thp: fix huge zero page logic for page with pfn == 0
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
08e552c6 57#include "internal.h"
d1a4c0b3 58#include <net/sock.h>
4bd2c1ee 59#include <net/ip.h>
d1a4c0b3 60#include <net/tcp_memcontrol.h>
8cdea7c0 61
8697d331
BS
62#include <asm/uaccess.h>
63
cc8e970c
KM
64#include <trace/events/vmscan.h>
65
a181b0e8 66struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
67EXPORT_SYMBOL(mem_cgroup_subsys);
68
a181b0e8 69#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 70static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 71
c255a458 72#ifdef CONFIG_MEMCG_SWAP
338c8431 73/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 74int do_swap_account __read_mostly;
a42c390c
MH
75
76/* for remember boot option*/
c255a458 77#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
78static int really_do_swap_account __initdata = 1;
79#else
80static int really_do_swap_account __initdata = 0;
81#endif
82
c077719b 83#else
a0db00fc 84#define do_swap_account 0
c077719b
KH
85#endif
86
87
d52aa412
KH
88/*
89 * Statistics for memory cgroup.
90 */
91enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 97 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 98 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
99 MEM_CGROUP_STAT_NSTATS,
100};
101
af7c4b0e
JW
102static const char * const mem_cgroup_stat_names[] = {
103 "cache",
104 "rss",
105 "mapped_file",
106 "swap",
107};
108
e9f8974f
JW
109enum mem_cgroup_events_index {
110 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
111 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
112 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
113 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
114 MEM_CGROUP_EVENTS_NSTATS,
115};
af7c4b0e
JW
116
117static const char * const mem_cgroup_events_names[] = {
118 "pgpgin",
119 "pgpgout",
120 "pgfault",
121 "pgmajfault",
122};
123
58cf188e
SZ
124static const char * const mem_cgroup_lru_names[] = {
125 "inactive_anon",
126 "active_anon",
127 "inactive_file",
128 "active_file",
129 "unevictable",
130};
131
7a159cc9
JW
132/*
133 * Per memcg event counter is incremented at every pagein/pageout. With THP,
134 * it will be incremated by the number of pages. This counter is used for
135 * for trigger some periodic events. This is straightforward and better
136 * than using jiffies etc. to handle periodic memcg event.
137 */
138enum mem_cgroup_events_target {
139 MEM_CGROUP_TARGET_THRESH,
140 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 141 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
142 MEM_CGROUP_NTARGETS,
143};
a0db00fc
KS
144#define THRESHOLDS_EVENTS_TARGET 128
145#define SOFTLIMIT_EVENTS_TARGET 1024
146#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 147
d52aa412 148struct mem_cgroup_stat_cpu {
7a159cc9 149 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 150 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 151 unsigned long nr_page_events;
7a159cc9 152 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
153};
154
527a5ec9 155struct mem_cgroup_reclaim_iter {
5f578161
MH
156 /*
157 * last scanned hierarchy member. Valid only if last_dead_count
158 * matches memcg->dead_count of the hierarchy root group.
159 */
542f85f9 160 struct mem_cgroup *last_visited;
5f578161
MH
161 unsigned long last_dead_count;
162
527a5ec9
JW
163 /* scan generation, increased every round-trip */
164 unsigned int generation;
165};
166
6d12e2d8
KH
167/*
168 * per-zone information in memory controller.
169 */
6d12e2d8 170struct mem_cgroup_per_zone {
6290df54 171 struct lruvec lruvec;
1eb49272 172 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 173
527a5ec9
JW
174 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
175
f64c3f54
BS
176 struct rb_node tree_node; /* RB tree node */
177 unsigned long long usage_in_excess;/* Set to the value by which */
178 /* the soft limit is exceeded*/
179 bool on_tree;
d79154bb 180 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 181 /* use container_of */
6d12e2d8 182};
6d12e2d8
KH
183
184struct mem_cgroup_per_node {
185 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
186};
187
188struct mem_cgroup_lru_info {
45cf7ebd 189 struct mem_cgroup_per_node *nodeinfo[0];
6d12e2d8
KH
190};
191
f64c3f54
BS
192/*
193 * Cgroups above their limits are maintained in a RB-Tree, independent of
194 * their hierarchy representation
195 */
196
197struct mem_cgroup_tree_per_zone {
198 struct rb_root rb_root;
199 spinlock_t lock;
200};
201
202struct mem_cgroup_tree_per_node {
203 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
204};
205
206struct mem_cgroup_tree {
207 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
208};
209
210static struct mem_cgroup_tree soft_limit_tree __read_mostly;
211
2e72b634
KS
212struct mem_cgroup_threshold {
213 struct eventfd_ctx *eventfd;
214 u64 threshold;
215};
216
9490ff27 217/* For threshold */
2e72b634 218struct mem_cgroup_threshold_ary {
748dad36 219 /* An array index points to threshold just below or equal to usage. */
5407a562 220 int current_threshold;
2e72b634
KS
221 /* Size of entries[] */
222 unsigned int size;
223 /* Array of thresholds */
224 struct mem_cgroup_threshold entries[0];
225};
2c488db2
KS
226
227struct mem_cgroup_thresholds {
228 /* Primary thresholds array */
229 struct mem_cgroup_threshold_ary *primary;
230 /*
231 * Spare threshold array.
232 * This is needed to make mem_cgroup_unregister_event() "never fail".
233 * It must be able to store at least primary->size - 1 entries.
234 */
235 struct mem_cgroup_threshold_ary *spare;
236};
237
9490ff27
KH
238/* for OOM */
239struct mem_cgroup_eventfd_list {
240 struct list_head list;
241 struct eventfd_ctx *eventfd;
242};
2e72b634 243
c0ff4b85
R
244static void mem_cgroup_threshold(struct mem_cgroup *memcg);
245static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 246
8cdea7c0
BS
247/*
248 * The memory controller data structure. The memory controller controls both
249 * page cache and RSS per cgroup. We would eventually like to provide
250 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
251 * to help the administrator determine what knobs to tune.
252 *
253 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
254 * we hit the water mark. May be even add a low water mark, such that
255 * no reclaim occurs from a cgroup at it's low water mark, this is
256 * a feature that will be implemented much later in the future.
8cdea7c0
BS
257 */
258struct mem_cgroup {
259 struct cgroup_subsys_state css;
260 /*
261 * the counter to account for memory usage
262 */
263 struct res_counter res;
59927fb9 264
70ddf637
AV
265 /* vmpressure notifications */
266 struct vmpressure vmpressure;
267
59927fb9
HD
268 union {
269 /*
270 * the counter to account for mem+swap usage.
271 */
272 struct res_counter memsw;
273
274 /*
275 * rcu_freeing is used only when freeing struct mem_cgroup,
276 * so put it into a union to avoid wasting more memory.
277 * It must be disjoint from the css field. It could be
278 * in a union with the res field, but res plays a much
279 * larger part in mem_cgroup life than memsw, and might
280 * be of interest, even at time of free, when debugging.
281 * So share rcu_head with the less interesting memsw.
282 */
283 struct rcu_head rcu_freeing;
284 /*
3afe36b1
GC
285 * We also need some space for a worker in deferred freeing.
286 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
287 */
288 struct work_struct work_freeing;
289 };
290
510fc4e1
GC
291 /*
292 * the counter to account for kernel memory usage.
293 */
294 struct res_counter kmem;
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
303
8c7c6e34 304 atomic_t refcnt;
14797e23 305
1f4c025b 306 int swappiness;
3c11ecf4
KH
307 /* OOM-Killer disable */
308 int oom_kill_disable;
a7885eb8 309
22a668d7
KH
310 /* set when res.limit == memsw.limit */
311 bool memsw_is_minimum;
312
2e72b634
KS
313 /* protect arrays of thresholds */
314 struct mutex thresholds_lock;
315
316 /* thresholds for memory usage. RCU-protected */
2c488db2 317 struct mem_cgroup_thresholds thresholds;
907860ed 318
2e72b634 319 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 320 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 321
9490ff27
KH
322 /* For oom notifier event fd */
323 struct list_head oom_notify;
185efc0f 324
7dc74be0
DN
325 /*
326 * Should we move charges of a task when a task is moved into this
327 * mem_cgroup ? And what type of charges should we move ?
328 */
329 unsigned long move_charge_at_immigrate;
619d094b
KH
330 /*
331 * set > 0 if pages under this cgroup are moving to other cgroup.
332 */
333 atomic_t moving_account;
312734c0
KH
334 /* taken only while moving_account > 0 */
335 spinlock_t move_lock;
d52aa412 336 /*
c62b1a3b 337 * percpu counter.
d52aa412 338 */
3a7951b4 339 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
340 /*
341 * used when a cpu is offlined or other synchronizations
342 * See mem_cgroup_read_stat().
343 */
344 struct mem_cgroup_stat_cpu nocpu_base;
345 spinlock_t pcp_counter_lock;
d1a4c0b3 346
5f578161 347 atomic_t dead_count;
4bd2c1ee 348#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
349 struct tcp_memcontrol tcp_mem;
350#endif
2633d7a0
GC
351#if defined(CONFIG_MEMCG_KMEM)
352 /* analogous to slab_common's slab_caches list. per-memcg */
353 struct list_head memcg_slab_caches;
354 /* Not a spinlock, we can take a lot of time walking the list */
355 struct mutex slab_caches_mutex;
356 /* Index in the kmem_cache->memcg_params->memcg_caches array */
357 int kmemcg_id;
358#endif
45cf7ebd
GC
359
360 int last_scanned_node;
361#if MAX_NUMNODES > 1
362 nodemask_t scan_nodes;
363 atomic_t numainfo_events;
364 atomic_t numainfo_updating;
365#endif
70ddf637 366
45cf7ebd
GC
367 /*
368 * Per cgroup active and inactive list, similar to the
369 * per zone LRU lists.
370 *
371 * WARNING: This has to be the last element of the struct. Don't
372 * add new fields after this point.
373 */
374 struct mem_cgroup_lru_info info;
8cdea7c0
BS
375};
376
45cf7ebd
GC
377static size_t memcg_size(void)
378{
379 return sizeof(struct mem_cgroup) +
380 nr_node_ids * sizeof(struct mem_cgroup_per_node);
381}
382
510fc4e1
GC
383/* internal only representation about the status of kmem accounting. */
384enum {
385 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 386 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 387 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
388};
389
a8964b9b
GC
390/* We account when limit is on, but only after call sites are patched */
391#define KMEM_ACCOUNTED_MASK \
392 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
393
394#ifdef CONFIG_MEMCG_KMEM
395static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
396{
397 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
7de37682
GC
399
400static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
401{
402 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
403}
404
a8964b9b
GC
405static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
406{
407 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
408}
409
55007d84
GC
410static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
411{
412 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
413}
414
7de37682
GC
415static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
416{
417 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
418 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
419}
420
421static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
422{
423 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
424 &memcg->kmem_account_flags);
425}
510fc4e1
GC
426#endif
427
7dc74be0
DN
428/* Stuffs for move charges at task migration. */
429/*
ee5e8472
GC
430 * Types of charges to be moved. "move_charge_at_immitgrate" and
431 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
432 */
433enum move_type {
4ffef5fe 434 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 435 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
436 NR_MOVE_TYPE,
437};
438
4ffef5fe
DN
439/* "mc" and its members are protected by cgroup_mutex */
440static struct move_charge_struct {
b1dd693e 441 spinlock_t lock; /* for from, to */
4ffef5fe
DN
442 struct mem_cgroup *from;
443 struct mem_cgroup *to;
ee5e8472 444 unsigned long immigrate_flags;
4ffef5fe 445 unsigned long precharge;
854ffa8d 446 unsigned long moved_charge;
483c30b5 447 unsigned long moved_swap;
8033b97c
DN
448 struct task_struct *moving_task; /* a task moving charges */
449 wait_queue_head_t waitq; /* a waitq for other context */
450} mc = {
2bd9bb20 451 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
452 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
453};
4ffef5fe 454
90254a65
DN
455static bool move_anon(void)
456{
ee5e8472 457 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
458}
459
87946a72
DN
460static bool move_file(void)
461{
ee5e8472 462 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
463}
464
4e416953
BS
465/*
466 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
467 * limit reclaim to prevent infinite loops, if they ever occur.
468 */
a0db00fc
KS
469#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
470#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 471
217bc319
KH
472enum charge_type {
473 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 474 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 475 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 476 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
477 NR_CHARGE_TYPE,
478};
479
8c7c6e34 480/* for encoding cft->private value on file */
86ae53e1
GC
481enum res_type {
482 _MEM,
483 _MEMSWAP,
484 _OOM_TYPE,
510fc4e1 485 _KMEM,
86ae53e1
GC
486};
487
a0db00fc
KS
488#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
489#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 490#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
491/* Used for OOM nofiier */
492#define OOM_CONTROL (0)
8c7c6e34 493
75822b44
BS
494/*
495 * Reclaim flags for mem_cgroup_hierarchical_reclaim
496 */
497#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
498#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
499#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
500#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
501
0999821b
GC
502/*
503 * The memcg_create_mutex will be held whenever a new cgroup is created.
504 * As a consequence, any change that needs to protect against new child cgroups
505 * appearing has to hold it as well.
506 */
507static DEFINE_MUTEX(memcg_create_mutex);
508
c0ff4b85
R
509static void mem_cgroup_get(struct mem_cgroup *memcg);
510static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 511
b2145145
WL
512static inline
513struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
514{
515 return container_of(s, struct mem_cgroup, css);
516}
517
70ddf637
AV
518/* Some nice accessors for the vmpressure. */
519struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
520{
521 if (!memcg)
522 memcg = root_mem_cgroup;
523 return &memcg->vmpressure;
524}
525
526struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
527{
528 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
529}
530
531struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
532{
533 return &mem_cgroup_from_css(css)->vmpressure;
534}
535
7ffc0edc
MH
536static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
537{
538 return (memcg == root_mem_cgroup);
539}
540
e1aab161 541/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 542#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 543
e1aab161
GC
544void sock_update_memcg(struct sock *sk)
545{
376be5ff 546 if (mem_cgroup_sockets_enabled) {
e1aab161 547 struct mem_cgroup *memcg;
3f134619 548 struct cg_proto *cg_proto;
e1aab161
GC
549
550 BUG_ON(!sk->sk_prot->proto_cgroup);
551
f3f511e1
GC
552 /* Socket cloning can throw us here with sk_cgrp already
553 * filled. It won't however, necessarily happen from
554 * process context. So the test for root memcg given
555 * the current task's memcg won't help us in this case.
556 *
557 * Respecting the original socket's memcg is a better
558 * decision in this case.
559 */
560 if (sk->sk_cgrp) {
561 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
562 mem_cgroup_get(sk->sk_cgrp->memcg);
563 return;
564 }
565
e1aab161
GC
566 rcu_read_lock();
567 memcg = mem_cgroup_from_task(current);
3f134619
GC
568 cg_proto = sk->sk_prot->proto_cgroup(memcg);
569 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 570 mem_cgroup_get(memcg);
3f134619 571 sk->sk_cgrp = cg_proto;
e1aab161
GC
572 }
573 rcu_read_unlock();
574 }
575}
576EXPORT_SYMBOL(sock_update_memcg);
577
578void sock_release_memcg(struct sock *sk)
579{
376be5ff 580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
581 struct mem_cgroup *memcg;
582 WARN_ON(!sk->sk_cgrp->memcg);
583 memcg = sk->sk_cgrp->memcg;
584 mem_cgroup_put(memcg);
585 }
586}
d1a4c0b3
GC
587
588struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
589{
590 if (!memcg || mem_cgroup_is_root(memcg))
591 return NULL;
592
593 return &memcg->tcp_mem.cg_proto;
594}
595EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 596
3f134619
GC
597static void disarm_sock_keys(struct mem_cgroup *memcg)
598{
599 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
600 return;
601 static_key_slow_dec(&memcg_socket_limit_enabled);
602}
603#else
604static void disarm_sock_keys(struct mem_cgroup *memcg)
605{
606}
607#endif
608
a8964b9b 609#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
610/*
611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
612 * There are two main reasons for not using the css_id for this:
613 * 1) this works better in sparse environments, where we have a lot of memcgs,
614 * but only a few kmem-limited. Or also, if we have, for instance, 200
615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
616 * 200 entry array for that.
617 *
618 * 2) In order not to violate the cgroup API, we would like to do all memory
619 * allocation in ->create(). At that point, we haven't yet allocated the
620 * css_id. Having a separate index prevents us from messing with the cgroup
621 * core for this
622 *
623 * The current size of the caches array is stored in
624 * memcg_limited_groups_array_size. It will double each time we have to
625 * increase it.
626 */
627static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
628int memcg_limited_groups_array_size;
629
55007d84
GC
630/*
631 * MIN_SIZE is different than 1, because we would like to avoid going through
632 * the alloc/free process all the time. In a small machine, 4 kmem-limited
633 * cgroups is a reasonable guess. In the future, it could be a parameter or
634 * tunable, but that is strictly not necessary.
635 *
636 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
637 * this constant directly from cgroup, but it is understandable that this is
638 * better kept as an internal representation in cgroup.c. In any case, the
639 * css_id space is not getting any smaller, and we don't have to necessarily
640 * increase ours as well if it increases.
641 */
642#define MEMCG_CACHES_MIN_SIZE 4
643#define MEMCG_CACHES_MAX_SIZE 65535
644
d7f25f8a
GC
645/*
646 * A lot of the calls to the cache allocation functions are expected to be
647 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
648 * conditional to this static branch, we'll have to allow modules that does
649 * kmem_cache_alloc and the such to see this symbol as well
650 */
a8964b9b 651struct static_key memcg_kmem_enabled_key;
d7f25f8a 652EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
653
654static void disarm_kmem_keys(struct mem_cgroup *memcg)
655{
55007d84 656 if (memcg_kmem_is_active(memcg)) {
a8964b9b 657 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
658 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
659 }
bea207c8
GC
660 /*
661 * This check can't live in kmem destruction function,
662 * since the charges will outlive the cgroup
663 */
664 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
665}
666#else
667static void disarm_kmem_keys(struct mem_cgroup *memcg)
668{
669}
670#endif /* CONFIG_MEMCG_KMEM */
671
672static void disarm_static_keys(struct mem_cgroup *memcg)
673{
674 disarm_sock_keys(memcg);
675 disarm_kmem_keys(memcg);
676}
677
c0ff4b85 678static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 679
f64c3f54 680static struct mem_cgroup_per_zone *
c0ff4b85 681mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 682{
45cf7ebd 683 VM_BUG_ON((unsigned)nid >= nr_node_ids);
c0ff4b85 684 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
685}
686
c0ff4b85 687struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 688{
c0ff4b85 689 return &memcg->css;
d324236b
WF
690}
691
f64c3f54 692static struct mem_cgroup_per_zone *
c0ff4b85 693page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 694{
97a6c37b
JW
695 int nid = page_to_nid(page);
696 int zid = page_zonenum(page);
f64c3f54 697
c0ff4b85 698 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
699}
700
701static struct mem_cgroup_tree_per_zone *
702soft_limit_tree_node_zone(int nid, int zid)
703{
704 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
705}
706
707static struct mem_cgroup_tree_per_zone *
708soft_limit_tree_from_page(struct page *page)
709{
710 int nid = page_to_nid(page);
711 int zid = page_zonenum(page);
712
713 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
714}
715
716static void
c0ff4b85 717__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 718 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
719 struct mem_cgroup_tree_per_zone *mctz,
720 unsigned long long new_usage_in_excess)
f64c3f54
BS
721{
722 struct rb_node **p = &mctz->rb_root.rb_node;
723 struct rb_node *parent = NULL;
724 struct mem_cgroup_per_zone *mz_node;
725
726 if (mz->on_tree)
727 return;
728
ef8745c1
KH
729 mz->usage_in_excess = new_usage_in_excess;
730 if (!mz->usage_in_excess)
731 return;
f64c3f54
BS
732 while (*p) {
733 parent = *p;
734 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
735 tree_node);
736 if (mz->usage_in_excess < mz_node->usage_in_excess)
737 p = &(*p)->rb_left;
738 /*
739 * We can't avoid mem cgroups that are over their soft
740 * limit by the same amount
741 */
742 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
743 p = &(*p)->rb_right;
744 }
745 rb_link_node(&mz->tree_node, parent, p);
746 rb_insert_color(&mz->tree_node, &mctz->rb_root);
747 mz->on_tree = true;
4e416953
BS
748}
749
750static void
c0ff4b85 751__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
752 struct mem_cgroup_per_zone *mz,
753 struct mem_cgroup_tree_per_zone *mctz)
754{
755 if (!mz->on_tree)
756 return;
757 rb_erase(&mz->tree_node, &mctz->rb_root);
758 mz->on_tree = false;
759}
760
f64c3f54 761static void
c0ff4b85 762mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
763 struct mem_cgroup_per_zone *mz,
764 struct mem_cgroup_tree_per_zone *mctz)
765{
766 spin_lock(&mctz->lock);
c0ff4b85 767 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
768 spin_unlock(&mctz->lock);
769}
770
f64c3f54 771
c0ff4b85 772static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 773{
ef8745c1 774 unsigned long long excess;
f64c3f54
BS
775 struct mem_cgroup_per_zone *mz;
776 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
777 int nid = page_to_nid(page);
778 int zid = page_zonenum(page);
f64c3f54
BS
779 mctz = soft_limit_tree_from_page(page);
780
781 /*
4e649152
KH
782 * Necessary to update all ancestors when hierarchy is used.
783 * because their event counter is not touched.
f64c3f54 784 */
c0ff4b85
R
785 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
786 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
787 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
788 /*
789 * We have to update the tree if mz is on RB-tree or
790 * mem is over its softlimit.
791 */
ef8745c1 792 if (excess || mz->on_tree) {
4e649152
KH
793 spin_lock(&mctz->lock);
794 /* if on-tree, remove it */
795 if (mz->on_tree)
c0ff4b85 796 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 797 /*
ef8745c1
KH
798 * Insert again. mz->usage_in_excess will be updated.
799 * If excess is 0, no tree ops.
4e649152 800 */
c0ff4b85 801 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
802 spin_unlock(&mctz->lock);
803 }
f64c3f54
BS
804 }
805}
806
c0ff4b85 807static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
808{
809 int node, zone;
810 struct mem_cgroup_per_zone *mz;
811 struct mem_cgroup_tree_per_zone *mctz;
812
3ed28fa1 813 for_each_node(node) {
f64c3f54 814 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 815 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 816 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 817 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
818 }
819 }
820}
821
4e416953
BS
822static struct mem_cgroup_per_zone *
823__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
824{
825 struct rb_node *rightmost = NULL;
26251eaf 826 struct mem_cgroup_per_zone *mz;
4e416953
BS
827
828retry:
26251eaf 829 mz = NULL;
4e416953
BS
830 rightmost = rb_last(&mctz->rb_root);
831 if (!rightmost)
832 goto done; /* Nothing to reclaim from */
833
834 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
835 /*
836 * Remove the node now but someone else can add it back,
837 * we will to add it back at the end of reclaim to its correct
838 * position in the tree.
839 */
d79154bb
HD
840 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
841 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
842 !css_tryget(&mz->memcg->css))
4e416953
BS
843 goto retry;
844done:
845 return mz;
846}
847
848static struct mem_cgroup_per_zone *
849mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
850{
851 struct mem_cgroup_per_zone *mz;
852
853 spin_lock(&mctz->lock);
854 mz = __mem_cgroup_largest_soft_limit_node(mctz);
855 spin_unlock(&mctz->lock);
856 return mz;
857}
858
711d3d2c
KH
859/*
860 * Implementation Note: reading percpu statistics for memcg.
861 *
862 * Both of vmstat[] and percpu_counter has threshold and do periodic
863 * synchronization to implement "quick" read. There are trade-off between
864 * reading cost and precision of value. Then, we may have a chance to implement
865 * a periodic synchronizion of counter in memcg's counter.
866 *
867 * But this _read() function is used for user interface now. The user accounts
868 * memory usage by memory cgroup and he _always_ requires exact value because
869 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
870 * have to visit all online cpus and make sum. So, for now, unnecessary
871 * synchronization is not implemented. (just implemented for cpu hotplug)
872 *
873 * If there are kernel internal actions which can make use of some not-exact
874 * value, and reading all cpu value can be performance bottleneck in some
875 * common workload, threashold and synchonization as vmstat[] should be
876 * implemented.
877 */
c0ff4b85 878static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 879 enum mem_cgroup_stat_index idx)
c62b1a3b 880{
7a159cc9 881 long val = 0;
c62b1a3b 882 int cpu;
c62b1a3b 883
711d3d2c
KH
884 get_online_cpus();
885 for_each_online_cpu(cpu)
c0ff4b85 886 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 887#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
888 spin_lock(&memcg->pcp_counter_lock);
889 val += memcg->nocpu_base.count[idx];
890 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
891#endif
892 put_online_cpus();
c62b1a3b
KH
893 return val;
894}
895
c0ff4b85 896static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
897 bool charge)
898{
899 int val = (charge) ? 1 : -1;
bff6bb83 900 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
901}
902
c0ff4b85 903static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
904 enum mem_cgroup_events_index idx)
905{
906 unsigned long val = 0;
907 int cpu;
908
909 for_each_online_cpu(cpu)
c0ff4b85 910 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 911#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
915#endif
916 return val;
917}
918
c0ff4b85 919static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 920 bool anon, int nr_pages)
d52aa412 921{
c62b1a3b
KH
922 preempt_disable();
923
b2402857
KH
924 /*
925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
926 * counted as CACHE even if it's on ANON LRU.
927 */
928 if (anon)
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 930 nr_pages);
d52aa412 931 else
b2402857 932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 933 nr_pages);
55e462b0 934
e401f176
KH
935 /* pagein of a big page is an event. So, ignore page size */
936 if (nr_pages > 0)
c0ff4b85 937 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 938 else {
c0ff4b85 939 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
940 nr_pages = -nr_pages; /* for event */
941 }
e401f176 942
13114716 943 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 944
c62b1a3b 945 preempt_enable();
6d12e2d8
KH
946}
947
bb2a0de9 948unsigned long
4d7dcca2 949mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
950{
951 struct mem_cgroup_per_zone *mz;
952
953 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
954 return mz->lru_size[lru];
955}
956
957static unsigned long
c0ff4b85 958mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 959 unsigned int lru_mask)
889976db
YH
960{
961 struct mem_cgroup_per_zone *mz;
f156ab93 962 enum lru_list lru;
bb2a0de9
KH
963 unsigned long ret = 0;
964
c0ff4b85 965 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 966
f156ab93
HD
967 for_each_lru(lru) {
968 if (BIT(lru) & lru_mask)
969 ret += mz->lru_size[lru];
bb2a0de9
KH
970 }
971 return ret;
972}
973
974static unsigned long
c0ff4b85 975mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
976 int nid, unsigned int lru_mask)
977{
889976db
YH
978 u64 total = 0;
979 int zid;
980
bb2a0de9 981 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
982 total += mem_cgroup_zone_nr_lru_pages(memcg,
983 nid, zid, lru_mask);
bb2a0de9 984
889976db
YH
985 return total;
986}
bb2a0de9 987
c0ff4b85 988static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 989 unsigned int lru_mask)
6d12e2d8 990{
889976db 991 int nid;
6d12e2d8
KH
992 u64 total = 0;
993
31aaea4a 994 for_each_node_state(nid, N_MEMORY)
c0ff4b85 995 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 996 return total;
d52aa412
KH
997}
998
f53d7ce3
JW
999static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1000 enum mem_cgroup_events_target target)
7a159cc9
JW
1001{
1002 unsigned long val, next;
1003
13114716 1004 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1005 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1006 /* from time_after() in jiffies.h */
f53d7ce3
JW
1007 if ((long)next - (long)val < 0) {
1008 switch (target) {
1009 case MEM_CGROUP_TARGET_THRESH:
1010 next = val + THRESHOLDS_EVENTS_TARGET;
1011 break;
1012 case MEM_CGROUP_TARGET_SOFTLIMIT:
1013 next = val + SOFTLIMIT_EVENTS_TARGET;
1014 break;
1015 case MEM_CGROUP_TARGET_NUMAINFO:
1016 next = val + NUMAINFO_EVENTS_TARGET;
1017 break;
1018 default:
1019 break;
1020 }
1021 __this_cpu_write(memcg->stat->targets[target], next);
1022 return true;
7a159cc9 1023 }
f53d7ce3 1024 return false;
d2265e6f
KH
1025}
1026
1027/*
1028 * Check events in order.
1029 *
1030 */
c0ff4b85 1031static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1032{
4799401f 1033 preempt_disable();
d2265e6f 1034 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1035 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1036 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
1037 bool do_softlimit;
1038 bool do_numainfo __maybe_unused;
f53d7ce3
JW
1039
1040 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1041 MEM_CGROUP_TARGET_SOFTLIMIT);
1042#if MAX_NUMNODES > 1
1043 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1044 MEM_CGROUP_TARGET_NUMAINFO);
1045#endif
1046 preempt_enable();
1047
c0ff4b85 1048 mem_cgroup_threshold(memcg);
f53d7ce3 1049 if (unlikely(do_softlimit))
c0ff4b85 1050 mem_cgroup_update_tree(memcg, page);
453a9bf3 1051#if MAX_NUMNODES > 1
f53d7ce3 1052 if (unlikely(do_numainfo))
c0ff4b85 1053 atomic_inc(&memcg->numainfo_events);
453a9bf3 1054#endif
f53d7ce3
JW
1055 } else
1056 preempt_enable();
d2265e6f
KH
1057}
1058
d1a4c0b3 1059struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 1060{
b2145145
WL
1061 return mem_cgroup_from_css(
1062 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
1063}
1064
cf475ad2 1065struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1066{
31a78f23
BS
1067 /*
1068 * mm_update_next_owner() may clear mm->owner to NULL
1069 * if it races with swapoff, page migration, etc.
1070 * So this can be called with p == NULL.
1071 */
1072 if (unlikely(!p))
1073 return NULL;
1074
b2145145 1075 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
1076}
1077
a433658c 1078struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1079{
c0ff4b85 1080 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1081
1082 if (!mm)
1083 return NULL;
54595fe2
KH
1084 /*
1085 * Because we have no locks, mm->owner's may be being moved to other
1086 * cgroup. We use css_tryget() here even if this looks
1087 * pessimistic (rather than adding locks here).
1088 */
1089 rcu_read_lock();
1090 do {
c0ff4b85
R
1091 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1092 if (unlikely(!memcg))
54595fe2 1093 break;
c0ff4b85 1094 } while (!css_tryget(&memcg->css));
54595fe2 1095 rcu_read_unlock();
c0ff4b85 1096 return memcg;
54595fe2
KH
1097}
1098
16248d8f
MH
1099/*
1100 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1101 * ref. count) or NULL if the whole root's subtree has been visited.
1102 *
1103 * helper function to be used by mem_cgroup_iter
1104 */
1105static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1106 struct mem_cgroup *last_visited)
1107{
1108 struct cgroup *prev_cgroup, *next_cgroup;
1109
1110 /*
1111 * Root is not visited by cgroup iterators so it needs an
1112 * explicit visit.
1113 */
1114 if (!last_visited)
1115 return root;
1116
1117 prev_cgroup = (last_visited == root) ? NULL
1118 : last_visited->css.cgroup;
1119skip_node:
1120 next_cgroup = cgroup_next_descendant_pre(
1121 prev_cgroup, root->css.cgroup);
1122
1123 /*
1124 * Even if we found a group we have to make sure it is
1125 * alive. css && !memcg means that the groups should be
1126 * skipped and we should continue the tree walk.
1127 * last_visited css is safe to use because it is
1128 * protected by css_get and the tree walk is rcu safe.
1129 */
1130 if (next_cgroup) {
1131 struct mem_cgroup *mem = mem_cgroup_from_cont(
1132 next_cgroup);
1133 if (css_tryget(&mem->css))
1134 return mem;
1135 else {
1136 prev_cgroup = next_cgroup;
1137 goto skip_node;
1138 }
1139 }
1140
1141 return NULL;
1142}
1143
5660048c
JW
1144/**
1145 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1146 * @root: hierarchy root
1147 * @prev: previously returned memcg, NULL on first invocation
1148 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1149 *
1150 * Returns references to children of the hierarchy below @root, or
1151 * @root itself, or %NULL after a full round-trip.
1152 *
1153 * Caller must pass the return value in @prev on subsequent
1154 * invocations for reference counting, or use mem_cgroup_iter_break()
1155 * to cancel a hierarchy walk before the round-trip is complete.
1156 *
1157 * Reclaimers can specify a zone and a priority level in @reclaim to
1158 * divide up the memcgs in the hierarchy among all concurrent
1159 * reclaimers operating on the same zone and priority.
1160 */
1161struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1162 struct mem_cgroup *prev,
1163 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1164{
9f3a0d09 1165 struct mem_cgroup *memcg = NULL;
542f85f9 1166 struct mem_cgroup *last_visited = NULL;
5f578161 1167 unsigned long uninitialized_var(dead_count);
711d3d2c 1168
5660048c
JW
1169 if (mem_cgroup_disabled())
1170 return NULL;
1171
9f3a0d09
JW
1172 if (!root)
1173 root = root_mem_cgroup;
7d74b06f 1174
9f3a0d09 1175 if (prev && !reclaim)
542f85f9 1176 last_visited = prev;
14067bb3 1177
9f3a0d09
JW
1178 if (!root->use_hierarchy && root != root_mem_cgroup) {
1179 if (prev)
c40046f3 1180 goto out_css_put;
9f3a0d09
JW
1181 return root;
1182 }
14067bb3 1183
542f85f9 1184 rcu_read_lock();
9f3a0d09 1185 while (!memcg) {
527a5ec9 1186 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
711d3d2c 1187
527a5ec9
JW
1188 if (reclaim) {
1189 int nid = zone_to_nid(reclaim->zone);
1190 int zid = zone_idx(reclaim->zone);
1191 struct mem_cgroup_per_zone *mz;
1192
1193 mz = mem_cgroup_zoneinfo(root, nid, zid);
1194 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9
MH
1195 last_visited = iter->last_visited;
1196 if (prev && reclaim->generation != iter->generation) {
5f578161 1197 iter->last_visited = NULL;
542f85f9
MH
1198 goto out_unlock;
1199 }
5f578161
MH
1200
1201 /*
1202 * If the dead_count mismatches, a destruction
1203 * has happened or is happening concurrently.
1204 * If the dead_count matches, a destruction
1205 * might still happen concurrently, but since
1206 * we checked under RCU, that destruction
1207 * won't free the object until we release the
1208 * RCU reader lock. Thus, the dead_count
1209 * check verifies the pointer is still valid,
1210 * css_tryget() verifies the cgroup pointed to
1211 * is alive.
1212 */
1213 dead_count = atomic_read(&root->dead_count);
1214 smp_rmb();
1215 last_visited = iter->last_visited;
1216 if (last_visited) {
1217 if ((dead_count != iter->last_dead_count) ||
1218 !css_tryget(&last_visited->css)) {
1219 last_visited = NULL;
1220 }
1221 }
527a5ec9 1222 }
7d74b06f 1223
16248d8f 1224 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1225
527a5ec9 1226 if (reclaim) {
542f85f9
MH
1227 if (last_visited)
1228 css_put(&last_visited->css);
1229
19f39402 1230 iter->last_visited = memcg;
5f578161
MH
1231 smp_wmb();
1232 iter->last_dead_count = dead_count;
542f85f9 1233
19f39402 1234 if (!memcg)
527a5ec9
JW
1235 iter->generation++;
1236 else if (!prev && memcg)
1237 reclaim->generation = iter->generation;
1238 }
9f3a0d09 1239
19f39402 1240 if (prev && !memcg)
542f85f9 1241 goto out_unlock;
9f3a0d09 1242 }
542f85f9
MH
1243out_unlock:
1244 rcu_read_unlock();
c40046f3
MH
1245out_css_put:
1246 if (prev && prev != root)
1247 css_put(&prev->css);
1248
9f3a0d09 1249 return memcg;
14067bb3 1250}
7d74b06f 1251
5660048c
JW
1252/**
1253 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1254 * @root: hierarchy root
1255 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1256 */
1257void mem_cgroup_iter_break(struct mem_cgroup *root,
1258 struct mem_cgroup *prev)
9f3a0d09
JW
1259{
1260 if (!root)
1261 root = root_mem_cgroup;
1262 if (prev && prev != root)
1263 css_put(&prev->css);
1264}
7d74b06f 1265
9f3a0d09
JW
1266/*
1267 * Iteration constructs for visiting all cgroups (under a tree). If
1268 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1269 * be used for reference counting.
1270 */
1271#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1272 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1273 iter != NULL; \
527a5ec9 1274 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1275
9f3a0d09 1276#define for_each_mem_cgroup(iter) \
527a5ec9 1277 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1278 iter != NULL; \
527a5ec9 1279 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1280
68ae564b 1281void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1282{
c0ff4b85 1283 struct mem_cgroup *memcg;
456f998e 1284
456f998e 1285 rcu_read_lock();
c0ff4b85
R
1286 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1287 if (unlikely(!memcg))
456f998e
YH
1288 goto out;
1289
1290 switch (idx) {
456f998e 1291 case PGFAULT:
0e574a93
JW
1292 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1293 break;
1294 case PGMAJFAULT:
1295 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1296 break;
1297 default:
1298 BUG();
1299 }
1300out:
1301 rcu_read_unlock();
1302}
68ae564b 1303EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1304
925b7673
JW
1305/**
1306 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1307 * @zone: zone of the wanted lruvec
fa9add64 1308 * @memcg: memcg of the wanted lruvec
925b7673
JW
1309 *
1310 * Returns the lru list vector holding pages for the given @zone and
1311 * @mem. This can be the global zone lruvec, if the memory controller
1312 * is disabled.
1313 */
1314struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1315 struct mem_cgroup *memcg)
1316{
1317 struct mem_cgroup_per_zone *mz;
bea8c150 1318 struct lruvec *lruvec;
925b7673 1319
bea8c150
HD
1320 if (mem_cgroup_disabled()) {
1321 lruvec = &zone->lruvec;
1322 goto out;
1323 }
925b7673
JW
1324
1325 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1326 lruvec = &mz->lruvec;
1327out:
1328 /*
1329 * Since a node can be onlined after the mem_cgroup was created,
1330 * we have to be prepared to initialize lruvec->zone here;
1331 * and if offlined then reonlined, we need to reinitialize it.
1332 */
1333 if (unlikely(lruvec->zone != zone))
1334 lruvec->zone = zone;
1335 return lruvec;
925b7673
JW
1336}
1337
08e552c6
KH
1338/*
1339 * Following LRU functions are allowed to be used without PCG_LOCK.
1340 * Operations are called by routine of global LRU independently from memcg.
1341 * What we have to take care of here is validness of pc->mem_cgroup.
1342 *
1343 * Changes to pc->mem_cgroup happens when
1344 * 1. charge
1345 * 2. moving account
1346 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1347 * It is added to LRU before charge.
1348 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1349 * When moving account, the page is not on LRU. It's isolated.
1350 */
4f98a2fe 1351
925b7673 1352/**
fa9add64 1353 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1354 * @page: the page
fa9add64 1355 * @zone: zone of the page
925b7673 1356 */
fa9add64 1357struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1358{
08e552c6 1359 struct mem_cgroup_per_zone *mz;
925b7673
JW
1360 struct mem_cgroup *memcg;
1361 struct page_cgroup *pc;
bea8c150 1362 struct lruvec *lruvec;
6d12e2d8 1363
bea8c150
HD
1364 if (mem_cgroup_disabled()) {
1365 lruvec = &zone->lruvec;
1366 goto out;
1367 }
925b7673 1368
08e552c6 1369 pc = lookup_page_cgroup(page);
38c5d72f 1370 memcg = pc->mem_cgroup;
7512102c
HD
1371
1372 /*
fa9add64 1373 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1374 * an uncharged page off lru does nothing to secure
1375 * its former mem_cgroup from sudden removal.
1376 *
1377 * Our caller holds lru_lock, and PageCgroupUsed is updated
1378 * under page_cgroup lock: between them, they make all uses
1379 * of pc->mem_cgroup safe.
1380 */
fa9add64 1381 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1382 pc->mem_cgroup = memcg = root_mem_cgroup;
1383
925b7673 1384 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1385 lruvec = &mz->lruvec;
1386out:
1387 /*
1388 * Since a node can be onlined after the mem_cgroup was created,
1389 * we have to be prepared to initialize lruvec->zone here;
1390 * and if offlined then reonlined, we need to reinitialize it.
1391 */
1392 if (unlikely(lruvec->zone != zone))
1393 lruvec->zone = zone;
1394 return lruvec;
08e552c6 1395}
b69408e8 1396
925b7673 1397/**
fa9add64
HD
1398 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1399 * @lruvec: mem_cgroup per zone lru vector
1400 * @lru: index of lru list the page is sitting on
1401 * @nr_pages: positive when adding or negative when removing
925b7673 1402 *
fa9add64
HD
1403 * This function must be called when a page is added to or removed from an
1404 * lru list.
3f58a829 1405 */
fa9add64
HD
1406void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1407 int nr_pages)
3f58a829
MK
1408{
1409 struct mem_cgroup_per_zone *mz;
fa9add64 1410 unsigned long *lru_size;
3f58a829
MK
1411
1412 if (mem_cgroup_disabled())
1413 return;
1414
fa9add64
HD
1415 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1416 lru_size = mz->lru_size + lru;
1417 *lru_size += nr_pages;
1418 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1419}
544122e5 1420
3e92041d 1421/*
c0ff4b85 1422 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1423 * hierarchy subtree
1424 */
c3ac9a8a
JW
1425bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1426 struct mem_cgroup *memcg)
3e92041d 1427{
91c63734
JW
1428 if (root_memcg == memcg)
1429 return true;
3a981f48 1430 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1431 return false;
c3ac9a8a
JW
1432 return css_is_ancestor(&memcg->css, &root_memcg->css);
1433}
1434
1435static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1436 struct mem_cgroup *memcg)
1437{
1438 bool ret;
1439
91c63734 1440 rcu_read_lock();
c3ac9a8a 1441 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1442 rcu_read_unlock();
1443 return ret;
3e92041d
MH
1444}
1445
c0ff4b85 1446int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1447{
1448 int ret;
0b7f569e 1449 struct mem_cgroup *curr = NULL;
158e0a2d 1450 struct task_struct *p;
4c4a2214 1451
158e0a2d 1452 p = find_lock_task_mm(task);
de077d22
DR
1453 if (p) {
1454 curr = try_get_mem_cgroup_from_mm(p->mm);
1455 task_unlock(p);
1456 } else {
1457 /*
1458 * All threads may have already detached their mm's, but the oom
1459 * killer still needs to detect if they have already been oom
1460 * killed to prevent needlessly killing additional tasks.
1461 */
1462 task_lock(task);
1463 curr = mem_cgroup_from_task(task);
1464 if (curr)
1465 css_get(&curr->css);
1466 task_unlock(task);
1467 }
0b7f569e
KH
1468 if (!curr)
1469 return 0;
d31f56db 1470 /*
c0ff4b85 1471 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1472 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1473 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1474 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1475 */
c0ff4b85 1476 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1477 css_put(&curr->css);
4c4a2214
DR
1478 return ret;
1479}
1480
c56d5c7d 1481int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1482{
9b272977 1483 unsigned long inactive_ratio;
14797e23 1484 unsigned long inactive;
9b272977 1485 unsigned long active;
c772be93 1486 unsigned long gb;
14797e23 1487
4d7dcca2
HD
1488 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1489 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1490
c772be93
KM
1491 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1492 if (gb)
1493 inactive_ratio = int_sqrt(10 * gb);
1494 else
1495 inactive_ratio = 1;
1496
9b272977 1497 return inactive * inactive_ratio < active;
14797e23
KM
1498}
1499
6d61ef40
BS
1500#define mem_cgroup_from_res_counter(counter, member) \
1501 container_of(counter, struct mem_cgroup, member)
1502
19942822 1503/**
9d11ea9f 1504 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1505 * @memcg: the memory cgroup
19942822 1506 *
9d11ea9f 1507 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1508 * pages.
19942822 1509 */
c0ff4b85 1510static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1511{
9d11ea9f
JW
1512 unsigned long long margin;
1513
c0ff4b85 1514 margin = res_counter_margin(&memcg->res);
9d11ea9f 1515 if (do_swap_account)
c0ff4b85 1516 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1517 return margin >> PAGE_SHIFT;
19942822
JW
1518}
1519
1f4c025b 1520int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1521{
1522 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1523
1524 /* root ? */
1525 if (cgrp->parent == NULL)
1526 return vm_swappiness;
1527
bf1ff263 1528 return memcg->swappiness;
a7885eb8
KM
1529}
1530
619d094b
KH
1531/*
1532 * memcg->moving_account is used for checking possibility that some thread is
1533 * calling move_account(). When a thread on CPU-A starts moving pages under
1534 * a memcg, other threads should check memcg->moving_account under
1535 * rcu_read_lock(), like this:
1536 *
1537 * CPU-A CPU-B
1538 * rcu_read_lock()
1539 * memcg->moving_account+1 if (memcg->mocing_account)
1540 * take heavy locks.
1541 * synchronize_rcu() update something.
1542 * rcu_read_unlock()
1543 * start move here.
1544 */
4331f7d3
KH
1545
1546/* for quick checking without looking up memcg */
1547atomic_t memcg_moving __read_mostly;
1548
c0ff4b85 1549static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1550{
4331f7d3 1551 atomic_inc(&memcg_moving);
619d094b 1552 atomic_inc(&memcg->moving_account);
32047e2a
KH
1553 synchronize_rcu();
1554}
1555
c0ff4b85 1556static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1557{
619d094b
KH
1558 /*
1559 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1560 * We check NULL in callee rather than caller.
1561 */
4331f7d3
KH
1562 if (memcg) {
1563 atomic_dec(&memcg_moving);
619d094b 1564 atomic_dec(&memcg->moving_account);
4331f7d3 1565 }
32047e2a 1566}
619d094b 1567
32047e2a
KH
1568/*
1569 * 2 routines for checking "mem" is under move_account() or not.
1570 *
13fd1dd9
AM
1571 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1572 * is used for avoiding races in accounting. If true,
32047e2a
KH
1573 * pc->mem_cgroup may be overwritten.
1574 *
1575 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1576 * under hierarchy of moving cgroups. This is for
1577 * waiting at hith-memory prressure caused by "move".
1578 */
1579
13fd1dd9 1580static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1581{
1582 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1583 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1584}
4b534334 1585
c0ff4b85 1586static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1587{
2bd9bb20
KH
1588 struct mem_cgroup *from;
1589 struct mem_cgroup *to;
4b534334 1590 bool ret = false;
2bd9bb20
KH
1591 /*
1592 * Unlike task_move routines, we access mc.to, mc.from not under
1593 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1594 */
1595 spin_lock(&mc.lock);
1596 from = mc.from;
1597 to = mc.to;
1598 if (!from)
1599 goto unlock;
3e92041d 1600
c0ff4b85
R
1601 ret = mem_cgroup_same_or_subtree(memcg, from)
1602 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1603unlock:
1604 spin_unlock(&mc.lock);
4b534334
KH
1605 return ret;
1606}
1607
c0ff4b85 1608static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1609{
1610 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1611 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1612 DEFINE_WAIT(wait);
1613 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1614 /* moving charge context might have finished. */
1615 if (mc.moving_task)
1616 schedule();
1617 finish_wait(&mc.waitq, &wait);
1618 return true;
1619 }
1620 }
1621 return false;
1622}
1623
312734c0
KH
1624/*
1625 * Take this lock when
1626 * - a code tries to modify page's memcg while it's USED.
1627 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1628 * see mem_cgroup_stolen(), too.
312734c0
KH
1629 */
1630static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1631 unsigned long *flags)
1632{
1633 spin_lock_irqsave(&memcg->move_lock, *flags);
1634}
1635
1636static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1637 unsigned long *flags)
1638{
1639 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1640}
1641
58cf188e 1642#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1643/**
58cf188e 1644 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1645 * @memcg: The memory cgroup that went over limit
1646 * @p: Task that is going to be killed
1647 *
1648 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1649 * enabled
1650 */
1651void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1652{
1653 struct cgroup *task_cgrp;
1654 struct cgroup *mem_cgrp;
1655 /*
1656 * Need a buffer in BSS, can't rely on allocations. The code relies
1657 * on the assumption that OOM is serialized for memory controller.
1658 * If this assumption is broken, revisit this code.
1659 */
1660 static char memcg_name[PATH_MAX];
1661 int ret;
58cf188e
SZ
1662 struct mem_cgroup *iter;
1663 unsigned int i;
e222432b 1664
58cf188e 1665 if (!p)
e222432b
BS
1666 return;
1667
e222432b
BS
1668 rcu_read_lock();
1669
1670 mem_cgrp = memcg->css.cgroup;
1671 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1672
1673 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1674 if (ret < 0) {
1675 /*
1676 * Unfortunately, we are unable to convert to a useful name
1677 * But we'll still print out the usage information
1678 */
1679 rcu_read_unlock();
1680 goto done;
1681 }
1682 rcu_read_unlock();
1683
d045197f 1684 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1685
1686 rcu_read_lock();
1687 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1688 if (ret < 0) {
1689 rcu_read_unlock();
1690 goto done;
1691 }
1692 rcu_read_unlock();
1693
1694 /*
1695 * Continues from above, so we don't need an KERN_ level
1696 */
d045197f 1697 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1698done:
1699
d045197f 1700 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1701 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1702 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1703 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1704 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1705 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1706 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1707 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1708 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1709 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1710 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1711 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1712
1713 for_each_mem_cgroup_tree(iter, memcg) {
1714 pr_info("Memory cgroup stats");
1715
1716 rcu_read_lock();
1717 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1718 if (!ret)
1719 pr_cont(" for %s", memcg_name);
1720 rcu_read_unlock();
1721 pr_cont(":");
1722
1723 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1724 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1725 continue;
1726 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1727 K(mem_cgroup_read_stat(iter, i)));
1728 }
1729
1730 for (i = 0; i < NR_LRU_LISTS; i++)
1731 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1732 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1733
1734 pr_cont("\n");
1735 }
e222432b
BS
1736}
1737
81d39c20
KH
1738/*
1739 * This function returns the number of memcg under hierarchy tree. Returns
1740 * 1(self count) if no children.
1741 */
c0ff4b85 1742static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1743{
1744 int num = 0;
7d74b06f
KH
1745 struct mem_cgroup *iter;
1746
c0ff4b85 1747 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1748 num++;
81d39c20
KH
1749 return num;
1750}
1751
a63d83f4
DR
1752/*
1753 * Return the memory (and swap, if configured) limit for a memcg.
1754 */
9cbb78bb 1755static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1756{
1757 u64 limit;
a63d83f4 1758
f3e8eb70 1759 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1760
a63d83f4 1761 /*
9a5a8f19 1762 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1763 */
9a5a8f19
MH
1764 if (mem_cgroup_swappiness(memcg)) {
1765 u64 memsw;
1766
1767 limit += total_swap_pages << PAGE_SHIFT;
1768 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1769
1770 /*
1771 * If memsw is finite and limits the amount of swap space
1772 * available to this memcg, return that limit.
1773 */
1774 limit = min(limit, memsw);
1775 }
1776
1777 return limit;
a63d83f4
DR
1778}
1779
19965460
DR
1780static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1781 int order)
9cbb78bb
DR
1782{
1783 struct mem_cgroup *iter;
1784 unsigned long chosen_points = 0;
1785 unsigned long totalpages;
1786 unsigned int points = 0;
1787 struct task_struct *chosen = NULL;
1788
876aafbf
DR
1789 /*
1790 * If current has a pending SIGKILL, then automatically select it. The
1791 * goal is to allow it to allocate so that it may quickly exit and free
1792 * its memory.
1793 */
1794 if (fatal_signal_pending(current)) {
1795 set_thread_flag(TIF_MEMDIE);
1796 return;
1797 }
1798
1799 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1800 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1801 for_each_mem_cgroup_tree(iter, memcg) {
1802 struct cgroup *cgroup = iter->css.cgroup;
1803 struct cgroup_iter it;
1804 struct task_struct *task;
1805
1806 cgroup_iter_start(cgroup, &it);
1807 while ((task = cgroup_iter_next(cgroup, &it))) {
1808 switch (oom_scan_process_thread(task, totalpages, NULL,
1809 false)) {
1810 case OOM_SCAN_SELECT:
1811 if (chosen)
1812 put_task_struct(chosen);
1813 chosen = task;
1814 chosen_points = ULONG_MAX;
1815 get_task_struct(chosen);
1816 /* fall through */
1817 case OOM_SCAN_CONTINUE:
1818 continue;
1819 case OOM_SCAN_ABORT:
1820 cgroup_iter_end(cgroup, &it);
1821 mem_cgroup_iter_break(memcg, iter);
1822 if (chosen)
1823 put_task_struct(chosen);
1824 return;
1825 case OOM_SCAN_OK:
1826 break;
1827 };
1828 points = oom_badness(task, memcg, NULL, totalpages);
1829 if (points > chosen_points) {
1830 if (chosen)
1831 put_task_struct(chosen);
1832 chosen = task;
1833 chosen_points = points;
1834 get_task_struct(chosen);
1835 }
1836 }
1837 cgroup_iter_end(cgroup, &it);
1838 }
1839
1840 if (!chosen)
1841 return;
1842 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1843 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1844 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1845}
1846
5660048c
JW
1847static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1848 gfp_t gfp_mask,
1849 unsigned long flags)
1850{
1851 unsigned long total = 0;
1852 bool noswap = false;
1853 int loop;
1854
1855 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1856 noswap = true;
1857 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1858 noswap = true;
1859
1860 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1861 if (loop)
1862 drain_all_stock_async(memcg);
1863 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1864 /*
1865 * Allow limit shrinkers, which are triggered directly
1866 * by userspace, to catch signals and stop reclaim
1867 * after minimal progress, regardless of the margin.
1868 */
1869 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1870 break;
1871 if (mem_cgroup_margin(memcg))
1872 break;
1873 /*
1874 * If nothing was reclaimed after two attempts, there
1875 * may be no reclaimable pages in this hierarchy.
1876 */
1877 if (loop && !total)
1878 break;
1879 }
1880 return total;
1881}
1882
4d0c066d
KH
1883/**
1884 * test_mem_cgroup_node_reclaimable
dad7557e 1885 * @memcg: the target memcg
4d0c066d
KH
1886 * @nid: the node ID to be checked.
1887 * @noswap : specify true here if the user wants flle only information.
1888 *
1889 * This function returns whether the specified memcg contains any
1890 * reclaimable pages on a node. Returns true if there are any reclaimable
1891 * pages in the node.
1892 */
c0ff4b85 1893static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1894 int nid, bool noswap)
1895{
c0ff4b85 1896 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1897 return true;
1898 if (noswap || !total_swap_pages)
1899 return false;
c0ff4b85 1900 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1901 return true;
1902 return false;
1903
1904}
889976db
YH
1905#if MAX_NUMNODES > 1
1906
1907/*
1908 * Always updating the nodemask is not very good - even if we have an empty
1909 * list or the wrong list here, we can start from some node and traverse all
1910 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1911 *
1912 */
c0ff4b85 1913static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1914{
1915 int nid;
453a9bf3
KH
1916 /*
1917 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1918 * pagein/pageout changes since the last update.
1919 */
c0ff4b85 1920 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1921 return;
c0ff4b85 1922 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1923 return;
1924
889976db 1925 /* make a nodemask where this memcg uses memory from */
31aaea4a 1926 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1927
31aaea4a 1928 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1929
c0ff4b85
R
1930 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1931 node_clear(nid, memcg->scan_nodes);
889976db 1932 }
453a9bf3 1933
c0ff4b85
R
1934 atomic_set(&memcg->numainfo_events, 0);
1935 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1936}
1937
1938/*
1939 * Selecting a node where we start reclaim from. Because what we need is just
1940 * reducing usage counter, start from anywhere is O,K. Considering
1941 * memory reclaim from current node, there are pros. and cons.
1942 *
1943 * Freeing memory from current node means freeing memory from a node which
1944 * we'll use or we've used. So, it may make LRU bad. And if several threads
1945 * hit limits, it will see a contention on a node. But freeing from remote
1946 * node means more costs for memory reclaim because of memory latency.
1947 *
1948 * Now, we use round-robin. Better algorithm is welcomed.
1949 */
c0ff4b85 1950int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1951{
1952 int node;
1953
c0ff4b85
R
1954 mem_cgroup_may_update_nodemask(memcg);
1955 node = memcg->last_scanned_node;
889976db 1956
c0ff4b85 1957 node = next_node(node, memcg->scan_nodes);
889976db 1958 if (node == MAX_NUMNODES)
c0ff4b85 1959 node = first_node(memcg->scan_nodes);
889976db
YH
1960 /*
1961 * We call this when we hit limit, not when pages are added to LRU.
1962 * No LRU may hold pages because all pages are UNEVICTABLE or
1963 * memcg is too small and all pages are not on LRU. In that case,
1964 * we use curret node.
1965 */
1966 if (unlikely(node == MAX_NUMNODES))
1967 node = numa_node_id();
1968
c0ff4b85 1969 memcg->last_scanned_node = node;
889976db
YH
1970 return node;
1971}
1972
4d0c066d
KH
1973/*
1974 * Check all nodes whether it contains reclaimable pages or not.
1975 * For quick scan, we make use of scan_nodes. This will allow us to skip
1976 * unused nodes. But scan_nodes is lazily updated and may not cotain
1977 * enough new information. We need to do double check.
1978 */
6bbda35c 1979static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1980{
1981 int nid;
1982
1983 /*
1984 * quick check...making use of scan_node.
1985 * We can skip unused nodes.
1986 */
c0ff4b85
R
1987 if (!nodes_empty(memcg->scan_nodes)) {
1988 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1989 nid < MAX_NUMNODES;
c0ff4b85 1990 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1991
c0ff4b85 1992 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1993 return true;
1994 }
1995 }
1996 /*
1997 * Check rest of nodes.
1998 */
31aaea4a 1999 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 2000 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 2001 continue;
c0ff4b85 2002 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
2003 return true;
2004 }
2005 return false;
2006}
2007
889976db 2008#else
c0ff4b85 2009int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2010{
2011 return 0;
2012}
4d0c066d 2013
6bbda35c 2014static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 2015{
c0ff4b85 2016 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 2017}
889976db
YH
2018#endif
2019
5660048c
JW
2020static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2021 struct zone *zone,
2022 gfp_t gfp_mask,
2023 unsigned long *total_scanned)
6d61ef40 2024{
9f3a0d09 2025 struct mem_cgroup *victim = NULL;
5660048c 2026 int total = 0;
04046e1a 2027 int loop = 0;
9d11ea9f 2028 unsigned long excess;
185efc0f 2029 unsigned long nr_scanned;
527a5ec9
JW
2030 struct mem_cgroup_reclaim_cookie reclaim = {
2031 .zone = zone,
2032 .priority = 0,
2033 };
9d11ea9f 2034
c0ff4b85 2035 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 2036
4e416953 2037 while (1) {
527a5ec9 2038 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 2039 if (!victim) {
04046e1a 2040 loop++;
4e416953
BS
2041 if (loop >= 2) {
2042 /*
2043 * If we have not been able to reclaim
2044 * anything, it might because there are
2045 * no reclaimable pages under this hierarchy
2046 */
5660048c 2047 if (!total)
4e416953 2048 break;
4e416953 2049 /*
25985edc 2050 * We want to do more targeted reclaim.
4e416953
BS
2051 * excess >> 2 is not to excessive so as to
2052 * reclaim too much, nor too less that we keep
2053 * coming back to reclaim from this cgroup
2054 */
2055 if (total >= (excess >> 2) ||
9f3a0d09 2056 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 2057 break;
4e416953 2058 }
9f3a0d09 2059 continue;
4e416953 2060 }
5660048c 2061 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 2062 continue;
5660048c
JW
2063 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2064 zone, &nr_scanned);
2065 *total_scanned += nr_scanned;
2066 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 2067 break;
6d61ef40 2068 }
9f3a0d09 2069 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 2070 return total;
6d61ef40
BS
2071}
2072
867578cb
KH
2073/*
2074 * Check OOM-Killer is already running under our hierarchy.
2075 * If someone is running, return false.
1af8efe9 2076 * Has to be called with memcg_oom_lock
867578cb 2077 */
c0ff4b85 2078static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 2079{
79dfdacc 2080 struct mem_cgroup *iter, *failed = NULL;
a636b327 2081
9f3a0d09 2082 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2083 if (iter->oom_lock) {
79dfdacc
MH
2084 /*
2085 * this subtree of our hierarchy is already locked
2086 * so we cannot give a lock.
2087 */
79dfdacc 2088 failed = iter;
9f3a0d09
JW
2089 mem_cgroup_iter_break(memcg, iter);
2090 break;
23751be0
JW
2091 } else
2092 iter->oom_lock = true;
7d74b06f 2093 }
867578cb 2094
79dfdacc 2095 if (!failed)
23751be0 2096 return true;
79dfdacc
MH
2097
2098 /*
2099 * OK, we failed to lock the whole subtree so we have to clean up
2100 * what we set up to the failing subtree
2101 */
9f3a0d09 2102 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 2103 if (iter == failed) {
9f3a0d09
JW
2104 mem_cgroup_iter_break(memcg, iter);
2105 break;
79dfdacc
MH
2106 }
2107 iter->oom_lock = false;
2108 }
23751be0 2109 return false;
a636b327 2110}
0b7f569e 2111
79dfdacc 2112/*
1af8efe9 2113 * Has to be called with memcg_oom_lock
79dfdacc 2114 */
c0ff4b85 2115static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2116{
7d74b06f
KH
2117 struct mem_cgroup *iter;
2118
c0ff4b85 2119 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2120 iter->oom_lock = false;
2121 return 0;
2122}
2123
c0ff4b85 2124static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2125{
2126 struct mem_cgroup *iter;
2127
c0ff4b85 2128 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2129 atomic_inc(&iter->under_oom);
2130}
2131
c0ff4b85 2132static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2133{
2134 struct mem_cgroup *iter;
2135
867578cb
KH
2136 /*
2137 * When a new child is created while the hierarchy is under oom,
2138 * mem_cgroup_oom_lock() may not be called. We have to use
2139 * atomic_add_unless() here.
2140 */
c0ff4b85 2141 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2142 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2143}
2144
1af8efe9 2145static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
2146static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2147
dc98df5a 2148struct oom_wait_info {
d79154bb 2149 struct mem_cgroup *memcg;
dc98df5a
KH
2150 wait_queue_t wait;
2151};
2152
2153static int memcg_oom_wake_function(wait_queue_t *wait,
2154 unsigned mode, int sync, void *arg)
2155{
d79154bb
HD
2156 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2157 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2158 struct oom_wait_info *oom_wait_info;
2159
2160 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2161 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2162
dc98df5a 2163 /*
d79154bb 2164 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2165 * Then we can use css_is_ancestor without taking care of RCU.
2166 */
c0ff4b85
R
2167 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2168 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2169 return 0;
dc98df5a
KH
2170 return autoremove_wake_function(wait, mode, sync, arg);
2171}
2172
c0ff4b85 2173static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2174{
c0ff4b85
R
2175 /* for filtering, pass "memcg" as argument. */
2176 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2177}
2178
c0ff4b85 2179static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2180{
c0ff4b85
R
2181 if (memcg && atomic_read(&memcg->under_oom))
2182 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2183}
2184
867578cb
KH
2185/*
2186 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2187 */
6bbda35c
KS
2188static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2189 int order)
0b7f569e 2190{
dc98df5a 2191 struct oom_wait_info owait;
3c11ecf4 2192 bool locked, need_to_kill;
867578cb 2193
d79154bb 2194 owait.memcg = memcg;
dc98df5a
KH
2195 owait.wait.flags = 0;
2196 owait.wait.func = memcg_oom_wake_function;
2197 owait.wait.private = current;
2198 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2199 need_to_kill = true;
c0ff4b85 2200 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2201
c0ff4b85 2202 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2203 spin_lock(&memcg_oom_lock);
c0ff4b85 2204 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2205 /*
2206 * Even if signal_pending(), we can't quit charge() loop without
2207 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2208 * under OOM is always welcomed, use TASK_KILLABLE here.
2209 */
3c11ecf4 2210 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2211 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2212 need_to_kill = false;
2213 if (locked)
c0ff4b85 2214 mem_cgroup_oom_notify(memcg);
1af8efe9 2215 spin_unlock(&memcg_oom_lock);
867578cb 2216
3c11ecf4
KH
2217 if (need_to_kill) {
2218 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2219 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2220 } else {
867578cb 2221 schedule();
dc98df5a 2222 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2223 }
1af8efe9 2224 spin_lock(&memcg_oom_lock);
79dfdacc 2225 if (locked)
c0ff4b85
R
2226 mem_cgroup_oom_unlock(memcg);
2227 memcg_wakeup_oom(memcg);
1af8efe9 2228 spin_unlock(&memcg_oom_lock);
867578cb 2229
c0ff4b85 2230 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2231
867578cb
KH
2232 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2233 return false;
2234 /* Give chance to dying process */
715a5ee8 2235 schedule_timeout_uninterruptible(1);
867578cb 2236 return true;
0b7f569e
KH
2237}
2238
d69b042f
BS
2239/*
2240 * Currently used to update mapped file statistics, but the routine can be
2241 * generalized to update other statistics as well.
32047e2a
KH
2242 *
2243 * Notes: Race condition
2244 *
2245 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2246 * it tends to be costly. But considering some conditions, we doesn't need
2247 * to do so _always_.
2248 *
2249 * Considering "charge", lock_page_cgroup() is not required because all
2250 * file-stat operations happen after a page is attached to radix-tree. There
2251 * are no race with "charge".
2252 *
2253 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2254 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2255 * if there are race with "uncharge". Statistics itself is properly handled
2256 * by flags.
2257 *
2258 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2259 * small, we check mm->moving_account and detect there are possibility of race
2260 * If there is, we take a lock.
d69b042f 2261 */
26174efd 2262
89c06bd5
KH
2263void __mem_cgroup_begin_update_page_stat(struct page *page,
2264 bool *locked, unsigned long *flags)
2265{
2266 struct mem_cgroup *memcg;
2267 struct page_cgroup *pc;
2268
2269 pc = lookup_page_cgroup(page);
2270again:
2271 memcg = pc->mem_cgroup;
2272 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2273 return;
2274 /*
2275 * If this memory cgroup is not under account moving, we don't
da92c47d 2276 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2277 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2278 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2279 */
13fd1dd9 2280 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2281 return;
2282
2283 move_lock_mem_cgroup(memcg, flags);
2284 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2285 move_unlock_mem_cgroup(memcg, flags);
2286 goto again;
2287 }
2288 *locked = true;
2289}
2290
2291void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2292{
2293 struct page_cgroup *pc = lookup_page_cgroup(page);
2294
2295 /*
2296 * It's guaranteed that pc->mem_cgroup never changes while
2297 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2298 * should take move_lock_mem_cgroup().
89c06bd5
KH
2299 */
2300 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2301}
2302
2a7106f2
GT
2303void mem_cgroup_update_page_stat(struct page *page,
2304 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2305{
c0ff4b85 2306 struct mem_cgroup *memcg;
32047e2a 2307 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2308 unsigned long uninitialized_var(flags);
d69b042f 2309
cfa44946 2310 if (mem_cgroup_disabled())
d69b042f 2311 return;
89c06bd5 2312
c0ff4b85
R
2313 memcg = pc->mem_cgroup;
2314 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2315 return;
26174efd 2316
26174efd 2317 switch (idx) {
2a7106f2 2318 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2319 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2320 break;
2321 default:
2322 BUG();
8725d541 2323 }
d69b042f 2324
c0ff4b85 2325 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2326}
26174efd 2327
cdec2e42
KH
2328/*
2329 * size of first charge trial. "32" comes from vmscan.c's magic value.
2330 * TODO: maybe necessary to use big numbers in big irons.
2331 */
7ec99d62 2332#define CHARGE_BATCH 32U
cdec2e42
KH
2333struct memcg_stock_pcp {
2334 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2335 unsigned int nr_pages;
cdec2e42 2336 struct work_struct work;
26fe6168 2337 unsigned long flags;
a0db00fc 2338#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2339};
2340static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2341static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2342
a0956d54
SS
2343/**
2344 * consume_stock: Try to consume stocked charge on this cpu.
2345 * @memcg: memcg to consume from.
2346 * @nr_pages: how many pages to charge.
2347 *
2348 * The charges will only happen if @memcg matches the current cpu's memcg
2349 * stock, and at least @nr_pages are available in that stock. Failure to
2350 * service an allocation will refill the stock.
2351 *
2352 * returns true if successful, false otherwise.
cdec2e42 2353 */
a0956d54 2354static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2355{
2356 struct memcg_stock_pcp *stock;
2357 bool ret = true;
2358
a0956d54
SS
2359 if (nr_pages > CHARGE_BATCH)
2360 return false;
2361
cdec2e42 2362 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2363 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2364 stock->nr_pages -= nr_pages;
cdec2e42
KH
2365 else /* need to call res_counter_charge */
2366 ret = false;
2367 put_cpu_var(memcg_stock);
2368 return ret;
2369}
2370
2371/*
2372 * Returns stocks cached in percpu to res_counter and reset cached information.
2373 */
2374static void drain_stock(struct memcg_stock_pcp *stock)
2375{
2376 struct mem_cgroup *old = stock->cached;
2377
11c9ea4e
JW
2378 if (stock->nr_pages) {
2379 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2380
2381 res_counter_uncharge(&old->res, bytes);
cdec2e42 2382 if (do_swap_account)
11c9ea4e
JW
2383 res_counter_uncharge(&old->memsw, bytes);
2384 stock->nr_pages = 0;
cdec2e42
KH
2385 }
2386 stock->cached = NULL;
cdec2e42
KH
2387}
2388
2389/*
2390 * This must be called under preempt disabled or must be called by
2391 * a thread which is pinned to local cpu.
2392 */
2393static void drain_local_stock(struct work_struct *dummy)
2394{
2395 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2396 drain_stock(stock);
26fe6168 2397 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2398}
2399
e4777496
MH
2400static void __init memcg_stock_init(void)
2401{
2402 int cpu;
2403
2404 for_each_possible_cpu(cpu) {
2405 struct memcg_stock_pcp *stock =
2406 &per_cpu(memcg_stock, cpu);
2407 INIT_WORK(&stock->work, drain_local_stock);
2408 }
2409}
2410
cdec2e42
KH
2411/*
2412 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2413 * This will be consumed by consume_stock() function, later.
cdec2e42 2414 */
c0ff4b85 2415static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2416{
2417 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2418
c0ff4b85 2419 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2420 drain_stock(stock);
c0ff4b85 2421 stock->cached = memcg;
cdec2e42 2422 }
11c9ea4e 2423 stock->nr_pages += nr_pages;
cdec2e42
KH
2424 put_cpu_var(memcg_stock);
2425}
2426
2427/*
c0ff4b85 2428 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2429 * of the hierarchy under it. sync flag says whether we should block
2430 * until the work is done.
cdec2e42 2431 */
c0ff4b85 2432static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2433{
26fe6168 2434 int cpu, curcpu;
d38144b7 2435
cdec2e42 2436 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2437 get_online_cpus();
5af12d0e 2438 curcpu = get_cpu();
cdec2e42
KH
2439 for_each_online_cpu(cpu) {
2440 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2441 struct mem_cgroup *memcg;
26fe6168 2442
c0ff4b85
R
2443 memcg = stock->cached;
2444 if (!memcg || !stock->nr_pages)
26fe6168 2445 continue;
c0ff4b85 2446 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2447 continue;
d1a05b69
MH
2448 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2449 if (cpu == curcpu)
2450 drain_local_stock(&stock->work);
2451 else
2452 schedule_work_on(cpu, &stock->work);
2453 }
cdec2e42 2454 }
5af12d0e 2455 put_cpu();
d38144b7
MH
2456
2457 if (!sync)
2458 goto out;
2459
2460 for_each_online_cpu(cpu) {
2461 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2462 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2463 flush_work(&stock->work);
2464 }
2465out:
cdec2e42 2466 put_online_cpus();
d38144b7
MH
2467}
2468
2469/*
2470 * Tries to drain stocked charges in other cpus. This function is asynchronous
2471 * and just put a work per cpu for draining localy on each cpu. Caller can
2472 * expects some charges will be back to res_counter later but cannot wait for
2473 * it.
2474 */
c0ff4b85 2475static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2476{
9f50fad6
MH
2477 /*
2478 * If someone calls draining, avoid adding more kworker runs.
2479 */
2480 if (!mutex_trylock(&percpu_charge_mutex))
2481 return;
c0ff4b85 2482 drain_all_stock(root_memcg, false);
9f50fad6 2483 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2484}
2485
2486/* This is a synchronous drain interface. */
c0ff4b85 2487static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2488{
2489 /* called when force_empty is called */
9f50fad6 2490 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2491 drain_all_stock(root_memcg, true);
9f50fad6 2492 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2493}
2494
711d3d2c
KH
2495/*
2496 * This function drains percpu counter value from DEAD cpu and
2497 * move it to local cpu. Note that this function can be preempted.
2498 */
c0ff4b85 2499static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2500{
2501 int i;
2502
c0ff4b85 2503 spin_lock(&memcg->pcp_counter_lock);
6104621d 2504 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2505 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2506
c0ff4b85
R
2507 per_cpu(memcg->stat->count[i], cpu) = 0;
2508 memcg->nocpu_base.count[i] += x;
711d3d2c 2509 }
e9f8974f 2510 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2511 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2512
c0ff4b85
R
2513 per_cpu(memcg->stat->events[i], cpu) = 0;
2514 memcg->nocpu_base.events[i] += x;
e9f8974f 2515 }
c0ff4b85 2516 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2517}
2518
2519static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2520 unsigned long action,
2521 void *hcpu)
2522{
2523 int cpu = (unsigned long)hcpu;
2524 struct memcg_stock_pcp *stock;
711d3d2c 2525 struct mem_cgroup *iter;
cdec2e42 2526
619d094b 2527 if (action == CPU_ONLINE)
1489ebad 2528 return NOTIFY_OK;
1489ebad 2529
d833049b 2530 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2531 return NOTIFY_OK;
711d3d2c 2532
9f3a0d09 2533 for_each_mem_cgroup(iter)
711d3d2c
KH
2534 mem_cgroup_drain_pcp_counter(iter, cpu);
2535
cdec2e42
KH
2536 stock = &per_cpu(memcg_stock, cpu);
2537 drain_stock(stock);
2538 return NOTIFY_OK;
2539}
2540
4b534334
KH
2541
2542/* See __mem_cgroup_try_charge() for details */
2543enum {
2544 CHARGE_OK, /* success */
2545 CHARGE_RETRY, /* need to retry but retry is not bad */
2546 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2547 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2548 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2549};
2550
c0ff4b85 2551static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2552 unsigned int nr_pages, unsigned int min_pages,
2553 bool oom_check)
4b534334 2554{
7ec99d62 2555 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2556 struct mem_cgroup *mem_over_limit;
2557 struct res_counter *fail_res;
2558 unsigned long flags = 0;
2559 int ret;
2560
c0ff4b85 2561 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2562
2563 if (likely(!ret)) {
2564 if (!do_swap_account)
2565 return CHARGE_OK;
c0ff4b85 2566 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2567 if (likely(!ret))
2568 return CHARGE_OK;
2569
c0ff4b85 2570 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2571 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2572 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2573 } else
2574 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2575 /*
9221edb7
JW
2576 * Never reclaim on behalf of optional batching, retry with a
2577 * single page instead.
2578 */
4c9c5359 2579 if (nr_pages > min_pages)
4b534334
KH
2580 return CHARGE_RETRY;
2581
2582 if (!(gfp_mask & __GFP_WAIT))
2583 return CHARGE_WOULDBLOCK;
2584
4c9c5359
SS
2585 if (gfp_mask & __GFP_NORETRY)
2586 return CHARGE_NOMEM;
2587
5660048c 2588 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2589 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2590 return CHARGE_RETRY;
4b534334 2591 /*
19942822
JW
2592 * Even though the limit is exceeded at this point, reclaim
2593 * may have been able to free some pages. Retry the charge
2594 * before killing the task.
2595 *
2596 * Only for regular pages, though: huge pages are rather
2597 * unlikely to succeed so close to the limit, and we fall back
2598 * to regular pages anyway in case of failure.
4b534334 2599 */
4c9c5359 2600 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2601 return CHARGE_RETRY;
2602
2603 /*
2604 * At task move, charge accounts can be doubly counted. So, it's
2605 * better to wait until the end of task_move if something is going on.
2606 */
2607 if (mem_cgroup_wait_acct_move(mem_over_limit))
2608 return CHARGE_RETRY;
2609
2610 /* If we don't need to call oom-killer at el, return immediately */
2611 if (!oom_check)
2612 return CHARGE_NOMEM;
2613 /* check OOM */
e845e199 2614 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2615 return CHARGE_OOM_DIE;
2616
2617 return CHARGE_RETRY;
2618}
2619
f817ed48 2620/*
38c5d72f
KH
2621 * __mem_cgroup_try_charge() does
2622 * 1. detect memcg to be charged against from passed *mm and *ptr,
2623 * 2. update res_counter
2624 * 3. call memory reclaim if necessary.
2625 *
2626 * In some special case, if the task is fatal, fatal_signal_pending() or
2627 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2628 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2629 * as possible without any hazards. 2: all pages should have a valid
2630 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2631 * pointer, that is treated as a charge to root_mem_cgroup.
2632 *
2633 * So __mem_cgroup_try_charge() will return
2634 * 0 ... on success, filling *ptr with a valid memcg pointer.
2635 * -ENOMEM ... charge failure because of resource limits.
2636 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2637 *
2638 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2639 * the oom-killer can be invoked.
8a9f3ccd 2640 */
f817ed48 2641static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2642 gfp_t gfp_mask,
7ec99d62 2643 unsigned int nr_pages,
c0ff4b85 2644 struct mem_cgroup **ptr,
7ec99d62 2645 bool oom)
8a9f3ccd 2646{
7ec99d62 2647 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2648 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2649 struct mem_cgroup *memcg = NULL;
4b534334 2650 int ret;
a636b327 2651
867578cb
KH
2652 /*
2653 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2654 * in system level. So, allow to go ahead dying process in addition to
2655 * MEMDIE process.
2656 */
2657 if (unlikely(test_thread_flag(TIF_MEMDIE)
2658 || fatal_signal_pending(current)))
2659 goto bypass;
a636b327 2660
8a9f3ccd 2661 /*
3be91277
HD
2662 * We always charge the cgroup the mm_struct belongs to.
2663 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2664 * thread group leader migrates. It's possible that mm is not
24467cac 2665 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2666 */
c0ff4b85 2667 if (!*ptr && !mm)
38c5d72f 2668 *ptr = root_mem_cgroup;
f75ca962 2669again:
c0ff4b85
R
2670 if (*ptr) { /* css should be a valid one */
2671 memcg = *ptr;
c0ff4b85 2672 if (mem_cgroup_is_root(memcg))
f75ca962 2673 goto done;
a0956d54 2674 if (consume_stock(memcg, nr_pages))
f75ca962 2675 goto done;
c0ff4b85 2676 css_get(&memcg->css);
4b534334 2677 } else {
f75ca962 2678 struct task_struct *p;
54595fe2 2679
f75ca962
KH
2680 rcu_read_lock();
2681 p = rcu_dereference(mm->owner);
f75ca962 2682 /*
ebb76ce1 2683 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2684 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2685 * race with swapoff. Then, we have small risk of mis-accouning.
2686 * But such kind of mis-account by race always happens because
2687 * we don't have cgroup_mutex(). It's overkill and we allo that
2688 * small race, here.
2689 * (*) swapoff at el will charge against mm-struct not against
2690 * task-struct. So, mm->owner can be NULL.
f75ca962 2691 */
c0ff4b85 2692 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2693 if (!memcg)
2694 memcg = root_mem_cgroup;
2695 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2696 rcu_read_unlock();
2697 goto done;
2698 }
a0956d54 2699 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2700 /*
2701 * It seems dagerous to access memcg without css_get().
2702 * But considering how consume_stok works, it's not
2703 * necessary. If consume_stock success, some charges
2704 * from this memcg are cached on this cpu. So, we
2705 * don't need to call css_get()/css_tryget() before
2706 * calling consume_stock().
2707 */
2708 rcu_read_unlock();
2709 goto done;
2710 }
2711 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2712 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2713 rcu_read_unlock();
2714 goto again;
2715 }
2716 rcu_read_unlock();
2717 }
8a9f3ccd 2718
4b534334
KH
2719 do {
2720 bool oom_check;
7a81b88c 2721
4b534334 2722 /* If killed, bypass charge */
f75ca962 2723 if (fatal_signal_pending(current)) {
c0ff4b85 2724 css_put(&memcg->css);
4b534334 2725 goto bypass;
f75ca962 2726 }
6d61ef40 2727
4b534334
KH
2728 oom_check = false;
2729 if (oom && !nr_oom_retries) {
2730 oom_check = true;
2731 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2732 }
66e1707b 2733
4c9c5359
SS
2734 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2735 oom_check);
4b534334
KH
2736 switch (ret) {
2737 case CHARGE_OK:
2738 break;
2739 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2740 batch = nr_pages;
c0ff4b85
R
2741 css_put(&memcg->css);
2742 memcg = NULL;
f75ca962 2743 goto again;
4b534334 2744 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2745 css_put(&memcg->css);
4b534334
KH
2746 goto nomem;
2747 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2748 if (!oom) {
c0ff4b85 2749 css_put(&memcg->css);
867578cb 2750 goto nomem;
f75ca962 2751 }
4b534334
KH
2752 /* If oom, we never return -ENOMEM */
2753 nr_oom_retries--;
2754 break;
2755 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2756 css_put(&memcg->css);
867578cb 2757 goto bypass;
66e1707b 2758 }
4b534334
KH
2759 } while (ret != CHARGE_OK);
2760
7ec99d62 2761 if (batch > nr_pages)
c0ff4b85
R
2762 refill_stock(memcg, batch - nr_pages);
2763 css_put(&memcg->css);
0c3e73e8 2764done:
c0ff4b85 2765 *ptr = memcg;
7a81b88c
KH
2766 return 0;
2767nomem:
c0ff4b85 2768 *ptr = NULL;
7a81b88c 2769 return -ENOMEM;
867578cb 2770bypass:
38c5d72f
KH
2771 *ptr = root_mem_cgroup;
2772 return -EINTR;
7a81b88c 2773}
8a9f3ccd 2774
a3032a2c
DN
2775/*
2776 * Somemtimes we have to undo a charge we got by try_charge().
2777 * This function is for that and do uncharge, put css's refcnt.
2778 * gotten by try_charge().
2779 */
c0ff4b85 2780static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2781 unsigned int nr_pages)
a3032a2c 2782{
c0ff4b85 2783 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2784 unsigned long bytes = nr_pages * PAGE_SIZE;
2785
c0ff4b85 2786 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2787 if (do_swap_account)
c0ff4b85 2788 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2789 }
854ffa8d
DN
2790}
2791
d01dd17f
KH
2792/*
2793 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2794 * This is useful when moving usage to parent cgroup.
2795 */
2796static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2797 unsigned int nr_pages)
2798{
2799 unsigned long bytes = nr_pages * PAGE_SIZE;
2800
2801 if (mem_cgroup_is_root(memcg))
2802 return;
2803
2804 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2805 if (do_swap_account)
2806 res_counter_uncharge_until(&memcg->memsw,
2807 memcg->memsw.parent, bytes);
2808}
2809
a3b2d692
KH
2810/*
2811 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2812 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2813 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2814 * called against removed memcg.)
a3b2d692
KH
2815 */
2816static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2817{
2818 struct cgroup_subsys_state *css;
2819
2820 /* ID 0 is unused ID */
2821 if (!id)
2822 return NULL;
2823 css = css_lookup(&mem_cgroup_subsys, id);
2824 if (!css)
2825 return NULL;
b2145145 2826 return mem_cgroup_from_css(css);
a3b2d692
KH
2827}
2828
e42d9d5d 2829struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2830{
c0ff4b85 2831 struct mem_cgroup *memcg = NULL;
3c776e64 2832 struct page_cgroup *pc;
a3b2d692 2833 unsigned short id;
b5a84319
KH
2834 swp_entry_t ent;
2835
3c776e64
DN
2836 VM_BUG_ON(!PageLocked(page));
2837
3c776e64 2838 pc = lookup_page_cgroup(page);
c0bd3f63 2839 lock_page_cgroup(pc);
a3b2d692 2840 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2841 memcg = pc->mem_cgroup;
2842 if (memcg && !css_tryget(&memcg->css))
2843 memcg = NULL;
e42d9d5d 2844 } else if (PageSwapCache(page)) {
3c776e64 2845 ent.val = page_private(page);
9fb4b7cc 2846 id = lookup_swap_cgroup_id(ent);
a3b2d692 2847 rcu_read_lock();
c0ff4b85
R
2848 memcg = mem_cgroup_lookup(id);
2849 if (memcg && !css_tryget(&memcg->css))
2850 memcg = NULL;
a3b2d692 2851 rcu_read_unlock();
3c776e64 2852 }
c0bd3f63 2853 unlock_page_cgroup(pc);
c0ff4b85 2854 return memcg;
b5a84319
KH
2855}
2856
c0ff4b85 2857static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2858 struct page *page,
7ec99d62 2859 unsigned int nr_pages,
9ce70c02
HD
2860 enum charge_type ctype,
2861 bool lrucare)
7a81b88c 2862{
ce587e65 2863 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2864 struct zone *uninitialized_var(zone);
fa9add64 2865 struct lruvec *lruvec;
9ce70c02 2866 bool was_on_lru = false;
b2402857 2867 bool anon;
9ce70c02 2868
ca3e0214 2869 lock_page_cgroup(pc);
90deb788 2870 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2871 /*
2872 * we don't need page_cgroup_lock about tail pages, becase they are not
2873 * accessed by any other context at this point.
2874 */
9ce70c02
HD
2875
2876 /*
2877 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2878 * may already be on some other mem_cgroup's LRU. Take care of it.
2879 */
2880 if (lrucare) {
2881 zone = page_zone(page);
2882 spin_lock_irq(&zone->lru_lock);
2883 if (PageLRU(page)) {
fa9add64 2884 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2885 ClearPageLRU(page);
fa9add64 2886 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2887 was_on_lru = true;
2888 }
2889 }
2890
c0ff4b85 2891 pc->mem_cgroup = memcg;
261fb61a
KH
2892 /*
2893 * We access a page_cgroup asynchronously without lock_page_cgroup().
2894 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2895 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2896 * before USED bit, we need memory barrier here.
2897 * See mem_cgroup_add_lru_list(), etc.
2898 */
08e552c6 2899 smp_wmb();
b2402857 2900 SetPageCgroupUsed(pc);
3be91277 2901
9ce70c02
HD
2902 if (lrucare) {
2903 if (was_on_lru) {
fa9add64 2904 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2905 VM_BUG_ON(PageLRU(page));
2906 SetPageLRU(page);
fa9add64 2907 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2908 }
2909 spin_unlock_irq(&zone->lru_lock);
2910 }
2911
41326c17 2912 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2913 anon = true;
2914 else
2915 anon = false;
2916
2917 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2918 unlock_page_cgroup(pc);
9ce70c02 2919
430e4863
KH
2920 /*
2921 * "charge_statistics" updated event counter. Then, check it.
2922 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2923 * if they exceeds softlimit.
2924 */
c0ff4b85 2925 memcg_check_events(memcg, page);
7a81b88c 2926}
66e1707b 2927
7cf27982
GC
2928static DEFINE_MUTEX(set_limit_mutex);
2929
7ae1e1d0
GC
2930#ifdef CONFIG_MEMCG_KMEM
2931static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2932{
2933 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2934 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2935}
2936
1f458cbf
GC
2937/*
2938 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2939 * in the memcg_cache_params struct.
2940 */
2941static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2942{
2943 struct kmem_cache *cachep;
2944
2945 VM_BUG_ON(p->is_root_cache);
2946 cachep = p->root_cache;
2947 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2948}
2949
749c5415
GC
2950#ifdef CONFIG_SLABINFO
2951static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2952 struct seq_file *m)
2953{
2954 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2955 struct memcg_cache_params *params;
2956
2957 if (!memcg_can_account_kmem(memcg))
2958 return -EIO;
2959
2960 print_slabinfo_header(m);
2961
2962 mutex_lock(&memcg->slab_caches_mutex);
2963 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2964 cache_show(memcg_params_to_cache(params), m);
2965 mutex_unlock(&memcg->slab_caches_mutex);
2966
2967 return 0;
2968}
2969#endif
2970
7ae1e1d0
GC
2971static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2972{
2973 struct res_counter *fail_res;
2974 struct mem_cgroup *_memcg;
2975 int ret = 0;
2976 bool may_oom;
2977
2978 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2979 if (ret)
2980 return ret;
2981
2982 /*
2983 * Conditions under which we can wait for the oom_killer. Those are
2984 * the same conditions tested by the core page allocator
2985 */
2986 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2987
2988 _memcg = memcg;
2989 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2990 &_memcg, may_oom);
2991
2992 if (ret == -EINTR) {
2993 /*
2994 * __mem_cgroup_try_charge() chosed to bypass to root due to
2995 * OOM kill or fatal signal. Since our only options are to
2996 * either fail the allocation or charge it to this cgroup, do
2997 * it as a temporary condition. But we can't fail. From a
2998 * kmem/slab perspective, the cache has already been selected,
2999 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3000 * our minds.
3001 *
3002 * This condition will only trigger if the task entered
3003 * memcg_charge_kmem in a sane state, but was OOM-killed during
3004 * __mem_cgroup_try_charge() above. Tasks that were already
3005 * dying when the allocation triggers should have been already
3006 * directed to the root cgroup in memcontrol.h
3007 */
3008 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3009 if (do_swap_account)
3010 res_counter_charge_nofail(&memcg->memsw, size,
3011 &fail_res);
3012 ret = 0;
3013 } else if (ret)
3014 res_counter_uncharge(&memcg->kmem, size);
3015
3016 return ret;
3017}
3018
3019static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3020{
7ae1e1d0
GC
3021 res_counter_uncharge(&memcg->res, size);
3022 if (do_swap_account)
3023 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3024
3025 /* Not down to 0 */
3026 if (res_counter_uncharge(&memcg->kmem, size))
3027 return;
3028
3029 if (memcg_kmem_test_and_clear_dead(memcg))
3030 mem_cgroup_put(memcg);
7ae1e1d0
GC
3031}
3032
2633d7a0
GC
3033void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3034{
3035 if (!memcg)
3036 return;
3037
3038 mutex_lock(&memcg->slab_caches_mutex);
3039 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3040 mutex_unlock(&memcg->slab_caches_mutex);
3041}
3042
3043/*
3044 * helper for acessing a memcg's index. It will be used as an index in the
3045 * child cache array in kmem_cache, and also to derive its name. This function
3046 * will return -1 when this is not a kmem-limited memcg.
3047 */
3048int memcg_cache_id(struct mem_cgroup *memcg)
3049{
3050 return memcg ? memcg->kmemcg_id : -1;
3051}
3052
55007d84
GC
3053/*
3054 * This ends up being protected by the set_limit mutex, during normal
3055 * operation, because that is its main call site.
3056 *
3057 * But when we create a new cache, we can call this as well if its parent
3058 * is kmem-limited. That will have to hold set_limit_mutex as well.
3059 */
3060int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3061{
3062 int num, ret;
3063
3064 num = ida_simple_get(&kmem_limited_groups,
3065 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3066 if (num < 0)
3067 return num;
3068 /*
3069 * After this point, kmem_accounted (that we test atomically in
3070 * the beginning of this conditional), is no longer 0. This
3071 * guarantees only one process will set the following boolean
3072 * to true. We don't need test_and_set because we're protected
3073 * by the set_limit_mutex anyway.
3074 */
3075 memcg_kmem_set_activated(memcg);
3076
3077 ret = memcg_update_all_caches(num+1);
3078 if (ret) {
3079 ida_simple_remove(&kmem_limited_groups, num);
3080 memcg_kmem_clear_activated(memcg);
3081 return ret;
3082 }
3083
3084 memcg->kmemcg_id = num;
3085 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3086 mutex_init(&memcg->slab_caches_mutex);
3087 return 0;
3088}
3089
3090static size_t memcg_caches_array_size(int num_groups)
3091{
3092 ssize_t size;
3093 if (num_groups <= 0)
3094 return 0;
3095
3096 size = 2 * num_groups;
3097 if (size < MEMCG_CACHES_MIN_SIZE)
3098 size = MEMCG_CACHES_MIN_SIZE;
3099 else if (size > MEMCG_CACHES_MAX_SIZE)
3100 size = MEMCG_CACHES_MAX_SIZE;
3101
3102 return size;
3103}
3104
3105/*
3106 * We should update the current array size iff all caches updates succeed. This
3107 * can only be done from the slab side. The slab mutex needs to be held when
3108 * calling this.
3109 */
3110void memcg_update_array_size(int num)
3111{
3112 if (num > memcg_limited_groups_array_size)
3113 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3114}
3115
15cf17d2
KK
3116static void kmem_cache_destroy_work_func(struct work_struct *w);
3117
55007d84
GC
3118int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3119{
3120 struct memcg_cache_params *cur_params = s->memcg_params;
3121
3122 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3123
3124 if (num_groups > memcg_limited_groups_array_size) {
3125 int i;
3126 ssize_t size = memcg_caches_array_size(num_groups);
3127
3128 size *= sizeof(void *);
3129 size += sizeof(struct memcg_cache_params);
3130
3131 s->memcg_params = kzalloc(size, GFP_KERNEL);
3132 if (!s->memcg_params) {
3133 s->memcg_params = cur_params;
3134 return -ENOMEM;
3135 }
3136
15cf17d2
KK
3137 INIT_WORK(&s->memcg_params->destroy,
3138 kmem_cache_destroy_work_func);
55007d84
GC
3139 s->memcg_params->is_root_cache = true;
3140
3141 /*
3142 * There is the chance it will be bigger than
3143 * memcg_limited_groups_array_size, if we failed an allocation
3144 * in a cache, in which case all caches updated before it, will
3145 * have a bigger array.
3146 *
3147 * But if that is the case, the data after
3148 * memcg_limited_groups_array_size is certainly unused
3149 */
3150 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3151 if (!cur_params->memcg_caches[i])
3152 continue;
3153 s->memcg_params->memcg_caches[i] =
3154 cur_params->memcg_caches[i];
3155 }
3156
3157 /*
3158 * Ideally, we would wait until all caches succeed, and only
3159 * then free the old one. But this is not worth the extra
3160 * pointer per-cache we'd have to have for this.
3161 *
3162 * It is not a big deal if some caches are left with a size
3163 * bigger than the others. And all updates will reset this
3164 * anyway.
3165 */
3166 kfree(cur_params);
3167 }
3168 return 0;
3169}
3170
943a451a
GC
3171int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3172 struct kmem_cache *root_cache)
2633d7a0
GC
3173{
3174 size_t size = sizeof(struct memcg_cache_params);
3175
3176 if (!memcg_kmem_enabled())
3177 return 0;
3178
55007d84
GC
3179 if (!memcg)
3180 size += memcg_limited_groups_array_size * sizeof(void *);
3181
2633d7a0
GC
3182 s->memcg_params = kzalloc(size, GFP_KERNEL);
3183 if (!s->memcg_params)
3184 return -ENOMEM;
3185
15cf17d2
KK
3186 INIT_WORK(&s->memcg_params->destroy,
3187 kmem_cache_destroy_work_func);
943a451a 3188 if (memcg) {
2633d7a0 3189 s->memcg_params->memcg = memcg;
943a451a 3190 s->memcg_params->root_cache = root_cache;
4ba902b5
GC
3191 } else
3192 s->memcg_params->is_root_cache = true;
3193
2633d7a0
GC
3194 return 0;
3195}
3196
3197void memcg_release_cache(struct kmem_cache *s)
3198{
d7f25f8a
GC
3199 struct kmem_cache *root;
3200 struct mem_cgroup *memcg;
3201 int id;
3202
3203 /*
3204 * This happens, for instance, when a root cache goes away before we
3205 * add any memcg.
3206 */
3207 if (!s->memcg_params)
3208 return;
3209
3210 if (s->memcg_params->is_root_cache)
3211 goto out;
3212
3213 memcg = s->memcg_params->memcg;
3214 id = memcg_cache_id(memcg);
3215
3216 root = s->memcg_params->root_cache;
3217 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3218
3219 mutex_lock(&memcg->slab_caches_mutex);
3220 list_del(&s->memcg_params->list);
3221 mutex_unlock(&memcg->slab_caches_mutex);
3222
fd0ccaf2 3223 mem_cgroup_put(memcg);
d7f25f8a 3224out:
2633d7a0
GC
3225 kfree(s->memcg_params);
3226}
3227
0e9d92f2
GC
3228/*
3229 * During the creation a new cache, we need to disable our accounting mechanism
3230 * altogether. This is true even if we are not creating, but rather just
3231 * enqueing new caches to be created.
3232 *
3233 * This is because that process will trigger allocations; some visible, like
3234 * explicit kmallocs to auxiliary data structures, name strings and internal
3235 * cache structures; some well concealed, like INIT_WORK() that can allocate
3236 * objects during debug.
3237 *
3238 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3239 * to it. This may not be a bounded recursion: since the first cache creation
3240 * failed to complete (waiting on the allocation), we'll just try to create the
3241 * cache again, failing at the same point.
3242 *
3243 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3244 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3245 * inside the following two functions.
3246 */
3247static inline void memcg_stop_kmem_account(void)
3248{
3249 VM_BUG_ON(!current->mm);
3250 current->memcg_kmem_skip_account++;
3251}
3252
3253static inline void memcg_resume_kmem_account(void)
3254{
3255 VM_BUG_ON(!current->mm);
3256 current->memcg_kmem_skip_account--;
3257}
3258
1f458cbf
GC
3259static void kmem_cache_destroy_work_func(struct work_struct *w)
3260{
3261 struct kmem_cache *cachep;
3262 struct memcg_cache_params *p;
3263
3264 p = container_of(w, struct memcg_cache_params, destroy);
3265
3266 cachep = memcg_params_to_cache(p);
3267
22933152
GC
3268 /*
3269 * If we get down to 0 after shrink, we could delete right away.
3270 * However, memcg_release_pages() already puts us back in the workqueue
3271 * in that case. If we proceed deleting, we'll get a dangling
3272 * reference, and removing the object from the workqueue in that case
3273 * is unnecessary complication. We are not a fast path.
3274 *
3275 * Note that this case is fundamentally different from racing with
3276 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3277 * kmem_cache_shrink, not only we would be reinserting a dead cache
3278 * into the queue, but doing so from inside the worker racing to
3279 * destroy it.
3280 *
3281 * So if we aren't down to zero, we'll just schedule a worker and try
3282 * again
3283 */
3284 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3285 kmem_cache_shrink(cachep);
3286 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3287 return;
3288 } else
1f458cbf
GC
3289 kmem_cache_destroy(cachep);
3290}
3291
3292void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3293{
3294 if (!cachep->memcg_params->dead)
3295 return;
3296
22933152
GC
3297 /*
3298 * There are many ways in which we can get here.
3299 *
3300 * We can get to a memory-pressure situation while the delayed work is
3301 * still pending to run. The vmscan shrinkers can then release all
3302 * cache memory and get us to destruction. If this is the case, we'll
3303 * be executed twice, which is a bug (the second time will execute over
3304 * bogus data). In this case, cancelling the work should be fine.
3305 *
3306 * But we can also get here from the worker itself, if
3307 * kmem_cache_shrink is enough to shake all the remaining objects and
3308 * get the page count to 0. In this case, we'll deadlock if we try to
3309 * cancel the work (the worker runs with an internal lock held, which
3310 * is the same lock we would hold for cancel_work_sync().)
3311 *
3312 * Since we can't possibly know who got us here, just refrain from
3313 * running if there is already work pending
3314 */
3315 if (work_pending(&cachep->memcg_params->destroy))
3316 return;
1f458cbf
GC
3317 /*
3318 * We have to defer the actual destroying to a workqueue, because
3319 * we might currently be in a context that cannot sleep.
3320 */
3321 schedule_work(&cachep->memcg_params->destroy);
3322}
3323
d7f25f8a
GC
3324static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3325{
3326 char *name;
3327 struct dentry *dentry;
3328
3329 rcu_read_lock();
3330 dentry = rcu_dereference(memcg->css.cgroup->dentry);
3331 rcu_read_unlock();
3332
3333 BUG_ON(dentry == NULL);
3334
3335 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3336 memcg_cache_id(memcg), dentry->d_name.name);
3337
3338 return name;
3339}
3340
3341static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3342 struct kmem_cache *s)
3343{
3344 char *name;
3345 struct kmem_cache *new;
3346
3347 name = memcg_cache_name(memcg, s);
3348 if (!name)
3349 return NULL;
3350
3351 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
943a451a 3352 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3353
d79923fa
GC
3354 if (new)
3355 new->allocflags |= __GFP_KMEMCG;
3356
d7f25f8a
GC
3357 kfree(name);
3358 return new;
3359}
3360
3361/*
3362 * This lock protects updaters, not readers. We want readers to be as fast as
3363 * they can, and they will either see NULL or a valid cache value. Our model
3364 * allow them to see NULL, in which case the root memcg will be selected.
3365 *
3366 * We need this lock because multiple allocations to the same cache from a non
3367 * will span more than one worker. Only one of them can create the cache.
3368 */
3369static DEFINE_MUTEX(memcg_cache_mutex);
3370static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3371 struct kmem_cache *cachep)
3372{
3373 struct kmem_cache *new_cachep;
3374 int idx;
3375
3376 BUG_ON(!memcg_can_account_kmem(memcg));
3377
3378 idx = memcg_cache_id(memcg);
3379
3380 mutex_lock(&memcg_cache_mutex);
3381 new_cachep = cachep->memcg_params->memcg_caches[idx];
3382 if (new_cachep)
3383 goto out;
3384
3385 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3386 if (new_cachep == NULL) {
3387 new_cachep = cachep;
3388 goto out;
3389 }
3390
3391 mem_cgroup_get(memcg);
1f458cbf 3392 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3393
3394 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3395 /*
3396 * the readers won't lock, make sure everybody sees the updated value,
3397 * so they won't put stuff in the queue again for no reason
3398 */
3399 wmb();
3400out:
3401 mutex_unlock(&memcg_cache_mutex);
3402 return new_cachep;
3403}
3404
7cf27982
GC
3405void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3406{
3407 struct kmem_cache *c;
3408 int i;
3409
3410 if (!s->memcg_params)
3411 return;
3412 if (!s->memcg_params->is_root_cache)
3413 return;
3414
3415 /*
3416 * If the cache is being destroyed, we trust that there is no one else
3417 * requesting objects from it. Even if there are, the sanity checks in
3418 * kmem_cache_destroy should caught this ill-case.
3419 *
3420 * Still, we don't want anyone else freeing memcg_caches under our
3421 * noses, which can happen if a new memcg comes to life. As usual,
3422 * we'll take the set_limit_mutex to protect ourselves against this.
3423 */
3424 mutex_lock(&set_limit_mutex);
3425 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3426 c = s->memcg_params->memcg_caches[i];
3427 if (!c)
3428 continue;
3429
3430 /*
3431 * We will now manually delete the caches, so to avoid races
3432 * we need to cancel all pending destruction workers and
3433 * proceed with destruction ourselves.
3434 *
3435 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3436 * and that could spawn the workers again: it is likely that
3437 * the cache still have active pages until this very moment.
3438 * This would lead us back to mem_cgroup_destroy_cache.
3439 *
3440 * But that will not execute at all if the "dead" flag is not
3441 * set, so flip it down to guarantee we are in control.
3442 */
3443 c->memcg_params->dead = false;
22933152 3444 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3445 kmem_cache_destroy(c);
3446 }
3447 mutex_unlock(&set_limit_mutex);
3448}
3449
d7f25f8a
GC
3450struct create_work {
3451 struct mem_cgroup *memcg;
3452 struct kmem_cache *cachep;
3453 struct work_struct work;
3454};
3455
1f458cbf
GC
3456static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3457{
3458 struct kmem_cache *cachep;
3459 struct memcg_cache_params *params;
3460
3461 if (!memcg_kmem_is_active(memcg))
3462 return;
3463
3464 mutex_lock(&memcg->slab_caches_mutex);
3465 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3466 cachep = memcg_params_to_cache(params);
3467 cachep->memcg_params->dead = true;
1f458cbf
GC
3468 schedule_work(&cachep->memcg_params->destroy);
3469 }
3470 mutex_unlock(&memcg->slab_caches_mutex);
3471}
3472
d7f25f8a
GC
3473static void memcg_create_cache_work_func(struct work_struct *w)
3474{
3475 struct create_work *cw;
3476
3477 cw = container_of(w, struct create_work, work);
3478 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3479 /* Drop the reference gotten when we enqueued. */
3480 css_put(&cw->memcg->css);
3481 kfree(cw);
3482}
3483
3484/*
3485 * Enqueue the creation of a per-memcg kmem_cache.
3486 * Called with rcu_read_lock.
3487 */
0e9d92f2
GC
3488static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3489 struct kmem_cache *cachep)
d7f25f8a
GC
3490{
3491 struct create_work *cw;
3492
3493 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3494 if (cw == NULL)
3495 return;
3496
3497 /* The corresponding put will be done in the workqueue. */
3498 if (!css_tryget(&memcg->css)) {
3499 kfree(cw);
3500 return;
3501 }
3502
3503 cw->memcg = memcg;
3504 cw->cachep = cachep;
3505
3506 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3507 schedule_work(&cw->work);
3508}
3509
0e9d92f2
GC
3510static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3511 struct kmem_cache *cachep)
3512{
3513 /*
3514 * We need to stop accounting when we kmalloc, because if the
3515 * corresponding kmalloc cache is not yet created, the first allocation
3516 * in __memcg_create_cache_enqueue will recurse.
3517 *
3518 * However, it is better to enclose the whole function. Depending on
3519 * the debugging options enabled, INIT_WORK(), for instance, can
3520 * trigger an allocation. This too, will make us recurse. Because at
3521 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3522 * the safest choice is to do it like this, wrapping the whole function.
3523 */
3524 memcg_stop_kmem_account();
3525 __memcg_create_cache_enqueue(memcg, cachep);
3526 memcg_resume_kmem_account();
3527}
d7f25f8a
GC
3528/*
3529 * Return the kmem_cache we're supposed to use for a slab allocation.
3530 * We try to use the current memcg's version of the cache.
3531 *
3532 * If the cache does not exist yet, if we are the first user of it,
3533 * we either create it immediately, if possible, or create it asynchronously
3534 * in a workqueue.
3535 * In the latter case, we will let the current allocation go through with
3536 * the original cache.
3537 *
3538 * Can't be called in interrupt context or from kernel threads.
3539 * This function needs to be called with rcu_read_lock() held.
3540 */
3541struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3542 gfp_t gfp)
3543{
3544 struct mem_cgroup *memcg;
3545 int idx;
3546
3547 VM_BUG_ON(!cachep->memcg_params);
3548 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3549
0e9d92f2
GC
3550 if (!current->mm || current->memcg_kmem_skip_account)
3551 return cachep;
3552
d7f25f8a
GC
3553 rcu_read_lock();
3554 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3555 rcu_read_unlock();
3556
3557 if (!memcg_can_account_kmem(memcg))
3558 return cachep;
3559
3560 idx = memcg_cache_id(memcg);
3561
3562 /*
3563 * barrier to mare sure we're always seeing the up to date value. The
3564 * code updating memcg_caches will issue a write barrier to match this.
3565 */
3566 read_barrier_depends();
3567 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
3568 /*
3569 * If we are in a safe context (can wait, and not in interrupt
3570 * context), we could be be predictable and return right away.
3571 * This would guarantee that the allocation being performed
3572 * already belongs in the new cache.
3573 *
3574 * However, there are some clashes that can arrive from locking.
3575 * For instance, because we acquire the slab_mutex while doing
3576 * kmem_cache_dup, this means no further allocation could happen
3577 * with the slab_mutex held.
3578 *
3579 * Also, because cache creation issue get_online_cpus(), this
3580 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3581 * that ends up reversed during cpu hotplug. (cpuset allocates
3582 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3583 * better to defer everything.
3584 */
3585 memcg_create_cache_enqueue(memcg, cachep);
3586 return cachep;
3587 }
3588
3589 return cachep->memcg_params->memcg_caches[idx];
3590}
3591EXPORT_SYMBOL(__memcg_kmem_get_cache);
3592
7ae1e1d0
GC
3593/*
3594 * We need to verify if the allocation against current->mm->owner's memcg is
3595 * possible for the given order. But the page is not allocated yet, so we'll
3596 * need a further commit step to do the final arrangements.
3597 *
3598 * It is possible for the task to switch cgroups in this mean time, so at
3599 * commit time, we can't rely on task conversion any longer. We'll then use
3600 * the handle argument to return to the caller which cgroup we should commit
3601 * against. We could also return the memcg directly and avoid the pointer
3602 * passing, but a boolean return value gives better semantics considering
3603 * the compiled-out case as well.
3604 *
3605 * Returning true means the allocation is possible.
3606 */
3607bool
3608__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3609{
3610 struct mem_cgroup *memcg;
3611 int ret;
3612
3613 *_memcg = NULL;
3614 memcg = try_get_mem_cgroup_from_mm(current->mm);
3615
3616 /*
3617 * very rare case described in mem_cgroup_from_task. Unfortunately there
3618 * isn't much we can do without complicating this too much, and it would
3619 * be gfp-dependent anyway. Just let it go
3620 */
3621 if (unlikely(!memcg))
3622 return true;
3623
3624 if (!memcg_can_account_kmem(memcg)) {
3625 css_put(&memcg->css);
3626 return true;
3627 }
3628
7ae1e1d0
GC
3629 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3630 if (!ret)
3631 *_memcg = memcg;
7ae1e1d0
GC
3632
3633 css_put(&memcg->css);
3634 return (ret == 0);
3635}
3636
3637void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3638 int order)
3639{
3640 struct page_cgroup *pc;
3641
3642 VM_BUG_ON(mem_cgroup_is_root(memcg));
3643
3644 /* The page allocation failed. Revert */
3645 if (!page) {
3646 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3647 return;
3648 }
3649
3650 pc = lookup_page_cgroup(page);
3651 lock_page_cgroup(pc);
3652 pc->mem_cgroup = memcg;
3653 SetPageCgroupUsed(pc);
3654 unlock_page_cgroup(pc);
3655}
3656
3657void __memcg_kmem_uncharge_pages(struct page *page, int order)
3658{
3659 struct mem_cgroup *memcg = NULL;
3660 struct page_cgroup *pc;
3661
3662
3663 pc = lookup_page_cgroup(page);
3664 /*
3665 * Fast unlocked return. Theoretically might have changed, have to
3666 * check again after locking.
3667 */
3668 if (!PageCgroupUsed(pc))
3669 return;
3670
3671 lock_page_cgroup(pc);
3672 if (PageCgroupUsed(pc)) {
3673 memcg = pc->mem_cgroup;
3674 ClearPageCgroupUsed(pc);
3675 }
3676 unlock_page_cgroup(pc);
3677
3678 /*
3679 * We trust that only if there is a memcg associated with the page, it
3680 * is a valid allocation
3681 */
3682 if (!memcg)
3683 return;
3684
3685 VM_BUG_ON(mem_cgroup_is_root(memcg));
3686 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3687}
1f458cbf
GC
3688#else
3689static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3690{
3691}
7ae1e1d0
GC
3692#endif /* CONFIG_MEMCG_KMEM */
3693
ca3e0214
KH
3694#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3695
a0db00fc 3696#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3697/*
3698 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3699 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3700 * charge/uncharge will be never happen and move_account() is done under
3701 * compound_lock(), so we don't have to take care of races.
ca3e0214 3702 */
e94c8a9c 3703void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3704{
3705 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
3706 struct page_cgroup *pc;
3707 int i;
ca3e0214 3708
3d37c4a9
KH
3709 if (mem_cgroup_disabled())
3710 return;
e94c8a9c
KH
3711 for (i = 1; i < HPAGE_PMD_NR; i++) {
3712 pc = head_pc + i;
3713 pc->mem_cgroup = head_pc->mem_cgroup;
3714 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3715 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3716 }
ca3e0214 3717}
12d27107 3718#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3719
f817ed48 3720/**
de3638d9 3721 * mem_cgroup_move_account - move account of the page
5564e88b 3722 * @page: the page
7ec99d62 3723 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3724 * @pc: page_cgroup of the page.
3725 * @from: mem_cgroup which the page is moved from.
3726 * @to: mem_cgroup which the page is moved to. @from != @to.
3727 *
3728 * The caller must confirm following.
08e552c6 3729 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3730 * - compound_lock is held when nr_pages > 1
f817ed48 3731 *
2f3479b1
KH
3732 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3733 * from old cgroup.
f817ed48 3734 */
7ec99d62
JW
3735static int mem_cgroup_move_account(struct page *page,
3736 unsigned int nr_pages,
3737 struct page_cgroup *pc,
3738 struct mem_cgroup *from,
2f3479b1 3739 struct mem_cgroup *to)
f817ed48 3740{
de3638d9
JW
3741 unsigned long flags;
3742 int ret;
b2402857 3743 bool anon = PageAnon(page);
987eba66 3744
f817ed48 3745 VM_BUG_ON(from == to);
5564e88b 3746 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3747 /*
3748 * The page is isolated from LRU. So, collapse function
3749 * will not handle this page. But page splitting can happen.
3750 * Do this check under compound_page_lock(). The caller should
3751 * hold it.
3752 */
3753 ret = -EBUSY;
7ec99d62 3754 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3755 goto out;
3756
3757 lock_page_cgroup(pc);
3758
3759 ret = -EINVAL;
3760 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3761 goto unlock;
3762
312734c0 3763 move_lock_mem_cgroup(from, &flags);
f817ed48 3764
2ff76f11 3765 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3766 /* Update mapped_file data for mem_cgroup */
3767 preempt_disable();
3768 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3769 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3770 preempt_enable();
d69b042f 3771 }
b2402857 3772 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 3773
854ffa8d 3774 /* caller should have done css_get */
08e552c6 3775 pc->mem_cgroup = to;
b2402857 3776 mem_cgroup_charge_statistics(to, anon, nr_pages);
312734c0 3777 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3778 ret = 0;
3779unlock:
57f9fd7d 3780 unlock_page_cgroup(pc);
d2265e6f
KH
3781 /*
3782 * check events
3783 */
5564e88b
JW
3784 memcg_check_events(to, page);
3785 memcg_check_events(from, page);
de3638d9 3786out:
f817ed48
KH
3787 return ret;
3788}
3789
2ef37d3f
MH
3790/**
3791 * mem_cgroup_move_parent - moves page to the parent group
3792 * @page: the page to move
3793 * @pc: page_cgroup of the page
3794 * @child: page's cgroup
3795 *
3796 * move charges to its parent or the root cgroup if the group has no
3797 * parent (aka use_hierarchy==0).
3798 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3799 * mem_cgroup_move_account fails) the failure is always temporary and
3800 * it signals a race with a page removal/uncharge or migration. In the
3801 * first case the page is on the way out and it will vanish from the LRU
3802 * on the next attempt and the call should be retried later.
3803 * Isolation from the LRU fails only if page has been isolated from
3804 * the LRU since we looked at it and that usually means either global
3805 * reclaim or migration going on. The page will either get back to the
3806 * LRU or vanish.
3807 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3808 * (!PageCgroupUsed) or moved to a different group. The page will
3809 * disappear in the next attempt.
f817ed48 3810 */
5564e88b
JW
3811static int mem_cgroup_move_parent(struct page *page,
3812 struct page_cgroup *pc,
6068bf01 3813 struct mem_cgroup *child)
f817ed48 3814{
f817ed48 3815 struct mem_cgroup *parent;
7ec99d62 3816 unsigned int nr_pages;
4be4489f 3817 unsigned long uninitialized_var(flags);
f817ed48
KH
3818 int ret;
3819
d8423011 3820 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3821
57f9fd7d
DN
3822 ret = -EBUSY;
3823 if (!get_page_unless_zero(page))
3824 goto out;
3825 if (isolate_lru_page(page))
3826 goto put;
52dbb905 3827
7ec99d62 3828 nr_pages = hpage_nr_pages(page);
08e552c6 3829
cc926f78
KH
3830 parent = parent_mem_cgroup(child);
3831 /*
3832 * If no parent, move charges to root cgroup.
3833 */
3834 if (!parent)
3835 parent = root_mem_cgroup;
f817ed48 3836
2ef37d3f
MH
3837 if (nr_pages > 1) {
3838 VM_BUG_ON(!PageTransHuge(page));
987eba66 3839 flags = compound_lock_irqsave(page);
2ef37d3f 3840 }
987eba66 3841
cc926f78 3842 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3843 pc, child, parent);
cc926f78
KH
3844 if (!ret)
3845 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3846
7ec99d62 3847 if (nr_pages > 1)
987eba66 3848 compound_unlock_irqrestore(page, flags);
08e552c6 3849 putback_lru_page(page);
57f9fd7d 3850put:
40d58138 3851 put_page(page);
57f9fd7d 3852out:
f817ed48
KH
3853 return ret;
3854}
3855
7a81b88c
KH
3856/*
3857 * Charge the memory controller for page usage.
3858 * Return
3859 * 0 if the charge was successful
3860 * < 0 if the cgroup is over its limit
3861 */
3862static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3863 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3864{
c0ff4b85 3865 struct mem_cgroup *memcg = NULL;
7ec99d62 3866 unsigned int nr_pages = 1;
8493ae43 3867 bool oom = true;
7a81b88c 3868 int ret;
ec168510 3869
37c2ac78 3870 if (PageTransHuge(page)) {
7ec99d62 3871 nr_pages <<= compound_order(page);
37c2ac78 3872 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3873 /*
3874 * Never OOM-kill a process for a huge page. The
3875 * fault handler will fall back to regular pages.
3876 */
3877 oom = false;
37c2ac78 3878 }
7a81b88c 3879
c0ff4b85 3880 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3881 if (ret == -ENOMEM)
7a81b88c 3882 return ret;
ce587e65 3883 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3884 return 0;
8a9f3ccd
BS
3885}
3886
7a81b88c
KH
3887int mem_cgroup_newpage_charge(struct page *page,
3888 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3889{
f8d66542 3890 if (mem_cgroup_disabled())
cede86ac 3891 return 0;
7a0524cf
JW
3892 VM_BUG_ON(page_mapped(page));
3893 VM_BUG_ON(page->mapping && !PageAnon(page));
3894 VM_BUG_ON(!mm);
217bc319 3895 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3896 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3897}
3898
54595fe2
KH
3899/*
3900 * While swap-in, try_charge -> commit or cancel, the page is locked.
3901 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3902 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3903 * "commit()" or removed by "cancel()"
3904 */
0435a2fd
JW
3905static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3906 struct page *page,
3907 gfp_t mask,
3908 struct mem_cgroup **memcgp)
8c7c6e34 3909{
c0ff4b85 3910 struct mem_cgroup *memcg;
90deb788 3911 struct page_cgroup *pc;
54595fe2 3912 int ret;
8c7c6e34 3913
90deb788
JW
3914 pc = lookup_page_cgroup(page);
3915 /*
3916 * Every swap fault against a single page tries to charge the
3917 * page, bail as early as possible. shmem_unuse() encounters
3918 * already charged pages, too. The USED bit is protected by
3919 * the page lock, which serializes swap cache removal, which
3920 * in turn serializes uncharging.
3921 */
3922 if (PageCgroupUsed(pc))
3923 return 0;
8c7c6e34
KH
3924 if (!do_swap_account)
3925 goto charge_cur_mm;
c0ff4b85
R
3926 memcg = try_get_mem_cgroup_from_page(page);
3927 if (!memcg)
54595fe2 3928 goto charge_cur_mm;
72835c86
JW
3929 *memcgp = memcg;
3930 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3931 css_put(&memcg->css);
38c5d72f
KH
3932 if (ret == -EINTR)
3933 ret = 0;
54595fe2 3934 return ret;
8c7c6e34 3935charge_cur_mm:
38c5d72f
KH
3936 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3937 if (ret == -EINTR)
3938 ret = 0;
3939 return ret;
8c7c6e34
KH
3940}
3941
0435a2fd
JW
3942int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3943 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3944{
3945 *memcgp = NULL;
3946 if (mem_cgroup_disabled())
3947 return 0;
bdf4f4d2
JW
3948 /*
3949 * A racing thread's fault, or swapoff, may have already
3950 * updated the pte, and even removed page from swap cache: in
3951 * those cases unuse_pte()'s pte_same() test will fail; but
3952 * there's also a KSM case which does need to charge the page.
3953 */
3954 if (!PageSwapCache(page)) {
3955 int ret;
3956
3957 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3958 if (ret == -EINTR)
3959 ret = 0;
3960 return ret;
3961 }
0435a2fd
JW
3962 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3963}
3964
827a03d2
JW
3965void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3966{
3967 if (mem_cgroup_disabled())
3968 return;
3969 if (!memcg)
3970 return;
3971 __mem_cgroup_cancel_charge(memcg, 1);
3972}
3973
83aae4c7 3974static void
72835c86 3975__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3976 enum charge_type ctype)
7a81b88c 3977{
f8d66542 3978 if (mem_cgroup_disabled())
7a81b88c 3979 return;
72835c86 3980 if (!memcg)
7a81b88c 3981 return;
5a6475a4 3982
ce587e65 3983 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3984 /*
3985 * Now swap is on-memory. This means this page may be
3986 * counted both as mem and swap....double count.
03f3c433
KH
3987 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3988 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3989 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3990 */
03f3c433 3991 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3992 swp_entry_t ent = {.val = page_private(page)};
86493009 3993 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3994 }
7a81b88c
KH
3995}
3996
72835c86
JW
3997void mem_cgroup_commit_charge_swapin(struct page *page,
3998 struct mem_cgroup *memcg)
83aae4c7 3999{
72835c86 4000 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4001 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4002}
4003
827a03d2
JW
4004int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4005 gfp_t gfp_mask)
7a81b88c 4006{
827a03d2
JW
4007 struct mem_cgroup *memcg = NULL;
4008 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4009 int ret;
4010
f8d66542 4011 if (mem_cgroup_disabled())
827a03d2
JW
4012 return 0;
4013 if (PageCompound(page))
4014 return 0;
4015
827a03d2
JW
4016 if (!PageSwapCache(page))
4017 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4018 else { /* page is swapcache/shmem */
0435a2fd
JW
4019 ret = __mem_cgroup_try_charge_swapin(mm, page,
4020 gfp_mask, &memcg);
827a03d2
JW
4021 if (!ret)
4022 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4023 }
4024 return ret;
7a81b88c
KH
4025}
4026
c0ff4b85 4027static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4028 unsigned int nr_pages,
4029 const enum charge_type ctype)
569b846d
KH
4030{
4031 struct memcg_batch_info *batch = NULL;
4032 bool uncharge_memsw = true;
7ec99d62 4033
569b846d
KH
4034 /* If swapout, usage of swap doesn't decrease */
4035 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4036 uncharge_memsw = false;
569b846d
KH
4037
4038 batch = &current->memcg_batch;
4039 /*
4040 * In usual, we do css_get() when we remember memcg pointer.
4041 * But in this case, we keep res->usage until end of a series of
4042 * uncharges. Then, it's ok to ignore memcg's refcnt.
4043 */
4044 if (!batch->memcg)
c0ff4b85 4045 batch->memcg = memcg;
3c11ecf4
KH
4046 /*
4047 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4048 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4049 * the same cgroup and we have chance to coalesce uncharges.
4050 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4051 * because we want to do uncharge as soon as possible.
4052 */
4053
4054 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4055 goto direct_uncharge;
4056
7ec99d62 4057 if (nr_pages > 1)
ec168510
AA
4058 goto direct_uncharge;
4059
569b846d
KH
4060 /*
4061 * In typical case, batch->memcg == mem. This means we can
4062 * merge a series of uncharges to an uncharge of res_counter.
4063 * If not, we uncharge res_counter ony by one.
4064 */
c0ff4b85 4065 if (batch->memcg != memcg)
569b846d
KH
4066 goto direct_uncharge;
4067 /* remember freed charge and uncharge it later */
7ffd4ca7 4068 batch->nr_pages++;
569b846d 4069 if (uncharge_memsw)
7ffd4ca7 4070 batch->memsw_nr_pages++;
569b846d
KH
4071 return;
4072direct_uncharge:
c0ff4b85 4073 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4074 if (uncharge_memsw)
c0ff4b85
R
4075 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4076 if (unlikely(batch->memcg != memcg))
4077 memcg_oom_recover(memcg);
569b846d 4078}
7a81b88c 4079
8a9f3ccd 4080/*
69029cd5 4081 * uncharge if !page_mapped(page)
8a9f3ccd 4082 */
8c7c6e34 4083static struct mem_cgroup *
0030f535
JW
4084__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4085 bool end_migration)
8a9f3ccd 4086{
c0ff4b85 4087 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4088 unsigned int nr_pages = 1;
4089 struct page_cgroup *pc;
b2402857 4090 bool anon;
8a9f3ccd 4091
f8d66542 4092 if (mem_cgroup_disabled())
8c7c6e34 4093 return NULL;
4077960e 4094
0c59b89c 4095 VM_BUG_ON(PageSwapCache(page));
d13d1443 4096
37c2ac78 4097 if (PageTransHuge(page)) {
7ec99d62 4098 nr_pages <<= compound_order(page);
37c2ac78
AA
4099 VM_BUG_ON(!PageTransHuge(page));
4100 }
8697d331 4101 /*
3c541e14 4102 * Check if our page_cgroup is valid
8697d331 4103 */
52d4b9ac 4104 pc = lookup_page_cgroup(page);
cfa44946 4105 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4106 return NULL;
b9c565d5 4107
52d4b9ac 4108 lock_page_cgroup(pc);
d13d1443 4109
c0ff4b85 4110 memcg = pc->mem_cgroup;
8c7c6e34 4111
d13d1443
KH
4112 if (!PageCgroupUsed(pc))
4113 goto unlock_out;
4114
b2402857
KH
4115 anon = PageAnon(page);
4116
d13d1443 4117 switch (ctype) {
41326c17 4118 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4119 /*
4120 * Generally PageAnon tells if it's the anon statistics to be
4121 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4122 * used before page reached the stage of being marked PageAnon.
4123 */
b2402857
KH
4124 anon = true;
4125 /* fallthrough */
8a9478ca 4126 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4127 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4128 if (page_mapped(page))
4129 goto unlock_out;
4130 /*
4131 * Pages under migration may not be uncharged. But
4132 * end_migration() /must/ be the one uncharging the
4133 * unused post-migration page and so it has to call
4134 * here with the migration bit still set. See the
4135 * res_counter handling below.
4136 */
4137 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4138 goto unlock_out;
4139 break;
4140 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4141 if (!PageAnon(page)) { /* Shared memory */
4142 if (page->mapping && !page_is_file_cache(page))
4143 goto unlock_out;
4144 } else if (page_mapped(page)) /* Anon */
4145 goto unlock_out;
4146 break;
4147 default:
4148 break;
52d4b9ac 4149 }
d13d1443 4150
b2402857 4151 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 4152
52d4b9ac 4153 ClearPageCgroupUsed(pc);
544122e5
KH
4154 /*
4155 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4156 * freed from LRU. This is safe because uncharged page is expected not
4157 * to be reused (freed soon). Exception is SwapCache, it's handled by
4158 * special functions.
4159 */
b9c565d5 4160
52d4b9ac 4161 unlock_page_cgroup(pc);
f75ca962 4162 /*
c0ff4b85 4163 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
4164 * will never be freed.
4165 */
c0ff4b85 4166 memcg_check_events(memcg, page);
f75ca962 4167 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
4168 mem_cgroup_swap_statistics(memcg, true);
4169 mem_cgroup_get(memcg);
f75ca962 4170 }
0030f535
JW
4171 /*
4172 * Migration does not charge the res_counter for the
4173 * replacement page, so leave it alone when phasing out the
4174 * page that is unused after the migration.
4175 */
4176 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4177 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4178
c0ff4b85 4179 return memcg;
d13d1443
KH
4180
4181unlock_out:
4182 unlock_page_cgroup(pc);
8c7c6e34 4183 return NULL;
3c541e14
BS
4184}
4185
69029cd5
KH
4186void mem_cgroup_uncharge_page(struct page *page)
4187{
52d4b9ac
KH
4188 /* early check. */
4189 if (page_mapped(page))
4190 return;
40f23a21 4191 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
4192 if (PageSwapCache(page))
4193 return;
0030f535 4194 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4195}
4196
4197void mem_cgroup_uncharge_cache_page(struct page *page)
4198{
4199 VM_BUG_ON(page_mapped(page));
b7abea96 4200 VM_BUG_ON(page->mapping);
0030f535 4201 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4202}
4203
569b846d
KH
4204/*
4205 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4206 * In that cases, pages are freed continuously and we can expect pages
4207 * are in the same memcg. All these calls itself limits the number of
4208 * pages freed at once, then uncharge_start/end() is called properly.
4209 * This may be called prural(2) times in a context,
4210 */
4211
4212void mem_cgroup_uncharge_start(void)
4213{
4214 current->memcg_batch.do_batch++;
4215 /* We can do nest. */
4216 if (current->memcg_batch.do_batch == 1) {
4217 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4218 current->memcg_batch.nr_pages = 0;
4219 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4220 }
4221}
4222
4223void mem_cgroup_uncharge_end(void)
4224{
4225 struct memcg_batch_info *batch = &current->memcg_batch;
4226
4227 if (!batch->do_batch)
4228 return;
4229
4230 batch->do_batch--;
4231 if (batch->do_batch) /* If stacked, do nothing. */
4232 return;
4233
4234 if (!batch->memcg)
4235 return;
4236 /*
4237 * This "batch->memcg" is valid without any css_get/put etc...
4238 * bacause we hide charges behind us.
4239 */
7ffd4ca7
JW
4240 if (batch->nr_pages)
4241 res_counter_uncharge(&batch->memcg->res,
4242 batch->nr_pages * PAGE_SIZE);
4243 if (batch->memsw_nr_pages)
4244 res_counter_uncharge(&batch->memcg->memsw,
4245 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4246 memcg_oom_recover(batch->memcg);
569b846d
KH
4247 /* forget this pointer (for sanity check) */
4248 batch->memcg = NULL;
4249}
4250
e767e056 4251#ifdef CONFIG_SWAP
8c7c6e34 4252/*
e767e056 4253 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4254 * memcg information is recorded to swap_cgroup of "ent"
4255 */
8a9478ca
KH
4256void
4257mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4258{
4259 struct mem_cgroup *memcg;
8a9478ca
KH
4260 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4261
4262 if (!swapout) /* this was a swap cache but the swap is unused ! */
4263 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4264
0030f535 4265 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4266
f75ca962
KH
4267 /*
4268 * record memcg information, if swapout && memcg != NULL,
4269 * mem_cgroup_get() was called in uncharge().
4270 */
4271 if (do_swap_account && swapout && memcg)
a3b2d692 4272 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4273}
e767e056 4274#endif
8c7c6e34 4275
c255a458 4276#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4277/*
4278 * called from swap_entry_free(). remove record in swap_cgroup and
4279 * uncharge "memsw" account.
4280 */
4281void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4282{
8c7c6e34 4283 struct mem_cgroup *memcg;
a3b2d692 4284 unsigned short id;
8c7c6e34
KH
4285
4286 if (!do_swap_account)
4287 return;
4288
a3b2d692
KH
4289 id = swap_cgroup_record(ent, 0);
4290 rcu_read_lock();
4291 memcg = mem_cgroup_lookup(id);
8c7c6e34 4292 if (memcg) {
a3b2d692
KH
4293 /*
4294 * We uncharge this because swap is freed.
4295 * This memcg can be obsolete one. We avoid calling css_tryget
4296 */
0c3e73e8 4297 if (!mem_cgroup_is_root(memcg))
4e649152 4298 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4299 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
4300 mem_cgroup_put(memcg);
4301 }
a3b2d692 4302 rcu_read_unlock();
d13d1443 4303}
02491447
DN
4304
4305/**
4306 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4307 * @entry: swap entry to be moved
4308 * @from: mem_cgroup which the entry is moved from
4309 * @to: mem_cgroup which the entry is moved to
4310 *
4311 * It succeeds only when the swap_cgroup's record for this entry is the same
4312 * as the mem_cgroup's id of @from.
4313 *
4314 * Returns 0 on success, -EINVAL on failure.
4315 *
4316 * The caller must have charged to @to, IOW, called res_counter_charge() about
4317 * both res and memsw, and called css_get().
4318 */
4319static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4320 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4321{
4322 unsigned short old_id, new_id;
4323
4324 old_id = css_id(&from->css);
4325 new_id = css_id(&to->css);
4326
4327 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4328 mem_cgroup_swap_statistics(from, false);
483c30b5 4329 mem_cgroup_swap_statistics(to, true);
02491447 4330 /*
483c30b5
DN
4331 * This function is only called from task migration context now.
4332 * It postpones res_counter and refcount handling till the end
4333 * of task migration(mem_cgroup_clear_mc()) for performance
4334 * improvement. But we cannot postpone mem_cgroup_get(to)
4335 * because if the process that has been moved to @to does
4336 * swap-in, the refcount of @to might be decreased to 0.
02491447 4337 */
02491447 4338 mem_cgroup_get(to);
02491447
DN
4339 return 0;
4340 }
4341 return -EINVAL;
4342}
4343#else
4344static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4345 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4346{
4347 return -EINVAL;
4348}
8c7c6e34 4349#endif
d13d1443 4350
ae41be37 4351/*
01b1ae63
KH
4352 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4353 * page belongs to.
ae41be37 4354 */
0030f535
JW
4355void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4356 struct mem_cgroup **memcgp)
ae41be37 4357{
c0ff4b85 4358 struct mem_cgroup *memcg = NULL;
b32967ff 4359 unsigned int nr_pages = 1;
7ec99d62 4360 struct page_cgroup *pc;
ac39cf8c 4361 enum charge_type ctype;
8869b8f6 4362
72835c86 4363 *memcgp = NULL;
56039efa 4364
f8d66542 4365 if (mem_cgroup_disabled())
0030f535 4366 return;
4077960e 4367
b32967ff
MG
4368 if (PageTransHuge(page))
4369 nr_pages <<= compound_order(page);
4370
52d4b9ac
KH
4371 pc = lookup_page_cgroup(page);
4372 lock_page_cgroup(pc);
4373 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4374 memcg = pc->mem_cgroup;
4375 css_get(&memcg->css);
ac39cf8c 4376 /*
4377 * At migrating an anonymous page, its mapcount goes down
4378 * to 0 and uncharge() will be called. But, even if it's fully
4379 * unmapped, migration may fail and this page has to be
4380 * charged again. We set MIGRATION flag here and delay uncharge
4381 * until end_migration() is called
4382 *
4383 * Corner Case Thinking
4384 * A)
4385 * When the old page was mapped as Anon and it's unmap-and-freed
4386 * while migration was ongoing.
4387 * If unmap finds the old page, uncharge() of it will be delayed
4388 * until end_migration(). If unmap finds a new page, it's
4389 * uncharged when it make mapcount to be 1->0. If unmap code
4390 * finds swap_migration_entry, the new page will not be mapped
4391 * and end_migration() will find it(mapcount==0).
4392 *
4393 * B)
4394 * When the old page was mapped but migraion fails, the kernel
4395 * remaps it. A charge for it is kept by MIGRATION flag even
4396 * if mapcount goes down to 0. We can do remap successfully
4397 * without charging it again.
4398 *
4399 * C)
4400 * The "old" page is under lock_page() until the end of
4401 * migration, so, the old page itself will not be swapped-out.
4402 * If the new page is swapped out before end_migraton, our
4403 * hook to usual swap-out path will catch the event.
4404 */
4405 if (PageAnon(page))
4406 SetPageCgroupMigration(pc);
e8589cc1 4407 }
52d4b9ac 4408 unlock_page_cgroup(pc);
ac39cf8c 4409 /*
4410 * If the page is not charged at this point,
4411 * we return here.
4412 */
c0ff4b85 4413 if (!memcg)
0030f535 4414 return;
01b1ae63 4415
72835c86 4416 *memcgp = memcg;
ac39cf8c 4417 /*
4418 * We charge new page before it's used/mapped. So, even if unlock_page()
4419 * is called before end_migration, we can catch all events on this new
4420 * page. In the case new page is migrated but not remapped, new page's
4421 * mapcount will be finally 0 and we call uncharge in end_migration().
4422 */
ac39cf8c 4423 if (PageAnon(page))
41326c17 4424 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4425 else
62ba7442 4426 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4427 /*
4428 * The page is committed to the memcg, but it's not actually
4429 * charged to the res_counter since we plan on replacing the
4430 * old one and only one page is going to be left afterwards.
4431 */
b32967ff 4432 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4433}
8869b8f6 4434
69029cd5 4435/* remove redundant charge if migration failed*/
c0ff4b85 4436void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4437 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4438{
ac39cf8c 4439 struct page *used, *unused;
01b1ae63 4440 struct page_cgroup *pc;
b2402857 4441 bool anon;
01b1ae63 4442
c0ff4b85 4443 if (!memcg)
01b1ae63 4444 return;
b25ed609 4445
50de1dd9 4446 if (!migration_ok) {
ac39cf8c 4447 used = oldpage;
4448 unused = newpage;
01b1ae63 4449 } else {
ac39cf8c 4450 used = newpage;
01b1ae63
KH
4451 unused = oldpage;
4452 }
0030f535 4453 anon = PageAnon(used);
7d188958
JW
4454 __mem_cgroup_uncharge_common(unused,
4455 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4456 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4457 true);
0030f535 4458 css_put(&memcg->css);
69029cd5 4459 /*
ac39cf8c 4460 * We disallowed uncharge of pages under migration because mapcount
4461 * of the page goes down to zero, temporarly.
4462 * Clear the flag and check the page should be charged.
01b1ae63 4463 */
ac39cf8c 4464 pc = lookup_page_cgroup(oldpage);
4465 lock_page_cgroup(pc);
4466 ClearPageCgroupMigration(pc);
4467 unlock_page_cgroup(pc);
ac39cf8c 4468
01b1ae63 4469 /*
ac39cf8c 4470 * If a page is a file cache, radix-tree replacement is very atomic
4471 * and we can skip this check. When it was an Anon page, its mapcount
4472 * goes down to 0. But because we added MIGRATION flage, it's not
4473 * uncharged yet. There are several case but page->mapcount check
4474 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4475 * check. (see prepare_charge() also)
69029cd5 4476 */
b2402857 4477 if (anon)
ac39cf8c 4478 mem_cgroup_uncharge_page(used);
ae41be37 4479}
78fb7466 4480
ab936cbc
KH
4481/*
4482 * At replace page cache, newpage is not under any memcg but it's on
4483 * LRU. So, this function doesn't touch res_counter but handles LRU
4484 * in correct way. Both pages are locked so we cannot race with uncharge.
4485 */
4486void mem_cgroup_replace_page_cache(struct page *oldpage,
4487 struct page *newpage)
4488{
bde05d1c 4489 struct mem_cgroup *memcg = NULL;
ab936cbc 4490 struct page_cgroup *pc;
ab936cbc 4491 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4492
4493 if (mem_cgroup_disabled())
4494 return;
4495
4496 pc = lookup_page_cgroup(oldpage);
4497 /* fix accounting on old pages */
4498 lock_page_cgroup(pc);
bde05d1c
HD
4499 if (PageCgroupUsed(pc)) {
4500 memcg = pc->mem_cgroup;
4501 mem_cgroup_charge_statistics(memcg, false, -1);
4502 ClearPageCgroupUsed(pc);
4503 }
ab936cbc
KH
4504 unlock_page_cgroup(pc);
4505
bde05d1c
HD
4506 /*
4507 * When called from shmem_replace_page(), in some cases the
4508 * oldpage has already been charged, and in some cases not.
4509 */
4510 if (!memcg)
4511 return;
ab936cbc
KH
4512 /*
4513 * Even if newpage->mapping was NULL before starting replacement,
4514 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4515 * LRU while we overwrite pc->mem_cgroup.
4516 */
ce587e65 4517 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4518}
4519
f212ad7c
DN
4520#ifdef CONFIG_DEBUG_VM
4521static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4522{
4523 struct page_cgroup *pc;
4524
4525 pc = lookup_page_cgroup(page);
cfa44946
JW
4526 /*
4527 * Can be NULL while feeding pages into the page allocator for
4528 * the first time, i.e. during boot or memory hotplug;
4529 * or when mem_cgroup_disabled().
4530 */
f212ad7c
DN
4531 if (likely(pc) && PageCgroupUsed(pc))
4532 return pc;
4533 return NULL;
4534}
4535
4536bool mem_cgroup_bad_page_check(struct page *page)
4537{
4538 if (mem_cgroup_disabled())
4539 return false;
4540
4541 return lookup_page_cgroup_used(page) != NULL;
4542}
4543
4544void mem_cgroup_print_bad_page(struct page *page)
4545{
4546 struct page_cgroup *pc;
4547
4548 pc = lookup_page_cgroup_used(page);
4549 if (pc) {
d045197f
AM
4550 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4551 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4552 }
4553}
4554#endif
4555
d38d2a75 4556static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4557 unsigned long long val)
628f4235 4558{
81d39c20 4559 int retry_count;
3c11ecf4 4560 u64 memswlimit, memlimit;
628f4235 4561 int ret = 0;
81d39c20
KH
4562 int children = mem_cgroup_count_children(memcg);
4563 u64 curusage, oldusage;
3c11ecf4 4564 int enlarge;
81d39c20
KH
4565
4566 /*
4567 * For keeping hierarchical_reclaim simple, how long we should retry
4568 * is depends on callers. We set our retry-count to be function
4569 * of # of children which we should visit in this loop.
4570 */
4571 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4572
4573 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4574
3c11ecf4 4575 enlarge = 0;
8c7c6e34 4576 while (retry_count) {
628f4235
KH
4577 if (signal_pending(current)) {
4578 ret = -EINTR;
4579 break;
4580 }
8c7c6e34
KH
4581 /*
4582 * Rather than hide all in some function, I do this in
4583 * open coded manner. You see what this really does.
aaad153e 4584 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4585 */
4586 mutex_lock(&set_limit_mutex);
4587 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4588 if (memswlimit < val) {
4589 ret = -EINVAL;
4590 mutex_unlock(&set_limit_mutex);
628f4235
KH
4591 break;
4592 }
3c11ecf4
KH
4593
4594 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4595 if (memlimit < val)
4596 enlarge = 1;
4597
8c7c6e34 4598 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4599 if (!ret) {
4600 if (memswlimit == val)
4601 memcg->memsw_is_minimum = true;
4602 else
4603 memcg->memsw_is_minimum = false;
4604 }
8c7c6e34
KH
4605 mutex_unlock(&set_limit_mutex);
4606
4607 if (!ret)
4608 break;
4609
5660048c
JW
4610 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4611 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4612 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4613 /* Usage is reduced ? */
4614 if (curusage >= oldusage)
4615 retry_count--;
4616 else
4617 oldusage = curusage;
8c7c6e34 4618 }
3c11ecf4
KH
4619 if (!ret && enlarge)
4620 memcg_oom_recover(memcg);
14797e23 4621
8c7c6e34
KH
4622 return ret;
4623}
4624
338c8431
LZ
4625static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4626 unsigned long long val)
8c7c6e34 4627{
81d39c20 4628 int retry_count;
3c11ecf4 4629 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4630 int children = mem_cgroup_count_children(memcg);
4631 int ret = -EBUSY;
3c11ecf4 4632 int enlarge = 0;
8c7c6e34 4633
81d39c20
KH
4634 /* see mem_cgroup_resize_res_limit */
4635 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4636 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4637 while (retry_count) {
4638 if (signal_pending(current)) {
4639 ret = -EINTR;
4640 break;
4641 }
4642 /*
4643 * Rather than hide all in some function, I do this in
4644 * open coded manner. You see what this really does.
aaad153e 4645 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4646 */
4647 mutex_lock(&set_limit_mutex);
4648 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4649 if (memlimit > val) {
4650 ret = -EINVAL;
4651 mutex_unlock(&set_limit_mutex);
4652 break;
4653 }
3c11ecf4
KH
4654 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4655 if (memswlimit < val)
4656 enlarge = 1;
8c7c6e34 4657 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4658 if (!ret) {
4659 if (memlimit == val)
4660 memcg->memsw_is_minimum = true;
4661 else
4662 memcg->memsw_is_minimum = false;
4663 }
8c7c6e34
KH
4664 mutex_unlock(&set_limit_mutex);
4665
4666 if (!ret)
4667 break;
4668
5660048c
JW
4669 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4670 MEM_CGROUP_RECLAIM_NOSWAP |
4671 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4672 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4673 /* Usage is reduced ? */
8c7c6e34 4674 if (curusage >= oldusage)
628f4235 4675 retry_count--;
81d39c20
KH
4676 else
4677 oldusage = curusage;
628f4235 4678 }
3c11ecf4
KH
4679 if (!ret && enlarge)
4680 memcg_oom_recover(memcg);
628f4235
KH
4681 return ret;
4682}
4683
4e416953 4684unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4685 gfp_t gfp_mask,
4686 unsigned long *total_scanned)
4e416953
BS
4687{
4688 unsigned long nr_reclaimed = 0;
4689 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4690 unsigned long reclaimed;
4691 int loop = 0;
4692 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4693 unsigned long long excess;
0ae5e89c 4694 unsigned long nr_scanned;
4e416953
BS
4695
4696 if (order > 0)
4697 return 0;
4698
00918b6a 4699 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4700 /*
4701 * This loop can run a while, specially if mem_cgroup's continuously
4702 * keep exceeding their soft limit and putting the system under
4703 * pressure
4704 */
4705 do {
4706 if (next_mz)
4707 mz = next_mz;
4708 else
4709 mz = mem_cgroup_largest_soft_limit_node(mctz);
4710 if (!mz)
4711 break;
4712
0ae5e89c 4713 nr_scanned = 0;
d79154bb 4714 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4715 gfp_mask, &nr_scanned);
4e416953 4716 nr_reclaimed += reclaimed;
0ae5e89c 4717 *total_scanned += nr_scanned;
4e416953
BS
4718 spin_lock(&mctz->lock);
4719
4720 /*
4721 * If we failed to reclaim anything from this memory cgroup
4722 * it is time to move on to the next cgroup
4723 */
4724 next_mz = NULL;
4725 if (!reclaimed) {
4726 do {
4727 /*
4728 * Loop until we find yet another one.
4729 *
4730 * By the time we get the soft_limit lock
4731 * again, someone might have aded the
4732 * group back on the RB tree. Iterate to
4733 * make sure we get a different mem.
4734 * mem_cgroup_largest_soft_limit_node returns
4735 * NULL if no other cgroup is present on
4736 * the tree
4737 */
4738 next_mz =
4739 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4740 if (next_mz == mz)
d79154bb 4741 css_put(&next_mz->memcg->css);
39cc98f1 4742 else /* next_mz == NULL or other memcg */
4e416953
BS
4743 break;
4744 } while (1);
4745 }
d79154bb
HD
4746 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4747 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4748 /*
4749 * One school of thought says that we should not add
4750 * back the node to the tree if reclaim returns 0.
4751 * But our reclaim could return 0, simply because due
4752 * to priority we are exposing a smaller subset of
4753 * memory to reclaim from. Consider this as a longer
4754 * term TODO.
4755 */
ef8745c1 4756 /* If excess == 0, no tree ops */
d79154bb 4757 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4758 spin_unlock(&mctz->lock);
d79154bb 4759 css_put(&mz->memcg->css);
4e416953
BS
4760 loop++;
4761 /*
4762 * Could not reclaim anything and there are no more
4763 * mem cgroups to try or we seem to be looping without
4764 * reclaiming anything.
4765 */
4766 if (!nr_reclaimed &&
4767 (next_mz == NULL ||
4768 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4769 break;
4770 } while (!nr_reclaimed);
4771 if (next_mz)
d79154bb 4772 css_put(&next_mz->memcg->css);
4e416953
BS
4773 return nr_reclaimed;
4774}
4775
2ef37d3f
MH
4776/**
4777 * mem_cgroup_force_empty_list - clears LRU of a group
4778 * @memcg: group to clear
4779 * @node: NUMA node
4780 * @zid: zone id
4781 * @lru: lru to to clear
4782 *
3c935d18 4783 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4784 * reclaim the pages page themselves - pages are moved to the parent (or root)
4785 * group.
cc847582 4786 */
2ef37d3f 4787static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4788 int node, int zid, enum lru_list lru)
cc847582 4789{
bea8c150 4790 struct lruvec *lruvec;
2ef37d3f 4791 unsigned long flags;
072c56c1 4792 struct list_head *list;
925b7673
JW
4793 struct page *busy;
4794 struct zone *zone;
072c56c1 4795
08e552c6 4796 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4797 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4798 list = &lruvec->lists[lru];
cc847582 4799
f817ed48 4800 busy = NULL;
2ef37d3f 4801 do {
925b7673 4802 struct page_cgroup *pc;
5564e88b
JW
4803 struct page *page;
4804
08e552c6 4805 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4806 if (list_empty(list)) {
08e552c6 4807 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4808 break;
f817ed48 4809 }
925b7673
JW
4810 page = list_entry(list->prev, struct page, lru);
4811 if (busy == page) {
4812 list_move(&page->lru, list);
648bcc77 4813 busy = NULL;
08e552c6 4814 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4815 continue;
4816 }
08e552c6 4817 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4818
925b7673 4819 pc = lookup_page_cgroup(page);
5564e88b 4820
3c935d18 4821 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4822 /* found lock contention or "pc" is obsolete. */
925b7673 4823 busy = page;
f817ed48
KH
4824 cond_resched();
4825 } else
4826 busy = NULL;
2ef37d3f 4827 } while (!list_empty(list));
cc847582
KH
4828}
4829
4830/*
c26251f9
MH
4831 * make mem_cgroup's charge to be 0 if there is no task by moving
4832 * all the charges and pages to the parent.
cc847582 4833 * This enables deleting this mem_cgroup.
c26251f9
MH
4834 *
4835 * Caller is responsible for holding css reference on the memcg.
cc847582 4836 */
ab5196c2 4837static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4838{
c26251f9 4839 int node, zid;
bea207c8 4840 u64 usage;
f817ed48 4841
fce66477 4842 do {
52d4b9ac
KH
4843 /* This is for making all *used* pages to be on LRU. */
4844 lru_add_drain_all();
c0ff4b85 4845 drain_all_stock_sync(memcg);
c0ff4b85 4846 mem_cgroup_start_move(memcg);
31aaea4a 4847 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4848 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4849 enum lru_list lru;
4850 for_each_lru(lru) {
2ef37d3f 4851 mem_cgroup_force_empty_list(memcg,
f156ab93 4852 node, zid, lru);
f817ed48 4853 }
1ecaab2b 4854 }
f817ed48 4855 }
c0ff4b85
R
4856 mem_cgroup_end_move(memcg);
4857 memcg_oom_recover(memcg);
52d4b9ac 4858 cond_resched();
f817ed48 4859
2ef37d3f 4860 /*
bea207c8
GC
4861 * Kernel memory may not necessarily be trackable to a specific
4862 * process. So they are not migrated, and therefore we can't
4863 * expect their value to drop to 0 here.
4864 * Having res filled up with kmem only is enough.
4865 *
2ef37d3f
MH
4866 * This is a safety check because mem_cgroup_force_empty_list
4867 * could have raced with mem_cgroup_replace_page_cache callers
4868 * so the lru seemed empty but the page could have been added
4869 * right after the check. RES_USAGE should be safe as we always
4870 * charge before adding to the LRU.
4871 */
bea207c8
GC
4872 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4873 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4874 } while (usage > 0);
c26251f9
MH
4875}
4876
b5f99b53
GC
4877/*
4878 * This mainly exists for tests during the setting of set of use_hierarchy.
4879 * Since this is the very setting we are changing, the current hierarchy value
4880 * is meaningless
4881 */
4882static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4883{
4884 struct cgroup *pos;
4885
4886 /* bounce at first found */
4887 cgroup_for_each_child(pos, memcg->css.cgroup)
4888 return true;
4889 return false;
4890}
4891
4892/*
0999821b
GC
4893 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4894 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4895 * from mem_cgroup_count_children(), in the sense that we don't really care how
4896 * many children we have; we only need to know if we have any. It also counts
4897 * any memcg without hierarchy as infertile.
4898 */
4899static inline bool memcg_has_children(struct mem_cgroup *memcg)
4900{
4901 return memcg->use_hierarchy && __memcg_has_children(memcg);
4902}
4903
c26251f9
MH
4904/*
4905 * Reclaims as many pages from the given memcg as possible and moves
4906 * the rest to the parent.
4907 *
4908 * Caller is responsible for holding css reference for memcg.
4909 */
4910static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4911{
4912 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4913 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4914
c1e862c1 4915 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4916 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4917 return -EBUSY;
4918
c1e862c1
KH
4919 /* we call try-to-free pages for make this cgroup empty */
4920 lru_add_drain_all();
f817ed48 4921 /* try to free all pages in this cgroup */
569530fb 4922 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4923 int progress;
c1e862c1 4924
c26251f9
MH
4925 if (signal_pending(current))
4926 return -EINTR;
4927
c0ff4b85 4928 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4929 false);
c1e862c1 4930 if (!progress) {
f817ed48 4931 nr_retries--;
c1e862c1 4932 /* maybe some writeback is necessary */
8aa7e847 4933 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4934 }
f817ed48
KH
4935
4936 }
08e552c6 4937 lru_add_drain();
ab5196c2
MH
4938 mem_cgroup_reparent_charges(memcg);
4939
4940 return 0;
cc847582
KH
4941}
4942
6bbda35c 4943static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 4944{
c26251f9
MH
4945 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4946 int ret;
4947
d8423011
MH
4948 if (mem_cgroup_is_root(memcg))
4949 return -EINVAL;
c26251f9
MH
4950 css_get(&memcg->css);
4951 ret = mem_cgroup_force_empty(memcg);
4952 css_put(&memcg->css);
4953
4954 return ret;
c1e862c1
KH
4955}
4956
4957
18f59ea7
BS
4958static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4959{
4960 return mem_cgroup_from_cont(cont)->use_hierarchy;
4961}
4962
4963static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4964 u64 val)
4965{
4966 int retval = 0;
c0ff4b85 4967 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 4968 struct cgroup *parent = cont->parent;
c0ff4b85 4969 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
4970
4971 if (parent)
c0ff4b85 4972 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7 4973
0999821b 4974 mutex_lock(&memcg_create_mutex);
567fb435
GC
4975
4976 if (memcg->use_hierarchy == val)
4977 goto out;
4978
18f59ea7 4979 /*
af901ca1 4980 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4981 * in the child subtrees. If it is unset, then the change can
4982 * occur, provided the current cgroup has no children.
4983 *
4984 * For the root cgroup, parent_mem is NULL, we allow value to be
4985 * set if there are no children.
4986 */
c0ff4b85 4987 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4988 (val == 1 || val == 0)) {
b5f99b53 4989 if (!__memcg_has_children(memcg))
c0ff4b85 4990 memcg->use_hierarchy = val;
18f59ea7
BS
4991 else
4992 retval = -EBUSY;
4993 } else
4994 retval = -EINVAL;
567fb435
GC
4995
4996out:
0999821b 4997 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4998
4999 return retval;
5000}
5001
0c3e73e8 5002
c0ff4b85 5003static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5004 enum mem_cgroup_stat_index idx)
0c3e73e8 5005{
7d74b06f 5006 struct mem_cgroup *iter;
7a159cc9 5007 long val = 0;
0c3e73e8 5008
7a159cc9 5009 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5010 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5011 val += mem_cgroup_read_stat(iter, idx);
5012
5013 if (val < 0) /* race ? */
5014 val = 0;
5015 return val;
0c3e73e8
BS
5016}
5017
c0ff4b85 5018static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5019{
7d74b06f 5020 u64 val;
104f3928 5021
c0ff4b85 5022 if (!mem_cgroup_is_root(memcg)) {
104f3928 5023 if (!swap)
65c64ce8 5024 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5025 else
65c64ce8 5026 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5027 }
5028
c0ff4b85
R
5029 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5030 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5031
7d74b06f 5032 if (swap)
bff6bb83 5033 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5034
5035 return val << PAGE_SHIFT;
5036}
5037
af36f906
TH
5038static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5039 struct file *file, char __user *buf,
5040 size_t nbytes, loff_t *ppos)
8cdea7c0 5041{
c0ff4b85 5042 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 5043 char str[64];
104f3928 5044 u64 val;
86ae53e1
GC
5045 int name, len;
5046 enum res_type type;
8c7c6e34
KH
5047
5048 type = MEMFILE_TYPE(cft->private);
5049 name = MEMFILE_ATTR(cft->private);
af36f906 5050
8c7c6e34
KH
5051 switch (type) {
5052 case _MEM:
104f3928 5053 if (name == RES_USAGE)
c0ff4b85 5054 val = mem_cgroup_usage(memcg, false);
104f3928 5055 else
c0ff4b85 5056 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5057 break;
5058 case _MEMSWAP:
104f3928 5059 if (name == RES_USAGE)
c0ff4b85 5060 val = mem_cgroup_usage(memcg, true);
104f3928 5061 else
c0ff4b85 5062 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5063 break;
510fc4e1
GC
5064 case _KMEM:
5065 val = res_counter_read_u64(&memcg->kmem, name);
5066 break;
8c7c6e34
KH
5067 default:
5068 BUG();
8c7c6e34 5069 }
af36f906
TH
5070
5071 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5072 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5073}
510fc4e1
GC
5074
5075static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5076{
5077 int ret = -EINVAL;
5078#ifdef CONFIG_MEMCG_KMEM
5079 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5080 /*
5081 * For simplicity, we won't allow this to be disabled. It also can't
5082 * be changed if the cgroup has children already, or if tasks had
5083 * already joined.
5084 *
5085 * If tasks join before we set the limit, a person looking at
5086 * kmem.usage_in_bytes will have no way to determine when it took
5087 * place, which makes the value quite meaningless.
5088 *
5089 * After it first became limited, changes in the value of the limit are
5090 * of course permitted.
510fc4e1 5091 */
0999821b 5092 mutex_lock(&memcg_create_mutex);
510fc4e1
GC
5093 mutex_lock(&set_limit_mutex);
5094 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
b5f99b53 5095 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
510fc4e1
GC
5096 ret = -EBUSY;
5097 goto out;
5098 }
5099 ret = res_counter_set_limit(&memcg->kmem, val);
5100 VM_BUG_ON(ret);
5101
55007d84
GC
5102 ret = memcg_update_cache_sizes(memcg);
5103 if (ret) {
5104 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5105 goto out;
5106 }
692e89ab
GC
5107 static_key_slow_inc(&memcg_kmem_enabled_key);
5108 /*
5109 * setting the active bit after the inc will guarantee no one
5110 * starts accounting before all call sites are patched
5111 */
5112 memcg_kmem_set_active(memcg);
5113
7de37682
GC
5114 /*
5115 * kmem charges can outlive the cgroup. In the case of slab
5116 * pages, for instance, a page contain objects from various
5117 * processes, so it is unfeasible to migrate them away. We
5118 * need to reference count the memcg because of that.
5119 */
5120 mem_cgroup_get(memcg);
510fc4e1
GC
5121 } else
5122 ret = res_counter_set_limit(&memcg->kmem, val);
5123out:
5124 mutex_unlock(&set_limit_mutex);
0999821b 5125 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5126#endif
5127 return ret;
5128}
5129
6d043990 5130#ifdef CONFIG_MEMCG_KMEM
55007d84 5131static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5132{
55007d84 5133 int ret = 0;
510fc4e1
GC
5134 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5135 if (!parent)
55007d84
GC
5136 goto out;
5137
510fc4e1 5138 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5139 /*
5140 * When that happen, we need to disable the static branch only on those
5141 * memcgs that enabled it. To achieve this, we would be forced to
5142 * complicate the code by keeping track of which memcgs were the ones
5143 * that actually enabled limits, and which ones got it from its
5144 * parents.
5145 *
5146 * It is a lot simpler just to do static_key_slow_inc() on every child
5147 * that is accounted.
5148 */
55007d84
GC
5149 if (!memcg_kmem_is_active(memcg))
5150 goto out;
5151
5152 /*
5153 * destroy(), called if we fail, will issue static_key_slow_inc() and
5154 * mem_cgroup_put() if kmem is enabled. We have to either call them
5155 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5156 * this more consistent, since it always leads to the same destroy path
5157 */
5158 mem_cgroup_get(memcg);
5159 static_key_slow_inc(&memcg_kmem_enabled_key);
5160
5161 mutex_lock(&set_limit_mutex);
5162 ret = memcg_update_cache_sizes(memcg);
5163 mutex_unlock(&set_limit_mutex);
55007d84
GC
5164out:
5165 return ret;
510fc4e1 5166}
6d043990 5167#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5168
628f4235
KH
5169/*
5170 * The user of this function is...
5171 * RES_LIMIT.
5172 */
856c13aa
PM
5173static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5174 const char *buffer)
8cdea7c0 5175{
628f4235 5176 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5177 enum res_type type;
5178 int name;
628f4235
KH
5179 unsigned long long val;
5180 int ret;
5181
8c7c6e34
KH
5182 type = MEMFILE_TYPE(cft->private);
5183 name = MEMFILE_ATTR(cft->private);
af36f906 5184
8c7c6e34 5185 switch (name) {
628f4235 5186 case RES_LIMIT:
4b3bde4c
BS
5187 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5188 ret = -EINVAL;
5189 break;
5190 }
628f4235
KH
5191 /* This function does all necessary parse...reuse it */
5192 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5193 if (ret)
5194 break;
5195 if (type == _MEM)
628f4235 5196 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5197 else if (type == _MEMSWAP)
8c7c6e34 5198 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
5199 else if (type == _KMEM)
5200 ret = memcg_update_kmem_limit(cont, val);
5201 else
5202 return -EINVAL;
628f4235 5203 break;
296c81d8
BS
5204 case RES_SOFT_LIMIT:
5205 ret = res_counter_memparse_write_strategy(buffer, &val);
5206 if (ret)
5207 break;
5208 /*
5209 * For memsw, soft limits are hard to implement in terms
5210 * of semantics, for now, we support soft limits for
5211 * control without swap
5212 */
5213 if (type == _MEM)
5214 ret = res_counter_set_soft_limit(&memcg->res, val);
5215 else
5216 ret = -EINVAL;
5217 break;
628f4235
KH
5218 default:
5219 ret = -EINVAL; /* should be BUG() ? */
5220 break;
5221 }
5222 return ret;
8cdea7c0
BS
5223}
5224
fee7b548
KH
5225static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5226 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5227{
5228 struct cgroup *cgroup;
5229 unsigned long long min_limit, min_memsw_limit, tmp;
5230
5231 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5232 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5233 cgroup = memcg->css.cgroup;
5234 if (!memcg->use_hierarchy)
5235 goto out;
5236
5237 while (cgroup->parent) {
5238 cgroup = cgroup->parent;
5239 memcg = mem_cgroup_from_cont(cgroup);
5240 if (!memcg->use_hierarchy)
5241 break;
5242 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5243 min_limit = min(min_limit, tmp);
5244 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5245 min_memsw_limit = min(min_memsw_limit, tmp);
5246 }
5247out:
5248 *mem_limit = min_limit;
5249 *memsw_limit = min_memsw_limit;
fee7b548
KH
5250}
5251
29f2a4da 5252static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 5253{
af36f906 5254 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5255 int name;
5256 enum res_type type;
c84872e1 5257
8c7c6e34
KH
5258 type = MEMFILE_TYPE(event);
5259 name = MEMFILE_ATTR(event);
af36f906 5260
8c7c6e34 5261 switch (name) {
29f2a4da 5262 case RES_MAX_USAGE:
8c7c6e34 5263 if (type == _MEM)
c0ff4b85 5264 res_counter_reset_max(&memcg->res);
510fc4e1 5265 else if (type == _MEMSWAP)
c0ff4b85 5266 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5267 else if (type == _KMEM)
5268 res_counter_reset_max(&memcg->kmem);
5269 else
5270 return -EINVAL;
29f2a4da
PE
5271 break;
5272 case RES_FAILCNT:
8c7c6e34 5273 if (type == _MEM)
c0ff4b85 5274 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5275 else if (type == _MEMSWAP)
c0ff4b85 5276 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5277 else if (type == _KMEM)
5278 res_counter_reset_failcnt(&memcg->kmem);
5279 else
5280 return -EINVAL;
29f2a4da
PE
5281 break;
5282 }
f64c3f54 5283
85cc59db 5284 return 0;
c84872e1
PE
5285}
5286
7dc74be0
DN
5287static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5288 struct cftype *cft)
5289{
5290 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5291}
5292
02491447 5293#ifdef CONFIG_MMU
7dc74be0
DN
5294static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5295 struct cftype *cft, u64 val)
5296{
c0ff4b85 5297 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
5298
5299 if (val >= (1 << NR_MOVE_TYPE))
5300 return -EINVAL;
ee5e8472 5301
7dc74be0 5302 /*
ee5e8472
GC
5303 * No kind of locking is needed in here, because ->can_attach() will
5304 * check this value once in the beginning of the process, and then carry
5305 * on with stale data. This means that changes to this value will only
5306 * affect task migrations starting after the change.
7dc74be0 5307 */
c0ff4b85 5308 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5309 return 0;
5310}
02491447
DN
5311#else
5312static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5313 struct cftype *cft, u64 val)
5314{
5315 return -ENOSYS;
5316}
5317#endif
7dc74be0 5318
406eb0c9 5319#ifdef CONFIG_NUMA
ab215884 5320static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 5321 struct seq_file *m)
406eb0c9
YH
5322{
5323 int nid;
5324 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5325 unsigned long node_nr;
d79154bb 5326 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 5327
d79154bb 5328 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5329 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5330 for_each_node_state(nid, N_MEMORY) {
d79154bb 5331 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5332 seq_printf(m, " N%d=%lu", nid, node_nr);
5333 }
5334 seq_putc(m, '\n');
5335
d79154bb 5336 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5337 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5338 for_each_node_state(nid, N_MEMORY) {
d79154bb 5339 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5340 LRU_ALL_FILE);
406eb0c9
YH
5341 seq_printf(m, " N%d=%lu", nid, node_nr);
5342 }
5343 seq_putc(m, '\n');
5344
d79154bb 5345 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5346 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5347 for_each_node_state(nid, N_MEMORY) {
d79154bb 5348 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5349 LRU_ALL_ANON);
406eb0c9
YH
5350 seq_printf(m, " N%d=%lu", nid, node_nr);
5351 }
5352 seq_putc(m, '\n');
5353
d79154bb 5354 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5355 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5356 for_each_node_state(nid, N_MEMORY) {
d79154bb 5357 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5358 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5359 seq_printf(m, " N%d=%lu", nid, node_nr);
5360 }
5361 seq_putc(m, '\n');
5362 return 0;
5363}
5364#endif /* CONFIG_NUMA */
5365
af7c4b0e
JW
5366static inline void mem_cgroup_lru_names_not_uptodate(void)
5367{
5368 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5369}
5370
ab215884 5371static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 5372 struct seq_file *m)
d2ceb9b7 5373{
d79154bb 5374 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
5375 struct mem_cgroup *mi;
5376 unsigned int i;
406eb0c9 5377
af7c4b0e 5378 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5379 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5380 continue;
af7c4b0e
JW
5381 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5382 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5383 }
7b854121 5384
af7c4b0e
JW
5385 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5386 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5387 mem_cgroup_read_events(memcg, i));
5388
5389 for (i = 0; i < NR_LRU_LISTS; i++)
5390 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5391 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5392
14067bb3 5393 /* Hierarchical information */
fee7b548
KH
5394 {
5395 unsigned long long limit, memsw_limit;
d79154bb 5396 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5397 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5398 if (do_swap_account)
78ccf5b5
JW
5399 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5400 memsw_limit);
fee7b548 5401 }
7f016ee8 5402
af7c4b0e
JW
5403 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5404 long long val = 0;
5405
bff6bb83 5406 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5407 continue;
af7c4b0e
JW
5408 for_each_mem_cgroup_tree(mi, memcg)
5409 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5410 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5411 }
5412
5413 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5414 unsigned long long val = 0;
5415
5416 for_each_mem_cgroup_tree(mi, memcg)
5417 val += mem_cgroup_read_events(mi, i);
5418 seq_printf(m, "total_%s %llu\n",
5419 mem_cgroup_events_names[i], val);
5420 }
5421
5422 for (i = 0; i < NR_LRU_LISTS; i++) {
5423 unsigned long long val = 0;
5424
5425 for_each_mem_cgroup_tree(mi, memcg)
5426 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5427 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5428 }
14067bb3 5429
7f016ee8 5430#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5431 {
5432 int nid, zid;
5433 struct mem_cgroup_per_zone *mz;
89abfab1 5434 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5435 unsigned long recent_rotated[2] = {0, 0};
5436 unsigned long recent_scanned[2] = {0, 0};
5437
5438 for_each_online_node(nid)
5439 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5440 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5441 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5442
89abfab1
HD
5443 recent_rotated[0] += rstat->recent_rotated[0];
5444 recent_rotated[1] += rstat->recent_rotated[1];
5445 recent_scanned[0] += rstat->recent_scanned[0];
5446 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5447 }
78ccf5b5
JW
5448 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5449 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5450 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5451 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5452 }
5453#endif
5454
d2ceb9b7
KH
5455 return 0;
5456}
5457
a7885eb8
KM
5458static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5459{
5460 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5461
1f4c025b 5462 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5463}
5464
5465static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5466 u64 val)
5467{
5468 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5469 struct mem_cgroup *parent;
068b38c1 5470
a7885eb8
KM
5471 if (val > 100)
5472 return -EINVAL;
5473
5474 if (cgrp->parent == NULL)
5475 return -EINVAL;
5476
5477 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1 5478
0999821b 5479 mutex_lock(&memcg_create_mutex);
068b38c1 5480
a7885eb8 5481 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5482 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5483 mutex_unlock(&memcg_create_mutex);
a7885eb8 5484 return -EINVAL;
068b38c1 5485 }
a7885eb8 5486
a7885eb8 5487 memcg->swappiness = val;
a7885eb8 5488
0999821b 5489 mutex_unlock(&memcg_create_mutex);
068b38c1 5490
a7885eb8
KM
5491 return 0;
5492}
5493
2e72b634
KS
5494static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5495{
5496 struct mem_cgroup_threshold_ary *t;
5497 u64 usage;
5498 int i;
5499
5500 rcu_read_lock();
5501 if (!swap)
2c488db2 5502 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5503 else
2c488db2 5504 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5505
5506 if (!t)
5507 goto unlock;
5508
5509 usage = mem_cgroup_usage(memcg, swap);
5510
5511 /*
748dad36 5512 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5513 * If it's not true, a threshold was crossed after last
5514 * call of __mem_cgroup_threshold().
5515 */
5407a562 5516 i = t->current_threshold;
2e72b634
KS
5517
5518 /*
5519 * Iterate backward over array of thresholds starting from
5520 * current_threshold and check if a threshold is crossed.
5521 * If none of thresholds below usage is crossed, we read
5522 * only one element of the array here.
5523 */
5524 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5525 eventfd_signal(t->entries[i].eventfd, 1);
5526
5527 /* i = current_threshold + 1 */
5528 i++;
5529
5530 /*
5531 * Iterate forward over array of thresholds starting from
5532 * current_threshold+1 and check if a threshold is crossed.
5533 * If none of thresholds above usage is crossed, we read
5534 * only one element of the array here.
5535 */
5536 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5537 eventfd_signal(t->entries[i].eventfd, 1);
5538
5539 /* Update current_threshold */
5407a562 5540 t->current_threshold = i - 1;
2e72b634
KS
5541unlock:
5542 rcu_read_unlock();
5543}
5544
5545static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5546{
ad4ca5f4
KS
5547 while (memcg) {
5548 __mem_cgroup_threshold(memcg, false);
5549 if (do_swap_account)
5550 __mem_cgroup_threshold(memcg, true);
5551
5552 memcg = parent_mem_cgroup(memcg);
5553 }
2e72b634
KS
5554}
5555
5556static int compare_thresholds(const void *a, const void *b)
5557{
5558 const struct mem_cgroup_threshold *_a = a;
5559 const struct mem_cgroup_threshold *_b = b;
5560
5561 return _a->threshold - _b->threshold;
5562}
5563
c0ff4b85 5564static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5565{
5566 struct mem_cgroup_eventfd_list *ev;
5567
c0ff4b85 5568 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5569 eventfd_signal(ev->eventfd, 1);
5570 return 0;
5571}
5572
c0ff4b85 5573static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5574{
7d74b06f
KH
5575 struct mem_cgroup *iter;
5576
c0ff4b85 5577 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5578 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5579}
5580
5581static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5582 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
5583{
5584 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5585 struct mem_cgroup_thresholds *thresholds;
5586 struct mem_cgroup_threshold_ary *new;
86ae53e1 5587 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5588 u64 threshold, usage;
2c488db2 5589 int i, size, ret;
2e72b634
KS
5590
5591 ret = res_counter_memparse_write_strategy(args, &threshold);
5592 if (ret)
5593 return ret;
5594
5595 mutex_lock(&memcg->thresholds_lock);
2c488db2 5596
2e72b634 5597 if (type == _MEM)
2c488db2 5598 thresholds = &memcg->thresholds;
2e72b634 5599 else if (type == _MEMSWAP)
2c488db2 5600 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5601 else
5602 BUG();
5603
5604 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5605
5606 /* Check if a threshold crossed before adding a new one */
2c488db2 5607 if (thresholds->primary)
2e72b634
KS
5608 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5609
2c488db2 5610 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5611
5612 /* Allocate memory for new array of thresholds */
2c488db2 5613 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5614 GFP_KERNEL);
2c488db2 5615 if (!new) {
2e72b634
KS
5616 ret = -ENOMEM;
5617 goto unlock;
5618 }
2c488db2 5619 new->size = size;
2e72b634
KS
5620
5621 /* Copy thresholds (if any) to new array */
2c488db2
KS
5622 if (thresholds->primary) {
5623 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5624 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5625 }
5626
2e72b634 5627 /* Add new threshold */
2c488db2
KS
5628 new->entries[size - 1].eventfd = eventfd;
5629 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5630
5631 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5632 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5633 compare_thresholds, NULL);
5634
5635 /* Find current threshold */
2c488db2 5636 new->current_threshold = -1;
2e72b634 5637 for (i = 0; i < size; i++) {
748dad36 5638 if (new->entries[i].threshold <= usage) {
2e72b634 5639 /*
2c488db2
KS
5640 * new->current_threshold will not be used until
5641 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5642 * it here.
5643 */
2c488db2 5644 ++new->current_threshold;
748dad36
SZ
5645 } else
5646 break;
2e72b634
KS
5647 }
5648
2c488db2
KS
5649 /* Free old spare buffer and save old primary buffer as spare */
5650 kfree(thresholds->spare);
5651 thresholds->spare = thresholds->primary;
5652
5653 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5654
907860ed 5655 /* To be sure that nobody uses thresholds */
2e72b634
KS
5656 synchronize_rcu();
5657
2e72b634
KS
5658unlock:
5659 mutex_unlock(&memcg->thresholds_lock);
5660
5661 return ret;
5662}
5663
907860ed 5664static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 5665 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
5666{
5667 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5668 struct mem_cgroup_thresholds *thresholds;
5669 struct mem_cgroup_threshold_ary *new;
86ae53e1 5670 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5671 u64 usage;
2c488db2 5672 int i, j, size;
2e72b634
KS
5673
5674 mutex_lock(&memcg->thresholds_lock);
5675 if (type == _MEM)
2c488db2 5676 thresholds = &memcg->thresholds;
2e72b634 5677 else if (type == _MEMSWAP)
2c488db2 5678 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5679 else
5680 BUG();
5681
371528ca
AV
5682 if (!thresholds->primary)
5683 goto unlock;
5684
2e72b634
KS
5685 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5686
5687 /* Check if a threshold crossed before removing */
5688 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5689
5690 /* Calculate new number of threshold */
2c488db2
KS
5691 size = 0;
5692 for (i = 0; i < thresholds->primary->size; i++) {
5693 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5694 size++;
5695 }
5696
2c488db2 5697 new = thresholds->spare;
907860ed 5698
2e72b634
KS
5699 /* Set thresholds array to NULL if we don't have thresholds */
5700 if (!size) {
2c488db2
KS
5701 kfree(new);
5702 new = NULL;
907860ed 5703 goto swap_buffers;
2e72b634
KS
5704 }
5705
2c488db2 5706 new->size = size;
2e72b634
KS
5707
5708 /* Copy thresholds and find current threshold */
2c488db2
KS
5709 new->current_threshold = -1;
5710 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5711 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5712 continue;
5713
2c488db2 5714 new->entries[j] = thresholds->primary->entries[i];
748dad36 5715 if (new->entries[j].threshold <= usage) {
2e72b634 5716 /*
2c488db2 5717 * new->current_threshold will not be used
2e72b634
KS
5718 * until rcu_assign_pointer(), so it's safe to increment
5719 * it here.
5720 */
2c488db2 5721 ++new->current_threshold;
2e72b634
KS
5722 }
5723 j++;
5724 }
5725
907860ed 5726swap_buffers:
2c488db2
KS
5727 /* Swap primary and spare array */
5728 thresholds->spare = thresholds->primary;
8c757763
SZ
5729 /* If all events are unregistered, free the spare array */
5730 if (!new) {
5731 kfree(thresholds->spare);
5732 thresholds->spare = NULL;
5733 }
5734
2c488db2 5735 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5736
907860ed 5737 /* To be sure that nobody uses thresholds */
2e72b634 5738 synchronize_rcu();
371528ca 5739unlock:
2e72b634 5740 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5741}
c1e862c1 5742
9490ff27
KH
5743static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5744 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5745{
5746 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5747 struct mem_cgroup_eventfd_list *event;
86ae53e1 5748 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5749
5750 BUG_ON(type != _OOM_TYPE);
5751 event = kmalloc(sizeof(*event), GFP_KERNEL);
5752 if (!event)
5753 return -ENOMEM;
5754
1af8efe9 5755 spin_lock(&memcg_oom_lock);
9490ff27
KH
5756
5757 event->eventfd = eventfd;
5758 list_add(&event->list, &memcg->oom_notify);
5759
5760 /* already in OOM ? */
79dfdacc 5761 if (atomic_read(&memcg->under_oom))
9490ff27 5762 eventfd_signal(eventfd, 1);
1af8efe9 5763 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5764
5765 return 0;
5766}
5767
907860ed 5768static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
5769 struct cftype *cft, struct eventfd_ctx *eventfd)
5770{
c0ff4b85 5771 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 5772 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5773 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5774
5775 BUG_ON(type != _OOM_TYPE);
5776
1af8efe9 5777 spin_lock(&memcg_oom_lock);
9490ff27 5778
c0ff4b85 5779 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5780 if (ev->eventfd == eventfd) {
5781 list_del(&ev->list);
5782 kfree(ev);
5783 }
5784 }
5785
1af8efe9 5786 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5787}
5788
3c11ecf4
KH
5789static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5790 struct cftype *cft, struct cgroup_map_cb *cb)
5791{
c0ff4b85 5792 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 5793
c0ff4b85 5794 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5795
c0ff4b85 5796 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5797 cb->fill(cb, "under_oom", 1);
5798 else
5799 cb->fill(cb, "under_oom", 0);
5800 return 0;
5801}
5802
3c11ecf4
KH
5803static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5804 struct cftype *cft, u64 val)
5805{
c0ff4b85 5806 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
5807 struct mem_cgroup *parent;
5808
5809 /* cannot set to root cgroup and only 0 and 1 are allowed */
5810 if (!cgrp->parent || !((val == 0) || (val == 1)))
5811 return -EINVAL;
5812
5813 parent = mem_cgroup_from_cont(cgrp->parent);
5814
0999821b 5815 mutex_lock(&memcg_create_mutex);
3c11ecf4 5816 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5817 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5818 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5819 return -EINVAL;
5820 }
c0ff4b85 5821 memcg->oom_kill_disable = val;
4d845ebf 5822 if (!val)
c0ff4b85 5823 memcg_oom_recover(memcg);
0999821b 5824 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5825 return 0;
5826}
5827
c255a458 5828#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5829static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5830{
55007d84
GC
5831 int ret;
5832
2633d7a0 5833 memcg->kmemcg_id = -1;
55007d84
GC
5834 ret = memcg_propagate_kmem(memcg);
5835 if (ret)
5836 return ret;
2633d7a0 5837
1d62e436 5838 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5839}
e5671dfa 5840
1d62e436 5841static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 5842{
1d62e436 5843 mem_cgroup_sockets_destroy(memcg);
7de37682
GC
5844
5845 memcg_kmem_mark_dead(memcg);
5846
5847 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5848 return;
5849
5850 /*
5851 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5852 * path here, being careful not to race with memcg_uncharge_kmem: it is
5853 * possible that the charges went down to 0 between mark_dead and the
5854 * res_counter read, so in that case, we don't need the put
5855 */
5856 if (memcg_kmem_test_and_clear_dead(memcg))
5857 mem_cgroup_put(memcg);
d1a4c0b3 5858}
e5671dfa 5859#else
cbe128e3 5860static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5861{
5862 return 0;
5863}
d1a4c0b3 5864
1d62e436 5865static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
5866{
5867}
e5671dfa
GC
5868#endif
5869
8cdea7c0
BS
5870static struct cftype mem_cgroup_files[] = {
5871 {
0eea1030 5872 .name = "usage_in_bytes",
8c7c6e34 5873 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5874 .read = mem_cgroup_read,
9490ff27
KH
5875 .register_event = mem_cgroup_usage_register_event,
5876 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5877 },
c84872e1
PE
5878 {
5879 .name = "max_usage_in_bytes",
8c7c6e34 5880 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5881 .trigger = mem_cgroup_reset,
af36f906 5882 .read = mem_cgroup_read,
c84872e1 5883 },
8cdea7c0 5884 {
0eea1030 5885 .name = "limit_in_bytes",
8c7c6e34 5886 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5887 .write_string = mem_cgroup_write,
af36f906 5888 .read = mem_cgroup_read,
8cdea7c0 5889 },
296c81d8
BS
5890 {
5891 .name = "soft_limit_in_bytes",
5892 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5893 .write_string = mem_cgroup_write,
af36f906 5894 .read = mem_cgroup_read,
296c81d8 5895 },
8cdea7c0
BS
5896 {
5897 .name = "failcnt",
8c7c6e34 5898 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5899 .trigger = mem_cgroup_reset,
af36f906 5900 .read = mem_cgroup_read,
8cdea7c0 5901 },
d2ceb9b7
KH
5902 {
5903 .name = "stat",
ab215884 5904 .read_seq_string = memcg_stat_show,
d2ceb9b7 5905 },
c1e862c1
KH
5906 {
5907 .name = "force_empty",
5908 .trigger = mem_cgroup_force_empty_write,
5909 },
18f59ea7
BS
5910 {
5911 .name = "use_hierarchy",
5912 .write_u64 = mem_cgroup_hierarchy_write,
5913 .read_u64 = mem_cgroup_hierarchy_read,
5914 },
a7885eb8
KM
5915 {
5916 .name = "swappiness",
5917 .read_u64 = mem_cgroup_swappiness_read,
5918 .write_u64 = mem_cgroup_swappiness_write,
5919 },
7dc74be0
DN
5920 {
5921 .name = "move_charge_at_immigrate",
5922 .read_u64 = mem_cgroup_move_charge_read,
5923 .write_u64 = mem_cgroup_move_charge_write,
5924 },
9490ff27
KH
5925 {
5926 .name = "oom_control",
3c11ecf4
KH
5927 .read_map = mem_cgroup_oom_control_read,
5928 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5929 .register_event = mem_cgroup_oom_register_event,
5930 .unregister_event = mem_cgroup_oom_unregister_event,
5931 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5932 },
70ddf637
AV
5933 {
5934 .name = "pressure_level",
5935 .register_event = vmpressure_register_event,
5936 .unregister_event = vmpressure_unregister_event,
5937 },
406eb0c9
YH
5938#ifdef CONFIG_NUMA
5939 {
5940 .name = "numa_stat",
ab215884 5941 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5942 },
5943#endif
510fc4e1
GC
5944#ifdef CONFIG_MEMCG_KMEM
5945 {
5946 .name = "kmem.limit_in_bytes",
5947 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5948 .write_string = mem_cgroup_write,
5949 .read = mem_cgroup_read,
5950 },
5951 {
5952 .name = "kmem.usage_in_bytes",
5953 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5954 .read = mem_cgroup_read,
5955 },
5956 {
5957 .name = "kmem.failcnt",
5958 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5959 .trigger = mem_cgroup_reset,
5960 .read = mem_cgroup_read,
5961 },
5962 {
5963 .name = "kmem.max_usage_in_bytes",
5964 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5965 .trigger = mem_cgroup_reset,
5966 .read = mem_cgroup_read,
5967 },
749c5415
GC
5968#ifdef CONFIG_SLABINFO
5969 {
5970 .name = "kmem.slabinfo",
5971 .read_seq_string = mem_cgroup_slabinfo_read,
5972 },
5973#endif
8c7c6e34 5974#endif
6bc10349 5975 { }, /* terminate */
af36f906 5976};
8c7c6e34 5977
2d11085e
MH
5978#ifdef CONFIG_MEMCG_SWAP
5979static struct cftype memsw_cgroup_files[] = {
5980 {
5981 .name = "memsw.usage_in_bytes",
5982 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5983 .read = mem_cgroup_read,
5984 .register_event = mem_cgroup_usage_register_event,
5985 .unregister_event = mem_cgroup_usage_unregister_event,
5986 },
5987 {
5988 .name = "memsw.max_usage_in_bytes",
5989 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5990 .trigger = mem_cgroup_reset,
5991 .read = mem_cgroup_read,
5992 },
5993 {
5994 .name = "memsw.limit_in_bytes",
5995 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5996 .write_string = mem_cgroup_write,
5997 .read = mem_cgroup_read,
5998 },
5999 {
6000 .name = "memsw.failcnt",
6001 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6002 .trigger = mem_cgroup_reset,
6003 .read = mem_cgroup_read,
6004 },
6005 { }, /* terminate */
6006};
6007#endif
c0ff4b85 6008static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6009{
6010 struct mem_cgroup_per_node *pn;
1ecaab2b 6011 struct mem_cgroup_per_zone *mz;
41e3355d 6012 int zone, tmp = node;
1ecaab2b
KH
6013 /*
6014 * This routine is called against possible nodes.
6015 * But it's BUG to call kmalloc() against offline node.
6016 *
6017 * TODO: this routine can waste much memory for nodes which will
6018 * never be onlined. It's better to use memory hotplug callback
6019 * function.
6020 */
41e3355d
KH
6021 if (!node_state(node, N_NORMAL_MEMORY))
6022 tmp = -1;
17295c88 6023 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6024 if (!pn)
6025 return 1;
1ecaab2b 6026
1ecaab2b
KH
6027 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6028 mz = &pn->zoneinfo[zone];
bea8c150 6029 lruvec_init(&mz->lruvec);
f64c3f54 6030 mz->usage_in_excess = 0;
4e416953 6031 mz->on_tree = false;
d79154bb 6032 mz->memcg = memcg;
1ecaab2b 6033 }
0a619e58 6034 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
6035 return 0;
6036}
6037
c0ff4b85 6038static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6039{
c0ff4b85 6040 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
6041}
6042
33327948
KH
6043static struct mem_cgroup *mem_cgroup_alloc(void)
6044{
d79154bb 6045 struct mem_cgroup *memcg;
45cf7ebd 6046 size_t size = memcg_size();
33327948 6047
45cf7ebd 6048 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6049 if (size < PAGE_SIZE)
d79154bb 6050 memcg = kzalloc(size, GFP_KERNEL);
33327948 6051 else
d79154bb 6052 memcg = vzalloc(size);
33327948 6053
d79154bb 6054 if (!memcg)
e7bbcdf3
DC
6055 return NULL;
6056
d79154bb
HD
6057 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6058 if (!memcg->stat)
d2e61b8d 6059 goto out_free;
d79154bb
HD
6060 spin_lock_init(&memcg->pcp_counter_lock);
6061 return memcg;
d2e61b8d
DC
6062
6063out_free:
6064 if (size < PAGE_SIZE)
d79154bb 6065 kfree(memcg);
d2e61b8d 6066 else
d79154bb 6067 vfree(memcg);
d2e61b8d 6068 return NULL;
33327948
KH
6069}
6070
59927fb9 6071/*
c8b2a36f
GC
6072 * At destroying mem_cgroup, references from swap_cgroup can remain.
6073 * (scanning all at force_empty is too costly...)
6074 *
6075 * Instead of clearing all references at force_empty, we remember
6076 * the number of reference from swap_cgroup and free mem_cgroup when
6077 * it goes down to 0.
6078 *
6079 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6080 */
c8b2a36f
GC
6081
6082static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6083{
c8b2a36f 6084 int node;
45cf7ebd 6085 size_t size = memcg_size();
59927fb9 6086
c8b2a36f
GC
6087 mem_cgroup_remove_from_trees(memcg);
6088 free_css_id(&mem_cgroup_subsys, &memcg->css);
6089
6090 for_each_node(node)
6091 free_mem_cgroup_per_zone_info(memcg, node);
6092
6093 free_percpu(memcg->stat);
6094
3f134619
GC
6095 /*
6096 * We need to make sure that (at least for now), the jump label
6097 * destruction code runs outside of the cgroup lock. This is because
6098 * get_online_cpus(), which is called from the static_branch update,
6099 * can't be called inside the cgroup_lock. cpusets are the ones
6100 * enforcing this dependency, so if they ever change, we might as well.
6101 *
6102 * schedule_work() will guarantee this happens. Be careful if you need
6103 * to move this code around, and make sure it is outside
6104 * the cgroup_lock.
6105 */
a8964b9b 6106 disarm_static_keys(memcg);
3afe36b1
GC
6107 if (size < PAGE_SIZE)
6108 kfree(memcg);
6109 else
6110 vfree(memcg);
59927fb9 6111}
3afe36b1 6112
59927fb9 6113
8c7c6e34 6114/*
c8b2a36f
GC
6115 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6116 * but in process context. The work_freeing structure is overlaid
6117 * on the rcu_freeing structure, which itself is overlaid on memsw.
8c7c6e34 6118 */
c8b2a36f 6119static void free_work(struct work_struct *work)
33327948 6120{
c8b2a36f 6121 struct mem_cgroup *memcg;
08e552c6 6122
c8b2a36f
GC
6123 memcg = container_of(work, struct mem_cgroup, work_freeing);
6124 __mem_cgroup_free(memcg);
6125}
04046e1a 6126
c8b2a36f
GC
6127static void free_rcu(struct rcu_head *rcu_head)
6128{
6129 struct mem_cgroup *memcg;
08e552c6 6130
c8b2a36f
GC
6131 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6132 INIT_WORK(&memcg->work_freeing, free_work);
6133 schedule_work(&memcg->work_freeing);
33327948
KH
6134}
6135
c0ff4b85 6136static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 6137{
c0ff4b85 6138 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
6139}
6140
c0ff4b85 6141static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 6142{
c0ff4b85
R
6143 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6144 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
c8b2a36f 6145 call_rcu(&memcg->rcu_freeing, free_rcu);
7bcc1bb1
DN
6146 if (parent)
6147 mem_cgroup_put(parent);
6148 }
8c7c6e34
KH
6149}
6150
c0ff4b85 6151static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 6152{
c0ff4b85 6153 __mem_cgroup_put(memcg, 1);
483c30b5
DN
6154}
6155
7bcc1bb1
DN
6156/*
6157 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6158 */
e1aab161 6159struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6160{
c0ff4b85 6161 if (!memcg->res.parent)
7bcc1bb1 6162 return NULL;
c0ff4b85 6163 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6164}
e1aab161 6165EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6166
8787a1df 6167static void __init mem_cgroup_soft_limit_tree_init(void)
f64c3f54
BS
6168{
6169 struct mem_cgroup_tree_per_node *rtpn;
6170 struct mem_cgroup_tree_per_zone *rtpz;
6171 int tmp, node, zone;
6172
3ed28fa1 6173 for_each_node(node) {
f64c3f54
BS
6174 tmp = node;
6175 if (!node_state(node, N_NORMAL_MEMORY))
6176 tmp = -1;
6177 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
8787a1df 6178 BUG_ON(!rtpn);
f64c3f54
BS
6179
6180 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6181
6182 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6183 rtpz = &rtpn->rb_tree_per_zone[zone];
6184 rtpz->rb_root = RB_ROOT;
6185 spin_lock_init(&rtpz->lock);
6186 }
6187 }
f64c3f54
BS
6188}
6189
0eb253e2 6190static struct cgroup_subsys_state * __ref
92fb9748 6191mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 6192{
d142e3e6 6193 struct mem_cgroup *memcg;
04046e1a 6194 long error = -ENOMEM;
6d12e2d8 6195 int node;
8cdea7c0 6196
c0ff4b85
R
6197 memcg = mem_cgroup_alloc();
6198 if (!memcg)
04046e1a 6199 return ERR_PTR(error);
78fb7466 6200
3ed28fa1 6201 for_each_node(node)
c0ff4b85 6202 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6203 goto free_out;
f64c3f54 6204
c077719b 6205 /* root ? */
28dbc4b6 6206 if (cont->parent == NULL) {
a41c58a6 6207 root_mem_cgroup = memcg;
d142e3e6
GC
6208 res_counter_init(&memcg->res, NULL);
6209 res_counter_init(&memcg->memsw, NULL);
6210 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6211 }
28dbc4b6 6212
d142e3e6
GC
6213 memcg->last_scanned_node = MAX_NUMNODES;
6214 INIT_LIST_HEAD(&memcg->oom_notify);
6215 atomic_set(&memcg->refcnt, 1);
6216 memcg->move_charge_at_immigrate = 0;
6217 mutex_init(&memcg->thresholds_lock);
6218 spin_lock_init(&memcg->move_lock);
70ddf637 6219 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6220
6221 return &memcg->css;
6222
6223free_out:
6224 __mem_cgroup_free(memcg);
6225 return ERR_PTR(error);
6226}
6227
6228static int
6229mem_cgroup_css_online(struct cgroup *cont)
6230{
6231 struct mem_cgroup *memcg, *parent;
6232 int error = 0;
6233
6234 if (!cont->parent)
6235 return 0;
6236
0999821b 6237 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6238 memcg = mem_cgroup_from_cont(cont);
6239 parent = mem_cgroup_from_cont(cont->parent);
6240
6241 memcg->use_hierarchy = parent->use_hierarchy;
6242 memcg->oom_kill_disable = parent->oom_kill_disable;
6243 memcg->swappiness = mem_cgroup_swappiness(parent);
6244
6245 if (parent->use_hierarchy) {
c0ff4b85
R
6246 res_counter_init(&memcg->res, &parent->res);
6247 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6248 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6249
7bcc1bb1
DN
6250 /*
6251 * We increment refcnt of the parent to ensure that we can
6252 * safely access it on res_counter_charge/uncharge.
6253 * This refcnt will be decremented when freeing this
6254 * mem_cgroup(see mem_cgroup_put).
6255 */
6256 mem_cgroup_get(parent);
18f59ea7 6257 } else {
c0ff4b85
R
6258 res_counter_init(&memcg->res, NULL);
6259 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6260 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6261 /*
6262 * Deeper hierachy with use_hierarchy == false doesn't make
6263 * much sense so let cgroup subsystem know about this
6264 * unfortunate state in our controller.
6265 */
d142e3e6 6266 if (parent != root_mem_cgroup)
8c7f6edb 6267 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6268 }
cbe128e3
GC
6269
6270 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6271 mutex_unlock(&memcg_create_mutex);
cbe128e3
GC
6272 if (error) {
6273 /*
6274 * We call put now because our (and parent's) refcnts
6275 * are already in place. mem_cgroup_put() will internally
6276 * call __mem_cgroup_free, so return directly
6277 */
6278 mem_cgroup_put(memcg);
e4715f01
GC
6279 if (parent->use_hierarchy)
6280 mem_cgroup_put(parent);
cbe128e3 6281 }
d142e3e6 6282 return error;
8cdea7c0
BS
6283}
6284
5f578161
MH
6285/*
6286 * Announce all parents that a group from their hierarchy is gone.
6287 */
6288static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6289{
6290 struct mem_cgroup *parent = memcg;
6291
6292 while ((parent = parent_mem_cgroup(parent)))
6293 atomic_inc(&parent->dead_count);
6294
6295 /*
6296 * if the root memcg is not hierarchical we have to check it
6297 * explicitely.
6298 */
6299 if (!root_mem_cgroup->use_hierarchy)
6300 atomic_inc(&root_mem_cgroup->dead_count);
6301}
6302
92fb9748 6303static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 6304{
c0ff4b85 6305 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 6306
5f578161 6307 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6308 mem_cgroup_reparent_charges(memcg);
1f458cbf 6309 mem_cgroup_destroy_all_caches(memcg);
df878fb0
KH
6310}
6311
92fb9748 6312static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 6313{
c0ff4b85 6314 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 6315
1d62e436 6316 kmem_cgroup_destroy(memcg);
d1a4c0b3 6317
c0ff4b85 6318 mem_cgroup_put(memcg);
8cdea7c0
BS
6319}
6320
02491447 6321#ifdef CONFIG_MMU
7dc74be0 6322/* Handlers for move charge at task migration. */
854ffa8d
DN
6323#define PRECHARGE_COUNT_AT_ONCE 256
6324static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6325{
854ffa8d
DN
6326 int ret = 0;
6327 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6328 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6329
c0ff4b85 6330 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6331 mc.precharge += count;
6332 /* we don't need css_get for root */
6333 return ret;
6334 }
6335 /* try to charge at once */
6336 if (count > 1) {
6337 struct res_counter *dummy;
6338 /*
c0ff4b85 6339 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6340 * by cgroup_lock_live_cgroup() that it is not removed and we
6341 * are still under the same cgroup_mutex. So we can postpone
6342 * css_get().
6343 */
c0ff4b85 6344 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6345 goto one_by_one;
c0ff4b85 6346 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6347 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6348 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6349 goto one_by_one;
6350 }
6351 mc.precharge += count;
854ffa8d
DN
6352 return ret;
6353 }
6354one_by_one:
6355 /* fall back to one by one charge */
6356 while (count--) {
6357 if (signal_pending(current)) {
6358 ret = -EINTR;
6359 break;
6360 }
6361 if (!batch_count--) {
6362 batch_count = PRECHARGE_COUNT_AT_ONCE;
6363 cond_resched();
6364 }
c0ff4b85
R
6365 ret = __mem_cgroup_try_charge(NULL,
6366 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6367 if (ret)
854ffa8d 6368 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6369 return ret;
854ffa8d
DN
6370 mc.precharge++;
6371 }
4ffef5fe
DN
6372 return ret;
6373}
6374
6375/**
8d32ff84 6376 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6377 * @vma: the vma the pte to be checked belongs
6378 * @addr: the address corresponding to the pte to be checked
6379 * @ptent: the pte to be checked
02491447 6380 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6381 *
6382 * Returns
6383 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6384 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6385 * move charge. if @target is not NULL, the page is stored in target->page
6386 * with extra refcnt got(Callers should handle it).
02491447
DN
6387 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6388 * target for charge migration. if @target is not NULL, the entry is stored
6389 * in target->ent.
4ffef5fe
DN
6390 *
6391 * Called with pte lock held.
6392 */
4ffef5fe
DN
6393union mc_target {
6394 struct page *page;
02491447 6395 swp_entry_t ent;
4ffef5fe
DN
6396};
6397
4ffef5fe 6398enum mc_target_type {
8d32ff84 6399 MC_TARGET_NONE = 0,
4ffef5fe 6400 MC_TARGET_PAGE,
02491447 6401 MC_TARGET_SWAP,
4ffef5fe
DN
6402};
6403
90254a65
DN
6404static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6405 unsigned long addr, pte_t ptent)
4ffef5fe 6406{
90254a65 6407 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6408
90254a65
DN
6409 if (!page || !page_mapped(page))
6410 return NULL;
6411 if (PageAnon(page)) {
6412 /* we don't move shared anon */
4b91355e 6413 if (!move_anon())
90254a65 6414 return NULL;
87946a72
DN
6415 } else if (!move_file())
6416 /* we ignore mapcount for file pages */
90254a65
DN
6417 return NULL;
6418 if (!get_page_unless_zero(page))
6419 return NULL;
6420
6421 return page;
6422}
6423
4b91355e 6424#ifdef CONFIG_SWAP
90254a65
DN
6425static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6426 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6427{
90254a65
DN
6428 struct page *page = NULL;
6429 swp_entry_t ent = pte_to_swp_entry(ptent);
6430
6431 if (!move_anon() || non_swap_entry(ent))
6432 return NULL;
4b91355e
KH
6433 /*
6434 * Because lookup_swap_cache() updates some statistics counter,
6435 * we call find_get_page() with swapper_space directly.
6436 */
33806f06 6437 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6438 if (do_swap_account)
6439 entry->val = ent.val;
6440
6441 return page;
6442}
4b91355e
KH
6443#else
6444static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6445 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6446{
6447 return NULL;
6448}
6449#endif
90254a65 6450
87946a72
DN
6451static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6452 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6453{
6454 struct page *page = NULL;
87946a72
DN
6455 struct address_space *mapping;
6456 pgoff_t pgoff;
6457
6458 if (!vma->vm_file) /* anonymous vma */
6459 return NULL;
6460 if (!move_file())
6461 return NULL;
6462
87946a72
DN
6463 mapping = vma->vm_file->f_mapping;
6464 if (pte_none(ptent))
6465 pgoff = linear_page_index(vma, addr);
6466 else /* pte_file(ptent) is true */
6467 pgoff = pte_to_pgoff(ptent);
6468
6469 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6470 page = find_get_page(mapping, pgoff);
6471
6472#ifdef CONFIG_SWAP
6473 /* shmem/tmpfs may report page out on swap: account for that too. */
6474 if (radix_tree_exceptional_entry(page)) {
6475 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6476 if (do_swap_account)
aa3b1895 6477 *entry = swap;
33806f06 6478 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6479 }
aa3b1895 6480#endif
87946a72
DN
6481 return page;
6482}
6483
8d32ff84 6484static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6485 unsigned long addr, pte_t ptent, union mc_target *target)
6486{
6487 struct page *page = NULL;
6488 struct page_cgroup *pc;
8d32ff84 6489 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6490 swp_entry_t ent = { .val = 0 };
6491
6492 if (pte_present(ptent))
6493 page = mc_handle_present_pte(vma, addr, ptent);
6494 else if (is_swap_pte(ptent))
6495 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6496 else if (pte_none(ptent) || pte_file(ptent))
6497 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6498
6499 if (!page && !ent.val)
8d32ff84 6500 return ret;
02491447
DN
6501 if (page) {
6502 pc = lookup_page_cgroup(page);
6503 /*
6504 * Do only loose check w/o page_cgroup lock.
6505 * mem_cgroup_move_account() checks the pc is valid or not under
6506 * the lock.
6507 */
6508 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6509 ret = MC_TARGET_PAGE;
6510 if (target)
6511 target->page = page;
6512 }
6513 if (!ret || !target)
6514 put_page(page);
6515 }
90254a65
DN
6516 /* There is a swap entry and a page doesn't exist or isn't charged */
6517 if (ent.val && !ret &&
9fb4b7cc 6518 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6519 ret = MC_TARGET_SWAP;
6520 if (target)
6521 target->ent = ent;
4ffef5fe 6522 }
4ffef5fe
DN
6523 return ret;
6524}
6525
12724850
NH
6526#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6527/*
6528 * We don't consider swapping or file mapped pages because THP does not
6529 * support them for now.
6530 * Caller should make sure that pmd_trans_huge(pmd) is true.
6531 */
6532static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6533 unsigned long addr, pmd_t pmd, union mc_target *target)
6534{
6535 struct page *page = NULL;
6536 struct page_cgroup *pc;
6537 enum mc_target_type ret = MC_TARGET_NONE;
6538
6539 page = pmd_page(pmd);
6540 VM_BUG_ON(!page || !PageHead(page));
6541 if (!move_anon())
6542 return ret;
6543 pc = lookup_page_cgroup(page);
6544 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6545 ret = MC_TARGET_PAGE;
6546 if (target) {
6547 get_page(page);
6548 target->page = page;
6549 }
6550 }
6551 return ret;
6552}
6553#else
6554static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6555 unsigned long addr, pmd_t pmd, union mc_target *target)
6556{
6557 return MC_TARGET_NONE;
6558}
6559#endif
6560
4ffef5fe
DN
6561static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6562 unsigned long addr, unsigned long end,
6563 struct mm_walk *walk)
6564{
6565 struct vm_area_struct *vma = walk->private;
6566 pte_t *pte;
6567 spinlock_t *ptl;
6568
12724850
NH
6569 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6570 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6571 mc.precharge += HPAGE_PMD_NR;
6572 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6573 return 0;
12724850 6574 }
03319327 6575
45f83cef
AA
6576 if (pmd_trans_unstable(pmd))
6577 return 0;
4ffef5fe
DN
6578 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6579 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6580 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6581 mc.precharge++; /* increment precharge temporarily */
6582 pte_unmap_unlock(pte - 1, ptl);
6583 cond_resched();
6584
7dc74be0
DN
6585 return 0;
6586}
6587
4ffef5fe
DN
6588static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6589{
6590 unsigned long precharge;
6591 struct vm_area_struct *vma;
6592
dfe076b0 6593 down_read(&mm->mmap_sem);
4ffef5fe
DN
6594 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6595 struct mm_walk mem_cgroup_count_precharge_walk = {
6596 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6597 .mm = mm,
6598 .private = vma,
6599 };
6600 if (is_vm_hugetlb_page(vma))
6601 continue;
4ffef5fe
DN
6602 walk_page_range(vma->vm_start, vma->vm_end,
6603 &mem_cgroup_count_precharge_walk);
6604 }
dfe076b0 6605 up_read(&mm->mmap_sem);
4ffef5fe
DN
6606
6607 precharge = mc.precharge;
6608 mc.precharge = 0;
6609
6610 return precharge;
6611}
6612
4ffef5fe
DN
6613static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6614{
dfe076b0
DN
6615 unsigned long precharge = mem_cgroup_count_precharge(mm);
6616
6617 VM_BUG_ON(mc.moving_task);
6618 mc.moving_task = current;
6619 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6620}
6621
dfe076b0
DN
6622/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6623static void __mem_cgroup_clear_mc(void)
4ffef5fe 6624{
2bd9bb20
KH
6625 struct mem_cgroup *from = mc.from;
6626 struct mem_cgroup *to = mc.to;
6627
4ffef5fe 6628 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6629 if (mc.precharge) {
6630 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6631 mc.precharge = 0;
6632 }
6633 /*
6634 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6635 * we must uncharge here.
6636 */
6637 if (mc.moved_charge) {
6638 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6639 mc.moved_charge = 0;
4ffef5fe 6640 }
483c30b5
DN
6641 /* we must fixup refcnts and charges */
6642 if (mc.moved_swap) {
483c30b5
DN
6643 /* uncharge swap account from the old cgroup */
6644 if (!mem_cgroup_is_root(mc.from))
6645 res_counter_uncharge(&mc.from->memsw,
6646 PAGE_SIZE * mc.moved_swap);
6647 __mem_cgroup_put(mc.from, mc.moved_swap);
6648
6649 if (!mem_cgroup_is_root(mc.to)) {
6650 /*
6651 * we charged both to->res and to->memsw, so we should
6652 * uncharge to->res.
6653 */
6654 res_counter_uncharge(&mc.to->res,
6655 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
6656 }
6657 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
6658 mc.moved_swap = 0;
6659 }
dfe076b0
DN
6660 memcg_oom_recover(from);
6661 memcg_oom_recover(to);
6662 wake_up_all(&mc.waitq);
6663}
6664
6665static void mem_cgroup_clear_mc(void)
6666{
6667 struct mem_cgroup *from = mc.from;
6668
6669 /*
6670 * we must clear moving_task before waking up waiters at the end of
6671 * task migration.
6672 */
6673 mc.moving_task = NULL;
6674 __mem_cgroup_clear_mc();
2bd9bb20 6675 spin_lock(&mc.lock);
4ffef5fe
DN
6676 mc.from = NULL;
6677 mc.to = NULL;
2bd9bb20 6678 spin_unlock(&mc.lock);
32047e2a 6679 mem_cgroup_end_move(from);
4ffef5fe
DN
6680}
6681
761b3ef5
LZ
6682static int mem_cgroup_can_attach(struct cgroup *cgroup,
6683 struct cgroup_taskset *tset)
7dc74be0 6684{
2f7ee569 6685 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6686 int ret = 0;
c0ff4b85 6687 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
ee5e8472 6688 unsigned long move_charge_at_immigrate;
7dc74be0 6689
ee5e8472
GC
6690 /*
6691 * We are now commited to this value whatever it is. Changes in this
6692 * tunable will only affect upcoming migrations, not the current one.
6693 * So we need to save it, and keep it going.
6694 */
6695 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6696 if (move_charge_at_immigrate) {
7dc74be0
DN
6697 struct mm_struct *mm;
6698 struct mem_cgroup *from = mem_cgroup_from_task(p);
6699
c0ff4b85 6700 VM_BUG_ON(from == memcg);
7dc74be0
DN
6701
6702 mm = get_task_mm(p);
6703 if (!mm)
6704 return 0;
7dc74be0 6705 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6706 if (mm->owner == p) {
6707 VM_BUG_ON(mc.from);
6708 VM_BUG_ON(mc.to);
6709 VM_BUG_ON(mc.precharge);
854ffa8d 6710 VM_BUG_ON(mc.moved_charge);
483c30b5 6711 VM_BUG_ON(mc.moved_swap);
32047e2a 6712 mem_cgroup_start_move(from);
2bd9bb20 6713 spin_lock(&mc.lock);
4ffef5fe 6714 mc.from = from;
c0ff4b85 6715 mc.to = memcg;
ee5e8472 6716 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6717 spin_unlock(&mc.lock);
dfe076b0 6718 /* We set mc.moving_task later */
4ffef5fe
DN
6719
6720 ret = mem_cgroup_precharge_mc(mm);
6721 if (ret)
6722 mem_cgroup_clear_mc();
dfe076b0
DN
6723 }
6724 mmput(mm);
7dc74be0
DN
6725 }
6726 return ret;
6727}
6728
761b3ef5
LZ
6729static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6730 struct cgroup_taskset *tset)
7dc74be0 6731{
4ffef5fe 6732 mem_cgroup_clear_mc();
7dc74be0
DN
6733}
6734
4ffef5fe
DN
6735static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6736 unsigned long addr, unsigned long end,
6737 struct mm_walk *walk)
7dc74be0 6738{
4ffef5fe
DN
6739 int ret = 0;
6740 struct vm_area_struct *vma = walk->private;
6741 pte_t *pte;
6742 spinlock_t *ptl;
12724850
NH
6743 enum mc_target_type target_type;
6744 union mc_target target;
6745 struct page *page;
6746 struct page_cgroup *pc;
4ffef5fe 6747
12724850
NH
6748 /*
6749 * We don't take compound_lock() here but no race with splitting thp
6750 * happens because:
6751 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6752 * under splitting, which means there's no concurrent thp split,
6753 * - if another thread runs into split_huge_page() just after we
6754 * entered this if-block, the thread must wait for page table lock
6755 * to be unlocked in __split_huge_page_splitting(), where the main
6756 * part of thp split is not executed yet.
6757 */
6758 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6759 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6760 spin_unlock(&vma->vm_mm->page_table_lock);
6761 return 0;
6762 }
6763 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6764 if (target_type == MC_TARGET_PAGE) {
6765 page = target.page;
6766 if (!isolate_lru_page(page)) {
6767 pc = lookup_page_cgroup(page);
6768 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6769 pc, mc.from, mc.to)) {
12724850
NH
6770 mc.precharge -= HPAGE_PMD_NR;
6771 mc.moved_charge += HPAGE_PMD_NR;
6772 }
6773 putback_lru_page(page);
6774 }
6775 put_page(page);
6776 }
6777 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6778 return 0;
12724850
NH
6779 }
6780
45f83cef
AA
6781 if (pmd_trans_unstable(pmd))
6782 return 0;
4ffef5fe
DN
6783retry:
6784 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6785 for (; addr != end; addr += PAGE_SIZE) {
6786 pte_t ptent = *(pte++);
02491447 6787 swp_entry_t ent;
4ffef5fe
DN
6788
6789 if (!mc.precharge)
6790 break;
6791
8d32ff84 6792 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6793 case MC_TARGET_PAGE:
6794 page = target.page;
6795 if (isolate_lru_page(page))
6796 goto put;
6797 pc = lookup_page_cgroup(page);
7ec99d62 6798 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6799 mc.from, mc.to)) {
4ffef5fe 6800 mc.precharge--;
854ffa8d
DN
6801 /* we uncharge from mc.from later. */
6802 mc.moved_charge++;
4ffef5fe
DN
6803 }
6804 putback_lru_page(page);
8d32ff84 6805put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6806 put_page(page);
6807 break;
02491447
DN
6808 case MC_TARGET_SWAP:
6809 ent = target.ent;
e91cbb42 6810 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6811 mc.precharge--;
483c30b5
DN
6812 /* we fixup refcnts and charges later. */
6813 mc.moved_swap++;
6814 }
02491447 6815 break;
4ffef5fe
DN
6816 default:
6817 break;
6818 }
6819 }
6820 pte_unmap_unlock(pte - 1, ptl);
6821 cond_resched();
6822
6823 if (addr != end) {
6824 /*
6825 * We have consumed all precharges we got in can_attach().
6826 * We try charge one by one, but don't do any additional
6827 * charges to mc.to if we have failed in charge once in attach()
6828 * phase.
6829 */
854ffa8d 6830 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6831 if (!ret)
6832 goto retry;
6833 }
6834
6835 return ret;
6836}
6837
6838static void mem_cgroup_move_charge(struct mm_struct *mm)
6839{
6840 struct vm_area_struct *vma;
6841
6842 lru_add_drain_all();
dfe076b0
DN
6843retry:
6844 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6845 /*
6846 * Someone who are holding the mmap_sem might be waiting in
6847 * waitq. So we cancel all extra charges, wake up all waiters,
6848 * and retry. Because we cancel precharges, we might not be able
6849 * to move enough charges, but moving charge is a best-effort
6850 * feature anyway, so it wouldn't be a big problem.
6851 */
6852 __mem_cgroup_clear_mc();
6853 cond_resched();
6854 goto retry;
6855 }
4ffef5fe
DN
6856 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6857 int ret;
6858 struct mm_walk mem_cgroup_move_charge_walk = {
6859 .pmd_entry = mem_cgroup_move_charge_pte_range,
6860 .mm = mm,
6861 .private = vma,
6862 };
6863 if (is_vm_hugetlb_page(vma))
6864 continue;
4ffef5fe
DN
6865 ret = walk_page_range(vma->vm_start, vma->vm_end,
6866 &mem_cgroup_move_charge_walk);
6867 if (ret)
6868 /*
6869 * means we have consumed all precharges and failed in
6870 * doing additional charge. Just abandon here.
6871 */
6872 break;
6873 }
dfe076b0 6874 up_read(&mm->mmap_sem);
7dc74be0
DN
6875}
6876
761b3ef5
LZ
6877static void mem_cgroup_move_task(struct cgroup *cont,
6878 struct cgroup_taskset *tset)
67e465a7 6879{
2f7ee569 6880 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6881 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6882
dfe076b0 6883 if (mm) {
a433658c
KM
6884 if (mc.to)
6885 mem_cgroup_move_charge(mm);
dfe076b0
DN
6886 mmput(mm);
6887 }
a433658c
KM
6888 if (mc.to)
6889 mem_cgroup_clear_mc();
67e465a7 6890}
5cfb80a7 6891#else /* !CONFIG_MMU */
761b3ef5
LZ
6892static int mem_cgroup_can_attach(struct cgroup *cgroup,
6893 struct cgroup_taskset *tset)
5cfb80a7
DN
6894{
6895 return 0;
6896}
761b3ef5
LZ
6897static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6898 struct cgroup_taskset *tset)
5cfb80a7
DN
6899{
6900}
761b3ef5
LZ
6901static void mem_cgroup_move_task(struct cgroup *cont,
6902 struct cgroup_taskset *tset)
5cfb80a7
DN
6903{
6904}
6905#endif
67e465a7 6906
8cdea7c0
BS
6907struct cgroup_subsys mem_cgroup_subsys = {
6908 .name = "memory",
6909 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6910 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6911 .css_online = mem_cgroup_css_online,
92fb9748
TH
6912 .css_offline = mem_cgroup_css_offline,
6913 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6914 .can_attach = mem_cgroup_can_attach,
6915 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6916 .attach = mem_cgroup_move_task,
6bc10349 6917 .base_cftypes = mem_cgroup_files,
6d12e2d8 6918 .early_init = 0,
04046e1a 6919 .use_id = 1,
8cdea7c0 6920};
c077719b 6921
c255a458 6922#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6923static int __init enable_swap_account(char *s)
6924{
6925 /* consider enabled if no parameter or 1 is given */
a2c8990a 6926 if (!strcmp(s, "1"))
a42c390c 6927 really_do_swap_account = 1;
a2c8990a 6928 else if (!strcmp(s, "0"))
a42c390c
MH
6929 really_do_swap_account = 0;
6930 return 1;
6931}
a2c8990a 6932__setup("swapaccount=", enable_swap_account);
c077719b 6933
2d11085e
MH
6934static void __init memsw_file_init(void)
6935{
6acc8b02
MH
6936 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6937}
6938
6939static void __init enable_swap_cgroup(void)
6940{
6941 if (!mem_cgroup_disabled() && really_do_swap_account) {
6942 do_swap_account = 1;
6943 memsw_file_init();
6944 }
2d11085e 6945}
6acc8b02 6946
2d11085e 6947#else
6acc8b02 6948static void __init enable_swap_cgroup(void)
2d11085e
MH
6949{
6950}
c077719b 6951#endif
2d11085e
MH
6952
6953/*
1081312f
MH
6954 * subsys_initcall() for memory controller.
6955 *
6956 * Some parts like hotcpu_notifier() have to be initialized from this context
6957 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6958 * everything that doesn't depend on a specific mem_cgroup structure should
6959 * be initialized from here.
2d11085e
MH
6960 */
6961static int __init mem_cgroup_init(void)
6962{
6963 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6964 enable_swap_cgroup();
8787a1df 6965 mem_cgroup_soft_limit_tree_init();
e4777496 6966 memcg_stock_init();
2d11085e
MH
6967 return 0;
6968}
6969subsys_initcall(mem_cgroup_init);