oom-killer can be invoked.
8a9f3ccd 2688 */
f817ed48 2689static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2690 gfp_t gfp_mask,
7ec99d62 2691 unsigned int nr_pages,
c0ff4b85 2692 struct mem_cgroup **ptr,
7ec99d62 2693 bool oom)
8a9f3ccd 2694{
7ec99d62 2695 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2696 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2697 struct mem_cgroup *memcg = NULL;
4b534334 2698 int ret;
a636b327 2699
867578cb
KH
2700 /*
2701 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2702 * in system level. So, allow to go ahead dying process in addition to
2703 * MEMDIE process.
2704 */
2705 if (unlikely(test_thread_flag(TIF_MEMDIE)
2706 || fatal_signal_pending(current)))
2707 goto bypass;
a636b327 2708
49426420
JW
2709 if (unlikely(task_in_memcg_oom(current)))
2710 goto bypass;
2711
8a9f3ccd 2712 /*
3be91277
HD
2713 * We always charge the cgroup the mm_struct belongs to.
2714 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2715 * thread group leader migrates. It's possible that mm is not
24467cac 2716 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2717 */
c0ff4b85 2718 if (!*ptr && !mm)
38c5d72f 2719 *ptr = root_mem_cgroup;
f75ca962 2720again:
c0ff4b85
R
2721 if (*ptr) { /* css should be a valid one */
2722 memcg = *ptr;
c0ff4b85 2723 if (mem_cgroup_is_root(memcg))
f75ca962 2724 goto done;
a0956d54 2725 if (consume_stock(memcg, nr_pages))
f75ca962 2726 goto done;
c0ff4b85 2727 css_get(&memcg->css);
4b534334 2728 } else {
f75ca962 2729 struct task_struct *p;
54595fe2 2730
f75ca962
KH
2731 rcu_read_lock();
2732 p = rcu_dereference(mm->owner);
f75ca962 2733 /*
ebb76ce1 2734 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2735 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2736 * race with swapoff. Then, we have small risk of mis-accouning.
2737 * But such kind of mis-account by race always happens because
2738 * we don't have cgroup_mutex(). It's overkill and we allo that
2739 * small race, here.
2740 * (*) swapoff at el will charge against mm-struct not against
2741 * task-struct. So, mm->owner can be NULL.
f75ca962 2742 */
c0ff4b85 2743 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2744 if (!memcg)
2745 memcg = root_mem_cgroup;
2746 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2747 rcu_read_unlock();
2748 goto done;
2749 }
a0956d54 2750 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2751 /*
2752 * It seems dagerous to access memcg without css_get().
2753 * But considering how consume_stok works, it's not
2754 * necessary. If consume_stock success, some charges
2755 * from this memcg are cached on this cpu. So, we
2756 * don't need to call css_get()/css_tryget() before
2757 * calling consume_stock().
2758 */
2759 rcu_read_unlock();
2760 goto done;
2761 }
2762 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2763 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2764 rcu_read_unlock();
2765 goto again;
2766 }
2767 rcu_read_unlock();
2768 }
8a9f3ccd 2769
4b534334 2770 do {
3812c8c8 2771 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2772
4b534334 2773 /* If killed, bypass charge */
f75ca962 2774 if (fatal_signal_pending(current)) {
c0ff4b85 2775 css_put(&memcg->css);
4b534334 2776 goto bypass;
f75ca962 2777 }
6d61ef40 2778
3812c8c8
JW
2779 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2780 nr_pages, invoke_oom);
4b534334
KH
2781 switch (ret) {
2782 case CHARGE_OK:
2783 break;
2784 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2785 batch = nr_pages;
c0ff4b85
R
2786 css_put(&memcg->css);
2787 memcg = NULL;
f75ca962 2788 goto again;
4b534334 2789 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2790 css_put(&memcg->css);
4b534334
KH
2791 goto nomem;
2792 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2793 if (!oom || invoke_oom) {
c0ff4b85 2794 css_put(&memcg->css);
867578cb 2795 goto nomem;
f75ca962 2796 }
4b534334
KH
2797 nr_oom_retries--;
2798 break;
66e1707b 2799 }
4b534334
KH
2800 } while (ret != CHARGE_OK);
2801
7ec99d62 2802 if (batch > nr_pages)
c0ff4b85
R
2803 refill_stock(memcg, batch - nr_pages);
2804 css_put(&memcg->css);
0c3e73e8 2805done:
c0ff4b85 2806 *ptr = memcg;
7a81b88c
KH
2807 return 0;
2808nomem:
3168ecbe
JW
2809 if (!(gfp_mask & __GFP_NOFAIL)) {
2810 *ptr = NULL;
2811 return -ENOMEM;
2812 }
867578cb 2813bypass:
38c5d72f
KH
2814 *ptr = root_mem_cgroup;
2815 return -EINTR;
7a81b88c 2816}
8a9f3ccd 2817
a3032a2c
DN
2818/*
2819 * Somemtimes we have to undo a charge we got by try_charge().
2820 * This function is for that and do uncharge, put css's refcnt.
2821 * gotten by try_charge().
2822 */
c0ff4b85 2823static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2824 unsigned int nr_pages)
a3032a2c 2825{
c0ff4b85 2826 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2827 unsigned long bytes = nr_pages * PAGE_SIZE;
2828
c0ff4b85 2829 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2830 if (do_swap_account)
c0ff4b85 2831 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2832 }
854ffa8d
DN
2833}
2834
d01dd17f
KH
2835/*
2836 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2837 * This is useful when moving usage to parent cgroup.
2838 */
2839static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2840 unsigned int nr_pages)
2841{
2842 unsigned long bytes = nr_pages * PAGE_SIZE;
2843
2844 if (mem_cgroup_is_root(memcg))
2845 return;
2846
2847 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2848 if (do_swap_account)
2849 res_counter_uncharge_until(&memcg->memsw,
2850 memcg->memsw.parent, bytes);
2851}
2852
a3b2d692
KH
2853/*
2854 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2855 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2856 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2857 * called against removed memcg.)
a3b2d692
KH
2858 */
2859static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2860{
2861 struct cgroup_subsys_state *css;
2862
2863 /* ID 0 is unused ID */
2864 if (!id)
2865 return NULL;
2866 css = css_lookup(&mem_cgroup_subsys, id);
2867 if (!css)
2868 return NULL;
b2145145 2869 return mem_cgroup_from_css(css);
a3b2d692
KH
2870}
2871
e42d9d5d 2872struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2873{
c0ff4b85 2874 struct mem_cgroup *memcg = NULL;
3c776e64 2875 struct page_cgroup *pc;
a3b2d692 2876 unsigned short id;
b5a84319
KH
2877 swp_entry_t ent;
2878
3c776e64
DN
2879 VM_BUG_ON(!PageLocked(page));
2880
3c776e64 2881 pc = lookup_page_cgroup(page);
c0bd3f63 2882 lock_page_cgroup(pc);
a3b2d692 2883 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2884 memcg = pc->mem_cgroup;
2885 if (memcg && !css_tryget(&memcg->css))
2886 memcg = NULL;
e42d9d5d 2887 } else if (PageSwapCache(page)) {
3c776e64 2888 ent.val = page_private(page);
9fb4b7cc 2889 id = lookup_swap_cgroup_id(ent);
a3b2d692 2890 rcu_read_lock();
c0ff4b85
R
2891 memcg = mem_cgroup_lookup(id);
2892 if (memcg && !css_tryget(&memcg->css))
2893 memcg = NULL;
a3b2d692 2894 rcu_read_unlock();
3c776e64 2895 }
c0bd3f63 2896 unlock_page_cgroup(pc);
c0ff4b85 2897 return memcg;
b5a84319
KH
2898}
2899
c0ff4b85 2900static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2901 struct page *page,
7ec99d62 2902 unsigned int nr_pages,
9ce70c02
HD
2903 enum charge_type ctype,
2904 bool lrucare)
7a81b88c 2905{
ce587e65 2906 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2907 struct zone *uninitialized_var(zone);
fa9add64 2908 struct lruvec *lruvec;
9ce70c02 2909 bool was_on_lru = false;
b2402857 2910 bool anon;
9ce70c02 2911
ca3e0214 2912 lock_page_cgroup(pc);
90deb788 2913 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2914 /*
2915 * we don't need page_cgroup_lock about tail pages, becase they are not
2916 * accessed by any other context at this point.
2917 */
9ce70c02
HD
2918
2919 /*
2920 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2921 * may already be on some other mem_cgroup's LRU. Take care of it.
2922 */
2923 if (lrucare) {
2924 zone = page_zone(page);
2925 spin_lock_irq(&zone->lru_lock);
2926 if (PageLRU(page)) {
fa9add64 2927 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2928 ClearPageLRU(page);
fa9add64 2929 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2930 was_on_lru = true;
2931 }
2932 }
2933
c0ff4b85 2934 pc->mem_cgroup = memcg;
261fb61a
KH
2935 /*
2936 * We access a page_cgroup asynchronously without lock_page_cgroup().
2937 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2938 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2939 * before USED bit, we need memory barrier here.
2940 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2941 */
08e552c6 2942 smp_wmb();
b2402857 2943 SetPageCgroupUsed(pc);
3be91277 2944
9ce70c02
HD
2945 if (lrucare) {
2946 if (was_on_lru) {
fa9add64 2947 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2948 VM_BUG_ON(PageLRU(page));
2949 SetPageLRU(page);
fa9add64 2950 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2951 }
2952 spin_unlock_irq(&zone->lru_lock);
2953 }
2954
41326c17 2955 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2956 anon = true;
2957 else
2958 anon = false;
2959
b070e65c 2960 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2961 unlock_page_cgroup(pc);
9ce70c02 2962
430e4863 2963 /*
bb4cc1a8
AM
2964 * "charge_statistics" updated event counter. Then, check it.
2965 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2966 * if they exceeds softlimit.
430e4863 2967 */
c0ff4b85 2968 memcg_check_events(memcg, page);
7a81b88c 2969}
66e1707b 2970
7cf27982
GC
2971static DEFINE_MUTEX(set_limit_mutex);
2972
7ae1e1d0
GC
2973#ifdef CONFIG_MEMCG_KMEM
2974static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2975{
2976 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2977 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2978}
2979
1f458cbf
GC
2980/*
2981 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2982 * in the memcg_cache_params struct.
2983 */
2984static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2985{
2986 struct kmem_cache *cachep;
2987
2988 VM_BUG_ON(p->is_root_cache);
2989 cachep = p->root_cache;
2990 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2991}
2992
749c5415 2993#ifdef CONFIG_SLABINFO
182446d0
TH
2994static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2995 struct cftype *cft, struct seq_file *m)
749c5415 2996{
182446d0 2997 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
2998 struct memcg_cache_params *params;
2999
3000 if (!memcg_can_account_kmem(memcg))
3001 return -EIO;
3002
3003 print_slabinfo_header(m);
3004
3005 mutex_lock(&memcg->slab_caches_mutex);
3006 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3007 cache_show(memcg_params_to_cache(params), m);
3008 mutex_unlock(&memcg->slab_caches_mutex);
3009
3010 return 0;
3011}
3012#endif
3013
7ae1e1d0
GC
3014static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3015{
3016 struct res_counter *fail_res;
3017 struct mem_cgroup *_memcg;
3018 int ret = 0;
3019 bool may_oom;
3020
3021 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3022 if (ret)
3023 return ret;
3024
3025 /*
3026 * Conditions under which we can wait for the oom_killer. Those are
3027 * the same conditions tested by the core page allocator
3028 */
3029 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3030
3031 _memcg = memcg;
3032 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3033 &_memcg, may_oom);
3034
3035 if (ret == -EINTR) {
3036 /*
3037 * __mem_cgroup_try_charge() chosed to bypass to root due to
3038 * OOM kill or fatal signal. Since our only options are to
3039 * either fail the allocation or charge it to this cgroup, do
3040 * it as a temporary condition. But we can't fail. From a
3041 * kmem/slab perspective, the cache has already been selected,
3042 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3043 * our minds.
3044 *
3045 * This condition will only trigger if the task entered
3046 * memcg_charge_kmem in a sane state, but was OOM-killed during
3047 * __mem_cgroup_try_charge() above. Tasks that were already
3048 * dying when the allocation triggers should have been already
3049 * directed to the root cgroup in memcontrol.h
3050 */
3051 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3052 if (do_swap_account)
3053 res_counter_charge_nofail(&memcg->memsw, size,
3054 &fail_res);
3055 ret = 0;
3056 } else if (ret)
3057 res_counter_uncharge(&memcg->kmem, size);
3058
3059 return ret;
3060}
3061
3062static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3063{
7ae1e1d0
GC
3064 res_counter_uncharge(&memcg->res, size);
3065 if (do_swap_account)
3066 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3067
3068 /* Not down to 0 */
3069 if (res_counter_uncharge(&memcg->kmem, size))
3070 return;
3071
10d5ebf4
LZ
3072 /*
3073 * Releases a reference taken in kmem_cgroup_css_offline in case
3074 * this last uncharge is racing with the offlining code or it is
3075 * outliving the memcg existence.
3076 *
3077 * The memory barrier imposed by test&clear is paired with the
3078 * explicit one in memcg_kmem_mark_dead().
3079 */
7de37682 3080 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3081 css_put(&memcg->css);
7ae1e1d0
GC
3082}
3083
2633d7a0
GC
3084void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3085{
3086 if (!memcg)
3087 return;
3088
3089 mutex_lock(&memcg->slab_caches_mutex);
3090 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3091 mutex_unlock(&memcg->slab_caches_mutex);
3092}
3093
3094/*
3095 * helper for acessing a memcg's index. It will be used as an index in the
3096 * child cache array in kmem_cache, and also to derive its name. This function
3097 * will return -1 when this is not a kmem-limited memcg.
3098 */
3099int memcg_cache_id(struct mem_cgroup *memcg)
3100{
3101 return memcg ? memcg->kmemcg_id : -1;
3102}
3103
55007d84
GC
3104/*
3105 * This ends up being protected by the set_limit mutex, during normal
3106 * operation, because that is its main call site.
3107 *
3108 * But when we create a new cache, we can call this as well if its parent
3109 * is kmem-limited. That will have to hold set_limit_mutex as well.
3110 */
3111int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3112{
3113 int num, ret;
3114
3115 num = ida_simple_get(&kmem_limited_groups,
3116 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3117 if (num < 0)
3118 return num;
3119 /*
3120 * After this point, kmem_accounted (that we test atomically in
3121 * the beginning of this conditional), is no longer 0. This
3122 * guarantees only one process will set the following boolean
3123 * to true. We don't need test_and_set because we're protected
3124 * by the set_limit_mutex anyway.
3125 */
3126 memcg_kmem_set_activated(memcg);
3127
3128 ret = memcg_update_all_caches(num+1);
3129 if (ret) {
3130 ida_simple_remove(&kmem_limited_groups, num);
3131 memcg_kmem_clear_activated(memcg);
3132 return ret;
3133 }
3134
3135 memcg->kmemcg_id = num;
3136 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3137 mutex_init(&memcg->slab_caches_mutex);
3138 return 0;
3139}
3140
3141static size_t memcg_caches_array_size(int num_groups)
3142{
3143 ssize_t size;
3144 if (num_groups <= 0)
3145 return 0;
3146
3147 size = 2 * num_groups;
3148 if (size < MEMCG_CACHES_MIN_SIZE)
3149 size = MEMCG_CACHES_MIN_SIZE;
3150 else if (size > MEMCG_CACHES_MAX_SIZE)
3151 size = MEMCG_CACHES_MAX_SIZE;
3152
3153 return size;
3154}
3155
3156/*
3157 * We should update the current array size iff all caches updates succeed. This
3158 * can only be done from the slab side. The slab mutex needs to be held when
3159 * calling this.
3160 */
3161void memcg_update_array_size(int num)
3162{
3163 if (num > memcg_limited_groups_array_size)
3164 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3165}
3166
15cf17d2
KK
3167static void kmem_cache_destroy_work_func(struct work_struct *w);
3168
55007d84
GC
3169int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3170{
3171 struct memcg_cache_params *cur_params = s->memcg_params;
3172
3173 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3174
3175 if (num_groups > memcg_limited_groups_array_size) {
3176 int i;
3177 ssize_t size = memcg_caches_array_size(num_groups);
3178
3179 size *= sizeof(void *);
90c7a79c 3180 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84
GC
3181
3182 s->memcg_params = kzalloc(size, GFP_KERNEL);
3183 if (!s->memcg_params) {
3184 s->memcg_params = cur_params;
3185 return -ENOMEM;
3186 }
3187
3188 s->memcg_params->is_root_cache = true;
3189
3190 /*
3191 * There is the chance it will be bigger than
3192 * memcg_limited_groups_array_size, if we failed an allocation
3193 * in a cache, in which case all caches updated before it, will
3194 * have a bigger array.
3195 *
3196 * But if that is the case, the data after
3197 * memcg_limited_groups_array_size is certainly unused
3198 */
3199 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3200 if (!cur_params->memcg_caches[i])
3201 continue;
3202 s->memcg_params->memcg_caches[i] =
3203 cur_params->memcg_caches[i];
3204 }
3205
3206 /*
3207 * Ideally, we would wait until all caches succeed, and only
3208 * then free the old one. But this is not worth the extra
3209 * pointer per-cache we'd have to have for this.
3210 *
3211 * It is not a big deal if some caches are left with a size
3212 * bigger than the others. And all updates will reset this
3213 * anyway.
3214 */
3215 kfree(cur_params);
3216 }
3217 return 0;
3218}
3219
943a451a
GC
3220int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3221 struct kmem_cache *root_cache)
2633d7a0 3222{
90c7a79c 3223 size_t size;
2633d7a0
GC
3224
3225 if (!memcg_kmem_enabled())
3226 return 0;
3227
90c7a79c
AV
3228 if (!memcg) {
3229 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3230 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3231 } else
3232 size = sizeof(struct memcg_cache_params);
55007d84 3233
2633d7a0
GC
3234 s->memcg_params = kzalloc(size, GFP_KERNEL);
3235 if (!s->memcg_params)
3236 return -ENOMEM;
3237
943a451a 3238 if (memcg) {
2633d7a0 3239 s->memcg_params->memcg = memcg;
943a451a 3240 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3241 INIT_WORK(&s->memcg_params->destroy,
3242 kmem_cache_destroy_work_func);
4ba902b5
GC
3243 } else
3244 s->memcg_params->is_root_cache = true;
3245
2633d7a0
GC
3246 return 0;
3247}
3248
3249void memcg_release_cache(struct kmem_cache *s)
3250{
d7f25f8a
GC
3251 struct kmem_cache *root;
3252 struct mem_cgroup *memcg;
3253 int id;
3254
3255 /*
3256 * This happens, for instance, when a root cache goes away before we
3257 * add any memcg.
3258 */
3259 if (!s->memcg_params)
3260 return;
3261
3262 if (s->memcg_params->is_root_cache)
3263 goto out;
3264
3265 memcg = s->memcg_params->memcg;
3266 id = memcg_cache_id(memcg);
3267
3268 root = s->memcg_params->root_cache;
3269 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3270
3271 mutex_lock(&memcg->slab_caches_mutex);
3272 list_del(&s->memcg_params->list);
3273 mutex_unlock(&memcg->slab_caches_mutex);
3274
20f05310 3275 css_put(&memcg->css);
d7f25f8a 3276out:
2633d7a0
GC
3277 kfree(s->memcg_params);
3278}
3279
0e9d92f2
GC
3280/*
3281 * During the creation a new cache, we need to disable our accounting mechanism
3282 * altogether. This is true even if we are not creating, but rather just
3283 * enqueing new caches to be created.
3284 *
3285 * This is because that process will trigger allocations; some visible, like
3286 * explicit kmallocs to auxiliary data structures, name strings and internal
3287 * cache structures; some well concealed, like INIT_WORK() that can allocate
3288 * objects during debug.
3289 *
3290 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3291 * to it. This may not be a bounded recursion: since the first cache creation
3292 * failed to complete (waiting on the allocation), we'll just try to create the
3293 * cache again, failing at the same point.
3294 *
3295 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3296 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3297 * inside the following two functions.
3298 */
3299static inline void memcg_stop_kmem_account(void)
3300{
3301 VM_BUG_ON(!current->mm);
3302 current->memcg_kmem_skip_account++;
3303}
3304
3305static inline void memcg_resume_kmem_account(void)
3306{
3307 VM_BUG_ON(!current->mm);
3308 current->memcg_kmem_skip_account--;
3309}
3310
1f458cbf
GC
3311static void kmem_cache_destroy_work_func(struct work_struct *w)
3312{
3313 struct kmem_cache *cachep;
3314 struct memcg_cache_params *p;
3315
3316 p = container_of(w, struct memcg_cache_params, destroy);
3317
3318 cachep = memcg_params_to_cache(p);
3319
22933152
GC
3320 /*
3321 * If we get down to 0 after shrink, we could delete right away.
3322 * However, memcg_release_pages() already puts us back in the workqueue
3323 * in that case. If we proceed deleting, we'll get a dangling
3324 * reference, and removing the object from the workqueue in that case
3325 * is unnecessary complication. We are not a fast path.
3326 *
3327 * Note that this case is fundamentally different from racing with
3328 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3329 * kmem_cache_shrink, not only we would be reinserting a dead cache
3330 * into the queue, but doing so from inside the worker racing to
3331 * destroy it.
3332 *
3333 * So if we aren't down to zero, we'll just schedule a worker and try
3334 * again
3335 */
3336 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3337 kmem_cache_shrink(cachep);
3338 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3339 return;
3340 } else
1f458cbf
GC
3341 kmem_cache_destroy(cachep);
3342}
3343
3344void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3345{
3346 if (!cachep->memcg_params->dead)
3347 return;
3348
22933152
GC
3349 /*
3350 * There are many ways in which we can get here.
3351 *
3352 * We can get to a memory-pressure situation while the delayed work is
3353 * still pending to run. The vmscan shrinkers can then release all
3354 * cache memory and get us to destruction. If this is the case, we'll
3355 * be executed twice, which is a bug (the second time will execute over
3356 * bogus data). In this case, cancelling the work should be fine.
3357 *
3358 * But we can also get here from the worker itself, if
3359 * kmem_cache_shrink is enough to shake all the remaining objects and
3360 * get the page count to 0. In this case, we'll deadlock if we try to
3361 * cancel the work (the worker runs with an internal lock held, which
3362 * is the same lock we would hold for cancel_work_sync().)
3363 *
3364 * Since we can't possibly know who got us here, just refrain from
3365 * running if there is already work pending
3366 */
3367 if (work_pending(&cachep->memcg_params->destroy))
3368 return;
1f458cbf
GC
3369 /*
3370 * We have to defer the actual destroying to a workqueue, because
3371 * we might currently be in a context that cannot sleep.
3372 */
3373 schedule_work(&cachep->memcg_params->destroy);
3374}
3375
d9c10ddd
MH
3376/*
3377 * This lock protects updaters, not readers. We want readers to be as fast as
3378 * they can, and they will either see NULL or a valid cache value. Our model
3379 * allow them to see NULL, in which case the root memcg will be selected.
3380 *
3381 * We need this lock because multiple allocations to the same cache from a non
3382 * will span more than one worker. Only one of them can create the cache.
3383 */
3384static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3385
d9c10ddd
MH
3386/*
3387 * Called with memcg_cache_mutex held
3388 */
d7f25f8a
GC
3389static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3390 struct kmem_cache *s)
3391{
d7f25f8a 3392 struct kmem_cache *new;
d9c10ddd 3393 static char *tmp_name = NULL;
d7f25f8a 3394
d9c10ddd
MH
3395 lockdep_assert_held(&memcg_cache_mutex);
3396
3397 /*
3398 * kmem_cache_create_memcg duplicates the given name and
3399 * cgroup_name for this name requires RCU context.
3400 * This static temporary buffer is used to prevent from
3401 * pointless shortliving allocation.
3402 */
3403 if (!tmp_name) {
3404 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3405 if (!tmp_name)
3406 return NULL;
3407 }
3408
3409 rcu_read_lock();
3410 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3411 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3412 rcu_read_unlock();
d7f25f8a 3413
d9c10ddd 3414 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3415 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3416
d79923fa
GC
3417 if (new)
3418 new->allocflags |= __GFP_KMEMCG;
3419
d7f25f8a
GC
3420 return new;
3421}
3422
d7f25f8a
GC
3423static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3424 struct kmem_cache *cachep)
3425{
3426 struct kmem_cache *new_cachep;
3427 int idx;
3428
3429 BUG_ON(!memcg_can_account_kmem(memcg));
3430
3431 idx = memcg_cache_id(memcg);
3432
3433 mutex_lock(&memcg_cache_mutex);
3434 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3435 if (new_cachep) {
3436 css_put(&memcg->css);
d7f25f8a 3437 goto out;
20f05310 3438 }
d7f25f8a
GC
3439
3440 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3441 if (new_cachep == NULL) {
3442 new_cachep = cachep;
20f05310 3443 css_put(&memcg->css);
d7f25f8a
GC
3444 goto out;
3445 }
3446
1f458cbf 3447 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3448
3449 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3450 /*
3451 * the readers won't lock, make sure everybody sees the updated value,
3452 * so they won't put stuff in the queue again for no reason
3453 */
3454 wmb();
3455out:
3456 mutex_unlock(&memcg_cache_mutex);
3457 return new_cachep;
3458}
3459
7cf27982
GC
3460void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3461{
3462 struct kmem_cache *c;
3463 int i;
3464
3465 if (!s->memcg_params)
3466 return;
3467 if (!s->memcg_params->is_root_cache)
3468 return;
3469
3470 /*
3471 * If the cache is being destroyed, we trust that there is no one else
3472 * requesting objects from it. Even if there are, the sanity checks in
3473 * kmem_cache_destroy should caught this ill-case.
3474 *
3475 * Still, we don't want anyone else freeing memcg_caches under our
3476 * noses, which can happen if a new memcg comes to life. As usual,
3477 * we'll take the set_limit_mutex to protect ourselves against this.
3478 */
3479 mutex_lock(&set_limit_mutex);
3480 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3481 c = s->memcg_params->memcg_caches[i];
3482 if (!c)
3483 continue;
3484
3485 /*
3486 * We will now manually delete the caches, so to avoid races
3487 * we need to cancel all pending destruction workers and
3488 * proceed with destruction ourselves.
3489 *
3490 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3491 * and that could spawn the workers again: it is likely that
3492 * the cache still have active pages until this very moment.
3493 * This would lead us back to mem_cgroup_destroy_cache.
3494 *
3495 * But that will not execute at all if the "dead" flag is not
3496 * set, so flip it down to guarantee we are in control.
3497 */
3498 c->memcg_params->dead = false;
22933152 3499 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3500 kmem_cache_destroy(c);
3501 }
3502 mutex_unlock(&set_limit_mutex);
3503}
3504
d7f25f8a
GC
3505struct create_work {
3506 struct mem_cgroup *memcg;
3507 struct kmem_cache *cachep;
3508 struct work_struct work;
3509};
3510
1f458cbf
GC
3511static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3512{
3513 struct kmem_cache *cachep;
3514 struct memcg_cache_params *params;
3515
3516 if (!memcg_kmem_is_active(memcg))
3517 return;
3518
3519 mutex_lock(&memcg->slab_caches_mutex);
3520 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3521 cachep = memcg_params_to_cache(params);
3522 cachep->memcg_params->dead = true;
1f458cbf
GC
3523 schedule_work(&cachep->memcg_params->destroy);
3524 }
3525 mutex_unlock(&memcg->slab_caches_mutex);
3526}
3527
d7f25f8a
GC
3528static void memcg_create_cache_work_func(struct work_struct *w)
3529{
3530 struct create_work *cw;
3531
3532 cw = container_of(w, struct create_work, work);
3533 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3534 kfree(cw);
3535}
3536
3537/*
3538 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3539 */
0e9d92f2
GC
3540static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3541 struct kmem_cache *cachep)
d7f25f8a
GC
3542{
3543 struct create_work *cw;
3544
3545 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3546 if (cw == NULL) {
3547 css_put(&memcg->css);
d7f25f8a
GC
3548 return;
3549 }
3550
3551 cw->memcg = memcg;
3552 cw->cachep = cachep;
3553
3554 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3555 schedule_work(&cw->work);
3556}
3557
0e9d92f2
GC
3558static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3559 struct kmem_cache *cachep)
3560{
3561 /*
3562 * We need to stop accounting when we kmalloc, because if the
3563 * corresponding kmalloc cache is not yet created, the first allocation
3564 * in __memcg_create_cache_enqueue will recurse.
3565 *
3566 * However, it is better to enclose the whole function. Depending on
3567 * the debugging options enabled, INIT_WORK(), for instance, can
3568 * trigger an allocation. This too, will make us recurse. Because at
3569 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3570 * the safest choice is to do it like this, wrapping the whole function.
3571 */
3572 memcg_stop_kmem_account();
3573 __memcg_create_cache_enqueue(memcg, cachep);
3574 memcg_resume_kmem_account();
3575}
d7f25f8a
GC
3576/*
3577 * Return the kmem_cache we're supposed to use for a slab allocation.
3578 * We try to use the current memcg's version of the cache.
3579 *
3580 * If the cache does not exist yet, if we are the first user of it,
3581 * we either create it immediately, if possible, or create it asynchronously
3582 * in a workqueue.
3583 * In the latter case, we will let the current allocation go through with
3584 * the original cache.
3585 *
3586 * Can't be called in interrupt context or from kernel threads.
3587 * This function needs to be called with rcu_read_lock() held.
3588 */
3589struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3590 gfp_t gfp)
3591{
3592 struct mem_cgroup *memcg;
3593 int idx;
3594
3595 VM_BUG_ON(!cachep->memcg_params);
3596 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3597
0e9d92f2
GC
3598 if (!current->mm || current->memcg_kmem_skip_account)
3599 return cachep;
3600
d7f25f8a
GC
3601 rcu_read_lock();
3602 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3603
3604 if (!memcg_can_account_kmem(memcg))
ca0dde97 3605 goto out;
d7f25f8a
GC
3606
3607 idx = memcg_cache_id(memcg);
3608
3609 /*
3610 * barrier to mare sure we're always seeing the up to date value. The
3611 * code updating memcg_caches will issue a write barrier to match this.
3612 */
3613 read_barrier_depends();
ca0dde97
LZ
3614 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3615 cachep = cachep->memcg_params->memcg_caches[idx];
3616 goto out;
d7f25f8a
GC
3617 }
3618
ca0dde97
LZ
3619 /* The corresponding put will be done in the workqueue. */
3620 if (!css_tryget(&memcg->css))
3621 goto out;
3622 rcu_read_unlock();
3623
3624 /*
3625 * If we are in a safe context (can wait, and not in interrupt
3626 * context), we could be be predictable and return right away.
3627 * This would guarantee that the allocation being performed
3628 * already belongs in the new cache.
3629 *
3630 * However, there are some clashes that can arrive from locking.
3631 * For instance, because we acquire the slab_mutex while doing
3632 * kmem_cache_dup, this means no further allocation could happen
3633 * with the slab_mutex held.
3634 *
3635 * Also, because cache creation issue get_online_cpus(), this
3636 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3637 * that ends up reversed during cpu hotplug. (cpuset allocates
3638 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3639 * better to defer everything.
3640 */
3641 memcg_create_cache_enqueue(memcg, cachep);
3642 return cachep;
3643out:
3644 rcu_read_unlock();
3645 return cachep;
d7f25f8a
GC
3646}
3647EXPORT_SYMBOL(__memcg_kmem_get_cache);
3648
7ae1e1d0
GC
3649/*
3650 * We need to verify if the allocation against current->mm->owner's memcg is
3651 * possible for the given order. But the page is not allocated yet, so we'll
3652 * need a further commit step to do the final arrangements.
3653 *
3654 * It is possible for the task to switch cgroups in this mean time, so at
3655 * commit time, we can't rely on task conversion any longer. We'll then use
3656 * the handle argument to return to the caller which cgroup we should commit
3657 * against. We could also return the memcg directly and avoid the pointer
3658 * passing, but a boolean return value gives better semantics considering
3659 * the compiled-out case as well.
3660 *
3661 * Returning true means the allocation is possible.
3662 */
3663bool
3664__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3665{
3666 struct mem_cgroup *memcg;
3667 int ret;
3668
3669 *_memcg = NULL;
6d42c232
GC
3670
3671 /*
3672 * Disabling accounting is only relevant for some specific memcg
3673 * internal allocations. Therefore we would initially not have such
3674 * check here, since direct calls to the page allocator that are marked
3675 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3676 * concerned with cache allocations, and by having this test at
3677 * memcg_kmem_get_cache, we are already able to relay the allocation to
3678 * the root cache and bypass the memcg cache altogether.
3679 *
3680 * There is one exception, though: the SLUB allocator does not create
3681 * large order caches, but rather service large kmallocs directly from
3682 * the page allocator. Therefore, the following sequence when backed by
3683 * the SLUB allocator:
3684 *
f894ffa8
AM
3685 * memcg_stop_kmem_account();
3686 * kmalloc(<large_number>)
3687 * memcg_resume_kmem_account();
6d42c232
GC
3688 *
3689 * would effectively ignore the fact that we should skip accounting,
3690 * since it will drive us directly to this function without passing
3691 * through the cache selector memcg_kmem_get_cache. Such large
3692 * allocations are extremely rare but can happen, for instance, for the
3693 * cache arrays. We bring this test here.
3694 */
3695 if (!current->mm || current->memcg_kmem_skip_account)
3696 return true;
3697
7ae1e1d0
GC
3698 memcg = try_get_mem_cgroup_from_mm(current->mm);
3699
3700 /*
3701 * very rare case described in mem_cgroup_from_task. Unfortunately there
3702 * isn't much we can do without complicating this too much, and it would
3703 * be gfp-dependent anyway. Just let it go
3704 */
3705 if (unlikely(!memcg))
3706 return true;
3707
3708 if (!memcg_can_account_kmem(memcg)) {
3709 css_put(&memcg->css);
3710 return true;
3711 }
3712
7ae1e1d0
GC
3713 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3714 if (!ret)
3715 *_memcg = memcg;
7ae1e1d0
GC
3716
3717 css_put(&memcg->css);
3718 return (ret == 0);
3719}
3720
3721void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3722 int order)
3723{
3724 struct page_cgroup *pc;
3725
3726 VM_BUG_ON(mem_cgroup_is_root(memcg));
3727
3728 /* The page allocation failed. Revert */
3729 if (!page) {
3730 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3731 return;
3732 }
3733
3734 pc = lookup_page_cgroup(page);
3735 lock_page_cgroup(pc);
3736 pc->mem_cgroup = memcg;
3737 SetPageCgroupUsed(pc);
3738 unlock_page_cgroup(pc);
3739}
3740
3741void __memcg_kmem_uncharge_pages(struct page *page, int order)
3742{
3743 struct mem_cgroup *memcg = NULL;
3744 struct page_cgroup *pc;
3745
3746
3747 pc = lookup_page_cgroup(page);
3748 /*
3749 * Fast unlocked return. Theoretically might have changed, have to
3750 * check again after locking.
3751 */
3752 if (!PageCgroupUsed(pc))
3753 return;
3754
3755 lock_page_cgroup(pc);
3756 if (PageCgroupUsed(pc)) {
3757 memcg = pc->mem_cgroup;
3758 ClearPageCgroupUsed(pc);
3759 }
3760 unlock_page_cgroup(pc);
3761
3762 /*
3763 * We trust that only if there is a memcg associated with the page, it
3764 * is a valid allocation
3765 */
3766 if (!memcg)
3767 return;
3768
3769 VM_BUG_ON(mem_cgroup_is_root(memcg));
3770 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3771}
1f458cbf
GC
3772#else
3773static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3774{
3775}
7ae1e1d0
GC
3776#endif /* CONFIG_MEMCG_KMEM */
3777
ca3e0214
KH
3778#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3779
a0db00fc 3780#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3781/*
3782 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3783 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3784 * charge/uncharge will be never happen and move_account() is done under
3785 * compound_lock(), so we don't have to take care of races.
ca3e0214 3786 */
e94c8a9c 3787void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3788{
3789 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3790 struct page_cgroup *pc;
b070e65c 3791 struct mem_cgroup *memcg;
e94c8a9c 3792 int i;
ca3e0214 3793
3d37c4a9
KH
3794 if (mem_cgroup_disabled())
3795 return;
b070e65c
DR
3796
3797 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3798 for (i = 1; i < HPAGE_PMD_NR; i++) {
3799 pc = head_pc + i;
b070e65c 3800 pc->mem_cgroup = memcg;
e94c8a9c 3801 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3802 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3803 }
b070e65c
DR
3804 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3805 HPAGE_PMD_NR);
ca3e0214 3806}
12d27107 3807#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3808
3ea67d06
SZ
3809static inline
3810void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3811 struct mem_cgroup *to,
3812 unsigned int nr_pages,
3813 enum mem_cgroup_stat_index idx)
3814{
3815 /* Update stat data for mem_cgroup */
3816 preempt_disable();
5e8cfc3c 3817 __this_cpu_sub(from->stat->count[idx], nr_pages);
3ea67d06
SZ
3818 __this_cpu_add(to->stat->count[idx], nr_pages);
3819 preempt_enable();
3820}
3821
f817ed48 3822/**
de3638d9 3823 * mem_cgroup_move_account - move account of the page
5564e88b 3824 * @page: the page
7ec99d62 3825 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3826 * @pc: page_cgroup of the page.
3827 * @from: mem_cgroup which the page is moved from.
3828 * @to: mem_cgroup which the page is moved to. @from != @to.
3829 *
3830 * The caller must confirm following.
08e552c6 3831 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3832 * - compound_lock is held when nr_pages > 1
f817ed48 3833 *
2f3479b1
KH
3834 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3835 * from old cgroup.
f817ed48 3836 */
7ec99d62
JW
3837static int mem_cgroup_move_account(struct page *page,
3838 unsigned int nr_pages,
3839 struct page_cgroup *pc,
3840 struct mem_cgroup *from,
2f3479b1 3841 struct mem_cgroup *to)
f817ed48 3842{
de3638d9
JW
3843 unsigned long flags;
3844 int ret;
b2402857 3845 bool anon = PageAnon(page);
987eba66 3846
f817ed48 3847 VM_BUG_ON(from == to);
5564e88b 3848 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3849 /*
3850 * The page is isolated from LRU. So, collapse function
3851 * will not handle this page. But page splitting can happen.
3852 * Do this check under compound_page_lock(). The caller should
3853 * hold it.
3854 */
3855 ret = -EBUSY;
7ec99d62 3856 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3857 goto out;
3858
3859 lock_page_cgroup(pc);
3860
3861 ret = -EINVAL;
3862 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3863 goto unlock;
3864
312734c0 3865 move_lock_mem_cgroup(from, &flags);
f817ed48 3866
3ea67d06
SZ
3867 if (!anon && page_mapped(page))
3868 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3869 MEM_CGROUP_STAT_FILE_MAPPED);
3870
3871 if (PageWriteback(page))
3872 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3873 MEM_CGROUP_STAT_WRITEBACK);
3874
b070e65c 3875 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3876
854ffa8d 3877 /* caller should have done css_get */
08e552c6 3878 pc->mem_cgroup = to;
b070e65c 3879 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3880 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3881 ret = 0;
3882unlock:
57f9fd7d 3883 unlock_page_cgroup(pc);
d2265e6f
KH
3884 /*
3885 * check events
3886 */
5564e88b
JW
3887 memcg_check_events(to, page);
3888 memcg_check_events(from, page);
de3638d9 3889out:
f817ed48
KH
3890 return ret;
3891}
3892
2ef37d3f
MH
3893/**
3894 * mem_cgroup_move_parent - moves page to the parent group
3895 * @page: the page to move
3896 * @pc: page_cgroup of the page
3897 * @child: page's cgroup
3898 *
3899 * move charges to its parent or the root cgroup if the group has no
3900 * parent (aka use_hierarchy==0).
3901 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3902 * mem_cgroup_move_account fails) the failure is always temporary and
3903 * it signals a race with a page removal/uncharge or migration. In the
3904 * first case the page is on the way out and it will vanish from the LRU
3905 * on the next attempt and the call should be retried later.
3906 * Isolation from the LRU fails only if page has been isolated from
3907 * the LRU since we looked at it and that usually means either global
3908 * reclaim or migration going on. The page will either get back to the
3909 * LRU or vanish.
3910 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3911 * (!PageCgroupUsed) or moved to a different group. The page will
3912 * disappear in the next attempt.
f817ed48 3913 */
5564e88b
JW
3914static int mem_cgroup_move_parent(struct page *page,
3915 struct page_cgroup *pc,
6068bf01 3916 struct mem_cgroup *child)
f817ed48 3917{
f817ed48 3918 struct mem_cgroup *parent;
7ec99d62 3919 unsigned int nr_pages;
4be4489f 3920 unsigned long uninitialized_var(flags);
f817ed48
KH
3921 int ret;
3922
d8423011 3923 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3924
57f9fd7d
DN
3925 ret = -EBUSY;
3926 if (!get_page_unless_zero(page))
3927 goto out;
3928 if (isolate_lru_page(page))
3929 goto put;
52dbb905 3930
7ec99d62 3931 nr_pages = hpage_nr_pages(page);
08e552c6 3932
cc926f78
KH
3933 parent = parent_mem_cgroup(child);
3934 /*
3935 * If no parent, move charges to root cgroup.
3936 */
3937 if (!parent)
3938 parent = root_mem_cgroup;
f817ed48 3939
2ef37d3f
MH
3940 if (nr_pages > 1) {
3941 VM_BUG_ON(!PageTransHuge(page));
987eba66 3942 flags = compound_lock_irqsave(page);
2ef37d3f 3943 }
987eba66 3944
cc926f78 3945 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3946 pc, child, parent);
cc926f78
KH
3947 if (!ret)
3948 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3949
7ec99d62 3950 if (nr_pages > 1)
987eba66 3951 compound_unlock_irqrestore(page, flags);
08e552c6 3952 putback_lru_page(page);
57f9fd7d 3953put:
40d58138 3954 put_page(page);
57f9fd7d 3955out:
f817ed48
KH
3956 return ret;
3957}
3958
7a81b88c
KH
3959/*
3960 * Charge the memory controller for page usage.
3961 * Return
3962 * 0 if the charge was successful
3963 * < 0 if the cgroup is over its limit
3964 */
3965static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3966 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3967{
c0ff4b85 3968 struct mem_cgroup *memcg = NULL;
7ec99d62 3969 unsigned int nr_pages = 1;
8493ae43 3970 bool oom = true;
7a81b88c 3971 int ret;
ec168510 3972
37c2ac78 3973 if (PageTransHuge(page)) {
7ec99d62 3974 nr_pages <<= compound_order(page);
37c2ac78 3975 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3976 /*
3977 * Never OOM-kill a process for a huge page. The
3978 * fault handler will fall back to regular pages.
3979 */
3980 oom = false;
37c2ac78 3981 }
7a81b88c 3982
c0ff4b85 3983 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3984 if (ret == -ENOMEM)
7a81b88c 3985 return ret;
ce587e65 3986 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3987 return 0;
8a9f3ccd
BS
3988}
3989
7a81b88c
KH
3990int mem_cgroup_newpage_charge(struct page *page,
3991 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3992{
f8d66542 3993 if (mem_cgroup_disabled())
cede86ac 3994 return 0;
7a0524cf
JW
3995 VM_BUG_ON(page_mapped(page));
3996 VM_BUG_ON(page->mapping && !PageAnon(page));
3997 VM_BUG_ON(!mm);
217bc319 3998 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3999 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
4000}
4001
54595fe2
KH
4002/*
4003 * While swap-in, try_charge -> commit or cancel, the page is locked.
4004 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 4005 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
4006 * "commit()" or removed by "cancel()"
4007 */
0435a2fd
JW
4008static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4009 struct page *page,
4010 gfp_t mask,
4011 struct mem_cgroup **memcgp)
8c7c6e34 4012{
c0ff4b85 4013 struct mem_cgroup *memcg;
90deb788 4014 struct page_cgroup *pc;
54595fe2 4015 int ret;
8c7c6e34 4016
90deb788
JW
4017 pc = lookup_page_cgroup(page);
4018 /*
4019 * Every swap fault against a single page tries to charge the
4020 * page, bail as early as possible. shmem_unuse() encounters
4021 * already charged pages, too. The USED bit is protected by
4022 * the page lock, which serializes swap cache removal, which
4023 * in turn serializes uncharging.
4024 */
4025 if (PageCgroupUsed(pc))
4026 return 0;
8c7c6e34
KH
4027 if (!do_swap_account)
4028 goto charge_cur_mm;
c0ff4b85
R
4029 memcg = try_get_mem_cgroup_from_page(page);
4030 if (!memcg)
54595fe2 4031 goto charge_cur_mm;
72835c86
JW
4032 *memcgp = memcg;
4033 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 4034 css_put(&memcg->css);
38c5d72f
KH
4035 if (ret == -EINTR)
4036 ret = 0;
54595fe2 4037 return ret;
8c7c6e34 4038charge_cur_mm:
38c5d72f
KH
4039 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4040 if (ret == -EINTR)
4041 ret = 0;
4042 return ret;
8c7c6e34
KH
4043}
4044
0435a2fd
JW
4045int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4046 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4047{
4048 *memcgp = NULL;
4049 if (mem_cgroup_disabled())
4050 return 0;
bdf4f4d2
JW
4051 /*
4052 * A racing thread's fault, or swapoff, may have already
4053 * updated the pte, and even removed page from swap cache: in
4054 * those cases unuse_pte()'s pte_same() test will fail; but
4055 * there's also a KSM case which does need to charge the page.
4056 */
4057 if (!PageSwapCache(page)) {
4058 int ret;
4059
4060 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4061 if (ret == -EINTR)
4062 ret = 0;
4063 return ret;
4064 }
0435a2fd
JW
4065 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4066}
4067
827a03d2
JW
4068void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4069{
4070 if (mem_cgroup_disabled())
4071 return;
4072 if (!memcg)
4073 return;
4074 __mem_cgroup_cancel_charge(memcg, 1);
4075}
4076
83aae4c7 4077static void
72835c86 4078__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4079 enum charge_type ctype)
7a81b88c 4080{
f8d66542 4081 if (mem_cgroup_disabled())
7a81b88c 4082 return;
72835c86 4083 if (!memcg)
7a81b88c 4084 return;
5a6475a4 4085
ce587e65 4086 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4087 /*
4088 * Now swap is on-memory. This means this page may be
4089 * counted both as mem and swap....double count.
03f3c433
KH
4090 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4091 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4092 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4093 */
03f3c433 4094 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4095 swp_entry_t ent = {.val = page_private(page)};
86493009 4096 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4097 }
7a81b88c
KH
4098}
4099
72835c86
JW
4100void mem_cgroup_commit_charge_swapin(struct page *page,
4101 struct mem_cgroup *memcg)
83aae4c7 4102{
72835c86 4103 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4104 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4105}
4106
827a03d2
JW
4107int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4108 gfp_t gfp_mask)
7a81b88c 4109{
827a03d2
JW
4110 struct mem_cgroup *memcg = NULL;
4111 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4112 int ret;
4113
f8d66542 4114 if (mem_cgroup_disabled())
827a03d2
JW
4115 return 0;
4116 if (PageCompound(page))
4117 return 0;
4118
827a03d2
JW
4119 if (!PageSwapCache(page))
4120 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4121 else { /* page is swapcache/shmem */
0435a2fd
JW
4122 ret = __mem_cgroup_try_charge_swapin(mm, page,
4123 gfp_mask, &memcg);
827a03d2
JW
4124 if (!ret)
4125 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4126 }
4127 return ret;
7a81b88c
KH
4128}
4129
c0ff4b85 4130static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4131 unsigned int nr_pages,
4132 const enum charge_type ctype)
569b846d
KH
4133{
4134 struct memcg_batch_info *batch = NULL;
4135 bool uncharge_memsw = true;
7ec99d62 4136
569b846d
KH
4137 /* If swapout, usage of swap doesn't decrease */
4138 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4139 uncharge_memsw = false;
569b846d
KH
4140
4141 batch = &current->memcg_batch;
4142 /*
4143 * In usual, we do css_get() when we remember memcg pointer.
4144 * But in this case, we keep res->usage until end of a series of
4145 * uncharges. Then, it's ok to ignore memcg's refcnt.
4146 */
4147 if (!batch->memcg)
c0ff4b85 4148 batch->memcg = memcg;
3c11ecf4
KH
4149 /*
4150 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4151 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4152 * the same cgroup and we have chance to coalesce uncharges.
4153 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4154 * because we want to do uncharge as soon as possible.
4155 */
4156
4157 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4158 goto direct_uncharge;
4159
7ec99d62 4160 if (nr_pages > 1)
ec168510
AA
4161 goto direct_uncharge;
4162
569b846d
KH
4163 /*
4164 * In typical case, batch->memcg == mem. This means we can
4165 * merge a series of uncharges to an uncharge of res_counter.
4166 * If not, we uncharge res_counter ony by one.
4167 */
c0ff4b85 4168 if (batch->memcg != memcg)
569b846d
KH
4169 goto direct_uncharge;
4170 /* remember freed charge and uncharge it later */
7ffd4ca7 4171 batch->nr_pages++;
569b846d 4172 if (uncharge_memsw)
7ffd4ca7 4173 batch->memsw_nr_pages++;
569b846d
KH
4174 return;
4175direct_uncharge:
c0ff4b85 4176 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4177 if (uncharge_memsw)
c0ff4b85
R
4178 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4179 if (unlikely(batch->memcg != memcg))
4180 memcg_oom_recover(memcg);
569b846d 4181}
7a81b88c 4182
8a9f3ccd 4183/*
69029cd5 4184 * uncharge if !page_mapped(page)
8a9f3ccd 4185 */
8c7c6e34 4186static struct mem_cgroup *
0030f535
JW
4187__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4188 bool end_migration)
8a9f3ccd 4189{
c0ff4b85 4190 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4191 unsigned int nr_pages = 1;
4192 struct page_cgroup *pc;
b2402857 4193 bool anon;
8a9f3ccd 4194
f8d66542 4195 if (mem_cgroup_disabled())
8c7c6e34 4196 return NULL;
4077960e 4197
37c2ac78 4198 if (PageTransHuge(page)) {
7ec99d62 4199 nr_pages <<= compound_order(page);
37c2ac78
AA
4200 VM_BUG_ON(!PageTransHuge(page));
4201 }
8697d331 4202 /*
3c541e14 4203 * Check if our page_cgroup is valid
8697d331 4204 */
52d4b9ac 4205 pc = lookup_page_cgroup(page);
cfa44946 4206 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4207 return NULL;
b9c565d5 4208
52d4b9ac 4209 lock_page_cgroup(pc);
d13d1443 4210
c0ff4b85 4211 memcg = pc->mem_cgroup;
8c7c6e34 4212
d13d1443
KH
4213 if (!PageCgroupUsed(pc))
4214 goto unlock_out;
4215
b2402857
KH
4216 anon = PageAnon(page);
4217
d13d1443 4218 switch (ctype) {
41326c17 4219 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4220 /*
4221 * Generally PageAnon tells if it's the anon statistics to be
4222 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4223 * used before page reached the stage of being marked PageAnon.
4224 */
b2402857
KH
4225 anon = true;
4226 /* fallthrough */
8a9478ca 4227 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4228 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4229 if (page_mapped(page))
4230 goto unlock_out;
4231 /*
4232 * Pages under migration may not be uncharged. But
4233 * end_migration() /must/ be the one uncharging the
4234 * unused post-migration page and so it has to call
4235 * here with the migration bit still set. See the
4236 * res_counter handling below.
4237 */
4238 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4239 goto unlock_out;
4240 break;
4241 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4242 if (!PageAnon(page)) { /* Shared memory */
4243 if (page->mapping && !page_is_file_cache(page))
4244 goto unlock_out;
4245 } else if (page_mapped(page)) /* Anon */
4246 goto unlock_out;
4247 break;
4248 default:
4249 break;
52d4b9ac 4250 }
d13d1443 4251
b070e65c 4252 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4253
52d4b9ac 4254 ClearPageCgroupUsed(pc);
544122e5
KH
4255 /*
4256 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4257 * freed from LRU. This is safe because uncharged page is expected not
4258 * to be reused (freed soon). Exception is SwapCache, it's handled by
4259 * special functions.
4260 */
b9c565d5 4261
52d4b9ac 4262 unlock_page_cgroup(pc);
f75ca962 4263 /*
c0ff4b85 4264 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4265 * will never be freed, so it's safe to call css_get().
f75ca962 4266 */
c0ff4b85 4267 memcg_check_events(memcg, page);
f75ca962 4268 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4269 mem_cgroup_swap_statistics(memcg, true);
4050377b 4270 css_get(&memcg->css);
f75ca962 4271 }
0030f535
JW
4272 /*
4273 * Migration does not charge the res_counter for the
4274 * replacement page, so leave it alone when phasing out the
4275 * page that is unused after the migration.
4276 */
4277 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4278 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4279
c0ff4b85 4280 return memcg;
d13d1443
KH
4281
4282unlock_out:
4283 unlock_page_cgroup(pc);
8c7c6e34 4284 return NULL;
3c541e14
BS
4285}
4286
69029cd5
KH
4287void mem_cgroup_uncharge_page(struct page *page)
4288{
52d4b9ac
KH
4289 /* early check. */
4290 if (page_mapped(page))
4291 return;
40f23a21 4292 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4293 /*
4294 * If the page is in swap cache, uncharge should be deferred
4295 * to the swap path, which also properly accounts swap usage
4296 * and handles memcg lifetime.
4297 *
4298 * Note that this check is not stable and reclaim may add the
4299 * page to swap cache at any time after this. However, if the
4300 * page is not in swap cache by the time page->mapcount hits
4301 * 0, there won't be any page table references to the swap
4302 * slot, and reclaim will free it and not actually write the
4303 * page to disk.
4304 */
0c59b89c
JW
4305 if (PageSwapCache(page))
4306 return;
0030f535 4307 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4308}
4309
4310void mem_cgroup_uncharge_cache_page(struct page *page)
4311{
4312 VM_BUG_ON(page_mapped(page));
b7abea96 4313 VM_BUG_ON(page->mapping);
0030f535 4314 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4315}
4316
569b846d
KH
4317/*
4318 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4319 * In that cases, pages are freed continuously and we can expect pages
4320 * are in the same memcg. All these calls itself limits the number of
4321 * pages freed at once, then uncharge_start/end() is called properly.
4322 * This may be called prural(2) times in a context,
4323 */
4324
4325void mem_cgroup_uncharge_start(void)
4326{
4327 current->memcg_batch.do_batch++;
4328 /* We can do nest. */
4329 if (current->memcg_batch.do_batch == 1) {
4330 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4331 current->memcg_batch.nr_pages = 0;
4332 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4333 }
4334}
4335
4336void mem_cgroup_uncharge_end(void)
4337{
4338 struct memcg_batch_info *batch = &current->memcg_batch;
4339
4340 if (!batch->do_batch)
4341 return;
4342
4343 batch->do_batch--;
4344 if (batch->do_batch) /* If stacked, do nothing. */
4345 return;
4346
4347 if (!batch->memcg)
4348 return;
4349 /*
4350 * This "batch->memcg" is valid without any css_get/put etc...
4351 * bacause we hide charges behind us.
4352 */
7ffd4ca7
JW
4353 if (batch->nr_pages)
4354 res_counter_uncharge(&batch->memcg->res,
4355 batch->nr_pages * PAGE_SIZE);
4356 if (batch->memsw_nr_pages)
4357 res_counter_uncharge(&batch->memcg->memsw,
4358 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4359 memcg_oom_recover(batch->memcg);
569b846d
KH
4360 /* forget this pointer (for sanity check) */
4361 batch->memcg = NULL;
4362}
4363
e767e056 4364#ifdef CONFIG_SWAP
8c7c6e34 4365/*
e767e056 4366 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4367 * memcg information is recorded to swap_cgroup of "ent"
4368 */
8a9478ca
KH
4369void
4370mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4371{
4372 struct mem_cgroup *memcg;
8a9478ca
KH
4373 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4374
4375 if (!swapout) /* this was a swap cache but the swap is unused ! */
4376 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4377
0030f535 4378 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4379
f75ca962
KH
4380 /*
4381 * record memcg information, if swapout && memcg != NULL,
4050377b 4382 * css_get() was called in uncharge().
f75ca962
KH
4383 */
4384 if (do_swap_account && swapout && memcg)
a3b2d692 4385 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4386}
e767e056 4387#endif
8c7c6e34 4388
c255a458 4389#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4390/*
4391 * called from swap_entry_free(). remove record in swap_cgroup and
4392 * uncharge "memsw" account.
4393 */
4394void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4395{
8c7c6e34 4396 struct mem_cgroup *memcg;
a3b2d692 4397 unsigned short id;
8c7c6e34
KH
4398
4399 if (!do_swap_account)
4400 return;
4401
a3b2d692
KH
4402 id = swap_cgroup_record(ent, 0);
4403 rcu_read_lock();
4404 memcg = mem_cgroup_lookup(id);
8c7c6e34 4405 if (memcg) {
a3b2d692
KH
4406 /*
4407 * We uncharge this because swap is freed.
4408 * This memcg can be obsolete one. We avoid calling css_tryget
4409 */
0c3e73e8 4410 if (!mem_cgroup_is_root(memcg))
4e649152 4411 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4412 mem_cgroup_swap_statistics(memcg, false);
4050377b 4413 css_put(&memcg->css);
8c7c6e34 4414 }
a3b2d692 4415 rcu_read_unlock();
d13d1443 4416}
02491447
DN
4417
4418/**
4419 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4420 * @entry: swap entry to be moved
4421 * @from: mem_cgroup which the entry is moved from
4422 * @to: mem_cgroup which the entry is moved to
4423 *
4424 * It succeeds only when the swap_cgroup's record for this entry is the same
4425 * as the mem_cgroup's id of @from.
4426 *
4427 * Returns 0 on success, -EINVAL on failure.
4428 *
4429 * The caller must have charged to @to, IOW, called res_counter_charge() about
4430 * both res and memsw, and called css_get().
4431 */
4432static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4433 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4434{
4435 unsigned short old_id, new_id;
4436
4437 old_id = css_id(&from->css);
4438 new_id = css_id(&to->css);
4439
4440 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4441 mem_cgroup_swap_statistics(from, false);
483c30b5 4442 mem_cgroup_swap_statistics(to, true);
02491447 4443 /*
483c30b5
DN
4444 * This function is only called from task migration context now.
4445 * It postpones res_counter and refcount handling till the end
4446 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4447 * improvement. But we cannot postpone css_get(to) because if
4448 * the process that has been moved to @to does swap-in, the
4449 * refcount of @to might be decreased to 0.
4450 *
4451 * We are in attach() phase, so the cgroup is guaranteed to be
4452 * alive, so we can just call css_get().
02491447 4453 */
4050377b 4454 css_get(&to->css);
02491447
DN
4455 return 0;
4456 }
4457 return -EINVAL;
4458}
4459#else
4460static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4461 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4462{
4463 return -EINVAL;
4464}
8c7c6e34 4465#endif
d13d1443 4466
ae41be37 4467/*
01b1ae63
KH
4468 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4469 * page belongs to.
ae41be37 4470 */
0030f535
JW
4471void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4472 struct mem_cgroup **memcgp)
ae41be37 4473{
c0ff4b85 4474 struct mem_cgroup *memcg = NULL;
b32967ff 4475 unsigned int nr_pages = 1;
7ec99d62 4476 struct page_cgroup *pc;
ac39cf8c 4477 enum charge_type ctype;
8869b8f6 4478
72835c86 4479 *memcgp = NULL;
56039efa 4480
f8d66542 4481 if (mem_cgroup_disabled())
0030f535 4482 return;
4077960e 4483
b32967ff
MG
4484 if (PageTransHuge(page))
4485 nr_pages <<= compound_order(page);
4486
52d4b9ac
KH
4487 pc = lookup_page_cgroup(page);
4488 lock_page_cgroup(pc);
4489 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4490 memcg = pc->mem_cgroup;
4491 css_get(&memcg->css);
ac39cf8c 4492 /*
4493 * At migrating an anonymous page, its mapcount goes down
4494 * to 0 and uncharge() will be called. But, even if it's fully
4495 * unmapped, migration may fail and this page has to be
4496 * charged again. We set MIGRATION flag here and delay uncharge
4497 * until end_migration() is called
4498 *
4499 * Corner Case Thinking
4500 * A)
4501 * When the old page was mapped as Anon and it's unmap-and-freed
4502 * while migration was ongoing.
4503 * If unmap finds the old page, uncharge() of it will be delayed
4504 * until end_migration(). If unmap finds a new page, it's
4505 * uncharged when it make mapcount to be 1->0. If unmap code
4506 * finds swap_migration_entry, the new page will not be mapped
4507 * and end_migration() will find it(mapcount==0).
4508 *
4509 * B)
4510 * When the old page was mapped but migraion fails, the kernel
4511 * remaps it. A charge for it is kept by MIGRATION flag even
4512 * if mapcount goes down to 0. We can do remap successfully
4513 * without charging it again.
4514 *
4515 * C)
4516 * The "old" page is under lock_page() until the end of
4517 * migration, so, the old page itself will not be swapped-out.
4518 * If the new page is swapped out before end_migraton, our
4519 * hook to usual swap-out path will catch the event.
4520 */
4521 if (PageAnon(page))
4522 SetPageCgroupMigration(pc);
e8589cc1 4523 }
52d4b9ac 4524 unlock_page_cgroup(pc);
ac39cf8c 4525 /*
4526 * If the page is not charged at this point,
4527 * we return here.
4528 */
c0ff4b85 4529 if (!memcg)
0030f535 4530 return;
01b1ae63 4531
72835c86 4532 *memcgp = memcg;
ac39cf8c 4533 /*
4534 * We charge new page before it's used/mapped. So, even if unlock_page()
4535 * is called before end_migration, we can catch all events on this new
4536 * page. In the case new page is migrated but not remapped, new page's
4537 * mapcount will be finally 0 and we call uncharge in end_migration().
4538 */
ac39cf8c 4539 if (PageAnon(page))
41326c17 4540 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4541 else
62ba7442 4542 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4543 /*
4544 * The page is committed to the memcg, but it's not actually
4545 * charged to the res_counter since we plan on replacing the
4546 * old one and only one page is going to be left afterwards.
4547 */
b32967ff 4548 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4549}
8869b8f6 4550
69029cd5 4551/* remove redundant charge if migration failed*/
c0ff4b85 4552void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4553 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4554{
ac39cf8c 4555 struct page *used, *unused;
01b1ae63 4556 struct page_cgroup *pc;
b2402857 4557 bool anon;
01b1ae63 4558
c0ff4b85 4559 if (!memcg)
01b1ae63 4560 return;
b25ed609 4561
50de1dd9 4562 if (!migration_ok) {
ac39cf8c 4563 used = oldpage;
4564 unused = newpage;
01b1ae63 4565 } else {
ac39cf8c 4566 used = newpage;
01b1ae63
KH
4567 unused = oldpage;
4568 }
0030f535 4569 anon = PageAnon(used);
7d188958
JW
4570 __mem_cgroup_uncharge_common(unused,
4571 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4572 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4573 true);
0030f535 4574 css_put(&memcg->css);
69029cd5 4575 /*
ac39cf8c 4576 * We disallowed uncharge of pages under migration because mapcount
4577 * of the page goes down to zero, temporarly.
4578 * Clear the flag and check the page should be charged.
01b1ae63 4579 */
ac39cf8c 4580 pc = lookup_page_cgroup(oldpage);
4581 lock_page_cgroup(pc);
4582 ClearPageCgroupMigration(pc);
4583 unlock_page_cgroup(pc);
ac39cf8c 4584
01b1ae63 4585 /*
ac39cf8c 4586 * If a page is a file cache, radix-tree replacement is very atomic
4587 * and we can skip this check. When it was an Anon page, its mapcount
4588 * goes down to 0. But because we added MIGRATION flage, it's not
4589 * uncharged yet. There are several case but page->mapcount check
4590 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4591 * check. (see prepare_charge() also)
69029cd5 4592 */
b2402857 4593 if (anon)
ac39cf8c 4594 mem_cgroup_uncharge_page(used);
ae41be37 4595}
78fb7466 4596
ab936cbc
KH
4597/*
4598 * At replace page cache, newpage is not under any memcg but it's on
4599 * LRU. So, this function doesn't touch res_counter but handles LRU
4600 * in correct way. Both pages are locked so we cannot race with uncharge.
4601 */
4602void mem_cgroup_replace_page_cache(struct page *oldpage,
4603 struct page *newpage)
4604{
bde05d1c 4605 struct mem_cgroup *memcg = NULL;
ab936cbc 4606 struct page_cgroup *pc;
ab936cbc 4607 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4608
4609 if (mem_cgroup_disabled())
4610 return;
4611
4612 pc = lookup_page_cgroup(oldpage);
4613 /* fix accounting on old pages */
4614 lock_page_cgroup(pc);
bde05d1c
HD
4615 if (PageCgroupUsed(pc)) {
4616 memcg = pc->mem_cgroup;
b070e65c 4617 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4618 ClearPageCgroupUsed(pc);
4619 }
ab936cbc
KH
4620 unlock_page_cgroup(pc);
4621
bde05d1c
HD
4622 /*
4623 * When called from shmem_replace_page(), in some cases the
4624 * oldpage has already been charged, and in some cases not.
4625 */
4626 if (!memcg)
4627 return;
ab936cbc
KH
4628 /*
4629 * Even if newpage->mapping was NULL before starting replacement,
4630 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4631 * LRU while we overwrite pc->mem_cgroup.
4632 */
ce587e65 4633 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4634}
4635
f212ad7c
DN
4636#ifdef CONFIG_DEBUG_VM
4637static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4638{
4639 struct page_cgroup *pc;
4640
4641 pc = lookup_page_cgroup(page);
cfa44946
JW
4642 /*
4643 * Can be NULL while feeding pages into the page allocator for
4644 * the first time, i.e. during boot or memory hotplug;
4645 * or when mem_cgroup_disabled().
4646 */
f212ad7c
DN
4647 if (likely(pc) && PageCgroupUsed(pc))
4648 return pc;
4649 return NULL;
4650}
4651
4652bool mem_cgroup_bad_page_check(struct page *page)
4653{
4654 if (mem_cgroup_disabled())
4655 return false;
4656
4657 return lookup_page_cgroup_used(page) != NULL;
4658}
4659
4660void mem_cgroup_print_bad_page(struct page *page)
4661{
4662 struct page_cgroup *pc;
4663
4664 pc = lookup_page_cgroup_used(page);
4665 if (pc) {
d045197f
AM
4666 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4667 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4668 }
4669}
4670#endif
4671
d38d2a75 4672static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4673 unsigned long long val)
628f4235 4674{
81d39c20 4675 int retry_count;
3c11ecf4 4676 u64 memswlimit, memlimit;
628f4235 4677 int ret = 0;
81d39c20
KH
4678 int children = mem_cgroup_count_children(memcg);
4679 u64 curusage, oldusage;
3c11ecf4 4680 int enlarge;
81d39c20
KH
4681
4682 /*
4683 * For keeping hierarchical_reclaim simple, how long we should retry
4684 * is depends on callers. We set our retry-count to be function
4685 * of # of children which we should visit in this loop.
4686 */
4687 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4688
4689 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4690
3c11ecf4 4691 enlarge = 0;
8c7c6e34 4692 while (retry_count) {
628f4235
KH
4693 if (signal_pending(current)) {
4694 ret = -EINTR;
4695 break;
4696 }
8c7c6e34
KH
4697 /*
4698 * Rather than hide all in some function, I do this in
4699 * open coded manner. You see what this really does.
aaad153e 4700 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4701 */
4702 mutex_lock(&set_limit_mutex);
4703 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4704 if (memswlimit < val) {
4705 ret = -EINVAL;
4706 mutex_unlock(&set_limit_mutex);
628f4235
KH
4707 break;
4708 }
3c11ecf4
KH
4709
4710 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4711 if (memlimit < val)
4712 enlarge = 1;
4713
8c7c6e34 4714 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4715 if (!ret) {
4716 if (memswlimit == val)
4717 memcg->memsw_is_minimum = true;
4718 else
4719 memcg->memsw_is_minimum = false;
4720 }
8c7c6e34
KH
4721 mutex_unlock(&set_limit_mutex);
4722
4723 if (!ret)
4724 break;
4725
5660048c
JW
4726 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4727 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4728 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4729 /* Usage is reduced ? */
f894ffa8 4730 if (curusage >= oldusage)
81d39c20
KH
4731 retry_count--;
4732 else
4733 oldusage = curusage;
8c7c6e34 4734 }
3c11ecf4
KH
4735 if (!ret && enlarge)
4736 memcg_oom_recover(memcg);
14797e23 4737
8c7c6e34
KH
4738 return ret;
4739}
4740
338c8431
LZ
4741static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4742 unsigned long long val)
8c7c6e34 4743{
81d39c20 4744 int retry_count;
3c11ecf4 4745 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4746 int children = mem_cgroup_count_children(memcg);
4747 int ret = -EBUSY;
3c11ecf4 4748 int enlarge = 0;
8c7c6e34 4749
81d39c20 4750 /* see mem_cgroup_resize_res_limit */
f894ffa8 4751 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4752 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4753 while (retry_count) {
4754 if (signal_pending(current)) {
4755 ret = -EINTR;
4756 break;
4757 }
4758 /*
4759 * Rather than hide all in some function, I do this in
4760 * open coded manner. You see what this really does.
aaad153e 4761 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4762 */
4763 mutex_lock(&set_limit_mutex);
4764 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4765 if (memlimit > val) {
4766 ret = -EINVAL;
4767 mutex_unlock(&set_limit_mutex);
4768 break;
4769 }
3c11ecf4
KH
4770 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4771 if (memswlimit < val)
4772 enlarge = 1;
8c7c6e34 4773 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4774 if (!ret) {
4775 if (memlimit == val)
4776 memcg->memsw_is_minimum = true;
4777 else
4778 memcg->memsw_is_minimum = false;
4779 }
8c7c6e34
KH
4780 mutex_unlock(&set_limit_mutex);
4781
4782 if (!ret)
4783 break;
4784
5660048c
JW
4785 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4786 MEM_CGROUP_RECLAIM_NOSWAP |
4787 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4788 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4789 /* Usage is reduced ? */
8c7c6e34 4790 if (curusage >= oldusage)
628f4235 4791 retry_count--;
81d39c20
KH
4792 else
4793 oldusage = curusage;
628f4235 4794 }
3c11ecf4
KH
4795 if (!ret && enlarge)
4796 memcg_oom_recover(memcg);
628f4235
KH
4797 return ret;
4798}
4799
0608f43d
AM
4800unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4801 gfp_t gfp_mask,
4802 unsigned long *total_scanned)
4803{
4804 unsigned long nr_reclaimed = 0;
4805 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4806 unsigned long reclaimed;
4807 int loop = 0;
4808 struct mem_cgroup_tree_per_zone *mctz;
4809 unsigned long long excess;
4810 unsigned long nr_scanned;
4811
4812 if (order > 0)
4813 return 0;
4814
4815 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4816 /*
4817 * This loop can run a while, specially if mem_cgroup's continuously
4818 * keep exceeding their soft limit and putting the system under
4819 * pressure
4820 */
4821 do {
4822 if (next_mz)
4823 mz = next_mz;
4824 else
4825 mz = mem_cgroup_largest_soft_limit_node(mctz);
4826 if (!mz)
4827 break;
4828
4829 nr_scanned = 0;
4830 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4831 gfp_mask, &nr_scanned);
4832 nr_reclaimed += reclaimed;
4833 *total_scanned += nr_scanned;
4834 spin_lock(&mctz->lock);
4835
4836 /*
4837 * If we failed to reclaim anything from this memory cgroup
4838 * it is time to move on to the next cgroup
4839 */
4840 next_mz = NULL;
4841 if (!reclaimed) {
4842 do {
4843 /*
4844 * Loop until we find yet another one.
4845 *
4846 * By the time we get the soft_limit lock
4847 * again, someone might have aded the
4848 * group back on the RB tree. Iterate to
4849 * make sure we get a different mem.
4850 * mem_cgroup_largest_soft_limit_node returns
4851 * NULL if no other cgroup is present on
4852 * the tree
4853 */
4854 next_mz =
4855 __mem_cgroup_largest_soft_limit_node(mctz);
4856 if (next_mz == mz)
4857 css_put(&next_mz->memcg->css);
4858 else /* next_mz == NULL or other memcg */
4859 break;
4860 } while (1);
4861 }
4862 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4863 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4864 /*
4865 * One school of thought says that we should not add
4866 * back the node to the tree if reclaim returns 0.
4867 * But our reclaim could return 0, simply because due
4868 * to priority we are exposing a smaller subset of
4869 * memory to reclaim from. Consider this as a longer
4870 * term TODO.
4871 */
4872 /* If excess == 0, no tree ops */
4873 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4874 spin_unlock(&mctz->lock);
4875 css_put(&mz->memcg->css);
4876 loop++;
4877 /*
4878 * Could not reclaim anything and there are no more
4879 * mem cgroups to try or we seem to be looping without
4880 * reclaiming anything.
4881 */
4882 if (!nr_reclaimed &&
4883 (next_mz == NULL ||
4884 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4885 break;
4886 } while (!nr_reclaimed);
4887 if (next_mz)
4888 css_put(&next_mz->memcg->css);
4889 return nr_reclaimed;
4890}
4891
2ef37d3f
MH
4892/**
4893 * mem_cgroup_force_empty_list - clears LRU of a group
4894 * @memcg: group to clear
4895 * @node: NUMA node
4896 * @zid: zone id
4897 * @lru: lru to to clear
4898 *
3c935d18 4899 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4900 * reclaim the pages page themselves - pages are moved to the parent (or root)
4901 * group.
cc847582 4902 */
2ef37d3f 4903static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4904 int node, int zid, enum lru_list lru)
cc847582 4905{
bea8c150 4906 struct lruvec *lruvec;
2ef37d3f 4907 unsigned long flags;
072c56c1 4908 struct list_head *list;
925b7673
JW
4909 struct page *busy;
4910 struct zone *zone;
072c56c1 4911
08e552c6 4912 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4913 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4914 list = &lruvec->lists[lru];
cc847582 4915
f817ed48 4916 busy = NULL;
2ef37d3f 4917 do {
925b7673 4918 struct page_cgroup *pc;
5564e88b
JW
4919 struct page *page;
4920
08e552c6 4921 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4922 if (list_empty(list)) {
08e552c6 4923 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4924 break;
f817ed48 4925 }
925b7673
JW
4926 page = list_entry(list->prev, struct page, lru);
4927 if (busy == page) {
4928 list_move(&page->lru, list);
648bcc77 4929 busy = NULL;
08e552c6 4930 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4931 continue;
4932 }
08e552c6 4933 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4934
925b7673 4935 pc = lookup_page_cgroup(page);
5564e88b 4936
3c935d18 4937 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4938 /* found lock contention or "pc" is obsolete. */
925b7673 4939 busy = page;
f817ed48
KH
4940 cond_resched();
4941 } else
4942 busy = NULL;
2ef37d3f 4943 } while (!list_empty(list));
cc847582
KH
4944}
4945
4946/*
c26251f9
MH
4947 * make mem_cgroup's charge to be 0 if there is no task by moving
4948 * all the charges and pages to the parent.
cc847582 4949 * This enables deleting this mem_cgroup.
c26251f9
MH
4950 *
4951 * Caller is responsible for holding css reference on the memcg.
cc847582 4952 */
ab5196c2 4953static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4954{
c26251f9 4955 int node, zid;
bea207c8 4956 u64 usage;
f817ed48 4957
fce66477 4958 do {
52d4b9ac
KH
4959 /* This is for making all *used* pages to be on LRU. */
4960 lru_add_drain_all();
c0ff4b85 4961 drain_all_stock_sync(memcg);
c0ff4b85 4962 mem_cgroup_start_move(memcg);
31aaea4a 4963 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4964 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4965 enum lru_list lru;
4966 for_each_lru(lru) {
2ef37d3f 4967 mem_cgroup_force_empty_list(memcg,
f156ab93 4968 node, zid, lru);
f817ed48 4969 }
1ecaab2b 4970 }
f817ed48 4971 }
c0ff4b85
R
4972 mem_cgroup_end_move(memcg);
4973 memcg_oom_recover(memcg);
52d4b9ac 4974 cond_resched();
f817ed48 4975
2ef37d3f 4976 /*
bea207c8
GC
4977 * Kernel memory may not necessarily be trackable to a specific
4978 * process. So they are not migrated, and therefore we can't
4979 * expect their value to drop to 0 here.
4980 * Having res filled up with kmem only is enough.
4981 *
2ef37d3f
MH
4982 * This is a safety check because mem_cgroup_force_empty_list
4983 * could have raced with mem_cgroup_replace_page_cache callers
4984 * so the lru seemed empty but the page could have been added
4985 * right after the check. RES_USAGE should be safe as we always
4986 * charge before adding to the LRU.
4987 */
bea207c8
GC
4988 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4989 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4990 } while (usage > 0);
c26251f9
MH
4991}
4992
b5f99b53
GC
4993static inline bool memcg_has_children(struct mem_cgroup *memcg)
4994{
696ac172
JW
4995 lockdep_assert_held(&memcg_create_mutex);
4996 /*
4997 * The lock does not prevent addition or deletion to the list
4998 * of children, but it prevents a new child from being
4999 * initialized based on this parent in css_online(), so it's
5000 * enough to decide whether hierarchically inherited
5001 * attributes can still be changed or not.
5002 */
5003 return memcg->use_hierarchy &&
5004 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
5005}
5006
c26251f9
MH
5007/*
5008 * Reclaims as many pages from the given memcg as possible and moves
5009 * the rest to the parent.
5010 *
5011 * Caller is responsible for holding css reference for memcg.
5012 */
5013static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5014{
5015 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5016 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 5017
c1e862c1 5018 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
5019 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5020 return -EBUSY;
5021
c1e862c1
KH
5022 /* we call try-to-free pages for make this cgroup empty */
5023 lru_add_drain_all();
f817ed48 5024 /* try to free all pages in this cgroup */
569530fb 5025 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 5026 int progress;
c1e862c1 5027
c26251f9
MH
5028 if (signal_pending(current))
5029 return -EINTR;
5030
c0ff4b85 5031 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 5032 false);
c1e862c1 5033 if (!progress) {
f817ed48 5034 nr_retries--;
c1e862c1 5035 /* maybe some writeback is necessary */
8aa7e847 5036 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 5037 }
f817ed48
KH
5038
5039 }
08e552c6 5040 lru_add_drain();
ab5196c2
MH
5041 mem_cgroup_reparent_charges(memcg);
5042
5043 return 0;
cc847582
KH
5044}
5045
182446d0
TH
5046static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5047 unsigned int event)
c1e862c1 5048{
182446d0 5049 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 5050
d8423011
MH
5051 if (mem_cgroup_is_root(memcg))
5052 return -EINVAL;
c33bd835 5053 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
5054}
5055
182446d0
TH
5056static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5057 struct cftype *cft)
18f59ea7 5058{
182446d0 5059 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5060}
5061
182446d0
TH
5062static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5063 struct cftype *cft, u64 val)
18f59ea7
BS
5064{
5065 int retval = 0;
182446d0 5066 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5067 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5068
0999821b 5069 mutex_lock(&memcg_create_mutex);
567fb435
GC
5070
5071 if (memcg->use_hierarchy == val)
5072 goto out;
5073
18f59ea7 5074 /*
af901ca1 5075 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5076 * in the child subtrees. If it is unset, then the change can
5077 * occur, provided the current cgroup has no children.
5078 *
5079 * For the root cgroup, parent_mem is NULL, we allow value to be
5080 * set if there are no children.
5081 */
c0ff4b85 5082 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5083 (val == 1 || val == 0)) {
696ac172 5084 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 5085 memcg->use_hierarchy = val;
18f59ea7
BS
5086 else
5087 retval = -EBUSY;
5088 } else
5089 retval = -EINVAL;
567fb435
GC
5090
5091out:
0999821b 5092 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5093
5094 return retval;
5095}
5096
0c3e73e8 5097
c0ff4b85 5098static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5099 enum mem_cgroup_stat_index idx)
0c3e73e8 5100{
7d74b06f 5101 struct mem_cgroup *iter;
7a159cc9 5102 long val = 0;
0c3e73e8 5103
7a159cc9 5104 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5105 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5106 val += mem_cgroup_read_stat(iter, idx);
5107
5108 if (val < 0) /* race ? */
5109 val = 0;
5110 return val;
0c3e73e8
BS
5111}
5112
c0ff4b85 5113static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5114{
7d74b06f 5115 u64 val;
104f3928 5116
c0ff4b85 5117 if (!mem_cgroup_is_root(memcg)) {
104f3928 5118 if (!swap)
65c64ce8 5119 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5120 else
65c64ce8 5121 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5122 }
5123
b070e65c
DR
5124 /*
5125 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5126 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5127 */
c0ff4b85
R
5128 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5129 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5130
7d74b06f 5131 if (swap)
bff6bb83 5132 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5133
5134 return val << PAGE_SHIFT;
5135}
5136
182446d0
TH
5137static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5138 struct cftype *cft, struct file *file,
5139 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 5140{
182446d0 5141 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 5142 char str[64];
104f3928 5143 u64 val;
86ae53e1
GC
5144 int name, len;
5145 enum res_type type;
8c7c6e34
KH
5146
5147 type = MEMFILE_TYPE(cft->private);
5148 name = MEMFILE_ATTR(cft->private);
af36f906 5149
8c7c6e34
KH
5150 switch (type) {
5151 case _MEM:
104f3928 5152 if (name == RES_USAGE)
c0ff4b85 5153 val = mem_cgroup_usage(memcg, false);
104f3928 5154 else
c0ff4b85 5155 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5156 break;
5157 case _MEMSWAP:
104f3928 5158 if (name == RES_USAGE)
c0ff4b85 5159 val = mem_cgroup_usage(memcg, true);
104f3928 5160 else
c0ff4b85 5161 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5162 break;
510fc4e1
GC
5163 case _KMEM:
5164 val = res_counter_read_u64(&memcg->kmem, name);
5165 break;
8c7c6e34
KH
5166 default:
5167 BUG();
8c7c6e34 5168 }
af36f906
TH
5169
5170 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5171 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5172}
510fc4e1 5173
182446d0 5174static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5175{
5176 int ret = -EINVAL;
5177#ifdef CONFIG_MEMCG_KMEM
182446d0 5178 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5179 /*
5180 * For simplicity, we won't allow this to be disabled. It also can't
5181 * be changed if the cgroup has children already, or if tasks had
5182 * already joined.
5183 *
5184 * If tasks join before we set the limit, a person looking at
5185 * kmem.usage_in_bytes will have no way to determine when it took
5186 * place, which makes the value quite meaningless.
5187 *
5188 * After it first became limited, changes in the value of the limit are
5189 * of course permitted.
510fc4e1 5190 */
0999821b 5191 mutex_lock(&memcg_create_mutex);
510fc4e1 5192 mutex_lock(&set_limit_mutex);
6de5a8bf 5193 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 5194 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5195 ret = -EBUSY;
5196 goto out;
5197 }
5198 ret = res_counter_set_limit(&memcg->kmem, val);
5199 VM_BUG_ON(ret);
5200
55007d84
GC
5201 ret = memcg_update_cache_sizes(memcg);
5202 if (ret) {
6de5a8bf 5203 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
5204 goto out;
5205 }
692e89ab
GC
5206 static_key_slow_inc(&memcg_kmem_enabled_key);
5207 /*
5208 * setting the active bit after the inc will guarantee no one
5209 * starts accounting before all call sites are patched
5210 */
5211 memcg_kmem_set_active(memcg);
510fc4e1
GC
5212 } else
5213 ret = res_counter_set_limit(&memcg->kmem, val);
5214out:
5215 mutex_unlock(&set_limit_mutex);
0999821b 5216 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5217#endif
5218 return ret;
5219}
5220
6d043990 5221#ifdef CONFIG_MEMCG_KMEM
55007d84 5222static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5223{
55007d84 5224 int ret = 0;
510fc4e1
GC
5225 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5226 if (!parent)
55007d84
GC
5227 goto out;
5228
510fc4e1 5229 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5230 /*
5231 * When that happen, we need to disable the static branch only on those
5232 * memcgs that enabled it. To achieve this, we would be forced to
5233 * complicate the code by keeping track of which memcgs were the ones
5234 * that actually enabled limits, and which ones got it from its
5235 * parents.
5236 *
5237 * It is a lot simpler just to do static_key_slow_inc() on every child
5238 * that is accounted.
5239 */
55007d84
GC
5240 if (!memcg_kmem_is_active(memcg))
5241 goto out;
5242
5243 /*
10d5ebf4
LZ
5244 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5245 * memcg is active already. If the later initialization fails then the
5246 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5247 */
55007d84
GC
5248 static_key_slow_inc(&memcg_kmem_enabled_key);
5249
5250 mutex_lock(&set_limit_mutex);
425c598d 5251 memcg_stop_kmem_account();
55007d84 5252 ret = memcg_update_cache_sizes(memcg);
425c598d 5253 memcg_resume_kmem_account();
55007d84 5254 mutex_unlock(&set_limit_mutex);
55007d84
GC
5255out:
5256 return ret;
510fc4e1 5257}
6d043990 5258#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5259
628f4235
KH
5260/*
5261 * The user of this function is...
5262 * RES_LIMIT.
5263 */
182446d0 5264static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5265 const char *buffer)
8cdea7c0 5266{
182446d0 5267 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5268 enum res_type type;
5269 int name;
628f4235
KH
5270 unsigned long long val;
5271 int ret;
5272
8c7c6e34
KH
5273 type = MEMFILE_TYPE(cft->private);
5274 name = MEMFILE_ATTR(cft->private);
af36f906 5275
8c7c6e34 5276 switch (name) {
628f4235 5277 case RES_LIMIT:
4b3bde4c
BS
5278 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5279 ret = -EINVAL;
5280 break;
5281 }
628f4235
KH
5282 /* This function does all necessary parse...reuse it */
5283 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5284 if (ret)
5285 break;
5286 if (type == _MEM)
628f4235 5287 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5288 else if (type == _MEMSWAP)
8c7c6e34 5289 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5290 else if (type == _KMEM)
182446d0 5291 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5292 else
5293 return -EINVAL;
628f4235 5294 break;
296c81d8
BS
5295 case RES_SOFT_LIMIT:
5296 ret = res_counter_memparse_write_strategy(buffer, &val);
5297 if (ret)
5298 break;
5299 /*
5300 * For memsw, soft limits are hard to implement in terms
5301 * of semantics, for now, we support soft limits for
5302 * control without swap
5303 */
5304 if (type == _MEM)
5305 ret = res_counter_set_soft_limit(&memcg->res, val);
5306 else
5307 ret = -EINVAL;
5308 break;
628f4235
KH
5309 default:
5310 ret = -EINVAL; /* should be BUG() ? */
5311 break;
5312 }
5313 return ret;
8cdea7c0
BS
5314}
5315
fee7b548
KH
5316static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5317 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5318{
fee7b548
KH
5319 unsigned long long min_limit, min_memsw_limit, tmp;
5320
5321 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5322 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5323 if (!memcg->use_hierarchy)
5324 goto out;
5325
63876986
TH
5326 while (css_parent(&memcg->css)) {
5327 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5328 if (!memcg->use_hierarchy)
5329 break;
5330 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5331 min_limit = min(min_limit, tmp);
5332 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5333 min_memsw_limit = min(min_memsw_limit, tmp);
5334 }
5335out:
5336 *mem_limit = min_limit;
5337 *memsw_limit = min_memsw_limit;
fee7b548
KH
5338}
5339
182446d0 5340static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5341{
182446d0 5342 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5343 int name;
5344 enum res_type type;
c84872e1 5345
8c7c6e34
KH
5346 type = MEMFILE_TYPE(event);
5347 name = MEMFILE_ATTR(event);
af36f906 5348
8c7c6e34 5349 switch (name) {
29f2a4da 5350 case RES_MAX_USAGE:
8c7c6e34 5351 if (type == _MEM)
c0ff4b85 5352 res_counter_reset_max(&memcg->res);
510fc4e1 5353 else if (type == _MEMSWAP)
c0ff4b85 5354 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5355 else if (type == _KMEM)
5356 res_counter_reset_max(&memcg->kmem);
5357 else
5358 return -EINVAL;
29f2a4da
PE
5359 break;
5360 case RES_FAILCNT:
8c7c6e34 5361 if (type == _MEM)
c0ff4b85 5362 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5363 else if (type == _MEMSWAP)
c0ff4b85 5364 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5365 else if (type == _KMEM)
5366 res_counter_reset_failcnt(&memcg->kmem);
5367 else
5368 return -EINVAL;
29f2a4da
PE
5369 break;
5370 }
f64c3f54 5371
85cc59db 5372 return 0;
c84872e1
PE
5373}
5374
182446d0 5375static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5376 struct cftype *cft)
5377{
182446d0 5378 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5379}
5380
02491447 5381#ifdef CONFIG_MMU
182446d0 5382static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5383 struct cftype *cft, u64 val)
5384{
182446d0 5385 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5386
5387 if (val >= (1 << NR_MOVE_TYPE))
5388 return -EINVAL;
ee5e8472 5389
7dc74be0 5390 /*
ee5e8472
GC
5391 * No kind of locking is needed in here, because ->can_attach() will
5392 * check this value once in the beginning of the process, and then carry
5393 * on with stale data. This means that changes to this value will only
5394 * affect task migrations starting after the change.
7dc74be0 5395 */
c0ff4b85 5396 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5397 return 0;
5398}
02491447 5399#else
182446d0 5400static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5401 struct cftype *cft, u64 val)
5402{
5403 return -ENOSYS;
5404}
5405#endif
7dc74be0 5406
406eb0c9 5407#ifdef CONFIG_NUMA
182446d0
TH
5408static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5409 struct cftype *cft, struct seq_file *m)
406eb0c9
YH
5410{
5411 int nid;
5412 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5413 unsigned long node_nr;
182446d0 5414 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5415
d79154bb 5416 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5417 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5418 for_each_node_state(nid, N_MEMORY) {
d79154bb 5419 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5420 seq_printf(m, " N%d=%lu", nid, node_nr);
5421 }
5422 seq_putc(m, '\n');
5423
d79154bb 5424 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5425 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5426 for_each_node_state(nid, N_MEMORY) {
d79154bb 5427 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5428 LRU_ALL_FILE);
406eb0c9
YH
5429 seq_printf(m, " N%d=%lu", nid, node_nr);
5430 }
5431 seq_putc(m, '\n');
5432
d79154bb 5433 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5434 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5435 for_each_node_state(nid, N_MEMORY) {
d79154bb 5436 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5437 LRU_ALL_ANON);
406eb0c9
YH
5438 seq_printf(m, " N%d=%lu", nid, node_nr);
5439 }
5440 seq_putc(m, '\n');
5441
d79154bb 5442 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5443 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5444 for_each_node_state(nid, N_MEMORY) {
d79154bb 5445 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5446 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5447 seq_printf(m, " N%d=%lu", nid, node_nr);
5448 }
5449 seq_putc(m, '\n');
5450 return 0;
5451}
5452#endif /* CONFIG_NUMA */
5453
af7c4b0e
JW
5454static inline void mem_cgroup_lru_names_not_uptodate(void)
5455{
5456 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5457}
5458
182446d0 5459static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5460 struct seq_file *m)
d2ceb9b7 5461{
182446d0 5462 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5463 struct mem_cgroup *mi;
5464 unsigned int i;
406eb0c9 5465
af7c4b0e 5466 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5467 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5468 continue;
af7c4b0e
JW
5469 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5470 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5471 }
7b854121 5472
af7c4b0e
JW
5473 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5474 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5475 mem_cgroup_read_events(memcg, i));
5476
5477 for (i = 0; i < NR_LRU_LISTS; i++)
5478 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5479 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5480
14067bb3 5481 /* Hierarchical information */
fee7b548
KH
5482 {
5483 unsigned long long limit, memsw_limit;
d79154bb 5484 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5485 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5486 if (do_swap_account)
78ccf5b5
JW
5487 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5488 memsw_limit);
fee7b548 5489 }
7f016ee8 5490
af7c4b0e
JW
5491 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5492 long long val = 0;
5493
bff6bb83 5494 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5495 continue;
af7c4b0e
JW
5496 for_each_mem_cgroup_tree(mi, memcg)
5497 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5498 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5499 }
5500
5501 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5502 unsigned long long val = 0;
5503
5504 for_each_mem_cgroup_tree(mi, memcg)
5505 val += mem_cgroup_read_events(mi, i);
5506 seq_printf(m, "total_%s %llu\n",
5507 mem_cgroup_events_names[i], val);
5508 }
5509
5510 for (i = 0; i < NR_LRU_LISTS; i++) {
5511 unsigned long long val = 0;
5512
5513 for_each_mem_cgroup_tree(mi, memcg)
5514 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5515 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5516 }
14067bb3 5517
7f016ee8 5518#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5519 {
5520 int nid, zid;
5521 struct mem_cgroup_per_zone *mz;
89abfab1 5522 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5523 unsigned long recent_rotated[2] = {0, 0};
5524 unsigned long recent_scanned[2] = {0, 0};
5525
5526 for_each_online_node(nid)
5527 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5528 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5529 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5530
89abfab1
HD
5531 recent_rotated[0] += rstat->recent_rotated[0];
5532 recent_rotated[1] += rstat->recent_rotated[1];
5533 recent_scanned[0] += rstat->recent_scanned[0];
5534 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5535 }
78ccf5b5
JW
5536 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5537 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5538 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5539 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5540 }
5541#endif
5542
d2ceb9b7
KH
5543 return 0;
5544}
5545
182446d0
TH
5546static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5547 struct cftype *cft)
a7885eb8 5548{
182446d0 5549 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5550
1f4c025b 5551 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5552}
5553
182446d0
TH
5554static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5555 struct cftype *cft, u64 val)
a7885eb8 5556{
182446d0 5557 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5558 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5559
63876986 5560 if (val > 100 || !parent)
a7885eb8
KM
5561 return -EINVAL;
5562
0999821b 5563 mutex_lock(&memcg_create_mutex);
068b38c1 5564
a7885eb8 5565 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5566 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5567 mutex_unlock(&memcg_create_mutex);
a7885eb8 5568 return -EINVAL;
068b38c1 5569 }
a7885eb8 5570
a7885eb8 5571 memcg->swappiness = val;
a7885eb8 5572
0999821b 5573 mutex_unlock(&memcg_create_mutex);
068b38c1 5574
a7885eb8
KM
5575 return 0;
5576}
5577
2e72b634
KS
5578static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5579{
5580 struct mem_cgroup_threshold_ary *t;
5581 u64 usage;
5582 int i;
5583
5584 rcu_read_lock();
5585 if (!swap)
2c488db2 5586 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5587 else
2c488db2 5588 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5589
5590 if (!t)
5591 goto unlock;
5592
5593 usage = mem_cgroup_usage(memcg, swap);
5594
5595 /*
748dad36 5596 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5597 * If it's not true, a threshold was crossed after last
5598 * call of __mem_cgroup_threshold().
5599 */
5407a562 5600 i = t->current_threshold;
2e72b634
KS
5601
5602 /*
5603 * Iterate backward over array of thresholds starting from
5604 * current_threshold and check if a threshold is crossed.
5605 * If none of thresholds below usage is crossed, we read
5606 * only one element of the array here.
5607 */
5608 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5609 eventfd_signal(t->entries[i].eventfd, 1);
5610
5611 /* i = current_threshold + 1 */
5612 i++;
5613
5614 /*
5615 * Iterate forward over array of thresholds starting from
5616 * current_threshold+1 and check if a threshold is crossed.
5617 * If none of thresholds above usage is crossed, we read
5618 * only one element of the array here.
5619 */
5620 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5621 eventfd_signal(t->entries[i].eventfd, 1);
5622
5623 /* Update current_threshold */
5407a562 5624 t->current_threshold = i - 1;
2e72b634
KS
5625unlock:
5626 rcu_read_unlock();
5627}
5628
5629static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5630{
ad4ca5f4
KS
5631 while (memcg) {
5632 __mem_cgroup_threshold(memcg, false);
5633 if (do_swap_account)
5634 __mem_cgroup_threshold(memcg, true);
5635
5636 memcg = parent_mem_cgroup(memcg);
5637 }
2e72b634
KS
5638}
5639
5640static int compare_thresholds(const void *a, const void *b)
5641{
5642 const struct mem_cgroup_threshold *_a = a;
5643 const struct mem_cgroup_threshold *_b = b;
5644
2bff24a3
GT
5645 if (_a->threshold > _b->threshold)
5646 return 1;
5647
5648 if (_a->threshold < _b->threshold)
5649 return -1;
5650
5651 return 0;
2e72b634
KS
5652}
5653
c0ff4b85 5654static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5655{
5656 struct mem_cgroup_eventfd_list *ev;
5657
c0ff4b85 5658 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5659 eventfd_signal(ev->eventfd, 1);
5660 return 0;
5661}
5662
c0ff4b85 5663static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5664{
7d74b06f
KH
5665 struct mem_cgroup *iter;
5666
c0ff4b85 5667 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5668 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5669}
5670
81eeaf04 5671static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
9490ff27 5672 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634 5673{
81eeaf04 5674 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5675 struct mem_cgroup_thresholds *thresholds;
5676 struct mem_cgroup_threshold_ary *new;
86ae53e1 5677 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5678 u64 threshold, usage;
2c488db2 5679 int i, size, ret;
2e72b634
KS
5680
5681 ret = res_counter_memparse_write_strategy(args, &threshold);
5682 if (ret)
5683 return ret;
5684
5685 mutex_lock(&memcg->thresholds_lock);
2c488db2 5686
2e72b634 5687 if (type == _MEM)
2c488db2 5688 thresholds = &memcg->thresholds;
2e72b634 5689 else if (type == _MEMSWAP)
2c488db2 5690 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5691 else
5692 BUG();
5693
5694 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5695
5696 /* Check if a threshold crossed before adding a new one */
2c488db2 5697 if (thresholds->primary)
2e72b634
KS
5698 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5699
2c488db2 5700 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5701
5702 /* Allocate memory for new array of thresholds */
2c488db2 5703 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5704 GFP_KERNEL);
2c488db2 5705 if (!new) {
2e72b634
KS
5706 ret = -ENOMEM;
5707 goto unlock;
5708 }
2c488db2 5709 new->size = size;
2e72b634
KS
5710
5711 /* Copy thresholds (if any) to new array */
2c488db2
KS
5712 if (thresholds->primary) {
5713 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5714 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5715 }
5716
2e72b634 5717 /* Add new threshold */
2c488db2
KS
5718 new->entries[size - 1].eventfd = eventfd;
5719 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5720
5721 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5722 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5723 compare_thresholds, NULL);
5724
5725 /* Find current threshold */
2c488db2 5726 new->current_threshold = -1;
2e72b634 5727 for (i = 0; i < size; i++) {
748dad36 5728 if (new->entries[i].threshold <= usage) {
2e72b634 5729 /*
2c488db2
KS
5730 * new->current_threshold will not be used until
5731 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5732 * it here.
5733 */
2c488db2 5734 ++new->current_threshold;
748dad36
SZ
5735 } else
5736 break;
2e72b634
KS
5737 }
5738
2c488db2
KS
5739 /* Free old spare buffer and save old primary buffer as spare */
5740 kfree(thresholds->spare);
5741 thresholds->spare = thresholds->primary;
5742
5743 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5744
907860ed 5745 /* To be sure that nobody uses thresholds */
2e72b634
KS
5746 synchronize_rcu();
5747
2e72b634
KS
5748unlock:
5749 mutex_unlock(&memcg->thresholds_lock);
5750
5751 return ret;
5752}
5753
81eeaf04 5754static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
9490ff27 5755 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634 5756{
81eeaf04 5757 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5758 struct mem_cgroup_thresholds *thresholds;
5759 struct mem_cgroup_threshold_ary *new;
86ae53e1 5760 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5761 u64 usage;
2c488db2 5762 int i, j, size;
2e72b634
KS
5763
5764 mutex_lock(&memcg->thresholds_lock);
5765 if (type == _MEM)
2c488db2 5766 thresholds = &memcg->thresholds;
2e72b634 5767 else if (type == _MEMSWAP)
2c488db2 5768 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5769 else
5770 BUG();
5771
371528ca
AV
5772 if (!thresholds->primary)
5773 goto unlock;
5774
2e72b634
KS
5775 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5776
5777 /* Check if a threshold crossed before removing */
5778 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5779
5780 /* Calculate new number of threshold */
2c488db2
KS
5781 size = 0;
5782 for (i = 0; i < thresholds->primary->size; i++) {
5783 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5784 size++;
5785 }
5786
2c488db2 5787 new = thresholds->spare;
907860ed 5788
2e72b634
KS
5789 /* Set thresholds array to NULL if we don't have thresholds */
5790 if (!size) {
2c488db2
KS
5791 kfree(new);
5792 new = NULL;
907860ed 5793 goto swap_buffers;
2e72b634
KS
5794 }
5795
2c488db2 5796 new->size = size;
2e72b634
KS
5797
5798 /* Copy thresholds and find current threshold */
2c488db2
KS
5799 new->current_threshold = -1;
5800 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5801 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5802 continue;
5803
2c488db2 5804 new->entries[j] = thresholds->primary->entries[i];
748dad36 5805 if (new->entries[j].threshold <= usage) {
2e72b634 5806 /*
2c488db2 5807 * new->current_threshold will not be used
2e72b634
KS
5808 * until rcu_assign_pointer(), so it's safe to increment
5809 * it here.
5810 */
2c488db2 5811 ++new->current_threshold;
2e72b634
KS
5812 }
5813 j++;
5814 }
5815
907860ed 5816swap_buffers:
2c488db2
KS
5817 /* Swap primary and spare array */
5818 thresholds->spare = thresholds->primary;
8c757763
SZ
5819 /* If all events are unregistered, free the spare array */
5820 if (!new) {
5821 kfree(thresholds->spare);
5822 thresholds->spare = NULL;
5823 }
5824
2c488db2 5825 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5826
907860ed 5827 /* To be sure that nobody uses thresholds */
2e72b634 5828 synchronize_rcu();
371528ca 5829unlock:
2e72b634 5830 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5831}
c1e862c1 5832
81eeaf04 5833static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
9490ff27
KH
5834 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5835{
81eeaf04 5836 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5837 struct mem_cgroup_eventfd_list *event;
86ae53e1 5838 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5839
5840 BUG_ON(type != _OOM_TYPE);
5841 event = kmalloc(sizeof(*event), GFP_KERNEL);
5842 if (!event)
5843 return -ENOMEM;
5844
1af8efe9 5845 spin_lock(&memcg_oom_lock);
9490ff27
KH
5846
5847 event->eventfd = eventfd;
5848 list_add(&event->list, &memcg->oom_notify);
5849
5850 /* already in OOM ? */
79dfdacc 5851 if (atomic_read(&memcg->under_oom))
9490ff27 5852 eventfd_signal(eventfd, 1);
1af8efe9 5853 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5854
5855 return 0;
5856}
5857
81eeaf04 5858static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
9490ff27
KH
5859 struct cftype *cft, struct eventfd_ctx *eventfd)
5860{
81eeaf04 5861 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5862 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5863 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5864
5865 BUG_ON(type != _OOM_TYPE);
5866
1af8efe9 5867 spin_lock(&memcg_oom_lock);
9490ff27 5868
c0ff4b85 5869 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5870 if (ev->eventfd == eventfd) {
5871 list_del(&ev->list);
5872 kfree(ev);
5873 }
5874 }
5875
1af8efe9 5876 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5877}
5878
182446d0 5879static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5880 struct cftype *cft, struct cgroup_map_cb *cb)
5881{
182446d0 5882 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5883
c0ff4b85 5884 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5885
c0ff4b85 5886 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5887 cb->fill(cb, "under_oom", 1);
5888 else
5889 cb->fill(cb, "under_oom", 0);
5890 return 0;
5891}
5892
182446d0 5893static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5894 struct cftype *cft, u64 val)
5895{
182446d0 5896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5897 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5898
5899 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5900 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5901 return -EINVAL;
5902
0999821b 5903 mutex_lock(&memcg_create_mutex);
3c11ecf4 5904 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5905 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5906 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5907 return -EINVAL;
5908 }
c0ff4b85 5909 memcg->oom_kill_disable = val;
4d845ebf 5910 if (!val)
c0ff4b85 5911 memcg_oom_recover(memcg);
0999821b 5912 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5913 return 0;
5914}
5915
c255a458 5916#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5917static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5918{
55007d84
GC
5919 int ret;
5920
2633d7a0 5921 memcg->kmemcg_id = -1;
55007d84
GC
5922 ret = memcg_propagate_kmem(memcg);
5923 if (ret)
5924 return ret;
2633d7a0 5925
1d62e436 5926 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5927}
e5671dfa 5928
10d5ebf4 5929static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5930{
1d62e436 5931 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5932}
5933
5934static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5935{
5936 if (!memcg_kmem_is_active(memcg))
5937 return;
5938
5939 /*
5940 * kmem charges can outlive the cgroup. In the case of slab
5941 * pages, for instance, a page contain objects from various
5942 * processes. As we prevent from taking a reference for every
5943 * such allocation we have to be careful when doing uncharge
5944 * (see memcg_uncharge_kmem) and here during offlining.
5945 *
5946 * The idea is that that only the _last_ uncharge which sees
5947 * the dead memcg will drop the last reference. An additional
5948 * reference is taken here before the group is marked dead
5949 * which is then paired with css_put during uncharge resp. here.
5950 *
5951 * Although this might sound strange as this path is called from
5952 * css_offline() when the referencemight have dropped down to 0
5953 * and shouldn't be incremented anymore (css_tryget would fail)
5954 * we do not have other options because of the kmem allocations
5955 * lifetime.
5956 */
5957 css_get(&memcg->css);
7de37682
GC
5958
5959 memcg_kmem_mark_dead(memcg);
5960
5961 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5962 return;
5963
7de37682 5964 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5965 css_put(&memcg->css);
d1a4c0b3 5966}
e5671dfa 5967#else
cbe128e3 5968static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5969{
5970 return 0;
5971}
d1a4c0b3 5972
10d5ebf4
LZ
5973static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5974{
5975}
5976
5977static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5978{
5979}
e5671dfa
GC
5980#endif
5981
79bd9814
TH
5982/*
5983 * Unregister event and free resources.
5984 *
5985 * Gets called from workqueue.
5986 */
5987static void cgroup_event_remove(struct work_struct *work)
5988{
5989 struct cgroup_event *event = container_of(work, struct cgroup_event,
5990 remove);
5991 struct cgroup_subsys_state *css = event->css;
5992
5993 remove_wait_queue(event->wqh, &event->wait);
5994
5995 event->cft->unregister_event(css, event->cft, event->eventfd);
5996
5997 /* Notify userspace the event is going away. */
5998 eventfd_signal(event->eventfd, 1);
5999
6000 eventfd_ctx_put(event->eventfd);
6001 kfree(event);
6002 css_put(css);
6003}
6004
6005/*
6006 * Gets called on POLLHUP on eventfd when user closes it.
6007 *
6008 * Called with wqh->lock held and interrupts disabled.
6009 */
6010static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
6011 int sync, void *key)
6012{
6013 struct cgroup_event *event = container_of(wait,
6014 struct cgroup_event, wait);
6015 struct cgroup *cgrp = event->css->cgroup;
6016 unsigned long flags = (unsigned long)key;
6017
6018 if (flags & POLLHUP) {
6019 /*
6020 * If the event has been detached at cgroup removal, we
6021 * can simply return knowing the other side will cleanup
6022 * for us.
6023 *
6024 * We can't race against event freeing since the other
6025 * side will require wqh->lock via remove_wait_queue(),
6026 * which we hold.
6027 */
6028 spin_lock(&cgrp->event_list_lock);
6029 if (!list_empty(&event->list)) {
6030 list_del_init(&event->list);
6031 /*
6032 * We are in atomic context, but cgroup_event_remove()
6033 * may sleep, so we have to call it in workqueue.
6034 */
6035 schedule_work(&event->remove);
6036 }
6037 spin_unlock(&cgrp->event_list_lock);
6038 }
6039
6040 return 0;
6041}
6042
6043static void cgroup_event_ptable_queue_proc(struct file *file,
6044 wait_queue_head_t *wqh, poll_table *pt)
6045{
6046 struct cgroup_event *event = container_of(pt,
6047 struct cgroup_event, pt);
6048
6049 event->wqh = wqh;
6050 add_wait_queue(wqh, &event->wait);
6051}
6052
6053/*
6054 * Parse input and register new cgroup event handler.
6055 *
6056 * Input must be in format '<event_fd> <control_fd> <args>'.
6057 * Interpretation of args is defined by control file implementation.
6058 */
6059static int cgroup_write_event_control(struct cgroup_subsys_state *dummy_css,
6060 struct cftype *cft, const char *buffer)
6061{
6062 struct cgroup *cgrp = dummy_css->cgroup;
6063 struct cgroup_event *event;
6064 struct cgroup_subsys_state *cfile_css;
6065 unsigned int efd, cfd;
6066 struct fd efile;
6067 struct fd cfile;
6068 char *endp;
6069 int ret;
6070
6071 efd = simple_strtoul(buffer, &endp, 10);
6072 if (*endp != ' ')
6073 return -EINVAL;
6074 buffer = endp + 1;
6075
6076 cfd = simple_strtoul(buffer, &endp, 10);
6077 if ((*endp != ' ') && (*endp != '\0'))
6078 return -EINVAL;
6079 buffer = endp + 1;
6080
6081 event = kzalloc(sizeof(*event), GFP_KERNEL);
6082 if (!event)
6083 return -ENOMEM;
6084
6085 INIT_LIST_HEAD(&event->list);
6086 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
6087 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
6088 INIT_WORK(&event->remove, cgroup_event_remove);
6089
6090 efile = fdget(efd);
6091 if (!efile.file) {
6092 ret = -EBADF;
6093 goto out_kfree;
6094 }
6095
6096 event->eventfd = eventfd_ctx_fileget(efile.file);
6097 if (IS_ERR(event->eventfd)) {
6098 ret = PTR_ERR(event->eventfd);
6099 goto out_put_efile;
6100 }
6101
6102 cfile = fdget(cfd);
6103 if (!cfile.file) {
6104 ret = -EBADF;
6105 goto out_put_eventfd;
6106 }
6107
6108 /* the process need read permission on control file */
6109 /* AV: shouldn't we check that it's been opened for read instead? */
6110 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6111 if (ret < 0)
6112 goto out_put_cfile;
6113
6114 event->cft = __file_cft(cfile.file);
6115 if (IS_ERR(event->cft)) {
6116 ret = PTR_ERR(event->cft);
6117 goto out_put_cfile;
6118 }
6119
6120 if (!event->cft->ss) {
6121 ret = -EBADF;
6122 goto out_put_cfile;
6123 }
6124
6125 /*
6126 * Determine the css of @cfile, verify it belongs to the same
6127 * cgroup as cgroup.event_control, and associate @event with it.
6128 * Remaining events are automatically removed on cgroup destruction
6129 * but the removal is asynchronous, so take an extra ref.
6130 */
6131 rcu_read_lock();
6132
6133 ret = -EINVAL;
6134 event->css = cgroup_css(cgrp, event->cft->ss);
6135 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent, event->cft->ss);
6136 if (event->css && event->css == cfile_css && css_tryget(event->css))
6137 ret = 0;
6138
6139 rcu_read_unlock();
6140 if (ret)
6141 goto out_put_cfile;
6142
6143 if (!event->cft->register_event || !event->cft->unregister_event) {
6144 ret = -EINVAL;
6145 goto out_put_css;
6146 }
6147
6148 ret = event->cft->register_event(event->css, event->cft,
6149 event->eventfd, buffer);
6150 if (ret)
6151 goto out_put_css;
6152
6153 efile.file->f_op->poll(efile.file, &event->pt);
6154
6155 spin_lock(&cgrp->event_list_lock);
6156 list_add(&event->list, &cgrp->event_list);
6157 spin_unlock(&cgrp->event_list_lock);
6158
6159 fdput(cfile);
6160 fdput(efile);
6161
6162 return 0;
6163
6164out_put_css:
6165 css_put(event->css);
6166out_put_cfile:
6167 fdput(cfile);
6168out_put_eventfd:
6169 eventfd_ctx_put(event->eventfd);
6170out_put_efile:
6171 fdput(efile);
6172out_kfree:
6173 kfree(event);
6174
6175 return ret;
6176}
6177
8cdea7c0
BS
6178static struct cftype mem_cgroup_files[] = {
6179 {
0eea1030 6180 .name = "usage_in_bytes",
8c7c6e34 6181 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 6182 .read = mem_cgroup_read,
9490ff27
KH
6183 .register_event = mem_cgroup_usage_register_event,
6184 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 6185 },
c84872e1
PE
6186 {
6187 .name = "max_usage_in_bytes",
8c7c6e34 6188 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6189 .trigger = mem_cgroup_reset,
af36f906 6190 .read = mem_cgroup_read,
c84872e1 6191 },
8cdea7c0 6192 {
0eea1030 6193 .name = "limit_in_bytes",
8c7c6e34 6194 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6195 .write_string = mem_cgroup_write,
af36f906 6196 .read = mem_cgroup_read,
8cdea7c0 6197 },
296c81d8
BS
6198 {
6199 .name = "soft_limit_in_bytes",
6200 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6201 .write_string = mem_cgroup_write,
af36f906 6202 .read = mem_cgroup_read,
296c81d8 6203 },
8cdea7c0
BS
6204 {
6205 .name = "failcnt",
8c7c6e34 6206 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6207 .trigger = mem_cgroup_reset,
af36f906 6208 .read = mem_cgroup_read,
8cdea7c0 6209 },
d2ceb9b7
KH
6210 {
6211 .name = "stat",
ab215884 6212 .read_seq_string = memcg_stat_show,
d2ceb9b7 6213 },
c1e862c1
KH
6214 {
6215 .name = "force_empty",
6216 .trigger = mem_cgroup_force_empty_write,
6217 },
18f59ea7
BS
6218 {
6219 .name = "use_hierarchy",
f00baae7 6220 .flags = CFTYPE_INSANE,
18f59ea7
BS
6221 .write_u64 = mem_cgroup_hierarchy_write,
6222 .read_u64 = mem_cgroup_hierarchy_read,
6223 },
79bd9814
TH
6224 {
6225 .name = "cgroup.event_control",
6226 .write_string = cgroup_write_event_control,
6227 .flags = CFTYPE_NO_PREFIX,
6228 .mode = S_IWUGO,
6229 },
a7885eb8
KM
6230 {
6231 .name = "swappiness",
6232 .read_u64 = mem_cgroup_swappiness_read,
6233 .write_u64 = mem_cgroup_swappiness_write,
6234 },
7dc74be0
DN
6235 {
6236 .name = "move_charge_at_immigrate",
6237 .read_u64 = mem_cgroup_move_charge_read,
6238 .write_u64 = mem_cgroup_move_charge_write,
6239 },
9490ff27
KH
6240 {
6241 .name = "oom_control",
3c11ecf4
KH
6242 .read_map = mem_cgroup_oom_control_read,
6243 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6244 .register_event = mem_cgroup_oom_register_event,
6245 .unregister_event = mem_cgroup_oom_unregister_event,
6246 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6247 },
70ddf637
AV
6248 {
6249 .name = "pressure_level",
6250 .register_event = vmpressure_register_event,
6251 .unregister_event = vmpressure_unregister_event,
6252 },
406eb0c9
YH
6253#ifdef CONFIG_NUMA
6254 {
6255 .name = "numa_stat",
ab215884 6256 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
6257 },
6258#endif
510fc4e1
GC
6259#ifdef CONFIG_MEMCG_KMEM
6260 {
6261 .name = "kmem.limit_in_bytes",
6262 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6263 .write_string = mem_cgroup_write,
6264 .read = mem_cgroup_read,
6265 },
6266 {
6267 .name = "kmem.usage_in_bytes",
6268 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6269 .read = mem_cgroup_read,
6270 },
6271 {
6272 .name = "kmem.failcnt",
6273 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6274 .trigger = mem_cgroup_reset,
6275 .read = mem_cgroup_read,
6276 },
6277 {
6278 .name = "kmem.max_usage_in_bytes",
6279 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6280 .trigger = mem_cgroup_reset,
6281 .read = mem_cgroup_read,
6282 },
749c5415
GC
6283#ifdef CONFIG_SLABINFO
6284 {
6285 .name = "kmem.slabinfo",
6286 .read_seq_string = mem_cgroup_slabinfo_read,
6287 },
6288#endif
8c7c6e34 6289#endif
6bc10349 6290 { }, /* terminate */
af36f906 6291};
8c7c6e34 6292
2d11085e
MH
6293#ifdef CONFIG_MEMCG_SWAP
6294static struct cftype memsw_cgroup_files[] = {
6295 {
6296 .name = "memsw.usage_in_bytes",
6297 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6298 .read = mem_cgroup_read,
6299 .register_event = mem_cgroup_usage_register_event,
6300 .unregister_event = mem_cgroup_usage_unregister_event,
6301 },
6302 {
6303 .name = "memsw.max_usage_in_bytes",
6304 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6305 .trigger = mem_cgroup_reset,
6306 .read = mem_cgroup_read,
6307 },
6308 {
6309 .name = "memsw.limit_in_bytes",
6310 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6311 .write_string = mem_cgroup_write,
6312 .read = mem_cgroup_read,
6313 },
6314 {
6315 .name = "memsw.failcnt",
6316 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6317 .trigger = mem_cgroup_reset,
6318 .read = mem_cgroup_read,
6319 },
6320 { }, /* terminate */
6321};
6322#endif
c0ff4b85 6323static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6324{
6325 struct mem_cgroup_per_node *pn;
1ecaab2b 6326 struct mem_cgroup_per_zone *mz;
41e3355d 6327 int zone, tmp = node;
1ecaab2b
KH
6328 /*
6329 * This routine is called against possible nodes.
6330 * But it's BUG to call kmalloc() against offline node.
6331 *
6332 * TODO: this routine can waste much memory for nodes which will
6333 * never be onlined. It's better to use memory hotplug callback
6334 * function.
6335 */
41e3355d
KH
6336 if (!node_state(node, N_NORMAL_MEMORY))
6337 tmp = -1;
17295c88 6338 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6339 if (!pn)
6340 return 1;
1ecaab2b 6341
1ecaab2b
KH
6342 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6343 mz = &pn->zoneinfo[zone];
bea8c150 6344 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6345 mz->usage_in_excess = 0;
6346 mz->on_tree = false;
d79154bb 6347 mz->memcg = memcg;
1ecaab2b 6348 }
54f72fe0 6349 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6350 return 0;
6351}
6352
c0ff4b85 6353static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6354{
54f72fe0 6355 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6356}
6357
33327948
KH
6358static struct mem_cgroup *mem_cgroup_alloc(void)
6359{
d79154bb 6360 struct mem_cgroup *memcg;
45cf7ebd 6361 size_t size = memcg_size();
33327948 6362
45cf7ebd 6363 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6364 if (size < PAGE_SIZE)
d79154bb 6365 memcg = kzalloc(size, GFP_KERNEL);
33327948 6366 else
d79154bb 6367 memcg = vzalloc(size);
33327948 6368
d79154bb 6369 if (!memcg)
e7bbcdf3
DC
6370 return NULL;
6371
d79154bb
HD
6372 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6373 if (!memcg->stat)
d2e61b8d 6374 goto out_free;
d79154bb
HD
6375 spin_lock_init(&memcg->pcp_counter_lock);
6376 return memcg;
d2e61b8d
DC
6377
6378out_free:
6379 if (size < PAGE_SIZE)
d79154bb 6380 kfree(memcg);
d2e61b8d 6381 else
d79154bb 6382 vfree(memcg);
d2e61b8d 6383 return NULL;
33327948
KH
6384}
6385
59927fb9 6386/*
c8b2a36f
GC
6387 * At destroying mem_cgroup, references from swap_cgroup can remain.
6388 * (scanning all at force_empty is too costly...)
6389 *
6390 * Instead of clearing all references at force_empty, we remember
6391 * the number of reference from swap_cgroup and free mem_cgroup when
6392 * it goes down to 0.
6393 *
6394 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6395 */
c8b2a36f
GC
6396
6397static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6398{
c8b2a36f 6399 int node;
45cf7ebd 6400 size_t size = memcg_size();
59927fb9 6401
bb4cc1a8 6402 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6403 free_css_id(&mem_cgroup_subsys, &memcg->css);
6404
6405 for_each_node(node)
6406 free_mem_cgroup_per_zone_info(memcg, node);
6407
6408 free_percpu(memcg->stat);
6409
3f134619
GC
6410 /*
6411 * We need to make sure that (at least for now), the jump label
6412 * destruction code runs outside of the cgroup lock. This is because
6413 * get_online_cpus(), which is called from the static_branch update,
6414 * can't be called inside the cgroup_lock. cpusets are the ones
6415 * enforcing this dependency, so if they ever change, we might as well.
6416 *
6417 * schedule_work() will guarantee this happens. Be careful if you need
6418 * to move this code around, and make sure it is outside
6419 * the cgroup_lock.
6420 */
a8964b9b 6421 disarm_static_keys(memcg);
3afe36b1
GC
6422 if (size < PAGE_SIZE)
6423 kfree(memcg);
6424 else
6425 vfree(memcg);
59927fb9 6426}
3afe36b1 6427
7bcc1bb1
DN
6428/*
6429 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6430 */
e1aab161 6431struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6432{
c0ff4b85 6433 if (!memcg->res.parent)
7bcc1bb1 6434 return NULL;
c0ff4b85 6435 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6436}
e1aab161 6437EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6438
bb4cc1a8
AM
6439static void __init mem_cgroup_soft_limit_tree_init(void)
6440{
6441 struct mem_cgroup_tree_per_node *rtpn;
6442 struct mem_cgroup_tree_per_zone *rtpz;
6443 int tmp, node, zone;
6444
6445 for_each_node(node) {
6446 tmp = node;
6447 if (!node_state(node, N_NORMAL_MEMORY))
6448 tmp = -1;
6449 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6450 BUG_ON(!rtpn);
6451
6452 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6453
6454 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6455 rtpz = &rtpn->rb_tree_per_zone[zone];
6456 rtpz->rb_root = RB_ROOT;
6457 spin_lock_init(&rtpz->lock);
6458 }
6459 }
6460}
6461
0eb253e2 6462static struct cgroup_subsys_state * __ref
eb95419b 6463mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6464{
d142e3e6 6465 struct mem_cgroup *memcg;
04046e1a 6466 long error = -ENOMEM;
6d12e2d8 6467 int node;
8cdea7c0 6468
c0ff4b85
R
6469 memcg = mem_cgroup_alloc();
6470 if (!memcg)
04046e1a 6471 return ERR_PTR(error);
78fb7466 6472
3ed28fa1 6473 for_each_node(node)
c0ff4b85 6474 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6475 goto free_out;
f64c3f54 6476
c077719b 6477 /* root ? */
eb95419b 6478 if (parent_css == NULL) {
a41c58a6 6479 root_mem_cgroup = memcg;
d142e3e6
GC
6480 res_counter_init(&memcg->res, NULL);
6481 res_counter_init(&memcg->memsw, NULL);
6482 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6483 }
28dbc4b6 6484
d142e3e6
GC
6485 memcg->last_scanned_node = MAX_NUMNODES;
6486 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6487 memcg->move_charge_at_immigrate = 0;
6488 mutex_init(&memcg->thresholds_lock);
6489 spin_lock_init(&memcg->move_lock);
70ddf637 6490 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6491
6492 return &memcg->css;
6493
6494free_out:
6495 __mem_cgroup_free(memcg);
6496 return ERR_PTR(error);
6497}
6498
6499static int
eb95419b 6500mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6501{
eb95419b
TH
6502 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6503 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6504 int error = 0;
6505
63876986 6506 if (!parent)
d142e3e6
GC
6507 return 0;
6508
0999821b 6509 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6510
6511 memcg->use_hierarchy = parent->use_hierarchy;
6512 memcg->oom_kill_disable = parent->oom_kill_disable;
6513 memcg->swappiness = mem_cgroup_swappiness(parent);
6514
6515 if (parent->use_hierarchy) {
c0ff4b85
R
6516 res_counter_init(&memcg->res, &parent->res);
6517 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6518 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6519
7bcc1bb1 6520 /*
8d76a979
LZ
6521 * No need to take a reference to the parent because cgroup
6522 * core guarantees its existence.
7bcc1bb1 6523 */
18f59ea7 6524 } else {
c0ff4b85
R
6525 res_counter_init(&memcg->res, NULL);
6526 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6527 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6528 /*
6529 * Deeper hierachy with use_hierarchy == false doesn't make
6530 * much sense so let cgroup subsystem know about this
6531 * unfortunate state in our controller.
6532 */
d142e3e6 6533 if (parent != root_mem_cgroup)
8c7f6edb 6534 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6535 }
cbe128e3
GC
6536
6537 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6538 mutex_unlock(&memcg_create_mutex);
d142e3e6 6539 return error;
8cdea7c0
BS
6540}
6541
5f578161
MH
6542/*
6543 * Announce all parents that a group from their hierarchy is gone.
6544 */
6545static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6546{
6547 struct mem_cgroup *parent = memcg;
6548
6549 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6550 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6551
6552 /*
6553 * if the root memcg is not hierarchical we have to check it
6554 * explicitely.
6555 */
6556 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6557 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6558}
6559
eb95419b 6560static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6561{
eb95419b 6562 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
79bd9814
TH
6563 struct cgroup *cgrp = css->cgroup;
6564 struct cgroup_event *event, *tmp;
6565
6566 /*
6567 * Unregister events and notify userspace.
6568 * Notify userspace about cgroup removing only after rmdir of cgroup
6569 * directory to avoid race between userspace and kernelspace.
6570 */
6571 spin_lock(&cgrp->event_list_lock);
6572 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
6573 list_del_init(&event->list);
6574 schedule_work(&event->remove);
6575 }
6576 spin_unlock(&cgrp->event_list_lock);
ec64f515 6577
10d5ebf4
LZ
6578 kmem_cgroup_css_offline(memcg);
6579
5f578161 6580 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6581 mem_cgroup_reparent_charges(memcg);
1f458cbf 6582 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6583 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6584}
6585
eb95419b 6586static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6587{
eb95419b 6588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6589
10d5ebf4 6590 memcg_destroy_kmem(memcg);
465939a1 6591 __mem_cgroup_free(memcg);
8cdea7c0
BS
6592}
6593
02491447 6594#ifdef CONFIG_MMU
7dc74be0 6595/* Handlers for move charge at task migration. */
854ffa8d
DN
6596#define PRECHARGE_COUNT_AT_ONCE 256
6597static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6598{
854ffa8d
DN
6599 int ret = 0;
6600 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6601 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6602
c0ff4b85 6603 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6604 mc.precharge += count;
6605 /* we don't need css_get for root */
6606 return ret;
6607 }
6608 /* try to charge at once */
6609 if (count > 1) {
6610 struct res_counter *dummy;
6611 /*
c0ff4b85 6612 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6613 * by cgroup_lock_live_cgroup() that it is not removed and we
6614 * are still under the same cgroup_mutex. So we can postpone
6615 * css_get().
6616 */
c0ff4b85 6617 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6618 goto one_by_one;
c0ff4b85 6619 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6620 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6621 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6622 goto one_by_one;
6623 }
6624 mc.precharge += count;
854ffa8d
DN
6625 return ret;
6626 }
6627one_by_one:
6628 /* fall back to one by one charge */
6629 while (count--) {
6630 if (signal_pending(current)) {
6631 ret = -EINTR;
6632 break;
6633 }
6634 if (!batch_count--) {
6635 batch_count = PRECHARGE_COUNT_AT_ONCE;
6636 cond_resched();
6637 }
c0ff4b85
R
6638 ret = __mem_cgroup_try_charge(NULL,
6639 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6640 if (ret)
854ffa8d 6641 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6642 return ret;
854ffa8d
DN
6643 mc.precharge++;
6644 }
4ffef5fe
DN
6645 return ret;
6646}
6647
6648/**
8d32ff84 6649 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6650 * @vma: the vma the pte to be checked belongs
6651 * @addr: the address corresponding to the pte to be checked
6652 * @ptent: the pte to be checked
02491447 6653 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6654 *
6655 * Returns
6656 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6657 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6658 * move charge. if @target is not NULL, the page is stored in target->page
6659 * with extra refcnt got(Callers should handle it).
02491447
DN
6660 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6661 * target for charge migration. if @target is not NULL, the entry is stored
6662 * in target->ent.
4ffef5fe
DN
6663 *
6664 * Called with pte lock held.
6665 */
4ffef5fe
DN
6666union mc_target {
6667 struct page *page;
02491447 6668 swp_entry_t ent;
4ffef5fe
DN
6669};
6670
4ffef5fe 6671enum mc_target_type {
8d32ff84 6672 MC_TARGET_NONE = 0,
4ffef5fe 6673 MC_TARGET_PAGE,
02491447 6674 MC_TARGET_SWAP,
4ffef5fe
DN
6675};
6676
90254a65
DN
6677static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6678 unsigned long addr, pte_t ptent)
4ffef5fe 6679{
90254a65 6680 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6681
90254a65
DN
6682 if (!page || !page_mapped(page))
6683 return NULL;
6684 if (PageAnon(page)) {
6685 /* we don't move shared anon */
4b91355e 6686 if (!move_anon())
90254a65 6687 return NULL;
87946a72
DN
6688 } else if (!move_file())
6689 /* we ignore mapcount for file pages */
90254a65
DN
6690 return NULL;
6691 if (!get_page_unless_zero(page))
6692 return NULL;
6693
6694 return page;
6695}
6696
4b91355e 6697#ifdef CONFIG_SWAP
90254a65
DN
6698static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6699 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6700{
90254a65
DN
6701 struct page *page = NULL;
6702 swp_entry_t ent = pte_to_swp_entry(ptent);
6703
6704 if (!move_anon() || non_swap_entry(ent))
6705 return NULL;
4b91355e
KH
6706 /*
6707 * Because lookup_swap_cache() updates some statistics counter,
6708 * we call find_get_page() with swapper_space directly.
6709 */
33806f06 6710 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6711 if (do_swap_account)
6712 entry->val = ent.val;
6713
6714 return page;
6715}
4b91355e
KH
6716#else
6717static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6718 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6719{
6720 return NULL;
6721}
6722#endif
90254a65 6723
87946a72
DN
6724static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6725 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6726{
6727 struct page *page = NULL;
87946a72
DN
6728 struct address_space *mapping;
6729 pgoff_t pgoff;
6730
6731 if (!vma->vm_file) /* anonymous vma */
6732 return NULL;
6733 if (!move_file())
6734 return NULL;
6735
87946a72
DN
6736 mapping = vma->vm_file->f_mapping;
6737 if (pte_none(ptent))
6738 pgoff = linear_page_index(vma, addr);
6739 else /* pte_file(ptent) is true */
6740 pgoff = pte_to_pgoff(ptent);
6741
6742 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6743 page = find_get_page(mapping, pgoff);
6744
6745#ifdef CONFIG_SWAP
6746 /* shmem/tmpfs may report page out on swap: account for that too. */
6747 if (radix_tree_exceptional_entry(page)) {
6748 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6749 if (do_swap_account)
aa3b1895 6750 *entry = swap;
33806f06 6751 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6752 }
aa3b1895 6753#endif
87946a72
DN
6754 return page;
6755}
6756
8d32ff84 6757static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6758 unsigned long addr, pte_t ptent, union mc_target *target)
6759{
6760 struct page *page = NULL;
6761 struct page_cgroup *pc;
8d32ff84 6762 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6763 swp_entry_t ent = { .val = 0 };
6764
6765 if (pte_present(ptent))
6766 page = mc_handle_present_pte(vma, addr, ptent);
6767 else if (is_swap_pte(ptent))
6768 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6769 else if (pte_none(ptent) || pte_file(ptent))
6770 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6771
6772 if (!page && !ent.val)
8d32ff84 6773 return ret;
02491447
DN
6774 if (page) {
6775 pc = lookup_page_cgroup(page);
6776 /*
6777 * Do only loose check w/o page_cgroup lock.
6778 * mem_cgroup_move_account() checks the pc is valid or not under
6779 * the lock.
6780 */
6781 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6782 ret = MC_TARGET_PAGE;
6783 if (target)
6784 target->page = page;
6785 }
6786 if (!ret || !target)
6787 put_page(page);
6788 }
90254a65
DN
6789 /* There is a swap entry and a page doesn't exist or isn't charged */
6790 if (ent.val && !ret &&
9fb4b7cc 6791 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6792 ret = MC_TARGET_SWAP;
6793 if (target)
6794 target->ent = ent;
4ffef5fe 6795 }
4ffef5fe
DN
6796 return ret;
6797}
6798
12724850
NH
6799#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6800/*
6801 * We don't consider swapping or file mapped pages because THP does not
6802 * support them for now.
6803 * Caller should make sure that pmd_trans_huge(pmd) is true.
6804 */
6805static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6806 unsigned long addr, pmd_t pmd, union mc_target *target)
6807{
6808 struct page *page = NULL;
6809 struct page_cgroup *pc;
6810 enum mc_target_type ret = MC_TARGET_NONE;
6811
6812 page = pmd_page(pmd);
6813 VM_BUG_ON(!page || !PageHead(page));
6814 if (!move_anon())
6815 return ret;
6816 pc = lookup_page_cgroup(page);
6817 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6818 ret = MC_TARGET_PAGE;
6819 if (target) {
6820 get_page(page);
6821 target->page = page;
6822 }
6823 }
6824 return ret;
6825}
6826#else
6827static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6828 unsigned long addr, pmd_t pmd, union mc_target *target)
6829{
6830 return MC_TARGET_NONE;
6831}
6832#endif
6833
4ffef5fe
DN
6834static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6835 unsigned long addr, unsigned long end,
6836 struct mm_walk *walk)
6837{
6838 struct vm_area_struct *vma = walk->private;
6839 pte_t *pte;
6840 spinlock_t *ptl;
6841
12724850
NH
6842 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6843 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6844 mc.precharge += HPAGE_PMD_NR;
6845 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6846 return 0;
12724850 6847 }
03319327 6848
45f83cef
AA
6849 if (pmd_trans_unstable(pmd))
6850 return 0;
4ffef5fe
DN
6851 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6852 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6853 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6854 mc.precharge++; /* increment precharge temporarily */
6855 pte_unmap_unlock(pte - 1, ptl);
6856 cond_resched();
6857
7dc74be0
DN
6858 return 0;
6859}
6860
4ffef5fe
DN
6861static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6862{
6863 unsigned long precharge;
6864 struct vm_area_struct *vma;
6865
dfe076b0 6866 down_read(&mm->mmap_sem);
4ffef5fe
DN
6867 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6868 struct mm_walk mem_cgroup_count_precharge_walk = {
6869 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6870 .mm = mm,
6871 .private = vma,
6872 };
6873 if (is_vm_hugetlb_page(vma))
6874 continue;
4ffef5fe
DN
6875 walk_page_range(vma->vm_start, vma->vm_end,
6876 &mem_cgroup_count_precharge_walk);
6877 }
dfe076b0 6878 up_read(&mm->mmap_sem);
4ffef5fe
DN
6879
6880 precharge = mc.precharge;
6881 mc.precharge = 0;
6882
6883 return precharge;
6884}
6885
4ffef5fe
DN
6886static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6887{
dfe076b0
DN
6888 unsigned long precharge = mem_cgroup_count_precharge(mm);
6889
6890 VM_BUG_ON(mc.moving_task);
6891 mc.moving_task = current;
6892 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6893}
6894
dfe076b0
DN
6895/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6896static void __mem_cgroup_clear_mc(void)
4ffef5fe 6897{
2bd9bb20
KH
6898 struct mem_cgroup *from = mc.from;
6899 struct mem_cgroup *to = mc.to;
4050377b 6900 int i;
2bd9bb20 6901
4ffef5fe 6902 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6903 if (mc.precharge) {
6904 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6905 mc.precharge = 0;
6906 }
6907 /*
6908 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6909 * we must uncharge here.
6910 */
6911 if (mc.moved_charge) {
6912 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6913 mc.moved_charge = 0;
4ffef5fe 6914 }
483c30b5
DN
6915 /* we must fixup refcnts and charges */
6916 if (mc.moved_swap) {
483c30b5
DN
6917 /* uncharge swap account from the old cgroup */
6918 if (!mem_cgroup_is_root(mc.from))
6919 res_counter_uncharge(&mc.from->memsw,
6920 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6921
6922 for (i = 0; i < mc.moved_swap; i++)
6923 css_put(&mc.from->css);
483c30b5
DN
6924
6925 if (!mem_cgroup_is_root(mc.to)) {
6926 /*
6927 * we charged both to->res and to->memsw, so we should
6928 * uncharge to->res.
6929 */
6930 res_counter_uncharge(&mc.to->res,
6931 PAGE_SIZE * mc.moved_swap);
483c30b5 6932 }
4050377b 6933 /* we've already done css_get(mc.to) */
483c30b5
DN
6934 mc.moved_swap = 0;
6935 }
dfe076b0
DN
6936 memcg_oom_recover(from);
6937 memcg_oom_recover(to);
6938 wake_up_all(&mc.waitq);
6939}
6940
6941static void mem_cgroup_clear_mc(void)
6942{
6943 struct mem_cgroup *from = mc.from;
6944
6945 /*
6946 * we must clear moving_task before waking up waiters at the end of
6947 * task migration.
6948 */
6949 mc.moving_task = NULL;
6950 __mem_cgroup_clear_mc();
2bd9bb20 6951 spin_lock(&mc.lock);
4ffef5fe
DN
6952 mc.from = NULL;
6953 mc.to = NULL;
2bd9bb20 6954 spin_unlock(&mc.lock);
32047e2a 6955 mem_cgroup_end_move(from);
4ffef5fe
DN
6956}
6957
eb95419b 6958static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6959 struct cgroup_taskset *tset)
7dc74be0 6960{
2f7ee569 6961 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6962 int ret = 0;
eb95419b 6963 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6964 unsigned long move_charge_at_immigrate;
7dc74be0 6965
ee5e8472
GC
6966 /*
6967 * We are now commited to this value whatever it is. Changes in this
6968 * tunable will only affect upcoming migrations, not the current one.
6969 * So we need to save it, and keep it going.
6970 */
6971 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6972 if (move_charge_at_immigrate) {
7dc74be0
DN
6973 struct mm_struct *mm;
6974 struct mem_cgroup *from = mem_cgroup_from_task(p);
6975
c0ff4b85 6976 VM_BUG_ON(from == memcg);
7dc74be0
DN
6977
6978 mm = get_task_mm(p);
6979 if (!mm)
6980 return 0;
7dc74be0 6981 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6982 if (mm->owner == p) {
6983 VM_BUG_ON(mc.from);
6984 VM_BUG_ON(mc.to);
6985 VM_BUG_ON(mc.precharge);
854ffa8d 6986 VM_BUG_ON(mc.moved_charge);
483c30b5 6987 VM_BUG_ON(mc.moved_swap);
32047e2a 6988 mem_cgroup_start_move(from);
2bd9bb20 6989 spin_lock(&mc.lock);
4ffef5fe 6990 mc.from = from;
c0ff4b85 6991 mc.to = memcg;
ee5e8472 6992 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6993 spin_unlock(&mc.lock);
dfe076b0 6994 /* We set mc.moving_task later */
4ffef5fe
DN
6995
6996 ret = mem_cgroup_precharge_mc(mm);
6997 if (ret)
6998 mem_cgroup_clear_mc();
dfe076b0
DN
6999 }
7000 mmput(mm);
7dc74be0
DN
7001 }
7002 return ret;
7003}
7004
eb95419b 7005static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7006 struct cgroup_taskset *tset)
7dc74be0 7007{
4ffef5fe 7008 mem_cgroup_clear_mc();
7dc74be0
DN
7009}
7010
4ffef5fe
DN
7011static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7012 unsigned long addr, unsigned long end,
7013 struct mm_walk *walk)
7dc74be0 7014{
4ffef5fe
DN
7015 int ret = 0;
7016 struct vm_area_struct *vma = walk->private;
7017 pte_t *pte;
7018 spinlock_t *ptl;
12724850
NH
7019 enum mc_target_type target_type;
7020 union mc_target target;
7021 struct page *page;
7022 struct page_cgroup *pc;
4ffef5fe 7023
12724850
NH
7024 /*
7025 * We don't take compound_lock() here but no race with splitting thp
7026 * happens because:
7027 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7028 * under splitting, which means there's no concurrent thp split,
7029 * - if another thread runs into split_huge_page() just after we
7030 * entered this if-block, the thread must wait for page table lock
7031 * to be unlocked in __split_huge_page_splitting(), where the main
7032 * part of thp split is not executed yet.
7033 */
7034 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 7035 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
7036 spin_unlock(&vma->vm_mm->page_table_lock);
7037 return 0;
7038 }
7039 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7040 if (target_type == MC_TARGET_PAGE) {
7041 page = target.page;
7042 if (!isolate_lru_page(page)) {
7043 pc = lookup_page_cgroup(page);
7044 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 7045 pc, mc.from, mc.to)) {
12724850
NH
7046 mc.precharge -= HPAGE_PMD_NR;
7047 mc.moved_charge += HPAGE_PMD_NR;
7048 }
7049 putback_lru_page(page);
7050 }
7051 put_page(page);
7052 }
7053 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 7054 return 0;
12724850
NH
7055 }
7056
45f83cef
AA
7057 if (pmd_trans_unstable(pmd))
7058 return 0;
4ffef5fe
DN
7059retry:
7060 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7061 for (; addr != end; addr += PAGE_SIZE) {
7062 pte_t ptent = *(pte++);
02491447 7063 swp_entry_t ent;
4ffef5fe
DN
7064
7065 if (!mc.precharge)
7066 break;
7067
8d32ff84 7068 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7069 case MC_TARGET_PAGE:
7070 page = target.page;
7071 if (isolate_lru_page(page))
7072 goto put;
7073 pc = lookup_page_cgroup(page);
7ec99d62 7074 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7075 mc.from, mc.to)) {
4ffef5fe 7076 mc.precharge--;
854ffa8d
DN
7077 /* we uncharge from mc.from later. */
7078 mc.moved_charge++;
4ffef5fe
DN
7079 }
7080 putback_lru_page(page);
8d32ff84 7081put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7082 put_page(page);
7083 break;
02491447
DN
7084 case MC_TARGET_SWAP:
7085 ent = target.ent;
e91cbb42 7086 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7087 mc.precharge--;
483c30b5
DN
7088 /* we fixup refcnts and charges later. */
7089 mc.moved_swap++;
7090 }
02491447 7091 break;
4ffef5fe
DN
7092 default:
7093 break;
7094 }
7095 }
7096 pte_unmap_unlock(pte - 1, ptl);
7097 cond_resched();
7098
7099 if (addr != end) {
7100 /*
7101 * We have consumed all precharges we got in can_attach().
7102 * We try charge one by one, but don't do any additional
7103 * charges to mc.to if we have failed in charge once in attach()
7104 * phase.
7105 */
854ffa8d 7106 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7107 if (!ret)
7108 goto retry;
7109 }
7110
7111 return ret;
7112}
7113
7114static void mem_cgroup_move_charge(struct mm_struct *mm)
7115{
7116 struct vm_area_struct *vma;
7117
7118 lru_add_drain_all();
dfe076b0
DN
7119retry:
7120 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7121 /*
7122 * Someone who are holding the mmap_sem might be waiting in
7123 * waitq. So we cancel all extra charges, wake up all waiters,
7124 * and retry. Because we cancel precharges, we might not be able
7125 * to move enough charges, but moving charge is a best-effort
7126 * feature anyway, so it wouldn't be a big problem.
7127 */
7128 __mem_cgroup_clear_mc();
7129 cond_resched();
7130 goto retry;
7131 }
4ffef5fe
DN
7132 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7133 int ret;
7134 struct mm_walk mem_cgroup_move_charge_walk = {
7135 .pmd_entry = mem_cgroup_move_charge_pte_range,
7136 .mm = mm,
7137 .private = vma,
7138 };
7139 if (is_vm_hugetlb_page(vma))
7140 continue;
4ffef5fe
DN
7141 ret = walk_page_range(vma->vm_start, vma->vm_end,
7142 &mem_cgroup_move_charge_walk);
7143 if (ret)
7144 /*
7145 * means we have consumed all precharges and failed in
7146 * doing additional charge. Just abandon here.
7147 */
7148 break;
7149 }
dfe076b0 7150 up_read(&mm->mmap_sem);
7dc74be0
DN
7151}
7152
eb95419b 7153static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7154 struct cgroup_taskset *tset)
67e465a7 7155{
2f7ee569 7156 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7157 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7158
dfe076b0 7159 if (mm) {
a433658c
KM
7160 if (mc.to)
7161 mem_cgroup_move_charge(mm);
dfe076b0
DN
7162 mmput(mm);
7163 }
a433658c
KM
7164 if (mc.to)
7165 mem_cgroup_clear_mc();
67e465a7 7166}
5cfb80a7 7167#else /* !CONFIG_MMU */
eb95419b 7168static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7169 struct cgroup_taskset *tset)
5cfb80a7
DN
7170{
7171 return 0;
7172}
eb95419b 7173static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7174 struct cgroup_taskset *tset)
5cfb80a7
DN
7175{
7176}
eb95419b 7177static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7178 struct cgroup_taskset *tset)
5cfb80a7
DN
7179{
7180}
7181#endif
67e465a7 7182
f00baae7
TH
7183/*
7184 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7185 * to verify sane_behavior flag on each mount attempt.
7186 */
eb95419b 7187static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7188{
7189 /*
7190 * use_hierarchy is forced with sane_behavior. cgroup core
7191 * guarantees that @root doesn't have any children, so turning it
7192 * on for the root memcg is enough.
7193 */
eb95419b
TH
7194 if (cgroup_sane_behavior(root_css->cgroup))
7195 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7196}
7197
8cdea7c0
BS
7198struct cgroup_subsys mem_cgroup_subsys = {
7199 .name = "memory",
7200 .subsys_id = mem_cgroup_subsys_id,
92fb9748 7201 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7202 .css_online = mem_cgroup_css_online,
92fb9748
TH
7203 .css_offline = mem_cgroup_css_offline,
7204 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7205 .can_attach = mem_cgroup_can_attach,
7206 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7207 .attach = mem_cgroup_move_task,
f00baae7 7208 .bind = mem_cgroup_bind,
6bc10349 7209 .base_cftypes = mem_cgroup_files,
6d12e2d8 7210 .early_init = 0,
04046e1a 7211 .use_id = 1,
8cdea7c0 7212};
c077719b 7213
c255a458 7214#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7215static int __init enable_swap_account(char *s)
7216{
a2c8990a 7217 if (!strcmp(s, "1"))
a42c390c 7218 really_do_swap_account = 1;
a2c8990a 7219 else if (!strcmp(s, "0"))
a42c390c
MH
7220 really_do_swap_account = 0;
7221 return 1;
7222}
a2c8990a 7223__setup("swapaccount=", enable_swap_account);
c077719b 7224
2d11085e
MH
7225static void __init memsw_file_init(void)
7226{
6acc8b02
MH
7227 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7228}
7229
7230static void __init enable_swap_cgroup(void)
7231{
7232 if (!mem_cgroup_disabled() && really_do_swap_account) {
7233 do_swap_account = 1;
7234 memsw_file_init();
7235 }
2d11085e 7236}
6acc8b02 7237
2d11085e 7238#else
6acc8b02 7239static void __init enable_swap_cgroup(void)
2d11085e
MH
7240{
7241}
c077719b 7242#endif
2d11085e
MH
7243
7244/*
1081312f
MH
7245 * subsys_initcall() for memory controller.
7246 *
7247 * Some parts like hotcpu_notifier() have to be initialized from this context
7248 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7249 * everything that doesn't depend on a specific mem_cgroup structure should
7250 * be initialized from here.
2d11085e
MH
7251 */
7252static int __init mem_cgroup_init(void)
7253{
7254 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7255 enable_swap_cgroup();
bb4cc1a8 7256 mem_cgroup_soft_limit_tree_init();
e4777496 7257 memcg_stock_init();
2d11085e
MH
7258 return 0;
7259}
7260subsys_initcall(mem_cgroup_init);