cgroup: add subsystem pointer to cgroup_subsys_state
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
08e552c6 57#include "internal.h"
d1a4c0b3 58#include <net/sock.h>
4bd2c1ee 59#include <net/ip.h>
d1a4c0b3 60#include <net/tcp_memcontrol.h>
8cdea7c0 61
8697d331
BS
62#include <asm/uaccess.h>
63
cc8e970c
KM
64#include <trace/events/vmscan.h>
65
a181b0e8 66struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
67EXPORT_SYMBOL(mem_cgroup_subsys);
68
a181b0e8 69#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 70static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 71
c255a458 72#ifdef CONFIG_MEMCG_SWAP
338c8431 73/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 74int do_swap_account __read_mostly;
a42c390c
MH
75
76/* for remember boot option*/
c255a458 77#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
78static int really_do_swap_account __initdata = 1;
79#else
80static int really_do_swap_account __initdata = 0;
81#endif
82
c077719b 83#else
a0db00fc 84#define do_swap_account 0
c077719b
KH
85#endif
86
87
d52aa412
KH
88/*
89 * Statistics for memory cgroup.
90 */
91enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
b070e65c
DR
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
100 MEM_CGROUP_STAT_NSTATS,
101};
102
af7c4b0e
JW
103static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
b070e65c 106 "rss_huge",
af7c4b0e
JW
107 "mapped_file",
108 "swap",
109};
110
e9f8974f
JW
111enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
116 MEM_CGROUP_EVENTS_NSTATS,
117};
af7c4b0e
JW
118
119static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124};
125
58cf188e
SZ
126static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132};
133
7a159cc9
JW
134/*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 143 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
144 MEM_CGROUP_NTARGETS,
145};
a0db00fc
KS
146#define THRESHOLDS_EVENTS_TARGET 128
147#define SOFTLIMIT_EVENTS_TARGET 1024
148#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 149
d52aa412 150struct mem_cgroup_stat_cpu {
7a159cc9 151 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 153 unsigned long nr_page_events;
7a159cc9 154 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
155};
156
527a5ec9 157struct mem_cgroup_reclaim_iter {
5f578161
MH
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
542f85f9 162 struct mem_cgroup *last_visited;
5f578161
MH
163 unsigned long last_dead_count;
164
527a5ec9
JW
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167};
168
6d12e2d8
KH
169/*
170 * per-zone information in memory controller.
171 */
6d12e2d8 172struct mem_cgroup_per_zone {
6290df54 173 struct lruvec lruvec;
1eb49272 174 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 175
527a5ec9
JW
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
f64c3f54
BS
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
d79154bb 182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 183 /* use container_of */
6d12e2d8 184};
6d12e2d8
KH
185
186struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188};
189
f64c3f54
BS
190/*
191 * Cgroups above their limits are maintained in a RB-Tree, independent of
192 * their hierarchy representation
193 */
194
195struct mem_cgroup_tree_per_zone {
196 struct rb_root rb_root;
197 spinlock_t lock;
198};
199
200struct mem_cgroup_tree_per_node {
201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202};
203
204struct mem_cgroup_tree {
205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206};
207
208static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209
2e72b634
KS
210struct mem_cgroup_threshold {
211 struct eventfd_ctx *eventfd;
212 u64 threshold;
213};
214
9490ff27 215/* For threshold */
2e72b634 216struct mem_cgroup_threshold_ary {
748dad36 217 /* An array index points to threshold just below or equal to usage. */
5407a562 218 int current_threshold;
2e72b634
KS
219 /* Size of entries[] */
220 unsigned int size;
221 /* Array of thresholds */
222 struct mem_cgroup_threshold entries[0];
223};
2c488db2
KS
224
225struct mem_cgroup_thresholds {
226 /* Primary thresholds array */
227 struct mem_cgroup_threshold_ary *primary;
228 /*
229 * Spare threshold array.
230 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 * It must be able to store at least primary->size - 1 entries.
232 */
233 struct mem_cgroup_threshold_ary *spare;
234};
235
9490ff27
KH
236/* for OOM */
237struct mem_cgroup_eventfd_list {
238 struct list_head list;
239 struct eventfd_ctx *eventfd;
240};
2e72b634 241
c0ff4b85
R
242static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 244
8cdea7c0
BS
245/*
246 * The memory controller data structure. The memory controller controls both
247 * page cache and RSS per cgroup. We would eventually like to provide
248 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249 * to help the administrator determine what knobs to tune.
250 *
251 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
252 * we hit the water mark. May be even add a low water mark, such that
253 * no reclaim occurs from a cgroup at it's low water mark, this is
254 * a feature that will be implemented much later in the future.
8cdea7c0
BS
255 */
256struct mem_cgroup {
257 struct cgroup_subsys_state css;
258 /*
259 * the counter to account for memory usage
260 */
261 struct res_counter res;
59927fb9 262
70ddf637
AV
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
465939a1
LZ
266 /*
267 * the counter to account for mem+swap usage.
268 */
269 struct res_counter memsw;
59927fb9 270
510fc4e1
GC
271 /*
272 * the counter to account for kernel memory usage.
273 */
274 struct res_counter kmem;
18f59ea7
BS
275 /*
276 * Should the accounting and control be hierarchical, per subtree?
277 */
278 bool use_hierarchy;
510fc4e1 279 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
280
281 bool oom_lock;
282 atomic_t under_oom;
283
1f4c025b 284 int swappiness;
3c11ecf4
KH
285 /* OOM-Killer disable */
286 int oom_kill_disable;
a7885eb8 287
22a668d7
KH
288 /* set when res.limit == memsw.limit */
289 bool memsw_is_minimum;
290
2e72b634
KS
291 /* protect arrays of thresholds */
292 struct mutex thresholds_lock;
293
294 /* thresholds for memory usage. RCU-protected */
2c488db2 295 struct mem_cgroup_thresholds thresholds;
907860ed 296
2e72b634 297 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 298 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 299
9490ff27
KH
300 /* For oom notifier event fd */
301 struct list_head oom_notify;
185efc0f 302
7dc74be0
DN
303 /*
304 * Should we move charges of a task when a task is moved into this
305 * mem_cgroup ? And what type of charges should we move ?
306 */
307 unsigned long move_charge_at_immigrate;
619d094b
KH
308 /*
309 * set > 0 if pages under this cgroup are moving to other cgroup.
310 */
311 atomic_t moving_account;
312734c0
KH
312 /* taken only while moving_account > 0 */
313 spinlock_t move_lock;
d52aa412 314 /*
c62b1a3b 315 * percpu counter.
d52aa412 316 */
3a7951b4 317 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
318 /*
319 * used when a cpu is offlined or other synchronizations
320 * See mem_cgroup_read_stat().
321 */
322 struct mem_cgroup_stat_cpu nocpu_base;
323 spinlock_t pcp_counter_lock;
d1a4c0b3 324
5f578161 325 atomic_t dead_count;
4bd2c1ee 326#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
327 struct tcp_memcontrol tcp_mem;
328#endif
2633d7a0
GC
329#if defined(CONFIG_MEMCG_KMEM)
330 /* analogous to slab_common's slab_caches list. per-memcg */
331 struct list_head memcg_slab_caches;
332 /* Not a spinlock, we can take a lot of time walking the list */
333 struct mutex slab_caches_mutex;
334 /* Index in the kmem_cache->memcg_params->memcg_caches array */
335 int kmemcg_id;
336#endif
45cf7ebd
GC
337
338 int last_scanned_node;
339#if MAX_NUMNODES > 1
340 nodemask_t scan_nodes;
341 atomic_t numainfo_events;
342 atomic_t numainfo_updating;
343#endif
70ddf637 344
54f72fe0
JW
345 struct mem_cgroup_per_node *nodeinfo[0];
346 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
347};
348
45cf7ebd
GC
349static size_t memcg_size(void)
350{
351 return sizeof(struct mem_cgroup) +
352 nr_node_ids * sizeof(struct mem_cgroup_per_node);
353}
354
510fc4e1
GC
355/* internal only representation about the status of kmem accounting. */
356enum {
357 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 358 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 359 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
360};
361
a8964b9b
GC
362/* We account when limit is on, but only after call sites are patched */
363#define KMEM_ACCOUNTED_MASK \
364 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
365
366#ifdef CONFIG_MEMCG_KMEM
367static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
368{
369 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
370}
7de37682
GC
371
372static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
373{
374 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
375}
376
a8964b9b
GC
377static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
378{
379 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
380}
381
55007d84
GC
382static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
383{
384 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
385}
386
7de37682
GC
387static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
388{
10d5ebf4
LZ
389 /*
390 * Our caller must use css_get() first, because memcg_uncharge_kmem()
391 * will call css_put() if it sees the memcg is dead.
392 */
393 smp_wmb();
7de37682
GC
394 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
395 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
396}
397
398static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
399{
400 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
401 &memcg->kmem_account_flags);
402}
510fc4e1
GC
403#endif
404
7dc74be0
DN
405/* Stuffs for move charges at task migration. */
406/*
ee5e8472
GC
407 * Types of charges to be moved. "move_charge_at_immitgrate" and
408 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
409 */
410enum move_type {
4ffef5fe 411 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 412 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
413 NR_MOVE_TYPE,
414};
415
4ffef5fe
DN
416/* "mc" and its members are protected by cgroup_mutex */
417static struct move_charge_struct {
b1dd693e 418 spinlock_t lock; /* for from, to */
4ffef5fe
DN
419 struct mem_cgroup *from;
420 struct mem_cgroup *to;
ee5e8472 421 unsigned long immigrate_flags;
4ffef5fe 422 unsigned long precharge;
854ffa8d 423 unsigned long moved_charge;
483c30b5 424 unsigned long moved_swap;
8033b97c
DN
425 struct task_struct *moving_task; /* a task moving charges */
426 wait_queue_head_t waitq; /* a waitq for other context */
427} mc = {
2bd9bb20 428 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
429 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
430};
4ffef5fe 431
90254a65
DN
432static bool move_anon(void)
433{
ee5e8472 434 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
435}
436
87946a72
DN
437static bool move_file(void)
438{
ee5e8472 439 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
440}
441
4e416953
BS
442/*
443 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
444 * limit reclaim to prevent infinite loops, if they ever occur.
445 */
a0db00fc
KS
446#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
447#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 448
217bc319
KH
449enum charge_type {
450 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 451 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 452 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 453 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
454 NR_CHARGE_TYPE,
455};
456
8c7c6e34 457/* for encoding cft->private value on file */
86ae53e1
GC
458enum res_type {
459 _MEM,
460 _MEMSWAP,
461 _OOM_TYPE,
510fc4e1 462 _KMEM,
86ae53e1
GC
463};
464
a0db00fc
KS
465#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
466#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 467#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
468/* Used for OOM nofiier */
469#define OOM_CONTROL (0)
8c7c6e34 470
75822b44
BS
471/*
472 * Reclaim flags for mem_cgroup_hierarchical_reclaim
473 */
474#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
475#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
476#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
477#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
478
0999821b
GC
479/*
480 * The memcg_create_mutex will be held whenever a new cgroup is created.
481 * As a consequence, any change that needs to protect against new child cgroups
482 * appearing has to hold it as well.
483 */
484static DEFINE_MUTEX(memcg_create_mutex);
485
b2145145
WL
486static inline
487struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
488{
489 return container_of(s, struct mem_cgroup, css);
490}
491
70ddf637
AV
492/* Some nice accessors for the vmpressure. */
493struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
494{
495 if (!memcg)
496 memcg = root_mem_cgroup;
497 return &memcg->vmpressure;
498}
499
500struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
501{
502 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
503}
504
505struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
506{
507 return &mem_cgroup_from_css(css)->vmpressure;
508}
509
7ffc0edc
MH
510static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
511{
512 return (memcg == root_mem_cgroup);
513}
514
e1aab161 515/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 516#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 517
e1aab161
GC
518void sock_update_memcg(struct sock *sk)
519{
376be5ff 520 if (mem_cgroup_sockets_enabled) {
e1aab161 521 struct mem_cgroup *memcg;
3f134619 522 struct cg_proto *cg_proto;
e1aab161
GC
523
524 BUG_ON(!sk->sk_prot->proto_cgroup);
525
f3f511e1
GC
526 /* Socket cloning can throw us here with sk_cgrp already
527 * filled. It won't however, necessarily happen from
528 * process context. So the test for root memcg given
529 * the current task's memcg won't help us in this case.
530 *
531 * Respecting the original socket's memcg is a better
532 * decision in this case.
533 */
534 if (sk->sk_cgrp) {
535 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 536 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
537 return;
538 }
539
e1aab161
GC
540 rcu_read_lock();
541 memcg = mem_cgroup_from_task(current);
3f134619 542 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
543 if (!mem_cgroup_is_root(memcg) &&
544 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 545 sk->sk_cgrp = cg_proto;
e1aab161
GC
546 }
547 rcu_read_unlock();
548 }
549}
550EXPORT_SYMBOL(sock_update_memcg);
551
552void sock_release_memcg(struct sock *sk)
553{
376be5ff 554 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
555 struct mem_cgroup *memcg;
556 WARN_ON(!sk->sk_cgrp->memcg);
557 memcg = sk->sk_cgrp->memcg;
5347e5ae 558 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
559 }
560}
d1a4c0b3
GC
561
562struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
563{
564 if (!memcg || mem_cgroup_is_root(memcg))
565 return NULL;
566
567 return &memcg->tcp_mem.cg_proto;
568}
569EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 570
3f134619
GC
571static void disarm_sock_keys(struct mem_cgroup *memcg)
572{
573 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
574 return;
575 static_key_slow_dec(&memcg_socket_limit_enabled);
576}
577#else
578static void disarm_sock_keys(struct mem_cgroup *memcg)
579{
580}
581#endif
582
a8964b9b 583#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
584/*
585 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
586 * There are two main reasons for not using the css_id for this:
587 * 1) this works better in sparse environments, where we have a lot of memcgs,
588 * but only a few kmem-limited. Or also, if we have, for instance, 200
589 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
590 * 200 entry array for that.
591 *
592 * 2) In order not to violate the cgroup API, we would like to do all memory
593 * allocation in ->create(). At that point, we haven't yet allocated the
594 * css_id. Having a separate index prevents us from messing with the cgroup
595 * core for this
596 *
597 * The current size of the caches array is stored in
598 * memcg_limited_groups_array_size. It will double each time we have to
599 * increase it.
600 */
601static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
602int memcg_limited_groups_array_size;
603
55007d84
GC
604/*
605 * MIN_SIZE is different than 1, because we would like to avoid going through
606 * the alloc/free process all the time. In a small machine, 4 kmem-limited
607 * cgroups is a reasonable guess. In the future, it could be a parameter or
608 * tunable, but that is strictly not necessary.
609 *
610 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
611 * this constant directly from cgroup, but it is understandable that this is
612 * better kept as an internal representation in cgroup.c. In any case, the
613 * css_id space is not getting any smaller, and we don't have to necessarily
614 * increase ours as well if it increases.
615 */
616#define MEMCG_CACHES_MIN_SIZE 4
617#define MEMCG_CACHES_MAX_SIZE 65535
618
d7f25f8a
GC
619/*
620 * A lot of the calls to the cache allocation functions are expected to be
621 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
622 * conditional to this static branch, we'll have to allow modules that does
623 * kmem_cache_alloc and the such to see this symbol as well
624 */
a8964b9b 625struct static_key memcg_kmem_enabled_key;
d7f25f8a 626EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
627
628static void disarm_kmem_keys(struct mem_cgroup *memcg)
629{
55007d84 630 if (memcg_kmem_is_active(memcg)) {
a8964b9b 631 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
632 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
633 }
bea207c8
GC
634 /*
635 * This check can't live in kmem destruction function,
636 * since the charges will outlive the cgroup
637 */
638 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
639}
640#else
641static void disarm_kmem_keys(struct mem_cgroup *memcg)
642{
643}
644#endif /* CONFIG_MEMCG_KMEM */
645
646static void disarm_static_keys(struct mem_cgroup *memcg)
647{
648 disarm_sock_keys(memcg);
649 disarm_kmem_keys(memcg);
650}
651
c0ff4b85 652static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 653
f64c3f54 654static struct mem_cgroup_per_zone *
c0ff4b85 655mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 656{
45cf7ebd 657 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 658 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
659}
660
c0ff4b85 661struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 662{
c0ff4b85 663 return &memcg->css;
d324236b
WF
664}
665
f64c3f54 666static struct mem_cgroup_per_zone *
c0ff4b85 667page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 668{
97a6c37b
JW
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
f64c3f54 671
c0ff4b85 672 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
673}
674
675static struct mem_cgroup_tree_per_zone *
676soft_limit_tree_node_zone(int nid, int zid)
677{
678 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
679}
680
681static struct mem_cgroup_tree_per_zone *
682soft_limit_tree_from_page(struct page *page)
683{
684 int nid = page_to_nid(page);
685 int zid = page_zonenum(page);
686
687 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
688}
689
690static void
c0ff4b85 691__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 692 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
693 struct mem_cgroup_tree_per_zone *mctz,
694 unsigned long long new_usage_in_excess)
f64c3f54
BS
695{
696 struct rb_node **p = &mctz->rb_root.rb_node;
697 struct rb_node *parent = NULL;
698 struct mem_cgroup_per_zone *mz_node;
699
700 if (mz->on_tree)
701 return;
702
ef8745c1
KH
703 mz->usage_in_excess = new_usage_in_excess;
704 if (!mz->usage_in_excess)
705 return;
f64c3f54
BS
706 while (*p) {
707 parent = *p;
708 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
709 tree_node);
710 if (mz->usage_in_excess < mz_node->usage_in_excess)
711 p = &(*p)->rb_left;
712 /*
713 * We can't avoid mem cgroups that are over their soft
714 * limit by the same amount
715 */
716 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
717 p = &(*p)->rb_right;
718 }
719 rb_link_node(&mz->tree_node, parent, p);
720 rb_insert_color(&mz->tree_node, &mctz->rb_root);
721 mz->on_tree = true;
4e416953
BS
722}
723
724static void
c0ff4b85 725__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
726 struct mem_cgroup_per_zone *mz,
727 struct mem_cgroup_tree_per_zone *mctz)
728{
729 if (!mz->on_tree)
730 return;
731 rb_erase(&mz->tree_node, &mctz->rb_root);
732 mz->on_tree = false;
733}
734
f64c3f54 735static void
c0ff4b85 736mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
737 struct mem_cgroup_per_zone *mz,
738 struct mem_cgroup_tree_per_zone *mctz)
739{
740 spin_lock(&mctz->lock);
c0ff4b85 741 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
742 spin_unlock(&mctz->lock);
743}
744
f64c3f54 745
c0ff4b85 746static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 747{
ef8745c1 748 unsigned long long excess;
f64c3f54
BS
749 struct mem_cgroup_per_zone *mz;
750 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
751 int nid = page_to_nid(page);
752 int zid = page_zonenum(page);
f64c3f54
BS
753 mctz = soft_limit_tree_from_page(page);
754
755 /*
4e649152
KH
756 * Necessary to update all ancestors when hierarchy is used.
757 * because their event counter is not touched.
f64c3f54 758 */
c0ff4b85
R
759 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
760 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
761 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
762 /*
763 * We have to update the tree if mz is on RB-tree or
764 * mem is over its softlimit.
765 */
ef8745c1 766 if (excess || mz->on_tree) {
4e649152
KH
767 spin_lock(&mctz->lock);
768 /* if on-tree, remove it */
769 if (mz->on_tree)
c0ff4b85 770 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 771 /*
ef8745c1
KH
772 * Insert again. mz->usage_in_excess will be updated.
773 * If excess is 0, no tree ops.
4e649152 774 */
c0ff4b85 775 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
776 spin_unlock(&mctz->lock);
777 }
f64c3f54
BS
778 }
779}
780
c0ff4b85 781static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
782{
783 int node, zone;
784 struct mem_cgroup_per_zone *mz;
785 struct mem_cgroup_tree_per_zone *mctz;
786
3ed28fa1 787 for_each_node(node) {
f64c3f54 788 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 789 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 790 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 791 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
792 }
793 }
794}
795
4e416953
BS
796static struct mem_cgroup_per_zone *
797__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
798{
799 struct rb_node *rightmost = NULL;
26251eaf 800 struct mem_cgroup_per_zone *mz;
4e416953
BS
801
802retry:
26251eaf 803 mz = NULL;
4e416953
BS
804 rightmost = rb_last(&mctz->rb_root);
805 if (!rightmost)
806 goto done; /* Nothing to reclaim from */
807
808 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
809 /*
810 * Remove the node now but someone else can add it back,
811 * we will to add it back at the end of reclaim to its correct
812 * position in the tree.
813 */
d79154bb
HD
814 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
815 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
816 !css_tryget(&mz->memcg->css))
4e416953
BS
817 goto retry;
818done:
819 return mz;
820}
821
822static struct mem_cgroup_per_zone *
823mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
824{
825 struct mem_cgroup_per_zone *mz;
826
827 spin_lock(&mctz->lock);
828 mz = __mem_cgroup_largest_soft_limit_node(mctz);
829 spin_unlock(&mctz->lock);
830 return mz;
831}
832
711d3d2c
KH
833/*
834 * Implementation Note: reading percpu statistics for memcg.
835 *
836 * Both of vmstat[] and percpu_counter has threshold and do periodic
837 * synchronization to implement "quick" read. There are trade-off between
838 * reading cost and precision of value. Then, we may have a chance to implement
839 * a periodic synchronizion of counter in memcg's counter.
840 *
841 * But this _read() function is used for user interface now. The user accounts
842 * memory usage by memory cgroup and he _always_ requires exact value because
843 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
844 * have to visit all online cpus and make sum. So, for now, unnecessary
845 * synchronization is not implemented. (just implemented for cpu hotplug)
846 *
847 * If there are kernel internal actions which can make use of some not-exact
848 * value, and reading all cpu value can be performance bottleneck in some
849 * common workload, threashold and synchonization as vmstat[] should be
850 * implemented.
851 */
c0ff4b85 852static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 853 enum mem_cgroup_stat_index idx)
c62b1a3b 854{
7a159cc9 855 long val = 0;
c62b1a3b 856 int cpu;
c62b1a3b 857
711d3d2c
KH
858 get_online_cpus();
859 for_each_online_cpu(cpu)
c0ff4b85 860 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 861#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
862 spin_lock(&memcg->pcp_counter_lock);
863 val += memcg->nocpu_base.count[idx];
864 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
865#endif
866 put_online_cpus();
c62b1a3b
KH
867 return val;
868}
869
c0ff4b85 870static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
871 bool charge)
872{
873 int val = (charge) ? 1 : -1;
bff6bb83 874 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
875}
876
c0ff4b85 877static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
878 enum mem_cgroup_events_index idx)
879{
880 unsigned long val = 0;
881 int cpu;
882
883 for_each_online_cpu(cpu)
c0ff4b85 884 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 885#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
886 spin_lock(&memcg->pcp_counter_lock);
887 val += memcg->nocpu_base.events[idx];
888 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
889#endif
890 return val;
891}
892
c0ff4b85 893static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 894 struct page *page,
b2402857 895 bool anon, int nr_pages)
d52aa412 896{
c62b1a3b
KH
897 preempt_disable();
898
b2402857
KH
899 /*
900 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
901 * counted as CACHE even if it's on ANON LRU.
902 */
903 if (anon)
904 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 905 nr_pages);
d52aa412 906 else
b2402857 907 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 908 nr_pages);
55e462b0 909
b070e65c
DR
910 if (PageTransHuge(page))
911 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
912 nr_pages);
913
e401f176
KH
914 /* pagein of a big page is an event. So, ignore page size */
915 if (nr_pages > 0)
c0ff4b85 916 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 917 else {
c0ff4b85 918 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
919 nr_pages = -nr_pages; /* for event */
920 }
e401f176 921
13114716 922 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 923
c62b1a3b 924 preempt_enable();
6d12e2d8
KH
925}
926
bb2a0de9 927unsigned long
4d7dcca2 928mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
929{
930 struct mem_cgroup_per_zone *mz;
931
932 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
933 return mz->lru_size[lru];
934}
935
936static unsigned long
c0ff4b85 937mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 938 unsigned int lru_mask)
889976db
YH
939{
940 struct mem_cgroup_per_zone *mz;
f156ab93 941 enum lru_list lru;
bb2a0de9
KH
942 unsigned long ret = 0;
943
c0ff4b85 944 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 945
f156ab93
HD
946 for_each_lru(lru) {
947 if (BIT(lru) & lru_mask)
948 ret += mz->lru_size[lru];
bb2a0de9
KH
949 }
950 return ret;
951}
952
953static unsigned long
c0ff4b85 954mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
955 int nid, unsigned int lru_mask)
956{
889976db
YH
957 u64 total = 0;
958 int zid;
959
bb2a0de9 960 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
961 total += mem_cgroup_zone_nr_lru_pages(memcg,
962 nid, zid, lru_mask);
bb2a0de9 963
889976db
YH
964 return total;
965}
bb2a0de9 966
c0ff4b85 967static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 968 unsigned int lru_mask)
6d12e2d8 969{
889976db 970 int nid;
6d12e2d8
KH
971 u64 total = 0;
972
31aaea4a 973 for_each_node_state(nid, N_MEMORY)
c0ff4b85 974 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 975 return total;
d52aa412
KH
976}
977
f53d7ce3
JW
978static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
979 enum mem_cgroup_events_target target)
7a159cc9
JW
980{
981 unsigned long val, next;
982
13114716 983 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 984 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 985 /* from time_after() in jiffies.h */
f53d7ce3
JW
986 if ((long)next - (long)val < 0) {
987 switch (target) {
988 case MEM_CGROUP_TARGET_THRESH:
989 next = val + THRESHOLDS_EVENTS_TARGET;
990 break;
991 case MEM_CGROUP_TARGET_SOFTLIMIT:
992 next = val + SOFTLIMIT_EVENTS_TARGET;
993 break;
994 case MEM_CGROUP_TARGET_NUMAINFO:
995 next = val + NUMAINFO_EVENTS_TARGET;
996 break;
997 default:
998 break;
999 }
1000 __this_cpu_write(memcg->stat->targets[target], next);
1001 return true;
7a159cc9 1002 }
f53d7ce3 1003 return false;
d2265e6f
KH
1004}
1005
1006/*
1007 * Check events in order.
1008 *
1009 */
c0ff4b85 1010static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1011{
4799401f 1012 preempt_disable();
d2265e6f 1013 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1014 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1015 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
1016 bool do_softlimit;
1017 bool do_numainfo __maybe_unused;
f53d7ce3
JW
1018
1019 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1020 MEM_CGROUP_TARGET_SOFTLIMIT);
1021#if MAX_NUMNODES > 1
1022 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1023 MEM_CGROUP_TARGET_NUMAINFO);
1024#endif
1025 preempt_enable();
1026
c0ff4b85 1027 mem_cgroup_threshold(memcg);
f53d7ce3 1028 if (unlikely(do_softlimit))
c0ff4b85 1029 mem_cgroup_update_tree(memcg, page);
453a9bf3 1030#if MAX_NUMNODES > 1
f53d7ce3 1031 if (unlikely(do_numainfo))
c0ff4b85 1032 atomic_inc(&memcg->numainfo_events);
453a9bf3 1033#endif
f53d7ce3
JW
1034 } else
1035 preempt_enable();
d2265e6f
KH
1036}
1037
d1a4c0b3 1038struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 1039{
8af01f56 1040 return mem_cgroup_from_css(cgroup_css(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
1041}
1042
cf475ad2 1043struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1044{
31a78f23
BS
1045 /*
1046 * mm_update_next_owner() may clear mm->owner to NULL
1047 * if it races with swapoff, page migration, etc.
1048 * So this can be called with p == NULL.
1049 */
1050 if (unlikely(!p))
1051 return NULL;
1052
8af01f56 1053 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1054}
1055
a433658c 1056struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1057{
c0ff4b85 1058 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1059
1060 if (!mm)
1061 return NULL;
54595fe2
KH
1062 /*
1063 * Because we have no locks, mm->owner's may be being moved to other
1064 * cgroup. We use css_tryget() here even if this looks
1065 * pessimistic (rather than adding locks here).
1066 */
1067 rcu_read_lock();
1068 do {
c0ff4b85
R
1069 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1070 if (unlikely(!memcg))
54595fe2 1071 break;
c0ff4b85 1072 } while (!css_tryget(&memcg->css));
54595fe2 1073 rcu_read_unlock();
c0ff4b85 1074 return memcg;
54595fe2
KH
1075}
1076
16248d8f
MH
1077/*
1078 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1079 * ref. count) or NULL if the whole root's subtree has been visited.
1080 *
1081 * helper function to be used by mem_cgroup_iter
1082 */
1083static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1084 struct mem_cgroup *last_visited)
1085{
1086 struct cgroup *prev_cgroup, *next_cgroup;
1087
1088 /*
1089 * Root is not visited by cgroup iterators so it needs an
1090 * explicit visit.
1091 */
1092 if (!last_visited)
1093 return root;
1094
1095 prev_cgroup = (last_visited == root) ? NULL
1096 : last_visited->css.cgroup;
1097skip_node:
1098 next_cgroup = cgroup_next_descendant_pre(
1099 prev_cgroup, root->css.cgroup);
1100
1101 /*
1102 * Even if we found a group we have to make sure it is
1103 * alive. css && !memcg means that the groups should be
1104 * skipped and we should continue the tree walk.
1105 * last_visited css is safe to use because it is
1106 * protected by css_get and the tree walk is rcu safe.
1107 */
1108 if (next_cgroup) {
1109 struct mem_cgroup *mem = mem_cgroup_from_cont(
1110 next_cgroup);
1111 if (css_tryget(&mem->css))
1112 return mem;
1113 else {
1114 prev_cgroup = next_cgroup;
1115 goto skip_node;
1116 }
1117 }
1118
1119 return NULL;
1120}
1121
519ebea3
JW
1122static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1123{
1124 /*
1125 * When a group in the hierarchy below root is destroyed, the
1126 * hierarchy iterator can no longer be trusted since it might
1127 * have pointed to the destroyed group. Invalidate it.
1128 */
1129 atomic_inc(&root->dead_count);
1130}
1131
1132static struct mem_cgroup *
1133mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1134 struct mem_cgroup *root,
1135 int *sequence)
1136{
1137 struct mem_cgroup *position = NULL;
1138 /*
1139 * A cgroup destruction happens in two stages: offlining and
1140 * release. They are separated by a RCU grace period.
1141 *
1142 * If the iterator is valid, we may still race with an
1143 * offlining. The RCU lock ensures the object won't be
1144 * released, tryget will fail if we lost the race.
1145 */
1146 *sequence = atomic_read(&root->dead_count);
1147 if (iter->last_dead_count == *sequence) {
1148 smp_rmb();
1149 position = iter->last_visited;
1150 if (position && !css_tryget(&position->css))
1151 position = NULL;
1152 }
1153 return position;
1154}
1155
1156static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1157 struct mem_cgroup *last_visited,
1158 struct mem_cgroup *new_position,
1159 int sequence)
1160{
1161 if (last_visited)
1162 css_put(&last_visited->css);
1163 /*
1164 * We store the sequence count from the time @last_visited was
1165 * loaded successfully instead of rereading it here so that we
1166 * don't lose destruction events in between. We could have
1167 * raced with the destruction of @new_position after all.
1168 */
1169 iter->last_visited = new_position;
1170 smp_wmb();
1171 iter->last_dead_count = sequence;
1172}
1173
5660048c
JW
1174/**
1175 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1176 * @root: hierarchy root
1177 * @prev: previously returned memcg, NULL on first invocation
1178 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1179 *
1180 * Returns references to children of the hierarchy below @root, or
1181 * @root itself, or %NULL after a full round-trip.
1182 *
1183 * Caller must pass the return value in @prev on subsequent
1184 * invocations for reference counting, or use mem_cgroup_iter_break()
1185 * to cancel a hierarchy walk before the round-trip is complete.
1186 *
1187 * Reclaimers can specify a zone and a priority level in @reclaim to
1188 * divide up the memcgs in the hierarchy among all concurrent
1189 * reclaimers operating on the same zone and priority.
1190 */
1191struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1192 struct mem_cgroup *prev,
1193 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1194{
9f3a0d09 1195 struct mem_cgroup *memcg = NULL;
542f85f9 1196 struct mem_cgroup *last_visited = NULL;
711d3d2c 1197
5660048c
JW
1198 if (mem_cgroup_disabled())
1199 return NULL;
1200
9f3a0d09
JW
1201 if (!root)
1202 root = root_mem_cgroup;
7d74b06f 1203
9f3a0d09 1204 if (prev && !reclaim)
542f85f9 1205 last_visited = prev;
14067bb3 1206
9f3a0d09
JW
1207 if (!root->use_hierarchy && root != root_mem_cgroup) {
1208 if (prev)
c40046f3 1209 goto out_css_put;
9f3a0d09
JW
1210 return root;
1211 }
14067bb3 1212
542f85f9 1213 rcu_read_lock();
9f3a0d09 1214 while (!memcg) {
527a5ec9 1215 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1216 int uninitialized_var(seq);
711d3d2c 1217
527a5ec9
JW
1218 if (reclaim) {
1219 int nid = zone_to_nid(reclaim->zone);
1220 int zid = zone_idx(reclaim->zone);
1221 struct mem_cgroup_per_zone *mz;
1222
1223 mz = mem_cgroup_zoneinfo(root, nid, zid);
1224 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1225 if (prev && reclaim->generation != iter->generation) {
5f578161 1226 iter->last_visited = NULL;
542f85f9
MH
1227 goto out_unlock;
1228 }
5f578161 1229
519ebea3 1230 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1231 }
7d74b06f 1232
16248d8f 1233 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1234
527a5ec9 1235 if (reclaim) {
519ebea3 1236 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1237
19f39402 1238 if (!memcg)
527a5ec9
JW
1239 iter->generation++;
1240 else if (!prev && memcg)
1241 reclaim->generation = iter->generation;
1242 }
9f3a0d09 1243
19f39402 1244 if (prev && !memcg)
542f85f9 1245 goto out_unlock;
9f3a0d09 1246 }
542f85f9
MH
1247out_unlock:
1248 rcu_read_unlock();
c40046f3
MH
1249out_css_put:
1250 if (prev && prev != root)
1251 css_put(&prev->css);
1252
9f3a0d09 1253 return memcg;
14067bb3 1254}
7d74b06f 1255
5660048c
JW
1256/**
1257 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1258 * @root: hierarchy root
1259 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1260 */
1261void mem_cgroup_iter_break(struct mem_cgroup *root,
1262 struct mem_cgroup *prev)
9f3a0d09
JW
1263{
1264 if (!root)
1265 root = root_mem_cgroup;
1266 if (prev && prev != root)
1267 css_put(&prev->css);
1268}
7d74b06f 1269
9f3a0d09
JW
1270/*
1271 * Iteration constructs for visiting all cgroups (under a tree). If
1272 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1273 * be used for reference counting.
1274 */
1275#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1276 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1277 iter != NULL; \
527a5ec9 1278 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1279
9f3a0d09 1280#define for_each_mem_cgroup(iter) \
527a5ec9 1281 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1282 iter != NULL; \
527a5ec9 1283 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1284
68ae564b 1285void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1286{
c0ff4b85 1287 struct mem_cgroup *memcg;
456f998e 1288
456f998e 1289 rcu_read_lock();
c0ff4b85
R
1290 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1291 if (unlikely(!memcg))
456f998e
YH
1292 goto out;
1293
1294 switch (idx) {
456f998e 1295 case PGFAULT:
0e574a93
JW
1296 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1297 break;
1298 case PGMAJFAULT:
1299 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1300 break;
1301 default:
1302 BUG();
1303 }
1304out:
1305 rcu_read_unlock();
1306}
68ae564b 1307EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1308
925b7673
JW
1309/**
1310 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1311 * @zone: zone of the wanted lruvec
fa9add64 1312 * @memcg: memcg of the wanted lruvec
925b7673
JW
1313 *
1314 * Returns the lru list vector holding pages for the given @zone and
1315 * @mem. This can be the global zone lruvec, if the memory controller
1316 * is disabled.
1317 */
1318struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1319 struct mem_cgroup *memcg)
1320{
1321 struct mem_cgroup_per_zone *mz;
bea8c150 1322 struct lruvec *lruvec;
925b7673 1323
bea8c150
HD
1324 if (mem_cgroup_disabled()) {
1325 lruvec = &zone->lruvec;
1326 goto out;
1327 }
925b7673
JW
1328
1329 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1330 lruvec = &mz->lruvec;
1331out:
1332 /*
1333 * Since a node can be onlined after the mem_cgroup was created,
1334 * we have to be prepared to initialize lruvec->zone here;
1335 * and if offlined then reonlined, we need to reinitialize it.
1336 */
1337 if (unlikely(lruvec->zone != zone))
1338 lruvec->zone = zone;
1339 return lruvec;
925b7673
JW
1340}
1341
08e552c6
KH
1342/*
1343 * Following LRU functions are allowed to be used without PCG_LOCK.
1344 * Operations are called by routine of global LRU independently from memcg.
1345 * What we have to take care of here is validness of pc->mem_cgroup.
1346 *
1347 * Changes to pc->mem_cgroup happens when
1348 * 1. charge
1349 * 2. moving account
1350 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1351 * It is added to LRU before charge.
1352 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1353 * When moving account, the page is not on LRU. It's isolated.
1354 */
4f98a2fe 1355
925b7673 1356/**
fa9add64 1357 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1358 * @page: the page
fa9add64 1359 * @zone: zone of the page
925b7673 1360 */
fa9add64 1361struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1362{
08e552c6 1363 struct mem_cgroup_per_zone *mz;
925b7673
JW
1364 struct mem_cgroup *memcg;
1365 struct page_cgroup *pc;
bea8c150 1366 struct lruvec *lruvec;
6d12e2d8 1367
bea8c150
HD
1368 if (mem_cgroup_disabled()) {
1369 lruvec = &zone->lruvec;
1370 goto out;
1371 }
925b7673 1372
08e552c6 1373 pc = lookup_page_cgroup(page);
38c5d72f 1374 memcg = pc->mem_cgroup;
7512102c
HD
1375
1376 /*
fa9add64 1377 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1378 * an uncharged page off lru does nothing to secure
1379 * its former mem_cgroup from sudden removal.
1380 *
1381 * Our caller holds lru_lock, and PageCgroupUsed is updated
1382 * under page_cgroup lock: between them, they make all uses
1383 * of pc->mem_cgroup safe.
1384 */
fa9add64 1385 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1386 pc->mem_cgroup = memcg = root_mem_cgroup;
1387
925b7673 1388 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1389 lruvec = &mz->lruvec;
1390out:
1391 /*
1392 * Since a node can be onlined after the mem_cgroup was created,
1393 * we have to be prepared to initialize lruvec->zone here;
1394 * and if offlined then reonlined, we need to reinitialize it.
1395 */
1396 if (unlikely(lruvec->zone != zone))
1397 lruvec->zone = zone;
1398 return lruvec;
08e552c6 1399}
b69408e8 1400
925b7673 1401/**
fa9add64
HD
1402 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1403 * @lruvec: mem_cgroup per zone lru vector
1404 * @lru: index of lru list the page is sitting on
1405 * @nr_pages: positive when adding or negative when removing
925b7673 1406 *
fa9add64
HD
1407 * This function must be called when a page is added to or removed from an
1408 * lru list.
3f58a829 1409 */
fa9add64
HD
1410void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1411 int nr_pages)
3f58a829
MK
1412{
1413 struct mem_cgroup_per_zone *mz;
fa9add64 1414 unsigned long *lru_size;
3f58a829
MK
1415
1416 if (mem_cgroup_disabled())
1417 return;
1418
fa9add64
HD
1419 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1420 lru_size = mz->lru_size + lru;
1421 *lru_size += nr_pages;
1422 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1423}
544122e5 1424
3e92041d 1425/*
c0ff4b85 1426 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1427 * hierarchy subtree
1428 */
c3ac9a8a
JW
1429bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1430 struct mem_cgroup *memcg)
3e92041d 1431{
91c63734
JW
1432 if (root_memcg == memcg)
1433 return true;
3a981f48 1434 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1435 return false;
c3ac9a8a
JW
1436 return css_is_ancestor(&memcg->css, &root_memcg->css);
1437}
1438
1439static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1440 struct mem_cgroup *memcg)
1441{
1442 bool ret;
1443
91c63734 1444 rcu_read_lock();
c3ac9a8a 1445 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1446 rcu_read_unlock();
1447 return ret;
3e92041d
MH
1448}
1449
ffbdccf5
DR
1450bool task_in_mem_cgroup(struct task_struct *task,
1451 const struct mem_cgroup *memcg)
4c4a2214 1452{
0b7f569e 1453 struct mem_cgroup *curr = NULL;
158e0a2d 1454 struct task_struct *p;
ffbdccf5 1455 bool ret;
4c4a2214 1456
158e0a2d 1457 p = find_lock_task_mm(task);
de077d22
DR
1458 if (p) {
1459 curr = try_get_mem_cgroup_from_mm(p->mm);
1460 task_unlock(p);
1461 } else {
1462 /*
1463 * All threads may have already detached their mm's, but the oom
1464 * killer still needs to detect if they have already been oom
1465 * killed to prevent needlessly killing additional tasks.
1466 */
ffbdccf5 1467 rcu_read_lock();
de077d22
DR
1468 curr = mem_cgroup_from_task(task);
1469 if (curr)
1470 css_get(&curr->css);
ffbdccf5 1471 rcu_read_unlock();
de077d22 1472 }
0b7f569e 1473 if (!curr)
ffbdccf5 1474 return false;
d31f56db 1475 /*
c0ff4b85 1476 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1477 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1478 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1479 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1480 */
c0ff4b85 1481 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1482 css_put(&curr->css);
4c4a2214
DR
1483 return ret;
1484}
1485
c56d5c7d 1486int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1487{
9b272977 1488 unsigned long inactive_ratio;
14797e23 1489 unsigned long inactive;
9b272977 1490 unsigned long active;
c772be93 1491 unsigned long gb;
14797e23 1492
4d7dcca2
HD
1493 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1494 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1495
c772be93
KM
1496 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1497 if (gb)
1498 inactive_ratio = int_sqrt(10 * gb);
1499 else
1500 inactive_ratio = 1;
1501
9b272977 1502 return inactive * inactive_ratio < active;
14797e23
KM
1503}
1504
6d61ef40
BS
1505#define mem_cgroup_from_res_counter(counter, member) \
1506 container_of(counter, struct mem_cgroup, member)
1507
19942822 1508/**
9d11ea9f 1509 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1510 * @memcg: the memory cgroup
19942822 1511 *
9d11ea9f 1512 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1513 * pages.
19942822 1514 */
c0ff4b85 1515static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1516{
9d11ea9f
JW
1517 unsigned long long margin;
1518
c0ff4b85 1519 margin = res_counter_margin(&memcg->res);
9d11ea9f 1520 if (do_swap_account)
c0ff4b85 1521 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1522 return margin >> PAGE_SHIFT;
19942822
JW
1523}
1524
1f4c025b 1525int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1526{
1527 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1528
1529 /* root ? */
1530 if (cgrp->parent == NULL)
1531 return vm_swappiness;
1532
bf1ff263 1533 return memcg->swappiness;
a7885eb8
KM
1534}
1535
619d094b
KH
1536/*
1537 * memcg->moving_account is used for checking possibility that some thread is
1538 * calling move_account(). When a thread on CPU-A starts moving pages under
1539 * a memcg, other threads should check memcg->moving_account under
1540 * rcu_read_lock(), like this:
1541 *
1542 * CPU-A CPU-B
1543 * rcu_read_lock()
1544 * memcg->moving_account+1 if (memcg->mocing_account)
1545 * take heavy locks.
1546 * synchronize_rcu() update something.
1547 * rcu_read_unlock()
1548 * start move here.
1549 */
4331f7d3
KH
1550
1551/* for quick checking without looking up memcg */
1552atomic_t memcg_moving __read_mostly;
1553
c0ff4b85 1554static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1555{
4331f7d3 1556 atomic_inc(&memcg_moving);
619d094b 1557 atomic_inc(&memcg->moving_account);
32047e2a
KH
1558 synchronize_rcu();
1559}
1560
c0ff4b85 1561static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1562{
619d094b
KH
1563 /*
1564 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1565 * We check NULL in callee rather than caller.
1566 */
4331f7d3
KH
1567 if (memcg) {
1568 atomic_dec(&memcg_moving);
619d094b 1569 atomic_dec(&memcg->moving_account);
4331f7d3 1570 }
32047e2a 1571}
619d094b 1572
32047e2a
KH
1573/*
1574 * 2 routines for checking "mem" is under move_account() or not.
1575 *
13fd1dd9
AM
1576 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1577 * is used for avoiding races in accounting. If true,
32047e2a
KH
1578 * pc->mem_cgroup may be overwritten.
1579 *
1580 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1581 * under hierarchy of moving cgroups. This is for
1582 * waiting at hith-memory prressure caused by "move".
1583 */
1584
13fd1dd9 1585static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1586{
1587 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1588 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1589}
4b534334 1590
c0ff4b85 1591static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1592{
2bd9bb20
KH
1593 struct mem_cgroup *from;
1594 struct mem_cgroup *to;
4b534334 1595 bool ret = false;
2bd9bb20
KH
1596 /*
1597 * Unlike task_move routines, we access mc.to, mc.from not under
1598 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1599 */
1600 spin_lock(&mc.lock);
1601 from = mc.from;
1602 to = mc.to;
1603 if (!from)
1604 goto unlock;
3e92041d 1605
c0ff4b85
R
1606 ret = mem_cgroup_same_or_subtree(memcg, from)
1607 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1608unlock:
1609 spin_unlock(&mc.lock);
4b534334
KH
1610 return ret;
1611}
1612
c0ff4b85 1613static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1614{
1615 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1616 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1617 DEFINE_WAIT(wait);
1618 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1619 /* moving charge context might have finished. */
1620 if (mc.moving_task)
1621 schedule();
1622 finish_wait(&mc.waitq, &wait);
1623 return true;
1624 }
1625 }
1626 return false;
1627}
1628
312734c0
KH
1629/*
1630 * Take this lock when
1631 * - a code tries to modify page's memcg while it's USED.
1632 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1633 * see mem_cgroup_stolen(), too.
312734c0
KH
1634 */
1635static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1636 unsigned long *flags)
1637{
1638 spin_lock_irqsave(&memcg->move_lock, *flags);
1639}
1640
1641static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1642 unsigned long *flags)
1643{
1644 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1645}
1646
58cf188e 1647#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1648/**
58cf188e 1649 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1650 * @memcg: The memory cgroup that went over limit
1651 * @p: Task that is going to be killed
1652 *
1653 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1654 * enabled
1655 */
1656void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1657{
1658 struct cgroup *task_cgrp;
1659 struct cgroup *mem_cgrp;
1660 /*
1661 * Need a buffer in BSS, can't rely on allocations. The code relies
1662 * on the assumption that OOM is serialized for memory controller.
1663 * If this assumption is broken, revisit this code.
1664 */
1665 static char memcg_name[PATH_MAX];
1666 int ret;
58cf188e
SZ
1667 struct mem_cgroup *iter;
1668 unsigned int i;
e222432b 1669
58cf188e 1670 if (!p)
e222432b
BS
1671 return;
1672
e222432b
BS
1673 rcu_read_lock();
1674
1675 mem_cgrp = memcg->css.cgroup;
1676 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1677
1678 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1679 if (ret < 0) {
1680 /*
1681 * Unfortunately, we are unable to convert to a useful name
1682 * But we'll still print out the usage information
1683 */
1684 rcu_read_unlock();
1685 goto done;
1686 }
1687 rcu_read_unlock();
1688
d045197f 1689 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1690
1691 rcu_read_lock();
1692 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1693 if (ret < 0) {
1694 rcu_read_unlock();
1695 goto done;
1696 }
1697 rcu_read_unlock();
1698
1699 /*
1700 * Continues from above, so we don't need an KERN_ level
1701 */
d045197f 1702 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1703done:
1704
d045197f 1705 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1706 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1707 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1708 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1709 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1710 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1711 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1712 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1713 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1714 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1715 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1716 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1717
1718 for_each_mem_cgroup_tree(iter, memcg) {
1719 pr_info("Memory cgroup stats");
1720
1721 rcu_read_lock();
1722 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1723 if (!ret)
1724 pr_cont(" for %s", memcg_name);
1725 rcu_read_unlock();
1726 pr_cont(":");
1727
1728 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1729 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1730 continue;
1731 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1732 K(mem_cgroup_read_stat(iter, i)));
1733 }
1734
1735 for (i = 0; i < NR_LRU_LISTS; i++)
1736 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1737 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1738
1739 pr_cont("\n");
1740 }
e222432b
BS
1741}
1742
81d39c20
KH
1743/*
1744 * This function returns the number of memcg under hierarchy tree. Returns
1745 * 1(self count) if no children.
1746 */
c0ff4b85 1747static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1748{
1749 int num = 0;
7d74b06f
KH
1750 struct mem_cgroup *iter;
1751
c0ff4b85 1752 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1753 num++;
81d39c20
KH
1754 return num;
1755}
1756
a63d83f4
DR
1757/*
1758 * Return the memory (and swap, if configured) limit for a memcg.
1759 */
9cbb78bb 1760static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1761{
1762 u64 limit;
a63d83f4 1763
f3e8eb70 1764 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1765
a63d83f4 1766 /*
9a5a8f19 1767 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1768 */
9a5a8f19
MH
1769 if (mem_cgroup_swappiness(memcg)) {
1770 u64 memsw;
1771
1772 limit += total_swap_pages << PAGE_SHIFT;
1773 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1774
1775 /*
1776 * If memsw is finite and limits the amount of swap space
1777 * available to this memcg, return that limit.
1778 */
1779 limit = min(limit, memsw);
1780 }
1781
1782 return limit;
a63d83f4
DR
1783}
1784
19965460
DR
1785static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1786 int order)
9cbb78bb
DR
1787{
1788 struct mem_cgroup *iter;
1789 unsigned long chosen_points = 0;
1790 unsigned long totalpages;
1791 unsigned int points = 0;
1792 struct task_struct *chosen = NULL;
1793
876aafbf 1794 /*
465adcf1
DR
1795 * If current has a pending SIGKILL or is exiting, then automatically
1796 * select it. The goal is to allow it to allocate so that it may
1797 * quickly exit and free its memory.
876aafbf 1798 */
465adcf1 1799 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1800 set_thread_flag(TIF_MEMDIE);
1801 return;
1802 }
1803
1804 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1805 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1806 for_each_mem_cgroup_tree(iter, memcg) {
1807 struct cgroup *cgroup = iter->css.cgroup;
1808 struct cgroup_iter it;
1809 struct task_struct *task;
1810
1811 cgroup_iter_start(cgroup, &it);
1812 while ((task = cgroup_iter_next(cgroup, &it))) {
1813 switch (oom_scan_process_thread(task, totalpages, NULL,
1814 false)) {
1815 case OOM_SCAN_SELECT:
1816 if (chosen)
1817 put_task_struct(chosen);
1818 chosen = task;
1819 chosen_points = ULONG_MAX;
1820 get_task_struct(chosen);
1821 /* fall through */
1822 case OOM_SCAN_CONTINUE:
1823 continue;
1824 case OOM_SCAN_ABORT:
1825 cgroup_iter_end(cgroup, &it);
1826 mem_cgroup_iter_break(memcg, iter);
1827 if (chosen)
1828 put_task_struct(chosen);
1829 return;
1830 case OOM_SCAN_OK:
1831 break;
1832 };
1833 points = oom_badness(task, memcg, NULL, totalpages);
1834 if (points > chosen_points) {
1835 if (chosen)
1836 put_task_struct(chosen);
1837 chosen = task;
1838 chosen_points = points;
1839 get_task_struct(chosen);
1840 }
1841 }
1842 cgroup_iter_end(cgroup, &it);
1843 }
1844
1845 if (!chosen)
1846 return;
1847 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1848 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1849 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1850}
1851
5660048c
JW
1852static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1853 gfp_t gfp_mask,
1854 unsigned long flags)
1855{
1856 unsigned long total = 0;
1857 bool noswap = false;
1858 int loop;
1859
1860 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1861 noswap = true;
1862 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1863 noswap = true;
1864
1865 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1866 if (loop)
1867 drain_all_stock_async(memcg);
1868 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1869 /*
1870 * Allow limit shrinkers, which are triggered directly
1871 * by userspace, to catch signals and stop reclaim
1872 * after minimal progress, regardless of the margin.
1873 */
1874 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1875 break;
1876 if (mem_cgroup_margin(memcg))
1877 break;
1878 /*
1879 * If nothing was reclaimed after two attempts, there
1880 * may be no reclaimable pages in this hierarchy.
1881 */
1882 if (loop && !total)
1883 break;
1884 }
1885 return total;
1886}
1887
4d0c066d
KH
1888/**
1889 * test_mem_cgroup_node_reclaimable
dad7557e 1890 * @memcg: the target memcg
4d0c066d
KH
1891 * @nid: the node ID to be checked.
1892 * @noswap : specify true here if the user wants flle only information.
1893 *
1894 * This function returns whether the specified memcg contains any
1895 * reclaimable pages on a node. Returns true if there are any reclaimable
1896 * pages in the node.
1897 */
c0ff4b85 1898static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1899 int nid, bool noswap)
1900{
c0ff4b85 1901 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1902 return true;
1903 if (noswap || !total_swap_pages)
1904 return false;
c0ff4b85 1905 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1906 return true;
1907 return false;
1908
1909}
889976db
YH
1910#if MAX_NUMNODES > 1
1911
1912/*
1913 * Always updating the nodemask is not very good - even if we have an empty
1914 * list or the wrong list here, we can start from some node and traverse all
1915 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1916 *
1917 */
c0ff4b85 1918static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1919{
1920 int nid;
453a9bf3
KH
1921 /*
1922 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1923 * pagein/pageout changes since the last update.
1924 */
c0ff4b85 1925 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1926 return;
c0ff4b85 1927 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1928 return;
1929
889976db 1930 /* make a nodemask where this memcg uses memory from */
31aaea4a 1931 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1932
31aaea4a 1933 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1934
c0ff4b85
R
1935 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1936 node_clear(nid, memcg->scan_nodes);
889976db 1937 }
453a9bf3 1938
c0ff4b85
R
1939 atomic_set(&memcg->numainfo_events, 0);
1940 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1941}
1942
1943/*
1944 * Selecting a node where we start reclaim from. Because what we need is just
1945 * reducing usage counter, start from anywhere is O,K. Considering
1946 * memory reclaim from current node, there are pros. and cons.
1947 *
1948 * Freeing memory from current node means freeing memory from a node which
1949 * we'll use or we've used. So, it may make LRU bad. And if several threads
1950 * hit limits, it will see a contention on a node. But freeing from remote
1951 * node means more costs for memory reclaim because of memory latency.
1952 *
1953 * Now, we use round-robin. Better algorithm is welcomed.
1954 */
c0ff4b85 1955int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1956{
1957 int node;
1958
c0ff4b85
R
1959 mem_cgroup_may_update_nodemask(memcg);
1960 node = memcg->last_scanned_node;
889976db 1961
c0ff4b85 1962 node = next_node(node, memcg->scan_nodes);
889976db 1963 if (node == MAX_NUMNODES)
c0ff4b85 1964 node = first_node(memcg->scan_nodes);
889976db
YH
1965 /*
1966 * We call this when we hit limit, not when pages are added to LRU.
1967 * No LRU may hold pages because all pages are UNEVICTABLE or
1968 * memcg is too small and all pages are not on LRU. In that case,
1969 * we use curret node.
1970 */
1971 if (unlikely(node == MAX_NUMNODES))
1972 node = numa_node_id();
1973
c0ff4b85 1974 memcg->last_scanned_node = node;
889976db
YH
1975 return node;
1976}
1977
4d0c066d
KH
1978/*
1979 * Check all nodes whether it contains reclaimable pages or not.
1980 * For quick scan, we make use of scan_nodes. This will allow us to skip
1981 * unused nodes. But scan_nodes is lazily updated and may not cotain
1982 * enough new information. We need to do double check.
1983 */
6bbda35c 1984static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1985{
1986 int nid;
1987
1988 /*
1989 * quick check...making use of scan_node.
1990 * We can skip unused nodes.
1991 */
c0ff4b85
R
1992 if (!nodes_empty(memcg->scan_nodes)) {
1993 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1994 nid < MAX_NUMNODES;
c0ff4b85 1995 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1996
c0ff4b85 1997 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1998 return true;
1999 }
2000 }
2001 /*
2002 * Check rest of nodes.
2003 */
31aaea4a 2004 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 2005 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 2006 continue;
c0ff4b85 2007 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
2008 return true;
2009 }
2010 return false;
2011}
2012
889976db 2013#else
c0ff4b85 2014int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2015{
2016 return 0;
2017}
4d0c066d 2018
6bbda35c 2019static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 2020{
c0ff4b85 2021 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 2022}
889976db
YH
2023#endif
2024
5660048c
JW
2025static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2026 struct zone *zone,
2027 gfp_t gfp_mask,
2028 unsigned long *total_scanned)
6d61ef40 2029{
9f3a0d09 2030 struct mem_cgroup *victim = NULL;
5660048c 2031 int total = 0;
04046e1a 2032 int loop = 0;
9d11ea9f 2033 unsigned long excess;
185efc0f 2034 unsigned long nr_scanned;
527a5ec9
JW
2035 struct mem_cgroup_reclaim_cookie reclaim = {
2036 .zone = zone,
2037 .priority = 0,
2038 };
9d11ea9f 2039
c0ff4b85 2040 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 2041
4e416953 2042 while (1) {
527a5ec9 2043 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 2044 if (!victim) {
04046e1a 2045 loop++;
4e416953
BS
2046 if (loop >= 2) {
2047 /*
2048 * If we have not been able to reclaim
2049 * anything, it might because there are
2050 * no reclaimable pages under this hierarchy
2051 */
5660048c 2052 if (!total)
4e416953 2053 break;
4e416953 2054 /*
25985edc 2055 * We want to do more targeted reclaim.
4e416953
BS
2056 * excess >> 2 is not to excessive so as to
2057 * reclaim too much, nor too less that we keep
2058 * coming back to reclaim from this cgroup
2059 */
2060 if (total >= (excess >> 2) ||
9f3a0d09 2061 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 2062 break;
4e416953 2063 }
9f3a0d09 2064 continue;
4e416953 2065 }
5660048c 2066 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 2067 continue;
5660048c
JW
2068 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2069 zone, &nr_scanned);
2070 *total_scanned += nr_scanned;
2071 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 2072 break;
6d61ef40 2073 }
9f3a0d09 2074 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 2075 return total;
6d61ef40
BS
2076}
2077
867578cb
KH
2078/*
2079 * Check OOM-Killer is already running under our hierarchy.
2080 * If someone is running, return false.
1af8efe9 2081 * Has to be called with memcg_oom_lock
867578cb 2082 */
c0ff4b85 2083static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 2084{
79dfdacc 2085 struct mem_cgroup *iter, *failed = NULL;
a636b327 2086
9f3a0d09 2087 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2088 if (iter->oom_lock) {
79dfdacc
MH
2089 /*
2090 * this subtree of our hierarchy is already locked
2091 * so we cannot give a lock.
2092 */
79dfdacc 2093 failed = iter;
9f3a0d09
JW
2094 mem_cgroup_iter_break(memcg, iter);
2095 break;
23751be0
JW
2096 } else
2097 iter->oom_lock = true;
7d74b06f 2098 }
867578cb 2099
79dfdacc 2100 if (!failed)
23751be0 2101 return true;
79dfdacc
MH
2102
2103 /*
2104 * OK, we failed to lock the whole subtree so we have to clean up
2105 * what we set up to the failing subtree
2106 */
9f3a0d09 2107 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 2108 if (iter == failed) {
9f3a0d09
JW
2109 mem_cgroup_iter_break(memcg, iter);
2110 break;
79dfdacc
MH
2111 }
2112 iter->oom_lock = false;
2113 }
23751be0 2114 return false;
a636b327 2115}
0b7f569e 2116
79dfdacc 2117/*
1af8efe9 2118 * Has to be called with memcg_oom_lock
79dfdacc 2119 */
c0ff4b85 2120static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2121{
7d74b06f
KH
2122 struct mem_cgroup *iter;
2123
c0ff4b85 2124 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2125 iter->oom_lock = false;
2126 return 0;
2127}
2128
c0ff4b85 2129static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2130{
2131 struct mem_cgroup *iter;
2132
c0ff4b85 2133 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2134 atomic_inc(&iter->under_oom);
2135}
2136
c0ff4b85 2137static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2138{
2139 struct mem_cgroup *iter;
2140
867578cb
KH
2141 /*
2142 * When a new child is created while the hierarchy is under oom,
2143 * mem_cgroup_oom_lock() may not be called. We have to use
2144 * atomic_add_unless() here.
2145 */
c0ff4b85 2146 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2147 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2148}
2149
1af8efe9 2150static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
2151static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2152
dc98df5a 2153struct oom_wait_info {
d79154bb 2154 struct mem_cgroup *memcg;
dc98df5a
KH
2155 wait_queue_t wait;
2156};
2157
2158static int memcg_oom_wake_function(wait_queue_t *wait,
2159 unsigned mode, int sync, void *arg)
2160{
d79154bb
HD
2161 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2162 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2163 struct oom_wait_info *oom_wait_info;
2164
2165 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2166 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2167
dc98df5a 2168 /*
d79154bb 2169 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2170 * Then we can use css_is_ancestor without taking care of RCU.
2171 */
c0ff4b85
R
2172 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2173 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2174 return 0;
dc98df5a
KH
2175 return autoremove_wake_function(wait, mode, sync, arg);
2176}
2177
c0ff4b85 2178static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2179{
c0ff4b85
R
2180 /* for filtering, pass "memcg" as argument. */
2181 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2182}
2183
c0ff4b85 2184static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2185{
c0ff4b85
R
2186 if (memcg && atomic_read(&memcg->under_oom))
2187 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2188}
2189
867578cb
KH
2190/*
2191 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2192 */
6bbda35c
KS
2193static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2194 int order)
0b7f569e 2195{
dc98df5a 2196 struct oom_wait_info owait;
3c11ecf4 2197 bool locked, need_to_kill;
867578cb 2198
d79154bb 2199 owait.memcg = memcg;
dc98df5a
KH
2200 owait.wait.flags = 0;
2201 owait.wait.func = memcg_oom_wake_function;
2202 owait.wait.private = current;
2203 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2204 need_to_kill = true;
c0ff4b85 2205 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2206
c0ff4b85 2207 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2208 spin_lock(&memcg_oom_lock);
c0ff4b85 2209 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2210 /*
2211 * Even if signal_pending(), we can't quit charge() loop without
2212 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2213 * under OOM is always welcomed, use TASK_KILLABLE here.
2214 */
3c11ecf4 2215 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2216 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2217 need_to_kill = false;
2218 if (locked)
c0ff4b85 2219 mem_cgroup_oom_notify(memcg);
1af8efe9 2220 spin_unlock(&memcg_oom_lock);
867578cb 2221
3c11ecf4
KH
2222 if (need_to_kill) {
2223 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2224 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2225 } else {
867578cb 2226 schedule();
dc98df5a 2227 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2228 }
1af8efe9 2229 spin_lock(&memcg_oom_lock);
79dfdacc 2230 if (locked)
c0ff4b85
R
2231 mem_cgroup_oom_unlock(memcg);
2232 memcg_wakeup_oom(memcg);
1af8efe9 2233 spin_unlock(&memcg_oom_lock);
867578cb 2234
c0ff4b85 2235 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2236
867578cb
KH
2237 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2238 return false;
2239 /* Give chance to dying process */
715a5ee8 2240 schedule_timeout_uninterruptible(1);
867578cb 2241 return true;
0b7f569e
KH
2242}
2243
d69b042f
BS
2244/*
2245 * Currently used to update mapped file statistics, but the routine can be
2246 * generalized to update other statistics as well.
32047e2a
KH
2247 *
2248 * Notes: Race condition
2249 *
2250 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2251 * it tends to be costly. But considering some conditions, we doesn't need
2252 * to do so _always_.
2253 *
2254 * Considering "charge", lock_page_cgroup() is not required because all
2255 * file-stat operations happen after a page is attached to radix-tree. There
2256 * are no race with "charge".
2257 *
2258 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2259 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2260 * if there are race with "uncharge". Statistics itself is properly handled
2261 * by flags.
2262 *
2263 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2264 * small, we check mm->moving_account and detect there are possibility of race
2265 * If there is, we take a lock.
d69b042f 2266 */
26174efd 2267
89c06bd5
KH
2268void __mem_cgroup_begin_update_page_stat(struct page *page,
2269 bool *locked, unsigned long *flags)
2270{
2271 struct mem_cgroup *memcg;
2272 struct page_cgroup *pc;
2273
2274 pc = lookup_page_cgroup(page);
2275again:
2276 memcg = pc->mem_cgroup;
2277 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2278 return;
2279 /*
2280 * If this memory cgroup is not under account moving, we don't
da92c47d 2281 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2282 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2283 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2284 */
13fd1dd9 2285 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2286 return;
2287
2288 move_lock_mem_cgroup(memcg, flags);
2289 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2290 move_unlock_mem_cgroup(memcg, flags);
2291 goto again;
2292 }
2293 *locked = true;
2294}
2295
2296void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2297{
2298 struct page_cgroup *pc = lookup_page_cgroup(page);
2299
2300 /*
2301 * It's guaranteed that pc->mem_cgroup never changes while
2302 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2303 * should take move_lock_mem_cgroup().
89c06bd5
KH
2304 */
2305 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2306}
2307
2a7106f2
GT
2308void mem_cgroup_update_page_stat(struct page *page,
2309 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2310{
c0ff4b85 2311 struct mem_cgroup *memcg;
32047e2a 2312 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2313 unsigned long uninitialized_var(flags);
d69b042f 2314
cfa44946 2315 if (mem_cgroup_disabled())
d69b042f 2316 return;
89c06bd5 2317
c0ff4b85
R
2318 memcg = pc->mem_cgroup;
2319 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2320 return;
26174efd 2321
26174efd 2322 switch (idx) {
2a7106f2 2323 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2324 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2325 break;
2326 default:
2327 BUG();
8725d541 2328 }
d69b042f 2329
c0ff4b85 2330 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2331}
26174efd 2332
cdec2e42
KH
2333/*
2334 * size of first charge trial. "32" comes from vmscan.c's magic value.
2335 * TODO: maybe necessary to use big numbers in big irons.
2336 */
7ec99d62 2337#define CHARGE_BATCH 32U
cdec2e42
KH
2338struct memcg_stock_pcp {
2339 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2340 unsigned int nr_pages;
cdec2e42 2341 struct work_struct work;
26fe6168 2342 unsigned long flags;
a0db00fc 2343#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2344};
2345static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2346static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2347
a0956d54
SS
2348/**
2349 * consume_stock: Try to consume stocked charge on this cpu.
2350 * @memcg: memcg to consume from.
2351 * @nr_pages: how many pages to charge.
2352 *
2353 * The charges will only happen if @memcg matches the current cpu's memcg
2354 * stock, and at least @nr_pages are available in that stock. Failure to
2355 * service an allocation will refill the stock.
2356 *
2357 * returns true if successful, false otherwise.
cdec2e42 2358 */
a0956d54 2359static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2360{
2361 struct memcg_stock_pcp *stock;
2362 bool ret = true;
2363
a0956d54
SS
2364 if (nr_pages > CHARGE_BATCH)
2365 return false;
2366
cdec2e42 2367 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2368 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2369 stock->nr_pages -= nr_pages;
cdec2e42
KH
2370 else /* need to call res_counter_charge */
2371 ret = false;
2372 put_cpu_var(memcg_stock);
2373 return ret;
2374}
2375
2376/*
2377 * Returns stocks cached in percpu to res_counter and reset cached information.
2378 */
2379static void drain_stock(struct memcg_stock_pcp *stock)
2380{
2381 struct mem_cgroup *old = stock->cached;
2382
11c9ea4e
JW
2383 if (stock->nr_pages) {
2384 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2385
2386 res_counter_uncharge(&old->res, bytes);
cdec2e42 2387 if (do_swap_account)
11c9ea4e
JW
2388 res_counter_uncharge(&old->memsw, bytes);
2389 stock->nr_pages = 0;
cdec2e42
KH
2390 }
2391 stock->cached = NULL;
cdec2e42
KH
2392}
2393
2394/*
2395 * This must be called under preempt disabled or must be called by
2396 * a thread which is pinned to local cpu.
2397 */
2398static void drain_local_stock(struct work_struct *dummy)
2399{
2400 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2401 drain_stock(stock);
26fe6168 2402 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2403}
2404
e4777496
MH
2405static void __init memcg_stock_init(void)
2406{
2407 int cpu;
2408
2409 for_each_possible_cpu(cpu) {
2410 struct memcg_stock_pcp *stock =
2411 &per_cpu(memcg_stock, cpu);
2412 INIT_WORK(&stock->work, drain_local_stock);
2413 }
2414}
2415
cdec2e42
KH
2416/*
2417 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2418 * This will be consumed by consume_stock() function, later.
cdec2e42 2419 */
c0ff4b85 2420static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2421{
2422 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2423
c0ff4b85 2424 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2425 drain_stock(stock);
c0ff4b85 2426 stock->cached = memcg;
cdec2e42 2427 }
11c9ea4e 2428 stock->nr_pages += nr_pages;
cdec2e42
KH
2429 put_cpu_var(memcg_stock);
2430}
2431
2432/*
c0ff4b85 2433 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2434 * of the hierarchy under it. sync flag says whether we should block
2435 * until the work is done.
cdec2e42 2436 */
c0ff4b85 2437static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2438{
26fe6168 2439 int cpu, curcpu;
d38144b7 2440
cdec2e42 2441 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2442 get_online_cpus();
5af12d0e 2443 curcpu = get_cpu();
cdec2e42
KH
2444 for_each_online_cpu(cpu) {
2445 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2446 struct mem_cgroup *memcg;
26fe6168 2447
c0ff4b85
R
2448 memcg = stock->cached;
2449 if (!memcg || !stock->nr_pages)
26fe6168 2450 continue;
c0ff4b85 2451 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2452 continue;
d1a05b69
MH
2453 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2454 if (cpu == curcpu)
2455 drain_local_stock(&stock->work);
2456 else
2457 schedule_work_on(cpu, &stock->work);
2458 }
cdec2e42 2459 }
5af12d0e 2460 put_cpu();
d38144b7
MH
2461
2462 if (!sync)
2463 goto out;
2464
2465 for_each_online_cpu(cpu) {
2466 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2467 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2468 flush_work(&stock->work);
2469 }
2470out:
cdec2e42 2471 put_online_cpus();
d38144b7
MH
2472}
2473
2474/*
2475 * Tries to drain stocked charges in other cpus. This function is asynchronous
2476 * and just put a work per cpu for draining localy on each cpu. Caller can
2477 * expects some charges will be back to res_counter later but cannot wait for
2478 * it.
2479 */
c0ff4b85 2480static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2481{
9f50fad6
MH
2482 /*
2483 * If someone calls draining, avoid adding more kworker runs.
2484 */
2485 if (!mutex_trylock(&percpu_charge_mutex))
2486 return;
c0ff4b85 2487 drain_all_stock(root_memcg, false);
9f50fad6 2488 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2489}
2490
2491/* This is a synchronous drain interface. */
c0ff4b85 2492static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2493{
2494 /* called when force_empty is called */
9f50fad6 2495 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2496 drain_all_stock(root_memcg, true);
9f50fad6 2497 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2498}
2499
711d3d2c
KH
2500/*
2501 * This function drains percpu counter value from DEAD cpu and
2502 * move it to local cpu. Note that this function can be preempted.
2503 */
c0ff4b85 2504static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2505{
2506 int i;
2507
c0ff4b85 2508 spin_lock(&memcg->pcp_counter_lock);
6104621d 2509 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2510 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2511
c0ff4b85
R
2512 per_cpu(memcg->stat->count[i], cpu) = 0;
2513 memcg->nocpu_base.count[i] += x;
711d3d2c 2514 }
e9f8974f 2515 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2516 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2517
c0ff4b85
R
2518 per_cpu(memcg->stat->events[i], cpu) = 0;
2519 memcg->nocpu_base.events[i] += x;
e9f8974f 2520 }
c0ff4b85 2521 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2522}
2523
2524static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2525 unsigned long action,
2526 void *hcpu)
2527{
2528 int cpu = (unsigned long)hcpu;
2529 struct memcg_stock_pcp *stock;
711d3d2c 2530 struct mem_cgroup *iter;
cdec2e42 2531
619d094b 2532 if (action == CPU_ONLINE)
1489ebad 2533 return NOTIFY_OK;
1489ebad 2534
d833049b 2535 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2536 return NOTIFY_OK;
711d3d2c 2537
9f3a0d09 2538 for_each_mem_cgroup(iter)
711d3d2c
KH
2539 mem_cgroup_drain_pcp_counter(iter, cpu);
2540
cdec2e42
KH
2541 stock = &per_cpu(memcg_stock, cpu);
2542 drain_stock(stock);
2543 return NOTIFY_OK;
2544}
2545
4b534334
KH
2546
2547/* See __mem_cgroup_try_charge() for details */
2548enum {
2549 CHARGE_OK, /* success */
2550 CHARGE_RETRY, /* need to retry but retry is not bad */
2551 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2552 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2553 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2554};
2555
c0ff4b85 2556static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2557 unsigned int nr_pages, unsigned int min_pages,
2558 bool oom_check)
4b534334 2559{
7ec99d62 2560 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2561 struct mem_cgroup *mem_over_limit;
2562 struct res_counter *fail_res;
2563 unsigned long flags = 0;
2564 int ret;
2565
c0ff4b85 2566 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2567
2568 if (likely(!ret)) {
2569 if (!do_swap_account)
2570 return CHARGE_OK;
c0ff4b85 2571 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2572 if (likely(!ret))
2573 return CHARGE_OK;
2574
c0ff4b85 2575 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2576 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2577 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2578 } else
2579 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2580 /*
9221edb7
JW
2581 * Never reclaim on behalf of optional batching, retry with a
2582 * single page instead.
2583 */
4c9c5359 2584 if (nr_pages > min_pages)
4b534334
KH
2585 return CHARGE_RETRY;
2586
2587 if (!(gfp_mask & __GFP_WAIT))
2588 return CHARGE_WOULDBLOCK;
2589
4c9c5359
SS
2590 if (gfp_mask & __GFP_NORETRY)
2591 return CHARGE_NOMEM;
2592
5660048c 2593 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2594 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2595 return CHARGE_RETRY;
4b534334 2596 /*
19942822
JW
2597 * Even though the limit is exceeded at this point, reclaim
2598 * may have been able to free some pages. Retry the charge
2599 * before killing the task.
2600 *
2601 * Only for regular pages, though: huge pages are rather
2602 * unlikely to succeed so close to the limit, and we fall back
2603 * to regular pages anyway in case of failure.
4b534334 2604 */
4c9c5359 2605 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2606 return CHARGE_RETRY;
2607
2608 /*
2609 * At task move, charge accounts can be doubly counted. So, it's
2610 * better to wait until the end of task_move if something is going on.
2611 */
2612 if (mem_cgroup_wait_acct_move(mem_over_limit))
2613 return CHARGE_RETRY;
2614
2615 /* If we don't need to call oom-killer at el, return immediately */
2616 if (!oom_check)
2617 return CHARGE_NOMEM;
2618 /* check OOM */
e845e199 2619 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2620 return CHARGE_OOM_DIE;
2621
2622 return CHARGE_RETRY;
2623}
2624
f817ed48 2625/*
38c5d72f
KH
2626 * __mem_cgroup_try_charge() does
2627 * 1. detect memcg to be charged against from passed *mm and *ptr,
2628 * 2. update res_counter
2629 * 3. call memory reclaim if necessary.
2630 *
2631 * In some special case, if the task is fatal, fatal_signal_pending() or
2632 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2633 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2634 * as possible without any hazards. 2: all pages should have a valid
2635 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2636 * pointer, that is treated as a charge to root_mem_cgroup.
2637 *
2638 * So __mem_cgroup_try_charge() will return
2639 * 0 ... on success, filling *ptr with a valid memcg pointer.
2640 * -ENOMEM ... charge failure because of resource limits.
2641 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2642 *
2643 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2644 * the oom-killer can be invoked.
8a9f3ccd 2645 */
f817ed48 2646static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2647 gfp_t gfp_mask,
7ec99d62 2648 unsigned int nr_pages,
c0ff4b85 2649 struct mem_cgroup **ptr,
7ec99d62 2650 bool oom)
8a9f3ccd 2651{
7ec99d62 2652 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2653 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2654 struct mem_cgroup *memcg = NULL;
4b534334 2655 int ret;
a636b327 2656
867578cb
KH
2657 /*
2658 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2659 * in system level. So, allow to go ahead dying process in addition to
2660 * MEMDIE process.
2661 */
2662 if (unlikely(test_thread_flag(TIF_MEMDIE)
2663 || fatal_signal_pending(current)))
2664 goto bypass;
a636b327 2665
8a9f3ccd 2666 /*
3be91277
HD
2667 * We always charge the cgroup the mm_struct belongs to.
2668 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2669 * thread group leader migrates. It's possible that mm is not
24467cac 2670 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2671 */
c0ff4b85 2672 if (!*ptr && !mm)
38c5d72f 2673 *ptr = root_mem_cgroup;
f75ca962 2674again:
c0ff4b85
R
2675 if (*ptr) { /* css should be a valid one */
2676 memcg = *ptr;
c0ff4b85 2677 if (mem_cgroup_is_root(memcg))
f75ca962 2678 goto done;
a0956d54 2679 if (consume_stock(memcg, nr_pages))
f75ca962 2680 goto done;
c0ff4b85 2681 css_get(&memcg->css);
4b534334 2682 } else {
f75ca962 2683 struct task_struct *p;
54595fe2 2684
f75ca962
KH
2685 rcu_read_lock();
2686 p = rcu_dereference(mm->owner);
f75ca962 2687 /*
ebb76ce1 2688 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2689 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2690 * race with swapoff. Then, we have small risk of mis-accouning.
2691 * But such kind of mis-account by race always happens because
2692 * we don't have cgroup_mutex(). It's overkill and we allo that
2693 * small race, here.
2694 * (*) swapoff at el will charge against mm-struct not against
2695 * task-struct. So, mm->owner can be NULL.
f75ca962 2696 */
c0ff4b85 2697 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2698 if (!memcg)
2699 memcg = root_mem_cgroup;
2700 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2701 rcu_read_unlock();
2702 goto done;
2703 }
a0956d54 2704 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2705 /*
2706 * It seems dagerous to access memcg without css_get().
2707 * But considering how consume_stok works, it's not
2708 * necessary. If consume_stock success, some charges
2709 * from this memcg are cached on this cpu. So, we
2710 * don't need to call css_get()/css_tryget() before
2711 * calling consume_stock().
2712 */
2713 rcu_read_unlock();
2714 goto done;
2715 }
2716 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2717 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2718 rcu_read_unlock();
2719 goto again;
2720 }
2721 rcu_read_unlock();
2722 }
8a9f3ccd 2723
4b534334
KH
2724 do {
2725 bool oom_check;
7a81b88c 2726
4b534334 2727 /* If killed, bypass charge */
f75ca962 2728 if (fatal_signal_pending(current)) {
c0ff4b85 2729 css_put(&memcg->css);
4b534334 2730 goto bypass;
f75ca962 2731 }
6d61ef40 2732
4b534334
KH
2733 oom_check = false;
2734 if (oom && !nr_oom_retries) {
2735 oom_check = true;
2736 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2737 }
66e1707b 2738
4c9c5359
SS
2739 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2740 oom_check);
4b534334
KH
2741 switch (ret) {
2742 case CHARGE_OK:
2743 break;
2744 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2745 batch = nr_pages;
c0ff4b85
R
2746 css_put(&memcg->css);
2747 memcg = NULL;
f75ca962 2748 goto again;
4b534334 2749 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2750 css_put(&memcg->css);
4b534334
KH
2751 goto nomem;
2752 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2753 if (!oom) {
c0ff4b85 2754 css_put(&memcg->css);
867578cb 2755 goto nomem;
f75ca962 2756 }
4b534334
KH
2757 /* If oom, we never return -ENOMEM */
2758 nr_oom_retries--;
2759 break;
2760 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2761 css_put(&memcg->css);
867578cb 2762 goto bypass;
66e1707b 2763 }
4b534334
KH
2764 } while (ret != CHARGE_OK);
2765
7ec99d62 2766 if (batch > nr_pages)
c0ff4b85
R
2767 refill_stock(memcg, batch - nr_pages);
2768 css_put(&memcg->css);
0c3e73e8 2769done:
c0ff4b85 2770 *ptr = memcg;
7a81b88c
KH
2771 return 0;
2772nomem:
c0ff4b85 2773 *ptr = NULL;
7a81b88c 2774 return -ENOMEM;
867578cb 2775bypass:
38c5d72f
KH
2776 *ptr = root_mem_cgroup;
2777 return -EINTR;
7a81b88c 2778}
8a9f3ccd 2779
a3032a2c
DN
2780/*
2781 * Somemtimes we have to undo a charge we got by try_charge().
2782 * This function is for that and do uncharge, put css's refcnt.
2783 * gotten by try_charge().
2784 */
c0ff4b85 2785static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2786 unsigned int nr_pages)
a3032a2c 2787{
c0ff4b85 2788 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2789 unsigned long bytes = nr_pages * PAGE_SIZE;
2790
c0ff4b85 2791 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2792 if (do_swap_account)
c0ff4b85 2793 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2794 }
854ffa8d
DN
2795}
2796
d01dd17f
KH
2797/*
2798 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2799 * This is useful when moving usage to parent cgroup.
2800 */
2801static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2802 unsigned int nr_pages)
2803{
2804 unsigned long bytes = nr_pages * PAGE_SIZE;
2805
2806 if (mem_cgroup_is_root(memcg))
2807 return;
2808
2809 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2810 if (do_swap_account)
2811 res_counter_uncharge_until(&memcg->memsw,
2812 memcg->memsw.parent, bytes);
2813}
2814
a3b2d692
KH
2815/*
2816 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2817 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2818 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2819 * called against removed memcg.)
a3b2d692
KH
2820 */
2821static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2822{
2823 struct cgroup_subsys_state *css;
2824
2825 /* ID 0 is unused ID */
2826 if (!id)
2827 return NULL;
2828 css = css_lookup(&mem_cgroup_subsys, id);
2829 if (!css)
2830 return NULL;
b2145145 2831 return mem_cgroup_from_css(css);
a3b2d692
KH
2832}
2833
e42d9d5d 2834struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2835{
c0ff4b85 2836 struct mem_cgroup *memcg = NULL;
3c776e64 2837 struct page_cgroup *pc;
a3b2d692 2838 unsigned short id;
b5a84319
KH
2839 swp_entry_t ent;
2840
3c776e64
DN
2841 VM_BUG_ON(!PageLocked(page));
2842
3c776e64 2843 pc = lookup_page_cgroup(page);
c0bd3f63 2844 lock_page_cgroup(pc);
a3b2d692 2845 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2846 memcg = pc->mem_cgroup;
2847 if (memcg && !css_tryget(&memcg->css))
2848 memcg = NULL;
e42d9d5d 2849 } else if (PageSwapCache(page)) {
3c776e64 2850 ent.val = page_private(page);
9fb4b7cc 2851 id = lookup_swap_cgroup_id(ent);
a3b2d692 2852 rcu_read_lock();
c0ff4b85
R
2853 memcg = mem_cgroup_lookup(id);
2854 if (memcg && !css_tryget(&memcg->css))
2855 memcg = NULL;
a3b2d692 2856 rcu_read_unlock();
3c776e64 2857 }
c0bd3f63 2858 unlock_page_cgroup(pc);
c0ff4b85 2859 return memcg;
b5a84319
KH
2860}
2861
c0ff4b85 2862static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2863 struct page *page,
7ec99d62 2864 unsigned int nr_pages,
9ce70c02
HD
2865 enum charge_type ctype,
2866 bool lrucare)
7a81b88c 2867{
ce587e65 2868 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2869 struct zone *uninitialized_var(zone);
fa9add64 2870 struct lruvec *lruvec;
9ce70c02 2871 bool was_on_lru = false;
b2402857 2872 bool anon;
9ce70c02 2873
ca3e0214 2874 lock_page_cgroup(pc);
90deb788 2875 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2876 /*
2877 * we don't need page_cgroup_lock about tail pages, becase they are not
2878 * accessed by any other context at this point.
2879 */
9ce70c02
HD
2880
2881 /*
2882 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2883 * may already be on some other mem_cgroup's LRU. Take care of it.
2884 */
2885 if (lrucare) {
2886 zone = page_zone(page);
2887 spin_lock_irq(&zone->lru_lock);
2888 if (PageLRU(page)) {
fa9add64 2889 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2890 ClearPageLRU(page);
fa9add64 2891 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2892 was_on_lru = true;
2893 }
2894 }
2895
c0ff4b85 2896 pc->mem_cgroup = memcg;
261fb61a
KH
2897 /*
2898 * We access a page_cgroup asynchronously without lock_page_cgroup().
2899 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2900 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2901 * before USED bit, we need memory barrier here.
2902 * See mem_cgroup_add_lru_list(), etc.
2903 */
08e552c6 2904 smp_wmb();
b2402857 2905 SetPageCgroupUsed(pc);
3be91277 2906
9ce70c02
HD
2907 if (lrucare) {
2908 if (was_on_lru) {
fa9add64 2909 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2910 VM_BUG_ON(PageLRU(page));
2911 SetPageLRU(page);
fa9add64 2912 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2913 }
2914 spin_unlock_irq(&zone->lru_lock);
2915 }
2916
41326c17 2917 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2918 anon = true;
2919 else
2920 anon = false;
2921
b070e65c 2922 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2923 unlock_page_cgroup(pc);
9ce70c02 2924
430e4863
KH
2925 /*
2926 * "charge_statistics" updated event counter. Then, check it.
2927 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2928 * if they exceeds softlimit.
2929 */
c0ff4b85 2930 memcg_check_events(memcg, page);
7a81b88c 2931}
66e1707b 2932
7cf27982
GC
2933static DEFINE_MUTEX(set_limit_mutex);
2934
7ae1e1d0
GC
2935#ifdef CONFIG_MEMCG_KMEM
2936static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2937{
2938 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2939 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2940}
2941
1f458cbf
GC
2942/*
2943 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2944 * in the memcg_cache_params struct.
2945 */
2946static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2947{
2948 struct kmem_cache *cachep;
2949
2950 VM_BUG_ON(p->is_root_cache);
2951 cachep = p->root_cache;
2952 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2953}
2954
749c5415
GC
2955#ifdef CONFIG_SLABINFO
2956static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2957 struct seq_file *m)
2958{
2959 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2960 struct memcg_cache_params *params;
2961
2962 if (!memcg_can_account_kmem(memcg))
2963 return -EIO;
2964
2965 print_slabinfo_header(m);
2966
2967 mutex_lock(&memcg->slab_caches_mutex);
2968 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2969 cache_show(memcg_params_to_cache(params), m);
2970 mutex_unlock(&memcg->slab_caches_mutex);
2971
2972 return 0;
2973}
2974#endif
2975
7ae1e1d0
GC
2976static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2977{
2978 struct res_counter *fail_res;
2979 struct mem_cgroup *_memcg;
2980 int ret = 0;
2981 bool may_oom;
2982
2983 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2984 if (ret)
2985 return ret;
2986
2987 /*
2988 * Conditions under which we can wait for the oom_killer. Those are
2989 * the same conditions tested by the core page allocator
2990 */
2991 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2992
2993 _memcg = memcg;
2994 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2995 &_memcg, may_oom);
2996
2997 if (ret == -EINTR) {
2998 /*
2999 * __mem_cgroup_try_charge() chosed to bypass to root due to
3000 * OOM kill or fatal signal. Since our only options are to
3001 * either fail the allocation or charge it to this cgroup, do
3002 * it as a temporary condition. But we can't fail. From a
3003 * kmem/slab perspective, the cache has already been selected,
3004 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3005 * our minds.
3006 *
3007 * This condition will only trigger if the task entered
3008 * memcg_charge_kmem in a sane state, but was OOM-killed during
3009 * __mem_cgroup_try_charge() above. Tasks that were already
3010 * dying when the allocation triggers should have been already
3011 * directed to the root cgroup in memcontrol.h
3012 */
3013 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3014 if (do_swap_account)
3015 res_counter_charge_nofail(&memcg->memsw, size,
3016 &fail_res);
3017 ret = 0;
3018 } else if (ret)
3019 res_counter_uncharge(&memcg->kmem, size);
3020
3021 return ret;
3022}
3023
3024static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3025{
7ae1e1d0
GC
3026 res_counter_uncharge(&memcg->res, size);
3027 if (do_swap_account)
3028 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3029
3030 /* Not down to 0 */
3031 if (res_counter_uncharge(&memcg->kmem, size))
3032 return;
3033
10d5ebf4
LZ
3034 /*
3035 * Releases a reference taken in kmem_cgroup_css_offline in case
3036 * this last uncharge is racing with the offlining code or it is
3037 * outliving the memcg existence.
3038 *
3039 * The memory barrier imposed by test&clear is paired with the
3040 * explicit one in memcg_kmem_mark_dead().
3041 */
7de37682 3042 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3043 css_put(&memcg->css);
7ae1e1d0
GC
3044}
3045
2633d7a0
GC
3046void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3047{
3048 if (!memcg)
3049 return;
3050
3051 mutex_lock(&memcg->slab_caches_mutex);
3052 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3053 mutex_unlock(&memcg->slab_caches_mutex);
3054}
3055
3056/*
3057 * helper for acessing a memcg's index. It will be used as an index in the
3058 * child cache array in kmem_cache, and also to derive its name. This function
3059 * will return -1 when this is not a kmem-limited memcg.
3060 */
3061int memcg_cache_id(struct mem_cgroup *memcg)
3062{
3063 return memcg ? memcg->kmemcg_id : -1;
3064}
3065
55007d84
GC
3066/*
3067 * This ends up being protected by the set_limit mutex, during normal
3068 * operation, because that is its main call site.
3069 *
3070 * But when we create a new cache, we can call this as well if its parent
3071 * is kmem-limited. That will have to hold set_limit_mutex as well.
3072 */
3073int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3074{
3075 int num, ret;
3076
3077 num = ida_simple_get(&kmem_limited_groups,
3078 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3079 if (num < 0)
3080 return num;
3081 /*
3082 * After this point, kmem_accounted (that we test atomically in
3083 * the beginning of this conditional), is no longer 0. This
3084 * guarantees only one process will set the following boolean
3085 * to true. We don't need test_and_set because we're protected
3086 * by the set_limit_mutex anyway.
3087 */
3088 memcg_kmem_set_activated(memcg);
3089
3090 ret = memcg_update_all_caches(num+1);
3091 if (ret) {
3092 ida_simple_remove(&kmem_limited_groups, num);
3093 memcg_kmem_clear_activated(memcg);
3094 return ret;
3095 }
3096
3097 memcg->kmemcg_id = num;
3098 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3099 mutex_init(&memcg->slab_caches_mutex);
3100 return 0;
3101}
3102
3103static size_t memcg_caches_array_size(int num_groups)
3104{
3105 ssize_t size;
3106 if (num_groups <= 0)
3107 return 0;
3108
3109 size = 2 * num_groups;
3110 if (size < MEMCG_CACHES_MIN_SIZE)
3111 size = MEMCG_CACHES_MIN_SIZE;
3112 else if (size > MEMCG_CACHES_MAX_SIZE)
3113 size = MEMCG_CACHES_MAX_SIZE;
3114
3115 return size;
3116}
3117
3118/*
3119 * We should update the current array size iff all caches updates succeed. This
3120 * can only be done from the slab side. The slab mutex needs to be held when
3121 * calling this.
3122 */
3123void memcg_update_array_size(int num)
3124{
3125 if (num > memcg_limited_groups_array_size)
3126 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3127}
3128
15cf17d2
KK
3129static void kmem_cache_destroy_work_func(struct work_struct *w);
3130
55007d84
GC
3131int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3132{
3133 struct memcg_cache_params *cur_params = s->memcg_params;
3134
3135 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3136
3137 if (num_groups > memcg_limited_groups_array_size) {
3138 int i;
3139 ssize_t size = memcg_caches_array_size(num_groups);
3140
3141 size *= sizeof(void *);
3142 size += sizeof(struct memcg_cache_params);
3143
3144 s->memcg_params = kzalloc(size, GFP_KERNEL);
3145 if (!s->memcg_params) {
3146 s->memcg_params = cur_params;
3147 return -ENOMEM;
3148 }
3149
3150 s->memcg_params->is_root_cache = true;
3151
3152 /*
3153 * There is the chance it will be bigger than
3154 * memcg_limited_groups_array_size, if we failed an allocation
3155 * in a cache, in which case all caches updated before it, will
3156 * have a bigger array.
3157 *
3158 * But if that is the case, the data after
3159 * memcg_limited_groups_array_size is certainly unused
3160 */
3161 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3162 if (!cur_params->memcg_caches[i])
3163 continue;
3164 s->memcg_params->memcg_caches[i] =
3165 cur_params->memcg_caches[i];
3166 }
3167
3168 /*
3169 * Ideally, we would wait until all caches succeed, and only
3170 * then free the old one. But this is not worth the extra
3171 * pointer per-cache we'd have to have for this.
3172 *
3173 * It is not a big deal if some caches are left with a size
3174 * bigger than the others. And all updates will reset this
3175 * anyway.
3176 */
3177 kfree(cur_params);
3178 }
3179 return 0;
3180}
3181
943a451a
GC
3182int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3183 struct kmem_cache *root_cache)
2633d7a0
GC
3184{
3185 size_t size = sizeof(struct memcg_cache_params);
3186
3187 if (!memcg_kmem_enabled())
3188 return 0;
3189
55007d84
GC
3190 if (!memcg)
3191 size += memcg_limited_groups_array_size * sizeof(void *);
3192
2633d7a0
GC
3193 s->memcg_params = kzalloc(size, GFP_KERNEL);
3194 if (!s->memcg_params)
3195 return -ENOMEM;
3196
15cf17d2
KK
3197 INIT_WORK(&s->memcg_params->destroy,
3198 kmem_cache_destroy_work_func);
943a451a 3199 if (memcg) {
2633d7a0 3200 s->memcg_params->memcg = memcg;
943a451a 3201 s->memcg_params->root_cache = root_cache;
4ba902b5
GC
3202 } else
3203 s->memcg_params->is_root_cache = true;
3204
2633d7a0
GC
3205 return 0;
3206}
3207
3208void memcg_release_cache(struct kmem_cache *s)
3209{
d7f25f8a
GC
3210 struct kmem_cache *root;
3211 struct mem_cgroup *memcg;
3212 int id;
3213
3214 /*
3215 * This happens, for instance, when a root cache goes away before we
3216 * add any memcg.
3217 */
3218 if (!s->memcg_params)
3219 return;
3220
3221 if (s->memcg_params->is_root_cache)
3222 goto out;
3223
3224 memcg = s->memcg_params->memcg;
3225 id = memcg_cache_id(memcg);
3226
3227 root = s->memcg_params->root_cache;
3228 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3229
3230 mutex_lock(&memcg->slab_caches_mutex);
3231 list_del(&s->memcg_params->list);
3232 mutex_unlock(&memcg->slab_caches_mutex);
3233
20f05310 3234 css_put(&memcg->css);
d7f25f8a 3235out:
2633d7a0
GC
3236 kfree(s->memcg_params);
3237}
3238
0e9d92f2
GC
3239/*
3240 * During the creation a new cache, we need to disable our accounting mechanism
3241 * altogether. This is true even if we are not creating, but rather just
3242 * enqueing new caches to be created.
3243 *
3244 * This is because that process will trigger allocations; some visible, like
3245 * explicit kmallocs to auxiliary data structures, name strings and internal
3246 * cache structures; some well concealed, like INIT_WORK() that can allocate
3247 * objects during debug.
3248 *
3249 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3250 * to it. This may not be a bounded recursion: since the first cache creation
3251 * failed to complete (waiting on the allocation), we'll just try to create the
3252 * cache again, failing at the same point.
3253 *
3254 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3255 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3256 * inside the following two functions.
3257 */
3258static inline void memcg_stop_kmem_account(void)
3259{
3260 VM_BUG_ON(!current->mm);
3261 current->memcg_kmem_skip_account++;
3262}
3263
3264static inline void memcg_resume_kmem_account(void)
3265{
3266 VM_BUG_ON(!current->mm);
3267 current->memcg_kmem_skip_account--;
3268}
3269
1f458cbf
GC
3270static void kmem_cache_destroy_work_func(struct work_struct *w)
3271{
3272 struct kmem_cache *cachep;
3273 struct memcg_cache_params *p;
3274
3275 p = container_of(w, struct memcg_cache_params, destroy);
3276
3277 cachep = memcg_params_to_cache(p);
3278
22933152
GC
3279 /*
3280 * If we get down to 0 after shrink, we could delete right away.
3281 * However, memcg_release_pages() already puts us back in the workqueue
3282 * in that case. If we proceed deleting, we'll get a dangling
3283 * reference, and removing the object from the workqueue in that case
3284 * is unnecessary complication. We are not a fast path.
3285 *
3286 * Note that this case is fundamentally different from racing with
3287 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3288 * kmem_cache_shrink, not only we would be reinserting a dead cache
3289 * into the queue, but doing so from inside the worker racing to
3290 * destroy it.
3291 *
3292 * So if we aren't down to zero, we'll just schedule a worker and try
3293 * again
3294 */
3295 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3296 kmem_cache_shrink(cachep);
3297 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3298 return;
3299 } else
1f458cbf
GC
3300 kmem_cache_destroy(cachep);
3301}
3302
3303void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3304{
3305 if (!cachep->memcg_params->dead)
3306 return;
3307
22933152
GC
3308 /*
3309 * There are many ways in which we can get here.
3310 *
3311 * We can get to a memory-pressure situation while the delayed work is
3312 * still pending to run. The vmscan shrinkers can then release all
3313 * cache memory and get us to destruction. If this is the case, we'll
3314 * be executed twice, which is a bug (the second time will execute over
3315 * bogus data). In this case, cancelling the work should be fine.
3316 *
3317 * But we can also get here from the worker itself, if
3318 * kmem_cache_shrink is enough to shake all the remaining objects and
3319 * get the page count to 0. In this case, we'll deadlock if we try to
3320 * cancel the work (the worker runs with an internal lock held, which
3321 * is the same lock we would hold for cancel_work_sync().)
3322 *
3323 * Since we can't possibly know who got us here, just refrain from
3324 * running if there is already work pending
3325 */
3326 if (work_pending(&cachep->memcg_params->destroy))
3327 return;
1f458cbf
GC
3328 /*
3329 * We have to defer the actual destroying to a workqueue, because
3330 * we might currently be in a context that cannot sleep.
3331 */
3332 schedule_work(&cachep->memcg_params->destroy);
3333}
3334
d9c10ddd
MH
3335/*
3336 * This lock protects updaters, not readers. We want readers to be as fast as
3337 * they can, and they will either see NULL or a valid cache value. Our model
3338 * allow them to see NULL, in which case the root memcg will be selected.
3339 *
3340 * We need this lock because multiple allocations to the same cache from a non
3341 * will span more than one worker. Only one of them can create the cache.
3342 */
3343static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3344
d9c10ddd
MH
3345/*
3346 * Called with memcg_cache_mutex held
3347 */
d7f25f8a
GC
3348static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3349 struct kmem_cache *s)
3350{
d7f25f8a 3351 struct kmem_cache *new;
d9c10ddd 3352 static char *tmp_name = NULL;
d7f25f8a 3353
d9c10ddd
MH
3354 lockdep_assert_held(&memcg_cache_mutex);
3355
3356 /*
3357 * kmem_cache_create_memcg duplicates the given name and
3358 * cgroup_name for this name requires RCU context.
3359 * This static temporary buffer is used to prevent from
3360 * pointless shortliving allocation.
3361 */
3362 if (!tmp_name) {
3363 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3364 if (!tmp_name)
3365 return NULL;
3366 }
3367
3368 rcu_read_lock();
3369 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3370 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3371 rcu_read_unlock();
d7f25f8a 3372
d9c10ddd 3373 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3374 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3375
d79923fa
GC
3376 if (new)
3377 new->allocflags |= __GFP_KMEMCG;
3378
d7f25f8a
GC
3379 return new;
3380}
3381
d7f25f8a
GC
3382static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3383 struct kmem_cache *cachep)
3384{
3385 struct kmem_cache *new_cachep;
3386 int idx;
3387
3388 BUG_ON(!memcg_can_account_kmem(memcg));
3389
3390 idx = memcg_cache_id(memcg);
3391
3392 mutex_lock(&memcg_cache_mutex);
3393 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3394 if (new_cachep) {
3395 css_put(&memcg->css);
d7f25f8a 3396 goto out;
20f05310 3397 }
d7f25f8a
GC
3398
3399 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3400 if (new_cachep == NULL) {
3401 new_cachep = cachep;
20f05310 3402 css_put(&memcg->css);
d7f25f8a
GC
3403 goto out;
3404 }
3405
1f458cbf 3406 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3407
3408 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3409 /*
3410 * the readers won't lock, make sure everybody sees the updated value,
3411 * so they won't put stuff in the queue again for no reason
3412 */
3413 wmb();
3414out:
3415 mutex_unlock(&memcg_cache_mutex);
3416 return new_cachep;
3417}
3418
7cf27982
GC
3419void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3420{
3421 struct kmem_cache *c;
3422 int i;
3423
3424 if (!s->memcg_params)
3425 return;
3426 if (!s->memcg_params->is_root_cache)
3427 return;
3428
3429 /*
3430 * If the cache is being destroyed, we trust that there is no one else
3431 * requesting objects from it. Even if there are, the sanity checks in
3432 * kmem_cache_destroy should caught this ill-case.
3433 *
3434 * Still, we don't want anyone else freeing memcg_caches under our
3435 * noses, which can happen if a new memcg comes to life. As usual,
3436 * we'll take the set_limit_mutex to protect ourselves against this.
3437 */
3438 mutex_lock(&set_limit_mutex);
3439 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3440 c = s->memcg_params->memcg_caches[i];
3441 if (!c)
3442 continue;
3443
3444 /*
3445 * We will now manually delete the caches, so to avoid races
3446 * we need to cancel all pending destruction workers and
3447 * proceed with destruction ourselves.
3448 *
3449 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3450 * and that could spawn the workers again: it is likely that
3451 * the cache still have active pages until this very moment.
3452 * This would lead us back to mem_cgroup_destroy_cache.
3453 *
3454 * But that will not execute at all if the "dead" flag is not
3455 * set, so flip it down to guarantee we are in control.
3456 */
3457 c->memcg_params->dead = false;
22933152 3458 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3459 kmem_cache_destroy(c);
3460 }
3461 mutex_unlock(&set_limit_mutex);
3462}
3463
d7f25f8a
GC
3464struct create_work {
3465 struct mem_cgroup *memcg;
3466 struct kmem_cache *cachep;
3467 struct work_struct work;
3468};
3469
1f458cbf
GC
3470static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3471{
3472 struct kmem_cache *cachep;
3473 struct memcg_cache_params *params;
3474
3475 if (!memcg_kmem_is_active(memcg))
3476 return;
3477
3478 mutex_lock(&memcg->slab_caches_mutex);
3479 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3480 cachep = memcg_params_to_cache(params);
3481 cachep->memcg_params->dead = true;
1f458cbf
GC
3482 schedule_work(&cachep->memcg_params->destroy);
3483 }
3484 mutex_unlock(&memcg->slab_caches_mutex);
3485}
3486
d7f25f8a
GC
3487static void memcg_create_cache_work_func(struct work_struct *w)
3488{
3489 struct create_work *cw;
3490
3491 cw = container_of(w, struct create_work, work);
3492 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3493 kfree(cw);
3494}
3495
3496/*
3497 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3498 */
0e9d92f2
GC
3499static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3500 struct kmem_cache *cachep)
d7f25f8a
GC
3501{
3502 struct create_work *cw;
3503
3504 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3505 if (cw == NULL) {
3506 css_put(&memcg->css);
d7f25f8a
GC
3507 return;
3508 }
3509
3510 cw->memcg = memcg;
3511 cw->cachep = cachep;
3512
3513 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3514 schedule_work(&cw->work);
3515}
3516
0e9d92f2
GC
3517static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3518 struct kmem_cache *cachep)
3519{
3520 /*
3521 * We need to stop accounting when we kmalloc, because if the
3522 * corresponding kmalloc cache is not yet created, the first allocation
3523 * in __memcg_create_cache_enqueue will recurse.
3524 *
3525 * However, it is better to enclose the whole function. Depending on
3526 * the debugging options enabled, INIT_WORK(), for instance, can
3527 * trigger an allocation. This too, will make us recurse. Because at
3528 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3529 * the safest choice is to do it like this, wrapping the whole function.
3530 */
3531 memcg_stop_kmem_account();
3532 __memcg_create_cache_enqueue(memcg, cachep);
3533 memcg_resume_kmem_account();
3534}
d7f25f8a
GC
3535/*
3536 * Return the kmem_cache we're supposed to use for a slab allocation.
3537 * We try to use the current memcg's version of the cache.
3538 *
3539 * If the cache does not exist yet, if we are the first user of it,
3540 * we either create it immediately, if possible, or create it asynchronously
3541 * in a workqueue.
3542 * In the latter case, we will let the current allocation go through with
3543 * the original cache.
3544 *
3545 * Can't be called in interrupt context or from kernel threads.
3546 * This function needs to be called with rcu_read_lock() held.
3547 */
3548struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3549 gfp_t gfp)
3550{
3551 struct mem_cgroup *memcg;
3552 int idx;
3553
3554 VM_BUG_ON(!cachep->memcg_params);
3555 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3556
0e9d92f2
GC
3557 if (!current->mm || current->memcg_kmem_skip_account)
3558 return cachep;
3559
d7f25f8a
GC
3560 rcu_read_lock();
3561 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3562
3563 if (!memcg_can_account_kmem(memcg))
ca0dde97 3564 goto out;
d7f25f8a
GC
3565
3566 idx = memcg_cache_id(memcg);
3567
3568 /*
3569 * barrier to mare sure we're always seeing the up to date value. The
3570 * code updating memcg_caches will issue a write barrier to match this.
3571 */
3572 read_barrier_depends();
ca0dde97
LZ
3573 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3574 cachep = cachep->memcg_params->memcg_caches[idx];
3575 goto out;
d7f25f8a
GC
3576 }
3577
ca0dde97
LZ
3578 /* The corresponding put will be done in the workqueue. */
3579 if (!css_tryget(&memcg->css))
3580 goto out;
3581 rcu_read_unlock();
3582
3583 /*
3584 * If we are in a safe context (can wait, and not in interrupt
3585 * context), we could be be predictable and return right away.
3586 * This would guarantee that the allocation being performed
3587 * already belongs in the new cache.
3588 *
3589 * However, there are some clashes that can arrive from locking.
3590 * For instance, because we acquire the slab_mutex while doing
3591 * kmem_cache_dup, this means no further allocation could happen
3592 * with the slab_mutex held.
3593 *
3594 * Also, because cache creation issue get_online_cpus(), this
3595 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3596 * that ends up reversed during cpu hotplug. (cpuset allocates
3597 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3598 * better to defer everything.
3599 */
3600 memcg_create_cache_enqueue(memcg, cachep);
3601 return cachep;
3602out:
3603 rcu_read_unlock();
3604 return cachep;
d7f25f8a
GC
3605}
3606EXPORT_SYMBOL(__memcg_kmem_get_cache);
3607
7ae1e1d0
GC
3608/*
3609 * We need to verify if the allocation against current->mm->owner's memcg is
3610 * possible for the given order. But the page is not allocated yet, so we'll
3611 * need a further commit step to do the final arrangements.
3612 *
3613 * It is possible for the task to switch cgroups in this mean time, so at
3614 * commit time, we can't rely on task conversion any longer. We'll then use
3615 * the handle argument to return to the caller which cgroup we should commit
3616 * against. We could also return the memcg directly and avoid the pointer
3617 * passing, but a boolean return value gives better semantics considering
3618 * the compiled-out case as well.
3619 *
3620 * Returning true means the allocation is possible.
3621 */
3622bool
3623__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3624{
3625 struct mem_cgroup *memcg;
3626 int ret;
3627
3628 *_memcg = NULL;
6d42c232
GC
3629
3630 /*
3631 * Disabling accounting is only relevant for some specific memcg
3632 * internal allocations. Therefore we would initially not have such
3633 * check here, since direct calls to the page allocator that are marked
3634 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3635 * concerned with cache allocations, and by having this test at
3636 * memcg_kmem_get_cache, we are already able to relay the allocation to
3637 * the root cache and bypass the memcg cache altogether.
3638 *
3639 * There is one exception, though: the SLUB allocator does not create
3640 * large order caches, but rather service large kmallocs directly from
3641 * the page allocator. Therefore, the following sequence when backed by
3642 * the SLUB allocator:
3643 *
3644 * memcg_stop_kmem_account();
3645 * kmalloc(<large_number>)
3646 * memcg_resume_kmem_account();
3647 *
3648 * would effectively ignore the fact that we should skip accounting,
3649 * since it will drive us directly to this function without passing
3650 * through the cache selector memcg_kmem_get_cache. Such large
3651 * allocations are extremely rare but can happen, for instance, for the
3652 * cache arrays. We bring this test here.
3653 */
3654 if (!current->mm || current->memcg_kmem_skip_account)
3655 return true;
3656
7ae1e1d0
GC
3657 memcg = try_get_mem_cgroup_from_mm(current->mm);
3658
3659 /*
3660 * very rare case described in mem_cgroup_from_task. Unfortunately there
3661 * isn't much we can do without complicating this too much, and it would
3662 * be gfp-dependent anyway. Just let it go
3663 */
3664 if (unlikely(!memcg))
3665 return true;
3666
3667 if (!memcg_can_account_kmem(memcg)) {
3668 css_put(&memcg->css);
3669 return true;
3670 }
3671
7ae1e1d0
GC
3672 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3673 if (!ret)
3674 *_memcg = memcg;
7ae1e1d0
GC
3675
3676 css_put(&memcg->css);
3677 return (ret == 0);
3678}
3679
3680void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3681 int order)
3682{
3683 struct page_cgroup *pc;
3684
3685 VM_BUG_ON(mem_cgroup_is_root(memcg));
3686
3687 /* The page allocation failed. Revert */
3688 if (!page) {
3689 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3690 return;
3691 }
3692
3693 pc = lookup_page_cgroup(page);
3694 lock_page_cgroup(pc);
3695 pc->mem_cgroup = memcg;
3696 SetPageCgroupUsed(pc);
3697 unlock_page_cgroup(pc);
3698}
3699
3700void __memcg_kmem_uncharge_pages(struct page *page, int order)
3701{
3702 struct mem_cgroup *memcg = NULL;
3703 struct page_cgroup *pc;
3704
3705
3706 pc = lookup_page_cgroup(page);
3707 /*
3708 * Fast unlocked return. Theoretically might have changed, have to
3709 * check again after locking.
3710 */
3711 if (!PageCgroupUsed(pc))
3712 return;
3713
3714 lock_page_cgroup(pc);
3715 if (PageCgroupUsed(pc)) {
3716 memcg = pc->mem_cgroup;
3717 ClearPageCgroupUsed(pc);
3718 }
3719 unlock_page_cgroup(pc);
3720
3721 /*
3722 * We trust that only if there is a memcg associated with the page, it
3723 * is a valid allocation
3724 */
3725 if (!memcg)
3726 return;
3727
3728 VM_BUG_ON(mem_cgroup_is_root(memcg));
3729 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3730}
1f458cbf
GC
3731#else
3732static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3733{
3734}
7ae1e1d0
GC
3735#endif /* CONFIG_MEMCG_KMEM */
3736
ca3e0214
KH
3737#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3738
a0db00fc 3739#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3740/*
3741 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3742 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3743 * charge/uncharge will be never happen and move_account() is done under
3744 * compound_lock(), so we don't have to take care of races.
ca3e0214 3745 */
e94c8a9c 3746void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3747{
3748 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3749 struct page_cgroup *pc;
b070e65c 3750 struct mem_cgroup *memcg;
e94c8a9c 3751 int i;
ca3e0214 3752
3d37c4a9
KH
3753 if (mem_cgroup_disabled())
3754 return;
b070e65c
DR
3755
3756 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3757 for (i = 1; i < HPAGE_PMD_NR; i++) {
3758 pc = head_pc + i;
b070e65c 3759 pc->mem_cgroup = memcg;
e94c8a9c 3760 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3761 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3762 }
b070e65c
DR
3763 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3764 HPAGE_PMD_NR);
ca3e0214 3765}
12d27107 3766#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3767
f817ed48 3768/**
de3638d9 3769 * mem_cgroup_move_account - move account of the page
5564e88b 3770 * @page: the page
7ec99d62 3771 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3772 * @pc: page_cgroup of the page.
3773 * @from: mem_cgroup which the page is moved from.
3774 * @to: mem_cgroup which the page is moved to. @from != @to.
3775 *
3776 * The caller must confirm following.
08e552c6 3777 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3778 * - compound_lock is held when nr_pages > 1
f817ed48 3779 *
2f3479b1
KH
3780 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3781 * from old cgroup.
f817ed48 3782 */
7ec99d62
JW
3783static int mem_cgroup_move_account(struct page *page,
3784 unsigned int nr_pages,
3785 struct page_cgroup *pc,
3786 struct mem_cgroup *from,
2f3479b1 3787 struct mem_cgroup *to)
f817ed48 3788{
de3638d9
JW
3789 unsigned long flags;
3790 int ret;
b2402857 3791 bool anon = PageAnon(page);
987eba66 3792
f817ed48 3793 VM_BUG_ON(from == to);
5564e88b 3794 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3795 /*
3796 * The page is isolated from LRU. So, collapse function
3797 * will not handle this page. But page splitting can happen.
3798 * Do this check under compound_page_lock(). The caller should
3799 * hold it.
3800 */
3801 ret = -EBUSY;
7ec99d62 3802 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3803 goto out;
3804
3805 lock_page_cgroup(pc);
3806
3807 ret = -EINVAL;
3808 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3809 goto unlock;
3810
312734c0 3811 move_lock_mem_cgroup(from, &flags);
f817ed48 3812
2ff76f11 3813 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3814 /* Update mapped_file data for mem_cgroup */
3815 preempt_disable();
3816 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3817 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3818 preempt_enable();
d69b042f 3819 }
b070e65c 3820 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3821
854ffa8d 3822 /* caller should have done css_get */
08e552c6 3823 pc->mem_cgroup = to;
b070e65c 3824 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3825 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3826 ret = 0;
3827unlock:
57f9fd7d 3828 unlock_page_cgroup(pc);
d2265e6f
KH
3829 /*
3830 * check events
3831 */
5564e88b
JW
3832 memcg_check_events(to, page);
3833 memcg_check_events(from, page);
de3638d9 3834out:
f817ed48
KH
3835 return ret;
3836}
3837
2ef37d3f
MH
3838/**
3839 * mem_cgroup_move_parent - moves page to the parent group
3840 * @page: the page to move
3841 * @pc: page_cgroup of the page
3842 * @child: page's cgroup
3843 *
3844 * move charges to its parent or the root cgroup if the group has no
3845 * parent (aka use_hierarchy==0).
3846 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3847 * mem_cgroup_move_account fails) the failure is always temporary and
3848 * it signals a race with a page removal/uncharge or migration. In the
3849 * first case the page is on the way out and it will vanish from the LRU
3850 * on the next attempt and the call should be retried later.
3851 * Isolation from the LRU fails only if page has been isolated from
3852 * the LRU since we looked at it and that usually means either global
3853 * reclaim or migration going on. The page will either get back to the
3854 * LRU or vanish.
3855 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3856 * (!PageCgroupUsed) or moved to a different group. The page will
3857 * disappear in the next attempt.
f817ed48 3858 */
5564e88b
JW
3859static int mem_cgroup_move_parent(struct page *page,
3860 struct page_cgroup *pc,
6068bf01 3861 struct mem_cgroup *child)
f817ed48 3862{
f817ed48 3863 struct mem_cgroup *parent;
7ec99d62 3864 unsigned int nr_pages;
4be4489f 3865 unsigned long uninitialized_var(flags);
f817ed48
KH
3866 int ret;
3867
d8423011 3868 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3869
57f9fd7d
DN
3870 ret = -EBUSY;
3871 if (!get_page_unless_zero(page))
3872 goto out;
3873 if (isolate_lru_page(page))
3874 goto put;
52dbb905 3875
7ec99d62 3876 nr_pages = hpage_nr_pages(page);
08e552c6 3877
cc926f78
KH
3878 parent = parent_mem_cgroup(child);
3879 /*
3880 * If no parent, move charges to root cgroup.
3881 */
3882 if (!parent)
3883 parent = root_mem_cgroup;
f817ed48 3884
2ef37d3f
MH
3885 if (nr_pages > 1) {
3886 VM_BUG_ON(!PageTransHuge(page));
987eba66 3887 flags = compound_lock_irqsave(page);
2ef37d3f 3888 }
987eba66 3889
cc926f78 3890 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3891 pc, child, parent);
cc926f78
KH
3892 if (!ret)
3893 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3894
7ec99d62 3895 if (nr_pages > 1)
987eba66 3896 compound_unlock_irqrestore(page, flags);
08e552c6 3897 putback_lru_page(page);
57f9fd7d 3898put:
40d58138 3899 put_page(page);
57f9fd7d 3900out:
f817ed48
KH
3901 return ret;
3902}
3903
7a81b88c
KH
3904/*
3905 * Charge the memory controller for page usage.
3906 * Return
3907 * 0 if the charge was successful
3908 * < 0 if the cgroup is over its limit
3909 */
3910static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3911 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3912{
c0ff4b85 3913 struct mem_cgroup *memcg = NULL;
7ec99d62 3914 unsigned int nr_pages = 1;
8493ae43 3915 bool oom = true;
7a81b88c 3916 int ret;
ec168510 3917
37c2ac78 3918 if (PageTransHuge(page)) {
7ec99d62 3919 nr_pages <<= compound_order(page);
37c2ac78 3920 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3921 /*
3922 * Never OOM-kill a process for a huge page. The
3923 * fault handler will fall back to regular pages.
3924 */
3925 oom = false;
37c2ac78 3926 }
7a81b88c 3927
c0ff4b85 3928 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3929 if (ret == -ENOMEM)
7a81b88c 3930 return ret;
ce587e65 3931 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3932 return 0;
8a9f3ccd
BS
3933}
3934
7a81b88c
KH
3935int mem_cgroup_newpage_charge(struct page *page,
3936 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3937{
f8d66542 3938 if (mem_cgroup_disabled())
cede86ac 3939 return 0;
7a0524cf
JW
3940 VM_BUG_ON(page_mapped(page));
3941 VM_BUG_ON(page->mapping && !PageAnon(page));
3942 VM_BUG_ON(!mm);
217bc319 3943 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3944 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3945}
3946
54595fe2
KH
3947/*
3948 * While swap-in, try_charge -> commit or cancel, the page is locked.
3949 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3950 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3951 * "commit()" or removed by "cancel()"
3952 */
0435a2fd
JW
3953static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3954 struct page *page,
3955 gfp_t mask,
3956 struct mem_cgroup **memcgp)
8c7c6e34 3957{
c0ff4b85 3958 struct mem_cgroup *memcg;
90deb788 3959 struct page_cgroup *pc;
54595fe2 3960 int ret;
8c7c6e34 3961
90deb788
JW
3962 pc = lookup_page_cgroup(page);
3963 /*
3964 * Every swap fault against a single page tries to charge the
3965 * page, bail as early as possible. shmem_unuse() encounters
3966 * already charged pages, too. The USED bit is protected by
3967 * the page lock, which serializes swap cache removal, which
3968 * in turn serializes uncharging.
3969 */
3970 if (PageCgroupUsed(pc))
3971 return 0;
8c7c6e34
KH
3972 if (!do_swap_account)
3973 goto charge_cur_mm;
c0ff4b85
R
3974 memcg = try_get_mem_cgroup_from_page(page);
3975 if (!memcg)
54595fe2 3976 goto charge_cur_mm;
72835c86
JW
3977 *memcgp = memcg;
3978 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3979 css_put(&memcg->css);
38c5d72f
KH
3980 if (ret == -EINTR)
3981 ret = 0;
54595fe2 3982 return ret;
8c7c6e34 3983charge_cur_mm:
38c5d72f
KH
3984 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3985 if (ret == -EINTR)
3986 ret = 0;
3987 return ret;
8c7c6e34
KH
3988}
3989
0435a2fd
JW
3990int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3991 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3992{
3993 *memcgp = NULL;
3994 if (mem_cgroup_disabled())
3995 return 0;
bdf4f4d2
JW
3996 /*
3997 * A racing thread's fault, or swapoff, may have already
3998 * updated the pte, and even removed page from swap cache: in
3999 * those cases unuse_pte()'s pte_same() test will fail; but
4000 * there's also a KSM case which does need to charge the page.
4001 */
4002 if (!PageSwapCache(page)) {
4003 int ret;
4004
4005 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4006 if (ret == -EINTR)
4007 ret = 0;
4008 return ret;
4009 }
0435a2fd
JW
4010 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4011}
4012
827a03d2
JW
4013void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4014{
4015 if (mem_cgroup_disabled())
4016 return;
4017 if (!memcg)
4018 return;
4019 __mem_cgroup_cancel_charge(memcg, 1);
4020}
4021
83aae4c7 4022static void
72835c86 4023__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4024 enum charge_type ctype)
7a81b88c 4025{
f8d66542 4026 if (mem_cgroup_disabled())
7a81b88c 4027 return;
72835c86 4028 if (!memcg)
7a81b88c 4029 return;
5a6475a4 4030
ce587e65 4031 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4032 /*
4033 * Now swap is on-memory. This means this page may be
4034 * counted both as mem and swap....double count.
03f3c433
KH
4035 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4036 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4037 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4038 */
03f3c433 4039 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4040 swp_entry_t ent = {.val = page_private(page)};
86493009 4041 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4042 }
7a81b88c
KH
4043}
4044
72835c86
JW
4045void mem_cgroup_commit_charge_swapin(struct page *page,
4046 struct mem_cgroup *memcg)
83aae4c7 4047{
72835c86 4048 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4049 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4050}
4051
827a03d2
JW
4052int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4053 gfp_t gfp_mask)
7a81b88c 4054{
827a03d2
JW
4055 struct mem_cgroup *memcg = NULL;
4056 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4057 int ret;
4058
f8d66542 4059 if (mem_cgroup_disabled())
827a03d2
JW
4060 return 0;
4061 if (PageCompound(page))
4062 return 0;
4063
827a03d2
JW
4064 if (!PageSwapCache(page))
4065 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4066 else { /* page is swapcache/shmem */
0435a2fd
JW
4067 ret = __mem_cgroup_try_charge_swapin(mm, page,
4068 gfp_mask, &memcg);
827a03d2
JW
4069 if (!ret)
4070 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4071 }
4072 return ret;
7a81b88c
KH
4073}
4074
c0ff4b85 4075static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4076 unsigned int nr_pages,
4077 const enum charge_type ctype)
569b846d
KH
4078{
4079 struct memcg_batch_info *batch = NULL;
4080 bool uncharge_memsw = true;
7ec99d62 4081
569b846d
KH
4082 /* If swapout, usage of swap doesn't decrease */
4083 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4084 uncharge_memsw = false;
569b846d
KH
4085
4086 batch = &current->memcg_batch;
4087 /*
4088 * In usual, we do css_get() when we remember memcg pointer.
4089 * But in this case, we keep res->usage until end of a series of
4090 * uncharges. Then, it's ok to ignore memcg's refcnt.
4091 */
4092 if (!batch->memcg)
c0ff4b85 4093 batch->memcg = memcg;
3c11ecf4
KH
4094 /*
4095 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4096 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4097 * the same cgroup and we have chance to coalesce uncharges.
4098 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4099 * because we want to do uncharge as soon as possible.
4100 */
4101
4102 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4103 goto direct_uncharge;
4104
7ec99d62 4105 if (nr_pages > 1)
ec168510
AA
4106 goto direct_uncharge;
4107
569b846d
KH
4108 /*
4109 * In typical case, batch->memcg == mem. This means we can
4110 * merge a series of uncharges to an uncharge of res_counter.
4111 * If not, we uncharge res_counter ony by one.
4112 */
c0ff4b85 4113 if (batch->memcg != memcg)
569b846d
KH
4114 goto direct_uncharge;
4115 /* remember freed charge and uncharge it later */
7ffd4ca7 4116 batch->nr_pages++;
569b846d 4117 if (uncharge_memsw)
7ffd4ca7 4118 batch->memsw_nr_pages++;
569b846d
KH
4119 return;
4120direct_uncharge:
c0ff4b85 4121 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4122 if (uncharge_memsw)
c0ff4b85
R
4123 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4124 if (unlikely(batch->memcg != memcg))
4125 memcg_oom_recover(memcg);
569b846d 4126}
7a81b88c 4127
8a9f3ccd 4128/*
69029cd5 4129 * uncharge if !page_mapped(page)
8a9f3ccd 4130 */
8c7c6e34 4131static struct mem_cgroup *
0030f535
JW
4132__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4133 bool end_migration)
8a9f3ccd 4134{
c0ff4b85 4135 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4136 unsigned int nr_pages = 1;
4137 struct page_cgroup *pc;
b2402857 4138 bool anon;
8a9f3ccd 4139
f8d66542 4140 if (mem_cgroup_disabled())
8c7c6e34 4141 return NULL;
4077960e 4142
37c2ac78 4143 if (PageTransHuge(page)) {
7ec99d62 4144 nr_pages <<= compound_order(page);
37c2ac78
AA
4145 VM_BUG_ON(!PageTransHuge(page));
4146 }
8697d331 4147 /*
3c541e14 4148 * Check if our page_cgroup is valid
8697d331 4149 */
52d4b9ac 4150 pc = lookup_page_cgroup(page);
cfa44946 4151 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4152 return NULL;
b9c565d5 4153
52d4b9ac 4154 lock_page_cgroup(pc);
d13d1443 4155
c0ff4b85 4156 memcg = pc->mem_cgroup;
8c7c6e34 4157
d13d1443
KH
4158 if (!PageCgroupUsed(pc))
4159 goto unlock_out;
4160
b2402857
KH
4161 anon = PageAnon(page);
4162
d13d1443 4163 switch (ctype) {
41326c17 4164 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4165 /*
4166 * Generally PageAnon tells if it's the anon statistics to be
4167 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4168 * used before page reached the stage of being marked PageAnon.
4169 */
b2402857
KH
4170 anon = true;
4171 /* fallthrough */
8a9478ca 4172 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4173 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4174 if (page_mapped(page))
4175 goto unlock_out;
4176 /*
4177 * Pages under migration may not be uncharged. But
4178 * end_migration() /must/ be the one uncharging the
4179 * unused post-migration page and so it has to call
4180 * here with the migration bit still set. See the
4181 * res_counter handling below.
4182 */
4183 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4184 goto unlock_out;
4185 break;
4186 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4187 if (!PageAnon(page)) { /* Shared memory */
4188 if (page->mapping && !page_is_file_cache(page))
4189 goto unlock_out;
4190 } else if (page_mapped(page)) /* Anon */
4191 goto unlock_out;
4192 break;
4193 default:
4194 break;
52d4b9ac 4195 }
d13d1443 4196
b070e65c 4197 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4198
52d4b9ac 4199 ClearPageCgroupUsed(pc);
544122e5
KH
4200 /*
4201 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4202 * freed from LRU. This is safe because uncharged page is expected not
4203 * to be reused (freed soon). Exception is SwapCache, it's handled by
4204 * special functions.
4205 */
b9c565d5 4206
52d4b9ac 4207 unlock_page_cgroup(pc);
f75ca962 4208 /*
c0ff4b85 4209 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4210 * will never be freed, so it's safe to call css_get().
f75ca962 4211 */
c0ff4b85 4212 memcg_check_events(memcg, page);
f75ca962 4213 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4214 mem_cgroup_swap_statistics(memcg, true);
4050377b 4215 css_get(&memcg->css);
f75ca962 4216 }
0030f535
JW
4217 /*
4218 * Migration does not charge the res_counter for the
4219 * replacement page, so leave it alone when phasing out the
4220 * page that is unused after the migration.
4221 */
4222 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4223 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4224
c0ff4b85 4225 return memcg;
d13d1443
KH
4226
4227unlock_out:
4228 unlock_page_cgroup(pc);
8c7c6e34 4229 return NULL;
3c541e14
BS
4230}
4231
69029cd5
KH
4232void mem_cgroup_uncharge_page(struct page *page)
4233{
52d4b9ac
KH
4234 /* early check. */
4235 if (page_mapped(page))
4236 return;
40f23a21 4237 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4238 /*
4239 * If the page is in swap cache, uncharge should be deferred
4240 * to the swap path, which also properly accounts swap usage
4241 * and handles memcg lifetime.
4242 *
4243 * Note that this check is not stable and reclaim may add the
4244 * page to swap cache at any time after this. However, if the
4245 * page is not in swap cache by the time page->mapcount hits
4246 * 0, there won't be any page table references to the swap
4247 * slot, and reclaim will free it and not actually write the
4248 * page to disk.
4249 */
0c59b89c
JW
4250 if (PageSwapCache(page))
4251 return;
0030f535 4252 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4253}
4254
4255void mem_cgroup_uncharge_cache_page(struct page *page)
4256{
4257 VM_BUG_ON(page_mapped(page));
b7abea96 4258 VM_BUG_ON(page->mapping);
0030f535 4259 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4260}
4261
569b846d
KH
4262/*
4263 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4264 * In that cases, pages are freed continuously and we can expect pages
4265 * are in the same memcg. All these calls itself limits the number of
4266 * pages freed at once, then uncharge_start/end() is called properly.
4267 * This may be called prural(2) times in a context,
4268 */
4269
4270void mem_cgroup_uncharge_start(void)
4271{
4272 current->memcg_batch.do_batch++;
4273 /* We can do nest. */
4274 if (current->memcg_batch.do_batch == 1) {
4275 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4276 current->memcg_batch.nr_pages = 0;
4277 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4278 }
4279}
4280
4281void mem_cgroup_uncharge_end(void)
4282{
4283 struct memcg_batch_info *batch = &current->memcg_batch;
4284
4285 if (!batch->do_batch)
4286 return;
4287
4288 batch->do_batch--;
4289 if (batch->do_batch) /* If stacked, do nothing. */
4290 return;
4291
4292 if (!batch->memcg)
4293 return;
4294 /*
4295 * This "batch->memcg" is valid without any css_get/put etc...
4296 * bacause we hide charges behind us.
4297 */
7ffd4ca7
JW
4298 if (batch->nr_pages)
4299 res_counter_uncharge(&batch->memcg->res,
4300 batch->nr_pages * PAGE_SIZE);
4301 if (batch->memsw_nr_pages)
4302 res_counter_uncharge(&batch->memcg->memsw,
4303 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4304 memcg_oom_recover(batch->memcg);
569b846d
KH
4305 /* forget this pointer (for sanity check) */
4306 batch->memcg = NULL;
4307}
4308
e767e056 4309#ifdef CONFIG_SWAP
8c7c6e34 4310/*
e767e056 4311 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4312 * memcg information is recorded to swap_cgroup of "ent"
4313 */
8a9478ca
KH
4314void
4315mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4316{
4317 struct mem_cgroup *memcg;
8a9478ca
KH
4318 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4319
4320 if (!swapout) /* this was a swap cache but the swap is unused ! */
4321 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4322
0030f535 4323 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4324
f75ca962
KH
4325 /*
4326 * record memcg information, if swapout && memcg != NULL,
4050377b 4327 * css_get() was called in uncharge().
f75ca962
KH
4328 */
4329 if (do_swap_account && swapout && memcg)
a3b2d692 4330 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4331}
e767e056 4332#endif
8c7c6e34 4333
c255a458 4334#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4335/*
4336 * called from swap_entry_free(). remove record in swap_cgroup and
4337 * uncharge "memsw" account.
4338 */
4339void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4340{
8c7c6e34 4341 struct mem_cgroup *memcg;
a3b2d692 4342 unsigned short id;
8c7c6e34
KH
4343
4344 if (!do_swap_account)
4345 return;
4346
a3b2d692
KH
4347 id = swap_cgroup_record(ent, 0);
4348 rcu_read_lock();
4349 memcg = mem_cgroup_lookup(id);
8c7c6e34 4350 if (memcg) {
a3b2d692
KH
4351 /*
4352 * We uncharge this because swap is freed.
4353 * This memcg can be obsolete one. We avoid calling css_tryget
4354 */
0c3e73e8 4355 if (!mem_cgroup_is_root(memcg))
4e649152 4356 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4357 mem_cgroup_swap_statistics(memcg, false);
4050377b 4358 css_put(&memcg->css);
8c7c6e34 4359 }
a3b2d692 4360 rcu_read_unlock();
d13d1443 4361}
02491447
DN
4362
4363/**
4364 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4365 * @entry: swap entry to be moved
4366 * @from: mem_cgroup which the entry is moved from
4367 * @to: mem_cgroup which the entry is moved to
4368 *
4369 * It succeeds only when the swap_cgroup's record for this entry is the same
4370 * as the mem_cgroup's id of @from.
4371 *
4372 * Returns 0 on success, -EINVAL on failure.
4373 *
4374 * The caller must have charged to @to, IOW, called res_counter_charge() about
4375 * both res and memsw, and called css_get().
4376 */
4377static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4378 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4379{
4380 unsigned short old_id, new_id;
4381
4382 old_id = css_id(&from->css);
4383 new_id = css_id(&to->css);
4384
4385 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4386 mem_cgroup_swap_statistics(from, false);
483c30b5 4387 mem_cgroup_swap_statistics(to, true);
02491447 4388 /*
483c30b5
DN
4389 * This function is only called from task migration context now.
4390 * It postpones res_counter and refcount handling till the end
4391 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4392 * improvement. But we cannot postpone css_get(to) because if
4393 * the process that has been moved to @to does swap-in, the
4394 * refcount of @to might be decreased to 0.
4395 *
4396 * We are in attach() phase, so the cgroup is guaranteed to be
4397 * alive, so we can just call css_get().
02491447 4398 */
4050377b 4399 css_get(&to->css);
02491447
DN
4400 return 0;
4401 }
4402 return -EINVAL;
4403}
4404#else
4405static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4406 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4407{
4408 return -EINVAL;
4409}
8c7c6e34 4410#endif
d13d1443 4411
ae41be37 4412/*
01b1ae63
KH
4413 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4414 * page belongs to.
ae41be37 4415 */
0030f535
JW
4416void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4417 struct mem_cgroup **memcgp)
ae41be37 4418{
c0ff4b85 4419 struct mem_cgroup *memcg = NULL;
b32967ff 4420 unsigned int nr_pages = 1;
7ec99d62 4421 struct page_cgroup *pc;
ac39cf8c 4422 enum charge_type ctype;
8869b8f6 4423
72835c86 4424 *memcgp = NULL;
56039efa 4425
f8d66542 4426 if (mem_cgroup_disabled())
0030f535 4427 return;
4077960e 4428
b32967ff
MG
4429 if (PageTransHuge(page))
4430 nr_pages <<= compound_order(page);
4431
52d4b9ac
KH
4432 pc = lookup_page_cgroup(page);
4433 lock_page_cgroup(pc);
4434 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4435 memcg = pc->mem_cgroup;
4436 css_get(&memcg->css);
ac39cf8c 4437 /*
4438 * At migrating an anonymous page, its mapcount goes down
4439 * to 0 and uncharge() will be called. But, even if it's fully
4440 * unmapped, migration may fail and this page has to be
4441 * charged again. We set MIGRATION flag here and delay uncharge
4442 * until end_migration() is called
4443 *
4444 * Corner Case Thinking
4445 * A)
4446 * When the old page was mapped as Anon and it's unmap-and-freed
4447 * while migration was ongoing.
4448 * If unmap finds the old page, uncharge() of it will be delayed
4449 * until end_migration(). If unmap finds a new page, it's
4450 * uncharged when it make mapcount to be 1->0. If unmap code
4451 * finds swap_migration_entry, the new page will not be mapped
4452 * and end_migration() will find it(mapcount==0).
4453 *
4454 * B)
4455 * When the old page was mapped but migraion fails, the kernel
4456 * remaps it. A charge for it is kept by MIGRATION flag even
4457 * if mapcount goes down to 0. We can do remap successfully
4458 * without charging it again.
4459 *
4460 * C)
4461 * The "old" page is under lock_page() until the end of
4462 * migration, so, the old page itself will not be swapped-out.
4463 * If the new page is swapped out before end_migraton, our
4464 * hook to usual swap-out path will catch the event.
4465 */
4466 if (PageAnon(page))
4467 SetPageCgroupMigration(pc);
e8589cc1 4468 }
52d4b9ac 4469 unlock_page_cgroup(pc);
ac39cf8c 4470 /*
4471 * If the page is not charged at this point,
4472 * we return here.
4473 */
c0ff4b85 4474 if (!memcg)
0030f535 4475 return;
01b1ae63 4476
72835c86 4477 *memcgp = memcg;
ac39cf8c 4478 /*
4479 * We charge new page before it's used/mapped. So, even if unlock_page()
4480 * is called before end_migration, we can catch all events on this new
4481 * page. In the case new page is migrated but not remapped, new page's
4482 * mapcount will be finally 0 and we call uncharge in end_migration().
4483 */
ac39cf8c 4484 if (PageAnon(page))
41326c17 4485 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4486 else
62ba7442 4487 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4488 /*
4489 * The page is committed to the memcg, but it's not actually
4490 * charged to the res_counter since we plan on replacing the
4491 * old one and only one page is going to be left afterwards.
4492 */
b32967ff 4493 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4494}
8869b8f6 4495
69029cd5 4496/* remove redundant charge if migration failed*/
c0ff4b85 4497void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4498 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4499{
ac39cf8c 4500 struct page *used, *unused;
01b1ae63 4501 struct page_cgroup *pc;
b2402857 4502 bool anon;
01b1ae63 4503
c0ff4b85 4504 if (!memcg)
01b1ae63 4505 return;
b25ed609 4506
50de1dd9 4507 if (!migration_ok) {
ac39cf8c 4508 used = oldpage;
4509 unused = newpage;
01b1ae63 4510 } else {
ac39cf8c 4511 used = newpage;
01b1ae63
KH
4512 unused = oldpage;
4513 }
0030f535 4514 anon = PageAnon(used);
7d188958
JW
4515 __mem_cgroup_uncharge_common(unused,
4516 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4517 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4518 true);
0030f535 4519 css_put(&memcg->css);
69029cd5 4520 /*
ac39cf8c 4521 * We disallowed uncharge of pages under migration because mapcount
4522 * of the page goes down to zero, temporarly.
4523 * Clear the flag and check the page should be charged.
01b1ae63 4524 */
ac39cf8c 4525 pc = lookup_page_cgroup(oldpage);
4526 lock_page_cgroup(pc);
4527 ClearPageCgroupMigration(pc);
4528 unlock_page_cgroup(pc);
ac39cf8c 4529
01b1ae63 4530 /*
ac39cf8c 4531 * If a page is a file cache, radix-tree replacement is very atomic
4532 * and we can skip this check. When it was an Anon page, its mapcount
4533 * goes down to 0. But because we added MIGRATION flage, it's not
4534 * uncharged yet. There are several case but page->mapcount check
4535 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4536 * check. (see prepare_charge() also)
69029cd5 4537 */
b2402857 4538 if (anon)
ac39cf8c 4539 mem_cgroup_uncharge_page(used);
ae41be37 4540}
78fb7466 4541
ab936cbc
KH
4542/*
4543 * At replace page cache, newpage is not under any memcg but it's on
4544 * LRU. So, this function doesn't touch res_counter but handles LRU
4545 * in correct way. Both pages are locked so we cannot race with uncharge.
4546 */
4547void mem_cgroup_replace_page_cache(struct page *oldpage,
4548 struct page *newpage)
4549{
bde05d1c 4550 struct mem_cgroup *memcg = NULL;
ab936cbc 4551 struct page_cgroup *pc;
ab936cbc 4552 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4553
4554 if (mem_cgroup_disabled())
4555 return;
4556
4557 pc = lookup_page_cgroup(oldpage);
4558 /* fix accounting on old pages */
4559 lock_page_cgroup(pc);
bde05d1c
HD
4560 if (PageCgroupUsed(pc)) {
4561 memcg = pc->mem_cgroup;
b070e65c 4562 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4563 ClearPageCgroupUsed(pc);
4564 }
ab936cbc
KH
4565 unlock_page_cgroup(pc);
4566
bde05d1c
HD
4567 /*
4568 * When called from shmem_replace_page(), in some cases the
4569 * oldpage has already been charged, and in some cases not.
4570 */
4571 if (!memcg)
4572 return;
ab936cbc
KH
4573 /*
4574 * Even if newpage->mapping was NULL before starting replacement,
4575 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4576 * LRU while we overwrite pc->mem_cgroup.
4577 */
ce587e65 4578 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4579}
4580
f212ad7c
DN
4581#ifdef CONFIG_DEBUG_VM
4582static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4583{
4584 struct page_cgroup *pc;
4585
4586 pc = lookup_page_cgroup(page);
cfa44946
JW
4587 /*
4588 * Can be NULL while feeding pages into the page allocator for
4589 * the first time, i.e. during boot or memory hotplug;
4590 * or when mem_cgroup_disabled().
4591 */
f212ad7c
DN
4592 if (likely(pc) && PageCgroupUsed(pc))
4593 return pc;
4594 return NULL;
4595}
4596
4597bool mem_cgroup_bad_page_check(struct page *page)
4598{
4599 if (mem_cgroup_disabled())
4600 return false;
4601
4602 return lookup_page_cgroup_used(page) != NULL;
4603}
4604
4605void mem_cgroup_print_bad_page(struct page *page)
4606{
4607 struct page_cgroup *pc;
4608
4609 pc = lookup_page_cgroup_used(page);
4610 if (pc) {
d045197f
AM
4611 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4612 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4613 }
4614}
4615#endif
4616
d38d2a75 4617static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4618 unsigned long long val)
628f4235 4619{
81d39c20 4620 int retry_count;
3c11ecf4 4621 u64 memswlimit, memlimit;
628f4235 4622 int ret = 0;
81d39c20
KH
4623 int children = mem_cgroup_count_children(memcg);
4624 u64 curusage, oldusage;
3c11ecf4 4625 int enlarge;
81d39c20
KH
4626
4627 /*
4628 * For keeping hierarchical_reclaim simple, how long we should retry
4629 * is depends on callers. We set our retry-count to be function
4630 * of # of children which we should visit in this loop.
4631 */
4632 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4633
4634 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4635
3c11ecf4 4636 enlarge = 0;
8c7c6e34 4637 while (retry_count) {
628f4235
KH
4638 if (signal_pending(current)) {
4639 ret = -EINTR;
4640 break;
4641 }
8c7c6e34
KH
4642 /*
4643 * Rather than hide all in some function, I do this in
4644 * open coded manner. You see what this really does.
aaad153e 4645 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4646 */
4647 mutex_lock(&set_limit_mutex);
4648 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4649 if (memswlimit < val) {
4650 ret = -EINVAL;
4651 mutex_unlock(&set_limit_mutex);
628f4235
KH
4652 break;
4653 }
3c11ecf4
KH
4654
4655 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4656 if (memlimit < val)
4657 enlarge = 1;
4658
8c7c6e34 4659 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4660 if (!ret) {
4661 if (memswlimit == val)
4662 memcg->memsw_is_minimum = true;
4663 else
4664 memcg->memsw_is_minimum = false;
4665 }
8c7c6e34
KH
4666 mutex_unlock(&set_limit_mutex);
4667
4668 if (!ret)
4669 break;
4670
5660048c
JW
4671 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4672 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4673 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4674 /* Usage is reduced ? */
4675 if (curusage >= oldusage)
4676 retry_count--;
4677 else
4678 oldusage = curusage;
8c7c6e34 4679 }
3c11ecf4
KH
4680 if (!ret && enlarge)
4681 memcg_oom_recover(memcg);
14797e23 4682
8c7c6e34
KH
4683 return ret;
4684}
4685
338c8431
LZ
4686static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4687 unsigned long long val)
8c7c6e34 4688{
81d39c20 4689 int retry_count;
3c11ecf4 4690 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4691 int children = mem_cgroup_count_children(memcg);
4692 int ret = -EBUSY;
3c11ecf4 4693 int enlarge = 0;
8c7c6e34 4694
81d39c20
KH
4695 /* see mem_cgroup_resize_res_limit */
4696 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4697 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4698 while (retry_count) {
4699 if (signal_pending(current)) {
4700 ret = -EINTR;
4701 break;
4702 }
4703 /*
4704 * Rather than hide all in some function, I do this in
4705 * open coded manner. You see what this really does.
aaad153e 4706 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4707 */
4708 mutex_lock(&set_limit_mutex);
4709 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4710 if (memlimit > val) {
4711 ret = -EINVAL;
4712 mutex_unlock(&set_limit_mutex);
4713 break;
4714 }
3c11ecf4
KH
4715 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4716 if (memswlimit < val)
4717 enlarge = 1;
8c7c6e34 4718 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4719 if (!ret) {
4720 if (memlimit == val)
4721 memcg->memsw_is_minimum = true;
4722 else
4723 memcg->memsw_is_minimum = false;
4724 }
8c7c6e34
KH
4725 mutex_unlock(&set_limit_mutex);
4726
4727 if (!ret)
4728 break;
4729
5660048c
JW
4730 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4731 MEM_CGROUP_RECLAIM_NOSWAP |
4732 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4733 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4734 /* Usage is reduced ? */
8c7c6e34 4735 if (curusage >= oldusage)
628f4235 4736 retry_count--;
81d39c20
KH
4737 else
4738 oldusage = curusage;
628f4235 4739 }
3c11ecf4
KH
4740 if (!ret && enlarge)
4741 memcg_oom_recover(memcg);
628f4235
KH
4742 return ret;
4743}
4744
4e416953 4745unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4746 gfp_t gfp_mask,
4747 unsigned long *total_scanned)
4e416953
BS
4748{
4749 unsigned long nr_reclaimed = 0;
4750 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4751 unsigned long reclaimed;
4752 int loop = 0;
4753 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4754 unsigned long long excess;
0ae5e89c 4755 unsigned long nr_scanned;
4e416953
BS
4756
4757 if (order > 0)
4758 return 0;
4759
00918b6a 4760 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4761 /*
4762 * This loop can run a while, specially if mem_cgroup's continuously
4763 * keep exceeding their soft limit and putting the system under
4764 * pressure
4765 */
4766 do {
4767 if (next_mz)
4768 mz = next_mz;
4769 else
4770 mz = mem_cgroup_largest_soft_limit_node(mctz);
4771 if (!mz)
4772 break;
4773
0ae5e89c 4774 nr_scanned = 0;
d79154bb 4775 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4776 gfp_mask, &nr_scanned);
4e416953 4777 nr_reclaimed += reclaimed;
0ae5e89c 4778 *total_scanned += nr_scanned;
4e416953
BS
4779 spin_lock(&mctz->lock);
4780
4781 /*
4782 * If we failed to reclaim anything from this memory cgroup
4783 * it is time to move on to the next cgroup
4784 */
4785 next_mz = NULL;
4786 if (!reclaimed) {
4787 do {
4788 /*
4789 * Loop until we find yet another one.
4790 *
4791 * By the time we get the soft_limit lock
4792 * again, someone might have aded the
4793 * group back on the RB tree. Iterate to
4794 * make sure we get a different mem.
4795 * mem_cgroup_largest_soft_limit_node returns
4796 * NULL if no other cgroup is present on
4797 * the tree
4798 */
4799 next_mz =
4800 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4801 if (next_mz == mz)
d79154bb 4802 css_put(&next_mz->memcg->css);
39cc98f1 4803 else /* next_mz == NULL or other memcg */
4e416953
BS
4804 break;
4805 } while (1);
4806 }
d79154bb
HD
4807 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4808 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4809 /*
4810 * One school of thought says that we should not add
4811 * back the node to the tree if reclaim returns 0.
4812 * But our reclaim could return 0, simply because due
4813 * to priority we are exposing a smaller subset of
4814 * memory to reclaim from. Consider this as a longer
4815 * term TODO.
4816 */
ef8745c1 4817 /* If excess == 0, no tree ops */
d79154bb 4818 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4819 spin_unlock(&mctz->lock);
d79154bb 4820 css_put(&mz->memcg->css);
4e416953
BS
4821 loop++;
4822 /*
4823 * Could not reclaim anything and there are no more
4824 * mem cgroups to try or we seem to be looping without
4825 * reclaiming anything.
4826 */
4827 if (!nr_reclaimed &&
4828 (next_mz == NULL ||
4829 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4830 break;
4831 } while (!nr_reclaimed);
4832 if (next_mz)
d79154bb 4833 css_put(&next_mz->memcg->css);
4e416953
BS
4834 return nr_reclaimed;
4835}
4836
2ef37d3f
MH
4837/**
4838 * mem_cgroup_force_empty_list - clears LRU of a group
4839 * @memcg: group to clear
4840 * @node: NUMA node
4841 * @zid: zone id
4842 * @lru: lru to to clear
4843 *
3c935d18 4844 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4845 * reclaim the pages page themselves - pages are moved to the parent (or root)
4846 * group.
cc847582 4847 */
2ef37d3f 4848static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4849 int node, int zid, enum lru_list lru)
cc847582 4850{
bea8c150 4851 struct lruvec *lruvec;
2ef37d3f 4852 unsigned long flags;
072c56c1 4853 struct list_head *list;
925b7673
JW
4854 struct page *busy;
4855 struct zone *zone;
072c56c1 4856
08e552c6 4857 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4858 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4859 list = &lruvec->lists[lru];
cc847582 4860
f817ed48 4861 busy = NULL;
2ef37d3f 4862 do {
925b7673 4863 struct page_cgroup *pc;
5564e88b
JW
4864 struct page *page;
4865
08e552c6 4866 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4867 if (list_empty(list)) {
08e552c6 4868 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4869 break;
f817ed48 4870 }
925b7673
JW
4871 page = list_entry(list->prev, struct page, lru);
4872 if (busy == page) {
4873 list_move(&page->lru, list);
648bcc77 4874 busy = NULL;
08e552c6 4875 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4876 continue;
4877 }
08e552c6 4878 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4879
925b7673 4880 pc = lookup_page_cgroup(page);
5564e88b 4881
3c935d18 4882 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4883 /* found lock contention or "pc" is obsolete. */
925b7673 4884 busy = page;
f817ed48
KH
4885 cond_resched();
4886 } else
4887 busy = NULL;
2ef37d3f 4888 } while (!list_empty(list));
cc847582
KH
4889}
4890
4891/*
c26251f9
MH
4892 * make mem_cgroup's charge to be 0 if there is no task by moving
4893 * all the charges and pages to the parent.
cc847582 4894 * This enables deleting this mem_cgroup.
c26251f9
MH
4895 *
4896 * Caller is responsible for holding css reference on the memcg.
cc847582 4897 */
ab5196c2 4898static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4899{
c26251f9 4900 int node, zid;
bea207c8 4901 u64 usage;
f817ed48 4902
fce66477 4903 do {
52d4b9ac
KH
4904 /* This is for making all *used* pages to be on LRU. */
4905 lru_add_drain_all();
c0ff4b85 4906 drain_all_stock_sync(memcg);
c0ff4b85 4907 mem_cgroup_start_move(memcg);
31aaea4a 4908 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4909 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4910 enum lru_list lru;
4911 for_each_lru(lru) {
2ef37d3f 4912 mem_cgroup_force_empty_list(memcg,
f156ab93 4913 node, zid, lru);
f817ed48 4914 }
1ecaab2b 4915 }
f817ed48 4916 }
c0ff4b85
R
4917 mem_cgroup_end_move(memcg);
4918 memcg_oom_recover(memcg);
52d4b9ac 4919 cond_resched();
f817ed48 4920
2ef37d3f 4921 /*
bea207c8
GC
4922 * Kernel memory may not necessarily be trackable to a specific
4923 * process. So they are not migrated, and therefore we can't
4924 * expect their value to drop to 0 here.
4925 * Having res filled up with kmem only is enough.
4926 *
2ef37d3f
MH
4927 * This is a safety check because mem_cgroup_force_empty_list
4928 * could have raced with mem_cgroup_replace_page_cache callers
4929 * so the lru seemed empty but the page could have been added
4930 * right after the check. RES_USAGE should be safe as we always
4931 * charge before adding to the LRU.
4932 */
bea207c8
GC
4933 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4934 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4935 } while (usage > 0);
c26251f9
MH
4936}
4937
b5f99b53
GC
4938/*
4939 * This mainly exists for tests during the setting of set of use_hierarchy.
4940 * Since this is the very setting we are changing, the current hierarchy value
4941 * is meaningless
4942 */
4943static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4944{
4945 struct cgroup *pos;
4946
4947 /* bounce at first found */
4948 cgroup_for_each_child(pos, memcg->css.cgroup)
4949 return true;
4950 return false;
4951}
4952
4953/*
0999821b
GC
4954 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4955 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4956 * from mem_cgroup_count_children(), in the sense that we don't really care how
4957 * many children we have; we only need to know if we have any. It also counts
4958 * any memcg without hierarchy as infertile.
4959 */
4960static inline bool memcg_has_children(struct mem_cgroup *memcg)
4961{
4962 return memcg->use_hierarchy && __memcg_has_children(memcg);
4963}
4964
c26251f9
MH
4965/*
4966 * Reclaims as many pages from the given memcg as possible and moves
4967 * the rest to the parent.
4968 *
4969 * Caller is responsible for holding css reference for memcg.
4970 */
4971static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4972{
4973 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4974 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4975
c1e862c1 4976 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4977 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4978 return -EBUSY;
4979
c1e862c1
KH
4980 /* we call try-to-free pages for make this cgroup empty */
4981 lru_add_drain_all();
f817ed48 4982 /* try to free all pages in this cgroup */
569530fb 4983 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4984 int progress;
c1e862c1 4985
c26251f9
MH
4986 if (signal_pending(current))
4987 return -EINTR;
4988
c0ff4b85 4989 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4990 false);
c1e862c1 4991 if (!progress) {
f817ed48 4992 nr_retries--;
c1e862c1 4993 /* maybe some writeback is necessary */
8aa7e847 4994 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4995 }
f817ed48
KH
4996
4997 }
08e552c6 4998 lru_add_drain();
ab5196c2
MH
4999 mem_cgroup_reparent_charges(memcg);
5000
5001 return 0;
cc847582
KH
5002}
5003
6bbda35c 5004static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 5005{
c26251f9
MH
5006 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5007 int ret;
5008
d8423011
MH
5009 if (mem_cgroup_is_root(memcg))
5010 return -EINVAL;
c26251f9
MH
5011 css_get(&memcg->css);
5012 ret = mem_cgroup_force_empty(memcg);
5013 css_put(&memcg->css);
5014
5015 return ret;
c1e862c1
KH
5016}
5017
5018
18f59ea7
BS
5019static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
5020{
5021 return mem_cgroup_from_cont(cont)->use_hierarchy;
5022}
5023
5024static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
5025 u64 val)
5026{
5027 int retval = 0;
c0ff4b85 5028 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 5029 struct cgroup *parent = cont->parent;
c0ff4b85 5030 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
5031
5032 if (parent)
c0ff4b85 5033 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7 5034
0999821b 5035 mutex_lock(&memcg_create_mutex);
567fb435
GC
5036
5037 if (memcg->use_hierarchy == val)
5038 goto out;
5039
18f59ea7 5040 /*
af901ca1 5041 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5042 * in the child subtrees. If it is unset, then the change can
5043 * occur, provided the current cgroup has no children.
5044 *
5045 * For the root cgroup, parent_mem is NULL, we allow value to be
5046 * set if there are no children.
5047 */
c0ff4b85 5048 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5049 (val == 1 || val == 0)) {
b5f99b53 5050 if (!__memcg_has_children(memcg))
c0ff4b85 5051 memcg->use_hierarchy = val;
18f59ea7
BS
5052 else
5053 retval = -EBUSY;
5054 } else
5055 retval = -EINVAL;
567fb435
GC
5056
5057out:
0999821b 5058 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5059
5060 return retval;
5061}
5062
0c3e73e8 5063
c0ff4b85 5064static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5065 enum mem_cgroup_stat_index idx)
0c3e73e8 5066{
7d74b06f 5067 struct mem_cgroup *iter;
7a159cc9 5068 long val = 0;
0c3e73e8 5069
7a159cc9 5070 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5071 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5072 val += mem_cgroup_read_stat(iter, idx);
5073
5074 if (val < 0) /* race ? */
5075 val = 0;
5076 return val;
0c3e73e8
BS
5077}
5078
c0ff4b85 5079static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5080{
7d74b06f 5081 u64 val;
104f3928 5082
c0ff4b85 5083 if (!mem_cgroup_is_root(memcg)) {
104f3928 5084 if (!swap)
65c64ce8 5085 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5086 else
65c64ce8 5087 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5088 }
5089
b070e65c
DR
5090 /*
5091 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5092 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5093 */
c0ff4b85
R
5094 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5095 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5096
7d74b06f 5097 if (swap)
bff6bb83 5098 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5099
5100 return val << PAGE_SHIFT;
5101}
5102
af36f906
TH
5103static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5104 struct file *file, char __user *buf,
5105 size_t nbytes, loff_t *ppos)
8cdea7c0 5106{
c0ff4b85 5107 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 5108 char str[64];
104f3928 5109 u64 val;
86ae53e1
GC
5110 int name, len;
5111 enum res_type type;
8c7c6e34
KH
5112
5113 type = MEMFILE_TYPE(cft->private);
5114 name = MEMFILE_ATTR(cft->private);
af36f906 5115
8c7c6e34
KH
5116 switch (type) {
5117 case _MEM:
104f3928 5118 if (name == RES_USAGE)
c0ff4b85 5119 val = mem_cgroup_usage(memcg, false);
104f3928 5120 else
c0ff4b85 5121 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5122 break;
5123 case _MEMSWAP:
104f3928 5124 if (name == RES_USAGE)
c0ff4b85 5125 val = mem_cgroup_usage(memcg, true);
104f3928 5126 else
c0ff4b85 5127 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5128 break;
510fc4e1
GC
5129 case _KMEM:
5130 val = res_counter_read_u64(&memcg->kmem, name);
5131 break;
8c7c6e34
KH
5132 default:
5133 BUG();
8c7c6e34 5134 }
af36f906
TH
5135
5136 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5137 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5138}
510fc4e1
GC
5139
5140static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5141{
5142 int ret = -EINVAL;
5143#ifdef CONFIG_MEMCG_KMEM
5144 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5145 /*
5146 * For simplicity, we won't allow this to be disabled. It also can't
5147 * be changed if the cgroup has children already, or if tasks had
5148 * already joined.
5149 *
5150 * If tasks join before we set the limit, a person looking at
5151 * kmem.usage_in_bytes will have no way to determine when it took
5152 * place, which makes the value quite meaningless.
5153 *
5154 * After it first became limited, changes in the value of the limit are
5155 * of course permitted.
510fc4e1 5156 */
0999821b 5157 mutex_lock(&memcg_create_mutex);
510fc4e1
GC
5158 mutex_lock(&set_limit_mutex);
5159 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
b5f99b53 5160 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
510fc4e1
GC
5161 ret = -EBUSY;
5162 goto out;
5163 }
5164 ret = res_counter_set_limit(&memcg->kmem, val);
5165 VM_BUG_ON(ret);
5166
55007d84
GC
5167 ret = memcg_update_cache_sizes(memcg);
5168 if (ret) {
5169 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5170 goto out;
5171 }
692e89ab
GC
5172 static_key_slow_inc(&memcg_kmem_enabled_key);
5173 /*
5174 * setting the active bit after the inc will guarantee no one
5175 * starts accounting before all call sites are patched
5176 */
5177 memcg_kmem_set_active(memcg);
510fc4e1
GC
5178 } else
5179 ret = res_counter_set_limit(&memcg->kmem, val);
5180out:
5181 mutex_unlock(&set_limit_mutex);
0999821b 5182 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5183#endif
5184 return ret;
5185}
5186
6d043990 5187#ifdef CONFIG_MEMCG_KMEM
55007d84 5188static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5189{
55007d84 5190 int ret = 0;
510fc4e1
GC
5191 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5192 if (!parent)
55007d84
GC
5193 goto out;
5194
510fc4e1 5195 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5196 /*
5197 * When that happen, we need to disable the static branch only on those
5198 * memcgs that enabled it. To achieve this, we would be forced to
5199 * complicate the code by keeping track of which memcgs were the ones
5200 * that actually enabled limits, and which ones got it from its
5201 * parents.
5202 *
5203 * It is a lot simpler just to do static_key_slow_inc() on every child
5204 * that is accounted.
5205 */
55007d84
GC
5206 if (!memcg_kmem_is_active(memcg))
5207 goto out;
5208
5209 /*
10d5ebf4
LZ
5210 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5211 * memcg is active already. If the later initialization fails then the
5212 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5213 */
55007d84
GC
5214 static_key_slow_inc(&memcg_kmem_enabled_key);
5215
5216 mutex_lock(&set_limit_mutex);
425c598d 5217 memcg_stop_kmem_account();
55007d84 5218 ret = memcg_update_cache_sizes(memcg);
425c598d 5219 memcg_resume_kmem_account();
55007d84 5220 mutex_unlock(&set_limit_mutex);
55007d84
GC
5221out:
5222 return ret;
510fc4e1 5223}
6d043990 5224#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5225
628f4235
KH
5226/*
5227 * The user of this function is...
5228 * RES_LIMIT.
5229 */
856c13aa
PM
5230static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5231 const char *buffer)
8cdea7c0 5232{
628f4235 5233 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5234 enum res_type type;
5235 int name;
628f4235
KH
5236 unsigned long long val;
5237 int ret;
5238
8c7c6e34
KH
5239 type = MEMFILE_TYPE(cft->private);
5240 name = MEMFILE_ATTR(cft->private);
af36f906 5241
8c7c6e34 5242 switch (name) {
628f4235 5243 case RES_LIMIT:
4b3bde4c
BS
5244 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5245 ret = -EINVAL;
5246 break;
5247 }
628f4235
KH
5248 /* This function does all necessary parse...reuse it */
5249 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5250 if (ret)
5251 break;
5252 if (type == _MEM)
628f4235 5253 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5254 else if (type == _MEMSWAP)
8c7c6e34 5255 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
5256 else if (type == _KMEM)
5257 ret = memcg_update_kmem_limit(cont, val);
5258 else
5259 return -EINVAL;
628f4235 5260 break;
296c81d8
BS
5261 case RES_SOFT_LIMIT:
5262 ret = res_counter_memparse_write_strategy(buffer, &val);
5263 if (ret)
5264 break;
5265 /*
5266 * For memsw, soft limits are hard to implement in terms
5267 * of semantics, for now, we support soft limits for
5268 * control without swap
5269 */
5270 if (type == _MEM)
5271 ret = res_counter_set_soft_limit(&memcg->res, val);
5272 else
5273 ret = -EINVAL;
5274 break;
628f4235
KH
5275 default:
5276 ret = -EINVAL; /* should be BUG() ? */
5277 break;
5278 }
5279 return ret;
8cdea7c0
BS
5280}
5281
fee7b548
KH
5282static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5283 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5284{
5285 struct cgroup *cgroup;
5286 unsigned long long min_limit, min_memsw_limit, tmp;
5287
5288 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5289 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5290 cgroup = memcg->css.cgroup;
5291 if (!memcg->use_hierarchy)
5292 goto out;
5293
5294 while (cgroup->parent) {
5295 cgroup = cgroup->parent;
5296 memcg = mem_cgroup_from_cont(cgroup);
5297 if (!memcg->use_hierarchy)
5298 break;
5299 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5300 min_limit = min(min_limit, tmp);
5301 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5302 min_memsw_limit = min(min_memsw_limit, tmp);
5303 }
5304out:
5305 *mem_limit = min_limit;
5306 *memsw_limit = min_memsw_limit;
fee7b548
KH
5307}
5308
29f2a4da 5309static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 5310{
af36f906 5311 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5312 int name;
5313 enum res_type type;
c84872e1 5314
8c7c6e34
KH
5315 type = MEMFILE_TYPE(event);
5316 name = MEMFILE_ATTR(event);
af36f906 5317
8c7c6e34 5318 switch (name) {
29f2a4da 5319 case RES_MAX_USAGE:
8c7c6e34 5320 if (type == _MEM)
c0ff4b85 5321 res_counter_reset_max(&memcg->res);
510fc4e1 5322 else if (type == _MEMSWAP)
c0ff4b85 5323 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5324 else if (type == _KMEM)
5325 res_counter_reset_max(&memcg->kmem);
5326 else
5327 return -EINVAL;
29f2a4da
PE
5328 break;
5329 case RES_FAILCNT:
8c7c6e34 5330 if (type == _MEM)
c0ff4b85 5331 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5332 else if (type == _MEMSWAP)
c0ff4b85 5333 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5334 else if (type == _KMEM)
5335 res_counter_reset_failcnt(&memcg->kmem);
5336 else
5337 return -EINVAL;
29f2a4da
PE
5338 break;
5339 }
f64c3f54 5340
85cc59db 5341 return 0;
c84872e1
PE
5342}
5343
7dc74be0
DN
5344static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5345 struct cftype *cft)
5346{
5347 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5348}
5349
02491447 5350#ifdef CONFIG_MMU
7dc74be0
DN
5351static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5352 struct cftype *cft, u64 val)
5353{
c0ff4b85 5354 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
5355
5356 if (val >= (1 << NR_MOVE_TYPE))
5357 return -EINVAL;
ee5e8472 5358
7dc74be0 5359 /*
ee5e8472
GC
5360 * No kind of locking is needed in here, because ->can_attach() will
5361 * check this value once in the beginning of the process, and then carry
5362 * on with stale data. This means that changes to this value will only
5363 * affect task migrations starting after the change.
7dc74be0 5364 */
c0ff4b85 5365 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5366 return 0;
5367}
02491447
DN
5368#else
5369static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5370 struct cftype *cft, u64 val)
5371{
5372 return -ENOSYS;
5373}
5374#endif
7dc74be0 5375
406eb0c9 5376#ifdef CONFIG_NUMA
ab215884 5377static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 5378 struct seq_file *m)
406eb0c9
YH
5379{
5380 int nid;
5381 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5382 unsigned long node_nr;
d79154bb 5383 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 5384
d79154bb 5385 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5386 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5387 for_each_node_state(nid, N_MEMORY) {
d79154bb 5388 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5389 seq_printf(m, " N%d=%lu", nid, node_nr);
5390 }
5391 seq_putc(m, '\n');
5392
d79154bb 5393 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5394 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5395 for_each_node_state(nid, N_MEMORY) {
d79154bb 5396 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5397 LRU_ALL_FILE);
406eb0c9
YH
5398 seq_printf(m, " N%d=%lu", nid, node_nr);
5399 }
5400 seq_putc(m, '\n');
5401
d79154bb 5402 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5403 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5404 for_each_node_state(nid, N_MEMORY) {
d79154bb 5405 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5406 LRU_ALL_ANON);
406eb0c9
YH
5407 seq_printf(m, " N%d=%lu", nid, node_nr);
5408 }
5409 seq_putc(m, '\n');
5410
d79154bb 5411 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5412 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5413 for_each_node_state(nid, N_MEMORY) {
d79154bb 5414 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5415 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5416 seq_printf(m, " N%d=%lu", nid, node_nr);
5417 }
5418 seq_putc(m, '\n');
5419 return 0;
5420}
5421#endif /* CONFIG_NUMA */
5422
af7c4b0e
JW
5423static inline void mem_cgroup_lru_names_not_uptodate(void)
5424{
5425 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5426}
5427
ab215884 5428static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 5429 struct seq_file *m)
d2ceb9b7 5430{
d79154bb 5431 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
5432 struct mem_cgroup *mi;
5433 unsigned int i;
406eb0c9 5434
af7c4b0e 5435 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5436 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5437 continue;
af7c4b0e
JW
5438 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5439 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5440 }
7b854121 5441
af7c4b0e
JW
5442 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5443 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5444 mem_cgroup_read_events(memcg, i));
5445
5446 for (i = 0; i < NR_LRU_LISTS; i++)
5447 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5448 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5449
14067bb3 5450 /* Hierarchical information */
fee7b548
KH
5451 {
5452 unsigned long long limit, memsw_limit;
d79154bb 5453 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5454 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5455 if (do_swap_account)
78ccf5b5
JW
5456 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5457 memsw_limit);
fee7b548 5458 }
7f016ee8 5459
af7c4b0e
JW
5460 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5461 long long val = 0;
5462
bff6bb83 5463 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5464 continue;
af7c4b0e
JW
5465 for_each_mem_cgroup_tree(mi, memcg)
5466 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5467 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5468 }
5469
5470 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5471 unsigned long long val = 0;
5472
5473 for_each_mem_cgroup_tree(mi, memcg)
5474 val += mem_cgroup_read_events(mi, i);
5475 seq_printf(m, "total_%s %llu\n",
5476 mem_cgroup_events_names[i], val);
5477 }
5478
5479 for (i = 0; i < NR_LRU_LISTS; i++) {
5480 unsigned long long val = 0;
5481
5482 for_each_mem_cgroup_tree(mi, memcg)
5483 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5484 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5485 }
14067bb3 5486
7f016ee8 5487#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5488 {
5489 int nid, zid;
5490 struct mem_cgroup_per_zone *mz;
89abfab1 5491 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5492 unsigned long recent_rotated[2] = {0, 0};
5493 unsigned long recent_scanned[2] = {0, 0};
5494
5495 for_each_online_node(nid)
5496 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5497 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5498 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5499
89abfab1
HD
5500 recent_rotated[0] += rstat->recent_rotated[0];
5501 recent_rotated[1] += rstat->recent_rotated[1];
5502 recent_scanned[0] += rstat->recent_scanned[0];
5503 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5504 }
78ccf5b5
JW
5505 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5506 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5507 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5508 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5509 }
5510#endif
5511
d2ceb9b7
KH
5512 return 0;
5513}
5514
a7885eb8
KM
5515static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5516{
5517 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5518
1f4c025b 5519 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5520}
5521
5522static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5523 u64 val)
5524{
5525 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5526 struct mem_cgroup *parent;
068b38c1 5527
a7885eb8
KM
5528 if (val > 100)
5529 return -EINVAL;
5530
5531 if (cgrp->parent == NULL)
5532 return -EINVAL;
5533
5534 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1 5535
0999821b 5536 mutex_lock(&memcg_create_mutex);
068b38c1 5537
a7885eb8 5538 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5539 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5540 mutex_unlock(&memcg_create_mutex);
a7885eb8 5541 return -EINVAL;
068b38c1 5542 }
a7885eb8 5543
a7885eb8 5544 memcg->swappiness = val;
a7885eb8 5545
0999821b 5546 mutex_unlock(&memcg_create_mutex);
068b38c1 5547
a7885eb8
KM
5548 return 0;
5549}
5550
2e72b634
KS
5551static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5552{
5553 struct mem_cgroup_threshold_ary *t;
5554 u64 usage;
5555 int i;
5556
5557 rcu_read_lock();
5558 if (!swap)
2c488db2 5559 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5560 else
2c488db2 5561 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5562
5563 if (!t)
5564 goto unlock;
5565
5566 usage = mem_cgroup_usage(memcg, swap);
5567
5568 /*
748dad36 5569 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5570 * If it's not true, a threshold was crossed after last
5571 * call of __mem_cgroup_threshold().
5572 */
5407a562 5573 i = t->current_threshold;
2e72b634
KS
5574
5575 /*
5576 * Iterate backward over array of thresholds starting from
5577 * current_threshold and check if a threshold is crossed.
5578 * If none of thresholds below usage is crossed, we read
5579 * only one element of the array here.
5580 */
5581 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5582 eventfd_signal(t->entries[i].eventfd, 1);
5583
5584 /* i = current_threshold + 1 */
5585 i++;
5586
5587 /*
5588 * Iterate forward over array of thresholds starting from
5589 * current_threshold+1 and check if a threshold is crossed.
5590 * If none of thresholds above usage is crossed, we read
5591 * only one element of the array here.
5592 */
5593 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5594 eventfd_signal(t->entries[i].eventfd, 1);
5595
5596 /* Update current_threshold */
5407a562 5597 t->current_threshold = i - 1;
2e72b634
KS
5598unlock:
5599 rcu_read_unlock();
5600}
5601
5602static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5603{
ad4ca5f4
KS
5604 while (memcg) {
5605 __mem_cgroup_threshold(memcg, false);
5606 if (do_swap_account)
5607 __mem_cgroup_threshold(memcg, true);
5608
5609 memcg = parent_mem_cgroup(memcg);
5610 }
2e72b634
KS
5611}
5612
5613static int compare_thresholds(const void *a, const void *b)
5614{
5615 const struct mem_cgroup_threshold *_a = a;
5616 const struct mem_cgroup_threshold *_b = b;
5617
5618 return _a->threshold - _b->threshold;
5619}
5620
c0ff4b85 5621static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5622{
5623 struct mem_cgroup_eventfd_list *ev;
5624
c0ff4b85 5625 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5626 eventfd_signal(ev->eventfd, 1);
5627 return 0;
5628}
5629
c0ff4b85 5630static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5631{
7d74b06f
KH
5632 struct mem_cgroup *iter;
5633
c0ff4b85 5634 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5635 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5636}
5637
5638static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5639 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
5640{
5641 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5642 struct mem_cgroup_thresholds *thresholds;
5643 struct mem_cgroup_threshold_ary *new;
86ae53e1 5644 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5645 u64 threshold, usage;
2c488db2 5646 int i, size, ret;
2e72b634
KS
5647
5648 ret = res_counter_memparse_write_strategy(args, &threshold);
5649 if (ret)
5650 return ret;
5651
5652 mutex_lock(&memcg->thresholds_lock);
2c488db2 5653
2e72b634 5654 if (type == _MEM)
2c488db2 5655 thresholds = &memcg->thresholds;
2e72b634 5656 else if (type == _MEMSWAP)
2c488db2 5657 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5658 else
5659 BUG();
5660
5661 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5662
5663 /* Check if a threshold crossed before adding a new one */
2c488db2 5664 if (thresholds->primary)
2e72b634
KS
5665 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5666
2c488db2 5667 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5668
5669 /* Allocate memory for new array of thresholds */
2c488db2 5670 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5671 GFP_KERNEL);
2c488db2 5672 if (!new) {
2e72b634
KS
5673 ret = -ENOMEM;
5674 goto unlock;
5675 }
2c488db2 5676 new->size = size;
2e72b634
KS
5677
5678 /* Copy thresholds (if any) to new array */
2c488db2
KS
5679 if (thresholds->primary) {
5680 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5681 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5682 }
5683
2e72b634 5684 /* Add new threshold */
2c488db2
KS
5685 new->entries[size - 1].eventfd = eventfd;
5686 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5687
5688 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5689 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5690 compare_thresholds, NULL);
5691
5692 /* Find current threshold */
2c488db2 5693 new->current_threshold = -1;
2e72b634 5694 for (i = 0; i < size; i++) {
748dad36 5695 if (new->entries[i].threshold <= usage) {
2e72b634 5696 /*
2c488db2
KS
5697 * new->current_threshold will not be used until
5698 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5699 * it here.
5700 */
2c488db2 5701 ++new->current_threshold;
748dad36
SZ
5702 } else
5703 break;
2e72b634
KS
5704 }
5705
2c488db2
KS
5706 /* Free old spare buffer and save old primary buffer as spare */
5707 kfree(thresholds->spare);
5708 thresholds->spare = thresholds->primary;
5709
5710 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5711
907860ed 5712 /* To be sure that nobody uses thresholds */
2e72b634
KS
5713 synchronize_rcu();
5714
2e72b634
KS
5715unlock:
5716 mutex_unlock(&memcg->thresholds_lock);
5717
5718 return ret;
5719}
5720
907860ed 5721static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 5722 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
5723{
5724 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5725 struct mem_cgroup_thresholds *thresholds;
5726 struct mem_cgroup_threshold_ary *new;
86ae53e1 5727 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5728 u64 usage;
2c488db2 5729 int i, j, size;
2e72b634
KS
5730
5731 mutex_lock(&memcg->thresholds_lock);
5732 if (type == _MEM)
2c488db2 5733 thresholds = &memcg->thresholds;
2e72b634 5734 else if (type == _MEMSWAP)
2c488db2 5735 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5736 else
5737 BUG();
5738
371528ca
AV
5739 if (!thresholds->primary)
5740 goto unlock;
5741
2e72b634
KS
5742 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5743
5744 /* Check if a threshold crossed before removing */
5745 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5746
5747 /* Calculate new number of threshold */
2c488db2
KS
5748 size = 0;
5749 for (i = 0; i < thresholds->primary->size; i++) {
5750 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5751 size++;
5752 }
5753
2c488db2 5754 new = thresholds->spare;
907860ed 5755
2e72b634
KS
5756 /* Set thresholds array to NULL if we don't have thresholds */
5757 if (!size) {
2c488db2
KS
5758 kfree(new);
5759 new = NULL;
907860ed 5760 goto swap_buffers;
2e72b634
KS
5761 }
5762
2c488db2 5763 new->size = size;
2e72b634
KS
5764
5765 /* Copy thresholds and find current threshold */
2c488db2
KS
5766 new->current_threshold = -1;
5767 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5768 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5769 continue;
5770
2c488db2 5771 new->entries[j] = thresholds->primary->entries[i];
748dad36 5772 if (new->entries[j].threshold <= usage) {
2e72b634 5773 /*
2c488db2 5774 * new->current_threshold will not be used
2e72b634
KS
5775 * until rcu_assign_pointer(), so it's safe to increment
5776 * it here.
5777 */
2c488db2 5778 ++new->current_threshold;
2e72b634
KS
5779 }
5780 j++;
5781 }
5782
907860ed 5783swap_buffers:
2c488db2
KS
5784 /* Swap primary and spare array */
5785 thresholds->spare = thresholds->primary;
8c757763
SZ
5786 /* If all events are unregistered, free the spare array */
5787 if (!new) {
5788 kfree(thresholds->spare);
5789 thresholds->spare = NULL;
5790 }
5791
2c488db2 5792 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5793
907860ed 5794 /* To be sure that nobody uses thresholds */
2e72b634 5795 synchronize_rcu();
371528ca 5796unlock:
2e72b634 5797 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5798}
c1e862c1 5799
9490ff27
KH
5800static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5801 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5802{
5803 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5804 struct mem_cgroup_eventfd_list *event;
86ae53e1 5805 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5806
5807 BUG_ON(type != _OOM_TYPE);
5808 event = kmalloc(sizeof(*event), GFP_KERNEL);
5809 if (!event)
5810 return -ENOMEM;
5811
1af8efe9 5812 spin_lock(&memcg_oom_lock);
9490ff27
KH
5813
5814 event->eventfd = eventfd;
5815 list_add(&event->list, &memcg->oom_notify);
5816
5817 /* already in OOM ? */
79dfdacc 5818 if (atomic_read(&memcg->under_oom))
9490ff27 5819 eventfd_signal(eventfd, 1);
1af8efe9 5820 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5821
5822 return 0;
5823}
5824
907860ed 5825static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
5826 struct cftype *cft, struct eventfd_ctx *eventfd)
5827{
c0ff4b85 5828 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 5829 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5830 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5831
5832 BUG_ON(type != _OOM_TYPE);
5833
1af8efe9 5834 spin_lock(&memcg_oom_lock);
9490ff27 5835
c0ff4b85 5836 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5837 if (ev->eventfd == eventfd) {
5838 list_del(&ev->list);
5839 kfree(ev);
5840 }
5841 }
5842
1af8efe9 5843 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5844}
5845
3c11ecf4
KH
5846static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5847 struct cftype *cft, struct cgroup_map_cb *cb)
5848{
c0ff4b85 5849 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 5850
c0ff4b85 5851 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5852
c0ff4b85 5853 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5854 cb->fill(cb, "under_oom", 1);
5855 else
5856 cb->fill(cb, "under_oom", 0);
5857 return 0;
5858}
5859
3c11ecf4
KH
5860static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5861 struct cftype *cft, u64 val)
5862{
c0ff4b85 5863 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
5864 struct mem_cgroup *parent;
5865
5866 /* cannot set to root cgroup and only 0 and 1 are allowed */
5867 if (!cgrp->parent || !((val == 0) || (val == 1)))
5868 return -EINVAL;
5869
5870 parent = mem_cgroup_from_cont(cgrp->parent);
5871
0999821b 5872 mutex_lock(&memcg_create_mutex);
3c11ecf4 5873 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5874 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5875 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5876 return -EINVAL;
5877 }
c0ff4b85 5878 memcg->oom_kill_disable = val;
4d845ebf 5879 if (!val)
c0ff4b85 5880 memcg_oom_recover(memcg);
0999821b 5881 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5882 return 0;
5883}
5884
c255a458 5885#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5886static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5887{
55007d84
GC
5888 int ret;
5889
2633d7a0 5890 memcg->kmemcg_id = -1;
55007d84
GC
5891 ret = memcg_propagate_kmem(memcg);
5892 if (ret)
5893 return ret;
2633d7a0 5894
1d62e436 5895 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5896}
e5671dfa 5897
10d5ebf4 5898static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5899{
1d62e436 5900 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5901}
5902
5903static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5904{
5905 if (!memcg_kmem_is_active(memcg))
5906 return;
5907
5908 /*
5909 * kmem charges can outlive the cgroup. In the case of slab
5910 * pages, for instance, a page contain objects from various
5911 * processes. As we prevent from taking a reference for every
5912 * such allocation we have to be careful when doing uncharge
5913 * (see memcg_uncharge_kmem) and here during offlining.
5914 *
5915 * The idea is that that only the _last_ uncharge which sees
5916 * the dead memcg will drop the last reference. An additional
5917 * reference is taken here before the group is marked dead
5918 * which is then paired with css_put during uncharge resp. here.
5919 *
5920 * Although this might sound strange as this path is called from
5921 * css_offline() when the referencemight have dropped down to 0
5922 * and shouldn't be incremented anymore (css_tryget would fail)
5923 * we do not have other options because of the kmem allocations
5924 * lifetime.
5925 */
5926 css_get(&memcg->css);
7de37682
GC
5927
5928 memcg_kmem_mark_dead(memcg);
5929
5930 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5931 return;
5932
7de37682 5933 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5934 css_put(&memcg->css);
d1a4c0b3 5935}
e5671dfa 5936#else
cbe128e3 5937static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5938{
5939 return 0;
5940}
d1a4c0b3 5941
10d5ebf4
LZ
5942static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5943{
5944}
5945
5946static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5947{
5948}
e5671dfa
GC
5949#endif
5950
8cdea7c0
BS
5951static struct cftype mem_cgroup_files[] = {
5952 {
0eea1030 5953 .name = "usage_in_bytes",
8c7c6e34 5954 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5955 .read = mem_cgroup_read,
9490ff27
KH
5956 .register_event = mem_cgroup_usage_register_event,
5957 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5958 },
c84872e1
PE
5959 {
5960 .name = "max_usage_in_bytes",
8c7c6e34 5961 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5962 .trigger = mem_cgroup_reset,
af36f906 5963 .read = mem_cgroup_read,
c84872e1 5964 },
8cdea7c0 5965 {
0eea1030 5966 .name = "limit_in_bytes",
8c7c6e34 5967 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5968 .write_string = mem_cgroup_write,
af36f906 5969 .read = mem_cgroup_read,
8cdea7c0 5970 },
296c81d8
BS
5971 {
5972 .name = "soft_limit_in_bytes",
5973 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5974 .write_string = mem_cgroup_write,
af36f906 5975 .read = mem_cgroup_read,
296c81d8 5976 },
8cdea7c0
BS
5977 {
5978 .name = "failcnt",
8c7c6e34 5979 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5980 .trigger = mem_cgroup_reset,
af36f906 5981 .read = mem_cgroup_read,
8cdea7c0 5982 },
d2ceb9b7
KH
5983 {
5984 .name = "stat",
ab215884 5985 .read_seq_string = memcg_stat_show,
d2ceb9b7 5986 },
c1e862c1
KH
5987 {
5988 .name = "force_empty",
5989 .trigger = mem_cgroup_force_empty_write,
5990 },
18f59ea7
BS
5991 {
5992 .name = "use_hierarchy",
f00baae7 5993 .flags = CFTYPE_INSANE,
18f59ea7
BS
5994 .write_u64 = mem_cgroup_hierarchy_write,
5995 .read_u64 = mem_cgroup_hierarchy_read,
5996 },
a7885eb8
KM
5997 {
5998 .name = "swappiness",
5999 .read_u64 = mem_cgroup_swappiness_read,
6000 .write_u64 = mem_cgroup_swappiness_write,
6001 },
7dc74be0
DN
6002 {
6003 .name = "move_charge_at_immigrate",
6004 .read_u64 = mem_cgroup_move_charge_read,
6005 .write_u64 = mem_cgroup_move_charge_write,
6006 },
9490ff27
KH
6007 {
6008 .name = "oom_control",
3c11ecf4
KH
6009 .read_map = mem_cgroup_oom_control_read,
6010 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6011 .register_event = mem_cgroup_oom_register_event,
6012 .unregister_event = mem_cgroup_oom_unregister_event,
6013 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6014 },
70ddf637
AV
6015 {
6016 .name = "pressure_level",
6017 .register_event = vmpressure_register_event,
6018 .unregister_event = vmpressure_unregister_event,
6019 },
406eb0c9
YH
6020#ifdef CONFIG_NUMA
6021 {
6022 .name = "numa_stat",
ab215884 6023 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
6024 },
6025#endif
510fc4e1
GC
6026#ifdef CONFIG_MEMCG_KMEM
6027 {
6028 .name = "kmem.limit_in_bytes",
6029 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6030 .write_string = mem_cgroup_write,
6031 .read = mem_cgroup_read,
6032 },
6033 {
6034 .name = "kmem.usage_in_bytes",
6035 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6036 .read = mem_cgroup_read,
6037 },
6038 {
6039 .name = "kmem.failcnt",
6040 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6041 .trigger = mem_cgroup_reset,
6042 .read = mem_cgroup_read,
6043 },
6044 {
6045 .name = "kmem.max_usage_in_bytes",
6046 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6047 .trigger = mem_cgroup_reset,
6048 .read = mem_cgroup_read,
6049 },
749c5415
GC
6050#ifdef CONFIG_SLABINFO
6051 {
6052 .name = "kmem.slabinfo",
6053 .read_seq_string = mem_cgroup_slabinfo_read,
6054 },
6055#endif
8c7c6e34 6056#endif
6bc10349 6057 { }, /* terminate */
af36f906 6058};
8c7c6e34 6059
2d11085e
MH
6060#ifdef CONFIG_MEMCG_SWAP
6061static struct cftype memsw_cgroup_files[] = {
6062 {
6063 .name = "memsw.usage_in_bytes",
6064 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6065 .read = mem_cgroup_read,
6066 .register_event = mem_cgroup_usage_register_event,
6067 .unregister_event = mem_cgroup_usage_unregister_event,
6068 },
6069 {
6070 .name = "memsw.max_usage_in_bytes",
6071 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6072 .trigger = mem_cgroup_reset,
6073 .read = mem_cgroup_read,
6074 },
6075 {
6076 .name = "memsw.limit_in_bytes",
6077 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6078 .write_string = mem_cgroup_write,
6079 .read = mem_cgroup_read,
6080 },
6081 {
6082 .name = "memsw.failcnt",
6083 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6084 .trigger = mem_cgroup_reset,
6085 .read = mem_cgroup_read,
6086 },
6087 { }, /* terminate */
6088};
6089#endif
c0ff4b85 6090static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6091{
6092 struct mem_cgroup_per_node *pn;
1ecaab2b 6093 struct mem_cgroup_per_zone *mz;
41e3355d 6094 int zone, tmp = node;
1ecaab2b
KH
6095 /*
6096 * This routine is called against possible nodes.
6097 * But it's BUG to call kmalloc() against offline node.
6098 *
6099 * TODO: this routine can waste much memory for nodes which will
6100 * never be onlined. It's better to use memory hotplug callback
6101 * function.
6102 */
41e3355d
KH
6103 if (!node_state(node, N_NORMAL_MEMORY))
6104 tmp = -1;
17295c88 6105 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6106 if (!pn)
6107 return 1;
1ecaab2b 6108
1ecaab2b
KH
6109 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6110 mz = &pn->zoneinfo[zone];
bea8c150 6111 lruvec_init(&mz->lruvec);
f64c3f54 6112 mz->usage_in_excess = 0;
4e416953 6113 mz->on_tree = false;
d79154bb 6114 mz->memcg = memcg;
1ecaab2b 6115 }
54f72fe0 6116 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6117 return 0;
6118}
6119
c0ff4b85 6120static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6121{
54f72fe0 6122 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6123}
6124
33327948
KH
6125static struct mem_cgroup *mem_cgroup_alloc(void)
6126{
d79154bb 6127 struct mem_cgroup *memcg;
45cf7ebd 6128 size_t size = memcg_size();
33327948 6129
45cf7ebd 6130 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6131 if (size < PAGE_SIZE)
d79154bb 6132 memcg = kzalloc(size, GFP_KERNEL);
33327948 6133 else
d79154bb 6134 memcg = vzalloc(size);
33327948 6135
d79154bb 6136 if (!memcg)
e7bbcdf3
DC
6137 return NULL;
6138
d79154bb
HD
6139 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6140 if (!memcg->stat)
d2e61b8d 6141 goto out_free;
d79154bb
HD
6142 spin_lock_init(&memcg->pcp_counter_lock);
6143 return memcg;
d2e61b8d
DC
6144
6145out_free:
6146 if (size < PAGE_SIZE)
d79154bb 6147 kfree(memcg);
d2e61b8d 6148 else
d79154bb 6149 vfree(memcg);
d2e61b8d 6150 return NULL;
33327948
KH
6151}
6152
59927fb9 6153/*
c8b2a36f
GC
6154 * At destroying mem_cgroup, references from swap_cgroup can remain.
6155 * (scanning all at force_empty is too costly...)
6156 *
6157 * Instead of clearing all references at force_empty, we remember
6158 * the number of reference from swap_cgroup and free mem_cgroup when
6159 * it goes down to 0.
6160 *
6161 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6162 */
c8b2a36f
GC
6163
6164static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6165{
c8b2a36f 6166 int node;
45cf7ebd 6167 size_t size = memcg_size();
59927fb9 6168
c8b2a36f
GC
6169 mem_cgroup_remove_from_trees(memcg);
6170 free_css_id(&mem_cgroup_subsys, &memcg->css);
6171
6172 for_each_node(node)
6173 free_mem_cgroup_per_zone_info(memcg, node);
6174
6175 free_percpu(memcg->stat);
6176
3f134619
GC
6177 /*
6178 * We need to make sure that (at least for now), the jump label
6179 * destruction code runs outside of the cgroup lock. This is because
6180 * get_online_cpus(), which is called from the static_branch update,
6181 * can't be called inside the cgroup_lock. cpusets are the ones
6182 * enforcing this dependency, so if they ever change, we might as well.
6183 *
6184 * schedule_work() will guarantee this happens. Be careful if you need
6185 * to move this code around, and make sure it is outside
6186 * the cgroup_lock.
6187 */
a8964b9b 6188 disarm_static_keys(memcg);
3afe36b1
GC
6189 if (size < PAGE_SIZE)
6190 kfree(memcg);
6191 else
6192 vfree(memcg);
59927fb9 6193}
3afe36b1 6194
7bcc1bb1
DN
6195/*
6196 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6197 */
e1aab161 6198struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6199{
c0ff4b85 6200 if (!memcg->res.parent)
7bcc1bb1 6201 return NULL;
c0ff4b85 6202 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6203}
e1aab161 6204EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6205
8787a1df 6206static void __init mem_cgroup_soft_limit_tree_init(void)
f64c3f54
BS
6207{
6208 struct mem_cgroup_tree_per_node *rtpn;
6209 struct mem_cgroup_tree_per_zone *rtpz;
6210 int tmp, node, zone;
6211
3ed28fa1 6212 for_each_node(node) {
f64c3f54
BS
6213 tmp = node;
6214 if (!node_state(node, N_NORMAL_MEMORY))
6215 tmp = -1;
6216 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
8787a1df 6217 BUG_ON(!rtpn);
f64c3f54
BS
6218
6219 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6220
6221 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6222 rtpz = &rtpn->rb_tree_per_zone[zone];
6223 rtpz->rb_root = RB_ROOT;
6224 spin_lock_init(&rtpz->lock);
6225 }
6226 }
f64c3f54
BS
6227}
6228
0eb253e2 6229static struct cgroup_subsys_state * __ref
92fb9748 6230mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 6231{
d142e3e6 6232 struct mem_cgroup *memcg;
04046e1a 6233 long error = -ENOMEM;
6d12e2d8 6234 int node;
8cdea7c0 6235
c0ff4b85
R
6236 memcg = mem_cgroup_alloc();
6237 if (!memcg)
04046e1a 6238 return ERR_PTR(error);
78fb7466 6239
3ed28fa1 6240 for_each_node(node)
c0ff4b85 6241 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6242 goto free_out;
f64c3f54 6243
c077719b 6244 /* root ? */
28dbc4b6 6245 if (cont->parent == NULL) {
a41c58a6 6246 root_mem_cgroup = memcg;
d142e3e6
GC
6247 res_counter_init(&memcg->res, NULL);
6248 res_counter_init(&memcg->memsw, NULL);
6249 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6250 }
28dbc4b6 6251
d142e3e6
GC
6252 memcg->last_scanned_node = MAX_NUMNODES;
6253 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6254 memcg->move_charge_at_immigrate = 0;
6255 mutex_init(&memcg->thresholds_lock);
6256 spin_lock_init(&memcg->move_lock);
70ddf637 6257 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6258
6259 return &memcg->css;
6260
6261free_out:
6262 __mem_cgroup_free(memcg);
6263 return ERR_PTR(error);
6264}
6265
6266static int
6267mem_cgroup_css_online(struct cgroup *cont)
6268{
6269 struct mem_cgroup *memcg, *parent;
6270 int error = 0;
6271
6272 if (!cont->parent)
6273 return 0;
6274
0999821b 6275 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6276 memcg = mem_cgroup_from_cont(cont);
6277 parent = mem_cgroup_from_cont(cont->parent);
6278
6279 memcg->use_hierarchy = parent->use_hierarchy;
6280 memcg->oom_kill_disable = parent->oom_kill_disable;
6281 memcg->swappiness = mem_cgroup_swappiness(parent);
6282
6283 if (parent->use_hierarchy) {
c0ff4b85
R
6284 res_counter_init(&memcg->res, &parent->res);
6285 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6286 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6287
7bcc1bb1 6288 /*
8d76a979
LZ
6289 * No need to take a reference to the parent because cgroup
6290 * core guarantees its existence.
7bcc1bb1 6291 */
18f59ea7 6292 } else {
c0ff4b85
R
6293 res_counter_init(&memcg->res, NULL);
6294 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6295 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6296 /*
6297 * Deeper hierachy with use_hierarchy == false doesn't make
6298 * much sense so let cgroup subsystem know about this
6299 * unfortunate state in our controller.
6300 */
d142e3e6 6301 if (parent != root_mem_cgroup)
8c7f6edb 6302 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6303 }
cbe128e3
GC
6304
6305 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6306 mutex_unlock(&memcg_create_mutex);
d142e3e6 6307 return error;
8cdea7c0
BS
6308}
6309
5f578161
MH
6310/*
6311 * Announce all parents that a group from their hierarchy is gone.
6312 */
6313static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6314{
6315 struct mem_cgroup *parent = memcg;
6316
6317 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6318 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6319
6320 /*
6321 * if the root memcg is not hierarchical we have to check it
6322 * explicitely.
6323 */
6324 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6325 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6326}
6327
92fb9748 6328static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 6329{
c0ff4b85 6330 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 6331
10d5ebf4
LZ
6332 kmem_cgroup_css_offline(memcg);
6333
5f578161 6334 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6335 mem_cgroup_reparent_charges(memcg);
1f458cbf 6336 mem_cgroup_destroy_all_caches(memcg);
df878fb0
KH
6337}
6338
92fb9748 6339static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 6340{
c0ff4b85 6341 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 6342
10d5ebf4 6343 memcg_destroy_kmem(memcg);
465939a1 6344 __mem_cgroup_free(memcg);
8cdea7c0
BS
6345}
6346
02491447 6347#ifdef CONFIG_MMU
7dc74be0 6348/* Handlers for move charge at task migration. */
854ffa8d
DN
6349#define PRECHARGE_COUNT_AT_ONCE 256
6350static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6351{
854ffa8d
DN
6352 int ret = 0;
6353 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6354 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6355
c0ff4b85 6356 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6357 mc.precharge += count;
6358 /* we don't need css_get for root */
6359 return ret;
6360 }
6361 /* try to charge at once */
6362 if (count > 1) {
6363 struct res_counter *dummy;
6364 /*
c0ff4b85 6365 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6366 * by cgroup_lock_live_cgroup() that it is not removed and we
6367 * are still under the same cgroup_mutex. So we can postpone
6368 * css_get().
6369 */
c0ff4b85 6370 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6371 goto one_by_one;
c0ff4b85 6372 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6373 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6374 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6375 goto one_by_one;
6376 }
6377 mc.precharge += count;
854ffa8d
DN
6378 return ret;
6379 }
6380one_by_one:
6381 /* fall back to one by one charge */
6382 while (count--) {
6383 if (signal_pending(current)) {
6384 ret = -EINTR;
6385 break;
6386 }
6387 if (!batch_count--) {
6388 batch_count = PRECHARGE_COUNT_AT_ONCE;
6389 cond_resched();
6390 }
c0ff4b85
R
6391 ret = __mem_cgroup_try_charge(NULL,
6392 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6393 if (ret)
854ffa8d 6394 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6395 return ret;
854ffa8d
DN
6396 mc.precharge++;
6397 }
4ffef5fe
DN
6398 return ret;
6399}
6400
6401/**
8d32ff84 6402 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6403 * @vma: the vma the pte to be checked belongs
6404 * @addr: the address corresponding to the pte to be checked
6405 * @ptent: the pte to be checked
02491447 6406 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6407 *
6408 * Returns
6409 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6410 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6411 * move charge. if @target is not NULL, the page is stored in target->page
6412 * with extra refcnt got(Callers should handle it).
02491447
DN
6413 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6414 * target for charge migration. if @target is not NULL, the entry is stored
6415 * in target->ent.
4ffef5fe
DN
6416 *
6417 * Called with pte lock held.
6418 */
4ffef5fe
DN
6419union mc_target {
6420 struct page *page;
02491447 6421 swp_entry_t ent;
4ffef5fe
DN
6422};
6423
4ffef5fe 6424enum mc_target_type {
8d32ff84 6425 MC_TARGET_NONE = 0,
4ffef5fe 6426 MC_TARGET_PAGE,
02491447 6427 MC_TARGET_SWAP,
4ffef5fe
DN
6428};
6429
90254a65
DN
6430static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6431 unsigned long addr, pte_t ptent)
4ffef5fe 6432{
90254a65 6433 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6434
90254a65
DN
6435 if (!page || !page_mapped(page))
6436 return NULL;
6437 if (PageAnon(page)) {
6438 /* we don't move shared anon */
4b91355e 6439 if (!move_anon())
90254a65 6440 return NULL;
87946a72
DN
6441 } else if (!move_file())
6442 /* we ignore mapcount for file pages */
90254a65
DN
6443 return NULL;
6444 if (!get_page_unless_zero(page))
6445 return NULL;
6446
6447 return page;
6448}
6449
4b91355e 6450#ifdef CONFIG_SWAP
90254a65
DN
6451static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6452 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6453{
90254a65
DN
6454 struct page *page = NULL;
6455 swp_entry_t ent = pte_to_swp_entry(ptent);
6456
6457 if (!move_anon() || non_swap_entry(ent))
6458 return NULL;
4b91355e
KH
6459 /*
6460 * Because lookup_swap_cache() updates some statistics counter,
6461 * we call find_get_page() with swapper_space directly.
6462 */
33806f06 6463 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6464 if (do_swap_account)
6465 entry->val = ent.val;
6466
6467 return page;
6468}
4b91355e
KH
6469#else
6470static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6471 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6472{
6473 return NULL;
6474}
6475#endif
90254a65 6476
87946a72
DN
6477static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6478 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6479{
6480 struct page *page = NULL;
87946a72
DN
6481 struct address_space *mapping;
6482 pgoff_t pgoff;
6483
6484 if (!vma->vm_file) /* anonymous vma */
6485 return NULL;
6486 if (!move_file())
6487 return NULL;
6488
87946a72
DN
6489 mapping = vma->vm_file->f_mapping;
6490 if (pte_none(ptent))
6491 pgoff = linear_page_index(vma, addr);
6492 else /* pte_file(ptent) is true */
6493 pgoff = pte_to_pgoff(ptent);
6494
6495 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6496 page = find_get_page(mapping, pgoff);
6497
6498#ifdef CONFIG_SWAP
6499 /* shmem/tmpfs may report page out on swap: account for that too. */
6500 if (radix_tree_exceptional_entry(page)) {
6501 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6502 if (do_swap_account)
aa3b1895 6503 *entry = swap;
33806f06 6504 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6505 }
aa3b1895 6506#endif
87946a72
DN
6507 return page;
6508}
6509
8d32ff84 6510static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6511 unsigned long addr, pte_t ptent, union mc_target *target)
6512{
6513 struct page *page = NULL;
6514 struct page_cgroup *pc;
8d32ff84 6515 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6516 swp_entry_t ent = { .val = 0 };
6517
6518 if (pte_present(ptent))
6519 page = mc_handle_present_pte(vma, addr, ptent);
6520 else if (is_swap_pte(ptent))
6521 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6522 else if (pte_none(ptent) || pte_file(ptent))
6523 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6524
6525 if (!page && !ent.val)
8d32ff84 6526 return ret;
02491447
DN
6527 if (page) {
6528 pc = lookup_page_cgroup(page);
6529 /*
6530 * Do only loose check w/o page_cgroup lock.
6531 * mem_cgroup_move_account() checks the pc is valid or not under
6532 * the lock.
6533 */
6534 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6535 ret = MC_TARGET_PAGE;
6536 if (target)
6537 target->page = page;
6538 }
6539 if (!ret || !target)
6540 put_page(page);
6541 }
90254a65
DN
6542 /* There is a swap entry and a page doesn't exist or isn't charged */
6543 if (ent.val && !ret &&
9fb4b7cc 6544 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6545 ret = MC_TARGET_SWAP;
6546 if (target)
6547 target->ent = ent;
4ffef5fe 6548 }
4ffef5fe
DN
6549 return ret;
6550}
6551
12724850
NH
6552#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6553/*
6554 * We don't consider swapping or file mapped pages because THP does not
6555 * support them for now.
6556 * Caller should make sure that pmd_trans_huge(pmd) is true.
6557 */
6558static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6559 unsigned long addr, pmd_t pmd, union mc_target *target)
6560{
6561 struct page *page = NULL;
6562 struct page_cgroup *pc;
6563 enum mc_target_type ret = MC_TARGET_NONE;
6564
6565 page = pmd_page(pmd);
6566 VM_BUG_ON(!page || !PageHead(page));
6567 if (!move_anon())
6568 return ret;
6569 pc = lookup_page_cgroup(page);
6570 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6571 ret = MC_TARGET_PAGE;
6572 if (target) {
6573 get_page(page);
6574 target->page = page;
6575 }
6576 }
6577 return ret;
6578}
6579#else
6580static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6581 unsigned long addr, pmd_t pmd, union mc_target *target)
6582{
6583 return MC_TARGET_NONE;
6584}
6585#endif
6586
4ffef5fe
DN
6587static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6588 unsigned long addr, unsigned long end,
6589 struct mm_walk *walk)
6590{
6591 struct vm_area_struct *vma = walk->private;
6592 pte_t *pte;
6593 spinlock_t *ptl;
6594
12724850
NH
6595 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6596 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6597 mc.precharge += HPAGE_PMD_NR;
6598 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6599 return 0;
12724850 6600 }
03319327 6601
45f83cef
AA
6602 if (pmd_trans_unstable(pmd))
6603 return 0;
4ffef5fe
DN
6604 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6605 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6606 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6607 mc.precharge++; /* increment precharge temporarily */
6608 pte_unmap_unlock(pte - 1, ptl);
6609 cond_resched();
6610
7dc74be0
DN
6611 return 0;
6612}
6613
4ffef5fe
DN
6614static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6615{
6616 unsigned long precharge;
6617 struct vm_area_struct *vma;
6618
dfe076b0 6619 down_read(&mm->mmap_sem);
4ffef5fe
DN
6620 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6621 struct mm_walk mem_cgroup_count_precharge_walk = {
6622 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6623 .mm = mm,
6624 .private = vma,
6625 };
6626 if (is_vm_hugetlb_page(vma))
6627 continue;
4ffef5fe
DN
6628 walk_page_range(vma->vm_start, vma->vm_end,
6629 &mem_cgroup_count_precharge_walk);
6630 }
dfe076b0 6631 up_read(&mm->mmap_sem);
4ffef5fe
DN
6632
6633 precharge = mc.precharge;
6634 mc.precharge = 0;
6635
6636 return precharge;
6637}
6638
4ffef5fe
DN
6639static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6640{
dfe076b0
DN
6641 unsigned long precharge = mem_cgroup_count_precharge(mm);
6642
6643 VM_BUG_ON(mc.moving_task);
6644 mc.moving_task = current;
6645 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6646}
6647
dfe076b0
DN
6648/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6649static void __mem_cgroup_clear_mc(void)
4ffef5fe 6650{
2bd9bb20
KH
6651 struct mem_cgroup *from = mc.from;
6652 struct mem_cgroup *to = mc.to;
4050377b 6653 int i;
2bd9bb20 6654
4ffef5fe 6655 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6656 if (mc.precharge) {
6657 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6658 mc.precharge = 0;
6659 }
6660 /*
6661 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6662 * we must uncharge here.
6663 */
6664 if (mc.moved_charge) {
6665 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6666 mc.moved_charge = 0;
4ffef5fe 6667 }
483c30b5
DN
6668 /* we must fixup refcnts and charges */
6669 if (mc.moved_swap) {
483c30b5
DN
6670 /* uncharge swap account from the old cgroup */
6671 if (!mem_cgroup_is_root(mc.from))
6672 res_counter_uncharge(&mc.from->memsw,
6673 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6674
6675 for (i = 0; i < mc.moved_swap; i++)
6676 css_put(&mc.from->css);
483c30b5
DN
6677
6678 if (!mem_cgroup_is_root(mc.to)) {
6679 /*
6680 * we charged both to->res and to->memsw, so we should
6681 * uncharge to->res.
6682 */
6683 res_counter_uncharge(&mc.to->res,
6684 PAGE_SIZE * mc.moved_swap);
483c30b5 6685 }
4050377b 6686 /* we've already done css_get(mc.to) */
483c30b5
DN
6687 mc.moved_swap = 0;
6688 }
dfe076b0
DN
6689 memcg_oom_recover(from);
6690 memcg_oom_recover(to);
6691 wake_up_all(&mc.waitq);
6692}
6693
6694static void mem_cgroup_clear_mc(void)
6695{
6696 struct mem_cgroup *from = mc.from;
6697
6698 /*
6699 * we must clear moving_task before waking up waiters at the end of
6700 * task migration.
6701 */
6702 mc.moving_task = NULL;
6703 __mem_cgroup_clear_mc();
2bd9bb20 6704 spin_lock(&mc.lock);
4ffef5fe
DN
6705 mc.from = NULL;
6706 mc.to = NULL;
2bd9bb20 6707 spin_unlock(&mc.lock);
32047e2a 6708 mem_cgroup_end_move(from);
4ffef5fe
DN
6709}
6710
761b3ef5
LZ
6711static int mem_cgroup_can_attach(struct cgroup *cgroup,
6712 struct cgroup_taskset *tset)
7dc74be0 6713{
2f7ee569 6714 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6715 int ret = 0;
c0ff4b85 6716 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
ee5e8472 6717 unsigned long move_charge_at_immigrate;
7dc74be0 6718
ee5e8472
GC
6719 /*
6720 * We are now commited to this value whatever it is. Changes in this
6721 * tunable will only affect upcoming migrations, not the current one.
6722 * So we need to save it, and keep it going.
6723 */
6724 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6725 if (move_charge_at_immigrate) {
7dc74be0
DN
6726 struct mm_struct *mm;
6727 struct mem_cgroup *from = mem_cgroup_from_task(p);
6728
c0ff4b85 6729 VM_BUG_ON(from == memcg);
7dc74be0
DN
6730
6731 mm = get_task_mm(p);
6732 if (!mm)
6733 return 0;
7dc74be0 6734 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6735 if (mm->owner == p) {
6736 VM_BUG_ON(mc.from);
6737 VM_BUG_ON(mc.to);
6738 VM_BUG_ON(mc.precharge);
854ffa8d 6739 VM_BUG_ON(mc.moved_charge);
483c30b5 6740 VM_BUG_ON(mc.moved_swap);
32047e2a 6741 mem_cgroup_start_move(from);
2bd9bb20 6742 spin_lock(&mc.lock);
4ffef5fe 6743 mc.from = from;
c0ff4b85 6744 mc.to = memcg;
ee5e8472 6745 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6746 spin_unlock(&mc.lock);
dfe076b0 6747 /* We set mc.moving_task later */
4ffef5fe
DN
6748
6749 ret = mem_cgroup_precharge_mc(mm);
6750 if (ret)
6751 mem_cgroup_clear_mc();
dfe076b0
DN
6752 }
6753 mmput(mm);
7dc74be0
DN
6754 }
6755 return ret;
6756}
6757
761b3ef5
LZ
6758static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6759 struct cgroup_taskset *tset)
7dc74be0 6760{
4ffef5fe 6761 mem_cgroup_clear_mc();
7dc74be0
DN
6762}
6763
4ffef5fe
DN
6764static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6765 unsigned long addr, unsigned long end,
6766 struct mm_walk *walk)
7dc74be0 6767{
4ffef5fe
DN
6768 int ret = 0;
6769 struct vm_area_struct *vma = walk->private;
6770 pte_t *pte;
6771 spinlock_t *ptl;
12724850
NH
6772 enum mc_target_type target_type;
6773 union mc_target target;
6774 struct page *page;
6775 struct page_cgroup *pc;
4ffef5fe 6776
12724850
NH
6777 /*
6778 * We don't take compound_lock() here but no race with splitting thp
6779 * happens because:
6780 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6781 * under splitting, which means there's no concurrent thp split,
6782 * - if another thread runs into split_huge_page() just after we
6783 * entered this if-block, the thread must wait for page table lock
6784 * to be unlocked in __split_huge_page_splitting(), where the main
6785 * part of thp split is not executed yet.
6786 */
6787 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6788 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6789 spin_unlock(&vma->vm_mm->page_table_lock);
6790 return 0;
6791 }
6792 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6793 if (target_type == MC_TARGET_PAGE) {
6794 page = target.page;
6795 if (!isolate_lru_page(page)) {
6796 pc = lookup_page_cgroup(page);
6797 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6798 pc, mc.from, mc.to)) {
12724850
NH
6799 mc.precharge -= HPAGE_PMD_NR;
6800 mc.moved_charge += HPAGE_PMD_NR;
6801 }
6802 putback_lru_page(page);
6803 }
6804 put_page(page);
6805 }
6806 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6807 return 0;
12724850
NH
6808 }
6809
45f83cef
AA
6810 if (pmd_trans_unstable(pmd))
6811 return 0;
4ffef5fe
DN
6812retry:
6813 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6814 for (; addr != end; addr += PAGE_SIZE) {
6815 pte_t ptent = *(pte++);
02491447 6816 swp_entry_t ent;
4ffef5fe
DN
6817
6818 if (!mc.precharge)
6819 break;
6820
8d32ff84 6821 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6822 case MC_TARGET_PAGE:
6823 page = target.page;
6824 if (isolate_lru_page(page))
6825 goto put;
6826 pc = lookup_page_cgroup(page);
7ec99d62 6827 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6828 mc.from, mc.to)) {
4ffef5fe 6829 mc.precharge--;
854ffa8d
DN
6830 /* we uncharge from mc.from later. */
6831 mc.moved_charge++;
4ffef5fe
DN
6832 }
6833 putback_lru_page(page);
8d32ff84 6834put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6835 put_page(page);
6836 break;
02491447
DN
6837 case MC_TARGET_SWAP:
6838 ent = target.ent;
e91cbb42 6839 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6840 mc.precharge--;
483c30b5
DN
6841 /* we fixup refcnts and charges later. */
6842 mc.moved_swap++;
6843 }
02491447 6844 break;
4ffef5fe
DN
6845 default:
6846 break;
6847 }
6848 }
6849 pte_unmap_unlock(pte - 1, ptl);
6850 cond_resched();
6851
6852 if (addr != end) {
6853 /*
6854 * We have consumed all precharges we got in can_attach().
6855 * We try charge one by one, but don't do any additional
6856 * charges to mc.to if we have failed in charge once in attach()
6857 * phase.
6858 */
854ffa8d 6859 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6860 if (!ret)
6861 goto retry;
6862 }
6863
6864 return ret;
6865}
6866
6867static void mem_cgroup_move_charge(struct mm_struct *mm)
6868{
6869 struct vm_area_struct *vma;
6870
6871 lru_add_drain_all();
dfe076b0
DN
6872retry:
6873 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6874 /*
6875 * Someone who are holding the mmap_sem might be waiting in
6876 * waitq. So we cancel all extra charges, wake up all waiters,
6877 * and retry. Because we cancel precharges, we might not be able
6878 * to move enough charges, but moving charge is a best-effort
6879 * feature anyway, so it wouldn't be a big problem.
6880 */
6881 __mem_cgroup_clear_mc();
6882 cond_resched();
6883 goto retry;
6884 }
4ffef5fe
DN
6885 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6886 int ret;
6887 struct mm_walk mem_cgroup_move_charge_walk = {
6888 .pmd_entry = mem_cgroup_move_charge_pte_range,
6889 .mm = mm,
6890 .private = vma,
6891 };
6892 if (is_vm_hugetlb_page(vma))
6893 continue;
4ffef5fe
DN
6894 ret = walk_page_range(vma->vm_start, vma->vm_end,
6895 &mem_cgroup_move_charge_walk);
6896 if (ret)
6897 /*
6898 * means we have consumed all precharges and failed in
6899 * doing additional charge. Just abandon here.
6900 */
6901 break;
6902 }
dfe076b0 6903 up_read(&mm->mmap_sem);
7dc74be0
DN
6904}
6905
761b3ef5
LZ
6906static void mem_cgroup_move_task(struct cgroup *cont,
6907 struct cgroup_taskset *tset)
67e465a7 6908{
2f7ee569 6909 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6910 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6911
dfe076b0 6912 if (mm) {
a433658c
KM
6913 if (mc.to)
6914 mem_cgroup_move_charge(mm);
dfe076b0
DN
6915 mmput(mm);
6916 }
a433658c
KM
6917 if (mc.to)
6918 mem_cgroup_clear_mc();
67e465a7 6919}
5cfb80a7 6920#else /* !CONFIG_MMU */
761b3ef5
LZ
6921static int mem_cgroup_can_attach(struct cgroup *cgroup,
6922 struct cgroup_taskset *tset)
5cfb80a7
DN
6923{
6924 return 0;
6925}
761b3ef5
LZ
6926static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6927 struct cgroup_taskset *tset)
5cfb80a7
DN
6928{
6929}
761b3ef5
LZ
6930static void mem_cgroup_move_task(struct cgroup *cont,
6931 struct cgroup_taskset *tset)
5cfb80a7
DN
6932{
6933}
6934#endif
67e465a7 6935
f00baae7
TH
6936/*
6937 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6938 * to verify sane_behavior flag on each mount attempt.
6939 */
6940static void mem_cgroup_bind(struct cgroup *root)
6941{
6942 /*
6943 * use_hierarchy is forced with sane_behavior. cgroup core
6944 * guarantees that @root doesn't have any children, so turning it
6945 * on for the root memcg is enough.
6946 */
6947 if (cgroup_sane_behavior(root))
6948 mem_cgroup_from_cont(root)->use_hierarchy = true;
6949}
6950
8cdea7c0
BS
6951struct cgroup_subsys mem_cgroup_subsys = {
6952 .name = "memory",
6953 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6954 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6955 .css_online = mem_cgroup_css_online,
92fb9748
TH
6956 .css_offline = mem_cgroup_css_offline,
6957 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6958 .can_attach = mem_cgroup_can_attach,
6959 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6960 .attach = mem_cgroup_move_task,
f00baae7 6961 .bind = mem_cgroup_bind,
6bc10349 6962 .base_cftypes = mem_cgroup_files,
6d12e2d8 6963 .early_init = 0,
04046e1a 6964 .use_id = 1,
8cdea7c0 6965};
c077719b 6966
c255a458 6967#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6968static int __init enable_swap_account(char *s)
6969{
6970 /* consider enabled if no parameter or 1 is given */
a2c8990a 6971 if (!strcmp(s, "1"))
a42c390c 6972 really_do_swap_account = 1;
a2c8990a 6973 else if (!strcmp(s, "0"))
a42c390c
MH
6974 really_do_swap_account = 0;
6975 return 1;
6976}
a2c8990a 6977__setup("swapaccount=", enable_swap_account);
c077719b 6978
2d11085e
MH
6979static void __init memsw_file_init(void)
6980{
6acc8b02
MH
6981 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6982}
6983
6984static void __init enable_swap_cgroup(void)
6985{
6986 if (!mem_cgroup_disabled() && really_do_swap_account) {
6987 do_swap_account = 1;
6988 memsw_file_init();
6989 }
2d11085e 6990}
6acc8b02 6991
2d11085e 6992#else
6acc8b02 6993static void __init enable_swap_cgroup(void)
2d11085e
MH
6994{
6995}
c077719b 6996#endif
2d11085e
MH
6997
6998/*
1081312f
MH
6999 * subsys_initcall() for memory controller.
7000 *
7001 * Some parts like hotcpu_notifier() have to be initialized from this context
7002 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7003 * everything that doesn't depend on a specific mem_cgroup structure should
7004 * be initialized from here.
2d11085e
MH
7005 */
7006static int __init mem_cgroup_init(void)
7007{
7008 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7009 enable_swap_cgroup();
8787a1df 7010 mem_cgroup_soft_limit_tree_init();
e4777496 7011 memcg_stock_init();
2d11085e
MH
7012 return 0;
7013}
7014subsys_initcall(mem_cgroup_init);