drivers/rtc/rtc-r9701.c: fix crash in r9701_remove()
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
93 MEM_CGROUP_STAT_NSTATS,
94};
95
e9f8974f
JW
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
102 MEM_CGROUP_EVENTS_NSTATS,
103};
7a159cc9
JW
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 113 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
114 MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 118#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 119
d52aa412 120struct mem_cgroup_stat_cpu {
7a159cc9 121 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 123 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
124};
125
527a5ec9
JW
126struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
131};
132
6d12e2d8
KH
133/*
134 * per-zone information in memory controller.
135 */
6d12e2d8 136struct mem_cgroup_per_zone {
6290df54 137 struct lruvec lruvec;
b69408e8 138 unsigned long count[NR_LRU_LISTS];
3e2f41f1 139
527a5ec9
JW
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
3e2f41f1 142 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
4e416953
BS
147 struct mem_cgroup *mem; /* Back pointer, we cannot */
148 /* use container_of */
6d12e2d8
KH
149};
150/* Macro for accessing counter */
151#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
152
153struct mem_cgroup_per_node {
154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155};
156
157struct mem_cgroup_lru_info {
158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159};
160
f64c3f54
BS
161/*
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
164 */
165
166struct mem_cgroup_tree_per_zone {
167 struct rb_root rb_root;
168 spinlock_t lock;
169};
170
171struct mem_cgroup_tree_per_node {
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173};
174
175struct mem_cgroup_tree {
176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177};
178
179static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
2e72b634
KS
181struct mem_cgroup_threshold {
182 struct eventfd_ctx *eventfd;
183 u64 threshold;
184};
185
9490ff27 186/* For threshold */
2e72b634
KS
187struct mem_cgroup_threshold_ary {
188 /* An array index points to threshold just below usage. */
5407a562 189 int current_threshold;
2e72b634
KS
190 /* Size of entries[] */
191 unsigned int size;
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries[0];
194};
2c488db2
KS
195
196struct mem_cgroup_thresholds {
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary *primary;
199 /*
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
203 */
204 struct mem_cgroup_threshold_ary *spare;
205};
206
9490ff27
KH
207/* for OOM */
208struct mem_cgroup_eventfd_list {
209 struct list_head list;
210 struct eventfd_ctx *eventfd;
211};
2e72b634 212
c0ff4b85
R
213static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 215
8cdea7c0
BS
216/*
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
221 *
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
8cdea7c0
BS
226 */
227struct mem_cgroup {
228 struct cgroup_subsys_state css;
229 /*
230 * the counter to account for memory usage
231 */
232 struct res_counter res;
8c7c6e34
KH
233 /*
234 * the counter to account for mem+swap usage.
235 */
236 struct res_counter memsw;
78fb7466
PE
237 /*
238 * Per cgroup active and inactive list, similar to the
239 * per zone LRU lists.
78fb7466 240 */
6d12e2d8 241 struct mem_cgroup_lru_info info;
889976db
YH
242 int last_scanned_node;
243#if MAX_NUMNODES > 1
244 nodemask_t scan_nodes;
453a9bf3
KH
245 atomic_t numainfo_events;
246 atomic_t numainfo_updating;
889976db 247#endif
18f59ea7
BS
248 /*
249 * Should the accounting and control be hierarchical, per subtree?
250 */
251 bool use_hierarchy;
79dfdacc
MH
252
253 bool oom_lock;
254 atomic_t under_oom;
255
8c7c6e34 256 atomic_t refcnt;
14797e23 257
1f4c025b 258 int swappiness;
3c11ecf4
KH
259 /* OOM-Killer disable */
260 int oom_kill_disable;
a7885eb8 261
22a668d7
KH
262 /* set when res.limit == memsw.limit */
263 bool memsw_is_minimum;
264
2e72b634
KS
265 /* protect arrays of thresholds */
266 struct mutex thresholds_lock;
267
268 /* thresholds for memory usage. RCU-protected */
2c488db2 269 struct mem_cgroup_thresholds thresholds;
907860ed 270
2e72b634 271 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 272 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 273
9490ff27
KH
274 /* For oom notifier event fd */
275 struct list_head oom_notify;
185efc0f 276
7dc74be0
DN
277 /*
278 * Should we move charges of a task when a task is moved into this
279 * mem_cgroup ? And what type of charges should we move ?
280 */
281 unsigned long move_charge_at_immigrate;
d52aa412 282 /*
c62b1a3b 283 * percpu counter.
d52aa412 284 */
c62b1a3b 285 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
286 /*
287 * used when a cpu is offlined or other synchronizations
288 * See mem_cgroup_read_stat().
289 */
290 struct mem_cgroup_stat_cpu nocpu_base;
291 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
292
293#ifdef CONFIG_INET
294 struct tcp_memcontrol tcp_mem;
295#endif
8cdea7c0
BS
296};
297
7dc74be0
DN
298/* Stuffs for move charges at task migration. */
299/*
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
302 */
303enum move_type {
4ffef5fe 304 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 305 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
306 NR_MOVE_TYPE,
307};
308
4ffef5fe
DN
309/* "mc" and its members are protected by cgroup_mutex */
310static struct move_charge_struct {
b1dd693e 311 spinlock_t lock; /* for from, to */
4ffef5fe
DN
312 struct mem_cgroup *from;
313 struct mem_cgroup *to;
314 unsigned long precharge;
854ffa8d 315 unsigned long moved_charge;
483c30b5 316 unsigned long moved_swap;
8033b97c
DN
317 struct task_struct *moving_task; /* a task moving charges */
318 wait_queue_head_t waitq; /* a waitq for other context */
319} mc = {
2bd9bb20 320 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
321 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322};
4ffef5fe 323
90254a65
DN
324static bool move_anon(void)
325{
326 return test_bit(MOVE_CHARGE_TYPE_ANON,
327 &mc.to->move_charge_at_immigrate);
328}
329
87946a72
DN
330static bool move_file(void)
331{
332 return test_bit(MOVE_CHARGE_TYPE_FILE,
333 &mc.to->move_charge_at_immigrate);
334}
335
4e416953
BS
336/*
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
339 */
340#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
341#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
342
217bc319
KH
343enum charge_type {
344 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 346 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 347 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 349 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
350 NR_CHARGE_TYPE,
351};
352
8c7c6e34 353/* for encoding cft->private value on file */
65c64ce8
GC
354#define _MEM (0)
355#define _MEMSWAP (1)
356#define _OOM_TYPE (2)
8c7c6e34
KH
357#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
358#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
359#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
360/* Used for OOM nofiier */
361#define OOM_CONTROL (0)
8c7c6e34 362
75822b44
BS
363/*
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
365 */
366#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
367#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
369#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370
c0ff4b85
R
371static void mem_cgroup_get(struct mem_cgroup *memcg);
372static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
373
374/* Writing them here to avoid exposing memcg's inner layout */
375#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 376#include <net/sock.h>
d1a4c0b3 377#include <net/ip.h>
e1aab161
GC
378
379static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
380void sock_update_memcg(struct sock *sk)
381{
376be5ff 382 if (mem_cgroup_sockets_enabled) {
e1aab161
GC
383 struct mem_cgroup *memcg;
384
385 BUG_ON(!sk->sk_prot->proto_cgroup);
386
f3f511e1
GC
387 /* Socket cloning can throw us here with sk_cgrp already
388 * filled. It won't however, necessarily happen from
389 * process context. So the test for root memcg given
390 * the current task's memcg won't help us in this case.
391 *
392 * Respecting the original socket's memcg is a better
393 * decision in this case.
394 */
395 if (sk->sk_cgrp) {
396 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
397 mem_cgroup_get(sk->sk_cgrp->memcg);
398 return;
399 }
400
e1aab161
GC
401 rcu_read_lock();
402 memcg = mem_cgroup_from_task(current);
403 if (!mem_cgroup_is_root(memcg)) {
404 mem_cgroup_get(memcg);
405 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
406 }
407 rcu_read_unlock();
408 }
409}
410EXPORT_SYMBOL(sock_update_memcg);
411
412void sock_release_memcg(struct sock *sk)
413{
376be5ff 414 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
415 struct mem_cgroup *memcg;
416 WARN_ON(!sk->sk_cgrp->memcg);
417 memcg = sk->sk_cgrp->memcg;
418 mem_cgroup_put(memcg);
419 }
420}
d1a4c0b3 421
319d3b9c 422#ifdef CONFIG_INET
d1a4c0b3
GC
423struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424{
425 if (!memcg || mem_cgroup_is_root(memcg))
426 return NULL;
427
428 return &memcg->tcp_mem.cg_proto;
429}
430EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
431#endif /* CONFIG_INET */
432#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433
c0ff4b85 434static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 435
f64c3f54 436static struct mem_cgroup_per_zone *
c0ff4b85 437mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 438{
c0ff4b85 439 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
440}
441
c0ff4b85 442struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 443{
c0ff4b85 444 return &memcg->css;
d324236b
WF
445}
446
f64c3f54 447static struct mem_cgroup_per_zone *
c0ff4b85 448page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 449{
97a6c37b
JW
450 int nid = page_to_nid(page);
451 int zid = page_zonenum(page);
f64c3f54 452
c0ff4b85 453 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
454}
455
456static struct mem_cgroup_tree_per_zone *
457soft_limit_tree_node_zone(int nid, int zid)
458{
459 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460}
461
462static struct mem_cgroup_tree_per_zone *
463soft_limit_tree_from_page(struct page *page)
464{
465 int nid = page_to_nid(page);
466 int zid = page_zonenum(page);
467
468 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469}
470
471static void
c0ff4b85 472__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 473 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
474 struct mem_cgroup_tree_per_zone *mctz,
475 unsigned long long new_usage_in_excess)
f64c3f54
BS
476{
477 struct rb_node **p = &mctz->rb_root.rb_node;
478 struct rb_node *parent = NULL;
479 struct mem_cgroup_per_zone *mz_node;
480
481 if (mz->on_tree)
482 return;
483
ef8745c1
KH
484 mz->usage_in_excess = new_usage_in_excess;
485 if (!mz->usage_in_excess)
486 return;
f64c3f54
BS
487 while (*p) {
488 parent = *p;
489 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490 tree_node);
491 if (mz->usage_in_excess < mz_node->usage_in_excess)
492 p = &(*p)->rb_left;
493 /*
494 * We can't avoid mem cgroups that are over their soft
495 * limit by the same amount
496 */
497 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498 p = &(*p)->rb_right;
499 }
500 rb_link_node(&mz->tree_node, parent, p);
501 rb_insert_color(&mz->tree_node, &mctz->rb_root);
502 mz->on_tree = true;
4e416953
BS
503}
504
505static void
c0ff4b85 506__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
507 struct mem_cgroup_per_zone *mz,
508 struct mem_cgroup_tree_per_zone *mctz)
509{
510 if (!mz->on_tree)
511 return;
512 rb_erase(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = false;
514}
515
f64c3f54 516static void
c0ff4b85 517mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
518 struct mem_cgroup_per_zone *mz,
519 struct mem_cgroup_tree_per_zone *mctz)
520{
521 spin_lock(&mctz->lock);
c0ff4b85 522 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
523 spin_unlock(&mctz->lock);
524}
525
f64c3f54 526
c0ff4b85 527static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 528{
ef8745c1 529 unsigned long long excess;
f64c3f54
BS
530 struct mem_cgroup_per_zone *mz;
531 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
532 int nid = page_to_nid(page);
533 int zid = page_zonenum(page);
f64c3f54
BS
534 mctz = soft_limit_tree_from_page(page);
535
536 /*
4e649152
KH
537 * Necessary to update all ancestors when hierarchy is used.
538 * because their event counter is not touched.
f64c3f54 539 */
c0ff4b85
R
540 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
543 /*
544 * We have to update the tree if mz is on RB-tree or
545 * mem is over its softlimit.
546 */
ef8745c1 547 if (excess || mz->on_tree) {
4e649152
KH
548 spin_lock(&mctz->lock);
549 /* if on-tree, remove it */
550 if (mz->on_tree)
c0ff4b85 551 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 552 /*
ef8745c1
KH
553 * Insert again. mz->usage_in_excess will be updated.
554 * If excess is 0, no tree ops.
4e649152 555 */
c0ff4b85 556 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
557 spin_unlock(&mctz->lock);
558 }
f64c3f54
BS
559 }
560}
561
c0ff4b85 562static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
563{
564 int node, zone;
565 struct mem_cgroup_per_zone *mz;
566 struct mem_cgroup_tree_per_zone *mctz;
567
3ed28fa1 568 for_each_node(node) {
f64c3f54 569 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 570 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 571 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 572 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
573 }
574 }
575}
576
4e416953
BS
577static struct mem_cgroup_per_zone *
578__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579{
580 struct rb_node *rightmost = NULL;
26251eaf 581 struct mem_cgroup_per_zone *mz;
4e416953
BS
582
583retry:
26251eaf 584 mz = NULL;
4e416953
BS
585 rightmost = rb_last(&mctz->rb_root);
586 if (!rightmost)
587 goto done; /* Nothing to reclaim from */
588
589 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590 /*
591 * Remove the node now but someone else can add it back,
592 * we will to add it back at the end of reclaim to its correct
593 * position in the tree.
594 */
595 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 !css_tryget(&mz->mem->css))
598 goto retry;
599done:
600 return mz;
601}
602
603static struct mem_cgroup_per_zone *
604mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605{
606 struct mem_cgroup_per_zone *mz;
607
608 spin_lock(&mctz->lock);
609 mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 spin_unlock(&mctz->lock);
611 return mz;
612}
613
711d3d2c
KH
614/*
615 * Implementation Note: reading percpu statistics for memcg.
616 *
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
621 *
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
627 *
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
632 */
c0ff4b85 633static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 634 enum mem_cgroup_stat_index idx)
c62b1a3b 635{
7a159cc9 636 long val = 0;
c62b1a3b 637 int cpu;
c62b1a3b 638
711d3d2c
KH
639 get_online_cpus();
640 for_each_online_cpu(cpu)
c0ff4b85 641 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 642#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
643 spin_lock(&memcg->pcp_counter_lock);
644 val += memcg->nocpu_base.count[idx];
645 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
646#endif
647 put_online_cpus();
c62b1a3b
KH
648 return val;
649}
650
c0ff4b85 651static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
652 bool charge)
653{
654 int val = (charge) ? 1 : -1;
c0ff4b85 655 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
656}
657
c0ff4b85 658static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
659 enum mem_cgroup_events_index idx)
660{
661 unsigned long val = 0;
662 int cpu;
663
664 for_each_online_cpu(cpu)
c0ff4b85 665 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 666#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
667 spin_lock(&memcg->pcp_counter_lock);
668 val += memcg->nocpu_base.events[idx];
669 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
670#endif
671 return val;
672}
673
c0ff4b85 674static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
e401f176 675 bool file, int nr_pages)
d52aa412 676{
c62b1a3b
KH
677 preempt_disable();
678
e401f176 679 if (file)
c0ff4b85
R
680 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681 nr_pages);
d52aa412 682 else
c0ff4b85
R
683 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684 nr_pages);
55e462b0 685
e401f176
KH
686 /* pagein of a big page is an event. So, ignore page size */
687 if (nr_pages > 0)
c0ff4b85 688 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 689 else {
c0ff4b85 690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
691 nr_pages = -nr_pages; /* for event */
692 }
e401f176 693
c0ff4b85 694 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 695
c62b1a3b 696 preempt_enable();
6d12e2d8
KH
697}
698
bb2a0de9 699unsigned long
c0ff4b85 700mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 701 unsigned int lru_mask)
889976db
YH
702{
703 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
704 enum lru_list l;
705 unsigned long ret = 0;
706
c0ff4b85 707 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9
KH
708
709 for_each_lru(l) {
710 if (BIT(l) & lru_mask)
711 ret += MEM_CGROUP_ZSTAT(mz, l);
712 }
713 return ret;
714}
715
716static unsigned long
c0ff4b85 717mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
718 int nid, unsigned int lru_mask)
719{
889976db
YH
720 u64 total = 0;
721 int zid;
722
bb2a0de9 723 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
724 total += mem_cgroup_zone_nr_lru_pages(memcg,
725 nid, zid, lru_mask);
bb2a0de9 726
889976db
YH
727 return total;
728}
bb2a0de9 729
c0ff4b85 730static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 731 unsigned int lru_mask)
6d12e2d8 732{
889976db 733 int nid;
6d12e2d8
KH
734 u64 total = 0;
735
bb2a0de9 736 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 737 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 738 return total;
d52aa412
KH
739}
740
f53d7ce3
JW
741static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742 enum mem_cgroup_events_target target)
7a159cc9
JW
743{
744 unsigned long val, next;
745
4799401f
SR
746 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 748 /* from time_after() in jiffies.h */
f53d7ce3
JW
749 if ((long)next - (long)val < 0) {
750 switch (target) {
751 case MEM_CGROUP_TARGET_THRESH:
752 next = val + THRESHOLDS_EVENTS_TARGET;
753 break;
754 case MEM_CGROUP_TARGET_SOFTLIMIT:
755 next = val + SOFTLIMIT_EVENTS_TARGET;
756 break;
757 case MEM_CGROUP_TARGET_NUMAINFO:
758 next = val + NUMAINFO_EVENTS_TARGET;
759 break;
760 default:
761 break;
762 }
763 __this_cpu_write(memcg->stat->targets[target], next);
764 return true;
7a159cc9 765 }
f53d7ce3 766 return false;
d2265e6f
KH
767}
768
769/*
770 * Check events in order.
771 *
772 */
c0ff4b85 773static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 774{
4799401f 775 preempt_disable();
d2265e6f 776 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
777 if (unlikely(mem_cgroup_event_ratelimit(memcg,
778 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
779 bool do_softlimit;
780 bool do_numainfo __maybe_unused;
f53d7ce3
JW
781
782 do_softlimit = mem_cgroup_event_ratelimit(memcg,
783 MEM_CGROUP_TARGET_SOFTLIMIT);
784#if MAX_NUMNODES > 1
785 do_numainfo = mem_cgroup_event_ratelimit(memcg,
786 MEM_CGROUP_TARGET_NUMAINFO);
787#endif
788 preempt_enable();
789
c0ff4b85 790 mem_cgroup_threshold(memcg);
f53d7ce3 791 if (unlikely(do_softlimit))
c0ff4b85 792 mem_cgroup_update_tree(memcg, page);
453a9bf3 793#if MAX_NUMNODES > 1
f53d7ce3 794 if (unlikely(do_numainfo))
c0ff4b85 795 atomic_inc(&memcg->numainfo_events);
453a9bf3 796#endif
f53d7ce3
JW
797 } else
798 preempt_enable();
d2265e6f
KH
799}
800
d1a4c0b3 801struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
802{
803 return container_of(cgroup_subsys_state(cont,
804 mem_cgroup_subsys_id), struct mem_cgroup,
805 css);
806}
807
cf475ad2 808struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 809{
31a78f23
BS
810 /*
811 * mm_update_next_owner() may clear mm->owner to NULL
812 * if it races with swapoff, page migration, etc.
813 * So this can be called with p == NULL.
814 */
815 if (unlikely(!p))
816 return NULL;
817
78fb7466
PE
818 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
819 struct mem_cgroup, css);
820}
821
a433658c 822struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 823{
c0ff4b85 824 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
825
826 if (!mm)
827 return NULL;
54595fe2
KH
828 /*
829 * Because we have no locks, mm->owner's may be being moved to other
830 * cgroup. We use css_tryget() here even if this looks
831 * pessimistic (rather than adding locks here).
832 */
833 rcu_read_lock();
834 do {
c0ff4b85
R
835 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
836 if (unlikely(!memcg))
54595fe2 837 break;
c0ff4b85 838 } while (!css_tryget(&memcg->css));
54595fe2 839 rcu_read_unlock();
c0ff4b85 840 return memcg;
54595fe2
KH
841}
842
5660048c
JW
843/**
844 * mem_cgroup_iter - iterate over memory cgroup hierarchy
845 * @root: hierarchy root
846 * @prev: previously returned memcg, NULL on first invocation
847 * @reclaim: cookie for shared reclaim walks, NULL for full walks
848 *
849 * Returns references to children of the hierarchy below @root, or
850 * @root itself, or %NULL after a full round-trip.
851 *
852 * Caller must pass the return value in @prev on subsequent
853 * invocations for reference counting, or use mem_cgroup_iter_break()
854 * to cancel a hierarchy walk before the round-trip is complete.
855 *
856 * Reclaimers can specify a zone and a priority level in @reclaim to
857 * divide up the memcgs in the hierarchy among all concurrent
858 * reclaimers operating on the same zone and priority.
859 */
860struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
861 struct mem_cgroup *prev,
862 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 863{
9f3a0d09
JW
864 struct mem_cgroup *memcg = NULL;
865 int id = 0;
711d3d2c 866
5660048c
JW
867 if (mem_cgroup_disabled())
868 return NULL;
869
9f3a0d09
JW
870 if (!root)
871 root = root_mem_cgroup;
7d74b06f 872
9f3a0d09
JW
873 if (prev && !reclaim)
874 id = css_id(&prev->css);
14067bb3 875
9f3a0d09
JW
876 if (prev && prev != root)
877 css_put(&prev->css);
14067bb3 878
9f3a0d09
JW
879 if (!root->use_hierarchy && root != root_mem_cgroup) {
880 if (prev)
881 return NULL;
882 return root;
883 }
14067bb3 884
9f3a0d09 885 while (!memcg) {
527a5ec9 886 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 887 struct cgroup_subsys_state *css;
711d3d2c 888
527a5ec9
JW
889 if (reclaim) {
890 int nid = zone_to_nid(reclaim->zone);
891 int zid = zone_idx(reclaim->zone);
892 struct mem_cgroup_per_zone *mz;
893
894 mz = mem_cgroup_zoneinfo(root, nid, zid);
895 iter = &mz->reclaim_iter[reclaim->priority];
896 if (prev && reclaim->generation != iter->generation)
897 return NULL;
898 id = iter->position;
899 }
7d74b06f 900
9f3a0d09
JW
901 rcu_read_lock();
902 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
903 if (css) {
904 if (css == &root->css || css_tryget(css))
905 memcg = container_of(css,
906 struct mem_cgroup, css);
907 } else
908 id = 0;
14067bb3 909 rcu_read_unlock();
14067bb3 910
527a5ec9
JW
911 if (reclaim) {
912 iter->position = id;
913 if (!css)
914 iter->generation++;
915 else if (!prev && memcg)
916 reclaim->generation = iter->generation;
917 }
9f3a0d09
JW
918
919 if (prev && !css)
920 return NULL;
921 }
922 return memcg;
14067bb3 923}
7d74b06f 924
5660048c
JW
925/**
926 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
927 * @root: hierarchy root
928 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
929 */
930void mem_cgroup_iter_break(struct mem_cgroup *root,
931 struct mem_cgroup *prev)
9f3a0d09
JW
932{
933 if (!root)
934 root = root_mem_cgroup;
935 if (prev && prev != root)
936 css_put(&prev->css);
937}
7d74b06f 938
9f3a0d09
JW
939/*
940 * Iteration constructs for visiting all cgroups (under a tree). If
941 * loops are exited prematurely (break), mem_cgroup_iter_break() must
942 * be used for reference counting.
943 */
944#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 945 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 946 iter != NULL; \
527a5ec9 947 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 948
9f3a0d09 949#define for_each_mem_cgroup(iter) \
527a5ec9 950 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 951 iter != NULL; \
527a5ec9 952 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 953
c0ff4b85 954static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 955{
c0ff4b85 956 return (memcg == root_mem_cgroup);
4b3bde4c
BS
957}
958
456f998e
YH
959void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
960{
c0ff4b85 961 struct mem_cgroup *memcg;
456f998e
YH
962
963 if (!mm)
964 return;
965
966 rcu_read_lock();
c0ff4b85
R
967 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
968 if (unlikely(!memcg))
456f998e
YH
969 goto out;
970
971 switch (idx) {
456f998e 972 case PGFAULT:
0e574a93
JW
973 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
974 break;
975 case PGMAJFAULT:
976 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
977 break;
978 default:
979 BUG();
980 }
981out:
982 rcu_read_unlock();
983}
984EXPORT_SYMBOL(mem_cgroup_count_vm_event);
985
925b7673
JW
986/**
987 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
988 * @zone: zone of the wanted lruvec
989 * @mem: memcg of the wanted lruvec
990 *
991 * Returns the lru list vector holding pages for the given @zone and
992 * @mem. This can be the global zone lruvec, if the memory controller
993 * is disabled.
994 */
995struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
996 struct mem_cgroup *memcg)
997{
998 struct mem_cgroup_per_zone *mz;
999
1000 if (mem_cgroup_disabled())
1001 return &zone->lruvec;
1002
1003 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1004 return &mz->lruvec;
1005}
1006
08e552c6
KH
1007/*
1008 * Following LRU functions are allowed to be used without PCG_LOCK.
1009 * Operations are called by routine of global LRU independently from memcg.
1010 * What we have to take care of here is validness of pc->mem_cgroup.
1011 *
1012 * Changes to pc->mem_cgroup happens when
1013 * 1. charge
1014 * 2. moving account
1015 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1016 * It is added to LRU before charge.
1017 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1018 * When moving account, the page is not on LRU. It's isolated.
1019 */
4f98a2fe 1020
925b7673
JW
1021/**
1022 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1023 * @zone: zone of the page
1024 * @page: the page
1025 * @lru: current lru
1026 *
1027 * This function accounts for @page being added to @lru, and returns
1028 * the lruvec for the given @zone and the memcg @page is charged to.
1029 *
1030 * The callsite is then responsible for physically linking the page to
1031 * the returned lruvec->lists[@lru].
1032 */
1033struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1034 enum lru_list lru)
08e552c6 1035{
08e552c6 1036 struct mem_cgroup_per_zone *mz;
925b7673
JW
1037 struct mem_cgroup *memcg;
1038 struct page_cgroup *pc;
6d12e2d8 1039
f8d66542 1040 if (mem_cgroup_disabled())
925b7673
JW
1041 return &zone->lruvec;
1042
08e552c6 1043 pc = lookup_page_cgroup(page);
38c5d72f 1044 memcg = pc->mem_cgroup;
925b7673
JW
1045 mz = page_cgroup_zoneinfo(memcg, page);
1046 /* compound_order() is stabilized through lru_lock */
1047 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1048 return &mz->lruvec;
08e552c6 1049}
b69408e8 1050
925b7673
JW
1051/**
1052 * mem_cgroup_lru_del_list - account for removing an lru page
1053 * @page: the page
1054 * @lru: target lru
1055 *
1056 * This function accounts for @page being removed from @lru.
1057 *
1058 * The callsite is then responsible for physically unlinking
1059 * @page->lru.
3f58a829 1060 */
925b7673 1061void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1062{
1063 struct mem_cgroup_per_zone *mz;
925b7673 1064 struct mem_cgroup *memcg;
3f58a829 1065 struct page_cgroup *pc;
3f58a829
MK
1066
1067 if (mem_cgroup_disabled())
1068 return;
1069
1070 pc = lookup_page_cgroup(page);
38c5d72f
KH
1071 memcg = pc->mem_cgroup;
1072 VM_BUG_ON(!memcg);
925b7673
JW
1073 mz = page_cgroup_zoneinfo(memcg, page);
1074 /* huge page split is done under lru_lock. so, we have no races. */
12d27107 1075 VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
925b7673 1076 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
3f58a829
MK
1077}
1078
925b7673 1079void mem_cgroup_lru_del(struct page *page)
08e552c6 1080{
925b7673 1081 mem_cgroup_lru_del_list(page, page_lru(page));
6d12e2d8
KH
1082}
1083
925b7673
JW
1084/**
1085 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1086 * @zone: zone of the page
1087 * @page: the page
1088 * @from: current lru
1089 * @to: target lru
1090 *
1091 * This function accounts for @page being moved between the lrus @from
1092 * and @to, and returns the lruvec for the given @zone and the memcg
1093 * @page is charged to.
1094 *
1095 * The callsite is then responsible for physically relinking
1096 * @page->lru to the returned lruvec->lists[@to].
1097 */
1098struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1099 struct page *page,
1100 enum lru_list from,
1101 enum lru_list to)
66e1707b 1102{
925b7673
JW
1103 /* XXX: Optimize this, especially for @from == @to */
1104 mem_cgroup_lru_del_list(page, from);
1105 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1106}
544122e5 1107
3e92041d 1108/*
c0ff4b85 1109 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1110 * hierarchy subtree
1111 */
c0ff4b85
R
1112static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1113 struct mem_cgroup *memcg)
3e92041d 1114{
c0ff4b85
R
1115 if (root_memcg != memcg) {
1116 return (root_memcg->use_hierarchy &&
1117 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1118 }
1119
1120 return true;
1121}
1122
c0ff4b85 1123int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1124{
1125 int ret;
0b7f569e 1126 struct mem_cgroup *curr = NULL;
158e0a2d 1127 struct task_struct *p;
4c4a2214 1128
158e0a2d 1129 p = find_lock_task_mm(task);
de077d22
DR
1130 if (p) {
1131 curr = try_get_mem_cgroup_from_mm(p->mm);
1132 task_unlock(p);
1133 } else {
1134 /*
1135 * All threads may have already detached their mm's, but the oom
1136 * killer still needs to detect if they have already been oom
1137 * killed to prevent needlessly killing additional tasks.
1138 */
1139 task_lock(task);
1140 curr = mem_cgroup_from_task(task);
1141 if (curr)
1142 css_get(&curr->css);
1143 task_unlock(task);
1144 }
0b7f569e
KH
1145 if (!curr)
1146 return 0;
d31f56db 1147 /*
c0ff4b85 1148 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1149 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1150 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1151 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1152 */
c0ff4b85 1153 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1154 css_put(&curr->css);
4c4a2214
DR
1155 return ret;
1156}
1157
9b272977 1158int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1159{
9b272977
JW
1160 unsigned long inactive_ratio;
1161 int nid = zone_to_nid(zone);
1162 int zid = zone_idx(zone);
14797e23 1163 unsigned long inactive;
9b272977 1164 unsigned long active;
c772be93 1165 unsigned long gb;
14797e23 1166
9b272977
JW
1167 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1168 BIT(LRU_INACTIVE_ANON));
1169 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1170 BIT(LRU_ACTIVE_ANON));
14797e23 1171
c772be93
KM
1172 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1173 if (gb)
1174 inactive_ratio = int_sqrt(10 * gb);
1175 else
1176 inactive_ratio = 1;
1177
9b272977 1178 return inactive * inactive_ratio < active;
14797e23
KM
1179}
1180
9b272977 1181int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1182{
1183 unsigned long active;
1184 unsigned long inactive;
9b272977
JW
1185 int zid = zone_idx(zone);
1186 int nid = zone_to_nid(zone);
56e49d21 1187
9b272977
JW
1188 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1189 BIT(LRU_INACTIVE_FILE));
1190 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1191 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1192
1193 return (active > inactive);
1194}
1195
3e2f41f1
KM
1196struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1197 struct zone *zone)
1198{
13d7e3a2 1199 int nid = zone_to_nid(zone);
3e2f41f1
KM
1200 int zid = zone_idx(zone);
1201 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1202
1203 return &mz->reclaim_stat;
1204}
1205
1206struct zone_reclaim_stat *
1207mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1208{
1209 struct page_cgroup *pc;
1210 struct mem_cgroup_per_zone *mz;
1211
1212 if (mem_cgroup_disabled())
1213 return NULL;
1214
1215 pc = lookup_page_cgroup(page);
bd112db8
DN
1216 if (!PageCgroupUsed(pc))
1217 return NULL;
713735b4
JW
1218 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1219 smp_rmb();
97a6c37b 1220 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1221 return &mz->reclaim_stat;
1222}
1223
6d61ef40
BS
1224#define mem_cgroup_from_res_counter(counter, member) \
1225 container_of(counter, struct mem_cgroup, member)
1226
19942822 1227/**
9d11ea9f
JW
1228 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1229 * @mem: the memory cgroup
19942822 1230 *
9d11ea9f 1231 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1232 * pages.
19942822 1233 */
c0ff4b85 1234static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1235{
9d11ea9f
JW
1236 unsigned long long margin;
1237
c0ff4b85 1238 margin = res_counter_margin(&memcg->res);
9d11ea9f 1239 if (do_swap_account)
c0ff4b85 1240 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1241 return margin >> PAGE_SHIFT;
19942822
JW
1242}
1243
1f4c025b 1244int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1245{
1246 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1247
1248 /* root ? */
1249 if (cgrp->parent == NULL)
1250 return vm_swappiness;
1251
bf1ff263 1252 return memcg->swappiness;
a7885eb8
KM
1253}
1254
c0ff4b85 1255static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a
KH
1256{
1257 int cpu;
1489ebad
KH
1258
1259 get_online_cpus();
c0ff4b85 1260 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1261 for_each_online_cpu(cpu)
c0ff4b85
R
1262 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1263 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1264 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1265 put_online_cpus();
32047e2a
KH
1266
1267 synchronize_rcu();
1268}
1269
c0ff4b85 1270static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a
KH
1271{
1272 int cpu;
1273
c0ff4b85 1274 if (!memcg)
32047e2a 1275 return;
1489ebad 1276 get_online_cpus();
c0ff4b85 1277 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1278 for_each_online_cpu(cpu)
c0ff4b85
R
1279 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1280 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1281 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1282 put_online_cpus();
32047e2a
KH
1283}
1284/*
1285 * 2 routines for checking "mem" is under move_account() or not.
1286 *
1287 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1288 * for avoiding race in accounting. If true,
1289 * pc->mem_cgroup may be overwritten.
1290 *
1291 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1292 * under hierarchy of moving cgroups. This is for
1293 * waiting at hith-memory prressure caused by "move".
1294 */
1295
c0ff4b85 1296static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
32047e2a
KH
1297{
1298 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85 1299 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
32047e2a 1300}
4b534334 1301
c0ff4b85 1302static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1303{
2bd9bb20
KH
1304 struct mem_cgroup *from;
1305 struct mem_cgroup *to;
4b534334 1306 bool ret = false;
2bd9bb20
KH
1307 /*
1308 * Unlike task_move routines, we access mc.to, mc.from not under
1309 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1310 */
1311 spin_lock(&mc.lock);
1312 from = mc.from;
1313 to = mc.to;
1314 if (!from)
1315 goto unlock;
3e92041d 1316
c0ff4b85
R
1317 ret = mem_cgroup_same_or_subtree(memcg, from)
1318 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1319unlock:
1320 spin_unlock(&mc.lock);
4b534334
KH
1321 return ret;
1322}
1323
c0ff4b85 1324static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1325{
1326 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1327 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1328 DEFINE_WAIT(wait);
1329 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1330 /* moving charge context might have finished. */
1331 if (mc.moving_task)
1332 schedule();
1333 finish_wait(&mc.waitq, &wait);
1334 return true;
1335 }
1336 }
1337 return false;
1338}
1339
e222432b 1340/**
6a6135b6 1341 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1342 * @memcg: The memory cgroup that went over limit
1343 * @p: Task that is going to be killed
1344 *
1345 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1346 * enabled
1347 */
1348void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1349{
1350 struct cgroup *task_cgrp;
1351 struct cgroup *mem_cgrp;
1352 /*
1353 * Need a buffer in BSS, can't rely on allocations. The code relies
1354 * on the assumption that OOM is serialized for memory controller.
1355 * If this assumption is broken, revisit this code.
1356 */
1357 static char memcg_name[PATH_MAX];
1358 int ret;
1359
d31f56db 1360 if (!memcg || !p)
e222432b
BS
1361 return;
1362
1363
1364 rcu_read_lock();
1365
1366 mem_cgrp = memcg->css.cgroup;
1367 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1368
1369 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1370 if (ret < 0) {
1371 /*
1372 * Unfortunately, we are unable to convert to a useful name
1373 * But we'll still print out the usage information
1374 */
1375 rcu_read_unlock();
1376 goto done;
1377 }
1378 rcu_read_unlock();
1379
1380 printk(KERN_INFO "Task in %s killed", memcg_name);
1381
1382 rcu_read_lock();
1383 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1384 if (ret < 0) {
1385 rcu_read_unlock();
1386 goto done;
1387 }
1388 rcu_read_unlock();
1389
1390 /*
1391 * Continues from above, so we don't need an KERN_ level
1392 */
1393 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1394done:
1395
1396 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1397 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1398 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1399 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1400 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1401 "failcnt %llu\n",
1402 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1403 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1404 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1405}
1406
81d39c20
KH
1407/*
1408 * This function returns the number of memcg under hierarchy tree. Returns
1409 * 1(self count) if no children.
1410 */
c0ff4b85 1411static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1412{
1413 int num = 0;
7d74b06f
KH
1414 struct mem_cgroup *iter;
1415
c0ff4b85 1416 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1417 num++;
81d39c20
KH
1418 return num;
1419}
1420
a63d83f4
DR
1421/*
1422 * Return the memory (and swap, if configured) limit for a memcg.
1423 */
1424u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1425{
1426 u64 limit;
1427 u64 memsw;
1428
f3e8eb70
JW
1429 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1430 limit += total_swap_pages << PAGE_SHIFT;
1431
a63d83f4
DR
1432 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1433 /*
1434 * If memsw is finite and limits the amount of swap space available
1435 * to this memcg, return that limit.
1436 */
1437 return min(limit, memsw);
1438}
1439
5660048c
JW
1440static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1441 gfp_t gfp_mask,
1442 unsigned long flags)
1443{
1444 unsigned long total = 0;
1445 bool noswap = false;
1446 int loop;
1447
1448 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1449 noswap = true;
1450 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1451 noswap = true;
1452
1453 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1454 if (loop)
1455 drain_all_stock_async(memcg);
1456 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1457 /*
1458 * Allow limit shrinkers, which are triggered directly
1459 * by userspace, to catch signals and stop reclaim
1460 * after minimal progress, regardless of the margin.
1461 */
1462 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1463 break;
1464 if (mem_cgroup_margin(memcg))
1465 break;
1466 /*
1467 * If nothing was reclaimed after two attempts, there
1468 * may be no reclaimable pages in this hierarchy.
1469 */
1470 if (loop && !total)
1471 break;
1472 }
1473 return total;
1474}
1475
4d0c066d
KH
1476/**
1477 * test_mem_cgroup_node_reclaimable
1478 * @mem: the target memcg
1479 * @nid: the node ID to be checked.
1480 * @noswap : specify true here if the user wants flle only information.
1481 *
1482 * This function returns whether the specified memcg contains any
1483 * reclaimable pages on a node. Returns true if there are any reclaimable
1484 * pages in the node.
1485 */
c0ff4b85 1486static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1487 int nid, bool noswap)
1488{
c0ff4b85 1489 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1490 return true;
1491 if (noswap || !total_swap_pages)
1492 return false;
c0ff4b85 1493 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1494 return true;
1495 return false;
1496
1497}
889976db
YH
1498#if MAX_NUMNODES > 1
1499
1500/*
1501 * Always updating the nodemask is not very good - even if we have an empty
1502 * list or the wrong list here, we can start from some node and traverse all
1503 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1504 *
1505 */
c0ff4b85 1506static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1507{
1508 int nid;
453a9bf3
KH
1509 /*
1510 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1511 * pagein/pageout changes since the last update.
1512 */
c0ff4b85 1513 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1514 return;
c0ff4b85 1515 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1516 return;
1517
889976db 1518 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1519 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1520
1521 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1522
c0ff4b85
R
1523 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1524 node_clear(nid, memcg->scan_nodes);
889976db 1525 }
453a9bf3 1526
c0ff4b85
R
1527 atomic_set(&memcg->numainfo_events, 0);
1528 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1529}
1530
1531/*
1532 * Selecting a node where we start reclaim from. Because what we need is just
1533 * reducing usage counter, start from anywhere is O,K. Considering
1534 * memory reclaim from current node, there are pros. and cons.
1535 *
1536 * Freeing memory from current node means freeing memory from a node which
1537 * we'll use or we've used. So, it may make LRU bad. And if several threads
1538 * hit limits, it will see a contention on a node. But freeing from remote
1539 * node means more costs for memory reclaim because of memory latency.
1540 *
1541 * Now, we use round-robin. Better algorithm is welcomed.
1542 */
c0ff4b85 1543int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1544{
1545 int node;
1546
c0ff4b85
R
1547 mem_cgroup_may_update_nodemask(memcg);
1548 node = memcg->last_scanned_node;
889976db 1549
c0ff4b85 1550 node = next_node(node, memcg->scan_nodes);
889976db 1551 if (node == MAX_NUMNODES)
c0ff4b85 1552 node = first_node(memcg->scan_nodes);
889976db
YH
1553 /*
1554 * We call this when we hit limit, not when pages are added to LRU.
1555 * No LRU may hold pages because all pages are UNEVICTABLE or
1556 * memcg is too small and all pages are not on LRU. In that case,
1557 * we use curret node.
1558 */
1559 if (unlikely(node == MAX_NUMNODES))
1560 node = numa_node_id();
1561
c0ff4b85 1562 memcg->last_scanned_node = node;
889976db
YH
1563 return node;
1564}
1565
4d0c066d
KH
1566/*
1567 * Check all nodes whether it contains reclaimable pages or not.
1568 * For quick scan, we make use of scan_nodes. This will allow us to skip
1569 * unused nodes. But scan_nodes is lazily updated and may not cotain
1570 * enough new information. We need to do double check.
1571 */
c0ff4b85 1572bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1573{
1574 int nid;
1575
1576 /*
1577 * quick check...making use of scan_node.
1578 * We can skip unused nodes.
1579 */
c0ff4b85
R
1580 if (!nodes_empty(memcg->scan_nodes)) {
1581 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1582 nid < MAX_NUMNODES;
c0ff4b85 1583 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1584
c0ff4b85 1585 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1586 return true;
1587 }
1588 }
1589 /*
1590 * Check rest of nodes.
1591 */
1592 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1593 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1594 continue;
c0ff4b85 1595 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1596 return true;
1597 }
1598 return false;
1599}
1600
889976db 1601#else
c0ff4b85 1602int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1603{
1604 return 0;
1605}
4d0c066d 1606
c0ff4b85 1607bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1608{
c0ff4b85 1609 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1610}
889976db
YH
1611#endif
1612
5660048c
JW
1613static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1614 struct zone *zone,
1615 gfp_t gfp_mask,
1616 unsigned long *total_scanned)
6d61ef40 1617{
9f3a0d09 1618 struct mem_cgroup *victim = NULL;
5660048c 1619 int total = 0;
04046e1a 1620 int loop = 0;
9d11ea9f 1621 unsigned long excess;
185efc0f 1622 unsigned long nr_scanned;
527a5ec9
JW
1623 struct mem_cgroup_reclaim_cookie reclaim = {
1624 .zone = zone,
1625 .priority = 0,
1626 };
9d11ea9f 1627
c0ff4b85 1628 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1629
4e416953 1630 while (1) {
527a5ec9 1631 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1632 if (!victim) {
04046e1a 1633 loop++;
4e416953
BS
1634 if (loop >= 2) {
1635 /*
1636 * If we have not been able to reclaim
1637 * anything, it might because there are
1638 * no reclaimable pages under this hierarchy
1639 */
5660048c 1640 if (!total)
4e416953 1641 break;
4e416953 1642 /*
25985edc 1643 * We want to do more targeted reclaim.
4e416953
BS
1644 * excess >> 2 is not to excessive so as to
1645 * reclaim too much, nor too less that we keep
1646 * coming back to reclaim from this cgroup
1647 */
1648 if (total >= (excess >> 2) ||
9f3a0d09 1649 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1650 break;
4e416953 1651 }
9f3a0d09 1652 continue;
4e416953 1653 }
5660048c 1654 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1655 continue;
5660048c
JW
1656 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1657 zone, &nr_scanned);
1658 *total_scanned += nr_scanned;
1659 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1660 break;
6d61ef40 1661 }
9f3a0d09 1662 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1663 return total;
6d61ef40
BS
1664}
1665
867578cb
KH
1666/*
1667 * Check OOM-Killer is already running under our hierarchy.
1668 * If someone is running, return false.
1af8efe9 1669 * Has to be called with memcg_oom_lock
867578cb 1670 */
c0ff4b85 1671static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1672{
79dfdacc 1673 struct mem_cgroup *iter, *failed = NULL;
a636b327 1674
9f3a0d09 1675 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1676 if (iter->oom_lock) {
79dfdacc
MH
1677 /*
1678 * this subtree of our hierarchy is already locked
1679 * so we cannot give a lock.
1680 */
79dfdacc 1681 failed = iter;
9f3a0d09
JW
1682 mem_cgroup_iter_break(memcg, iter);
1683 break;
23751be0
JW
1684 } else
1685 iter->oom_lock = true;
7d74b06f 1686 }
867578cb 1687
79dfdacc 1688 if (!failed)
23751be0 1689 return true;
79dfdacc
MH
1690
1691 /*
1692 * OK, we failed to lock the whole subtree so we have to clean up
1693 * what we set up to the failing subtree
1694 */
9f3a0d09 1695 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1696 if (iter == failed) {
9f3a0d09
JW
1697 mem_cgroup_iter_break(memcg, iter);
1698 break;
79dfdacc
MH
1699 }
1700 iter->oom_lock = false;
1701 }
23751be0 1702 return false;
a636b327 1703}
0b7f569e 1704
79dfdacc 1705/*
1af8efe9 1706 * Has to be called with memcg_oom_lock
79dfdacc 1707 */
c0ff4b85 1708static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1709{
7d74b06f
KH
1710 struct mem_cgroup *iter;
1711
c0ff4b85 1712 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1713 iter->oom_lock = false;
1714 return 0;
1715}
1716
c0ff4b85 1717static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1718{
1719 struct mem_cgroup *iter;
1720
c0ff4b85 1721 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1722 atomic_inc(&iter->under_oom);
1723}
1724
c0ff4b85 1725static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1726{
1727 struct mem_cgroup *iter;
1728
867578cb
KH
1729 /*
1730 * When a new child is created while the hierarchy is under oom,
1731 * mem_cgroup_oom_lock() may not be called. We have to use
1732 * atomic_add_unless() here.
1733 */
c0ff4b85 1734 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1735 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1736}
1737
1af8efe9 1738static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1739static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1740
dc98df5a
KH
1741struct oom_wait_info {
1742 struct mem_cgroup *mem;
1743 wait_queue_t wait;
1744};
1745
1746static int memcg_oom_wake_function(wait_queue_t *wait,
1747 unsigned mode, int sync, void *arg)
1748{
c0ff4b85
R
1749 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1750 *oom_wait_memcg;
dc98df5a
KH
1751 struct oom_wait_info *oom_wait_info;
1752
1753 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
c0ff4b85 1754 oom_wait_memcg = oom_wait_info->mem;
dc98df5a 1755
dc98df5a
KH
1756 /*
1757 * Both of oom_wait_info->mem and wake_mem are stable under us.
1758 * Then we can use css_is_ancestor without taking care of RCU.
1759 */
c0ff4b85
R
1760 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1761 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1762 return 0;
dc98df5a
KH
1763 return autoremove_wake_function(wait, mode, sync, arg);
1764}
1765
c0ff4b85 1766static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1767{
c0ff4b85
R
1768 /* for filtering, pass "memcg" as argument. */
1769 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1770}
1771
c0ff4b85 1772static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1773{
c0ff4b85
R
1774 if (memcg && atomic_read(&memcg->under_oom))
1775 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1776}
1777
867578cb
KH
1778/*
1779 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1780 */
c0ff4b85 1781bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
0b7f569e 1782{
dc98df5a 1783 struct oom_wait_info owait;
3c11ecf4 1784 bool locked, need_to_kill;
867578cb 1785
c0ff4b85 1786 owait.mem = memcg;
dc98df5a
KH
1787 owait.wait.flags = 0;
1788 owait.wait.func = memcg_oom_wake_function;
1789 owait.wait.private = current;
1790 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1791 need_to_kill = true;
c0ff4b85 1792 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1793
c0ff4b85 1794 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1795 spin_lock(&memcg_oom_lock);
c0ff4b85 1796 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1797 /*
1798 * Even if signal_pending(), we can't quit charge() loop without
1799 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1800 * under OOM is always welcomed, use TASK_KILLABLE here.
1801 */
3c11ecf4 1802 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1803 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1804 need_to_kill = false;
1805 if (locked)
c0ff4b85 1806 mem_cgroup_oom_notify(memcg);
1af8efe9 1807 spin_unlock(&memcg_oom_lock);
867578cb 1808
3c11ecf4
KH
1809 if (need_to_kill) {
1810 finish_wait(&memcg_oom_waitq, &owait.wait);
c0ff4b85 1811 mem_cgroup_out_of_memory(memcg, mask);
3c11ecf4 1812 } else {
867578cb 1813 schedule();
dc98df5a 1814 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1815 }
1af8efe9 1816 spin_lock(&memcg_oom_lock);
79dfdacc 1817 if (locked)
c0ff4b85
R
1818 mem_cgroup_oom_unlock(memcg);
1819 memcg_wakeup_oom(memcg);
1af8efe9 1820 spin_unlock(&memcg_oom_lock);
867578cb 1821
c0ff4b85 1822 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1823
867578cb
KH
1824 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1825 return false;
1826 /* Give chance to dying process */
715a5ee8 1827 schedule_timeout_uninterruptible(1);
867578cb 1828 return true;
0b7f569e
KH
1829}
1830
d69b042f
BS
1831/*
1832 * Currently used to update mapped file statistics, but the routine can be
1833 * generalized to update other statistics as well.
32047e2a
KH
1834 *
1835 * Notes: Race condition
1836 *
1837 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1838 * it tends to be costly. But considering some conditions, we doesn't need
1839 * to do so _always_.
1840 *
1841 * Considering "charge", lock_page_cgroup() is not required because all
1842 * file-stat operations happen after a page is attached to radix-tree. There
1843 * are no race with "charge".
1844 *
1845 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1846 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1847 * if there are race with "uncharge". Statistics itself is properly handled
1848 * by flags.
1849 *
1850 * Considering "move", this is an only case we see a race. To make the race
1851 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1852 * possibility of race condition. If there is, we take a lock.
d69b042f 1853 */
26174efd 1854
2a7106f2
GT
1855void mem_cgroup_update_page_stat(struct page *page,
1856 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1857{
c0ff4b85 1858 struct mem_cgroup *memcg;
32047e2a
KH
1859 struct page_cgroup *pc = lookup_page_cgroup(page);
1860 bool need_unlock = false;
dbd4ea78 1861 unsigned long uninitialized_var(flags);
d69b042f 1862
cfa44946 1863 if (mem_cgroup_disabled())
d69b042f
BS
1864 return;
1865
32047e2a 1866 rcu_read_lock();
c0ff4b85
R
1867 memcg = pc->mem_cgroup;
1868 if (unlikely(!memcg || !PageCgroupUsed(pc)))
32047e2a
KH
1869 goto out;
1870 /* pc->mem_cgroup is unstable ? */
c0ff4b85 1871 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
32047e2a 1872 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1873 move_lock_page_cgroup(pc, &flags);
32047e2a 1874 need_unlock = true;
c0ff4b85
R
1875 memcg = pc->mem_cgroup;
1876 if (!memcg || !PageCgroupUsed(pc))
32047e2a
KH
1877 goto out;
1878 }
26174efd 1879
26174efd 1880 switch (idx) {
2a7106f2 1881 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1882 if (val > 0)
1883 SetPageCgroupFileMapped(pc);
1884 else if (!page_mapped(page))
0c270f8f 1885 ClearPageCgroupFileMapped(pc);
2a7106f2 1886 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1887 break;
1888 default:
1889 BUG();
8725d541 1890 }
d69b042f 1891
c0ff4b85 1892 this_cpu_add(memcg->stat->count[idx], val);
2a7106f2 1893
32047e2a
KH
1894out:
1895 if (unlikely(need_unlock))
dbd4ea78 1896 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1897 rcu_read_unlock();
1898 return;
d69b042f 1899}
2a7106f2 1900EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1901
cdec2e42
KH
1902/*
1903 * size of first charge trial. "32" comes from vmscan.c's magic value.
1904 * TODO: maybe necessary to use big numbers in big irons.
1905 */
7ec99d62 1906#define CHARGE_BATCH 32U
cdec2e42
KH
1907struct memcg_stock_pcp {
1908 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1909 unsigned int nr_pages;
cdec2e42 1910 struct work_struct work;
26fe6168
KH
1911 unsigned long flags;
1912#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
1913};
1914static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1915static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1916
1917/*
11c9ea4e 1918 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1919 * from local stock and true is returned. If the stock is 0 or charges from a
1920 * cgroup which is not current target, returns false. This stock will be
1921 * refilled.
1922 */
c0ff4b85 1923static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
1924{
1925 struct memcg_stock_pcp *stock;
1926 bool ret = true;
1927
1928 stock = &get_cpu_var(memcg_stock);
c0ff4b85 1929 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 1930 stock->nr_pages--;
cdec2e42
KH
1931 else /* need to call res_counter_charge */
1932 ret = false;
1933 put_cpu_var(memcg_stock);
1934 return ret;
1935}
1936
1937/*
1938 * Returns stocks cached in percpu to res_counter and reset cached information.
1939 */
1940static void drain_stock(struct memcg_stock_pcp *stock)
1941{
1942 struct mem_cgroup *old = stock->cached;
1943
11c9ea4e
JW
1944 if (stock->nr_pages) {
1945 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1946
1947 res_counter_uncharge(&old->res, bytes);
cdec2e42 1948 if (do_swap_account)
11c9ea4e
JW
1949 res_counter_uncharge(&old->memsw, bytes);
1950 stock->nr_pages = 0;
cdec2e42
KH
1951 }
1952 stock->cached = NULL;
cdec2e42
KH
1953}
1954
1955/*
1956 * This must be called under preempt disabled or must be called by
1957 * a thread which is pinned to local cpu.
1958 */
1959static void drain_local_stock(struct work_struct *dummy)
1960{
1961 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1962 drain_stock(stock);
26fe6168 1963 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1964}
1965
1966/*
1967 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1968 * This will be consumed by consume_stock() function, later.
cdec2e42 1969 */
c0ff4b85 1970static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1971{
1972 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1973
c0ff4b85 1974 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1975 drain_stock(stock);
c0ff4b85 1976 stock->cached = memcg;
cdec2e42 1977 }
11c9ea4e 1978 stock->nr_pages += nr_pages;
cdec2e42
KH
1979 put_cpu_var(memcg_stock);
1980}
1981
1982/*
c0ff4b85 1983 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
1984 * of the hierarchy under it. sync flag says whether we should block
1985 * until the work is done.
cdec2e42 1986 */
c0ff4b85 1987static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 1988{
26fe6168 1989 int cpu, curcpu;
d38144b7 1990
cdec2e42 1991 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1992 get_online_cpus();
5af12d0e 1993 curcpu = get_cpu();
cdec2e42
KH
1994 for_each_online_cpu(cpu) {
1995 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1996 struct mem_cgroup *memcg;
26fe6168 1997
c0ff4b85
R
1998 memcg = stock->cached;
1999 if (!memcg || !stock->nr_pages)
26fe6168 2000 continue;
c0ff4b85 2001 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2002 continue;
d1a05b69
MH
2003 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2004 if (cpu == curcpu)
2005 drain_local_stock(&stock->work);
2006 else
2007 schedule_work_on(cpu, &stock->work);
2008 }
cdec2e42 2009 }
5af12d0e 2010 put_cpu();
d38144b7
MH
2011
2012 if (!sync)
2013 goto out;
2014
2015 for_each_online_cpu(cpu) {
2016 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2017 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2018 flush_work(&stock->work);
2019 }
2020out:
cdec2e42 2021 put_online_cpus();
d38144b7
MH
2022}
2023
2024/*
2025 * Tries to drain stocked charges in other cpus. This function is asynchronous
2026 * and just put a work per cpu for draining localy on each cpu. Caller can
2027 * expects some charges will be back to res_counter later but cannot wait for
2028 * it.
2029 */
c0ff4b85 2030static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2031{
9f50fad6
MH
2032 /*
2033 * If someone calls draining, avoid adding more kworker runs.
2034 */
2035 if (!mutex_trylock(&percpu_charge_mutex))
2036 return;
c0ff4b85 2037 drain_all_stock(root_memcg, false);
9f50fad6 2038 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2039}
2040
2041/* This is a synchronous drain interface. */
c0ff4b85 2042static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2043{
2044 /* called when force_empty is called */
9f50fad6 2045 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2046 drain_all_stock(root_memcg, true);
9f50fad6 2047 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2048}
2049
711d3d2c
KH
2050/*
2051 * This function drains percpu counter value from DEAD cpu and
2052 * move it to local cpu. Note that this function can be preempted.
2053 */
c0ff4b85 2054static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2055{
2056 int i;
2057
c0ff4b85 2058 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2059 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2060 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2061
c0ff4b85
R
2062 per_cpu(memcg->stat->count[i], cpu) = 0;
2063 memcg->nocpu_base.count[i] += x;
711d3d2c 2064 }
e9f8974f 2065 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2066 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2067
c0ff4b85
R
2068 per_cpu(memcg->stat->events[i], cpu) = 0;
2069 memcg->nocpu_base.events[i] += x;
e9f8974f 2070 }
1489ebad 2071 /* need to clear ON_MOVE value, works as a kind of lock. */
c0ff4b85
R
2072 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2073 spin_unlock(&memcg->pcp_counter_lock);
1489ebad
KH
2074}
2075
c0ff4b85 2076static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
1489ebad
KH
2077{
2078 int idx = MEM_CGROUP_ON_MOVE;
2079
c0ff4b85
R
2080 spin_lock(&memcg->pcp_counter_lock);
2081 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2082 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2083}
2084
2085static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2086 unsigned long action,
2087 void *hcpu)
2088{
2089 int cpu = (unsigned long)hcpu;
2090 struct memcg_stock_pcp *stock;
711d3d2c 2091 struct mem_cgroup *iter;
cdec2e42 2092
1489ebad 2093 if ((action == CPU_ONLINE)) {
9f3a0d09 2094 for_each_mem_cgroup(iter)
1489ebad
KH
2095 synchronize_mem_cgroup_on_move(iter, cpu);
2096 return NOTIFY_OK;
2097 }
2098
711d3d2c 2099 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2100 return NOTIFY_OK;
711d3d2c 2101
9f3a0d09 2102 for_each_mem_cgroup(iter)
711d3d2c
KH
2103 mem_cgroup_drain_pcp_counter(iter, cpu);
2104
cdec2e42
KH
2105 stock = &per_cpu(memcg_stock, cpu);
2106 drain_stock(stock);
2107 return NOTIFY_OK;
2108}
2109
4b534334
KH
2110
2111/* See __mem_cgroup_try_charge() for details */
2112enum {
2113 CHARGE_OK, /* success */
2114 CHARGE_RETRY, /* need to retry but retry is not bad */
2115 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2116 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2117 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2118};
2119
c0ff4b85 2120static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2121 unsigned int nr_pages, bool oom_check)
4b534334 2122{
7ec99d62 2123 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2124 struct mem_cgroup *mem_over_limit;
2125 struct res_counter *fail_res;
2126 unsigned long flags = 0;
2127 int ret;
2128
c0ff4b85 2129 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2130
2131 if (likely(!ret)) {
2132 if (!do_swap_account)
2133 return CHARGE_OK;
c0ff4b85 2134 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2135 if (likely(!ret))
2136 return CHARGE_OK;
2137
c0ff4b85 2138 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2139 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2140 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2141 } else
2142 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2143 /*
7ec99d62
JW
2144 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2145 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2146 *
2147 * Never reclaim on behalf of optional batching, retry with a
2148 * single page instead.
2149 */
7ec99d62 2150 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2151 return CHARGE_RETRY;
2152
2153 if (!(gfp_mask & __GFP_WAIT))
2154 return CHARGE_WOULDBLOCK;
2155
5660048c 2156 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2157 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2158 return CHARGE_RETRY;
4b534334 2159 /*
19942822
JW
2160 * Even though the limit is exceeded at this point, reclaim
2161 * may have been able to free some pages. Retry the charge
2162 * before killing the task.
2163 *
2164 * Only for regular pages, though: huge pages are rather
2165 * unlikely to succeed so close to the limit, and we fall back
2166 * to regular pages anyway in case of failure.
4b534334 2167 */
7ec99d62 2168 if (nr_pages == 1 && ret)
4b534334
KH
2169 return CHARGE_RETRY;
2170
2171 /*
2172 * At task move, charge accounts can be doubly counted. So, it's
2173 * better to wait until the end of task_move if something is going on.
2174 */
2175 if (mem_cgroup_wait_acct_move(mem_over_limit))
2176 return CHARGE_RETRY;
2177
2178 /* If we don't need to call oom-killer at el, return immediately */
2179 if (!oom_check)
2180 return CHARGE_NOMEM;
2181 /* check OOM */
2182 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2183 return CHARGE_OOM_DIE;
2184
2185 return CHARGE_RETRY;
2186}
2187
f817ed48 2188/*
38c5d72f
KH
2189 * __mem_cgroup_try_charge() does
2190 * 1. detect memcg to be charged against from passed *mm and *ptr,
2191 * 2. update res_counter
2192 * 3. call memory reclaim if necessary.
2193 *
2194 * In some special case, if the task is fatal, fatal_signal_pending() or
2195 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2196 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2197 * as possible without any hazards. 2: all pages should have a valid
2198 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2199 * pointer, that is treated as a charge to root_mem_cgroup.
2200 *
2201 * So __mem_cgroup_try_charge() will return
2202 * 0 ... on success, filling *ptr with a valid memcg pointer.
2203 * -ENOMEM ... charge failure because of resource limits.
2204 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2205 *
2206 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2207 * the oom-killer can be invoked.
8a9f3ccd 2208 */
f817ed48 2209static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2210 gfp_t gfp_mask,
7ec99d62 2211 unsigned int nr_pages,
c0ff4b85 2212 struct mem_cgroup **ptr,
7ec99d62 2213 bool oom)
8a9f3ccd 2214{
7ec99d62 2215 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2216 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2217 struct mem_cgroup *memcg = NULL;
4b534334 2218 int ret;
a636b327 2219
867578cb
KH
2220 /*
2221 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2222 * in system level. So, allow to go ahead dying process in addition to
2223 * MEMDIE process.
2224 */
2225 if (unlikely(test_thread_flag(TIF_MEMDIE)
2226 || fatal_signal_pending(current)))
2227 goto bypass;
a636b327 2228
8a9f3ccd 2229 /*
3be91277
HD
2230 * We always charge the cgroup the mm_struct belongs to.
2231 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2232 * thread group leader migrates. It's possible that mm is not
2233 * set, if so charge the init_mm (happens for pagecache usage).
2234 */
c0ff4b85 2235 if (!*ptr && !mm)
38c5d72f 2236 *ptr = root_mem_cgroup;
f75ca962 2237again:
c0ff4b85
R
2238 if (*ptr) { /* css should be a valid one */
2239 memcg = *ptr;
2240 VM_BUG_ON(css_is_removed(&memcg->css));
2241 if (mem_cgroup_is_root(memcg))
f75ca962 2242 goto done;
c0ff4b85 2243 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2244 goto done;
c0ff4b85 2245 css_get(&memcg->css);
4b534334 2246 } else {
f75ca962 2247 struct task_struct *p;
54595fe2 2248
f75ca962
KH
2249 rcu_read_lock();
2250 p = rcu_dereference(mm->owner);
f75ca962 2251 /*
ebb76ce1 2252 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2253 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2254 * race with swapoff. Then, we have small risk of mis-accouning.
2255 * But such kind of mis-account by race always happens because
2256 * we don't have cgroup_mutex(). It's overkill and we allo that
2257 * small race, here.
2258 * (*) swapoff at el will charge against mm-struct not against
2259 * task-struct. So, mm->owner can be NULL.
f75ca962 2260 */
c0ff4b85 2261 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2262 if (!memcg)
2263 memcg = root_mem_cgroup;
2264 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2265 rcu_read_unlock();
2266 goto done;
2267 }
c0ff4b85 2268 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2269 /*
2270 * It seems dagerous to access memcg without css_get().
2271 * But considering how consume_stok works, it's not
2272 * necessary. If consume_stock success, some charges
2273 * from this memcg are cached on this cpu. So, we
2274 * don't need to call css_get()/css_tryget() before
2275 * calling consume_stock().
2276 */
2277 rcu_read_unlock();
2278 goto done;
2279 }
2280 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2281 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2282 rcu_read_unlock();
2283 goto again;
2284 }
2285 rcu_read_unlock();
2286 }
8a9f3ccd 2287
4b534334
KH
2288 do {
2289 bool oom_check;
7a81b88c 2290
4b534334 2291 /* If killed, bypass charge */
f75ca962 2292 if (fatal_signal_pending(current)) {
c0ff4b85 2293 css_put(&memcg->css);
4b534334 2294 goto bypass;
f75ca962 2295 }
6d61ef40 2296
4b534334
KH
2297 oom_check = false;
2298 if (oom && !nr_oom_retries) {
2299 oom_check = true;
2300 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2301 }
66e1707b 2302
c0ff4b85 2303 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2304 switch (ret) {
2305 case CHARGE_OK:
2306 break;
2307 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2308 batch = nr_pages;
c0ff4b85
R
2309 css_put(&memcg->css);
2310 memcg = NULL;
f75ca962 2311 goto again;
4b534334 2312 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2313 css_put(&memcg->css);
4b534334
KH
2314 goto nomem;
2315 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2316 if (!oom) {
c0ff4b85 2317 css_put(&memcg->css);
867578cb 2318 goto nomem;
f75ca962 2319 }
4b534334
KH
2320 /* If oom, we never return -ENOMEM */
2321 nr_oom_retries--;
2322 break;
2323 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2324 css_put(&memcg->css);
867578cb 2325 goto bypass;
66e1707b 2326 }
4b534334
KH
2327 } while (ret != CHARGE_OK);
2328
7ec99d62 2329 if (batch > nr_pages)
c0ff4b85
R
2330 refill_stock(memcg, batch - nr_pages);
2331 css_put(&memcg->css);
0c3e73e8 2332done:
c0ff4b85 2333 *ptr = memcg;
7a81b88c
KH
2334 return 0;
2335nomem:
c0ff4b85 2336 *ptr = NULL;
7a81b88c 2337 return -ENOMEM;
867578cb 2338bypass:
38c5d72f
KH
2339 *ptr = root_mem_cgroup;
2340 return -EINTR;
7a81b88c 2341}
8a9f3ccd 2342
a3032a2c
DN
2343/*
2344 * Somemtimes we have to undo a charge we got by try_charge().
2345 * This function is for that and do uncharge, put css's refcnt.
2346 * gotten by try_charge().
2347 */
c0ff4b85 2348static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2349 unsigned int nr_pages)
a3032a2c 2350{
c0ff4b85 2351 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2352 unsigned long bytes = nr_pages * PAGE_SIZE;
2353
c0ff4b85 2354 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2355 if (do_swap_account)
c0ff4b85 2356 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2357 }
854ffa8d
DN
2358}
2359
a3b2d692
KH
2360/*
2361 * A helper function to get mem_cgroup from ID. must be called under
2362 * rcu_read_lock(). The caller must check css_is_removed() or some if
2363 * it's concern. (dropping refcnt from swap can be called against removed
2364 * memcg.)
2365 */
2366static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2367{
2368 struct cgroup_subsys_state *css;
2369
2370 /* ID 0 is unused ID */
2371 if (!id)
2372 return NULL;
2373 css = css_lookup(&mem_cgroup_subsys, id);
2374 if (!css)
2375 return NULL;
2376 return container_of(css, struct mem_cgroup, css);
2377}
2378
e42d9d5d 2379struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2380{
c0ff4b85 2381 struct mem_cgroup *memcg = NULL;
3c776e64 2382 struct page_cgroup *pc;
a3b2d692 2383 unsigned short id;
b5a84319
KH
2384 swp_entry_t ent;
2385
3c776e64
DN
2386 VM_BUG_ON(!PageLocked(page));
2387
3c776e64 2388 pc = lookup_page_cgroup(page);
c0bd3f63 2389 lock_page_cgroup(pc);
a3b2d692 2390 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2391 memcg = pc->mem_cgroup;
2392 if (memcg && !css_tryget(&memcg->css))
2393 memcg = NULL;
e42d9d5d 2394 } else if (PageSwapCache(page)) {
3c776e64 2395 ent.val = page_private(page);
9fb4b7cc 2396 id = lookup_swap_cgroup_id(ent);
a3b2d692 2397 rcu_read_lock();
c0ff4b85
R
2398 memcg = mem_cgroup_lookup(id);
2399 if (memcg && !css_tryget(&memcg->css))
2400 memcg = NULL;
a3b2d692 2401 rcu_read_unlock();
3c776e64 2402 }
c0bd3f63 2403 unlock_page_cgroup(pc);
c0ff4b85 2404 return memcg;
b5a84319
KH
2405}
2406
c0ff4b85 2407static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2408 struct page *page,
7ec99d62 2409 unsigned int nr_pages,
ca3e0214 2410 struct page_cgroup *pc,
7ec99d62 2411 enum charge_type ctype)
7a81b88c 2412{
ca3e0214
KH
2413 lock_page_cgroup(pc);
2414 if (unlikely(PageCgroupUsed(pc))) {
2415 unlock_page_cgroup(pc);
c0ff4b85 2416 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2417 return;
2418 }
2419 /*
2420 * we don't need page_cgroup_lock about tail pages, becase they are not
2421 * accessed by any other context at this point.
2422 */
c0ff4b85 2423 pc->mem_cgroup = memcg;
261fb61a
KH
2424 /*
2425 * We access a page_cgroup asynchronously without lock_page_cgroup().
2426 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2427 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2428 * before USED bit, we need memory barrier here.
2429 * See mem_cgroup_add_lru_list(), etc.
2430 */
08e552c6 2431 smp_wmb();
4b3bde4c
BS
2432 switch (ctype) {
2433 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2434 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2435 SetPageCgroupCache(pc);
2436 SetPageCgroupUsed(pc);
2437 break;
2438 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2439 ClearPageCgroupCache(pc);
2440 SetPageCgroupUsed(pc);
2441 break;
2442 default:
2443 break;
2444 }
3be91277 2445
c0ff4b85 2446 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
52d4b9ac 2447 unlock_page_cgroup(pc);
38c5d72f 2448 WARN_ON_ONCE(PageLRU(page));
430e4863
KH
2449 /*
2450 * "charge_statistics" updated event counter. Then, check it.
2451 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2452 * if they exceeds softlimit.
2453 */
c0ff4b85 2454 memcg_check_events(memcg, page);
7a81b88c 2455}
66e1707b 2456
ca3e0214
KH
2457#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2458
2459#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
38c5d72f 2460 (1 << PCG_MIGRATION))
ca3e0214
KH
2461/*
2462 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2463 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2464 * charge/uncharge will be never happen and move_account() is done under
2465 * compound_lock(), so we don't have to take care of races.
ca3e0214 2466 */
e94c8a9c 2467void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2468{
2469 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2470 struct page_cgroup *pc;
2471 int i;
ca3e0214 2472
3d37c4a9
KH
2473 if (mem_cgroup_disabled())
2474 return;
e94c8a9c
KH
2475 for (i = 1; i < HPAGE_PMD_NR; i++) {
2476 pc = head_pc + i;
2477 pc->mem_cgroup = head_pc->mem_cgroup;
2478 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2479 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2480 }
ca3e0214 2481}
12d27107 2482#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2483
f817ed48 2484/**
de3638d9 2485 * mem_cgroup_move_account - move account of the page
5564e88b 2486 * @page: the page
7ec99d62 2487 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2488 * @pc: page_cgroup of the page.
2489 * @from: mem_cgroup which the page is moved from.
2490 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2491 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2492 *
2493 * The caller must confirm following.
08e552c6 2494 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2495 * - compound_lock is held when nr_pages > 1
f817ed48 2496 *
854ffa8d 2497 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2498 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2499 * true, this function does "uncharge" from old cgroup, but it doesn't if
2500 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2501 */
7ec99d62
JW
2502static int mem_cgroup_move_account(struct page *page,
2503 unsigned int nr_pages,
2504 struct page_cgroup *pc,
2505 struct mem_cgroup *from,
2506 struct mem_cgroup *to,
2507 bool uncharge)
f817ed48 2508{
de3638d9
JW
2509 unsigned long flags;
2510 int ret;
987eba66 2511
f817ed48 2512 VM_BUG_ON(from == to);
5564e88b 2513 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2514 /*
2515 * The page is isolated from LRU. So, collapse function
2516 * will not handle this page. But page splitting can happen.
2517 * Do this check under compound_page_lock(). The caller should
2518 * hold it.
2519 */
2520 ret = -EBUSY;
7ec99d62 2521 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2522 goto out;
2523
2524 lock_page_cgroup(pc);
2525
2526 ret = -EINVAL;
2527 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2528 goto unlock;
2529
2530 move_lock_page_cgroup(pc, &flags);
f817ed48 2531
8725d541 2532 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2533 /* Update mapped_file data for mem_cgroup */
2534 preempt_disable();
2535 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2536 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2537 preempt_enable();
d69b042f 2538 }
987eba66 2539 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2540 if (uncharge)
2541 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2542 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2543
854ffa8d 2544 /* caller should have done css_get */
08e552c6 2545 pc->mem_cgroup = to;
987eba66 2546 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2547 /*
2548 * We charges against "to" which may not have any tasks. Then, "to"
2549 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2550 * this function is just force_empty() and move charge, so it's
25985edc 2551 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2552 * status here.
88703267 2553 */
de3638d9
JW
2554 move_unlock_page_cgroup(pc, &flags);
2555 ret = 0;
2556unlock:
57f9fd7d 2557 unlock_page_cgroup(pc);
d2265e6f
KH
2558 /*
2559 * check events
2560 */
5564e88b
JW
2561 memcg_check_events(to, page);
2562 memcg_check_events(from, page);
de3638d9 2563out:
f817ed48
KH
2564 return ret;
2565}
2566
2567/*
2568 * move charges to its parent.
2569 */
2570
5564e88b
JW
2571static int mem_cgroup_move_parent(struct page *page,
2572 struct page_cgroup *pc,
f817ed48
KH
2573 struct mem_cgroup *child,
2574 gfp_t gfp_mask)
2575{
2576 struct cgroup *cg = child->css.cgroup;
2577 struct cgroup *pcg = cg->parent;
2578 struct mem_cgroup *parent;
7ec99d62 2579 unsigned int nr_pages;
4be4489f 2580 unsigned long uninitialized_var(flags);
f817ed48
KH
2581 int ret;
2582
2583 /* Is ROOT ? */
2584 if (!pcg)
2585 return -EINVAL;
2586
57f9fd7d
DN
2587 ret = -EBUSY;
2588 if (!get_page_unless_zero(page))
2589 goto out;
2590 if (isolate_lru_page(page))
2591 goto put;
52dbb905 2592
7ec99d62 2593 nr_pages = hpage_nr_pages(page);
08e552c6 2594
f817ed48 2595 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2596 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
38c5d72f 2597 if (ret)
57f9fd7d 2598 goto put_back;
f817ed48 2599
7ec99d62 2600 if (nr_pages > 1)
987eba66
KH
2601 flags = compound_lock_irqsave(page);
2602
7ec99d62 2603 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2604 if (ret)
7ec99d62 2605 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2606
7ec99d62 2607 if (nr_pages > 1)
987eba66 2608 compound_unlock_irqrestore(page, flags);
8dba474f 2609put_back:
08e552c6 2610 putback_lru_page(page);
57f9fd7d 2611put:
40d58138 2612 put_page(page);
57f9fd7d 2613out:
f817ed48
KH
2614 return ret;
2615}
2616
7a81b88c
KH
2617/*
2618 * Charge the memory controller for page usage.
2619 * Return
2620 * 0 if the charge was successful
2621 * < 0 if the cgroup is over its limit
2622 */
2623static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2624 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2625{
c0ff4b85 2626 struct mem_cgroup *memcg = NULL;
7ec99d62 2627 unsigned int nr_pages = 1;
7a81b88c 2628 struct page_cgroup *pc;
8493ae43 2629 bool oom = true;
7a81b88c 2630 int ret;
ec168510 2631
37c2ac78 2632 if (PageTransHuge(page)) {
7ec99d62 2633 nr_pages <<= compound_order(page);
37c2ac78 2634 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2635 /*
2636 * Never OOM-kill a process for a huge page. The
2637 * fault handler will fall back to regular pages.
2638 */
2639 oom = false;
37c2ac78 2640 }
7a81b88c
KH
2641
2642 pc = lookup_page_cgroup(page);
c0ff4b85 2643 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2644 if (ret == -ENOMEM)
7a81b88c 2645 return ret;
c0ff4b85 2646 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
8a9f3ccd 2647 return 0;
8a9f3ccd
BS
2648}
2649
7a81b88c
KH
2650int mem_cgroup_newpage_charge(struct page *page,
2651 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2652{
f8d66542 2653 if (mem_cgroup_disabled())
cede86ac 2654 return 0;
7a0524cf
JW
2655 VM_BUG_ON(page_mapped(page));
2656 VM_BUG_ON(page->mapping && !PageAnon(page));
2657 VM_BUG_ON(!mm);
217bc319 2658 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2659 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2660}
2661
83aae4c7
DN
2662static void
2663__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2664 enum charge_type ctype);
2665
5a6475a4 2666static void
c0ff4b85 2667__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
5a6475a4
KH
2668 enum charge_type ctype)
2669{
2670 struct page_cgroup *pc = lookup_page_cgroup(page);
36b62ad5
KH
2671 struct zone *zone = page_zone(page);
2672 unsigned long flags;
2673 bool removed = false;
2674
5a6475a4
KH
2675 /*
2676 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2677 * is already on LRU. It means the page may on some other page_cgroup's
2678 * LRU. Take care of it.
2679 */
36b62ad5
KH
2680 spin_lock_irqsave(&zone->lru_lock, flags);
2681 if (PageLRU(page)) {
2682 del_page_from_lru_list(zone, page, page_lru(page));
2683 ClearPageLRU(page);
2684 removed = true;
2685 }
c0ff4b85 2686 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
36b62ad5
KH
2687 if (removed) {
2688 add_page_to_lru_list(zone, page, page_lru(page));
2689 SetPageLRU(page);
2690 }
2691 spin_unlock_irqrestore(&zone->lru_lock, flags);
5a6475a4
KH
2692 return;
2693}
2694
e1a1cd59
BS
2695int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2696 gfp_t gfp_mask)
8697d331 2697{
c0ff4b85 2698 struct mem_cgroup *memcg = NULL;
dc67d504 2699 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2700 int ret;
2701
f8d66542 2702 if (mem_cgroup_disabled())
cede86ac 2703 return 0;
52d4b9ac
KH
2704 if (PageCompound(page))
2705 return 0;
accf163e 2706
73045c47 2707 if (unlikely(!mm))
8697d331 2708 mm = &init_mm;
dc67d504
KH
2709 if (!page_is_file_cache(page))
2710 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2711
38c5d72f 2712 if (!PageSwapCache(page))
dc67d504 2713 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2714 else { /* page is swapcache/shmem */
c0ff4b85 2715 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2716 if (!ret)
dc67d504
KH
2717 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2718 }
b5a84319 2719 return ret;
e8589cc1
KH
2720}
2721
54595fe2
KH
2722/*
2723 * While swap-in, try_charge -> commit or cancel, the page is locked.
2724 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2725 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2726 * "commit()" or removed by "cancel()"
2727 */
8c7c6e34
KH
2728int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2729 struct page *page,
72835c86 2730 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2731{
c0ff4b85 2732 struct mem_cgroup *memcg;
54595fe2 2733 int ret;
8c7c6e34 2734
72835c86 2735 *memcgp = NULL;
56039efa 2736
f8d66542 2737 if (mem_cgroup_disabled())
8c7c6e34
KH
2738 return 0;
2739
2740 if (!do_swap_account)
2741 goto charge_cur_mm;
8c7c6e34
KH
2742 /*
2743 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2744 * the pte, and even removed page from swap cache: in those cases
2745 * do_swap_page()'s pte_same() test will fail; but there's also a
2746 * KSM case which does need to charge the page.
8c7c6e34
KH
2747 */
2748 if (!PageSwapCache(page))
407f9c8b 2749 goto charge_cur_mm;
c0ff4b85
R
2750 memcg = try_get_mem_cgroup_from_page(page);
2751 if (!memcg)
54595fe2 2752 goto charge_cur_mm;
72835c86
JW
2753 *memcgp = memcg;
2754 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2755 css_put(&memcg->css);
38c5d72f
KH
2756 if (ret == -EINTR)
2757 ret = 0;
54595fe2 2758 return ret;
8c7c6e34
KH
2759charge_cur_mm:
2760 if (unlikely(!mm))
2761 mm = &init_mm;
38c5d72f
KH
2762 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2763 if (ret == -EINTR)
2764 ret = 0;
2765 return ret;
8c7c6e34
KH
2766}
2767
83aae4c7 2768static void
72835c86 2769__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2770 enum charge_type ctype)
7a81b88c 2771{
f8d66542 2772 if (mem_cgroup_disabled())
7a81b88c 2773 return;
72835c86 2774 if (!memcg)
7a81b88c 2775 return;
72835c86 2776 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2777
72835c86 2778 __mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
8c7c6e34
KH
2779 /*
2780 * Now swap is on-memory. This means this page may be
2781 * counted both as mem and swap....double count.
03f3c433
KH
2782 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2783 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2784 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2785 */
03f3c433 2786 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2787 swp_entry_t ent = {.val = page_private(page)};
72835c86 2788 struct mem_cgroup *swap_memcg;
a3b2d692 2789 unsigned short id;
a3b2d692
KH
2790
2791 id = swap_cgroup_record(ent, 0);
2792 rcu_read_lock();
72835c86
JW
2793 swap_memcg = mem_cgroup_lookup(id);
2794 if (swap_memcg) {
a3b2d692
KH
2795 /*
2796 * This recorded memcg can be obsolete one. So, avoid
2797 * calling css_tryget
2798 */
72835c86
JW
2799 if (!mem_cgroup_is_root(swap_memcg))
2800 res_counter_uncharge(&swap_memcg->memsw,
2801 PAGE_SIZE);
2802 mem_cgroup_swap_statistics(swap_memcg, false);
2803 mem_cgroup_put(swap_memcg);
8c7c6e34 2804 }
a3b2d692 2805 rcu_read_unlock();
8c7c6e34 2806 }
88703267
KH
2807 /*
2808 * At swapin, we may charge account against cgroup which has no tasks.
2809 * So, rmdir()->pre_destroy() can be called while we do this charge.
2810 * In that case, we need to call pre_destroy() again. check it here.
2811 */
72835c86 2812 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2813}
2814
72835c86
JW
2815void mem_cgroup_commit_charge_swapin(struct page *page,
2816 struct mem_cgroup *memcg)
83aae4c7 2817{
72835c86
JW
2818 __mem_cgroup_commit_charge_swapin(page, memcg,
2819 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2820}
2821
c0ff4b85 2822void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2823{
f8d66542 2824 if (mem_cgroup_disabled())
7a81b88c 2825 return;
c0ff4b85 2826 if (!memcg)
7a81b88c 2827 return;
c0ff4b85 2828 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2829}
2830
c0ff4b85 2831static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2832 unsigned int nr_pages,
2833 const enum charge_type ctype)
569b846d
KH
2834{
2835 struct memcg_batch_info *batch = NULL;
2836 bool uncharge_memsw = true;
7ec99d62 2837
569b846d
KH
2838 /* If swapout, usage of swap doesn't decrease */
2839 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2840 uncharge_memsw = false;
569b846d
KH
2841
2842 batch = &current->memcg_batch;
2843 /*
2844 * In usual, we do css_get() when we remember memcg pointer.
2845 * But in this case, we keep res->usage until end of a series of
2846 * uncharges. Then, it's ok to ignore memcg's refcnt.
2847 */
2848 if (!batch->memcg)
c0ff4b85 2849 batch->memcg = memcg;
3c11ecf4
KH
2850 /*
2851 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2852 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2853 * the same cgroup and we have chance to coalesce uncharges.
2854 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2855 * because we want to do uncharge as soon as possible.
2856 */
2857
2858 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2859 goto direct_uncharge;
2860
7ec99d62 2861 if (nr_pages > 1)
ec168510
AA
2862 goto direct_uncharge;
2863
569b846d
KH
2864 /*
2865 * In typical case, batch->memcg == mem. This means we can
2866 * merge a series of uncharges to an uncharge of res_counter.
2867 * If not, we uncharge res_counter ony by one.
2868 */
c0ff4b85 2869 if (batch->memcg != memcg)
569b846d
KH
2870 goto direct_uncharge;
2871 /* remember freed charge and uncharge it later */
7ffd4ca7 2872 batch->nr_pages++;
569b846d 2873 if (uncharge_memsw)
7ffd4ca7 2874 batch->memsw_nr_pages++;
569b846d
KH
2875 return;
2876direct_uncharge:
c0ff4b85 2877 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2878 if (uncharge_memsw)
c0ff4b85
R
2879 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2880 if (unlikely(batch->memcg != memcg))
2881 memcg_oom_recover(memcg);
569b846d
KH
2882 return;
2883}
7a81b88c 2884
8a9f3ccd 2885/*
69029cd5 2886 * uncharge if !page_mapped(page)
8a9f3ccd 2887 */
8c7c6e34 2888static struct mem_cgroup *
69029cd5 2889__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2890{
c0ff4b85 2891 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2892 unsigned int nr_pages = 1;
2893 struct page_cgroup *pc;
8a9f3ccd 2894
f8d66542 2895 if (mem_cgroup_disabled())
8c7c6e34 2896 return NULL;
4077960e 2897
d13d1443 2898 if (PageSwapCache(page))
8c7c6e34 2899 return NULL;
d13d1443 2900
37c2ac78 2901 if (PageTransHuge(page)) {
7ec99d62 2902 nr_pages <<= compound_order(page);
37c2ac78
AA
2903 VM_BUG_ON(!PageTransHuge(page));
2904 }
8697d331 2905 /*
3c541e14 2906 * Check if our page_cgroup is valid
8697d331 2907 */
52d4b9ac 2908 pc = lookup_page_cgroup(page);
cfa44946 2909 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2910 return NULL;
b9c565d5 2911
52d4b9ac 2912 lock_page_cgroup(pc);
d13d1443 2913
c0ff4b85 2914 memcg = pc->mem_cgroup;
8c7c6e34 2915
d13d1443
KH
2916 if (!PageCgroupUsed(pc))
2917 goto unlock_out;
2918
2919 switch (ctype) {
2920 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2921 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2922 /* See mem_cgroup_prepare_migration() */
2923 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2924 goto unlock_out;
2925 break;
2926 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2927 if (!PageAnon(page)) { /* Shared memory */
2928 if (page->mapping && !page_is_file_cache(page))
2929 goto unlock_out;
2930 } else if (page_mapped(page)) /* Anon */
2931 goto unlock_out;
2932 break;
2933 default:
2934 break;
52d4b9ac 2935 }
d13d1443 2936
c0ff4b85 2937 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
04046e1a 2938
52d4b9ac 2939 ClearPageCgroupUsed(pc);
544122e5
KH
2940 /*
2941 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2942 * freed from LRU. This is safe because uncharged page is expected not
2943 * to be reused (freed soon). Exception is SwapCache, it's handled by
2944 * special functions.
2945 */
b9c565d5 2946
52d4b9ac 2947 unlock_page_cgroup(pc);
f75ca962 2948 /*
c0ff4b85 2949 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
2950 * will never be freed.
2951 */
c0ff4b85 2952 memcg_check_events(memcg, page);
f75ca962 2953 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
2954 mem_cgroup_swap_statistics(memcg, true);
2955 mem_cgroup_get(memcg);
f75ca962 2956 }
c0ff4b85
R
2957 if (!mem_cgroup_is_root(memcg))
2958 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 2959
c0ff4b85 2960 return memcg;
d13d1443
KH
2961
2962unlock_out:
2963 unlock_page_cgroup(pc);
8c7c6e34 2964 return NULL;
3c541e14
BS
2965}
2966
69029cd5
KH
2967void mem_cgroup_uncharge_page(struct page *page)
2968{
52d4b9ac
KH
2969 /* early check. */
2970 if (page_mapped(page))
2971 return;
40f23a21 2972 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
2973 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2974}
2975
2976void mem_cgroup_uncharge_cache_page(struct page *page)
2977{
2978 VM_BUG_ON(page_mapped(page));
b7abea96 2979 VM_BUG_ON(page->mapping);
69029cd5
KH
2980 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2981}
2982
569b846d
KH
2983/*
2984 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2985 * In that cases, pages are freed continuously and we can expect pages
2986 * are in the same memcg. All these calls itself limits the number of
2987 * pages freed at once, then uncharge_start/end() is called properly.
2988 * This may be called prural(2) times in a context,
2989 */
2990
2991void mem_cgroup_uncharge_start(void)
2992{
2993 current->memcg_batch.do_batch++;
2994 /* We can do nest. */
2995 if (current->memcg_batch.do_batch == 1) {
2996 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
2997 current->memcg_batch.nr_pages = 0;
2998 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
2999 }
3000}
3001
3002void mem_cgroup_uncharge_end(void)
3003{
3004 struct memcg_batch_info *batch = &current->memcg_batch;
3005
3006 if (!batch->do_batch)
3007 return;
3008
3009 batch->do_batch--;
3010 if (batch->do_batch) /* If stacked, do nothing. */
3011 return;
3012
3013 if (!batch->memcg)
3014 return;
3015 /*
3016 * This "batch->memcg" is valid without any css_get/put etc...
3017 * bacause we hide charges behind us.
3018 */
7ffd4ca7
JW
3019 if (batch->nr_pages)
3020 res_counter_uncharge(&batch->memcg->res,
3021 batch->nr_pages * PAGE_SIZE);
3022 if (batch->memsw_nr_pages)
3023 res_counter_uncharge(&batch->memcg->memsw,
3024 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3025 memcg_oom_recover(batch->memcg);
569b846d
KH
3026 /* forget this pointer (for sanity check) */
3027 batch->memcg = NULL;
3028}
3029
4e5f01c2
KH
3030/*
3031 * A function for resetting pc->mem_cgroup for newly allocated pages.
3032 * This function should be called if the newpage will be added to LRU
3033 * before start accounting.
3034 */
3035void mem_cgroup_reset_owner(struct page *newpage)
3036{
3037 struct page_cgroup *pc;
3038
3039 if (mem_cgroup_disabled())
3040 return;
3041
3042 pc = lookup_page_cgroup(newpage);
3043 VM_BUG_ON(PageCgroupUsed(pc));
3044 pc->mem_cgroup = root_mem_cgroup;
3045}
3046
e767e056 3047#ifdef CONFIG_SWAP
8c7c6e34 3048/*
e767e056 3049 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3050 * memcg information is recorded to swap_cgroup of "ent"
3051 */
8a9478ca
KH
3052void
3053mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3054{
3055 struct mem_cgroup *memcg;
8a9478ca
KH
3056 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3057
3058 if (!swapout) /* this was a swap cache but the swap is unused ! */
3059 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3060
3061 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3062
f75ca962
KH
3063 /*
3064 * record memcg information, if swapout && memcg != NULL,
3065 * mem_cgroup_get() was called in uncharge().
3066 */
3067 if (do_swap_account && swapout && memcg)
a3b2d692 3068 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3069}
e767e056 3070#endif
8c7c6e34
KH
3071
3072#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3073/*
3074 * called from swap_entry_free(). remove record in swap_cgroup and
3075 * uncharge "memsw" account.
3076 */
3077void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3078{
8c7c6e34 3079 struct mem_cgroup *memcg;
a3b2d692 3080 unsigned short id;
8c7c6e34
KH
3081
3082 if (!do_swap_account)
3083 return;
3084
a3b2d692
KH
3085 id = swap_cgroup_record(ent, 0);
3086 rcu_read_lock();
3087 memcg = mem_cgroup_lookup(id);
8c7c6e34 3088 if (memcg) {
a3b2d692
KH
3089 /*
3090 * We uncharge this because swap is freed.
3091 * This memcg can be obsolete one. We avoid calling css_tryget
3092 */
0c3e73e8 3093 if (!mem_cgroup_is_root(memcg))
4e649152 3094 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3095 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3096 mem_cgroup_put(memcg);
3097 }
a3b2d692 3098 rcu_read_unlock();
d13d1443 3099}
02491447
DN
3100
3101/**
3102 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3103 * @entry: swap entry to be moved
3104 * @from: mem_cgroup which the entry is moved from
3105 * @to: mem_cgroup which the entry is moved to
483c30b5 3106 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3107 *
3108 * It succeeds only when the swap_cgroup's record for this entry is the same
3109 * as the mem_cgroup's id of @from.
3110 *
3111 * Returns 0 on success, -EINVAL on failure.
3112 *
3113 * The caller must have charged to @to, IOW, called res_counter_charge() about
3114 * both res and memsw, and called css_get().
3115 */
3116static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3117 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3118{
3119 unsigned short old_id, new_id;
3120
3121 old_id = css_id(&from->css);
3122 new_id = css_id(&to->css);
3123
3124 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3125 mem_cgroup_swap_statistics(from, false);
483c30b5 3126 mem_cgroup_swap_statistics(to, true);
02491447 3127 /*
483c30b5
DN
3128 * This function is only called from task migration context now.
3129 * It postpones res_counter and refcount handling till the end
3130 * of task migration(mem_cgroup_clear_mc()) for performance
3131 * improvement. But we cannot postpone mem_cgroup_get(to)
3132 * because if the process that has been moved to @to does
3133 * swap-in, the refcount of @to might be decreased to 0.
02491447 3134 */
02491447 3135 mem_cgroup_get(to);
483c30b5
DN
3136 if (need_fixup) {
3137 if (!mem_cgroup_is_root(from))
3138 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3139 mem_cgroup_put(from);
3140 /*
3141 * we charged both to->res and to->memsw, so we should
3142 * uncharge to->res.
3143 */
3144 if (!mem_cgroup_is_root(to))
3145 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3146 }
02491447
DN
3147 return 0;
3148 }
3149 return -EINVAL;
3150}
3151#else
3152static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3153 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3154{
3155 return -EINVAL;
3156}
8c7c6e34 3157#endif
d13d1443 3158
ae41be37 3159/*
01b1ae63
KH
3160 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3161 * page belongs to.
ae41be37 3162 */
ac39cf8c 3163int mem_cgroup_prepare_migration(struct page *page,
72835c86 3164 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3165{
c0ff4b85 3166 struct mem_cgroup *memcg = NULL;
7ec99d62 3167 struct page_cgroup *pc;
ac39cf8c 3168 enum charge_type ctype;
e8589cc1 3169 int ret = 0;
8869b8f6 3170
72835c86 3171 *memcgp = NULL;
56039efa 3172
ec168510 3173 VM_BUG_ON(PageTransHuge(page));
f8d66542 3174 if (mem_cgroup_disabled())
4077960e
BS
3175 return 0;
3176
52d4b9ac
KH
3177 pc = lookup_page_cgroup(page);
3178 lock_page_cgroup(pc);
3179 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3180 memcg = pc->mem_cgroup;
3181 css_get(&memcg->css);
ac39cf8c 3182 /*
3183 * At migrating an anonymous page, its mapcount goes down
3184 * to 0 and uncharge() will be called. But, even if it's fully
3185 * unmapped, migration may fail and this page has to be
3186 * charged again. We set MIGRATION flag here and delay uncharge
3187 * until end_migration() is called
3188 *
3189 * Corner Case Thinking
3190 * A)
3191 * When the old page was mapped as Anon and it's unmap-and-freed
3192 * while migration was ongoing.
3193 * If unmap finds the old page, uncharge() of it will be delayed
3194 * until end_migration(). If unmap finds a new page, it's
3195 * uncharged when it make mapcount to be 1->0. If unmap code
3196 * finds swap_migration_entry, the new page will not be mapped
3197 * and end_migration() will find it(mapcount==0).
3198 *
3199 * B)
3200 * When the old page was mapped but migraion fails, the kernel
3201 * remaps it. A charge for it is kept by MIGRATION flag even
3202 * if mapcount goes down to 0. We can do remap successfully
3203 * without charging it again.
3204 *
3205 * C)
3206 * The "old" page is under lock_page() until the end of
3207 * migration, so, the old page itself will not be swapped-out.
3208 * If the new page is swapped out before end_migraton, our
3209 * hook to usual swap-out path will catch the event.
3210 */
3211 if (PageAnon(page))
3212 SetPageCgroupMigration(pc);
e8589cc1 3213 }
52d4b9ac 3214 unlock_page_cgroup(pc);
ac39cf8c 3215 /*
3216 * If the page is not charged at this point,
3217 * we return here.
3218 */
c0ff4b85 3219 if (!memcg)
ac39cf8c 3220 return 0;
01b1ae63 3221
72835c86
JW
3222 *memcgp = memcg;
3223 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3224 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3225 if (ret) {
ac39cf8c 3226 if (PageAnon(page)) {
3227 lock_page_cgroup(pc);
3228 ClearPageCgroupMigration(pc);
3229 unlock_page_cgroup(pc);
3230 /*
3231 * The old page may be fully unmapped while we kept it.
3232 */
3233 mem_cgroup_uncharge_page(page);
3234 }
38c5d72f 3235 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3236 return -ENOMEM;
e8589cc1 3237 }
ac39cf8c 3238 /*
3239 * We charge new page before it's used/mapped. So, even if unlock_page()
3240 * is called before end_migration, we can catch all events on this new
3241 * page. In the case new page is migrated but not remapped, new page's
3242 * mapcount will be finally 0 and we call uncharge in end_migration().
3243 */
3244 pc = lookup_page_cgroup(newpage);
3245 if (PageAnon(page))
3246 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3247 else if (page_is_file_cache(page))
3248 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3249 else
3250 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
6568d4a9 3251 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype);
e8589cc1 3252 return ret;
ae41be37 3253}
8869b8f6 3254
69029cd5 3255/* remove redundant charge if migration failed*/
c0ff4b85 3256void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3257 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3258{
ac39cf8c 3259 struct page *used, *unused;
01b1ae63 3260 struct page_cgroup *pc;
01b1ae63 3261
c0ff4b85 3262 if (!memcg)
01b1ae63 3263 return;
ac39cf8c 3264 /* blocks rmdir() */
c0ff4b85 3265 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3266 if (!migration_ok) {
ac39cf8c 3267 used = oldpage;
3268 unused = newpage;
01b1ae63 3269 } else {
ac39cf8c 3270 used = newpage;
01b1ae63
KH
3271 unused = oldpage;
3272 }
69029cd5 3273 /*
ac39cf8c 3274 * We disallowed uncharge of pages under migration because mapcount
3275 * of the page goes down to zero, temporarly.
3276 * Clear the flag and check the page should be charged.
01b1ae63 3277 */
ac39cf8c 3278 pc = lookup_page_cgroup(oldpage);
3279 lock_page_cgroup(pc);
3280 ClearPageCgroupMigration(pc);
3281 unlock_page_cgroup(pc);
01b1ae63 3282
ac39cf8c 3283 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3284
01b1ae63 3285 /*
ac39cf8c 3286 * If a page is a file cache, radix-tree replacement is very atomic
3287 * and we can skip this check. When it was an Anon page, its mapcount
3288 * goes down to 0. But because we added MIGRATION flage, it's not
3289 * uncharged yet. There are several case but page->mapcount check
3290 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3291 * check. (see prepare_charge() also)
69029cd5 3292 */
ac39cf8c 3293 if (PageAnon(used))
3294 mem_cgroup_uncharge_page(used);
88703267 3295 /*
ac39cf8c 3296 * At migration, we may charge account against cgroup which has no
3297 * tasks.
88703267
KH
3298 * So, rmdir()->pre_destroy() can be called while we do this charge.
3299 * In that case, we need to call pre_destroy() again. check it here.
3300 */
c0ff4b85 3301 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3302}
78fb7466 3303
ab936cbc
KH
3304/*
3305 * At replace page cache, newpage is not under any memcg but it's on
3306 * LRU. So, this function doesn't touch res_counter but handles LRU
3307 * in correct way. Both pages are locked so we cannot race with uncharge.
3308 */
3309void mem_cgroup_replace_page_cache(struct page *oldpage,
3310 struct page *newpage)
3311{
3312 struct mem_cgroup *memcg;
3313 struct page_cgroup *pc;
ab936cbc 3314 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3315
3316 if (mem_cgroup_disabled())
3317 return;
3318
3319 pc = lookup_page_cgroup(oldpage);
3320 /* fix accounting on old pages */
3321 lock_page_cgroup(pc);
3322 memcg = pc->mem_cgroup;
3323 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3324 ClearPageCgroupUsed(pc);
3325 unlock_page_cgroup(pc);
3326
3327 if (PageSwapBacked(oldpage))
3328 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3329
ab936cbc
KH
3330 /*
3331 * Even if newpage->mapping was NULL before starting replacement,
3332 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3333 * LRU while we overwrite pc->mem_cgroup.
3334 */
36b62ad5 3335 __mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
ab936cbc
KH
3336}
3337
f212ad7c
DN
3338#ifdef CONFIG_DEBUG_VM
3339static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3340{
3341 struct page_cgroup *pc;
3342
3343 pc = lookup_page_cgroup(page);
cfa44946
JW
3344 /*
3345 * Can be NULL while feeding pages into the page allocator for
3346 * the first time, i.e. during boot or memory hotplug;
3347 * or when mem_cgroup_disabled().
3348 */
f212ad7c
DN
3349 if (likely(pc) && PageCgroupUsed(pc))
3350 return pc;
3351 return NULL;
3352}
3353
3354bool mem_cgroup_bad_page_check(struct page *page)
3355{
3356 if (mem_cgroup_disabled())
3357 return false;
3358
3359 return lookup_page_cgroup_used(page) != NULL;
3360}
3361
3362void mem_cgroup_print_bad_page(struct page *page)
3363{
3364 struct page_cgroup *pc;
3365
3366 pc = lookup_page_cgroup_used(page);
3367 if (pc) {
90b3feae 3368 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3369 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3370 }
3371}
3372#endif
3373
8c7c6e34
KH
3374static DEFINE_MUTEX(set_limit_mutex);
3375
d38d2a75 3376static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3377 unsigned long long val)
628f4235 3378{
81d39c20 3379 int retry_count;
3c11ecf4 3380 u64 memswlimit, memlimit;
628f4235 3381 int ret = 0;
81d39c20
KH
3382 int children = mem_cgroup_count_children(memcg);
3383 u64 curusage, oldusage;
3c11ecf4 3384 int enlarge;
81d39c20
KH
3385
3386 /*
3387 * For keeping hierarchical_reclaim simple, how long we should retry
3388 * is depends on callers. We set our retry-count to be function
3389 * of # of children which we should visit in this loop.
3390 */
3391 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3392
3393 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3394
3c11ecf4 3395 enlarge = 0;
8c7c6e34 3396 while (retry_count) {
628f4235
KH
3397 if (signal_pending(current)) {
3398 ret = -EINTR;
3399 break;
3400 }
8c7c6e34
KH
3401 /*
3402 * Rather than hide all in some function, I do this in
3403 * open coded manner. You see what this really does.
c0ff4b85 3404 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3405 */
3406 mutex_lock(&set_limit_mutex);
3407 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3408 if (memswlimit < val) {
3409 ret = -EINVAL;
3410 mutex_unlock(&set_limit_mutex);
628f4235
KH
3411 break;
3412 }
3c11ecf4
KH
3413
3414 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3415 if (memlimit < val)
3416 enlarge = 1;
3417
8c7c6e34 3418 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3419 if (!ret) {
3420 if (memswlimit == val)
3421 memcg->memsw_is_minimum = true;
3422 else
3423 memcg->memsw_is_minimum = false;
3424 }
8c7c6e34
KH
3425 mutex_unlock(&set_limit_mutex);
3426
3427 if (!ret)
3428 break;
3429
5660048c
JW
3430 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3431 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3432 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3433 /* Usage is reduced ? */
3434 if (curusage >= oldusage)
3435 retry_count--;
3436 else
3437 oldusage = curusage;
8c7c6e34 3438 }
3c11ecf4
KH
3439 if (!ret && enlarge)
3440 memcg_oom_recover(memcg);
14797e23 3441
8c7c6e34
KH
3442 return ret;
3443}
3444
338c8431
LZ
3445static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3446 unsigned long long val)
8c7c6e34 3447{
81d39c20 3448 int retry_count;
3c11ecf4 3449 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3450 int children = mem_cgroup_count_children(memcg);
3451 int ret = -EBUSY;
3c11ecf4 3452 int enlarge = 0;
8c7c6e34 3453
81d39c20
KH
3454 /* see mem_cgroup_resize_res_limit */
3455 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3456 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3457 while (retry_count) {
3458 if (signal_pending(current)) {
3459 ret = -EINTR;
3460 break;
3461 }
3462 /*
3463 * Rather than hide all in some function, I do this in
3464 * open coded manner. You see what this really does.
c0ff4b85 3465 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3466 */
3467 mutex_lock(&set_limit_mutex);
3468 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3469 if (memlimit > val) {
3470 ret = -EINVAL;
3471 mutex_unlock(&set_limit_mutex);
3472 break;
3473 }
3c11ecf4
KH
3474 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3475 if (memswlimit < val)
3476 enlarge = 1;
8c7c6e34 3477 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3478 if (!ret) {
3479 if (memlimit == val)
3480 memcg->memsw_is_minimum = true;
3481 else
3482 memcg->memsw_is_minimum = false;
3483 }
8c7c6e34
KH
3484 mutex_unlock(&set_limit_mutex);
3485
3486 if (!ret)
3487 break;
3488
5660048c
JW
3489 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3490 MEM_CGROUP_RECLAIM_NOSWAP |
3491 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3492 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3493 /* Usage is reduced ? */
8c7c6e34 3494 if (curusage >= oldusage)
628f4235 3495 retry_count--;
81d39c20
KH
3496 else
3497 oldusage = curusage;
628f4235 3498 }
3c11ecf4
KH
3499 if (!ret && enlarge)
3500 memcg_oom_recover(memcg);
628f4235
KH
3501 return ret;
3502}
3503
4e416953 3504unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3505 gfp_t gfp_mask,
3506 unsigned long *total_scanned)
4e416953
BS
3507{
3508 unsigned long nr_reclaimed = 0;
3509 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3510 unsigned long reclaimed;
3511 int loop = 0;
3512 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3513 unsigned long long excess;
0ae5e89c 3514 unsigned long nr_scanned;
4e416953
BS
3515
3516 if (order > 0)
3517 return 0;
3518
00918b6a 3519 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3520 /*
3521 * This loop can run a while, specially if mem_cgroup's continuously
3522 * keep exceeding their soft limit and putting the system under
3523 * pressure
3524 */
3525 do {
3526 if (next_mz)
3527 mz = next_mz;
3528 else
3529 mz = mem_cgroup_largest_soft_limit_node(mctz);
3530 if (!mz)
3531 break;
3532
0ae5e89c 3533 nr_scanned = 0;
5660048c
JW
3534 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3535 gfp_mask, &nr_scanned);
4e416953 3536 nr_reclaimed += reclaimed;
0ae5e89c 3537 *total_scanned += nr_scanned;
4e416953
BS
3538 spin_lock(&mctz->lock);
3539
3540 /*
3541 * If we failed to reclaim anything from this memory cgroup
3542 * it is time to move on to the next cgroup
3543 */
3544 next_mz = NULL;
3545 if (!reclaimed) {
3546 do {
3547 /*
3548 * Loop until we find yet another one.
3549 *
3550 * By the time we get the soft_limit lock
3551 * again, someone might have aded the
3552 * group back on the RB tree. Iterate to
3553 * make sure we get a different mem.
3554 * mem_cgroup_largest_soft_limit_node returns
3555 * NULL if no other cgroup is present on
3556 * the tree
3557 */
3558 next_mz =
3559 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3560 if (next_mz == mz)
4e416953 3561 css_put(&next_mz->mem->css);
39cc98f1 3562 else /* next_mz == NULL or other memcg */
4e416953
BS
3563 break;
3564 } while (1);
3565 }
4e416953 3566 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3567 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3568 /*
3569 * One school of thought says that we should not add
3570 * back the node to the tree if reclaim returns 0.
3571 * But our reclaim could return 0, simply because due
3572 * to priority we are exposing a smaller subset of
3573 * memory to reclaim from. Consider this as a longer
3574 * term TODO.
3575 */
ef8745c1
KH
3576 /* If excess == 0, no tree ops */
3577 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3578 spin_unlock(&mctz->lock);
3579 css_put(&mz->mem->css);
3580 loop++;
3581 /*
3582 * Could not reclaim anything and there are no more
3583 * mem cgroups to try or we seem to be looping without
3584 * reclaiming anything.
3585 */
3586 if (!nr_reclaimed &&
3587 (next_mz == NULL ||
3588 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3589 break;
3590 } while (!nr_reclaimed);
3591 if (next_mz)
3592 css_put(&next_mz->mem->css);
3593 return nr_reclaimed;
3594}
3595
cc847582
KH
3596/*
3597 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3598 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3599 */
c0ff4b85 3600static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3601 int node, int zid, enum lru_list lru)
cc847582 3602{
08e552c6 3603 struct mem_cgroup_per_zone *mz;
08e552c6 3604 unsigned long flags, loop;
072c56c1 3605 struct list_head *list;
925b7673
JW
3606 struct page *busy;
3607 struct zone *zone;
f817ed48 3608 int ret = 0;
072c56c1 3609
08e552c6 3610 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3611 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3612 list = &mz->lruvec.lists[lru];
cc847582 3613
f817ed48
KH
3614 loop = MEM_CGROUP_ZSTAT(mz, lru);
3615 /* give some margin against EBUSY etc...*/
3616 loop += 256;
3617 busy = NULL;
3618 while (loop--) {
925b7673 3619 struct page_cgroup *pc;
5564e88b
JW
3620 struct page *page;
3621
f817ed48 3622 ret = 0;
08e552c6 3623 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3624 if (list_empty(list)) {
08e552c6 3625 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3626 break;
f817ed48 3627 }
925b7673
JW
3628 page = list_entry(list->prev, struct page, lru);
3629 if (busy == page) {
3630 list_move(&page->lru, list);
648bcc77 3631 busy = NULL;
08e552c6 3632 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3633 continue;
3634 }
08e552c6 3635 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3636
925b7673 3637 pc = lookup_page_cgroup(page);
5564e88b 3638
c0ff4b85 3639 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3640 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3641 break;
f817ed48
KH
3642
3643 if (ret == -EBUSY || ret == -EINVAL) {
3644 /* found lock contention or "pc" is obsolete. */
925b7673 3645 busy = page;
f817ed48
KH
3646 cond_resched();
3647 } else
3648 busy = NULL;
cc847582 3649 }
08e552c6 3650
f817ed48
KH
3651 if (!ret && !list_empty(list))
3652 return -EBUSY;
3653 return ret;
cc847582
KH
3654}
3655
3656/*
3657 * make mem_cgroup's charge to be 0 if there is no task.
3658 * This enables deleting this mem_cgroup.
3659 */
c0ff4b85 3660static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3661{
f817ed48
KH
3662 int ret;
3663 int node, zid, shrink;
3664 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3665 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3666
c0ff4b85 3667 css_get(&memcg->css);
f817ed48
KH
3668
3669 shrink = 0;
c1e862c1
KH
3670 /* should free all ? */
3671 if (free_all)
3672 goto try_to_free;
f817ed48 3673move_account:
fce66477 3674 do {
f817ed48 3675 ret = -EBUSY;
c1e862c1
KH
3676 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3677 goto out;
3678 ret = -EINTR;
3679 if (signal_pending(current))
cc847582 3680 goto out;
52d4b9ac
KH
3681 /* This is for making all *used* pages to be on LRU. */
3682 lru_add_drain_all();
c0ff4b85 3683 drain_all_stock_sync(memcg);
f817ed48 3684 ret = 0;
c0ff4b85 3685 mem_cgroup_start_move(memcg);
299b4eaa 3686 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3687 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3688 enum lru_list l;
f817ed48 3689 for_each_lru(l) {
c0ff4b85 3690 ret = mem_cgroup_force_empty_list(memcg,
08e552c6 3691 node, zid, l);
f817ed48
KH
3692 if (ret)
3693 break;
3694 }
1ecaab2b 3695 }
f817ed48
KH
3696 if (ret)
3697 break;
3698 }
c0ff4b85
R
3699 mem_cgroup_end_move(memcg);
3700 memcg_oom_recover(memcg);
f817ed48
KH
3701 /* it seems parent cgroup doesn't have enough mem */
3702 if (ret == -ENOMEM)
3703 goto try_to_free;
52d4b9ac 3704 cond_resched();
fce66477 3705 /* "ret" should also be checked to ensure all lists are empty. */
c0ff4b85 3706 } while (memcg->res.usage > 0 || ret);
cc847582 3707out:
c0ff4b85 3708 css_put(&memcg->css);
cc847582 3709 return ret;
f817ed48
KH
3710
3711try_to_free:
c1e862c1
KH
3712 /* returns EBUSY if there is a task or if we come here twice. */
3713 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3714 ret = -EBUSY;
3715 goto out;
3716 }
c1e862c1
KH
3717 /* we call try-to-free pages for make this cgroup empty */
3718 lru_add_drain_all();
f817ed48
KH
3719 /* try to free all pages in this cgroup */
3720 shrink = 1;
c0ff4b85 3721 while (nr_retries && memcg->res.usage > 0) {
f817ed48 3722 int progress;
c1e862c1
KH
3723
3724 if (signal_pending(current)) {
3725 ret = -EINTR;
3726 goto out;
3727 }
c0ff4b85 3728 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3729 false);
c1e862c1 3730 if (!progress) {
f817ed48 3731 nr_retries--;
c1e862c1 3732 /* maybe some writeback is necessary */
8aa7e847 3733 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3734 }
f817ed48
KH
3735
3736 }
08e552c6 3737 lru_add_drain();
f817ed48 3738 /* try move_account...there may be some *locked* pages. */
fce66477 3739 goto move_account;
cc847582
KH
3740}
3741
c1e862c1
KH
3742int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3743{
3744 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3745}
3746
3747
18f59ea7
BS
3748static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3749{
3750 return mem_cgroup_from_cont(cont)->use_hierarchy;
3751}
3752
3753static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3754 u64 val)
3755{
3756 int retval = 0;
c0ff4b85 3757 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3758 struct cgroup *parent = cont->parent;
c0ff4b85 3759 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3760
3761 if (parent)
c0ff4b85 3762 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3763
3764 cgroup_lock();
3765 /*
af901ca1 3766 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3767 * in the child subtrees. If it is unset, then the change can
3768 * occur, provided the current cgroup has no children.
3769 *
3770 * For the root cgroup, parent_mem is NULL, we allow value to be
3771 * set if there are no children.
3772 */
c0ff4b85 3773 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3774 (val == 1 || val == 0)) {
3775 if (list_empty(&cont->children))
c0ff4b85 3776 memcg->use_hierarchy = val;
18f59ea7
BS
3777 else
3778 retval = -EBUSY;
3779 } else
3780 retval = -EINVAL;
3781 cgroup_unlock();
3782
3783 return retval;
3784}
3785
0c3e73e8 3786
c0ff4b85 3787static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3788 enum mem_cgroup_stat_index idx)
0c3e73e8 3789{
7d74b06f 3790 struct mem_cgroup *iter;
7a159cc9 3791 long val = 0;
0c3e73e8 3792
7a159cc9 3793 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3794 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3795 val += mem_cgroup_read_stat(iter, idx);
3796
3797 if (val < 0) /* race ? */
3798 val = 0;
3799 return val;
0c3e73e8
BS
3800}
3801
c0ff4b85 3802static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3803{
7d74b06f 3804 u64 val;
104f3928 3805
c0ff4b85 3806 if (!mem_cgroup_is_root(memcg)) {
104f3928 3807 if (!swap)
65c64ce8 3808 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3809 else
65c64ce8 3810 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3811 }
3812
c0ff4b85
R
3813 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3814 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3815
7d74b06f 3816 if (swap)
c0ff4b85 3817 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3818
3819 return val << PAGE_SHIFT;
3820}
3821
2c3daa72 3822static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3823{
c0ff4b85 3824 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
104f3928 3825 u64 val;
8c7c6e34
KH
3826 int type, name;
3827
3828 type = MEMFILE_TYPE(cft->private);
3829 name = MEMFILE_ATTR(cft->private);
3830 switch (type) {
3831 case _MEM:
104f3928 3832 if (name == RES_USAGE)
c0ff4b85 3833 val = mem_cgroup_usage(memcg, false);
104f3928 3834 else
c0ff4b85 3835 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3836 break;
3837 case _MEMSWAP:
104f3928 3838 if (name == RES_USAGE)
c0ff4b85 3839 val = mem_cgroup_usage(memcg, true);
104f3928 3840 else
c0ff4b85 3841 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3842 break;
3843 default:
3844 BUG();
3845 break;
3846 }
3847 return val;
8cdea7c0 3848}
628f4235
KH
3849/*
3850 * The user of this function is...
3851 * RES_LIMIT.
3852 */
856c13aa
PM
3853static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3854 const char *buffer)
8cdea7c0 3855{
628f4235 3856 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3857 int type, name;
628f4235
KH
3858 unsigned long long val;
3859 int ret;
3860
8c7c6e34
KH
3861 type = MEMFILE_TYPE(cft->private);
3862 name = MEMFILE_ATTR(cft->private);
3863 switch (name) {
628f4235 3864 case RES_LIMIT:
4b3bde4c
BS
3865 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3866 ret = -EINVAL;
3867 break;
3868 }
628f4235
KH
3869 /* This function does all necessary parse...reuse it */
3870 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3871 if (ret)
3872 break;
3873 if (type == _MEM)
628f4235 3874 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3875 else
3876 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3877 break;
296c81d8
BS
3878 case RES_SOFT_LIMIT:
3879 ret = res_counter_memparse_write_strategy(buffer, &val);
3880 if (ret)
3881 break;
3882 /*
3883 * For memsw, soft limits are hard to implement in terms
3884 * of semantics, for now, we support soft limits for
3885 * control without swap
3886 */
3887 if (type == _MEM)
3888 ret = res_counter_set_soft_limit(&memcg->res, val);
3889 else
3890 ret = -EINVAL;
3891 break;
628f4235
KH
3892 default:
3893 ret = -EINVAL; /* should be BUG() ? */
3894 break;
3895 }
3896 return ret;
8cdea7c0
BS
3897}
3898
fee7b548
KH
3899static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3900 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3901{
3902 struct cgroup *cgroup;
3903 unsigned long long min_limit, min_memsw_limit, tmp;
3904
3905 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3906 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3907 cgroup = memcg->css.cgroup;
3908 if (!memcg->use_hierarchy)
3909 goto out;
3910
3911 while (cgroup->parent) {
3912 cgroup = cgroup->parent;
3913 memcg = mem_cgroup_from_cont(cgroup);
3914 if (!memcg->use_hierarchy)
3915 break;
3916 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3917 min_limit = min(min_limit, tmp);
3918 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3919 min_memsw_limit = min(min_memsw_limit, tmp);
3920 }
3921out:
3922 *mem_limit = min_limit;
3923 *memsw_limit = min_memsw_limit;
3924 return;
3925}
3926
29f2a4da 3927static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3928{
c0ff4b85 3929 struct mem_cgroup *memcg;
8c7c6e34 3930 int type, name;
c84872e1 3931
c0ff4b85 3932 memcg = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3933 type = MEMFILE_TYPE(event);
3934 name = MEMFILE_ATTR(event);
3935 switch (name) {
29f2a4da 3936 case RES_MAX_USAGE:
8c7c6e34 3937 if (type == _MEM)
c0ff4b85 3938 res_counter_reset_max(&memcg->res);
8c7c6e34 3939 else
c0ff4b85 3940 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
3941 break;
3942 case RES_FAILCNT:
8c7c6e34 3943 if (type == _MEM)
c0ff4b85 3944 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 3945 else
c0ff4b85 3946 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
3947 break;
3948 }
f64c3f54 3949
85cc59db 3950 return 0;
c84872e1
PE
3951}
3952
7dc74be0
DN
3953static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3954 struct cftype *cft)
3955{
3956 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3957}
3958
02491447 3959#ifdef CONFIG_MMU
7dc74be0
DN
3960static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3961 struct cftype *cft, u64 val)
3962{
c0ff4b85 3963 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
3964
3965 if (val >= (1 << NR_MOVE_TYPE))
3966 return -EINVAL;
3967 /*
3968 * We check this value several times in both in can_attach() and
3969 * attach(), so we need cgroup lock to prevent this value from being
3970 * inconsistent.
3971 */
3972 cgroup_lock();
c0ff4b85 3973 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3974 cgroup_unlock();
3975
3976 return 0;
3977}
02491447
DN
3978#else
3979static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3980 struct cftype *cft, u64 val)
3981{
3982 return -ENOSYS;
3983}
3984#endif
7dc74be0 3985
14067bb3
KH
3986
3987/* For read statistics */
3988enum {
3989 MCS_CACHE,
3990 MCS_RSS,
d8046582 3991 MCS_FILE_MAPPED,
14067bb3
KH
3992 MCS_PGPGIN,
3993 MCS_PGPGOUT,
1dd3a273 3994 MCS_SWAP,
456f998e
YH
3995 MCS_PGFAULT,
3996 MCS_PGMAJFAULT,
14067bb3
KH
3997 MCS_INACTIVE_ANON,
3998 MCS_ACTIVE_ANON,
3999 MCS_INACTIVE_FILE,
4000 MCS_ACTIVE_FILE,
4001 MCS_UNEVICTABLE,
4002 NR_MCS_STAT,
4003};
4004
4005struct mcs_total_stat {
4006 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4007};
4008
14067bb3
KH
4009struct {
4010 char *local_name;
4011 char *total_name;
4012} memcg_stat_strings[NR_MCS_STAT] = {
4013 {"cache", "total_cache"},
4014 {"rss", "total_rss"},
d69b042f 4015 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4016 {"pgpgin", "total_pgpgin"},
4017 {"pgpgout", "total_pgpgout"},
1dd3a273 4018 {"swap", "total_swap"},
456f998e
YH
4019 {"pgfault", "total_pgfault"},
4020 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4021 {"inactive_anon", "total_inactive_anon"},
4022 {"active_anon", "total_active_anon"},
4023 {"inactive_file", "total_inactive_file"},
4024 {"active_file", "total_active_file"},
4025 {"unevictable", "total_unevictable"}
4026};
4027
4028
7d74b06f 4029static void
c0ff4b85 4030mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4031{
14067bb3
KH
4032 s64 val;
4033
4034 /* per cpu stat */
c0ff4b85 4035 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4036 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4037 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4038 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4039 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4040 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4041 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4042 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4043 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4044 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4045 if (do_swap_account) {
c0ff4b85 4046 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4047 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4048 }
c0ff4b85 4049 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4050 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4051 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4052 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4053
4054 /* per zone stat */
c0ff4b85 4055 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4056 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4057 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4058 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4059 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4060 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4061 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4062 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4063 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4064 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4065}
4066
4067static void
c0ff4b85 4068mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4069{
7d74b06f
KH
4070 struct mem_cgroup *iter;
4071
c0ff4b85 4072 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4073 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4074}
4075
406eb0c9
YH
4076#ifdef CONFIG_NUMA
4077static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4078{
4079 int nid;
4080 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4081 unsigned long node_nr;
4082 struct cgroup *cont = m->private;
4083 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4084
bb2a0de9 4085 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4086 seq_printf(m, "total=%lu", total_nr);
4087 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4088 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4089 seq_printf(m, " N%d=%lu", nid, node_nr);
4090 }
4091 seq_putc(m, '\n');
4092
bb2a0de9 4093 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4094 seq_printf(m, "file=%lu", file_nr);
4095 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4096 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4097 LRU_ALL_FILE);
406eb0c9
YH
4098 seq_printf(m, " N%d=%lu", nid, node_nr);
4099 }
4100 seq_putc(m, '\n');
4101
bb2a0de9 4102 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4103 seq_printf(m, "anon=%lu", anon_nr);
4104 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4105 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4106 LRU_ALL_ANON);
406eb0c9
YH
4107 seq_printf(m, " N%d=%lu", nid, node_nr);
4108 }
4109 seq_putc(m, '\n');
4110
bb2a0de9 4111 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4112 seq_printf(m, "unevictable=%lu", unevictable_nr);
4113 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4114 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4115 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4116 seq_printf(m, " N%d=%lu", nid, node_nr);
4117 }
4118 seq_putc(m, '\n');
4119 return 0;
4120}
4121#endif /* CONFIG_NUMA */
4122
c64745cf
PM
4123static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4124 struct cgroup_map_cb *cb)
d2ceb9b7 4125{
d2ceb9b7 4126 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4127 struct mcs_total_stat mystat;
d2ceb9b7
KH
4128 int i;
4129
14067bb3
KH
4130 memset(&mystat, 0, sizeof(mystat));
4131 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4132
406eb0c9 4133
1dd3a273
DN
4134 for (i = 0; i < NR_MCS_STAT; i++) {
4135 if (i == MCS_SWAP && !do_swap_account)
4136 continue;
14067bb3 4137 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4138 }
7b854121 4139
14067bb3 4140 /* Hierarchical information */
fee7b548
KH
4141 {
4142 unsigned long long limit, memsw_limit;
4143 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4144 cb->fill(cb, "hierarchical_memory_limit", limit);
4145 if (do_swap_account)
4146 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4147 }
7f016ee8 4148
14067bb3
KH
4149 memset(&mystat, 0, sizeof(mystat));
4150 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4151 for (i = 0; i < NR_MCS_STAT; i++) {
4152 if (i == MCS_SWAP && !do_swap_account)
4153 continue;
14067bb3 4154 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4155 }
14067bb3 4156
7f016ee8 4157#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4158 {
4159 int nid, zid;
4160 struct mem_cgroup_per_zone *mz;
4161 unsigned long recent_rotated[2] = {0, 0};
4162 unsigned long recent_scanned[2] = {0, 0};
4163
4164 for_each_online_node(nid)
4165 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4166 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4167
4168 recent_rotated[0] +=
4169 mz->reclaim_stat.recent_rotated[0];
4170 recent_rotated[1] +=
4171 mz->reclaim_stat.recent_rotated[1];
4172 recent_scanned[0] +=
4173 mz->reclaim_stat.recent_scanned[0];
4174 recent_scanned[1] +=
4175 mz->reclaim_stat.recent_scanned[1];
4176 }
4177 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4178 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4179 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4180 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4181 }
4182#endif
4183
d2ceb9b7
KH
4184 return 0;
4185}
4186
a7885eb8
KM
4187static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4188{
4189 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4190
1f4c025b 4191 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4192}
4193
4194static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4195 u64 val)
4196{
4197 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4198 struct mem_cgroup *parent;
068b38c1 4199
a7885eb8
KM
4200 if (val > 100)
4201 return -EINVAL;
4202
4203 if (cgrp->parent == NULL)
4204 return -EINVAL;
4205
4206 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4207
4208 cgroup_lock();
4209
a7885eb8
KM
4210 /* If under hierarchy, only empty-root can set this value */
4211 if ((parent->use_hierarchy) ||
068b38c1
LZ
4212 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4213 cgroup_unlock();
a7885eb8 4214 return -EINVAL;
068b38c1 4215 }
a7885eb8 4216
a7885eb8 4217 memcg->swappiness = val;
a7885eb8 4218
068b38c1
LZ
4219 cgroup_unlock();
4220
a7885eb8
KM
4221 return 0;
4222}
4223
2e72b634
KS
4224static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4225{
4226 struct mem_cgroup_threshold_ary *t;
4227 u64 usage;
4228 int i;
4229
4230 rcu_read_lock();
4231 if (!swap)
2c488db2 4232 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4233 else
2c488db2 4234 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4235
4236 if (!t)
4237 goto unlock;
4238
4239 usage = mem_cgroup_usage(memcg, swap);
4240
4241 /*
4242 * current_threshold points to threshold just below usage.
4243 * If it's not true, a threshold was crossed after last
4244 * call of __mem_cgroup_threshold().
4245 */
5407a562 4246 i = t->current_threshold;
2e72b634
KS
4247
4248 /*
4249 * Iterate backward over array of thresholds starting from
4250 * current_threshold and check if a threshold is crossed.
4251 * If none of thresholds below usage is crossed, we read
4252 * only one element of the array here.
4253 */
4254 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4255 eventfd_signal(t->entries[i].eventfd, 1);
4256
4257 /* i = current_threshold + 1 */
4258 i++;
4259
4260 /*
4261 * Iterate forward over array of thresholds starting from
4262 * current_threshold+1 and check if a threshold is crossed.
4263 * If none of thresholds above usage is crossed, we read
4264 * only one element of the array here.
4265 */
4266 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4267 eventfd_signal(t->entries[i].eventfd, 1);
4268
4269 /* Update current_threshold */
5407a562 4270 t->current_threshold = i - 1;
2e72b634
KS
4271unlock:
4272 rcu_read_unlock();
4273}
4274
4275static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4276{
ad4ca5f4
KS
4277 while (memcg) {
4278 __mem_cgroup_threshold(memcg, false);
4279 if (do_swap_account)
4280 __mem_cgroup_threshold(memcg, true);
4281
4282 memcg = parent_mem_cgroup(memcg);
4283 }
2e72b634
KS
4284}
4285
4286static int compare_thresholds(const void *a, const void *b)
4287{
4288 const struct mem_cgroup_threshold *_a = a;
4289 const struct mem_cgroup_threshold *_b = b;
4290
4291 return _a->threshold - _b->threshold;
4292}
4293
c0ff4b85 4294static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4295{
4296 struct mem_cgroup_eventfd_list *ev;
4297
c0ff4b85 4298 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4299 eventfd_signal(ev->eventfd, 1);
4300 return 0;
4301}
4302
c0ff4b85 4303static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4304{
7d74b06f
KH
4305 struct mem_cgroup *iter;
4306
c0ff4b85 4307 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4308 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4309}
4310
4311static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4312 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4313{
4314 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4315 struct mem_cgroup_thresholds *thresholds;
4316 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4317 int type = MEMFILE_TYPE(cft->private);
4318 u64 threshold, usage;
2c488db2 4319 int i, size, ret;
2e72b634
KS
4320
4321 ret = res_counter_memparse_write_strategy(args, &threshold);
4322 if (ret)
4323 return ret;
4324
4325 mutex_lock(&memcg->thresholds_lock);
2c488db2 4326
2e72b634 4327 if (type == _MEM)
2c488db2 4328 thresholds = &memcg->thresholds;
2e72b634 4329 else if (type == _MEMSWAP)
2c488db2 4330 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4331 else
4332 BUG();
4333
4334 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4335
4336 /* Check if a threshold crossed before adding a new one */
2c488db2 4337 if (thresholds->primary)
2e72b634
KS
4338 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4339
2c488db2 4340 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4341
4342 /* Allocate memory for new array of thresholds */
2c488db2 4343 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4344 GFP_KERNEL);
2c488db2 4345 if (!new) {
2e72b634
KS
4346 ret = -ENOMEM;
4347 goto unlock;
4348 }
2c488db2 4349 new->size = size;
2e72b634
KS
4350
4351 /* Copy thresholds (if any) to new array */
2c488db2
KS
4352 if (thresholds->primary) {
4353 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4354 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4355 }
4356
2e72b634 4357 /* Add new threshold */
2c488db2
KS
4358 new->entries[size - 1].eventfd = eventfd;
4359 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4360
4361 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4362 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4363 compare_thresholds, NULL);
4364
4365 /* Find current threshold */
2c488db2 4366 new->current_threshold = -1;
2e72b634 4367 for (i = 0; i < size; i++) {
2c488db2 4368 if (new->entries[i].threshold < usage) {
2e72b634 4369 /*
2c488db2
KS
4370 * new->current_threshold will not be used until
4371 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4372 * it here.
4373 */
2c488db2 4374 ++new->current_threshold;
2e72b634
KS
4375 }
4376 }
4377
2c488db2
KS
4378 /* Free old spare buffer and save old primary buffer as spare */
4379 kfree(thresholds->spare);
4380 thresholds->spare = thresholds->primary;
4381
4382 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4383
907860ed 4384 /* To be sure that nobody uses thresholds */
2e72b634
KS
4385 synchronize_rcu();
4386
2e72b634
KS
4387unlock:
4388 mutex_unlock(&memcg->thresholds_lock);
4389
4390 return ret;
4391}
4392
907860ed 4393static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4394 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4395{
4396 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4397 struct mem_cgroup_thresholds *thresholds;
4398 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4399 int type = MEMFILE_TYPE(cft->private);
4400 u64 usage;
2c488db2 4401 int i, j, size;
2e72b634
KS
4402
4403 mutex_lock(&memcg->thresholds_lock);
4404 if (type == _MEM)
2c488db2 4405 thresholds = &memcg->thresholds;
2e72b634 4406 else if (type == _MEMSWAP)
2c488db2 4407 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4408 else
4409 BUG();
4410
4411 /*
4412 * Something went wrong if we trying to unregister a threshold
4413 * if we don't have thresholds
4414 */
4415 BUG_ON(!thresholds);
4416
371528ca
AV
4417 if (!thresholds->primary)
4418 goto unlock;
4419
2e72b634
KS
4420 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4421
4422 /* Check if a threshold crossed before removing */
4423 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4424
4425 /* Calculate new number of threshold */
2c488db2
KS
4426 size = 0;
4427 for (i = 0; i < thresholds->primary->size; i++) {
4428 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4429 size++;
4430 }
4431
2c488db2 4432 new = thresholds->spare;
907860ed 4433
2e72b634
KS
4434 /* Set thresholds array to NULL if we don't have thresholds */
4435 if (!size) {
2c488db2
KS
4436 kfree(new);
4437 new = NULL;
907860ed 4438 goto swap_buffers;
2e72b634
KS
4439 }
4440
2c488db2 4441 new->size = size;
2e72b634
KS
4442
4443 /* Copy thresholds and find current threshold */
2c488db2
KS
4444 new->current_threshold = -1;
4445 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4446 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4447 continue;
4448
2c488db2
KS
4449 new->entries[j] = thresholds->primary->entries[i];
4450 if (new->entries[j].threshold < usage) {
2e72b634 4451 /*
2c488db2 4452 * new->current_threshold will not be used
2e72b634
KS
4453 * until rcu_assign_pointer(), so it's safe to increment
4454 * it here.
4455 */
2c488db2 4456 ++new->current_threshold;
2e72b634
KS
4457 }
4458 j++;
4459 }
4460
907860ed 4461swap_buffers:
2c488db2
KS
4462 /* Swap primary and spare array */
4463 thresholds->spare = thresholds->primary;
4464 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4465
907860ed 4466 /* To be sure that nobody uses thresholds */
2e72b634 4467 synchronize_rcu();
371528ca 4468unlock:
2e72b634 4469 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4470}
c1e862c1 4471
9490ff27
KH
4472static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4473 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4474{
4475 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4476 struct mem_cgroup_eventfd_list *event;
4477 int type = MEMFILE_TYPE(cft->private);
4478
4479 BUG_ON(type != _OOM_TYPE);
4480 event = kmalloc(sizeof(*event), GFP_KERNEL);
4481 if (!event)
4482 return -ENOMEM;
4483
1af8efe9 4484 spin_lock(&memcg_oom_lock);
9490ff27
KH
4485
4486 event->eventfd = eventfd;
4487 list_add(&event->list, &memcg->oom_notify);
4488
4489 /* already in OOM ? */
79dfdacc 4490 if (atomic_read(&memcg->under_oom))
9490ff27 4491 eventfd_signal(eventfd, 1);
1af8efe9 4492 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4493
4494 return 0;
4495}
4496
907860ed 4497static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4498 struct cftype *cft, struct eventfd_ctx *eventfd)
4499{
c0ff4b85 4500 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4501 struct mem_cgroup_eventfd_list *ev, *tmp;
4502 int type = MEMFILE_TYPE(cft->private);
4503
4504 BUG_ON(type != _OOM_TYPE);
4505
1af8efe9 4506 spin_lock(&memcg_oom_lock);
9490ff27 4507
c0ff4b85 4508 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4509 if (ev->eventfd == eventfd) {
4510 list_del(&ev->list);
4511 kfree(ev);
4512 }
4513 }
4514
1af8efe9 4515 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4516}
4517
3c11ecf4
KH
4518static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4519 struct cftype *cft, struct cgroup_map_cb *cb)
4520{
c0ff4b85 4521 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4522
c0ff4b85 4523 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4524
c0ff4b85 4525 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4526 cb->fill(cb, "under_oom", 1);
4527 else
4528 cb->fill(cb, "under_oom", 0);
4529 return 0;
4530}
4531
3c11ecf4
KH
4532static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4533 struct cftype *cft, u64 val)
4534{
c0ff4b85 4535 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4536 struct mem_cgroup *parent;
4537
4538 /* cannot set to root cgroup and only 0 and 1 are allowed */
4539 if (!cgrp->parent || !((val == 0) || (val == 1)))
4540 return -EINVAL;
4541
4542 parent = mem_cgroup_from_cont(cgrp->parent);
4543
4544 cgroup_lock();
4545 /* oom-kill-disable is a flag for subhierarchy. */
4546 if ((parent->use_hierarchy) ||
c0ff4b85 4547 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4548 cgroup_unlock();
4549 return -EINVAL;
4550 }
c0ff4b85 4551 memcg->oom_kill_disable = val;
4d845ebf 4552 if (!val)
c0ff4b85 4553 memcg_oom_recover(memcg);
3c11ecf4
KH
4554 cgroup_unlock();
4555 return 0;
4556}
4557
406eb0c9
YH
4558#ifdef CONFIG_NUMA
4559static const struct file_operations mem_control_numa_stat_file_operations = {
4560 .read = seq_read,
4561 .llseek = seq_lseek,
4562 .release = single_release,
4563};
4564
4565static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4566{
4567 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4568
4569 file->f_op = &mem_control_numa_stat_file_operations;
4570 return single_open(file, mem_control_numa_stat_show, cont);
4571}
4572#endif /* CONFIG_NUMA */
4573
e5671dfa 4574#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e5671dfa
GC
4575static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4576{
d1a4c0b3
GC
4577 /*
4578 * Part of this would be better living in a separate allocation
4579 * function, leaving us with just the cgroup tree population work.
4580 * We, however, depend on state such as network's proto_list that
4581 * is only initialized after cgroup creation. I found the less
4582 * cumbersome way to deal with it to defer it all to populate time
4583 */
65c64ce8 4584 return mem_cgroup_sockets_init(cont, ss);
e5671dfa
GC
4585};
4586
d1a4c0b3
GC
4587static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4588 struct cgroup *cont)
4589{
4590 mem_cgroup_sockets_destroy(cont, ss);
4591}
e5671dfa
GC
4592#else
4593static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4594{
4595 return 0;
4596}
d1a4c0b3
GC
4597
4598static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4599 struct cgroup *cont)
4600{
4601}
e5671dfa
GC
4602#endif
4603
8cdea7c0
BS
4604static struct cftype mem_cgroup_files[] = {
4605 {
0eea1030 4606 .name = "usage_in_bytes",
8c7c6e34 4607 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4608 .read_u64 = mem_cgroup_read,
9490ff27
KH
4609 .register_event = mem_cgroup_usage_register_event,
4610 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4611 },
c84872e1
PE
4612 {
4613 .name = "max_usage_in_bytes",
8c7c6e34 4614 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4615 .trigger = mem_cgroup_reset,
c84872e1
PE
4616 .read_u64 = mem_cgroup_read,
4617 },
8cdea7c0 4618 {
0eea1030 4619 .name = "limit_in_bytes",
8c7c6e34 4620 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4621 .write_string = mem_cgroup_write,
2c3daa72 4622 .read_u64 = mem_cgroup_read,
8cdea7c0 4623 },
296c81d8
BS
4624 {
4625 .name = "soft_limit_in_bytes",
4626 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4627 .write_string = mem_cgroup_write,
4628 .read_u64 = mem_cgroup_read,
4629 },
8cdea7c0
BS
4630 {
4631 .name = "failcnt",
8c7c6e34 4632 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4633 .trigger = mem_cgroup_reset,
2c3daa72 4634 .read_u64 = mem_cgroup_read,
8cdea7c0 4635 },
d2ceb9b7
KH
4636 {
4637 .name = "stat",
c64745cf 4638 .read_map = mem_control_stat_show,
d2ceb9b7 4639 },
c1e862c1
KH
4640 {
4641 .name = "force_empty",
4642 .trigger = mem_cgroup_force_empty_write,
4643 },
18f59ea7
BS
4644 {
4645 .name = "use_hierarchy",
4646 .write_u64 = mem_cgroup_hierarchy_write,
4647 .read_u64 = mem_cgroup_hierarchy_read,
4648 },
a7885eb8
KM
4649 {
4650 .name = "swappiness",
4651 .read_u64 = mem_cgroup_swappiness_read,
4652 .write_u64 = mem_cgroup_swappiness_write,
4653 },
7dc74be0
DN
4654 {
4655 .name = "move_charge_at_immigrate",
4656 .read_u64 = mem_cgroup_move_charge_read,
4657 .write_u64 = mem_cgroup_move_charge_write,
4658 },
9490ff27
KH
4659 {
4660 .name = "oom_control",
3c11ecf4
KH
4661 .read_map = mem_cgroup_oom_control_read,
4662 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4663 .register_event = mem_cgroup_oom_register_event,
4664 .unregister_event = mem_cgroup_oom_unregister_event,
4665 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4666 },
406eb0c9
YH
4667#ifdef CONFIG_NUMA
4668 {
4669 .name = "numa_stat",
4670 .open = mem_control_numa_stat_open,
89577127 4671 .mode = S_IRUGO,
406eb0c9
YH
4672 },
4673#endif
8cdea7c0
BS
4674};
4675
8c7c6e34
KH
4676#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4677static struct cftype memsw_cgroup_files[] = {
4678 {
4679 .name = "memsw.usage_in_bytes",
4680 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4681 .read_u64 = mem_cgroup_read,
9490ff27
KH
4682 .register_event = mem_cgroup_usage_register_event,
4683 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4684 },
4685 {
4686 .name = "memsw.max_usage_in_bytes",
4687 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4688 .trigger = mem_cgroup_reset,
4689 .read_u64 = mem_cgroup_read,
4690 },
4691 {
4692 .name = "memsw.limit_in_bytes",
4693 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4694 .write_string = mem_cgroup_write,
4695 .read_u64 = mem_cgroup_read,
4696 },
4697 {
4698 .name = "memsw.failcnt",
4699 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4700 .trigger = mem_cgroup_reset,
4701 .read_u64 = mem_cgroup_read,
4702 },
4703};
4704
4705static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4706{
4707 if (!do_swap_account)
4708 return 0;
4709 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4710 ARRAY_SIZE(memsw_cgroup_files));
4711};
4712#else
4713static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4714{
4715 return 0;
4716}
4717#endif
4718
c0ff4b85 4719static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4720{
4721 struct mem_cgroup_per_node *pn;
1ecaab2b 4722 struct mem_cgroup_per_zone *mz;
b69408e8 4723 enum lru_list l;
41e3355d 4724 int zone, tmp = node;
1ecaab2b
KH
4725 /*
4726 * This routine is called against possible nodes.
4727 * But it's BUG to call kmalloc() against offline node.
4728 *
4729 * TODO: this routine can waste much memory for nodes which will
4730 * never be onlined. It's better to use memory hotplug callback
4731 * function.
4732 */
41e3355d
KH
4733 if (!node_state(node, N_NORMAL_MEMORY))
4734 tmp = -1;
17295c88 4735 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4736 if (!pn)
4737 return 1;
1ecaab2b 4738
1ecaab2b
KH
4739 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4740 mz = &pn->zoneinfo[zone];
b69408e8 4741 for_each_lru(l)
6290df54 4742 INIT_LIST_HEAD(&mz->lruvec.lists[l]);
f64c3f54 4743 mz->usage_in_excess = 0;
4e416953 4744 mz->on_tree = false;
c0ff4b85 4745 mz->mem = memcg;
1ecaab2b 4746 }
0a619e58 4747 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4748 return 0;
4749}
4750
c0ff4b85 4751static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4752{
c0ff4b85 4753 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4754}
4755
33327948
KH
4756static struct mem_cgroup *mem_cgroup_alloc(void)
4757{
4758 struct mem_cgroup *mem;
c62b1a3b 4759 int size = sizeof(struct mem_cgroup);
33327948 4760
c62b1a3b 4761 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4762 if (size < PAGE_SIZE)
17295c88 4763 mem = kzalloc(size, GFP_KERNEL);
33327948 4764 else
17295c88 4765 mem = vzalloc(size);
33327948 4766
e7bbcdf3
DC
4767 if (!mem)
4768 return NULL;
4769
c62b1a3b 4770 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4771 if (!mem->stat)
4772 goto out_free;
711d3d2c 4773 spin_lock_init(&mem->pcp_counter_lock);
33327948 4774 return mem;
d2e61b8d
DC
4775
4776out_free:
4777 if (size < PAGE_SIZE)
4778 kfree(mem);
4779 else
4780 vfree(mem);
4781 return NULL;
33327948
KH
4782}
4783
8c7c6e34
KH
4784/*
4785 * At destroying mem_cgroup, references from swap_cgroup can remain.
4786 * (scanning all at force_empty is too costly...)
4787 *
4788 * Instead of clearing all references at force_empty, we remember
4789 * the number of reference from swap_cgroup and free mem_cgroup when
4790 * it goes down to 0.
4791 *
8c7c6e34
KH
4792 * Removal of cgroup itself succeeds regardless of refs from swap.
4793 */
4794
c0ff4b85 4795static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4796{
08e552c6
KH
4797 int node;
4798
c0ff4b85
R
4799 mem_cgroup_remove_from_trees(memcg);
4800 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4801
3ed28fa1 4802 for_each_node(node)
c0ff4b85 4803 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4804
c0ff4b85 4805 free_percpu(memcg->stat);
c62b1a3b 4806 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
c0ff4b85 4807 kfree(memcg);
33327948 4808 else
c0ff4b85 4809 vfree(memcg);
33327948
KH
4810}
4811
c0ff4b85 4812static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4813{
c0ff4b85 4814 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4815}
4816
c0ff4b85 4817static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4818{
c0ff4b85
R
4819 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4820 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4821 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4822 if (parent)
4823 mem_cgroup_put(parent);
4824 }
8c7c6e34
KH
4825}
4826
c0ff4b85 4827static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4828{
c0ff4b85 4829 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4830}
4831
7bcc1bb1
DN
4832/*
4833 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4834 */
e1aab161 4835struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4836{
c0ff4b85 4837 if (!memcg->res.parent)
7bcc1bb1 4838 return NULL;
c0ff4b85 4839 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4840}
e1aab161 4841EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4842
c077719b
KH
4843#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4844static void __init enable_swap_cgroup(void)
4845{
f8d66542 4846 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4847 do_swap_account = 1;
4848}
4849#else
4850static void __init enable_swap_cgroup(void)
4851{
4852}
4853#endif
4854
f64c3f54
BS
4855static int mem_cgroup_soft_limit_tree_init(void)
4856{
4857 struct mem_cgroup_tree_per_node *rtpn;
4858 struct mem_cgroup_tree_per_zone *rtpz;
4859 int tmp, node, zone;
4860
3ed28fa1 4861 for_each_node(node) {
f64c3f54
BS
4862 tmp = node;
4863 if (!node_state(node, N_NORMAL_MEMORY))
4864 tmp = -1;
4865 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4866 if (!rtpn)
c3cecc68 4867 goto err_cleanup;
f64c3f54
BS
4868
4869 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4870
4871 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4872 rtpz = &rtpn->rb_tree_per_zone[zone];
4873 rtpz->rb_root = RB_ROOT;
4874 spin_lock_init(&rtpz->lock);
4875 }
4876 }
4877 return 0;
c3cecc68
MH
4878
4879err_cleanup:
3ed28fa1 4880 for_each_node(node) {
c3cecc68
MH
4881 if (!soft_limit_tree.rb_tree_per_node[node])
4882 break;
4883 kfree(soft_limit_tree.rb_tree_per_node[node]);
4884 soft_limit_tree.rb_tree_per_node[node] = NULL;
4885 }
4886 return 1;
4887
f64c3f54
BS
4888}
4889
0eb253e2 4890static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4891mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4892{
c0ff4b85 4893 struct mem_cgroup *memcg, *parent;
04046e1a 4894 long error = -ENOMEM;
6d12e2d8 4895 int node;
8cdea7c0 4896
c0ff4b85
R
4897 memcg = mem_cgroup_alloc();
4898 if (!memcg)
04046e1a 4899 return ERR_PTR(error);
78fb7466 4900
3ed28fa1 4901 for_each_node(node)
c0ff4b85 4902 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4903 goto free_out;
f64c3f54 4904
c077719b 4905 /* root ? */
28dbc4b6 4906 if (cont->parent == NULL) {
cdec2e42 4907 int cpu;
c077719b 4908 enable_swap_cgroup();
28dbc4b6 4909 parent = NULL;
f64c3f54
BS
4910 if (mem_cgroup_soft_limit_tree_init())
4911 goto free_out;
a41c58a6 4912 root_mem_cgroup = memcg;
cdec2e42
KH
4913 for_each_possible_cpu(cpu) {
4914 struct memcg_stock_pcp *stock =
4915 &per_cpu(memcg_stock, cpu);
4916 INIT_WORK(&stock->work, drain_local_stock);
4917 }
711d3d2c 4918 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4919 } else {
28dbc4b6 4920 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4921 memcg->use_hierarchy = parent->use_hierarchy;
4922 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4923 }
28dbc4b6 4924
18f59ea7 4925 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4926 res_counter_init(&memcg->res, &parent->res);
4927 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4928 /*
4929 * We increment refcnt of the parent to ensure that we can
4930 * safely access it on res_counter_charge/uncharge.
4931 * This refcnt will be decremented when freeing this
4932 * mem_cgroup(see mem_cgroup_put).
4933 */
4934 mem_cgroup_get(parent);
18f59ea7 4935 } else {
c0ff4b85
R
4936 res_counter_init(&memcg->res, NULL);
4937 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4938 }
c0ff4b85
R
4939 memcg->last_scanned_node = MAX_NUMNODES;
4940 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4941
a7885eb8 4942 if (parent)
c0ff4b85
R
4943 memcg->swappiness = mem_cgroup_swappiness(parent);
4944 atomic_set(&memcg->refcnt, 1);
4945 memcg->move_charge_at_immigrate = 0;
4946 mutex_init(&memcg->thresholds_lock);
4947 return &memcg->css;
6d12e2d8 4948free_out:
c0ff4b85 4949 __mem_cgroup_free(memcg);
04046e1a 4950 return ERR_PTR(error);
8cdea7c0
BS
4951}
4952
ec64f515 4953static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4954 struct cgroup *cont)
4955{
c0ff4b85 4956 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 4957
c0ff4b85 4958 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
4959}
4960
8cdea7c0
BS
4961static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4962 struct cgroup *cont)
4963{
c0ff4b85 4964 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 4965
d1a4c0b3
GC
4966 kmem_cgroup_destroy(ss, cont);
4967
c0ff4b85 4968 mem_cgroup_put(memcg);
8cdea7c0
BS
4969}
4970
4971static int mem_cgroup_populate(struct cgroup_subsys *ss,
4972 struct cgroup *cont)
4973{
8c7c6e34
KH
4974 int ret;
4975
4976 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4977 ARRAY_SIZE(mem_cgroup_files));
4978
4979 if (!ret)
4980 ret = register_memsw_files(cont, ss);
e5671dfa
GC
4981
4982 if (!ret)
4983 ret = register_kmem_files(cont, ss);
4984
8c7c6e34 4985 return ret;
8cdea7c0
BS
4986}
4987
02491447 4988#ifdef CONFIG_MMU
7dc74be0 4989/* Handlers for move charge at task migration. */
854ffa8d
DN
4990#define PRECHARGE_COUNT_AT_ONCE 256
4991static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4992{
854ffa8d
DN
4993 int ret = 0;
4994 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 4995 struct mem_cgroup *memcg = mc.to;
4ffef5fe 4996
c0ff4b85 4997 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
4998 mc.precharge += count;
4999 /* we don't need css_get for root */
5000 return ret;
5001 }
5002 /* try to charge at once */
5003 if (count > 1) {
5004 struct res_counter *dummy;
5005 /*
c0ff4b85 5006 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5007 * by cgroup_lock_live_cgroup() that it is not removed and we
5008 * are still under the same cgroup_mutex. So we can postpone
5009 * css_get().
5010 */
c0ff4b85 5011 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5012 goto one_by_one;
c0ff4b85 5013 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5014 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5015 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5016 goto one_by_one;
5017 }
5018 mc.precharge += count;
854ffa8d
DN
5019 return ret;
5020 }
5021one_by_one:
5022 /* fall back to one by one charge */
5023 while (count--) {
5024 if (signal_pending(current)) {
5025 ret = -EINTR;
5026 break;
5027 }
5028 if (!batch_count--) {
5029 batch_count = PRECHARGE_COUNT_AT_ONCE;
5030 cond_resched();
5031 }
c0ff4b85
R
5032 ret = __mem_cgroup_try_charge(NULL,
5033 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5034 if (ret)
854ffa8d 5035 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5036 return ret;
854ffa8d
DN
5037 mc.precharge++;
5038 }
4ffef5fe
DN
5039 return ret;
5040}
5041
5042/**
5043 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5044 * @vma: the vma the pte to be checked belongs
5045 * @addr: the address corresponding to the pte to be checked
5046 * @ptent: the pte to be checked
02491447 5047 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5048 *
5049 * Returns
5050 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5051 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5052 * move charge. if @target is not NULL, the page is stored in target->page
5053 * with extra refcnt got(Callers should handle it).
02491447
DN
5054 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5055 * target for charge migration. if @target is not NULL, the entry is stored
5056 * in target->ent.
4ffef5fe
DN
5057 *
5058 * Called with pte lock held.
5059 */
4ffef5fe
DN
5060union mc_target {
5061 struct page *page;
02491447 5062 swp_entry_t ent;
4ffef5fe
DN
5063};
5064
4ffef5fe
DN
5065enum mc_target_type {
5066 MC_TARGET_NONE, /* not used */
5067 MC_TARGET_PAGE,
02491447 5068 MC_TARGET_SWAP,
4ffef5fe
DN
5069};
5070
90254a65
DN
5071static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5072 unsigned long addr, pte_t ptent)
4ffef5fe 5073{
90254a65 5074 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5075
90254a65
DN
5076 if (!page || !page_mapped(page))
5077 return NULL;
5078 if (PageAnon(page)) {
5079 /* we don't move shared anon */
5080 if (!move_anon() || page_mapcount(page) > 2)
5081 return NULL;
87946a72
DN
5082 } else if (!move_file())
5083 /* we ignore mapcount for file pages */
90254a65
DN
5084 return NULL;
5085 if (!get_page_unless_zero(page))
5086 return NULL;
5087
5088 return page;
5089}
5090
5091static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5092 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5093{
5094 int usage_count;
5095 struct page *page = NULL;
5096 swp_entry_t ent = pte_to_swp_entry(ptent);
5097
5098 if (!move_anon() || non_swap_entry(ent))
5099 return NULL;
5100 usage_count = mem_cgroup_count_swap_user(ent, &page);
5101 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5102 if (page)
5103 put_page(page);
90254a65 5104 return NULL;
02491447 5105 }
90254a65
DN
5106 if (do_swap_account)
5107 entry->val = ent.val;
5108
5109 return page;
5110}
5111
87946a72
DN
5112static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5113 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5114{
5115 struct page *page = NULL;
5116 struct inode *inode;
5117 struct address_space *mapping;
5118 pgoff_t pgoff;
5119
5120 if (!vma->vm_file) /* anonymous vma */
5121 return NULL;
5122 if (!move_file())
5123 return NULL;
5124
5125 inode = vma->vm_file->f_path.dentry->d_inode;
5126 mapping = vma->vm_file->f_mapping;
5127 if (pte_none(ptent))
5128 pgoff = linear_page_index(vma, addr);
5129 else /* pte_file(ptent) is true */
5130 pgoff = pte_to_pgoff(ptent);
5131
5132 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5133 page = find_get_page(mapping, pgoff);
5134
5135#ifdef CONFIG_SWAP
5136 /* shmem/tmpfs may report page out on swap: account for that too. */
5137 if (radix_tree_exceptional_entry(page)) {
5138 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5139 if (do_swap_account)
aa3b1895
HD
5140 *entry = swap;
5141 page = find_get_page(&swapper_space, swap.val);
87946a72 5142 }
aa3b1895 5143#endif
87946a72
DN
5144 return page;
5145}
5146
90254a65
DN
5147static int is_target_pte_for_mc(struct vm_area_struct *vma,
5148 unsigned long addr, pte_t ptent, union mc_target *target)
5149{
5150 struct page *page = NULL;
5151 struct page_cgroup *pc;
5152 int ret = 0;
5153 swp_entry_t ent = { .val = 0 };
5154
5155 if (pte_present(ptent))
5156 page = mc_handle_present_pte(vma, addr, ptent);
5157 else if (is_swap_pte(ptent))
5158 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5159 else if (pte_none(ptent) || pte_file(ptent))
5160 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5161
5162 if (!page && !ent.val)
5163 return 0;
02491447
DN
5164 if (page) {
5165 pc = lookup_page_cgroup(page);
5166 /*
5167 * Do only loose check w/o page_cgroup lock.
5168 * mem_cgroup_move_account() checks the pc is valid or not under
5169 * the lock.
5170 */
5171 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5172 ret = MC_TARGET_PAGE;
5173 if (target)
5174 target->page = page;
5175 }
5176 if (!ret || !target)
5177 put_page(page);
5178 }
90254a65
DN
5179 /* There is a swap entry and a page doesn't exist or isn't charged */
5180 if (ent.val && !ret &&
9fb4b7cc 5181 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5182 ret = MC_TARGET_SWAP;
5183 if (target)
5184 target->ent = ent;
4ffef5fe 5185 }
4ffef5fe
DN
5186 return ret;
5187}
5188
5189static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5190 unsigned long addr, unsigned long end,
5191 struct mm_walk *walk)
5192{
5193 struct vm_area_struct *vma = walk->private;
5194 pte_t *pte;
5195 spinlock_t *ptl;
5196
03319327
DH
5197 split_huge_page_pmd(walk->mm, pmd);
5198
4ffef5fe
DN
5199 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5200 for (; addr != end; pte++, addr += PAGE_SIZE)
5201 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5202 mc.precharge++; /* increment precharge temporarily */
5203 pte_unmap_unlock(pte - 1, ptl);
5204 cond_resched();
5205
7dc74be0
DN
5206 return 0;
5207}
5208
4ffef5fe
DN
5209static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5210{
5211 unsigned long precharge;
5212 struct vm_area_struct *vma;
5213
dfe076b0 5214 down_read(&mm->mmap_sem);
4ffef5fe
DN
5215 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5216 struct mm_walk mem_cgroup_count_precharge_walk = {
5217 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5218 .mm = mm,
5219 .private = vma,
5220 };
5221 if (is_vm_hugetlb_page(vma))
5222 continue;
4ffef5fe
DN
5223 walk_page_range(vma->vm_start, vma->vm_end,
5224 &mem_cgroup_count_precharge_walk);
5225 }
dfe076b0 5226 up_read(&mm->mmap_sem);
4ffef5fe
DN
5227
5228 precharge = mc.precharge;
5229 mc.precharge = 0;
5230
5231 return precharge;
5232}
5233
4ffef5fe
DN
5234static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5235{
dfe076b0
DN
5236 unsigned long precharge = mem_cgroup_count_precharge(mm);
5237
5238 VM_BUG_ON(mc.moving_task);
5239 mc.moving_task = current;
5240 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5241}
5242
dfe076b0
DN
5243/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5244static void __mem_cgroup_clear_mc(void)
4ffef5fe 5245{
2bd9bb20
KH
5246 struct mem_cgroup *from = mc.from;
5247 struct mem_cgroup *to = mc.to;
5248
4ffef5fe 5249 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5250 if (mc.precharge) {
5251 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5252 mc.precharge = 0;
5253 }
5254 /*
5255 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5256 * we must uncharge here.
5257 */
5258 if (mc.moved_charge) {
5259 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5260 mc.moved_charge = 0;
4ffef5fe 5261 }
483c30b5
DN
5262 /* we must fixup refcnts and charges */
5263 if (mc.moved_swap) {
483c30b5
DN
5264 /* uncharge swap account from the old cgroup */
5265 if (!mem_cgroup_is_root(mc.from))
5266 res_counter_uncharge(&mc.from->memsw,
5267 PAGE_SIZE * mc.moved_swap);
5268 __mem_cgroup_put(mc.from, mc.moved_swap);
5269
5270 if (!mem_cgroup_is_root(mc.to)) {
5271 /*
5272 * we charged both to->res and to->memsw, so we should
5273 * uncharge to->res.
5274 */
5275 res_counter_uncharge(&mc.to->res,
5276 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5277 }
5278 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5279 mc.moved_swap = 0;
5280 }
dfe076b0
DN
5281 memcg_oom_recover(from);
5282 memcg_oom_recover(to);
5283 wake_up_all(&mc.waitq);
5284}
5285
5286static void mem_cgroup_clear_mc(void)
5287{
5288 struct mem_cgroup *from = mc.from;
5289
5290 /*
5291 * we must clear moving_task before waking up waiters at the end of
5292 * task migration.
5293 */
5294 mc.moving_task = NULL;
5295 __mem_cgroup_clear_mc();
2bd9bb20 5296 spin_lock(&mc.lock);
4ffef5fe
DN
5297 mc.from = NULL;
5298 mc.to = NULL;
2bd9bb20 5299 spin_unlock(&mc.lock);
32047e2a 5300 mem_cgroup_end_move(from);
4ffef5fe
DN
5301}
5302
7dc74be0
DN
5303static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5304 struct cgroup *cgroup,
2f7ee569 5305 struct cgroup_taskset *tset)
7dc74be0 5306{
2f7ee569 5307 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5308 int ret = 0;
c0ff4b85 5309 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5310
c0ff4b85 5311 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5312 struct mm_struct *mm;
5313 struct mem_cgroup *from = mem_cgroup_from_task(p);
5314
c0ff4b85 5315 VM_BUG_ON(from == memcg);
7dc74be0
DN
5316
5317 mm = get_task_mm(p);
5318 if (!mm)
5319 return 0;
7dc74be0 5320 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5321 if (mm->owner == p) {
5322 VM_BUG_ON(mc.from);
5323 VM_BUG_ON(mc.to);
5324 VM_BUG_ON(mc.precharge);
854ffa8d 5325 VM_BUG_ON(mc.moved_charge);
483c30b5 5326 VM_BUG_ON(mc.moved_swap);
32047e2a 5327 mem_cgroup_start_move(from);
2bd9bb20 5328 spin_lock(&mc.lock);
4ffef5fe 5329 mc.from = from;
c0ff4b85 5330 mc.to = memcg;
2bd9bb20 5331 spin_unlock(&mc.lock);
dfe076b0 5332 /* We set mc.moving_task later */
4ffef5fe
DN
5333
5334 ret = mem_cgroup_precharge_mc(mm);
5335 if (ret)
5336 mem_cgroup_clear_mc();
dfe076b0
DN
5337 }
5338 mmput(mm);
7dc74be0
DN
5339 }
5340 return ret;
5341}
5342
5343static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5344 struct cgroup *cgroup,
2f7ee569 5345 struct cgroup_taskset *tset)
7dc74be0 5346{
4ffef5fe 5347 mem_cgroup_clear_mc();
7dc74be0
DN
5348}
5349
4ffef5fe
DN
5350static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5351 unsigned long addr, unsigned long end,
5352 struct mm_walk *walk)
7dc74be0 5353{
4ffef5fe
DN
5354 int ret = 0;
5355 struct vm_area_struct *vma = walk->private;
5356 pte_t *pte;
5357 spinlock_t *ptl;
5358
03319327 5359 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5360retry:
5361 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5362 for (; addr != end; addr += PAGE_SIZE) {
5363 pte_t ptent = *(pte++);
5364 union mc_target target;
5365 int type;
5366 struct page *page;
5367 struct page_cgroup *pc;
02491447 5368 swp_entry_t ent;
4ffef5fe
DN
5369
5370 if (!mc.precharge)
5371 break;
5372
5373 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5374 switch (type) {
5375 case MC_TARGET_PAGE:
5376 page = target.page;
5377 if (isolate_lru_page(page))
5378 goto put;
5379 pc = lookup_page_cgroup(page);
7ec99d62
JW
5380 if (!mem_cgroup_move_account(page, 1, pc,
5381 mc.from, mc.to, false)) {
4ffef5fe 5382 mc.precharge--;
854ffa8d
DN
5383 /* we uncharge from mc.from later. */
5384 mc.moved_charge++;
4ffef5fe
DN
5385 }
5386 putback_lru_page(page);
5387put: /* is_target_pte_for_mc() gets the page */
5388 put_page(page);
5389 break;
02491447
DN
5390 case MC_TARGET_SWAP:
5391 ent = target.ent;
483c30b5
DN
5392 if (!mem_cgroup_move_swap_account(ent,
5393 mc.from, mc.to, false)) {
02491447 5394 mc.precharge--;
483c30b5
DN
5395 /* we fixup refcnts and charges later. */
5396 mc.moved_swap++;
5397 }
02491447 5398 break;
4ffef5fe
DN
5399 default:
5400 break;
5401 }
5402 }
5403 pte_unmap_unlock(pte - 1, ptl);
5404 cond_resched();
5405
5406 if (addr != end) {
5407 /*
5408 * We have consumed all precharges we got in can_attach().
5409 * We try charge one by one, but don't do any additional
5410 * charges to mc.to if we have failed in charge once in attach()
5411 * phase.
5412 */
854ffa8d 5413 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5414 if (!ret)
5415 goto retry;
5416 }
5417
5418 return ret;
5419}
5420
5421static void mem_cgroup_move_charge(struct mm_struct *mm)
5422{
5423 struct vm_area_struct *vma;
5424
5425 lru_add_drain_all();
dfe076b0
DN
5426retry:
5427 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5428 /*
5429 * Someone who are holding the mmap_sem might be waiting in
5430 * waitq. So we cancel all extra charges, wake up all waiters,
5431 * and retry. Because we cancel precharges, we might not be able
5432 * to move enough charges, but moving charge is a best-effort
5433 * feature anyway, so it wouldn't be a big problem.
5434 */
5435 __mem_cgroup_clear_mc();
5436 cond_resched();
5437 goto retry;
5438 }
4ffef5fe
DN
5439 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5440 int ret;
5441 struct mm_walk mem_cgroup_move_charge_walk = {
5442 .pmd_entry = mem_cgroup_move_charge_pte_range,
5443 .mm = mm,
5444 .private = vma,
5445 };
5446 if (is_vm_hugetlb_page(vma))
5447 continue;
4ffef5fe
DN
5448 ret = walk_page_range(vma->vm_start, vma->vm_end,
5449 &mem_cgroup_move_charge_walk);
5450 if (ret)
5451 /*
5452 * means we have consumed all precharges and failed in
5453 * doing additional charge. Just abandon here.
5454 */
5455 break;
5456 }
dfe076b0 5457 up_read(&mm->mmap_sem);
7dc74be0
DN
5458}
5459
67e465a7
BS
5460static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5461 struct cgroup *cont,
2f7ee569 5462 struct cgroup_taskset *tset)
67e465a7 5463{
2f7ee569 5464 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5465 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5466
dfe076b0 5467 if (mm) {
a433658c
KM
5468 if (mc.to)
5469 mem_cgroup_move_charge(mm);
5470 put_swap_token(mm);
dfe076b0
DN
5471 mmput(mm);
5472 }
a433658c
KM
5473 if (mc.to)
5474 mem_cgroup_clear_mc();
67e465a7 5475}
5cfb80a7
DN
5476#else /* !CONFIG_MMU */
5477static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5478 struct cgroup *cgroup,
2f7ee569 5479 struct cgroup_taskset *tset)
5cfb80a7
DN
5480{
5481 return 0;
5482}
5483static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5484 struct cgroup *cgroup,
2f7ee569 5485 struct cgroup_taskset *tset)
5cfb80a7
DN
5486{
5487}
5488static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5489 struct cgroup *cont,
2f7ee569 5490 struct cgroup_taskset *tset)
5cfb80a7
DN
5491{
5492}
5493#endif
67e465a7 5494
8cdea7c0
BS
5495struct cgroup_subsys mem_cgroup_subsys = {
5496 .name = "memory",
5497 .subsys_id = mem_cgroup_subsys_id,
5498 .create = mem_cgroup_create,
df878fb0 5499 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5500 .destroy = mem_cgroup_destroy,
5501 .populate = mem_cgroup_populate,
7dc74be0
DN
5502 .can_attach = mem_cgroup_can_attach,
5503 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5504 .attach = mem_cgroup_move_task,
6d12e2d8 5505 .early_init = 0,
04046e1a 5506 .use_id = 1,
8cdea7c0 5507};
c077719b
KH
5508
5509#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5510static int __init enable_swap_account(char *s)
5511{
5512 /* consider enabled if no parameter or 1 is given */
a2c8990a 5513 if (!strcmp(s, "1"))
a42c390c 5514 really_do_swap_account = 1;
a2c8990a 5515 else if (!strcmp(s, "0"))
a42c390c
MH
5516 really_do_swap_account = 0;
5517 return 1;
5518}
a2c8990a 5519__setup("swapaccount=", enable_swap_account);
c077719b 5520
c077719b 5521#endif