cpuset: convert away from cftype->read()
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
33327948 52#include <linux/vmalloc.h>
70ddf637 53#include <linux/vmpressure.h>
b69408e8 54#include <linux/mm_inline.h>
52d4b9ac 55#include <linux/page_cgroup.h>
cdec2e42 56#include <linux/cpu.h>
158e0a2d 57#include <linux/oom.h>
0056f4e6 58#include <linux/lockdep.h>
79bd9814 59#include <linux/file.h>
08e552c6 60#include "internal.h"
d1a4c0b3 61#include <net/sock.h>
4bd2c1ee 62#include <net/ip.h>
d1a4c0b3 63#include <net/tcp_memcontrol.h>
f35c3a8e 64#include "slab.h"
8cdea7c0 65
8697d331
BS
66#include <asm/uaccess.h>
67
cc8e970c
KM
68#include <trace/events/vmscan.h>
69
a181b0e8 70struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
71EXPORT_SYMBOL(mem_cgroup_subsys);
72
a181b0e8 73#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 74static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 75
c255a458 76#ifdef CONFIG_MEMCG_SWAP
338c8431 77/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 78int do_swap_account __read_mostly;
a42c390c
MH
79
80/* for remember boot option*/
c255a458 81#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
82static int really_do_swap_account __initdata = 1;
83#else
84static int really_do_swap_account __initdata = 0;
85#endif
86
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
91
af7c4b0e
JW
92static const char * const mem_cgroup_stat_names[] = {
93 "cache",
94 "rss",
b070e65c 95 "rss_huge",
af7c4b0e 96 "mapped_file",
3ea67d06 97 "writeback",
af7c4b0e
JW
98 "swap",
99};
100
e9f8974f
JW
101enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
106 MEM_CGROUP_EVENTS_NSTATS,
107};
af7c4b0e
JW
108
109static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114};
115
58cf188e
SZ
116static const char * const mem_cgroup_lru_names[] = {
117 "inactive_anon",
118 "active_anon",
119 "inactive_file",
120 "active_file",
121 "unevictable",
122};
123
7a159cc9
JW
124/*
125 * Per memcg event counter is incremented at every pagein/pageout. With THP,
126 * it will be incremated by the number of pages. This counter is used for
127 * for trigger some periodic events. This is straightforward and better
128 * than using jiffies etc. to handle periodic memcg event.
129 */
130enum mem_cgroup_events_target {
131 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 132 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 133 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
134 MEM_CGROUP_NTARGETS,
135};
a0db00fc
KS
136#define THRESHOLDS_EVENTS_TARGET 128
137#define SOFTLIMIT_EVENTS_TARGET 1024
138#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 139
d52aa412 140struct mem_cgroup_stat_cpu {
7a159cc9 141 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 142 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 143 unsigned long nr_page_events;
7a159cc9 144 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
145};
146
527a5ec9 147struct mem_cgroup_reclaim_iter {
5f578161
MH
148 /*
149 * last scanned hierarchy member. Valid only if last_dead_count
150 * matches memcg->dead_count of the hierarchy root group.
151 */
542f85f9 152 struct mem_cgroup *last_visited;
5f578161
MH
153 unsigned long last_dead_count;
154
527a5ec9
JW
155 /* scan generation, increased every round-trip */
156 unsigned int generation;
157};
158
6d12e2d8
KH
159/*
160 * per-zone information in memory controller.
161 */
6d12e2d8 162struct mem_cgroup_per_zone {
6290df54 163 struct lruvec lruvec;
1eb49272 164 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 165
527a5ec9
JW
166 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
167
bb4cc1a8
AM
168 struct rb_node tree_node; /* RB tree node */
169 unsigned long long usage_in_excess;/* Set to the value by which */
170 /* the soft limit is exceeded*/
171 bool on_tree;
d79154bb 172 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 173 /* use container_of */
6d12e2d8 174};
6d12e2d8
KH
175
176struct mem_cgroup_per_node {
177 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
178};
179
bb4cc1a8
AM
180/*
181 * Cgroups above their limits are maintained in a RB-Tree, independent of
182 * their hierarchy representation
183 */
184
185struct mem_cgroup_tree_per_zone {
186 struct rb_root rb_root;
187 spinlock_t lock;
188};
189
190struct mem_cgroup_tree_per_node {
191 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
192};
193
194struct mem_cgroup_tree {
195 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
196};
197
198static struct mem_cgroup_tree soft_limit_tree __read_mostly;
199
2e72b634
KS
200struct mem_cgroup_threshold {
201 struct eventfd_ctx *eventfd;
202 u64 threshold;
203};
204
9490ff27 205/* For threshold */
2e72b634 206struct mem_cgroup_threshold_ary {
748dad36 207 /* An array index points to threshold just below or equal to usage. */
5407a562 208 int current_threshold;
2e72b634
KS
209 /* Size of entries[] */
210 unsigned int size;
211 /* Array of thresholds */
212 struct mem_cgroup_threshold entries[0];
213};
2c488db2
KS
214
215struct mem_cgroup_thresholds {
216 /* Primary thresholds array */
217 struct mem_cgroup_threshold_ary *primary;
218 /*
219 * Spare threshold array.
220 * This is needed to make mem_cgroup_unregister_event() "never fail".
221 * It must be able to store at least primary->size - 1 entries.
222 */
223 struct mem_cgroup_threshold_ary *spare;
224};
225
9490ff27
KH
226/* for OOM */
227struct mem_cgroup_eventfd_list {
228 struct list_head list;
229 struct eventfd_ctx *eventfd;
230};
2e72b634 231
79bd9814
TH
232/*
233 * cgroup_event represents events which userspace want to receive.
234 */
3bc942f3 235struct mem_cgroup_event {
79bd9814 236 /*
59b6f873 237 * memcg which the event belongs to.
79bd9814 238 */
59b6f873 239 struct mem_cgroup *memcg;
79bd9814
TH
240 /*
241 * eventfd to signal userspace about the event.
242 */
243 struct eventfd_ctx *eventfd;
244 /*
245 * Each of these stored in a list by the cgroup.
246 */
247 struct list_head list;
fba94807
TH
248 /*
249 * register_event() callback will be used to add new userspace
250 * waiter for changes related to this event. Use eventfd_signal()
251 * on eventfd to send notification to userspace.
252 */
59b6f873 253 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 254 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
255 /*
256 * unregister_event() callback will be called when userspace closes
257 * the eventfd or on cgroup removing. This callback must be set,
258 * if you want provide notification functionality.
259 */
59b6f873 260 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 261 struct eventfd_ctx *eventfd);
79bd9814
TH
262 /*
263 * All fields below needed to unregister event when
264 * userspace closes eventfd.
265 */
266 poll_table pt;
267 wait_queue_head_t *wqh;
268 wait_queue_t wait;
269 struct work_struct remove;
270};
271
c0ff4b85
R
272static void mem_cgroup_threshold(struct mem_cgroup *memcg);
273static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 274
8cdea7c0
BS
275/*
276 * The memory controller data structure. The memory controller controls both
277 * page cache and RSS per cgroup. We would eventually like to provide
278 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
279 * to help the administrator determine what knobs to tune.
280 *
281 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
282 * we hit the water mark. May be even add a low water mark, such that
283 * no reclaim occurs from a cgroup at it's low water mark, this is
284 * a feature that will be implemented much later in the future.
8cdea7c0
BS
285 */
286struct mem_cgroup {
287 struct cgroup_subsys_state css;
288 /*
289 * the counter to account for memory usage
290 */
291 struct res_counter res;
59927fb9 292
70ddf637
AV
293 /* vmpressure notifications */
294 struct vmpressure vmpressure;
295
465939a1
LZ
296 /*
297 * the counter to account for mem+swap usage.
298 */
299 struct res_counter memsw;
59927fb9 300
510fc4e1
GC
301 /*
302 * the counter to account for kernel memory usage.
303 */
304 struct res_counter kmem;
18f59ea7
BS
305 /*
306 * Should the accounting and control be hierarchical, per subtree?
307 */
308 bool use_hierarchy;
510fc4e1 309 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
310
311 bool oom_lock;
312 atomic_t under_oom;
3812c8c8 313 atomic_t oom_wakeups;
79dfdacc 314
1f4c025b 315 int swappiness;
3c11ecf4
KH
316 /* OOM-Killer disable */
317 int oom_kill_disable;
a7885eb8 318
22a668d7
KH
319 /* set when res.limit == memsw.limit */
320 bool memsw_is_minimum;
321
2e72b634
KS
322 /* protect arrays of thresholds */
323 struct mutex thresholds_lock;
324
325 /* thresholds for memory usage. RCU-protected */
2c488db2 326 struct mem_cgroup_thresholds thresholds;
907860ed 327
2e72b634 328 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 329 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 330
9490ff27
KH
331 /* For oom notifier event fd */
332 struct list_head oom_notify;
185efc0f 333
7dc74be0
DN
334 /*
335 * Should we move charges of a task when a task is moved into this
336 * mem_cgroup ? And what type of charges should we move ?
337 */
f894ffa8 338 unsigned long move_charge_at_immigrate;
619d094b
KH
339 /*
340 * set > 0 if pages under this cgroup are moving to other cgroup.
341 */
342 atomic_t moving_account;
312734c0
KH
343 /* taken only while moving_account > 0 */
344 spinlock_t move_lock;
d52aa412 345 /*
c62b1a3b 346 * percpu counter.
d52aa412 347 */
3a7951b4 348 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
349 /*
350 * used when a cpu is offlined or other synchronizations
351 * See mem_cgroup_read_stat().
352 */
353 struct mem_cgroup_stat_cpu nocpu_base;
354 spinlock_t pcp_counter_lock;
d1a4c0b3 355
5f578161 356 atomic_t dead_count;
4bd2c1ee 357#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 358 struct cg_proto tcp_mem;
d1a4c0b3 359#endif
2633d7a0
GC
360#if defined(CONFIG_MEMCG_KMEM)
361 /* analogous to slab_common's slab_caches list. per-memcg */
362 struct list_head memcg_slab_caches;
363 /* Not a spinlock, we can take a lot of time walking the list */
364 struct mutex slab_caches_mutex;
365 /* Index in the kmem_cache->memcg_params->memcg_caches array */
366 int kmemcg_id;
367#endif
45cf7ebd
GC
368
369 int last_scanned_node;
370#if MAX_NUMNODES > 1
371 nodemask_t scan_nodes;
372 atomic_t numainfo_events;
373 atomic_t numainfo_updating;
374#endif
70ddf637 375
fba94807
TH
376 /* List of events which userspace want to receive */
377 struct list_head event_list;
378 spinlock_t event_list_lock;
379
54f72fe0
JW
380 struct mem_cgroup_per_node *nodeinfo[0];
381 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
382};
383
45cf7ebd
GC
384static size_t memcg_size(void)
385{
386 return sizeof(struct mem_cgroup) +
387 nr_node_ids * sizeof(struct mem_cgroup_per_node);
388}
389
510fc4e1
GC
390/* internal only representation about the status of kmem accounting. */
391enum {
392 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 393 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 394 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
395};
396
a8964b9b
GC
397/* We account when limit is on, but only after call sites are patched */
398#define KMEM_ACCOUNTED_MASK \
399 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
400
401#ifdef CONFIG_MEMCG_KMEM
402static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
403{
404 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
405}
7de37682
GC
406
407static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
408{
409 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
410}
411
a8964b9b
GC
412static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
413{
414 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
415}
416
55007d84
GC
417static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
418{
419 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
420}
421
7de37682
GC
422static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
423{
10d5ebf4
LZ
424 /*
425 * Our caller must use css_get() first, because memcg_uncharge_kmem()
426 * will call css_put() if it sees the memcg is dead.
427 */
428 smp_wmb();
7de37682
GC
429 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
430 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
431}
432
433static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
434{
435 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
436 &memcg->kmem_account_flags);
437}
510fc4e1
GC
438#endif
439
7dc74be0
DN
440/* Stuffs for move charges at task migration. */
441/*
ee5e8472
GC
442 * Types of charges to be moved. "move_charge_at_immitgrate" and
443 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
444 */
445enum move_type {
4ffef5fe 446 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 447 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
448 NR_MOVE_TYPE,
449};
450
4ffef5fe
DN
451/* "mc" and its members are protected by cgroup_mutex */
452static struct move_charge_struct {
b1dd693e 453 spinlock_t lock; /* for from, to */
4ffef5fe
DN
454 struct mem_cgroup *from;
455 struct mem_cgroup *to;
ee5e8472 456 unsigned long immigrate_flags;
4ffef5fe 457 unsigned long precharge;
854ffa8d 458 unsigned long moved_charge;
483c30b5 459 unsigned long moved_swap;
8033b97c
DN
460 struct task_struct *moving_task; /* a task moving charges */
461 wait_queue_head_t waitq; /* a waitq for other context */
462} mc = {
2bd9bb20 463 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
464 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
465};
4ffef5fe 466
90254a65
DN
467static bool move_anon(void)
468{
ee5e8472 469 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
470}
471
87946a72
DN
472static bool move_file(void)
473{
ee5e8472 474 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
475}
476
4e416953
BS
477/*
478 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
479 * limit reclaim to prevent infinite loops, if they ever occur.
480 */
a0db00fc 481#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 482#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 483
217bc319
KH
484enum charge_type {
485 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 486 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 487 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 488 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
489 NR_CHARGE_TYPE,
490};
491
8c7c6e34 492/* for encoding cft->private value on file */
86ae53e1
GC
493enum res_type {
494 _MEM,
495 _MEMSWAP,
496 _OOM_TYPE,
510fc4e1 497 _KMEM,
86ae53e1
GC
498};
499
a0db00fc
KS
500#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
501#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 502#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
503/* Used for OOM nofiier */
504#define OOM_CONTROL (0)
8c7c6e34 505
75822b44
BS
506/*
507 * Reclaim flags for mem_cgroup_hierarchical_reclaim
508 */
509#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
510#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
511#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
512#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
513
0999821b
GC
514/*
515 * The memcg_create_mutex will be held whenever a new cgroup is created.
516 * As a consequence, any change that needs to protect against new child cgroups
517 * appearing has to hold it as well.
518 */
519static DEFINE_MUTEX(memcg_create_mutex);
520
b2145145
WL
521struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
522{
a7c6d554 523 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
524}
525
70ddf637
AV
526/* Some nice accessors for the vmpressure. */
527struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
528{
529 if (!memcg)
530 memcg = root_mem_cgroup;
531 return &memcg->vmpressure;
532}
533
534struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
535{
536 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
537}
538
7ffc0edc
MH
539static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
540{
541 return (memcg == root_mem_cgroup);
542}
543
4219b2da
LZ
544/*
545 * We restrict the id in the range of [1, 65535], so it can fit into
546 * an unsigned short.
547 */
548#define MEM_CGROUP_ID_MAX USHRT_MAX
549
34c00c31
LZ
550static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
551{
552 /*
553 * The ID of the root cgroup is 0, but memcg treat 0 as an
554 * invalid ID, so we return (cgroup_id + 1).
555 */
556 return memcg->css.cgroup->id + 1;
557}
558
559static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
560{
561 struct cgroup_subsys_state *css;
562
563 css = css_from_id(id - 1, &mem_cgroup_subsys);
564 return mem_cgroup_from_css(css);
565}
566
e1aab161 567/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 568#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 569
e1aab161
GC
570void sock_update_memcg(struct sock *sk)
571{
376be5ff 572 if (mem_cgroup_sockets_enabled) {
e1aab161 573 struct mem_cgroup *memcg;
3f134619 574 struct cg_proto *cg_proto;
e1aab161
GC
575
576 BUG_ON(!sk->sk_prot->proto_cgroup);
577
f3f511e1
GC
578 /* Socket cloning can throw us here with sk_cgrp already
579 * filled. It won't however, necessarily happen from
580 * process context. So the test for root memcg given
581 * the current task's memcg won't help us in this case.
582 *
583 * Respecting the original socket's memcg is a better
584 * decision in this case.
585 */
586 if (sk->sk_cgrp) {
587 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 588 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
589 return;
590 }
591
e1aab161
GC
592 rcu_read_lock();
593 memcg = mem_cgroup_from_task(current);
3f134619 594 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
595 if (!mem_cgroup_is_root(memcg) &&
596 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 597 sk->sk_cgrp = cg_proto;
e1aab161
GC
598 }
599 rcu_read_unlock();
600 }
601}
602EXPORT_SYMBOL(sock_update_memcg);
603
604void sock_release_memcg(struct sock *sk)
605{
376be5ff 606 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
607 struct mem_cgroup *memcg;
608 WARN_ON(!sk->sk_cgrp->memcg);
609 memcg = sk->sk_cgrp->memcg;
5347e5ae 610 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
611 }
612}
d1a4c0b3
GC
613
614struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
615{
616 if (!memcg || mem_cgroup_is_root(memcg))
617 return NULL;
618
2e685cad 619 return &memcg->tcp_mem;
d1a4c0b3
GC
620}
621EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 622
3f134619
GC
623static void disarm_sock_keys(struct mem_cgroup *memcg)
624{
2e685cad 625 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
626 return;
627 static_key_slow_dec(&memcg_socket_limit_enabled);
628}
629#else
630static void disarm_sock_keys(struct mem_cgroup *memcg)
631{
632}
633#endif
634
a8964b9b 635#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
636/*
637 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
638 * The main reason for not using cgroup id for this:
639 * this works better in sparse environments, where we have a lot of memcgs,
640 * but only a few kmem-limited. Or also, if we have, for instance, 200
641 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
642 * 200 entry array for that.
55007d84
GC
643 *
644 * The current size of the caches array is stored in
645 * memcg_limited_groups_array_size. It will double each time we have to
646 * increase it.
647 */
648static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
649int memcg_limited_groups_array_size;
650
55007d84
GC
651/*
652 * MIN_SIZE is different than 1, because we would like to avoid going through
653 * the alloc/free process all the time. In a small machine, 4 kmem-limited
654 * cgroups is a reasonable guess. In the future, it could be a parameter or
655 * tunable, but that is strictly not necessary.
656 *
b8627835 657 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
658 * this constant directly from cgroup, but it is understandable that this is
659 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 660 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
661 * increase ours as well if it increases.
662 */
663#define MEMCG_CACHES_MIN_SIZE 4
b8627835 664#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 665
d7f25f8a
GC
666/*
667 * A lot of the calls to the cache allocation functions are expected to be
668 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
669 * conditional to this static branch, we'll have to allow modules that does
670 * kmem_cache_alloc and the such to see this symbol as well
671 */
a8964b9b 672struct static_key memcg_kmem_enabled_key;
d7f25f8a 673EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
674
675static void disarm_kmem_keys(struct mem_cgroup *memcg)
676{
55007d84 677 if (memcg_kmem_is_active(memcg)) {
a8964b9b 678 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
679 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
680 }
bea207c8
GC
681 /*
682 * This check can't live in kmem destruction function,
683 * since the charges will outlive the cgroup
684 */
685 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
686}
687#else
688static void disarm_kmem_keys(struct mem_cgroup *memcg)
689{
690}
691#endif /* CONFIG_MEMCG_KMEM */
692
693static void disarm_static_keys(struct mem_cgroup *memcg)
694{
695 disarm_sock_keys(memcg);
696 disarm_kmem_keys(memcg);
697}
698
c0ff4b85 699static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 700
f64c3f54 701static struct mem_cgroup_per_zone *
c0ff4b85 702mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 703{
45cf7ebd 704 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 705 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
706}
707
c0ff4b85 708struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 709{
c0ff4b85 710 return &memcg->css;
d324236b
WF
711}
712
f64c3f54 713static struct mem_cgroup_per_zone *
c0ff4b85 714page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 715{
97a6c37b
JW
716 int nid = page_to_nid(page);
717 int zid = page_zonenum(page);
f64c3f54 718
c0ff4b85 719 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
720}
721
bb4cc1a8
AM
722static struct mem_cgroup_tree_per_zone *
723soft_limit_tree_node_zone(int nid, int zid)
724{
725 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
726}
727
728static struct mem_cgroup_tree_per_zone *
729soft_limit_tree_from_page(struct page *page)
730{
731 int nid = page_to_nid(page);
732 int zid = page_zonenum(page);
733
734 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
735}
736
737static void
738__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
739 struct mem_cgroup_per_zone *mz,
740 struct mem_cgroup_tree_per_zone *mctz,
741 unsigned long long new_usage_in_excess)
742{
743 struct rb_node **p = &mctz->rb_root.rb_node;
744 struct rb_node *parent = NULL;
745 struct mem_cgroup_per_zone *mz_node;
746
747 if (mz->on_tree)
748 return;
749
750 mz->usage_in_excess = new_usage_in_excess;
751 if (!mz->usage_in_excess)
752 return;
753 while (*p) {
754 parent = *p;
755 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
756 tree_node);
757 if (mz->usage_in_excess < mz_node->usage_in_excess)
758 p = &(*p)->rb_left;
759 /*
760 * We can't avoid mem cgroups that are over their soft
761 * limit by the same amount
762 */
763 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
764 p = &(*p)->rb_right;
765 }
766 rb_link_node(&mz->tree_node, parent, p);
767 rb_insert_color(&mz->tree_node, &mctz->rb_root);
768 mz->on_tree = true;
769}
770
771static void
772__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
773 struct mem_cgroup_per_zone *mz,
774 struct mem_cgroup_tree_per_zone *mctz)
775{
776 if (!mz->on_tree)
777 return;
778 rb_erase(&mz->tree_node, &mctz->rb_root);
779 mz->on_tree = false;
780}
781
782static void
783mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
784 struct mem_cgroup_per_zone *mz,
785 struct mem_cgroup_tree_per_zone *mctz)
786{
787 spin_lock(&mctz->lock);
788 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
789 spin_unlock(&mctz->lock);
790}
791
792
793static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
794{
795 unsigned long long excess;
796 struct mem_cgroup_per_zone *mz;
797 struct mem_cgroup_tree_per_zone *mctz;
798 int nid = page_to_nid(page);
799 int zid = page_zonenum(page);
800 mctz = soft_limit_tree_from_page(page);
801
802 /*
803 * Necessary to update all ancestors when hierarchy is used.
804 * because their event counter is not touched.
805 */
806 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
807 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
808 excess = res_counter_soft_limit_excess(&memcg->res);
809 /*
810 * We have to update the tree if mz is on RB-tree or
811 * mem is over its softlimit.
812 */
813 if (excess || mz->on_tree) {
814 spin_lock(&mctz->lock);
815 /* if on-tree, remove it */
816 if (mz->on_tree)
817 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
818 /*
819 * Insert again. mz->usage_in_excess will be updated.
820 * If excess is 0, no tree ops.
821 */
822 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
823 spin_unlock(&mctz->lock);
824 }
825 }
826}
827
828static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
829{
830 int node, zone;
831 struct mem_cgroup_per_zone *mz;
832 struct mem_cgroup_tree_per_zone *mctz;
833
834 for_each_node(node) {
835 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
836 mz = mem_cgroup_zoneinfo(memcg, node, zone);
837 mctz = soft_limit_tree_node_zone(node, zone);
838 mem_cgroup_remove_exceeded(memcg, mz, mctz);
839 }
840 }
841}
842
843static struct mem_cgroup_per_zone *
844__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
845{
846 struct rb_node *rightmost = NULL;
847 struct mem_cgroup_per_zone *mz;
848
849retry:
850 mz = NULL;
851 rightmost = rb_last(&mctz->rb_root);
852 if (!rightmost)
853 goto done; /* Nothing to reclaim from */
854
855 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
856 /*
857 * Remove the node now but someone else can add it back,
858 * we will to add it back at the end of reclaim to its correct
859 * position in the tree.
860 */
861 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
862 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
863 !css_tryget(&mz->memcg->css))
864 goto retry;
865done:
866 return mz;
867}
868
869static struct mem_cgroup_per_zone *
870mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
871{
872 struct mem_cgroup_per_zone *mz;
873
874 spin_lock(&mctz->lock);
875 mz = __mem_cgroup_largest_soft_limit_node(mctz);
876 spin_unlock(&mctz->lock);
877 return mz;
878}
879
711d3d2c
KH
880/*
881 * Implementation Note: reading percpu statistics for memcg.
882 *
883 * Both of vmstat[] and percpu_counter has threshold and do periodic
884 * synchronization to implement "quick" read. There are trade-off between
885 * reading cost and precision of value. Then, we may have a chance to implement
886 * a periodic synchronizion of counter in memcg's counter.
887 *
888 * But this _read() function is used for user interface now. The user accounts
889 * memory usage by memory cgroup and he _always_ requires exact value because
890 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
891 * have to visit all online cpus and make sum. So, for now, unnecessary
892 * synchronization is not implemented. (just implemented for cpu hotplug)
893 *
894 * If there are kernel internal actions which can make use of some not-exact
895 * value, and reading all cpu value can be performance bottleneck in some
896 * common workload, threashold and synchonization as vmstat[] should be
897 * implemented.
898 */
c0ff4b85 899static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 900 enum mem_cgroup_stat_index idx)
c62b1a3b 901{
7a159cc9 902 long val = 0;
c62b1a3b 903 int cpu;
c62b1a3b 904
711d3d2c
KH
905 get_online_cpus();
906 for_each_online_cpu(cpu)
c0ff4b85 907 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 908#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
909 spin_lock(&memcg->pcp_counter_lock);
910 val += memcg->nocpu_base.count[idx];
911 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
912#endif
913 put_online_cpus();
c62b1a3b
KH
914 return val;
915}
916
c0ff4b85 917static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
918 bool charge)
919{
920 int val = (charge) ? 1 : -1;
bff6bb83 921 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
922}
923
c0ff4b85 924static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
925 enum mem_cgroup_events_index idx)
926{
927 unsigned long val = 0;
928 int cpu;
929
9c567512 930 get_online_cpus();
e9f8974f 931 for_each_online_cpu(cpu)
c0ff4b85 932 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 933#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
934 spin_lock(&memcg->pcp_counter_lock);
935 val += memcg->nocpu_base.events[idx];
936 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 937#endif
9c567512 938 put_online_cpus();
e9f8974f
JW
939 return val;
940}
941
c0ff4b85 942static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 943 struct page *page,
b2402857 944 bool anon, int nr_pages)
d52aa412 945{
c62b1a3b
KH
946 preempt_disable();
947
b2402857
KH
948 /*
949 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
950 * counted as CACHE even if it's on ANON LRU.
951 */
952 if (anon)
953 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 954 nr_pages);
d52aa412 955 else
b2402857 956 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 957 nr_pages);
55e462b0 958
b070e65c
DR
959 if (PageTransHuge(page))
960 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
961 nr_pages);
962
e401f176
KH
963 /* pagein of a big page is an event. So, ignore page size */
964 if (nr_pages > 0)
c0ff4b85 965 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 966 else {
c0ff4b85 967 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
968 nr_pages = -nr_pages; /* for event */
969 }
e401f176 970
13114716 971 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 972
c62b1a3b 973 preempt_enable();
6d12e2d8
KH
974}
975
bb2a0de9 976unsigned long
4d7dcca2 977mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
978{
979 struct mem_cgroup_per_zone *mz;
980
981 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
982 return mz->lru_size[lru];
983}
984
985static unsigned long
c0ff4b85 986mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 987 unsigned int lru_mask)
889976db
YH
988{
989 struct mem_cgroup_per_zone *mz;
f156ab93 990 enum lru_list lru;
bb2a0de9
KH
991 unsigned long ret = 0;
992
c0ff4b85 993 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 994
f156ab93
HD
995 for_each_lru(lru) {
996 if (BIT(lru) & lru_mask)
997 ret += mz->lru_size[lru];
bb2a0de9
KH
998 }
999 return ret;
1000}
1001
1002static unsigned long
c0ff4b85 1003mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
1004 int nid, unsigned int lru_mask)
1005{
889976db
YH
1006 u64 total = 0;
1007 int zid;
1008
bb2a0de9 1009 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
1010 total += mem_cgroup_zone_nr_lru_pages(memcg,
1011 nid, zid, lru_mask);
bb2a0de9 1012
889976db
YH
1013 return total;
1014}
bb2a0de9 1015
c0ff4b85 1016static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 1017 unsigned int lru_mask)
6d12e2d8 1018{
889976db 1019 int nid;
6d12e2d8
KH
1020 u64 total = 0;
1021
31aaea4a 1022 for_each_node_state(nid, N_MEMORY)
c0ff4b85 1023 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 1024 return total;
d52aa412
KH
1025}
1026
f53d7ce3
JW
1027static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1028 enum mem_cgroup_events_target target)
7a159cc9
JW
1029{
1030 unsigned long val, next;
1031
13114716 1032 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1033 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1034 /* from time_after() in jiffies.h */
f53d7ce3
JW
1035 if ((long)next - (long)val < 0) {
1036 switch (target) {
1037 case MEM_CGROUP_TARGET_THRESH:
1038 next = val + THRESHOLDS_EVENTS_TARGET;
1039 break;
bb4cc1a8
AM
1040 case MEM_CGROUP_TARGET_SOFTLIMIT:
1041 next = val + SOFTLIMIT_EVENTS_TARGET;
1042 break;
f53d7ce3
JW
1043 case MEM_CGROUP_TARGET_NUMAINFO:
1044 next = val + NUMAINFO_EVENTS_TARGET;
1045 break;
1046 default:
1047 break;
1048 }
1049 __this_cpu_write(memcg->stat->targets[target], next);
1050 return true;
7a159cc9 1051 }
f53d7ce3 1052 return false;
d2265e6f
KH
1053}
1054
1055/*
1056 * Check events in order.
1057 *
1058 */
c0ff4b85 1059static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1060{
4799401f 1061 preempt_disable();
d2265e6f 1062 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1063 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1064 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1065 bool do_softlimit;
82b3f2a7 1066 bool do_numainfo __maybe_unused;
f53d7ce3 1067
bb4cc1a8
AM
1068 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1069 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1070#if MAX_NUMNODES > 1
1071 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1072 MEM_CGROUP_TARGET_NUMAINFO);
1073#endif
1074 preempt_enable();
1075
c0ff4b85 1076 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1077 if (unlikely(do_softlimit))
1078 mem_cgroup_update_tree(memcg, page);
453a9bf3 1079#if MAX_NUMNODES > 1
f53d7ce3 1080 if (unlikely(do_numainfo))
c0ff4b85 1081 atomic_inc(&memcg->numainfo_events);
453a9bf3 1082#endif
f53d7ce3
JW
1083 } else
1084 preempt_enable();
d2265e6f
KH
1085}
1086
cf475ad2 1087struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1088{
31a78f23
BS
1089 /*
1090 * mm_update_next_owner() may clear mm->owner to NULL
1091 * if it races with swapoff, page migration, etc.
1092 * So this can be called with p == NULL.
1093 */
1094 if (unlikely(!p))
1095 return NULL;
1096
8af01f56 1097 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1098}
1099
a433658c 1100struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1101{
c0ff4b85 1102 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1103
1104 if (!mm)
1105 return NULL;
54595fe2
KH
1106 /*
1107 * Because we have no locks, mm->owner's may be being moved to other
1108 * cgroup. We use css_tryget() here even if this looks
1109 * pessimistic (rather than adding locks here).
1110 */
1111 rcu_read_lock();
1112 do {
c0ff4b85
R
1113 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1114 if (unlikely(!memcg))
54595fe2 1115 break;
c0ff4b85 1116 } while (!css_tryget(&memcg->css));
54595fe2 1117 rcu_read_unlock();
c0ff4b85 1118 return memcg;
54595fe2
KH
1119}
1120
16248d8f
MH
1121/*
1122 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1123 * ref. count) or NULL if the whole root's subtree has been visited.
1124 *
1125 * helper function to be used by mem_cgroup_iter
1126 */
1127static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1128 struct mem_cgroup *last_visited)
16248d8f 1129{
492eb21b 1130 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1131
bd8815a6 1132 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1133skip_node:
492eb21b 1134 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1135
1136 /*
1137 * Even if we found a group we have to make sure it is
1138 * alive. css && !memcg means that the groups should be
1139 * skipped and we should continue the tree walk.
1140 * last_visited css is safe to use because it is
1141 * protected by css_get and the tree walk is rcu safe.
1142 */
492eb21b
TH
1143 if (next_css) {
1144 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1145
694fbc0f
AM
1146 if (css_tryget(&mem->css))
1147 return mem;
1148 else {
492eb21b 1149 prev_css = next_css;
16248d8f
MH
1150 goto skip_node;
1151 }
1152 }
1153
1154 return NULL;
1155}
1156
519ebea3
JW
1157static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1158{
1159 /*
1160 * When a group in the hierarchy below root is destroyed, the
1161 * hierarchy iterator can no longer be trusted since it might
1162 * have pointed to the destroyed group. Invalidate it.
1163 */
1164 atomic_inc(&root->dead_count);
1165}
1166
1167static struct mem_cgroup *
1168mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1169 struct mem_cgroup *root,
1170 int *sequence)
1171{
1172 struct mem_cgroup *position = NULL;
1173 /*
1174 * A cgroup destruction happens in two stages: offlining and
1175 * release. They are separated by a RCU grace period.
1176 *
1177 * If the iterator is valid, we may still race with an
1178 * offlining. The RCU lock ensures the object won't be
1179 * released, tryget will fail if we lost the race.
1180 */
1181 *sequence = atomic_read(&root->dead_count);
1182 if (iter->last_dead_count == *sequence) {
1183 smp_rmb();
1184 position = iter->last_visited;
1185 if (position && !css_tryget(&position->css))
1186 position = NULL;
1187 }
1188 return position;
1189}
1190
1191static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1192 struct mem_cgroup *last_visited,
1193 struct mem_cgroup *new_position,
1194 int sequence)
1195{
1196 if (last_visited)
1197 css_put(&last_visited->css);
1198 /*
1199 * We store the sequence count from the time @last_visited was
1200 * loaded successfully instead of rereading it here so that we
1201 * don't lose destruction events in between. We could have
1202 * raced with the destruction of @new_position after all.
1203 */
1204 iter->last_visited = new_position;
1205 smp_wmb();
1206 iter->last_dead_count = sequence;
1207}
1208
5660048c
JW
1209/**
1210 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1211 * @root: hierarchy root
1212 * @prev: previously returned memcg, NULL on first invocation
1213 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1214 *
1215 * Returns references to children of the hierarchy below @root, or
1216 * @root itself, or %NULL after a full round-trip.
1217 *
1218 * Caller must pass the return value in @prev on subsequent
1219 * invocations for reference counting, or use mem_cgroup_iter_break()
1220 * to cancel a hierarchy walk before the round-trip is complete.
1221 *
1222 * Reclaimers can specify a zone and a priority level in @reclaim to
1223 * divide up the memcgs in the hierarchy among all concurrent
1224 * reclaimers operating on the same zone and priority.
1225 */
694fbc0f 1226struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1227 struct mem_cgroup *prev,
694fbc0f 1228 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1229{
9f3a0d09 1230 struct mem_cgroup *memcg = NULL;
542f85f9 1231 struct mem_cgroup *last_visited = NULL;
711d3d2c 1232
694fbc0f
AM
1233 if (mem_cgroup_disabled())
1234 return NULL;
5660048c 1235
9f3a0d09
JW
1236 if (!root)
1237 root = root_mem_cgroup;
7d74b06f 1238
9f3a0d09 1239 if (prev && !reclaim)
542f85f9 1240 last_visited = prev;
14067bb3 1241
9f3a0d09
JW
1242 if (!root->use_hierarchy && root != root_mem_cgroup) {
1243 if (prev)
c40046f3 1244 goto out_css_put;
694fbc0f 1245 return root;
9f3a0d09 1246 }
14067bb3 1247
542f85f9 1248 rcu_read_lock();
9f3a0d09 1249 while (!memcg) {
527a5ec9 1250 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1251 int uninitialized_var(seq);
711d3d2c 1252
527a5ec9
JW
1253 if (reclaim) {
1254 int nid = zone_to_nid(reclaim->zone);
1255 int zid = zone_idx(reclaim->zone);
1256 struct mem_cgroup_per_zone *mz;
1257
1258 mz = mem_cgroup_zoneinfo(root, nid, zid);
1259 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1260 if (prev && reclaim->generation != iter->generation) {
5f578161 1261 iter->last_visited = NULL;
542f85f9
MH
1262 goto out_unlock;
1263 }
5f578161 1264
519ebea3 1265 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1266 }
7d74b06f 1267
694fbc0f 1268 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1269
527a5ec9 1270 if (reclaim) {
519ebea3 1271 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1272
19f39402 1273 if (!memcg)
527a5ec9
JW
1274 iter->generation++;
1275 else if (!prev && memcg)
1276 reclaim->generation = iter->generation;
1277 }
9f3a0d09 1278
694fbc0f 1279 if (prev && !memcg)
542f85f9 1280 goto out_unlock;
9f3a0d09 1281 }
542f85f9
MH
1282out_unlock:
1283 rcu_read_unlock();
c40046f3
MH
1284out_css_put:
1285 if (prev && prev != root)
1286 css_put(&prev->css);
1287
9f3a0d09 1288 return memcg;
14067bb3 1289}
7d74b06f 1290
5660048c
JW
1291/**
1292 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1293 * @root: hierarchy root
1294 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1295 */
1296void mem_cgroup_iter_break(struct mem_cgroup *root,
1297 struct mem_cgroup *prev)
9f3a0d09
JW
1298{
1299 if (!root)
1300 root = root_mem_cgroup;
1301 if (prev && prev != root)
1302 css_put(&prev->css);
1303}
7d74b06f 1304
9f3a0d09
JW
1305/*
1306 * Iteration constructs for visiting all cgroups (under a tree). If
1307 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1308 * be used for reference counting.
1309 */
1310#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1311 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1312 iter != NULL; \
527a5ec9 1313 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1314
9f3a0d09 1315#define for_each_mem_cgroup(iter) \
527a5ec9 1316 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1317 iter != NULL; \
527a5ec9 1318 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1319
68ae564b 1320void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1321{
c0ff4b85 1322 struct mem_cgroup *memcg;
456f998e 1323
456f998e 1324 rcu_read_lock();
c0ff4b85
R
1325 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1326 if (unlikely(!memcg))
456f998e
YH
1327 goto out;
1328
1329 switch (idx) {
456f998e 1330 case PGFAULT:
0e574a93
JW
1331 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1332 break;
1333 case PGMAJFAULT:
1334 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1335 break;
1336 default:
1337 BUG();
1338 }
1339out:
1340 rcu_read_unlock();
1341}
68ae564b 1342EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1343
925b7673
JW
1344/**
1345 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1346 * @zone: zone of the wanted lruvec
fa9add64 1347 * @memcg: memcg of the wanted lruvec
925b7673
JW
1348 *
1349 * Returns the lru list vector holding pages for the given @zone and
1350 * @mem. This can be the global zone lruvec, if the memory controller
1351 * is disabled.
1352 */
1353struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1354 struct mem_cgroup *memcg)
1355{
1356 struct mem_cgroup_per_zone *mz;
bea8c150 1357 struct lruvec *lruvec;
925b7673 1358
bea8c150
HD
1359 if (mem_cgroup_disabled()) {
1360 lruvec = &zone->lruvec;
1361 goto out;
1362 }
925b7673
JW
1363
1364 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1365 lruvec = &mz->lruvec;
1366out:
1367 /*
1368 * Since a node can be onlined after the mem_cgroup was created,
1369 * we have to be prepared to initialize lruvec->zone here;
1370 * and if offlined then reonlined, we need to reinitialize it.
1371 */
1372 if (unlikely(lruvec->zone != zone))
1373 lruvec->zone = zone;
1374 return lruvec;
925b7673
JW
1375}
1376
08e552c6
KH
1377/*
1378 * Following LRU functions are allowed to be used without PCG_LOCK.
1379 * Operations are called by routine of global LRU independently from memcg.
1380 * What we have to take care of here is validness of pc->mem_cgroup.
1381 *
1382 * Changes to pc->mem_cgroup happens when
1383 * 1. charge
1384 * 2. moving account
1385 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1386 * It is added to LRU before charge.
1387 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1388 * When moving account, the page is not on LRU. It's isolated.
1389 */
4f98a2fe 1390
925b7673 1391/**
fa9add64 1392 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1393 * @page: the page
fa9add64 1394 * @zone: zone of the page
925b7673 1395 */
fa9add64 1396struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1397{
08e552c6 1398 struct mem_cgroup_per_zone *mz;
925b7673
JW
1399 struct mem_cgroup *memcg;
1400 struct page_cgroup *pc;
bea8c150 1401 struct lruvec *lruvec;
6d12e2d8 1402
bea8c150
HD
1403 if (mem_cgroup_disabled()) {
1404 lruvec = &zone->lruvec;
1405 goto out;
1406 }
925b7673 1407
08e552c6 1408 pc = lookup_page_cgroup(page);
38c5d72f 1409 memcg = pc->mem_cgroup;
7512102c
HD
1410
1411 /*
fa9add64 1412 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1413 * an uncharged page off lru does nothing to secure
1414 * its former mem_cgroup from sudden removal.
1415 *
1416 * Our caller holds lru_lock, and PageCgroupUsed is updated
1417 * under page_cgroup lock: between them, they make all uses
1418 * of pc->mem_cgroup safe.
1419 */
fa9add64 1420 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1421 pc->mem_cgroup = memcg = root_mem_cgroup;
1422
925b7673 1423 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1424 lruvec = &mz->lruvec;
1425out:
1426 /*
1427 * Since a node can be onlined after the mem_cgroup was created,
1428 * we have to be prepared to initialize lruvec->zone here;
1429 * and if offlined then reonlined, we need to reinitialize it.
1430 */
1431 if (unlikely(lruvec->zone != zone))
1432 lruvec->zone = zone;
1433 return lruvec;
08e552c6 1434}
b69408e8 1435
925b7673 1436/**
fa9add64
HD
1437 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1438 * @lruvec: mem_cgroup per zone lru vector
1439 * @lru: index of lru list the page is sitting on
1440 * @nr_pages: positive when adding or negative when removing
925b7673 1441 *
fa9add64
HD
1442 * This function must be called when a page is added to or removed from an
1443 * lru list.
3f58a829 1444 */
fa9add64
HD
1445void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1446 int nr_pages)
3f58a829
MK
1447{
1448 struct mem_cgroup_per_zone *mz;
fa9add64 1449 unsigned long *lru_size;
3f58a829
MK
1450
1451 if (mem_cgroup_disabled())
1452 return;
1453
fa9add64
HD
1454 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1455 lru_size = mz->lru_size + lru;
1456 *lru_size += nr_pages;
1457 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1458}
544122e5 1459
3e92041d 1460/*
c0ff4b85 1461 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1462 * hierarchy subtree
1463 */
c3ac9a8a
JW
1464bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1465 struct mem_cgroup *memcg)
3e92041d 1466{
91c63734
JW
1467 if (root_memcg == memcg)
1468 return true;
3a981f48 1469 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1470 return false;
b47f77b5 1471 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1472}
1473
1474static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1475 struct mem_cgroup *memcg)
1476{
1477 bool ret;
1478
91c63734 1479 rcu_read_lock();
c3ac9a8a 1480 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1481 rcu_read_unlock();
1482 return ret;
3e92041d
MH
1483}
1484
ffbdccf5
DR
1485bool task_in_mem_cgroup(struct task_struct *task,
1486 const struct mem_cgroup *memcg)
4c4a2214 1487{
0b7f569e 1488 struct mem_cgroup *curr = NULL;
158e0a2d 1489 struct task_struct *p;
ffbdccf5 1490 bool ret;
4c4a2214 1491
158e0a2d 1492 p = find_lock_task_mm(task);
de077d22
DR
1493 if (p) {
1494 curr = try_get_mem_cgroup_from_mm(p->mm);
1495 task_unlock(p);
1496 } else {
1497 /*
1498 * All threads may have already detached their mm's, but the oom
1499 * killer still needs to detect if they have already been oom
1500 * killed to prevent needlessly killing additional tasks.
1501 */
ffbdccf5 1502 rcu_read_lock();
de077d22
DR
1503 curr = mem_cgroup_from_task(task);
1504 if (curr)
1505 css_get(&curr->css);
ffbdccf5 1506 rcu_read_unlock();
de077d22 1507 }
0b7f569e 1508 if (!curr)
ffbdccf5 1509 return false;
d31f56db 1510 /*
c0ff4b85 1511 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1512 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1513 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1514 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1515 */
c0ff4b85 1516 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1517 css_put(&curr->css);
4c4a2214
DR
1518 return ret;
1519}
1520
c56d5c7d 1521int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1522{
9b272977 1523 unsigned long inactive_ratio;
14797e23 1524 unsigned long inactive;
9b272977 1525 unsigned long active;
c772be93 1526 unsigned long gb;
14797e23 1527
4d7dcca2
HD
1528 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1529 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1530
c772be93
KM
1531 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1532 if (gb)
1533 inactive_ratio = int_sqrt(10 * gb);
1534 else
1535 inactive_ratio = 1;
1536
9b272977 1537 return inactive * inactive_ratio < active;
14797e23
KM
1538}
1539
6d61ef40
BS
1540#define mem_cgroup_from_res_counter(counter, member) \
1541 container_of(counter, struct mem_cgroup, member)
1542
19942822 1543/**
9d11ea9f 1544 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1545 * @memcg: the memory cgroup
19942822 1546 *
9d11ea9f 1547 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1548 * pages.
19942822 1549 */
c0ff4b85 1550static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1551{
9d11ea9f
JW
1552 unsigned long long margin;
1553
c0ff4b85 1554 margin = res_counter_margin(&memcg->res);
9d11ea9f 1555 if (do_swap_account)
c0ff4b85 1556 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1557 return margin >> PAGE_SHIFT;
19942822
JW
1558}
1559
1f4c025b 1560int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1561{
a7885eb8 1562 /* root ? */
63876986 1563 if (!css_parent(&memcg->css))
a7885eb8
KM
1564 return vm_swappiness;
1565
bf1ff263 1566 return memcg->swappiness;
a7885eb8
KM
1567}
1568
619d094b
KH
1569/*
1570 * memcg->moving_account is used for checking possibility that some thread is
1571 * calling move_account(). When a thread on CPU-A starts moving pages under
1572 * a memcg, other threads should check memcg->moving_account under
1573 * rcu_read_lock(), like this:
1574 *
1575 * CPU-A CPU-B
1576 * rcu_read_lock()
1577 * memcg->moving_account+1 if (memcg->mocing_account)
1578 * take heavy locks.
1579 * synchronize_rcu() update something.
1580 * rcu_read_unlock()
1581 * start move here.
1582 */
4331f7d3
KH
1583
1584/* for quick checking without looking up memcg */
1585atomic_t memcg_moving __read_mostly;
1586
c0ff4b85 1587static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1588{
4331f7d3 1589 atomic_inc(&memcg_moving);
619d094b 1590 atomic_inc(&memcg->moving_account);
32047e2a
KH
1591 synchronize_rcu();
1592}
1593
c0ff4b85 1594static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1595{
619d094b
KH
1596 /*
1597 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1598 * We check NULL in callee rather than caller.
1599 */
4331f7d3
KH
1600 if (memcg) {
1601 atomic_dec(&memcg_moving);
619d094b 1602 atomic_dec(&memcg->moving_account);
4331f7d3 1603 }
32047e2a 1604}
619d094b 1605
32047e2a
KH
1606/*
1607 * 2 routines for checking "mem" is under move_account() or not.
1608 *
13fd1dd9
AM
1609 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1610 * is used for avoiding races in accounting. If true,
32047e2a
KH
1611 * pc->mem_cgroup may be overwritten.
1612 *
1613 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1614 * under hierarchy of moving cgroups. This is for
1615 * waiting at hith-memory prressure caused by "move".
1616 */
1617
13fd1dd9 1618static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1619{
1620 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1621 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1622}
4b534334 1623
c0ff4b85 1624static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1625{
2bd9bb20
KH
1626 struct mem_cgroup *from;
1627 struct mem_cgroup *to;
4b534334 1628 bool ret = false;
2bd9bb20
KH
1629 /*
1630 * Unlike task_move routines, we access mc.to, mc.from not under
1631 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1632 */
1633 spin_lock(&mc.lock);
1634 from = mc.from;
1635 to = mc.to;
1636 if (!from)
1637 goto unlock;
3e92041d 1638
c0ff4b85
R
1639 ret = mem_cgroup_same_or_subtree(memcg, from)
1640 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1641unlock:
1642 spin_unlock(&mc.lock);
4b534334
KH
1643 return ret;
1644}
1645
c0ff4b85 1646static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1647{
1648 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1649 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1650 DEFINE_WAIT(wait);
1651 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1652 /* moving charge context might have finished. */
1653 if (mc.moving_task)
1654 schedule();
1655 finish_wait(&mc.waitq, &wait);
1656 return true;
1657 }
1658 }
1659 return false;
1660}
1661
312734c0
KH
1662/*
1663 * Take this lock when
1664 * - a code tries to modify page's memcg while it's USED.
1665 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1666 * see mem_cgroup_stolen(), too.
312734c0
KH
1667 */
1668static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1669 unsigned long *flags)
1670{
1671 spin_lock_irqsave(&memcg->move_lock, *flags);
1672}
1673
1674static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1675 unsigned long *flags)
1676{
1677 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1678}
1679
58cf188e 1680#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1681/**
58cf188e 1682 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1683 * @memcg: The memory cgroup that went over limit
1684 * @p: Task that is going to be killed
1685 *
1686 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1687 * enabled
1688 */
1689void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1690{
1691 struct cgroup *task_cgrp;
1692 struct cgroup *mem_cgrp;
1693 /*
1694 * Need a buffer in BSS, can't rely on allocations. The code relies
1695 * on the assumption that OOM is serialized for memory controller.
1696 * If this assumption is broken, revisit this code.
1697 */
1698 static char memcg_name[PATH_MAX];
1699 int ret;
58cf188e
SZ
1700 struct mem_cgroup *iter;
1701 unsigned int i;
e222432b 1702
58cf188e 1703 if (!p)
e222432b
BS
1704 return;
1705
e222432b
BS
1706 rcu_read_lock();
1707
1708 mem_cgrp = memcg->css.cgroup;
1709 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1710
1711 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1712 if (ret < 0) {
1713 /*
1714 * Unfortunately, we are unable to convert to a useful name
1715 * But we'll still print out the usage information
1716 */
1717 rcu_read_unlock();
1718 goto done;
1719 }
1720 rcu_read_unlock();
1721
d045197f 1722 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1723
1724 rcu_read_lock();
1725 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1726 if (ret < 0) {
1727 rcu_read_unlock();
1728 goto done;
1729 }
1730 rcu_read_unlock();
1731
1732 /*
1733 * Continues from above, so we don't need an KERN_ level
1734 */
d045197f 1735 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1736done:
1737
d045197f 1738 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1739 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1740 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1741 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1742 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1743 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1744 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1745 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1746 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1747 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1748 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1749 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1750
1751 for_each_mem_cgroup_tree(iter, memcg) {
1752 pr_info("Memory cgroup stats");
1753
1754 rcu_read_lock();
1755 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1756 if (!ret)
1757 pr_cont(" for %s", memcg_name);
1758 rcu_read_unlock();
1759 pr_cont(":");
1760
1761 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1762 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1763 continue;
1764 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1765 K(mem_cgroup_read_stat(iter, i)));
1766 }
1767
1768 for (i = 0; i < NR_LRU_LISTS; i++)
1769 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1770 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1771
1772 pr_cont("\n");
1773 }
e222432b
BS
1774}
1775
81d39c20
KH
1776/*
1777 * This function returns the number of memcg under hierarchy tree. Returns
1778 * 1(self count) if no children.
1779 */
c0ff4b85 1780static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1781{
1782 int num = 0;
7d74b06f
KH
1783 struct mem_cgroup *iter;
1784
c0ff4b85 1785 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1786 num++;
81d39c20
KH
1787 return num;
1788}
1789
a63d83f4
DR
1790/*
1791 * Return the memory (and swap, if configured) limit for a memcg.
1792 */
9cbb78bb 1793static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1794{
1795 u64 limit;
a63d83f4 1796
f3e8eb70 1797 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1798
a63d83f4 1799 /*
9a5a8f19 1800 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1801 */
9a5a8f19
MH
1802 if (mem_cgroup_swappiness(memcg)) {
1803 u64 memsw;
1804
1805 limit += total_swap_pages << PAGE_SHIFT;
1806 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1807
1808 /*
1809 * If memsw is finite and limits the amount of swap space
1810 * available to this memcg, return that limit.
1811 */
1812 limit = min(limit, memsw);
1813 }
1814
1815 return limit;
a63d83f4
DR
1816}
1817
19965460
DR
1818static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1819 int order)
9cbb78bb
DR
1820{
1821 struct mem_cgroup *iter;
1822 unsigned long chosen_points = 0;
1823 unsigned long totalpages;
1824 unsigned int points = 0;
1825 struct task_struct *chosen = NULL;
1826
876aafbf 1827 /*
465adcf1
DR
1828 * If current has a pending SIGKILL or is exiting, then automatically
1829 * select it. The goal is to allow it to allocate so that it may
1830 * quickly exit and free its memory.
876aafbf 1831 */
465adcf1 1832 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1833 set_thread_flag(TIF_MEMDIE);
1834 return;
1835 }
1836
1837 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1838 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1839 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1840 struct css_task_iter it;
9cbb78bb
DR
1841 struct task_struct *task;
1842
72ec7029
TH
1843 css_task_iter_start(&iter->css, &it);
1844 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1845 switch (oom_scan_process_thread(task, totalpages, NULL,
1846 false)) {
1847 case OOM_SCAN_SELECT:
1848 if (chosen)
1849 put_task_struct(chosen);
1850 chosen = task;
1851 chosen_points = ULONG_MAX;
1852 get_task_struct(chosen);
1853 /* fall through */
1854 case OOM_SCAN_CONTINUE:
1855 continue;
1856 case OOM_SCAN_ABORT:
72ec7029 1857 css_task_iter_end(&it);
9cbb78bb
DR
1858 mem_cgroup_iter_break(memcg, iter);
1859 if (chosen)
1860 put_task_struct(chosen);
1861 return;
1862 case OOM_SCAN_OK:
1863 break;
1864 };
1865 points = oom_badness(task, memcg, NULL, totalpages);
1866 if (points > chosen_points) {
1867 if (chosen)
1868 put_task_struct(chosen);
1869 chosen = task;
1870 chosen_points = points;
1871 get_task_struct(chosen);
1872 }
1873 }
72ec7029 1874 css_task_iter_end(&it);
9cbb78bb
DR
1875 }
1876
1877 if (!chosen)
1878 return;
1879 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1880 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1881 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1882}
1883
5660048c
JW
1884static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1885 gfp_t gfp_mask,
1886 unsigned long flags)
1887{
1888 unsigned long total = 0;
1889 bool noswap = false;
1890 int loop;
1891
1892 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1893 noswap = true;
1894 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1895 noswap = true;
1896
1897 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1898 if (loop)
1899 drain_all_stock_async(memcg);
1900 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1901 /*
1902 * Allow limit shrinkers, which are triggered directly
1903 * by userspace, to catch signals and stop reclaim
1904 * after minimal progress, regardless of the margin.
1905 */
1906 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1907 break;
1908 if (mem_cgroup_margin(memcg))
1909 break;
1910 /*
1911 * If nothing was reclaimed after two attempts, there
1912 * may be no reclaimable pages in this hierarchy.
1913 */
1914 if (loop && !total)
1915 break;
1916 }
1917 return total;
1918}
1919
4d0c066d
KH
1920/**
1921 * test_mem_cgroup_node_reclaimable
dad7557e 1922 * @memcg: the target memcg
4d0c066d
KH
1923 * @nid: the node ID to be checked.
1924 * @noswap : specify true here if the user wants flle only information.
1925 *
1926 * This function returns whether the specified memcg contains any
1927 * reclaimable pages on a node. Returns true if there are any reclaimable
1928 * pages in the node.
1929 */
c0ff4b85 1930static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1931 int nid, bool noswap)
1932{
c0ff4b85 1933 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1934 return true;
1935 if (noswap || !total_swap_pages)
1936 return false;
c0ff4b85 1937 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1938 return true;
1939 return false;
1940
1941}
bb4cc1a8 1942#if MAX_NUMNODES > 1
889976db
YH
1943
1944/*
1945 * Always updating the nodemask is not very good - even if we have an empty
1946 * list or the wrong list here, we can start from some node and traverse all
1947 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1948 *
1949 */
c0ff4b85 1950static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1951{
1952 int nid;
453a9bf3
KH
1953 /*
1954 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1955 * pagein/pageout changes since the last update.
1956 */
c0ff4b85 1957 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1958 return;
c0ff4b85 1959 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1960 return;
1961
889976db 1962 /* make a nodemask where this memcg uses memory from */
31aaea4a 1963 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1964
31aaea4a 1965 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1966
c0ff4b85
R
1967 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1968 node_clear(nid, memcg->scan_nodes);
889976db 1969 }
453a9bf3 1970
c0ff4b85
R
1971 atomic_set(&memcg->numainfo_events, 0);
1972 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1973}
1974
1975/*
1976 * Selecting a node where we start reclaim from. Because what we need is just
1977 * reducing usage counter, start from anywhere is O,K. Considering
1978 * memory reclaim from current node, there are pros. and cons.
1979 *
1980 * Freeing memory from current node means freeing memory from a node which
1981 * we'll use or we've used. So, it may make LRU bad. And if several threads
1982 * hit limits, it will see a contention on a node. But freeing from remote
1983 * node means more costs for memory reclaim because of memory latency.
1984 *
1985 * Now, we use round-robin. Better algorithm is welcomed.
1986 */
c0ff4b85 1987int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1988{
1989 int node;
1990
c0ff4b85
R
1991 mem_cgroup_may_update_nodemask(memcg);
1992 node = memcg->last_scanned_node;
889976db 1993
c0ff4b85 1994 node = next_node(node, memcg->scan_nodes);
889976db 1995 if (node == MAX_NUMNODES)
c0ff4b85 1996 node = first_node(memcg->scan_nodes);
889976db
YH
1997 /*
1998 * We call this when we hit limit, not when pages are added to LRU.
1999 * No LRU may hold pages because all pages are UNEVICTABLE or
2000 * memcg is too small and all pages are not on LRU. In that case,
2001 * we use curret node.
2002 */
2003 if (unlikely(node == MAX_NUMNODES))
2004 node = numa_node_id();
2005
c0ff4b85 2006 memcg->last_scanned_node = node;
889976db
YH
2007 return node;
2008}
2009
bb4cc1a8
AM
2010/*
2011 * Check all nodes whether it contains reclaimable pages or not.
2012 * For quick scan, we make use of scan_nodes. This will allow us to skip
2013 * unused nodes. But scan_nodes is lazily updated and may not cotain
2014 * enough new information. We need to do double check.
2015 */
2016static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2017{
2018 int nid;
2019
2020 /*
2021 * quick check...making use of scan_node.
2022 * We can skip unused nodes.
2023 */
2024 if (!nodes_empty(memcg->scan_nodes)) {
2025 for (nid = first_node(memcg->scan_nodes);
2026 nid < MAX_NUMNODES;
2027 nid = next_node(nid, memcg->scan_nodes)) {
2028
2029 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2030 return true;
2031 }
2032 }
2033 /*
2034 * Check rest of nodes.
2035 */
2036 for_each_node_state(nid, N_MEMORY) {
2037 if (node_isset(nid, memcg->scan_nodes))
2038 continue;
2039 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2040 return true;
2041 }
2042 return false;
2043}
2044
889976db 2045#else
c0ff4b85 2046int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2047{
2048 return 0;
2049}
4d0c066d 2050
bb4cc1a8
AM
2051static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2052{
2053 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2054}
889976db
YH
2055#endif
2056
0608f43d
AM
2057static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2058 struct zone *zone,
2059 gfp_t gfp_mask,
2060 unsigned long *total_scanned)
2061{
2062 struct mem_cgroup *victim = NULL;
2063 int total = 0;
2064 int loop = 0;
2065 unsigned long excess;
2066 unsigned long nr_scanned;
2067 struct mem_cgroup_reclaim_cookie reclaim = {
2068 .zone = zone,
2069 .priority = 0,
2070 };
2071
2072 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2073
2074 while (1) {
2075 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2076 if (!victim) {
2077 loop++;
2078 if (loop >= 2) {
2079 /*
2080 * If we have not been able to reclaim
2081 * anything, it might because there are
2082 * no reclaimable pages under this hierarchy
2083 */
2084 if (!total)
2085 break;
2086 /*
2087 * We want to do more targeted reclaim.
2088 * excess >> 2 is not to excessive so as to
2089 * reclaim too much, nor too less that we keep
2090 * coming back to reclaim from this cgroup
2091 */
2092 if (total >= (excess >> 2) ||
2093 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2094 break;
2095 }
2096 continue;
2097 }
2098 if (!mem_cgroup_reclaimable(victim, false))
2099 continue;
2100 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2101 zone, &nr_scanned);
2102 *total_scanned += nr_scanned;
2103 if (!res_counter_soft_limit_excess(&root_memcg->res))
2104 break;
6d61ef40 2105 }
0608f43d
AM
2106 mem_cgroup_iter_break(root_memcg, victim);
2107 return total;
6d61ef40
BS
2108}
2109
0056f4e6
JW
2110#ifdef CONFIG_LOCKDEP
2111static struct lockdep_map memcg_oom_lock_dep_map = {
2112 .name = "memcg_oom_lock",
2113};
2114#endif
2115
fb2a6fc5
JW
2116static DEFINE_SPINLOCK(memcg_oom_lock);
2117
867578cb
KH
2118/*
2119 * Check OOM-Killer is already running under our hierarchy.
2120 * If someone is running, return false.
2121 */
fb2a6fc5 2122static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2123{
79dfdacc 2124 struct mem_cgroup *iter, *failed = NULL;
a636b327 2125
fb2a6fc5
JW
2126 spin_lock(&memcg_oom_lock);
2127
9f3a0d09 2128 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2129 if (iter->oom_lock) {
79dfdacc
MH
2130 /*
2131 * this subtree of our hierarchy is already locked
2132 * so we cannot give a lock.
2133 */
79dfdacc 2134 failed = iter;
9f3a0d09
JW
2135 mem_cgroup_iter_break(memcg, iter);
2136 break;
23751be0
JW
2137 } else
2138 iter->oom_lock = true;
7d74b06f 2139 }
867578cb 2140
fb2a6fc5
JW
2141 if (failed) {
2142 /*
2143 * OK, we failed to lock the whole subtree so we have
2144 * to clean up what we set up to the failing subtree
2145 */
2146 for_each_mem_cgroup_tree(iter, memcg) {
2147 if (iter == failed) {
2148 mem_cgroup_iter_break(memcg, iter);
2149 break;
2150 }
2151 iter->oom_lock = false;
79dfdacc 2152 }
0056f4e6
JW
2153 } else
2154 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2155
2156 spin_unlock(&memcg_oom_lock);
2157
2158 return !failed;
a636b327 2159}
0b7f569e 2160
fb2a6fc5 2161static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2162{
7d74b06f
KH
2163 struct mem_cgroup *iter;
2164
fb2a6fc5 2165 spin_lock(&memcg_oom_lock);
0056f4e6 2166 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2167 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2168 iter->oom_lock = false;
fb2a6fc5 2169 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2170}
2171
c0ff4b85 2172static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2173{
2174 struct mem_cgroup *iter;
2175
c0ff4b85 2176 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2177 atomic_inc(&iter->under_oom);
2178}
2179
c0ff4b85 2180static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2181{
2182 struct mem_cgroup *iter;
2183
867578cb
KH
2184 /*
2185 * When a new child is created while the hierarchy is under oom,
2186 * mem_cgroup_oom_lock() may not be called. We have to use
2187 * atomic_add_unless() here.
2188 */
c0ff4b85 2189 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2190 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2191}
2192
867578cb
KH
2193static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2194
dc98df5a 2195struct oom_wait_info {
d79154bb 2196 struct mem_cgroup *memcg;
dc98df5a
KH
2197 wait_queue_t wait;
2198};
2199
2200static int memcg_oom_wake_function(wait_queue_t *wait,
2201 unsigned mode, int sync, void *arg)
2202{
d79154bb
HD
2203 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2204 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2205 struct oom_wait_info *oom_wait_info;
2206
2207 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2208 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2209
dc98df5a 2210 /*
d79154bb 2211 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2212 * Then we can use css_is_ancestor without taking care of RCU.
2213 */
c0ff4b85
R
2214 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2215 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2216 return 0;
dc98df5a
KH
2217 return autoremove_wake_function(wait, mode, sync, arg);
2218}
2219
c0ff4b85 2220static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2221{
3812c8c8 2222 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2223 /* for filtering, pass "memcg" as argument. */
2224 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2225}
2226
c0ff4b85 2227static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2228{
c0ff4b85
R
2229 if (memcg && atomic_read(&memcg->under_oom))
2230 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2231}
2232
3812c8c8 2233static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2234{
3812c8c8
JW
2235 if (!current->memcg_oom.may_oom)
2236 return;
867578cb 2237 /*
49426420
JW
2238 * We are in the middle of the charge context here, so we
2239 * don't want to block when potentially sitting on a callstack
2240 * that holds all kinds of filesystem and mm locks.
2241 *
2242 * Also, the caller may handle a failed allocation gracefully
2243 * (like optional page cache readahead) and so an OOM killer
2244 * invocation might not even be necessary.
2245 *
2246 * That's why we don't do anything here except remember the
2247 * OOM context and then deal with it at the end of the page
2248 * fault when the stack is unwound, the locks are released,
2249 * and when we know whether the fault was overall successful.
867578cb 2250 */
49426420
JW
2251 css_get(&memcg->css);
2252 current->memcg_oom.memcg = memcg;
2253 current->memcg_oom.gfp_mask = mask;
2254 current->memcg_oom.order = order;
3812c8c8
JW
2255}
2256
2257/**
2258 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2259 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2260 *
49426420
JW
2261 * This has to be called at the end of a page fault if the memcg OOM
2262 * handler was enabled.
3812c8c8 2263 *
49426420 2264 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2265 * sleep on a waitqueue until the userspace task resolves the
2266 * situation. Sleeping directly in the charge context with all kinds
2267 * of locks held is not a good idea, instead we remember an OOM state
2268 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2269 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2270 *
2271 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2272 * completed, %false otherwise.
3812c8c8 2273 */
49426420 2274bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2275{
49426420 2276 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2277 struct oom_wait_info owait;
49426420 2278 bool locked;
3812c8c8
JW
2279
2280 /* OOM is global, do not handle */
3812c8c8 2281 if (!memcg)
49426420 2282 return false;
3812c8c8 2283
49426420
JW
2284 if (!handle)
2285 goto cleanup;
3812c8c8
JW
2286
2287 owait.memcg = memcg;
2288 owait.wait.flags = 0;
2289 owait.wait.func = memcg_oom_wake_function;
2290 owait.wait.private = current;
2291 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2292
3812c8c8 2293 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2294 mem_cgroup_mark_under_oom(memcg);
2295
2296 locked = mem_cgroup_oom_trylock(memcg);
2297
2298 if (locked)
2299 mem_cgroup_oom_notify(memcg);
2300
2301 if (locked && !memcg->oom_kill_disable) {
2302 mem_cgroup_unmark_under_oom(memcg);
2303 finish_wait(&memcg_oom_waitq, &owait.wait);
2304 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2305 current->memcg_oom.order);
2306 } else {
3812c8c8 2307 schedule();
49426420
JW
2308 mem_cgroup_unmark_under_oom(memcg);
2309 finish_wait(&memcg_oom_waitq, &owait.wait);
2310 }
2311
2312 if (locked) {
fb2a6fc5
JW
2313 mem_cgroup_oom_unlock(memcg);
2314 /*
2315 * There is no guarantee that an OOM-lock contender
2316 * sees the wakeups triggered by the OOM kill
2317 * uncharges. Wake any sleepers explicitely.
2318 */
2319 memcg_oom_recover(memcg);
2320 }
49426420
JW
2321cleanup:
2322 current->memcg_oom.memcg = NULL;
3812c8c8 2323 css_put(&memcg->css);
867578cb 2324 return true;
0b7f569e
KH
2325}
2326
d69b042f
BS
2327/*
2328 * Currently used to update mapped file statistics, but the routine can be
2329 * generalized to update other statistics as well.
32047e2a
KH
2330 *
2331 * Notes: Race condition
2332 *
2333 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2334 * it tends to be costly. But considering some conditions, we doesn't need
2335 * to do so _always_.
2336 *
2337 * Considering "charge", lock_page_cgroup() is not required because all
2338 * file-stat operations happen after a page is attached to radix-tree. There
2339 * are no race with "charge".
2340 *
2341 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2342 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2343 * if there are race with "uncharge". Statistics itself is properly handled
2344 * by flags.
2345 *
2346 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2347 * small, we check mm->moving_account and detect there are possibility of race
2348 * If there is, we take a lock.
d69b042f 2349 */
26174efd 2350
89c06bd5
KH
2351void __mem_cgroup_begin_update_page_stat(struct page *page,
2352 bool *locked, unsigned long *flags)
2353{
2354 struct mem_cgroup *memcg;
2355 struct page_cgroup *pc;
2356
2357 pc = lookup_page_cgroup(page);
2358again:
2359 memcg = pc->mem_cgroup;
2360 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2361 return;
2362 /*
2363 * If this memory cgroup is not under account moving, we don't
da92c47d 2364 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2365 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2366 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2367 */
13fd1dd9 2368 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2369 return;
2370
2371 move_lock_mem_cgroup(memcg, flags);
2372 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2373 move_unlock_mem_cgroup(memcg, flags);
2374 goto again;
2375 }
2376 *locked = true;
2377}
2378
2379void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2380{
2381 struct page_cgroup *pc = lookup_page_cgroup(page);
2382
2383 /*
2384 * It's guaranteed that pc->mem_cgroup never changes while
2385 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2386 * should take move_lock_mem_cgroup().
89c06bd5
KH
2387 */
2388 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2389}
2390
2a7106f2 2391void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2392 enum mem_cgroup_stat_index idx, int val)
d69b042f 2393{
c0ff4b85 2394 struct mem_cgroup *memcg;
32047e2a 2395 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2396 unsigned long uninitialized_var(flags);
d69b042f 2397
cfa44946 2398 if (mem_cgroup_disabled())
d69b042f 2399 return;
89c06bd5 2400
658b72c5 2401 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2402 memcg = pc->mem_cgroup;
2403 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2404 return;
26174efd 2405
c0ff4b85 2406 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2407}
26174efd 2408
cdec2e42
KH
2409/*
2410 * size of first charge trial. "32" comes from vmscan.c's magic value.
2411 * TODO: maybe necessary to use big numbers in big irons.
2412 */
7ec99d62 2413#define CHARGE_BATCH 32U
cdec2e42
KH
2414struct memcg_stock_pcp {
2415 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2416 unsigned int nr_pages;
cdec2e42 2417 struct work_struct work;
26fe6168 2418 unsigned long flags;
a0db00fc 2419#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2420};
2421static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2422static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2423
a0956d54
SS
2424/**
2425 * consume_stock: Try to consume stocked charge on this cpu.
2426 * @memcg: memcg to consume from.
2427 * @nr_pages: how many pages to charge.
2428 *
2429 * The charges will only happen if @memcg matches the current cpu's memcg
2430 * stock, and at least @nr_pages are available in that stock. Failure to
2431 * service an allocation will refill the stock.
2432 *
2433 * returns true if successful, false otherwise.
cdec2e42 2434 */
a0956d54 2435static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2436{
2437 struct memcg_stock_pcp *stock;
2438 bool ret = true;
2439
a0956d54
SS
2440 if (nr_pages > CHARGE_BATCH)
2441 return false;
2442
cdec2e42 2443 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2444 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2445 stock->nr_pages -= nr_pages;
cdec2e42
KH
2446 else /* need to call res_counter_charge */
2447 ret = false;
2448 put_cpu_var(memcg_stock);
2449 return ret;
2450}
2451
2452/*
2453 * Returns stocks cached in percpu to res_counter and reset cached information.
2454 */
2455static void drain_stock(struct memcg_stock_pcp *stock)
2456{
2457 struct mem_cgroup *old = stock->cached;
2458
11c9ea4e
JW
2459 if (stock->nr_pages) {
2460 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2461
2462 res_counter_uncharge(&old->res, bytes);
cdec2e42 2463 if (do_swap_account)
11c9ea4e
JW
2464 res_counter_uncharge(&old->memsw, bytes);
2465 stock->nr_pages = 0;
cdec2e42
KH
2466 }
2467 stock->cached = NULL;
cdec2e42
KH
2468}
2469
2470/*
2471 * This must be called under preempt disabled or must be called by
2472 * a thread which is pinned to local cpu.
2473 */
2474static void drain_local_stock(struct work_struct *dummy)
2475{
2476 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2477 drain_stock(stock);
26fe6168 2478 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2479}
2480
e4777496
MH
2481static void __init memcg_stock_init(void)
2482{
2483 int cpu;
2484
2485 for_each_possible_cpu(cpu) {
2486 struct memcg_stock_pcp *stock =
2487 &per_cpu(memcg_stock, cpu);
2488 INIT_WORK(&stock->work, drain_local_stock);
2489 }
2490}
2491
cdec2e42
KH
2492/*
2493 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2494 * This will be consumed by consume_stock() function, later.
cdec2e42 2495 */
c0ff4b85 2496static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2497{
2498 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2499
c0ff4b85 2500 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2501 drain_stock(stock);
c0ff4b85 2502 stock->cached = memcg;
cdec2e42 2503 }
11c9ea4e 2504 stock->nr_pages += nr_pages;
cdec2e42
KH
2505 put_cpu_var(memcg_stock);
2506}
2507
2508/*
c0ff4b85 2509 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2510 * of the hierarchy under it. sync flag says whether we should block
2511 * until the work is done.
cdec2e42 2512 */
c0ff4b85 2513static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2514{
26fe6168 2515 int cpu, curcpu;
d38144b7 2516
cdec2e42 2517 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2518 get_online_cpus();
5af12d0e 2519 curcpu = get_cpu();
cdec2e42
KH
2520 for_each_online_cpu(cpu) {
2521 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2522 struct mem_cgroup *memcg;
26fe6168 2523
c0ff4b85
R
2524 memcg = stock->cached;
2525 if (!memcg || !stock->nr_pages)
26fe6168 2526 continue;
c0ff4b85 2527 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2528 continue;
d1a05b69
MH
2529 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2530 if (cpu == curcpu)
2531 drain_local_stock(&stock->work);
2532 else
2533 schedule_work_on(cpu, &stock->work);
2534 }
cdec2e42 2535 }
5af12d0e 2536 put_cpu();
d38144b7
MH
2537
2538 if (!sync)
2539 goto out;
2540
2541 for_each_online_cpu(cpu) {
2542 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2543 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2544 flush_work(&stock->work);
2545 }
2546out:
f894ffa8 2547 put_online_cpus();
d38144b7
MH
2548}
2549
2550/*
2551 * Tries to drain stocked charges in other cpus. This function is asynchronous
2552 * and just put a work per cpu for draining localy on each cpu. Caller can
2553 * expects some charges will be back to res_counter later but cannot wait for
2554 * it.
2555 */
c0ff4b85 2556static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2557{
9f50fad6
MH
2558 /*
2559 * If someone calls draining, avoid adding more kworker runs.
2560 */
2561 if (!mutex_trylock(&percpu_charge_mutex))
2562 return;
c0ff4b85 2563 drain_all_stock(root_memcg, false);
9f50fad6 2564 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2565}
2566
2567/* This is a synchronous drain interface. */
c0ff4b85 2568static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2569{
2570 /* called when force_empty is called */
9f50fad6 2571 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2572 drain_all_stock(root_memcg, true);
9f50fad6 2573 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2574}
2575
711d3d2c
KH
2576/*
2577 * This function drains percpu counter value from DEAD cpu and
2578 * move it to local cpu. Note that this function can be preempted.
2579 */
c0ff4b85 2580static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2581{
2582 int i;
2583
c0ff4b85 2584 spin_lock(&memcg->pcp_counter_lock);
6104621d 2585 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2586 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2587
c0ff4b85
R
2588 per_cpu(memcg->stat->count[i], cpu) = 0;
2589 memcg->nocpu_base.count[i] += x;
711d3d2c 2590 }
e9f8974f 2591 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2592 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2593
c0ff4b85
R
2594 per_cpu(memcg->stat->events[i], cpu) = 0;
2595 memcg->nocpu_base.events[i] += x;
e9f8974f 2596 }
c0ff4b85 2597 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2598}
2599
0db0628d 2600static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2601 unsigned long action,
2602 void *hcpu)
2603{
2604 int cpu = (unsigned long)hcpu;
2605 struct memcg_stock_pcp *stock;
711d3d2c 2606 struct mem_cgroup *iter;
cdec2e42 2607
619d094b 2608 if (action == CPU_ONLINE)
1489ebad 2609 return NOTIFY_OK;
1489ebad 2610
d833049b 2611 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2612 return NOTIFY_OK;
711d3d2c 2613
9f3a0d09 2614 for_each_mem_cgroup(iter)
711d3d2c
KH
2615 mem_cgroup_drain_pcp_counter(iter, cpu);
2616
cdec2e42
KH
2617 stock = &per_cpu(memcg_stock, cpu);
2618 drain_stock(stock);
2619 return NOTIFY_OK;
2620}
2621
4b534334
KH
2622
2623/* See __mem_cgroup_try_charge() for details */
2624enum {
2625 CHARGE_OK, /* success */
2626 CHARGE_RETRY, /* need to retry but retry is not bad */
2627 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2628 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2629};
2630
c0ff4b85 2631static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2632 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2633 bool invoke_oom)
4b534334 2634{
7ec99d62 2635 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2636 struct mem_cgroup *mem_over_limit;
2637 struct res_counter *fail_res;
2638 unsigned long flags = 0;
2639 int ret;
2640
c0ff4b85 2641 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2642
2643 if (likely(!ret)) {
2644 if (!do_swap_account)
2645 return CHARGE_OK;
c0ff4b85 2646 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2647 if (likely(!ret))
2648 return CHARGE_OK;
2649
c0ff4b85 2650 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2651 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2652 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2653 } else
2654 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2655 /*
9221edb7
JW
2656 * Never reclaim on behalf of optional batching, retry with a
2657 * single page instead.
2658 */
4c9c5359 2659 if (nr_pages > min_pages)
4b534334
KH
2660 return CHARGE_RETRY;
2661
2662 if (!(gfp_mask & __GFP_WAIT))
2663 return CHARGE_WOULDBLOCK;
2664
4c9c5359
SS
2665 if (gfp_mask & __GFP_NORETRY)
2666 return CHARGE_NOMEM;
2667
5660048c 2668 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2669 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2670 return CHARGE_RETRY;
4b534334 2671 /*
19942822
JW
2672 * Even though the limit is exceeded at this point, reclaim
2673 * may have been able to free some pages. Retry the charge
2674 * before killing the task.
2675 *
2676 * Only for regular pages, though: huge pages are rather
2677 * unlikely to succeed so close to the limit, and we fall back
2678 * to regular pages anyway in case of failure.
4b534334 2679 */
4c9c5359 2680 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2681 return CHARGE_RETRY;
2682
2683 /*
2684 * At task move, charge accounts can be doubly counted. So, it's
2685 * better to wait until the end of task_move if something is going on.
2686 */
2687 if (mem_cgroup_wait_acct_move(mem_over_limit))
2688 return CHARGE_RETRY;
2689
3812c8c8
JW
2690 if (invoke_oom)
2691 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2692
3812c8c8 2693 return CHARGE_NOMEM;
4b534334
KH
2694}
2695
f817ed48 2696/*
38c5d72f
KH
2697 * __mem_cgroup_try_charge() does
2698 * 1. detect memcg to be charged against from passed *mm and *ptr,
2699 * 2. update res_counter
2700 * 3. call memory reclaim if necessary.
2701 *
2702 * In some special case, if the task is fatal, fatal_signal_pending() or
2703 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2704 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2705 * as possible without any hazards. 2: all pages should have a valid
2706 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2707 * pointer, that is treated as a charge to root_mem_cgroup.
2708 *
2709 * So __mem_cgroup_try_charge() will return
2710 * 0 ... on success, filling *ptr with a valid memcg pointer.
2711 * -ENOMEM ... charge failure because of resource limits.
2712 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2713 *
2714 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2715 * the oom-killer can be invoked.
8a9f3ccd 2716 */
f817ed48 2717static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2718 gfp_t gfp_mask,
7ec99d62 2719 unsigned int nr_pages,
c0ff4b85 2720 struct mem_cgroup **ptr,
7ec99d62 2721 bool oom)
8a9f3ccd 2722{
7ec99d62 2723 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2724 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2725 struct mem_cgroup *memcg = NULL;
4b534334 2726 int ret;
a636b327 2727
867578cb
KH
2728 /*
2729 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2730 * in system level. So, allow to go ahead dying process in addition to
2731 * MEMDIE process.
2732 */
2733 if (unlikely(test_thread_flag(TIF_MEMDIE)
2734 || fatal_signal_pending(current)))
2735 goto bypass;
a636b327 2736
49426420
JW
2737 if (unlikely(task_in_memcg_oom(current)))
2738 goto bypass;
2739
8a9f3ccd 2740 /*
3be91277
HD
2741 * We always charge the cgroup the mm_struct belongs to.
2742 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2743 * thread group leader migrates. It's possible that mm is not
24467cac 2744 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2745 */
c0ff4b85 2746 if (!*ptr && !mm)
38c5d72f 2747 *ptr = root_mem_cgroup;
f75ca962 2748again:
c0ff4b85
R
2749 if (*ptr) { /* css should be a valid one */
2750 memcg = *ptr;
c0ff4b85 2751 if (mem_cgroup_is_root(memcg))
f75ca962 2752 goto done;
a0956d54 2753 if (consume_stock(memcg, nr_pages))
f75ca962 2754 goto done;
c0ff4b85 2755 css_get(&memcg->css);
4b534334 2756 } else {
f75ca962 2757 struct task_struct *p;
54595fe2 2758
f75ca962
KH
2759 rcu_read_lock();
2760 p = rcu_dereference(mm->owner);
f75ca962 2761 /*
ebb76ce1 2762 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2763 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2764 * race with swapoff. Then, we have small risk of mis-accouning.
2765 * But such kind of mis-account by race always happens because
2766 * we don't have cgroup_mutex(). It's overkill and we allo that
2767 * small race, here.
2768 * (*) swapoff at el will charge against mm-struct not against
2769 * task-struct. So, mm->owner can be NULL.
f75ca962 2770 */
c0ff4b85 2771 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2772 if (!memcg)
2773 memcg = root_mem_cgroup;
2774 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2775 rcu_read_unlock();
2776 goto done;
2777 }
a0956d54 2778 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2779 /*
2780 * It seems dagerous to access memcg without css_get().
2781 * But considering how consume_stok works, it's not
2782 * necessary. If consume_stock success, some charges
2783 * from this memcg are cached on this cpu. So, we
2784 * don't need to call css_get()/css_tryget() before
2785 * calling consume_stock().
2786 */
2787 rcu_read_unlock();
2788 goto done;
2789 }
2790 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2791 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2792 rcu_read_unlock();
2793 goto again;
2794 }
2795 rcu_read_unlock();
2796 }
8a9f3ccd 2797
4b534334 2798 do {
3812c8c8 2799 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2800
4b534334 2801 /* If killed, bypass charge */
f75ca962 2802 if (fatal_signal_pending(current)) {
c0ff4b85 2803 css_put(&memcg->css);
4b534334 2804 goto bypass;
f75ca962 2805 }
6d61ef40 2806
3812c8c8
JW
2807 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2808 nr_pages, invoke_oom);
4b534334
KH
2809 switch (ret) {
2810 case CHARGE_OK:
2811 break;
2812 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2813 batch = nr_pages;
c0ff4b85
R
2814 css_put(&memcg->css);
2815 memcg = NULL;
f75ca962 2816 goto again;
4b534334 2817 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2818 css_put(&memcg->css);
4b534334
KH
2819 goto nomem;
2820 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2821 if (!oom || invoke_oom) {
c0ff4b85 2822 css_put(&memcg->css);
867578cb 2823 goto nomem;
f75ca962 2824 }
4b534334
KH
2825 nr_oom_retries--;
2826 break;
66e1707b 2827 }
4b534334
KH
2828 } while (ret != CHARGE_OK);
2829
7ec99d62 2830 if (batch > nr_pages)
c0ff4b85
R
2831 refill_stock(memcg, batch - nr_pages);
2832 css_put(&memcg->css);
0c3e73e8 2833done:
c0ff4b85 2834 *ptr = memcg;
7a81b88c
KH
2835 return 0;
2836nomem:
3168ecbe
JW
2837 if (!(gfp_mask & __GFP_NOFAIL)) {
2838 *ptr = NULL;
2839 return -ENOMEM;
2840 }
867578cb 2841bypass:
38c5d72f
KH
2842 *ptr = root_mem_cgroup;
2843 return -EINTR;
7a81b88c 2844}
8a9f3ccd 2845
a3032a2c
DN
2846/*
2847 * Somemtimes we have to undo a charge we got by try_charge().
2848 * This function is for that and do uncharge, put css's refcnt.
2849 * gotten by try_charge().
2850 */
c0ff4b85 2851static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2852 unsigned int nr_pages)
a3032a2c 2853{
c0ff4b85 2854 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2855 unsigned long bytes = nr_pages * PAGE_SIZE;
2856
c0ff4b85 2857 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2858 if (do_swap_account)
c0ff4b85 2859 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2860 }
854ffa8d
DN
2861}
2862
d01dd17f
KH
2863/*
2864 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2865 * This is useful when moving usage to parent cgroup.
2866 */
2867static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2868 unsigned int nr_pages)
2869{
2870 unsigned long bytes = nr_pages * PAGE_SIZE;
2871
2872 if (mem_cgroup_is_root(memcg))
2873 return;
2874
2875 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2876 if (do_swap_account)
2877 res_counter_uncharge_until(&memcg->memsw,
2878 memcg->memsw.parent, bytes);
2879}
2880
a3b2d692
KH
2881/*
2882 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2883 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2884 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2885 * called against removed memcg.)
a3b2d692
KH
2886 */
2887static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2888{
a3b2d692
KH
2889 /* ID 0 is unused ID */
2890 if (!id)
2891 return NULL;
34c00c31 2892 return mem_cgroup_from_id(id);
a3b2d692
KH
2893}
2894
e42d9d5d 2895struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2896{
c0ff4b85 2897 struct mem_cgroup *memcg = NULL;
3c776e64 2898 struct page_cgroup *pc;
a3b2d692 2899 unsigned short id;
b5a84319
KH
2900 swp_entry_t ent;
2901
3c776e64
DN
2902 VM_BUG_ON(!PageLocked(page));
2903
3c776e64 2904 pc = lookup_page_cgroup(page);
c0bd3f63 2905 lock_page_cgroup(pc);
a3b2d692 2906 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2907 memcg = pc->mem_cgroup;
2908 if (memcg && !css_tryget(&memcg->css))
2909 memcg = NULL;
e42d9d5d 2910 } else if (PageSwapCache(page)) {
3c776e64 2911 ent.val = page_private(page);
9fb4b7cc 2912 id = lookup_swap_cgroup_id(ent);
a3b2d692 2913 rcu_read_lock();
c0ff4b85
R
2914 memcg = mem_cgroup_lookup(id);
2915 if (memcg && !css_tryget(&memcg->css))
2916 memcg = NULL;
a3b2d692 2917 rcu_read_unlock();
3c776e64 2918 }
c0bd3f63 2919 unlock_page_cgroup(pc);
c0ff4b85 2920 return memcg;
b5a84319
KH
2921}
2922
c0ff4b85 2923static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2924 struct page *page,
7ec99d62 2925 unsigned int nr_pages,
9ce70c02
HD
2926 enum charge_type ctype,
2927 bool lrucare)
7a81b88c 2928{
ce587e65 2929 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2930 struct zone *uninitialized_var(zone);
fa9add64 2931 struct lruvec *lruvec;
9ce70c02 2932 bool was_on_lru = false;
b2402857 2933 bool anon;
9ce70c02 2934
ca3e0214 2935 lock_page_cgroup(pc);
90deb788 2936 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2937 /*
2938 * we don't need page_cgroup_lock about tail pages, becase they are not
2939 * accessed by any other context at this point.
2940 */
9ce70c02
HD
2941
2942 /*
2943 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2944 * may already be on some other mem_cgroup's LRU. Take care of it.
2945 */
2946 if (lrucare) {
2947 zone = page_zone(page);
2948 spin_lock_irq(&zone->lru_lock);
2949 if (PageLRU(page)) {
fa9add64 2950 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2951 ClearPageLRU(page);
fa9add64 2952 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2953 was_on_lru = true;
2954 }
2955 }
2956
c0ff4b85 2957 pc->mem_cgroup = memcg;
261fb61a
KH
2958 /*
2959 * We access a page_cgroup asynchronously without lock_page_cgroup().
2960 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2961 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2962 * before USED bit, we need memory barrier here.
2963 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2964 */
08e552c6 2965 smp_wmb();
b2402857 2966 SetPageCgroupUsed(pc);
3be91277 2967
9ce70c02
HD
2968 if (lrucare) {
2969 if (was_on_lru) {
fa9add64 2970 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2971 VM_BUG_ON(PageLRU(page));
2972 SetPageLRU(page);
fa9add64 2973 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2974 }
2975 spin_unlock_irq(&zone->lru_lock);
2976 }
2977
41326c17 2978 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2979 anon = true;
2980 else
2981 anon = false;
2982
b070e65c 2983 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2984 unlock_page_cgroup(pc);
9ce70c02 2985
430e4863 2986 /*
bb4cc1a8
AM
2987 * "charge_statistics" updated event counter. Then, check it.
2988 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2989 * if they exceeds softlimit.
430e4863 2990 */
c0ff4b85 2991 memcg_check_events(memcg, page);
7a81b88c 2992}
66e1707b 2993
7cf27982
GC
2994static DEFINE_MUTEX(set_limit_mutex);
2995
7ae1e1d0
GC
2996#ifdef CONFIG_MEMCG_KMEM
2997static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2998{
2999 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
3000 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
3001}
3002
1f458cbf
GC
3003/*
3004 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3005 * in the memcg_cache_params struct.
3006 */
3007static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3008{
3009 struct kmem_cache *cachep;
3010
3011 VM_BUG_ON(p->is_root_cache);
3012 cachep = p->root_cache;
7a67d7ab 3013 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
3014}
3015
749c5415 3016#ifdef CONFIG_SLABINFO
182446d0
TH
3017static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
3018 struct cftype *cft, struct seq_file *m)
749c5415 3019{
182446d0 3020 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
3021 struct memcg_cache_params *params;
3022
3023 if (!memcg_can_account_kmem(memcg))
3024 return -EIO;
3025
3026 print_slabinfo_header(m);
3027
3028 mutex_lock(&memcg->slab_caches_mutex);
3029 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3030 cache_show(memcg_params_to_cache(params), m);
3031 mutex_unlock(&memcg->slab_caches_mutex);
3032
3033 return 0;
3034}
3035#endif
3036
7ae1e1d0
GC
3037static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3038{
3039 struct res_counter *fail_res;
3040 struct mem_cgroup *_memcg;
3041 int ret = 0;
7ae1e1d0
GC
3042
3043 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3044 if (ret)
3045 return ret;
3046
7ae1e1d0
GC
3047 _memcg = memcg;
3048 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
b9921ecd 3049 &_memcg, oom_gfp_allowed(gfp));
7ae1e1d0
GC
3050
3051 if (ret == -EINTR) {
3052 /*
3053 * __mem_cgroup_try_charge() chosed to bypass to root due to
3054 * OOM kill or fatal signal. Since our only options are to
3055 * either fail the allocation or charge it to this cgroup, do
3056 * it as a temporary condition. But we can't fail. From a
3057 * kmem/slab perspective, the cache has already been selected,
3058 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3059 * our minds.
3060 *
3061 * This condition will only trigger if the task entered
3062 * memcg_charge_kmem in a sane state, but was OOM-killed during
3063 * __mem_cgroup_try_charge() above. Tasks that were already
3064 * dying when the allocation triggers should have been already
3065 * directed to the root cgroup in memcontrol.h
3066 */
3067 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3068 if (do_swap_account)
3069 res_counter_charge_nofail(&memcg->memsw, size,
3070 &fail_res);
3071 ret = 0;
3072 } else if (ret)
3073 res_counter_uncharge(&memcg->kmem, size);
3074
3075 return ret;
3076}
3077
3078static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3079{
7ae1e1d0
GC
3080 res_counter_uncharge(&memcg->res, size);
3081 if (do_swap_account)
3082 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3083
3084 /* Not down to 0 */
3085 if (res_counter_uncharge(&memcg->kmem, size))
3086 return;
3087
10d5ebf4
LZ
3088 /*
3089 * Releases a reference taken in kmem_cgroup_css_offline in case
3090 * this last uncharge is racing with the offlining code or it is
3091 * outliving the memcg existence.
3092 *
3093 * The memory barrier imposed by test&clear is paired with the
3094 * explicit one in memcg_kmem_mark_dead().
3095 */
7de37682 3096 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3097 css_put(&memcg->css);
7ae1e1d0
GC
3098}
3099
2633d7a0
GC
3100void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3101{
3102 if (!memcg)
3103 return;
3104
3105 mutex_lock(&memcg->slab_caches_mutex);
3106 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3107 mutex_unlock(&memcg->slab_caches_mutex);
3108}
3109
3110/*
3111 * helper for acessing a memcg's index. It will be used as an index in the
3112 * child cache array in kmem_cache, and also to derive its name. This function
3113 * will return -1 when this is not a kmem-limited memcg.
3114 */
3115int memcg_cache_id(struct mem_cgroup *memcg)
3116{
3117 return memcg ? memcg->kmemcg_id : -1;
3118}
3119
55007d84
GC
3120/*
3121 * This ends up being protected by the set_limit mutex, during normal
3122 * operation, because that is its main call site.
3123 *
3124 * But when we create a new cache, we can call this as well if its parent
3125 * is kmem-limited. That will have to hold set_limit_mutex as well.
3126 */
3127int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3128{
3129 int num, ret;
3130
3131 num = ida_simple_get(&kmem_limited_groups,
3132 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3133 if (num < 0)
3134 return num;
3135 /*
3136 * After this point, kmem_accounted (that we test atomically in
3137 * the beginning of this conditional), is no longer 0. This
3138 * guarantees only one process will set the following boolean
3139 * to true. We don't need test_and_set because we're protected
3140 * by the set_limit_mutex anyway.
3141 */
3142 memcg_kmem_set_activated(memcg);
3143
3144 ret = memcg_update_all_caches(num+1);
3145 if (ret) {
3146 ida_simple_remove(&kmem_limited_groups, num);
3147 memcg_kmem_clear_activated(memcg);
3148 return ret;
3149 }
3150
3151 memcg->kmemcg_id = num;
3152 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3153 mutex_init(&memcg->slab_caches_mutex);
3154 return 0;
3155}
3156
3157static size_t memcg_caches_array_size(int num_groups)
3158{
3159 ssize_t size;
3160 if (num_groups <= 0)
3161 return 0;
3162
3163 size = 2 * num_groups;
3164 if (size < MEMCG_CACHES_MIN_SIZE)
3165 size = MEMCG_CACHES_MIN_SIZE;
3166 else if (size > MEMCG_CACHES_MAX_SIZE)
3167 size = MEMCG_CACHES_MAX_SIZE;
3168
3169 return size;
3170}
3171
3172/*
3173 * We should update the current array size iff all caches updates succeed. This
3174 * can only be done from the slab side. The slab mutex needs to be held when
3175 * calling this.
3176 */
3177void memcg_update_array_size(int num)
3178{
3179 if (num > memcg_limited_groups_array_size)
3180 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3181}
3182
15cf17d2
KK
3183static void kmem_cache_destroy_work_func(struct work_struct *w);
3184
55007d84
GC
3185int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3186{
3187 struct memcg_cache_params *cur_params = s->memcg_params;
3188
f35c3a8e 3189 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3190
3191 if (num_groups > memcg_limited_groups_array_size) {
3192 int i;
3193 ssize_t size = memcg_caches_array_size(num_groups);
3194
3195 size *= sizeof(void *);
90c7a79c 3196 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84
GC
3197
3198 s->memcg_params = kzalloc(size, GFP_KERNEL);
3199 if (!s->memcg_params) {
3200 s->memcg_params = cur_params;
3201 return -ENOMEM;
3202 }
3203
3204 s->memcg_params->is_root_cache = true;
3205
3206 /*
3207 * There is the chance it will be bigger than
3208 * memcg_limited_groups_array_size, if we failed an allocation
3209 * in a cache, in which case all caches updated before it, will
3210 * have a bigger array.
3211 *
3212 * But if that is the case, the data after
3213 * memcg_limited_groups_array_size is certainly unused
3214 */
3215 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3216 if (!cur_params->memcg_caches[i])
3217 continue;
3218 s->memcg_params->memcg_caches[i] =
3219 cur_params->memcg_caches[i];
3220 }
3221
3222 /*
3223 * Ideally, we would wait until all caches succeed, and only
3224 * then free the old one. But this is not worth the extra
3225 * pointer per-cache we'd have to have for this.
3226 *
3227 * It is not a big deal if some caches are left with a size
3228 * bigger than the others. And all updates will reset this
3229 * anyway.
3230 */
3231 kfree(cur_params);
3232 }
3233 return 0;
3234}
3235
943a451a
GC
3236int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3237 struct kmem_cache *root_cache)
2633d7a0 3238{
90c7a79c 3239 size_t size;
2633d7a0
GC
3240
3241 if (!memcg_kmem_enabled())
3242 return 0;
3243
90c7a79c
AV
3244 if (!memcg) {
3245 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3246 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3247 } else
3248 size = sizeof(struct memcg_cache_params);
55007d84 3249
2633d7a0
GC
3250 s->memcg_params = kzalloc(size, GFP_KERNEL);
3251 if (!s->memcg_params)
3252 return -ENOMEM;
3253
943a451a 3254 if (memcg) {
2633d7a0 3255 s->memcg_params->memcg = memcg;
943a451a 3256 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3257 INIT_WORK(&s->memcg_params->destroy,
3258 kmem_cache_destroy_work_func);
4ba902b5
GC
3259 } else
3260 s->memcg_params->is_root_cache = true;
3261
2633d7a0
GC
3262 return 0;
3263}
3264
3265void memcg_release_cache(struct kmem_cache *s)
3266{
d7f25f8a
GC
3267 struct kmem_cache *root;
3268 struct mem_cgroup *memcg;
3269 int id;
3270
3271 /*
3272 * This happens, for instance, when a root cache goes away before we
3273 * add any memcg.
3274 */
3275 if (!s->memcg_params)
3276 return;
3277
3278 if (s->memcg_params->is_root_cache)
3279 goto out;
3280
3281 memcg = s->memcg_params->memcg;
3282 id = memcg_cache_id(memcg);
3283
3284 root = s->memcg_params->root_cache;
3285 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3286
3287 mutex_lock(&memcg->slab_caches_mutex);
3288 list_del(&s->memcg_params->list);
3289 mutex_unlock(&memcg->slab_caches_mutex);
3290
20f05310 3291 css_put(&memcg->css);
d7f25f8a 3292out:
2633d7a0
GC
3293 kfree(s->memcg_params);
3294}
3295
0e9d92f2
GC
3296/*
3297 * During the creation a new cache, we need to disable our accounting mechanism
3298 * altogether. This is true even if we are not creating, but rather just
3299 * enqueing new caches to be created.
3300 *
3301 * This is because that process will trigger allocations; some visible, like
3302 * explicit kmallocs to auxiliary data structures, name strings and internal
3303 * cache structures; some well concealed, like INIT_WORK() that can allocate
3304 * objects during debug.
3305 *
3306 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3307 * to it. This may not be a bounded recursion: since the first cache creation
3308 * failed to complete (waiting on the allocation), we'll just try to create the
3309 * cache again, failing at the same point.
3310 *
3311 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3312 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3313 * inside the following two functions.
3314 */
3315static inline void memcg_stop_kmem_account(void)
3316{
3317 VM_BUG_ON(!current->mm);
3318 current->memcg_kmem_skip_account++;
3319}
3320
3321static inline void memcg_resume_kmem_account(void)
3322{
3323 VM_BUG_ON(!current->mm);
3324 current->memcg_kmem_skip_account--;
3325}
3326
1f458cbf
GC
3327static void kmem_cache_destroy_work_func(struct work_struct *w)
3328{
3329 struct kmem_cache *cachep;
3330 struct memcg_cache_params *p;
3331
3332 p = container_of(w, struct memcg_cache_params, destroy);
3333
3334 cachep = memcg_params_to_cache(p);
3335
22933152
GC
3336 /*
3337 * If we get down to 0 after shrink, we could delete right away.
3338 * However, memcg_release_pages() already puts us back in the workqueue
3339 * in that case. If we proceed deleting, we'll get a dangling
3340 * reference, and removing the object from the workqueue in that case
3341 * is unnecessary complication. We are not a fast path.
3342 *
3343 * Note that this case is fundamentally different from racing with
3344 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3345 * kmem_cache_shrink, not only we would be reinserting a dead cache
3346 * into the queue, but doing so from inside the worker racing to
3347 * destroy it.
3348 *
3349 * So if we aren't down to zero, we'll just schedule a worker and try
3350 * again
3351 */
3352 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3353 kmem_cache_shrink(cachep);
3354 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3355 return;
3356 } else
1f458cbf
GC
3357 kmem_cache_destroy(cachep);
3358}
3359
3360void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3361{
3362 if (!cachep->memcg_params->dead)
3363 return;
3364
22933152
GC
3365 /*
3366 * There are many ways in which we can get here.
3367 *
3368 * We can get to a memory-pressure situation while the delayed work is
3369 * still pending to run. The vmscan shrinkers can then release all
3370 * cache memory and get us to destruction. If this is the case, we'll
3371 * be executed twice, which is a bug (the second time will execute over
3372 * bogus data). In this case, cancelling the work should be fine.
3373 *
3374 * But we can also get here from the worker itself, if
3375 * kmem_cache_shrink is enough to shake all the remaining objects and
3376 * get the page count to 0. In this case, we'll deadlock if we try to
3377 * cancel the work (the worker runs with an internal lock held, which
3378 * is the same lock we would hold for cancel_work_sync().)
3379 *
3380 * Since we can't possibly know who got us here, just refrain from
3381 * running if there is already work pending
3382 */
3383 if (work_pending(&cachep->memcg_params->destroy))
3384 return;
1f458cbf
GC
3385 /*
3386 * We have to defer the actual destroying to a workqueue, because
3387 * we might currently be in a context that cannot sleep.
3388 */
3389 schedule_work(&cachep->memcg_params->destroy);
3390}
3391
d9c10ddd
MH
3392/*
3393 * This lock protects updaters, not readers. We want readers to be as fast as
3394 * they can, and they will either see NULL or a valid cache value. Our model
3395 * allow them to see NULL, in which case the root memcg will be selected.
3396 *
3397 * We need this lock because multiple allocations to the same cache from a non
3398 * will span more than one worker. Only one of them can create the cache.
3399 */
3400static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3401
d9c10ddd
MH
3402/*
3403 * Called with memcg_cache_mutex held
3404 */
d7f25f8a
GC
3405static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3406 struct kmem_cache *s)
3407{
d7f25f8a 3408 struct kmem_cache *new;
d9c10ddd 3409 static char *tmp_name = NULL;
d7f25f8a 3410
d9c10ddd
MH
3411 lockdep_assert_held(&memcg_cache_mutex);
3412
3413 /*
3414 * kmem_cache_create_memcg duplicates the given name and
3415 * cgroup_name for this name requires RCU context.
3416 * This static temporary buffer is used to prevent from
3417 * pointless shortliving allocation.
3418 */
3419 if (!tmp_name) {
3420 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3421 if (!tmp_name)
3422 return NULL;
3423 }
3424
3425 rcu_read_lock();
3426 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3427 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3428 rcu_read_unlock();
d7f25f8a 3429
d9c10ddd 3430 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3431 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3432
d79923fa
GC
3433 if (new)
3434 new->allocflags |= __GFP_KMEMCG;
3435
d7f25f8a
GC
3436 return new;
3437}
3438
d7f25f8a
GC
3439static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3440 struct kmem_cache *cachep)
3441{
3442 struct kmem_cache *new_cachep;
3443 int idx;
3444
3445 BUG_ON(!memcg_can_account_kmem(memcg));
3446
3447 idx = memcg_cache_id(memcg);
3448
3449 mutex_lock(&memcg_cache_mutex);
7a67d7ab 3450 new_cachep = cache_from_memcg_idx(cachep, idx);
20f05310
LZ
3451 if (new_cachep) {
3452 css_put(&memcg->css);
d7f25f8a 3453 goto out;
20f05310 3454 }
d7f25f8a
GC
3455
3456 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3457 if (new_cachep == NULL) {
3458 new_cachep = cachep;
20f05310 3459 css_put(&memcg->css);
d7f25f8a
GC
3460 goto out;
3461 }
3462
1f458cbf 3463 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3464
3465 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3466 /*
3467 * the readers won't lock, make sure everybody sees the updated value,
3468 * so they won't put stuff in the queue again for no reason
3469 */
3470 wmb();
3471out:
3472 mutex_unlock(&memcg_cache_mutex);
3473 return new_cachep;
3474}
3475
7cf27982
GC
3476void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3477{
3478 struct kmem_cache *c;
3479 int i;
3480
3481 if (!s->memcg_params)
3482 return;
3483 if (!s->memcg_params->is_root_cache)
3484 return;
3485
3486 /*
3487 * If the cache is being destroyed, we trust that there is no one else
3488 * requesting objects from it. Even if there are, the sanity checks in
3489 * kmem_cache_destroy should caught this ill-case.
3490 *
3491 * Still, we don't want anyone else freeing memcg_caches under our
3492 * noses, which can happen if a new memcg comes to life. As usual,
3493 * we'll take the set_limit_mutex to protect ourselves against this.
3494 */
3495 mutex_lock(&set_limit_mutex);
7a67d7ab
QH
3496 for_each_memcg_cache_index(i) {
3497 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3498 if (!c)
3499 continue;
3500
3501 /*
3502 * We will now manually delete the caches, so to avoid races
3503 * we need to cancel all pending destruction workers and
3504 * proceed with destruction ourselves.
3505 *
3506 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3507 * and that could spawn the workers again: it is likely that
3508 * the cache still have active pages until this very moment.
3509 * This would lead us back to mem_cgroup_destroy_cache.
3510 *
3511 * But that will not execute at all if the "dead" flag is not
3512 * set, so flip it down to guarantee we are in control.
3513 */
3514 c->memcg_params->dead = false;
22933152 3515 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3516 kmem_cache_destroy(c);
3517 }
3518 mutex_unlock(&set_limit_mutex);
3519}
3520
d7f25f8a
GC
3521struct create_work {
3522 struct mem_cgroup *memcg;
3523 struct kmem_cache *cachep;
3524 struct work_struct work;
3525};
3526
1f458cbf
GC
3527static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3528{
3529 struct kmem_cache *cachep;
3530 struct memcg_cache_params *params;
3531
3532 if (!memcg_kmem_is_active(memcg))
3533 return;
3534
3535 mutex_lock(&memcg->slab_caches_mutex);
3536 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3537 cachep = memcg_params_to_cache(params);
3538 cachep->memcg_params->dead = true;
1f458cbf
GC
3539 schedule_work(&cachep->memcg_params->destroy);
3540 }
3541 mutex_unlock(&memcg->slab_caches_mutex);
3542}
3543
d7f25f8a
GC
3544static void memcg_create_cache_work_func(struct work_struct *w)
3545{
3546 struct create_work *cw;
3547
3548 cw = container_of(w, struct create_work, work);
3549 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3550 kfree(cw);
3551}
3552
3553/*
3554 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3555 */
0e9d92f2
GC
3556static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3557 struct kmem_cache *cachep)
d7f25f8a
GC
3558{
3559 struct create_work *cw;
3560
3561 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3562 if (cw == NULL) {
3563 css_put(&memcg->css);
d7f25f8a
GC
3564 return;
3565 }
3566
3567 cw->memcg = memcg;
3568 cw->cachep = cachep;
3569
3570 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3571 schedule_work(&cw->work);
3572}
3573
0e9d92f2
GC
3574static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3575 struct kmem_cache *cachep)
3576{
3577 /*
3578 * We need to stop accounting when we kmalloc, because if the
3579 * corresponding kmalloc cache is not yet created, the first allocation
3580 * in __memcg_create_cache_enqueue will recurse.
3581 *
3582 * However, it is better to enclose the whole function. Depending on
3583 * the debugging options enabled, INIT_WORK(), for instance, can
3584 * trigger an allocation. This too, will make us recurse. Because at
3585 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3586 * the safest choice is to do it like this, wrapping the whole function.
3587 */
3588 memcg_stop_kmem_account();
3589 __memcg_create_cache_enqueue(memcg, cachep);
3590 memcg_resume_kmem_account();
3591}
d7f25f8a
GC
3592/*
3593 * Return the kmem_cache we're supposed to use for a slab allocation.
3594 * We try to use the current memcg's version of the cache.
3595 *
3596 * If the cache does not exist yet, if we are the first user of it,
3597 * we either create it immediately, if possible, or create it asynchronously
3598 * in a workqueue.
3599 * In the latter case, we will let the current allocation go through with
3600 * the original cache.
3601 *
3602 * Can't be called in interrupt context or from kernel threads.
3603 * This function needs to be called with rcu_read_lock() held.
3604 */
3605struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3606 gfp_t gfp)
3607{
3608 struct mem_cgroup *memcg;
3609 int idx;
3610
3611 VM_BUG_ON(!cachep->memcg_params);
3612 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3613
0e9d92f2
GC
3614 if (!current->mm || current->memcg_kmem_skip_account)
3615 return cachep;
3616
d7f25f8a
GC
3617 rcu_read_lock();
3618 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3619
3620 if (!memcg_can_account_kmem(memcg))
ca0dde97 3621 goto out;
d7f25f8a
GC
3622
3623 idx = memcg_cache_id(memcg);
3624
3625 /*
3626 * barrier to mare sure we're always seeing the up to date value. The
3627 * code updating memcg_caches will issue a write barrier to match this.
3628 */
3629 read_barrier_depends();
7a67d7ab
QH
3630 if (likely(cache_from_memcg_idx(cachep, idx))) {
3631 cachep = cache_from_memcg_idx(cachep, idx);
ca0dde97 3632 goto out;
d7f25f8a
GC
3633 }
3634
ca0dde97
LZ
3635 /* The corresponding put will be done in the workqueue. */
3636 if (!css_tryget(&memcg->css))
3637 goto out;
3638 rcu_read_unlock();
3639
3640 /*
3641 * If we are in a safe context (can wait, and not in interrupt
3642 * context), we could be be predictable and return right away.
3643 * This would guarantee that the allocation being performed
3644 * already belongs in the new cache.
3645 *
3646 * However, there are some clashes that can arrive from locking.
3647 * For instance, because we acquire the slab_mutex while doing
3648 * kmem_cache_dup, this means no further allocation could happen
3649 * with the slab_mutex held.
3650 *
3651 * Also, because cache creation issue get_online_cpus(), this
3652 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3653 * that ends up reversed during cpu hotplug. (cpuset allocates
3654 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3655 * better to defer everything.
3656 */
3657 memcg_create_cache_enqueue(memcg, cachep);
3658 return cachep;
3659out:
3660 rcu_read_unlock();
3661 return cachep;
d7f25f8a
GC
3662}
3663EXPORT_SYMBOL(__memcg_kmem_get_cache);
3664
7ae1e1d0
GC
3665/*
3666 * We need to verify if the allocation against current->mm->owner's memcg is
3667 * possible for the given order. But the page is not allocated yet, so we'll
3668 * need a further commit step to do the final arrangements.
3669 *
3670 * It is possible for the task to switch cgroups in this mean time, so at
3671 * commit time, we can't rely on task conversion any longer. We'll then use
3672 * the handle argument to return to the caller which cgroup we should commit
3673 * against. We could also return the memcg directly and avoid the pointer
3674 * passing, but a boolean return value gives better semantics considering
3675 * the compiled-out case as well.
3676 *
3677 * Returning true means the allocation is possible.
3678 */
3679bool
3680__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3681{
3682 struct mem_cgroup *memcg;
3683 int ret;
3684
3685 *_memcg = NULL;
6d42c232
GC
3686
3687 /*
3688 * Disabling accounting is only relevant for some specific memcg
3689 * internal allocations. Therefore we would initially not have such
3690 * check here, since direct calls to the page allocator that are marked
3691 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3692 * concerned with cache allocations, and by having this test at
3693 * memcg_kmem_get_cache, we are already able to relay the allocation to
3694 * the root cache and bypass the memcg cache altogether.
3695 *
3696 * There is one exception, though: the SLUB allocator does not create
3697 * large order caches, but rather service large kmallocs directly from
3698 * the page allocator. Therefore, the following sequence when backed by
3699 * the SLUB allocator:
3700 *
f894ffa8
AM
3701 * memcg_stop_kmem_account();
3702 * kmalloc(<large_number>)
3703 * memcg_resume_kmem_account();
6d42c232
GC
3704 *
3705 * would effectively ignore the fact that we should skip accounting,
3706 * since it will drive us directly to this function without passing
3707 * through the cache selector memcg_kmem_get_cache. Such large
3708 * allocations are extremely rare but can happen, for instance, for the
3709 * cache arrays. We bring this test here.
3710 */
3711 if (!current->mm || current->memcg_kmem_skip_account)
3712 return true;
3713
7ae1e1d0
GC
3714 memcg = try_get_mem_cgroup_from_mm(current->mm);
3715
3716 /*
3717 * very rare case described in mem_cgroup_from_task. Unfortunately there
3718 * isn't much we can do without complicating this too much, and it would
3719 * be gfp-dependent anyway. Just let it go
3720 */
3721 if (unlikely(!memcg))
3722 return true;
3723
3724 if (!memcg_can_account_kmem(memcg)) {
3725 css_put(&memcg->css);
3726 return true;
3727 }
3728
7ae1e1d0
GC
3729 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3730 if (!ret)
3731 *_memcg = memcg;
7ae1e1d0
GC
3732
3733 css_put(&memcg->css);
3734 return (ret == 0);
3735}
3736
3737void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3738 int order)
3739{
3740 struct page_cgroup *pc;
3741
3742 VM_BUG_ON(mem_cgroup_is_root(memcg));
3743
3744 /* The page allocation failed. Revert */
3745 if (!page) {
3746 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3747 return;
3748 }
3749
3750 pc = lookup_page_cgroup(page);
3751 lock_page_cgroup(pc);
3752 pc->mem_cgroup = memcg;
3753 SetPageCgroupUsed(pc);
3754 unlock_page_cgroup(pc);
3755}
3756
3757void __memcg_kmem_uncharge_pages(struct page *page, int order)
3758{
3759 struct mem_cgroup *memcg = NULL;
3760 struct page_cgroup *pc;
3761
3762
3763 pc = lookup_page_cgroup(page);
3764 /*
3765 * Fast unlocked return. Theoretically might have changed, have to
3766 * check again after locking.
3767 */
3768 if (!PageCgroupUsed(pc))
3769 return;
3770
3771 lock_page_cgroup(pc);
3772 if (PageCgroupUsed(pc)) {
3773 memcg = pc->mem_cgroup;
3774 ClearPageCgroupUsed(pc);
3775 }
3776 unlock_page_cgroup(pc);
3777
3778 /*
3779 * We trust that only if there is a memcg associated with the page, it
3780 * is a valid allocation
3781 */
3782 if (!memcg)
3783 return;
3784
3785 VM_BUG_ON(mem_cgroup_is_root(memcg));
3786 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3787}
1f458cbf
GC
3788#else
3789static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3790{
3791}
7ae1e1d0
GC
3792#endif /* CONFIG_MEMCG_KMEM */
3793
ca3e0214
KH
3794#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3795
a0db00fc 3796#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3797/*
3798 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3799 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3800 * charge/uncharge will be never happen and move_account() is done under
3801 * compound_lock(), so we don't have to take care of races.
ca3e0214 3802 */
e94c8a9c 3803void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3804{
3805 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3806 struct page_cgroup *pc;
b070e65c 3807 struct mem_cgroup *memcg;
e94c8a9c 3808 int i;
ca3e0214 3809
3d37c4a9
KH
3810 if (mem_cgroup_disabled())
3811 return;
b070e65c
DR
3812
3813 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3814 for (i = 1; i < HPAGE_PMD_NR; i++) {
3815 pc = head_pc + i;
b070e65c 3816 pc->mem_cgroup = memcg;
e94c8a9c 3817 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3818 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3819 }
b070e65c
DR
3820 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3821 HPAGE_PMD_NR);
ca3e0214 3822}
12d27107 3823#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3824
3ea67d06
SZ
3825static inline
3826void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3827 struct mem_cgroup *to,
3828 unsigned int nr_pages,
3829 enum mem_cgroup_stat_index idx)
3830{
3831 /* Update stat data for mem_cgroup */
3832 preempt_disable();
5e8cfc3c 3833 __this_cpu_sub(from->stat->count[idx], nr_pages);
3ea67d06
SZ
3834 __this_cpu_add(to->stat->count[idx], nr_pages);
3835 preempt_enable();
3836}
3837
f817ed48 3838/**
de3638d9 3839 * mem_cgroup_move_account - move account of the page
5564e88b 3840 * @page: the page
7ec99d62 3841 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3842 * @pc: page_cgroup of the page.
3843 * @from: mem_cgroup which the page is moved from.
3844 * @to: mem_cgroup which the page is moved to. @from != @to.
3845 *
3846 * The caller must confirm following.
08e552c6 3847 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3848 * - compound_lock is held when nr_pages > 1
f817ed48 3849 *
2f3479b1
KH
3850 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3851 * from old cgroup.
f817ed48 3852 */
7ec99d62
JW
3853static int mem_cgroup_move_account(struct page *page,
3854 unsigned int nr_pages,
3855 struct page_cgroup *pc,
3856 struct mem_cgroup *from,
2f3479b1 3857 struct mem_cgroup *to)
f817ed48 3858{
de3638d9
JW
3859 unsigned long flags;
3860 int ret;
b2402857 3861 bool anon = PageAnon(page);
987eba66 3862
f817ed48 3863 VM_BUG_ON(from == to);
5564e88b 3864 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3865 /*
3866 * The page is isolated from LRU. So, collapse function
3867 * will not handle this page. But page splitting can happen.
3868 * Do this check under compound_page_lock(). The caller should
3869 * hold it.
3870 */
3871 ret = -EBUSY;
7ec99d62 3872 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3873 goto out;
3874
3875 lock_page_cgroup(pc);
3876
3877 ret = -EINVAL;
3878 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3879 goto unlock;
3880
312734c0 3881 move_lock_mem_cgroup(from, &flags);
f817ed48 3882
3ea67d06
SZ
3883 if (!anon && page_mapped(page))
3884 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3885 MEM_CGROUP_STAT_FILE_MAPPED);
3886
3887 if (PageWriteback(page))
3888 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3889 MEM_CGROUP_STAT_WRITEBACK);
3890
b070e65c 3891 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3892
854ffa8d 3893 /* caller should have done css_get */
08e552c6 3894 pc->mem_cgroup = to;
b070e65c 3895 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3896 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3897 ret = 0;
3898unlock:
57f9fd7d 3899 unlock_page_cgroup(pc);
d2265e6f
KH
3900 /*
3901 * check events
3902 */
5564e88b
JW
3903 memcg_check_events(to, page);
3904 memcg_check_events(from, page);
de3638d9 3905out:
f817ed48
KH
3906 return ret;
3907}
3908
2ef37d3f
MH
3909/**
3910 * mem_cgroup_move_parent - moves page to the parent group
3911 * @page: the page to move
3912 * @pc: page_cgroup of the page
3913 * @child: page's cgroup
3914 *
3915 * move charges to its parent or the root cgroup if the group has no
3916 * parent (aka use_hierarchy==0).
3917 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3918 * mem_cgroup_move_account fails) the failure is always temporary and
3919 * it signals a race with a page removal/uncharge or migration. In the
3920 * first case the page is on the way out and it will vanish from the LRU
3921 * on the next attempt and the call should be retried later.
3922 * Isolation from the LRU fails only if page has been isolated from
3923 * the LRU since we looked at it and that usually means either global
3924 * reclaim or migration going on. The page will either get back to the
3925 * LRU or vanish.
3926 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3927 * (!PageCgroupUsed) or moved to a different group. The page will
3928 * disappear in the next attempt.
f817ed48 3929 */
5564e88b
JW
3930static int mem_cgroup_move_parent(struct page *page,
3931 struct page_cgroup *pc,
6068bf01 3932 struct mem_cgroup *child)
f817ed48 3933{
f817ed48 3934 struct mem_cgroup *parent;
7ec99d62 3935 unsigned int nr_pages;
4be4489f 3936 unsigned long uninitialized_var(flags);
f817ed48
KH
3937 int ret;
3938
d8423011 3939 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3940
57f9fd7d
DN
3941 ret = -EBUSY;
3942 if (!get_page_unless_zero(page))
3943 goto out;
3944 if (isolate_lru_page(page))
3945 goto put;
52dbb905 3946
7ec99d62 3947 nr_pages = hpage_nr_pages(page);
08e552c6 3948
cc926f78
KH
3949 parent = parent_mem_cgroup(child);
3950 /*
3951 * If no parent, move charges to root cgroup.
3952 */
3953 if (!parent)
3954 parent = root_mem_cgroup;
f817ed48 3955
2ef37d3f
MH
3956 if (nr_pages > 1) {
3957 VM_BUG_ON(!PageTransHuge(page));
987eba66 3958 flags = compound_lock_irqsave(page);
2ef37d3f 3959 }
987eba66 3960
cc926f78 3961 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3962 pc, child, parent);
cc926f78
KH
3963 if (!ret)
3964 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3965
7ec99d62 3966 if (nr_pages > 1)
987eba66 3967 compound_unlock_irqrestore(page, flags);
08e552c6 3968 putback_lru_page(page);
57f9fd7d 3969put:
40d58138 3970 put_page(page);
57f9fd7d 3971out:
f817ed48
KH
3972 return ret;
3973}
3974
7a81b88c
KH
3975/*
3976 * Charge the memory controller for page usage.
3977 * Return
3978 * 0 if the charge was successful
3979 * < 0 if the cgroup is over its limit
3980 */
3981static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3982 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3983{
c0ff4b85 3984 struct mem_cgroup *memcg = NULL;
7ec99d62 3985 unsigned int nr_pages = 1;
8493ae43 3986 bool oom = true;
7a81b88c 3987 int ret;
ec168510 3988
37c2ac78 3989 if (PageTransHuge(page)) {
7ec99d62 3990 nr_pages <<= compound_order(page);
37c2ac78 3991 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3992 /*
3993 * Never OOM-kill a process for a huge page. The
3994 * fault handler will fall back to regular pages.
3995 */
3996 oom = false;
37c2ac78 3997 }
7a81b88c 3998
c0ff4b85 3999 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 4000 if (ret == -ENOMEM)
7a81b88c 4001 return ret;
ce587e65 4002 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 4003 return 0;
8a9f3ccd
BS
4004}
4005
7a81b88c
KH
4006int mem_cgroup_newpage_charge(struct page *page,
4007 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 4008{
f8d66542 4009 if (mem_cgroup_disabled())
cede86ac 4010 return 0;
7a0524cf
JW
4011 VM_BUG_ON(page_mapped(page));
4012 VM_BUG_ON(page->mapping && !PageAnon(page));
4013 VM_BUG_ON(!mm);
217bc319 4014 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 4015 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
4016}
4017
54595fe2
KH
4018/*
4019 * While swap-in, try_charge -> commit or cancel, the page is locked.
4020 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 4021 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
4022 * "commit()" or removed by "cancel()"
4023 */
0435a2fd
JW
4024static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4025 struct page *page,
4026 gfp_t mask,
4027 struct mem_cgroup **memcgp)
8c7c6e34 4028{
c0ff4b85 4029 struct mem_cgroup *memcg;
90deb788 4030 struct page_cgroup *pc;
54595fe2 4031 int ret;
8c7c6e34 4032
90deb788
JW
4033 pc = lookup_page_cgroup(page);
4034 /*
4035 * Every swap fault against a single page tries to charge the
4036 * page, bail as early as possible. shmem_unuse() encounters
4037 * already charged pages, too. The USED bit is protected by
4038 * the page lock, which serializes swap cache removal, which
4039 * in turn serializes uncharging.
4040 */
4041 if (PageCgroupUsed(pc))
4042 return 0;
8c7c6e34
KH
4043 if (!do_swap_account)
4044 goto charge_cur_mm;
c0ff4b85
R
4045 memcg = try_get_mem_cgroup_from_page(page);
4046 if (!memcg)
54595fe2 4047 goto charge_cur_mm;
72835c86
JW
4048 *memcgp = memcg;
4049 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 4050 css_put(&memcg->css);
38c5d72f
KH
4051 if (ret == -EINTR)
4052 ret = 0;
54595fe2 4053 return ret;
8c7c6e34 4054charge_cur_mm:
38c5d72f
KH
4055 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4056 if (ret == -EINTR)
4057 ret = 0;
4058 return ret;
8c7c6e34
KH
4059}
4060
0435a2fd
JW
4061int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4062 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4063{
4064 *memcgp = NULL;
4065 if (mem_cgroup_disabled())
4066 return 0;
bdf4f4d2
JW
4067 /*
4068 * A racing thread's fault, or swapoff, may have already
4069 * updated the pte, and even removed page from swap cache: in
4070 * those cases unuse_pte()'s pte_same() test will fail; but
4071 * there's also a KSM case which does need to charge the page.
4072 */
4073 if (!PageSwapCache(page)) {
4074 int ret;
4075
4076 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4077 if (ret == -EINTR)
4078 ret = 0;
4079 return ret;
4080 }
0435a2fd
JW
4081 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4082}
4083
827a03d2
JW
4084void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4085{
4086 if (mem_cgroup_disabled())
4087 return;
4088 if (!memcg)
4089 return;
4090 __mem_cgroup_cancel_charge(memcg, 1);
4091}
4092
83aae4c7 4093static void
72835c86 4094__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4095 enum charge_type ctype)
7a81b88c 4096{
f8d66542 4097 if (mem_cgroup_disabled())
7a81b88c 4098 return;
72835c86 4099 if (!memcg)
7a81b88c 4100 return;
5a6475a4 4101
ce587e65 4102 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4103 /*
4104 * Now swap is on-memory. This means this page may be
4105 * counted both as mem and swap....double count.
03f3c433
KH
4106 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4107 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4108 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4109 */
03f3c433 4110 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4111 swp_entry_t ent = {.val = page_private(page)};
86493009 4112 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4113 }
7a81b88c
KH
4114}
4115
72835c86
JW
4116void mem_cgroup_commit_charge_swapin(struct page *page,
4117 struct mem_cgroup *memcg)
83aae4c7 4118{
72835c86 4119 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4120 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4121}
4122
827a03d2
JW
4123int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4124 gfp_t gfp_mask)
7a81b88c 4125{
827a03d2
JW
4126 struct mem_cgroup *memcg = NULL;
4127 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4128 int ret;
4129
f8d66542 4130 if (mem_cgroup_disabled())
827a03d2
JW
4131 return 0;
4132 if (PageCompound(page))
4133 return 0;
4134
827a03d2
JW
4135 if (!PageSwapCache(page))
4136 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4137 else { /* page is swapcache/shmem */
0435a2fd
JW
4138 ret = __mem_cgroup_try_charge_swapin(mm, page,
4139 gfp_mask, &memcg);
827a03d2
JW
4140 if (!ret)
4141 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4142 }
4143 return ret;
7a81b88c
KH
4144}
4145
c0ff4b85 4146static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4147 unsigned int nr_pages,
4148 const enum charge_type ctype)
569b846d
KH
4149{
4150 struct memcg_batch_info *batch = NULL;
4151 bool uncharge_memsw = true;
7ec99d62 4152
569b846d
KH
4153 /* If swapout, usage of swap doesn't decrease */
4154 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4155 uncharge_memsw = false;
569b846d
KH
4156
4157 batch = &current->memcg_batch;
4158 /*
4159 * In usual, we do css_get() when we remember memcg pointer.
4160 * But in this case, we keep res->usage until end of a series of
4161 * uncharges. Then, it's ok to ignore memcg's refcnt.
4162 */
4163 if (!batch->memcg)
c0ff4b85 4164 batch->memcg = memcg;
3c11ecf4
KH
4165 /*
4166 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4167 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4168 * the same cgroup and we have chance to coalesce uncharges.
4169 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4170 * because we want to do uncharge as soon as possible.
4171 */
4172
4173 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4174 goto direct_uncharge;
4175
7ec99d62 4176 if (nr_pages > 1)
ec168510
AA
4177 goto direct_uncharge;
4178
569b846d
KH
4179 /*
4180 * In typical case, batch->memcg == mem. This means we can
4181 * merge a series of uncharges to an uncharge of res_counter.
4182 * If not, we uncharge res_counter ony by one.
4183 */
c0ff4b85 4184 if (batch->memcg != memcg)
569b846d
KH
4185 goto direct_uncharge;
4186 /* remember freed charge and uncharge it later */
7ffd4ca7 4187 batch->nr_pages++;
569b846d 4188 if (uncharge_memsw)
7ffd4ca7 4189 batch->memsw_nr_pages++;
569b846d
KH
4190 return;
4191direct_uncharge:
c0ff4b85 4192 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4193 if (uncharge_memsw)
c0ff4b85
R
4194 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4195 if (unlikely(batch->memcg != memcg))
4196 memcg_oom_recover(memcg);
569b846d 4197}
7a81b88c 4198
8a9f3ccd 4199/*
69029cd5 4200 * uncharge if !page_mapped(page)
8a9f3ccd 4201 */
8c7c6e34 4202static struct mem_cgroup *
0030f535
JW
4203__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4204 bool end_migration)
8a9f3ccd 4205{
c0ff4b85 4206 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4207 unsigned int nr_pages = 1;
4208 struct page_cgroup *pc;
b2402857 4209 bool anon;
8a9f3ccd 4210
f8d66542 4211 if (mem_cgroup_disabled())
8c7c6e34 4212 return NULL;
4077960e 4213
37c2ac78 4214 if (PageTransHuge(page)) {
7ec99d62 4215 nr_pages <<= compound_order(page);
37c2ac78
AA
4216 VM_BUG_ON(!PageTransHuge(page));
4217 }
8697d331 4218 /*
3c541e14 4219 * Check if our page_cgroup is valid
8697d331 4220 */
52d4b9ac 4221 pc = lookup_page_cgroup(page);
cfa44946 4222 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4223 return NULL;
b9c565d5 4224
52d4b9ac 4225 lock_page_cgroup(pc);
d13d1443 4226
c0ff4b85 4227 memcg = pc->mem_cgroup;
8c7c6e34 4228
d13d1443
KH
4229 if (!PageCgroupUsed(pc))
4230 goto unlock_out;
4231
b2402857
KH
4232 anon = PageAnon(page);
4233
d13d1443 4234 switch (ctype) {
41326c17 4235 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4236 /*
4237 * Generally PageAnon tells if it's the anon statistics to be
4238 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4239 * used before page reached the stage of being marked PageAnon.
4240 */
b2402857
KH
4241 anon = true;
4242 /* fallthrough */
8a9478ca 4243 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4244 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4245 if (page_mapped(page))
4246 goto unlock_out;
4247 /*
4248 * Pages under migration may not be uncharged. But
4249 * end_migration() /must/ be the one uncharging the
4250 * unused post-migration page and so it has to call
4251 * here with the migration bit still set. See the
4252 * res_counter handling below.
4253 */
4254 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4255 goto unlock_out;
4256 break;
4257 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4258 if (!PageAnon(page)) { /* Shared memory */
4259 if (page->mapping && !page_is_file_cache(page))
4260 goto unlock_out;
4261 } else if (page_mapped(page)) /* Anon */
4262 goto unlock_out;
4263 break;
4264 default:
4265 break;
52d4b9ac 4266 }
d13d1443 4267
b070e65c 4268 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4269
52d4b9ac 4270 ClearPageCgroupUsed(pc);
544122e5
KH
4271 /*
4272 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4273 * freed from LRU. This is safe because uncharged page is expected not
4274 * to be reused (freed soon). Exception is SwapCache, it's handled by
4275 * special functions.
4276 */
b9c565d5 4277
52d4b9ac 4278 unlock_page_cgroup(pc);
f75ca962 4279 /*
c0ff4b85 4280 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4281 * will never be freed, so it's safe to call css_get().
f75ca962 4282 */
c0ff4b85 4283 memcg_check_events(memcg, page);
f75ca962 4284 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4285 mem_cgroup_swap_statistics(memcg, true);
4050377b 4286 css_get(&memcg->css);
f75ca962 4287 }
0030f535
JW
4288 /*
4289 * Migration does not charge the res_counter for the
4290 * replacement page, so leave it alone when phasing out the
4291 * page that is unused after the migration.
4292 */
4293 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4294 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4295
c0ff4b85 4296 return memcg;
d13d1443
KH
4297
4298unlock_out:
4299 unlock_page_cgroup(pc);
8c7c6e34 4300 return NULL;
3c541e14
BS
4301}
4302
69029cd5
KH
4303void mem_cgroup_uncharge_page(struct page *page)
4304{
52d4b9ac
KH
4305 /* early check. */
4306 if (page_mapped(page))
4307 return;
40f23a21 4308 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4309 /*
4310 * If the page is in swap cache, uncharge should be deferred
4311 * to the swap path, which also properly accounts swap usage
4312 * and handles memcg lifetime.
4313 *
4314 * Note that this check is not stable and reclaim may add the
4315 * page to swap cache at any time after this. However, if the
4316 * page is not in swap cache by the time page->mapcount hits
4317 * 0, there won't be any page table references to the swap
4318 * slot, and reclaim will free it and not actually write the
4319 * page to disk.
4320 */
0c59b89c
JW
4321 if (PageSwapCache(page))
4322 return;
0030f535 4323 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4324}
4325
4326void mem_cgroup_uncharge_cache_page(struct page *page)
4327{
4328 VM_BUG_ON(page_mapped(page));
b7abea96 4329 VM_BUG_ON(page->mapping);
0030f535 4330 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4331}
4332
569b846d
KH
4333/*
4334 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4335 * In that cases, pages are freed continuously and we can expect pages
4336 * are in the same memcg. All these calls itself limits the number of
4337 * pages freed at once, then uncharge_start/end() is called properly.
4338 * This may be called prural(2) times in a context,
4339 */
4340
4341void mem_cgroup_uncharge_start(void)
4342{
4343 current->memcg_batch.do_batch++;
4344 /* We can do nest. */
4345 if (current->memcg_batch.do_batch == 1) {
4346 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4347 current->memcg_batch.nr_pages = 0;
4348 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4349 }
4350}
4351
4352void mem_cgroup_uncharge_end(void)
4353{
4354 struct memcg_batch_info *batch = &current->memcg_batch;
4355
4356 if (!batch->do_batch)
4357 return;
4358
4359 batch->do_batch--;
4360 if (batch->do_batch) /* If stacked, do nothing. */
4361 return;
4362
4363 if (!batch->memcg)
4364 return;
4365 /*
4366 * This "batch->memcg" is valid without any css_get/put etc...
4367 * bacause we hide charges behind us.
4368 */
7ffd4ca7
JW
4369 if (batch->nr_pages)
4370 res_counter_uncharge(&batch->memcg->res,
4371 batch->nr_pages * PAGE_SIZE);
4372 if (batch->memsw_nr_pages)
4373 res_counter_uncharge(&batch->memcg->memsw,
4374 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4375 memcg_oom_recover(batch->memcg);
569b846d
KH
4376 /* forget this pointer (for sanity check) */
4377 batch->memcg = NULL;
4378}
4379
e767e056 4380#ifdef CONFIG_SWAP
8c7c6e34 4381/*
e767e056 4382 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4383 * memcg information is recorded to swap_cgroup of "ent"
4384 */
8a9478ca
KH
4385void
4386mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4387{
4388 struct mem_cgroup *memcg;
8a9478ca
KH
4389 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4390
4391 if (!swapout) /* this was a swap cache but the swap is unused ! */
4392 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4393
0030f535 4394 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4395
f75ca962
KH
4396 /*
4397 * record memcg information, if swapout && memcg != NULL,
4050377b 4398 * css_get() was called in uncharge().
f75ca962
KH
4399 */
4400 if (do_swap_account && swapout && memcg)
34c00c31 4401 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4402}
e767e056 4403#endif
8c7c6e34 4404
c255a458 4405#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4406/*
4407 * called from swap_entry_free(). remove record in swap_cgroup and
4408 * uncharge "memsw" account.
4409 */
4410void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4411{
8c7c6e34 4412 struct mem_cgroup *memcg;
a3b2d692 4413 unsigned short id;
8c7c6e34
KH
4414
4415 if (!do_swap_account)
4416 return;
4417
a3b2d692
KH
4418 id = swap_cgroup_record(ent, 0);
4419 rcu_read_lock();
4420 memcg = mem_cgroup_lookup(id);
8c7c6e34 4421 if (memcg) {
a3b2d692
KH
4422 /*
4423 * We uncharge this because swap is freed.
4424 * This memcg can be obsolete one. We avoid calling css_tryget
4425 */
0c3e73e8 4426 if (!mem_cgroup_is_root(memcg))
4e649152 4427 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4428 mem_cgroup_swap_statistics(memcg, false);
4050377b 4429 css_put(&memcg->css);
8c7c6e34 4430 }
a3b2d692 4431 rcu_read_unlock();
d13d1443 4432}
02491447
DN
4433
4434/**
4435 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4436 * @entry: swap entry to be moved
4437 * @from: mem_cgroup which the entry is moved from
4438 * @to: mem_cgroup which the entry is moved to
4439 *
4440 * It succeeds only when the swap_cgroup's record for this entry is the same
4441 * as the mem_cgroup's id of @from.
4442 *
4443 * Returns 0 on success, -EINVAL on failure.
4444 *
4445 * The caller must have charged to @to, IOW, called res_counter_charge() about
4446 * both res and memsw, and called css_get().
4447 */
4448static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4449 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4450{
4451 unsigned short old_id, new_id;
4452
34c00c31
LZ
4453 old_id = mem_cgroup_id(from);
4454 new_id = mem_cgroup_id(to);
02491447
DN
4455
4456 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4457 mem_cgroup_swap_statistics(from, false);
483c30b5 4458 mem_cgroup_swap_statistics(to, true);
02491447 4459 /*
483c30b5
DN
4460 * This function is only called from task migration context now.
4461 * It postpones res_counter and refcount handling till the end
4462 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4463 * improvement. But we cannot postpone css_get(to) because if
4464 * the process that has been moved to @to does swap-in, the
4465 * refcount of @to might be decreased to 0.
4466 *
4467 * We are in attach() phase, so the cgroup is guaranteed to be
4468 * alive, so we can just call css_get().
02491447 4469 */
4050377b 4470 css_get(&to->css);
02491447
DN
4471 return 0;
4472 }
4473 return -EINVAL;
4474}
4475#else
4476static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4477 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4478{
4479 return -EINVAL;
4480}
8c7c6e34 4481#endif
d13d1443 4482
ae41be37 4483/*
01b1ae63
KH
4484 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4485 * page belongs to.
ae41be37 4486 */
0030f535
JW
4487void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4488 struct mem_cgroup **memcgp)
ae41be37 4489{
c0ff4b85 4490 struct mem_cgroup *memcg = NULL;
b32967ff 4491 unsigned int nr_pages = 1;
7ec99d62 4492 struct page_cgroup *pc;
ac39cf8c 4493 enum charge_type ctype;
8869b8f6 4494
72835c86 4495 *memcgp = NULL;
56039efa 4496
f8d66542 4497 if (mem_cgroup_disabled())
0030f535 4498 return;
4077960e 4499
b32967ff
MG
4500 if (PageTransHuge(page))
4501 nr_pages <<= compound_order(page);
4502
52d4b9ac
KH
4503 pc = lookup_page_cgroup(page);
4504 lock_page_cgroup(pc);
4505 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4506 memcg = pc->mem_cgroup;
4507 css_get(&memcg->css);
ac39cf8c 4508 /*
4509 * At migrating an anonymous page, its mapcount goes down
4510 * to 0 and uncharge() will be called. But, even if it's fully
4511 * unmapped, migration may fail and this page has to be
4512 * charged again. We set MIGRATION flag here and delay uncharge
4513 * until end_migration() is called
4514 *
4515 * Corner Case Thinking
4516 * A)
4517 * When the old page was mapped as Anon and it's unmap-and-freed
4518 * while migration was ongoing.
4519 * If unmap finds the old page, uncharge() of it will be delayed
4520 * until end_migration(). If unmap finds a new page, it's
4521 * uncharged when it make mapcount to be 1->0. If unmap code
4522 * finds swap_migration_entry, the new page will not be mapped
4523 * and end_migration() will find it(mapcount==0).
4524 *
4525 * B)
4526 * When the old page was mapped but migraion fails, the kernel
4527 * remaps it. A charge for it is kept by MIGRATION flag even
4528 * if mapcount goes down to 0. We can do remap successfully
4529 * without charging it again.
4530 *
4531 * C)
4532 * The "old" page is under lock_page() until the end of
4533 * migration, so, the old page itself will not be swapped-out.
4534 * If the new page is swapped out before end_migraton, our
4535 * hook to usual swap-out path will catch the event.
4536 */
4537 if (PageAnon(page))
4538 SetPageCgroupMigration(pc);
e8589cc1 4539 }
52d4b9ac 4540 unlock_page_cgroup(pc);
ac39cf8c 4541 /*
4542 * If the page is not charged at this point,
4543 * we return here.
4544 */
c0ff4b85 4545 if (!memcg)
0030f535 4546 return;
01b1ae63 4547
72835c86 4548 *memcgp = memcg;
ac39cf8c 4549 /*
4550 * We charge new page before it's used/mapped. So, even if unlock_page()
4551 * is called before end_migration, we can catch all events on this new
4552 * page. In the case new page is migrated but not remapped, new page's
4553 * mapcount will be finally 0 and we call uncharge in end_migration().
4554 */
ac39cf8c 4555 if (PageAnon(page))
41326c17 4556 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4557 else
62ba7442 4558 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4559 /*
4560 * The page is committed to the memcg, but it's not actually
4561 * charged to the res_counter since we plan on replacing the
4562 * old one and only one page is going to be left afterwards.
4563 */
b32967ff 4564 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4565}
8869b8f6 4566
69029cd5 4567/* remove redundant charge if migration failed*/
c0ff4b85 4568void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4569 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4570{
ac39cf8c 4571 struct page *used, *unused;
01b1ae63 4572 struct page_cgroup *pc;
b2402857 4573 bool anon;
01b1ae63 4574
c0ff4b85 4575 if (!memcg)
01b1ae63 4576 return;
b25ed609 4577
50de1dd9 4578 if (!migration_ok) {
ac39cf8c 4579 used = oldpage;
4580 unused = newpage;
01b1ae63 4581 } else {
ac39cf8c 4582 used = newpage;
01b1ae63
KH
4583 unused = oldpage;
4584 }
0030f535 4585 anon = PageAnon(used);
7d188958
JW
4586 __mem_cgroup_uncharge_common(unused,
4587 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4588 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4589 true);
0030f535 4590 css_put(&memcg->css);
69029cd5 4591 /*
ac39cf8c 4592 * We disallowed uncharge of pages under migration because mapcount
4593 * of the page goes down to zero, temporarly.
4594 * Clear the flag and check the page should be charged.
01b1ae63 4595 */
ac39cf8c 4596 pc = lookup_page_cgroup(oldpage);
4597 lock_page_cgroup(pc);
4598 ClearPageCgroupMigration(pc);
4599 unlock_page_cgroup(pc);
ac39cf8c 4600
01b1ae63 4601 /*
ac39cf8c 4602 * If a page is a file cache, radix-tree replacement is very atomic
4603 * and we can skip this check. When it was an Anon page, its mapcount
4604 * goes down to 0. But because we added MIGRATION flage, it's not
4605 * uncharged yet. There are several case but page->mapcount check
4606 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4607 * check. (see prepare_charge() also)
69029cd5 4608 */
b2402857 4609 if (anon)
ac39cf8c 4610 mem_cgroup_uncharge_page(used);
ae41be37 4611}
78fb7466 4612
ab936cbc
KH
4613/*
4614 * At replace page cache, newpage is not under any memcg but it's on
4615 * LRU. So, this function doesn't touch res_counter but handles LRU
4616 * in correct way. Both pages are locked so we cannot race with uncharge.
4617 */
4618void mem_cgroup_replace_page_cache(struct page *oldpage,
4619 struct page *newpage)
4620{
bde05d1c 4621 struct mem_cgroup *memcg = NULL;
ab936cbc 4622 struct page_cgroup *pc;
ab936cbc 4623 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4624
4625 if (mem_cgroup_disabled())
4626 return;
4627
4628 pc = lookup_page_cgroup(oldpage);
4629 /* fix accounting on old pages */
4630 lock_page_cgroup(pc);
bde05d1c
HD
4631 if (PageCgroupUsed(pc)) {
4632 memcg = pc->mem_cgroup;
b070e65c 4633 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4634 ClearPageCgroupUsed(pc);
4635 }
ab936cbc
KH
4636 unlock_page_cgroup(pc);
4637
bde05d1c
HD
4638 /*
4639 * When called from shmem_replace_page(), in some cases the
4640 * oldpage has already been charged, and in some cases not.
4641 */
4642 if (!memcg)
4643 return;
ab936cbc
KH
4644 /*
4645 * Even if newpage->mapping was NULL before starting replacement,
4646 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4647 * LRU while we overwrite pc->mem_cgroup.
4648 */
ce587e65 4649 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4650}
4651
f212ad7c
DN
4652#ifdef CONFIG_DEBUG_VM
4653static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4654{
4655 struct page_cgroup *pc;
4656
4657 pc = lookup_page_cgroup(page);
cfa44946
JW
4658 /*
4659 * Can be NULL while feeding pages into the page allocator for
4660 * the first time, i.e. during boot or memory hotplug;
4661 * or when mem_cgroup_disabled().
4662 */
f212ad7c
DN
4663 if (likely(pc) && PageCgroupUsed(pc))
4664 return pc;
4665 return NULL;
4666}
4667
4668bool mem_cgroup_bad_page_check(struct page *page)
4669{
4670 if (mem_cgroup_disabled())
4671 return false;
4672
4673 return lookup_page_cgroup_used(page) != NULL;
4674}
4675
4676void mem_cgroup_print_bad_page(struct page *page)
4677{
4678 struct page_cgroup *pc;
4679
4680 pc = lookup_page_cgroup_used(page);
4681 if (pc) {
d045197f
AM
4682 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4683 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4684 }
4685}
4686#endif
4687
d38d2a75 4688static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4689 unsigned long long val)
628f4235 4690{
81d39c20 4691 int retry_count;
3c11ecf4 4692 u64 memswlimit, memlimit;
628f4235 4693 int ret = 0;
81d39c20
KH
4694 int children = mem_cgroup_count_children(memcg);
4695 u64 curusage, oldusage;
3c11ecf4 4696 int enlarge;
81d39c20
KH
4697
4698 /*
4699 * For keeping hierarchical_reclaim simple, how long we should retry
4700 * is depends on callers. We set our retry-count to be function
4701 * of # of children which we should visit in this loop.
4702 */
4703 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4704
4705 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4706
3c11ecf4 4707 enlarge = 0;
8c7c6e34 4708 while (retry_count) {
628f4235
KH
4709 if (signal_pending(current)) {
4710 ret = -EINTR;
4711 break;
4712 }
8c7c6e34
KH
4713 /*
4714 * Rather than hide all in some function, I do this in
4715 * open coded manner. You see what this really does.
aaad153e 4716 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4717 */
4718 mutex_lock(&set_limit_mutex);
4719 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4720 if (memswlimit < val) {
4721 ret = -EINVAL;
4722 mutex_unlock(&set_limit_mutex);
628f4235
KH
4723 break;
4724 }
3c11ecf4
KH
4725
4726 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4727 if (memlimit < val)
4728 enlarge = 1;
4729
8c7c6e34 4730 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4731 if (!ret) {
4732 if (memswlimit == val)
4733 memcg->memsw_is_minimum = true;
4734 else
4735 memcg->memsw_is_minimum = false;
4736 }
8c7c6e34
KH
4737 mutex_unlock(&set_limit_mutex);
4738
4739 if (!ret)
4740 break;
4741
5660048c
JW
4742 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4743 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4744 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4745 /* Usage is reduced ? */
f894ffa8 4746 if (curusage >= oldusage)
81d39c20
KH
4747 retry_count--;
4748 else
4749 oldusage = curusage;
8c7c6e34 4750 }
3c11ecf4
KH
4751 if (!ret && enlarge)
4752 memcg_oom_recover(memcg);
14797e23 4753
8c7c6e34
KH
4754 return ret;
4755}
4756
338c8431
LZ
4757static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4758 unsigned long long val)
8c7c6e34 4759{
81d39c20 4760 int retry_count;
3c11ecf4 4761 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4762 int children = mem_cgroup_count_children(memcg);
4763 int ret = -EBUSY;
3c11ecf4 4764 int enlarge = 0;
8c7c6e34 4765
81d39c20 4766 /* see mem_cgroup_resize_res_limit */
f894ffa8 4767 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4768 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4769 while (retry_count) {
4770 if (signal_pending(current)) {
4771 ret = -EINTR;
4772 break;
4773 }
4774 /*
4775 * Rather than hide all in some function, I do this in
4776 * open coded manner. You see what this really does.
aaad153e 4777 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4778 */
4779 mutex_lock(&set_limit_mutex);
4780 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4781 if (memlimit > val) {
4782 ret = -EINVAL;
4783 mutex_unlock(&set_limit_mutex);
4784 break;
4785 }
3c11ecf4
KH
4786 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4787 if (memswlimit < val)
4788 enlarge = 1;
8c7c6e34 4789 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4790 if (!ret) {
4791 if (memlimit == val)
4792 memcg->memsw_is_minimum = true;
4793 else
4794 memcg->memsw_is_minimum = false;
4795 }
8c7c6e34
KH
4796 mutex_unlock(&set_limit_mutex);
4797
4798 if (!ret)
4799 break;
4800
5660048c
JW
4801 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4802 MEM_CGROUP_RECLAIM_NOSWAP |
4803 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4804 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4805 /* Usage is reduced ? */
8c7c6e34 4806 if (curusage >= oldusage)
628f4235 4807 retry_count--;
81d39c20
KH
4808 else
4809 oldusage = curusage;
628f4235 4810 }
3c11ecf4
KH
4811 if (!ret && enlarge)
4812 memcg_oom_recover(memcg);
628f4235
KH
4813 return ret;
4814}
4815
0608f43d
AM
4816unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4817 gfp_t gfp_mask,
4818 unsigned long *total_scanned)
4819{
4820 unsigned long nr_reclaimed = 0;
4821 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4822 unsigned long reclaimed;
4823 int loop = 0;
4824 struct mem_cgroup_tree_per_zone *mctz;
4825 unsigned long long excess;
4826 unsigned long nr_scanned;
4827
4828 if (order > 0)
4829 return 0;
4830
4831 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4832 /*
4833 * This loop can run a while, specially if mem_cgroup's continuously
4834 * keep exceeding their soft limit and putting the system under
4835 * pressure
4836 */
4837 do {
4838 if (next_mz)
4839 mz = next_mz;
4840 else
4841 mz = mem_cgroup_largest_soft_limit_node(mctz);
4842 if (!mz)
4843 break;
4844
4845 nr_scanned = 0;
4846 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4847 gfp_mask, &nr_scanned);
4848 nr_reclaimed += reclaimed;
4849 *total_scanned += nr_scanned;
4850 spin_lock(&mctz->lock);
4851
4852 /*
4853 * If we failed to reclaim anything from this memory cgroup
4854 * it is time to move on to the next cgroup
4855 */
4856 next_mz = NULL;
4857 if (!reclaimed) {
4858 do {
4859 /*
4860 * Loop until we find yet another one.
4861 *
4862 * By the time we get the soft_limit lock
4863 * again, someone might have aded the
4864 * group back on the RB tree. Iterate to
4865 * make sure we get a different mem.
4866 * mem_cgroup_largest_soft_limit_node returns
4867 * NULL if no other cgroup is present on
4868 * the tree
4869 */
4870 next_mz =
4871 __mem_cgroup_largest_soft_limit_node(mctz);
4872 if (next_mz == mz)
4873 css_put(&next_mz->memcg->css);
4874 else /* next_mz == NULL or other memcg */
4875 break;
4876 } while (1);
4877 }
4878 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4879 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4880 /*
4881 * One school of thought says that we should not add
4882 * back the node to the tree if reclaim returns 0.
4883 * But our reclaim could return 0, simply because due
4884 * to priority we are exposing a smaller subset of
4885 * memory to reclaim from. Consider this as a longer
4886 * term TODO.
4887 */
4888 /* If excess == 0, no tree ops */
4889 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4890 spin_unlock(&mctz->lock);
4891 css_put(&mz->memcg->css);
4892 loop++;
4893 /*
4894 * Could not reclaim anything and there are no more
4895 * mem cgroups to try or we seem to be looping without
4896 * reclaiming anything.
4897 */
4898 if (!nr_reclaimed &&
4899 (next_mz == NULL ||
4900 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4901 break;
4902 } while (!nr_reclaimed);
4903 if (next_mz)
4904 css_put(&next_mz->memcg->css);
4905 return nr_reclaimed;
4906}
4907
2ef37d3f
MH
4908/**
4909 * mem_cgroup_force_empty_list - clears LRU of a group
4910 * @memcg: group to clear
4911 * @node: NUMA node
4912 * @zid: zone id
4913 * @lru: lru to to clear
4914 *
3c935d18 4915 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4916 * reclaim the pages page themselves - pages are moved to the parent (or root)
4917 * group.
cc847582 4918 */
2ef37d3f 4919static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4920 int node, int zid, enum lru_list lru)
cc847582 4921{
bea8c150 4922 struct lruvec *lruvec;
2ef37d3f 4923 unsigned long flags;
072c56c1 4924 struct list_head *list;
925b7673
JW
4925 struct page *busy;
4926 struct zone *zone;
072c56c1 4927
08e552c6 4928 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4929 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4930 list = &lruvec->lists[lru];
cc847582 4931
f817ed48 4932 busy = NULL;
2ef37d3f 4933 do {
925b7673 4934 struct page_cgroup *pc;
5564e88b
JW
4935 struct page *page;
4936
08e552c6 4937 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4938 if (list_empty(list)) {
08e552c6 4939 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4940 break;
f817ed48 4941 }
925b7673
JW
4942 page = list_entry(list->prev, struct page, lru);
4943 if (busy == page) {
4944 list_move(&page->lru, list);
648bcc77 4945 busy = NULL;
08e552c6 4946 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4947 continue;
4948 }
08e552c6 4949 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4950
925b7673 4951 pc = lookup_page_cgroup(page);
5564e88b 4952
3c935d18 4953 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4954 /* found lock contention or "pc" is obsolete. */
925b7673 4955 busy = page;
f817ed48
KH
4956 cond_resched();
4957 } else
4958 busy = NULL;
2ef37d3f 4959 } while (!list_empty(list));
cc847582
KH
4960}
4961
4962/*
c26251f9
MH
4963 * make mem_cgroup's charge to be 0 if there is no task by moving
4964 * all the charges and pages to the parent.
cc847582 4965 * This enables deleting this mem_cgroup.
c26251f9
MH
4966 *
4967 * Caller is responsible for holding css reference on the memcg.
cc847582 4968 */
ab5196c2 4969static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4970{
c26251f9 4971 int node, zid;
bea207c8 4972 u64 usage;
f817ed48 4973
fce66477 4974 do {
52d4b9ac
KH
4975 /* This is for making all *used* pages to be on LRU. */
4976 lru_add_drain_all();
c0ff4b85 4977 drain_all_stock_sync(memcg);
c0ff4b85 4978 mem_cgroup_start_move(memcg);
31aaea4a 4979 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4980 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4981 enum lru_list lru;
4982 for_each_lru(lru) {
2ef37d3f 4983 mem_cgroup_force_empty_list(memcg,
f156ab93 4984 node, zid, lru);
f817ed48 4985 }
1ecaab2b 4986 }
f817ed48 4987 }
c0ff4b85
R
4988 mem_cgroup_end_move(memcg);
4989 memcg_oom_recover(memcg);
52d4b9ac 4990 cond_resched();
f817ed48 4991
2ef37d3f 4992 /*
bea207c8
GC
4993 * Kernel memory may not necessarily be trackable to a specific
4994 * process. So they are not migrated, and therefore we can't
4995 * expect their value to drop to 0 here.
4996 * Having res filled up with kmem only is enough.
4997 *
2ef37d3f
MH
4998 * This is a safety check because mem_cgroup_force_empty_list
4999 * could have raced with mem_cgroup_replace_page_cache callers
5000 * so the lru seemed empty but the page could have been added
5001 * right after the check. RES_USAGE should be safe as we always
5002 * charge before adding to the LRU.
5003 */
bea207c8
GC
5004 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
5005 res_counter_read_u64(&memcg->kmem, RES_USAGE);
5006 } while (usage > 0);
c26251f9
MH
5007}
5008
b5f99b53
GC
5009static inline bool memcg_has_children(struct mem_cgroup *memcg)
5010{
696ac172
JW
5011 lockdep_assert_held(&memcg_create_mutex);
5012 /*
5013 * The lock does not prevent addition or deletion to the list
5014 * of children, but it prevents a new child from being
5015 * initialized based on this parent in css_online(), so it's
5016 * enough to decide whether hierarchically inherited
5017 * attributes can still be changed or not.
5018 */
5019 return memcg->use_hierarchy &&
5020 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
5021}
5022
c26251f9
MH
5023/*
5024 * Reclaims as many pages from the given memcg as possible and moves
5025 * the rest to the parent.
5026 *
5027 * Caller is responsible for holding css reference for memcg.
5028 */
5029static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5030{
5031 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5032 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 5033
c1e862c1 5034 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
5035 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5036 return -EBUSY;
5037
c1e862c1
KH
5038 /* we call try-to-free pages for make this cgroup empty */
5039 lru_add_drain_all();
f817ed48 5040 /* try to free all pages in this cgroup */
569530fb 5041 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 5042 int progress;
c1e862c1 5043
c26251f9
MH
5044 if (signal_pending(current))
5045 return -EINTR;
5046
c0ff4b85 5047 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 5048 false);
c1e862c1 5049 if (!progress) {
f817ed48 5050 nr_retries--;
c1e862c1 5051 /* maybe some writeback is necessary */
8aa7e847 5052 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 5053 }
f817ed48
KH
5054
5055 }
08e552c6 5056 lru_add_drain();
ab5196c2
MH
5057 mem_cgroup_reparent_charges(memcg);
5058
5059 return 0;
cc847582
KH
5060}
5061
182446d0
TH
5062static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5063 unsigned int event)
c1e862c1 5064{
182446d0 5065 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 5066
d8423011
MH
5067 if (mem_cgroup_is_root(memcg))
5068 return -EINVAL;
c33bd835 5069 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
5070}
5071
182446d0
TH
5072static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5073 struct cftype *cft)
18f59ea7 5074{
182446d0 5075 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5076}
5077
182446d0
TH
5078static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5079 struct cftype *cft, u64 val)
18f59ea7
BS
5080{
5081 int retval = 0;
182446d0 5082 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5083 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5084
0999821b 5085 mutex_lock(&memcg_create_mutex);
567fb435
GC
5086
5087 if (memcg->use_hierarchy == val)
5088 goto out;
5089
18f59ea7 5090 /*
af901ca1 5091 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5092 * in the child subtrees. If it is unset, then the change can
5093 * occur, provided the current cgroup has no children.
5094 *
5095 * For the root cgroup, parent_mem is NULL, we allow value to be
5096 * set if there are no children.
5097 */
c0ff4b85 5098 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5099 (val == 1 || val == 0)) {
696ac172 5100 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 5101 memcg->use_hierarchy = val;
18f59ea7
BS
5102 else
5103 retval = -EBUSY;
5104 } else
5105 retval = -EINVAL;
567fb435
GC
5106
5107out:
0999821b 5108 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5109
5110 return retval;
5111}
5112
0c3e73e8 5113
c0ff4b85 5114static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5115 enum mem_cgroup_stat_index idx)
0c3e73e8 5116{
7d74b06f 5117 struct mem_cgroup *iter;
7a159cc9 5118 long val = 0;
0c3e73e8 5119
7a159cc9 5120 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5121 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5122 val += mem_cgroup_read_stat(iter, idx);
5123
5124 if (val < 0) /* race ? */
5125 val = 0;
5126 return val;
0c3e73e8
BS
5127}
5128
c0ff4b85 5129static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5130{
7d74b06f 5131 u64 val;
104f3928 5132
c0ff4b85 5133 if (!mem_cgroup_is_root(memcg)) {
104f3928 5134 if (!swap)
65c64ce8 5135 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5136 else
65c64ce8 5137 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5138 }
5139
b070e65c
DR
5140 /*
5141 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5142 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5143 */
c0ff4b85
R
5144 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5145 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5146
7d74b06f 5147 if (swap)
bff6bb83 5148 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5149
5150 return val << PAGE_SHIFT;
5151}
5152
182446d0
TH
5153static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5154 struct cftype *cft, struct file *file,
5155 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 5156{
182446d0 5157 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 5158 char str[64];
104f3928 5159 u64 val;
86ae53e1
GC
5160 int name, len;
5161 enum res_type type;
8c7c6e34
KH
5162
5163 type = MEMFILE_TYPE(cft->private);
5164 name = MEMFILE_ATTR(cft->private);
af36f906 5165
8c7c6e34
KH
5166 switch (type) {
5167 case _MEM:
104f3928 5168 if (name == RES_USAGE)
c0ff4b85 5169 val = mem_cgroup_usage(memcg, false);
104f3928 5170 else
c0ff4b85 5171 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5172 break;
5173 case _MEMSWAP:
104f3928 5174 if (name == RES_USAGE)
c0ff4b85 5175 val = mem_cgroup_usage(memcg, true);
104f3928 5176 else
c0ff4b85 5177 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5178 break;
510fc4e1
GC
5179 case _KMEM:
5180 val = res_counter_read_u64(&memcg->kmem, name);
5181 break;
8c7c6e34
KH
5182 default:
5183 BUG();
8c7c6e34 5184 }
af36f906
TH
5185
5186 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5187 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5188}
510fc4e1 5189
182446d0 5190static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5191{
5192 int ret = -EINVAL;
5193#ifdef CONFIG_MEMCG_KMEM
182446d0 5194 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5195 /*
5196 * For simplicity, we won't allow this to be disabled. It also can't
5197 * be changed if the cgroup has children already, or if tasks had
5198 * already joined.
5199 *
5200 * If tasks join before we set the limit, a person looking at
5201 * kmem.usage_in_bytes will have no way to determine when it took
5202 * place, which makes the value quite meaningless.
5203 *
5204 * After it first became limited, changes in the value of the limit are
5205 * of course permitted.
510fc4e1 5206 */
0999821b 5207 mutex_lock(&memcg_create_mutex);
510fc4e1 5208 mutex_lock(&set_limit_mutex);
6de5a8bf 5209 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 5210 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5211 ret = -EBUSY;
5212 goto out;
5213 }
5214 ret = res_counter_set_limit(&memcg->kmem, val);
5215 VM_BUG_ON(ret);
5216
55007d84
GC
5217 ret = memcg_update_cache_sizes(memcg);
5218 if (ret) {
6de5a8bf 5219 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
5220 goto out;
5221 }
692e89ab
GC
5222 static_key_slow_inc(&memcg_kmem_enabled_key);
5223 /*
5224 * setting the active bit after the inc will guarantee no one
5225 * starts accounting before all call sites are patched
5226 */
5227 memcg_kmem_set_active(memcg);
510fc4e1
GC
5228 } else
5229 ret = res_counter_set_limit(&memcg->kmem, val);
5230out:
5231 mutex_unlock(&set_limit_mutex);
0999821b 5232 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5233#endif
5234 return ret;
5235}
5236
6d043990 5237#ifdef CONFIG_MEMCG_KMEM
55007d84 5238static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5239{
55007d84 5240 int ret = 0;
510fc4e1
GC
5241 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5242 if (!parent)
55007d84
GC
5243 goto out;
5244
510fc4e1 5245 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5246 /*
5247 * When that happen, we need to disable the static branch only on those
5248 * memcgs that enabled it. To achieve this, we would be forced to
5249 * complicate the code by keeping track of which memcgs were the ones
5250 * that actually enabled limits, and which ones got it from its
5251 * parents.
5252 *
5253 * It is a lot simpler just to do static_key_slow_inc() on every child
5254 * that is accounted.
5255 */
55007d84
GC
5256 if (!memcg_kmem_is_active(memcg))
5257 goto out;
5258
5259 /*
10d5ebf4
LZ
5260 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5261 * memcg is active already. If the later initialization fails then the
5262 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5263 */
55007d84
GC
5264 static_key_slow_inc(&memcg_kmem_enabled_key);
5265
5266 mutex_lock(&set_limit_mutex);
425c598d 5267 memcg_stop_kmem_account();
55007d84 5268 ret = memcg_update_cache_sizes(memcg);
425c598d 5269 memcg_resume_kmem_account();
55007d84 5270 mutex_unlock(&set_limit_mutex);
55007d84
GC
5271out:
5272 return ret;
510fc4e1 5273}
6d043990 5274#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5275
628f4235
KH
5276/*
5277 * The user of this function is...
5278 * RES_LIMIT.
5279 */
182446d0 5280static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5281 const char *buffer)
8cdea7c0 5282{
182446d0 5283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5284 enum res_type type;
5285 int name;
628f4235
KH
5286 unsigned long long val;
5287 int ret;
5288
8c7c6e34
KH
5289 type = MEMFILE_TYPE(cft->private);
5290 name = MEMFILE_ATTR(cft->private);
af36f906 5291
8c7c6e34 5292 switch (name) {
628f4235 5293 case RES_LIMIT:
4b3bde4c
BS
5294 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5295 ret = -EINVAL;
5296 break;
5297 }
628f4235
KH
5298 /* This function does all necessary parse...reuse it */
5299 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5300 if (ret)
5301 break;
5302 if (type == _MEM)
628f4235 5303 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5304 else if (type == _MEMSWAP)
8c7c6e34 5305 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5306 else if (type == _KMEM)
182446d0 5307 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5308 else
5309 return -EINVAL;
628f4235 5310 break;
296c81d8
BS
5311 case RES_SOFT_LIMIT:
5312 ret = res_counter_memparse_write_strategy(buffer, &val);
5313 if (ret)
5314 break;
5315 /*
5316 * For memsw, soft limits are hard to implement in terms
5317 * of semantics, for now, we support soft limits for
5318 * control without swap
5319 */
5320 if (type == _MEM)
5321 ret = res_counter_set_soft_limit(&memcg->res, val);
5322 else
5323 ret = -EINVAL;
5324 break;
628f4235
KH
5325 default:
5326 ret = -EINVAL; /* should be BUG() ? */
5327 break;
5328 }
5329 return ret;
8cdea7c0
BS
5330}
5331
fee7b548
KH
5332static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5333 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5334{
fee7b548
KH
5335 unsigned long long min_limit, min_memsw_limit, tmp;
5336
5337 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5338 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5339 if (!memcg->use_hierarchy)
5340 goto out;
5341
63876986
TH
5342 while (css_parent(&memcg->css)) {
5343 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5344 if (!memcg->use_hierarchy)
5345 break;
5346 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5347 min_limit = min(min_limit, tmp);
5348 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5349 min_memsw_limit = min(min_memsw_limit, tmp);
5350 }
5351out:
5352 *mem_limit = min_limit;
5353 *memsw_limit = min_memsw_limit;
fee7b548
KH
5354}
5355
182446d0 5356static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5357{
182446d0 5358 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5359 int name;
5360 enum res_type type;
c84872e1 5361
8c7c6e34
KH
5362 type = MEMFILE_TYPE(event);
5363 name = MEMFILE_ATTR(event);
af36f906 5364
8c7c6e34 5365 switch (name) {
29f2a4da 5366 case RES_MAX_USAGE:
8c7c6e34 5367 if (type == _MEM)
c0ff4b85 5368 res_counter_reset_max(&memcg->res);
510fc4e1 5369 else if (type == _MEMSWAP)
c0ff4b85 5370 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5371 else if (type == _KMEM)
5372 res_counter_reset_max(&memcg->kmem);
5373 else
5374 return -EINVAL;
29f2a4da
PE
5375 break;
5376 case RES_FAILCNT:
8c7c6e34 5377 if (type == _MEM)
c0ff4b85 5378 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5379 else if (type == _MEMSWAP)
c0ff4b85 5380 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5381 else if (type == _KMEM)
5382 res_counter_reset_failcnt(&memcg->kmem);
5383 else
5384 return -EINVAL;
29f2a4da
PE
5385 break;
5386 }
f64c3f54 5387
85cc59db 5388 return 0;
c84872e1
PE
5389}
5390
182446d0 5391static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5392 struct cftype *cft)
5393{
182446d0 5394 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5395}
5396
02491447 5397#ifdef CONFIG_MMU
182446d0 5398static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5399 struct cftype *cft, u64 val)
5400{
182446d0 5401 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5402
5403 if (val >= (1 << NR_MOVE_TYPE))
5404 return -EINVAL;
ee5e8472 5405
7dc74be0 5406 /*
ee5e8472
GC
5407 * No kind of locking is needed in here, because ->can_attach() will
5408 * check this value once in the beginning of the process, and then carry
5409 * on with stale data. This means that changes to this value will only
5410 * affect task migrations starting after the change.
7dc74be0 5411 */
c0ff4b85 5412 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5413 return 0;
5414}
02491447 5415#else
182446d0 5416static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5417 struct cftype *cft, u64 val)
5418{
5419 return -ENOSYS;
5420}
5421#endif
7dc74be0 5422
406eb0c9 5423#ifdef CONFIG_NUMA
182446d0
TH
5424static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5425 struct cftype *cft, struct seq_file *m)
406eb0c9 5426{
25485de6
GT
5427 struct numa_stat {
5428 const char *name;
5429 unsigned int lru_mask;
5430 };
5431
5432 static const struct numa_stat stats[] = {
5433 { "total", LRU_ALL },
5434 { "file", LRU_ALL_FILE },
5435 { "anon", LRU_ALL_ANON },
5436 { "unevictable", BIT(LRU_UNEVICTABLE) },
5437 };
5438 const struct numa_stat *stat;
406eb0c9 5439 int nid;
25485de6 5440 unsigned long nr;
182446d0 5441 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5442
25485de6
GT
5443 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5444 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5445 seq_printf(m, "%s=%lu", stat->name, nr);
5446 for_each_node_state(nid, N_MEMORY) {
5447 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5448 stat->lru_mask);
5449 seq_printf(m, " N%d=%lu", nid, nr);
5450 }
5451 seq_putc(m, '\n');
406eb0c9 5452 }
406eb0c9 5453
071aee13
YH
5454 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5455 struct mem_cgroup *iter;
5456
5457 nr = 0;
5458 for_each_mem_cgroup_tree(iter, memcg)
5459 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5460 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5461 for_each_node_state(nid, N_MEMORY) {
5462 nr = 0;
5463 for_each_mem_cgroup_tree(iter, memcg)
5464 nr += mem_cgroup_node_nr_lru_pages(
5465 iter, nid, stat->lru_mask);
5466 seq_printf(m, " N%d=%lu", nid, nr);
5467 }
5468 seq_putc(m, '\n');
406eb0c9 5469 }
406eb0c9 5470
406eb0c9
YH
5471 return 0;
5472}
5473#endif /* CONFIG_NUMA */
5474
af7c4b0e
JW
5475static inline void mem_cgroup_lru_names_not_uptodate(void)
5476{
5477 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5478}
5479
182446d0 5480static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5481 struct seq_file *m)
d2ceb9b7 5482{
182446d0 5483 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5484 struct mem_cgroup *mi;
5485 unsigned int i;
406eb0c9 5486
af7c4b0e 5487 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5488 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5489 continue;
af7c4b0e
JW
5490 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5491 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5492 }
7b854121 5493
af7c4b0e
JW
5494 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5495 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5496 mem_cgroup_read_events(memcg, i));
5497
5498 for (i = 0; i < NR_LRU_LISTS; i++)
5499 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5500 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5501
14067bb3 5502 /* Hierarchical information */
fee7b548
KH
5503 {
5504 unsigned long long limit, memsw_limit;
d79154bb 5505 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5506 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5507 if (do_swap_account)
78ccf5b5
JW
5508 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5509 memsw_limit);
fee7b548 5510 }
7f016ee8 5511
af7c4b0e
JW
5512 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5513 long long val = 0;
5514
bff6bb83 5515 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5516 continue;
af7c4b0e
JW
5517 for_each_mem_cgroup_tree(mi, memcg)
5518 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5519 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5520 }
5521
5522 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5523 unsigned long long val = 0;
5524
5525 for_each_mem_cgroup_tree(mi, memcg)
5526 val += mem_cgroup_read_events(mi, i);
5527 seq_printf(m, "total_%s %llu\n",
5528 mem_cgroup_events_names[i], val);
5529 }
5530
5531 for (i = 0; i < NR_LRU_LISTS; i++) {
5532 unsigned long long val = 0;
5533
5534 for_each_mem_cgroup_tree(mi, memcg)
5535 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5536 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5537 }
14067bb3 5538
7f016ee8 5539#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5540 {
5541 int nid, zid;
5542 struct mem_cgroup_per_zone *mz;
89abfab1 5543 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5544 unsigned long recent_rotated[2] = {0, 0};
5545 unsigned long recent_scanned[2] = {0, 0};
5546
5547 for_each_online_node(nid)
5548 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5549 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5550 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5551
89abfab1
HD
5552 recent_rotated[0] += rstat->recent_rotated[0];
5553 recent_rotated[1] += rstat->recent_rotated[1];
5554 recent_scanned[0] += rstat->recent_scanned[0];
5555 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5556 }
78ccf5b5
JW
5557 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5558 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5559 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5560 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5561 }
5562#endif
5563
d2ceb9b7
KH
5564 return 0;
5565}
5566
182446d0
TH
5567static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5568 struct cftype *cft)
a7885eb8 5569{
182446d0 5570 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5571
1f4c025b 5572 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5573}
5574
182446d0
TH
5575static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5576 struct cftype *cft, u64 val)
a7885eb8 5577{
182446d0 5578 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5579 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5580
63876986 5581 if (val > 100 || !parent)
a7885eb8
KM
5582 return -EINVAL;
5583
0999821b 5584 mutex_lock(&memcg_create_mutex);
068b38c1 5585
a7885eb8 5586 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5587 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5588 mutex_unlock(&memcg_create_mutex);
a7885eb8 5589 return -EINVAL;
068b38c1 5590 }
a7885eb8 5591
a7885eb8 5592 memcg->swappiness = val;
a7885eb8 5593
0999821b 5594 mutex_unlock(&memcg_create_mutex);
068b38c1 5595
a7885eb8
KM
5596 return 0;
5597}
5598
2e72b634
KS
5599static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5600{
5601 struct mem_cgroup_threshold_ary *t;
5602 u64 usage;
5603 int i;
5604
5605 rcu_read_lock();
5606 if (!swap)
2c488db2 5607 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5608 else
2c488db2 5609 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5610
5611 if (!t)
5612 goto unlock;
5613
5614 usage = mem_cgroup_usage(memcg, swap);
5615
5616 /*
748dad36 5617 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5618 * If it's not true, a threshold was crossed after last
5619 * call of __mem_cgroup_threshold().
5620 */
5407a562 5621 i = t->current_threshold;
2e72b634
KS
5622
5623 /*
5624 * Iterate backward over array of thresholds starting from
5625 * current_threshold and check if a threshold is crossed.
5626 * If none of thresholds below usage is crossed, we read
5627 * only one element of the array here.
5628 */
5629 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5630 eventfd_signal(t->entries[i].eventfd, 1);
5631
5632 /* i = current_threshold + 1 */
5633 i++;
5634
5635 /*
5636 * Iterate forward over array of thresholds starting from
5637 * current_threshold+1 and check if a threshold is crossed.
5638 * If none of thresholds above usage is crossed, we read
5639 * only one element of the array here.
5640 */
5641 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5642 eventfd_signal(t->entries[i].eventfd, 1);
5643
5644 /* Update current_threshold */
5407a562 5645 t->current_threshold = i - 1;
2e72b634
KS
5646unlock:
5647 rcu_read_unlock();
5648}
5649
5650static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5651{
ad4ca5f4
KS
5652 while (memcg) {
5653 __mem_cgroup_threshold(memcg, false);
5654 if (do_swap_account)
5655 __mem_cgroup_threshold(memcg, true);
5656
5657 memcg = parent_mem_cgroup(memcg);
5658 }
2e72b634
KS
5659}
5660
5661static int compare_thresholds(const void *a, const void *b)
5662{
5663 const struct mem_cgroup_threshold *_a = a;
5664 const struct mem_cgroup_threshold *_b = b;
5665
2bff24a3
GT
5666 if (_a->threshold > _b->threshold)
5667 return 1;
5668
5669 if (_a->threshold < _b->threshold)
5670 return -1;
5671
5672 return 0;
2e72b634
KS
5673}
5674
c0ff4b85 5675static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5676{
5677 struct mem_cgroup_eventfd_list *ev;
5678
c0ff4b85 5679 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5680 eventfd_signal(ev->eventfd, 1);
5681 return 0;
5682}
5683
c0ff4b85 5684static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5685{
7d74b06f
KH
5686 struct mem_cgroup *iter;
5687
c0ff4b85 5688 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5689 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5690}
5691
59b6f873 5692static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5693 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5694{
2c488db2
KS
5695 struct mem_cgroup_thresholds *thresholds;
5696 struct mem_cgroup_threshold_ary *new;
2e72b634 5697 u64 threshold, usage;
2c488db2 5698 int i, size, ret;
2e72b634
KS
5699
5700 ret = res_counter_memparse_write_strategy(args, &threshold);
5701 if (ret)
5702 return ret;
5703
5704 mutex_lock(&memcg->thresholds_lock);
2c488db2 5705
2e72b634 5706 if (type == _MEM)
2c488db2 5707 thresholds = &memcg->thresholds;
2e72b634 5708 else if (type == _MEMSWAP)
2c488db2 5709 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5710 else
5711 BUG();
5712
5713 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5714
5715 /* Check if a threshold crossed before adding a new one */
2c488db2 5716 if (thresholds->primary)
2e72b634
KS
5717 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5718
2c488db2 5719 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5720
5721 /* Allocate memory for new array of thresholds */
2c488db2 5722 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5723 GFP_KERNEL);
2c488db2 5724 if (!new) {
2e72b634
KS
5725 ret = -ENOMEM;
5726 goto unlock;
5727 }
2c488db2 5728 new->size = size;
2e72b634
KS
5729
5730 /* Copy thresholds (if any) to new array */
2c488db2
KS
5731 if (thresholds->primary) {
5732 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5733 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5734 }
5735
2e72b634 5736 /* Add new threshold */
2c488db2
KS
5737 new->entries[size - 1].eventfd = eventfd;
5738 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5739
5740 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5741 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5742 compare_thresholds, NULL);
5743
5744 /* Find current threshold */
2c488db2 5745 new->current_threshold = -1;
2e72b634 5746 for (i = 0; i < size; i++) {
748dad36 5747 if (new->entries[i].threshold <= usage) {
2e72b634 5748 /*
2c488db2
KS
5749 * new->current_threshold will not be used until
5750 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5751 * it here.
5752 */
2c488db2 5753 ++new->current_threshold;
748dad36
SZ
5754 } else
5755 break;
2e72b634
KS
5756 }
5757
2c488db2
KS
5758 /* Free old spare buffer and save old primary buffer as spare */
5759 kfree(thresholds->spare);
5760 thresholds->spare = thresholds->primary;
5761
5762 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5763
907860ed 5764 /* To be sure that nobody uses thresholds */
2e72b634
KS
5765 synchronize_rcu();
5766
2e72b634
KS
5767unlock:
5768 mutex_unlock(&memcg->thresholds_lock);
5769
5770 return ret;
5771}
5772
59b6f873 5773static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5774 struct eventfd_ctx *eventfd, const char *args)
5775{
59b6f873 5776 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5777}
5778
59b6f873 5779static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5780 struct eventfd_ctx *eventfd, const char *args)
5781{
59b6f873 5782 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5783}
5784
59b6f873 5785static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5786 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5787{
2c488db2
KS
5788 struct mem_cgroup_thresholds *thresholds;
5789 struct mem_cgroup_threshold_ary *new;
2e72b634 5790 u64 usage;
2c488db2 5791 int i, j, size;
2e72b634
KS
5792
5793 mutex_lock(&memcg->thresholds_lock);
5794 if (type == _MEM)
2c488db2 5795 thresholds = &memcg->thresholds;
2e72b634 5796 else if (type == _MEMSWAP)
2c488db2 5797 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5798 else
5799 BUG();
5800
371528ca
AV
5801 if (!thresholds->primary)
5802 goto unlock;
5803
2e72b634
KS
5804 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5805
5806 /* Check if a threshold crossed before removing */
5807 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5808
5809 /* Calculate new number of threshold */
2c488db2
KS
5810 size = 0;
5811 for (i = 0; i < thresholds->primary->size; i++) {
5812 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5813 size++;
5814 }
5815
2c488db2 5816 new = thresholds->spare;
907860ed 5817
2e72b634
KS
5818 /* Set thresholds array to NULL if we don't have thresholds */
5819 if (!size) {
2c488db2
KS
5820 kfree(new);
5821 new = NULL;
907860ed 5822 goto swap_buffers;
2e72b634
KS
5823 }
5824
2c488db2 5825 new->size = size;
2e72b634
KS
5826
5827 /* Copy thresholds and find current threshold */
2c488db2
KS
5828 new->current_threshold = -1;
5829 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5830 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5831 continue;
5832
2c488db2 5833 new->entries[j] = thresholds->primary->entries[i];
748dad36 5834 if (new->entries[j].threshold <= usage) {
2e72b634 5835 /*
2c488db2 5836 * new->current_threshold will not be used
2e72b634
KS
5837 * until rcu_assign_pointer(), so it's safe to increment
5838 * it here.
5839 */
2c488db2 5840 ++new->current_threshold;
2e72b634
KS
5841 }
5842 j++;
5843 }
5844
907860ed 5845swap_buffers:
2c488db2
KS
5846 /* Swap primary and spare array */
5847 thresholds->spare = thresholds->primary;
8c757763
SZ
5848 /* If all events are unregistered, free the spare array */
5849 if (!new) {
5850 kfree(thresholds->spare);
5851 thresholds->spare = NULL;
5852 }
5853
2c488db2 5854 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5855
907860ed 5856 /* To be sure that nobody uses thresholds */
2e72b634 5857 synchronize_rcu();
371528ca 5858unlock:
2e72b634 5859 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5860}
c1e862c1 5861
59b6f873 5862static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5863 struct eventfd_ctx *eventfd)
5864{
59b6f873 5865 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5866}
5867
59b6f873 5868static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5869 struct eventfd_ctx *eventfd)
5870{
59b6f873 5871 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5872}
5873
59b6f873 5874static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5875 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5876{
9490ff27 5877 struct mem_cgroup_eventfd_list *event;
9490ff27 5878
9490ff27
KH
5879 event = kmalloc(sizeof(*event), GFP_KERNEL);
5880 if (!event)
5881 return -ENOMEM;
5882
1af8efe9 5883 spin_lock(&memcg_oom_lock);
9490ff27
KH
5884
5885 event->eventfd = eventfd;
5886 list_add(&event->list, &memcg->oom_notify);
5887
5888 /* already in OOM ? */
79dfdacc 5889 if (atomic_read(&memcg->under_oom))
9490ff27 5890 eventfd_signal(eventfd, 1);
1af8efe9 5891 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5892
5893 return 0;
5894}
5895
59b6f873 5896static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5897 struct eventfd_ctx *eventfd)
9490ff27 5898{
9490ff27 5899 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5900
1af8efe9 5901 spin_lock(&memcg_oom_lock);
9490ff27 5902
c0ff4b85 5903 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5904 if (ev->eventfd == eventfd) {
5905 list_del(&ev->list);
5906 kfree(ev);
5907 }
5908 }
5909
1af8efe9 5910 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5911}
5912
182446d0 5913static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5914 struct cftype *cft, struct cgroup_map_cb *cb)
5915{
182446d0 5916 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5917
c0ff4b85 5918 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5919
c0ff4b85 5920 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5921 cb->fill(cb, "under_oom", 1);
5922 else
5923 cb->fill(cb, "under_oom", 0);
5924 return 0;
5925}
5926
182446d0 5927static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5928 struct cftype *cft, u64 val)
5929{
182446d0 5930 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5931 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5932
5933 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5934 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5935 return -EINVAL;
5936
0999821b 5937 mutex_lock(&memcg_create_mutex);
3c11ecf4 5938 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5939 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5940 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5941 return -EINVAL;
5942 }
c0ff4b85 5943 memcg->oom_kill_disable = val;
4d845ebf 5944 if (!val)
c0ff4b85 5945 memcg_oom_recover(memcg);
0999821b 5946 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5947 return 0;
5948}
5949
c255a458 5950#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5951static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5952{
55007d84
GC
5953 int ret;
5954
2633d7a0 5955 memcg->kmemcg_id = -1;
55007d84
GC
5956 ret = memcg_propagate_kmem(memcg);
5957 if (ret)
5958 return ret;
2633d7a0 5959
1d62e436 5960 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5961}
e5671dfa 5962
10d5ebf4 5963static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5964{
1d62e436 5965 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5966}
5967
5968static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5969{
5970 if (!memcg_kmem_is_active(memcg))
5971 return;
5972
5973 /*
5974 * kmem charges can outlive the cgroup. In the case of slab
5975 * pages, for instance, a page contain objects from various
5976 * processes. As we prevent from taking a reference for every
5977 * such allocation we have to be careful when doing uncharge
5978 * (see memcg_uncharge_kmem) and here during offlining.
5979 *
5980 * The idea is that that only the _last_ uncharge which sees
5981 * the dead memcg will drop the last reference. An additional
5982 * reference is taken here before the group is marked dead
5983 * which is then paired with css_put during uncharge resp. here.
5984 *
5985 * Although this might sound strange as this path is called from
5986 * css_offline() when the referencemight have dropped down to 0
5987 * and shouldn't be incremented anymore (css_tryget would fail)
5988 * we do not have other options because of the kmem allocations
5989 * lifetime.
5990 */
5991 css_get(&memcg->css);
7de37682
GC
5992
5993 memcg_kmem_mark_dead(memcg);
5994
5995 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5996 return;
5997
7de37682 5998 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5999 css_put(&memcg->css);
d1a4c0b3 6000}
e5671dfa 6001#else
cbe128e3 6002static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
6003{
6004 return 0;
6005}
d1a4c0b3 6006
10d5ebf4
LZ
6007static void memcg_destroy_kmem(struct mem_cgroup *memcg)
6008{
6009}
6010
6011static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
6012{
6013}
e5671dfa
GC
6014#endif
6015
3bc942f3
TH
6016/*
6017 * DO NOT USE IN NEW FILES.
6018 *
6019 * "cgroup.event_control" implementation.
6020 *
6021 * This is way over-engineered. It tries to support fully configurable
6022 * events for each user. Such level of flexibility is completely
6023 * unnecessary especially in the light of the planned unified hierarchy.
6024 *
6025 * Please deprecate this and replace with something simpler if at all
6026 * possible.
6027 */
6028
79bd9814
TH
6029/*
6030 * Unregister event and free resources.
6031 *
6032 * Gets called from workqueue.
6033 */
3bc942f3 6034static void memcg_event_remove(struct work_struct *work)
79bd9814 6035{
3bc942f3
TH
6036 struct mem_cgroup_event *event =
6037 container_of(work, struct mem_cgroup_event, remove);
59b6f873 6038 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6039
6040 remove_wait_queue(event->wqh, &event->wait);
6041
59b6f873 6042 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
6043
6044 /* Notify userspace the event is going away. */
6045 eventfd_signal(event->eventfd, 1);
6046
6047 eventfd_ctx_put(event->eventfd);
6048 kfree(event);
59b6f873 6049 css_put(&memcg->css);
79bd9814
TH
6050}
6051
6052/*
6053 * Gets called on POLLHUP on eventfd when user closes it.
6054 *
6055 * Called with wqh->lock held and interrupts disabled.
6056 */
3bc942f3
TH
6057static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6058 int sync, void *key)
79bd9814 6059{
3bc942f3
TH
6060 struct mem_cgroup_event *event =
6061 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 6062 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
6063 unsigned long flags = (unsigned long)key;
6064
6065 if (flags & POLLHUP) {
6066 /*
6067 * If the event has been detached at cgroup removal, we
6068 * can simply return knowing the other side will cleanup
6069 * for us.
6070 *
6071 * We can't race against event freeing since the other
6072 * side will require wqh->lock via remove_wait_queue(),
6073 * which we hold.
6074 */
fba94807 6075 spin_lock(&memcg->event_list_lock);
79bd9814
TH
6076 if (!list_empty(&event->list)) {
6077 list_del_init(&event->list);
6078 /*
6079 * We are in atomic context, but cgroup_event_remove()
6080 * may sleep, so we have to call it in workqueue.
6081 */
6082 schedule_work(&event->remove);
6083 }
fba94807 6084 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6085 }
6086
6087 return 0;
6088}
6089
3bc942f3 6090static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
6091 wait_queue_head_t *wqh, poll_table *pt)
6092{
3bc942f3
TH
6093 struct mem_cgroup_event *event =
6094 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
6095
6096 event->wqh = wqh;
6097 add_wait_queue(wqh, &event->wait);
6098}
6099
6100/*
3bc942f3
TH
6101 * DO NOT USE IN NEW FILES.
6102 *
79bd9814
TH
6103 * Parse input and register new cgroup event handler.
6104 *
6105 * Input must be in format '<event_fd> <control_fd> <args>'.
6106 * Interpretation of args is defined by control file implementation.
6107 */
3bc942f3
TH
6108static int memcg_write_event_control(struct cgroup_subsys_state *css,
6109 struct cftype *cft, const char *buffer)
79bd9814 6110{
fba94807 6111 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6112 struct mem_cgroup_event *event;
79bd9814
TH
6113 struct cgroup_subsys_state *cfile_css;
6114 unsigned int efd, cfd;
6115 struct fd efile;
6116 struct fd cfile;
fba94807 6117 const char *name;
79bd9814
TH
6118 char *endp;
6119 int ret;
6120
6121 efd = simple_strtoul(buffer, &endp, 10);
6122 if (*endp != ' ')
6123 return -EINVAL;
6124 buffer = endp + 1;
6125
6126 cfd = simple_strtoul(buffer, &endp, 10);
6127 if ((*endp != ' ') && (*endp != '\0'))
6128 return -EINVAL;
6129 buffer = endp + 1;
6130
6131 event = kzalloc(sizeof(*event), GFP_KERNEL);
6132 if (!event)
6133 return -ENOMEM;
6134
59b6f873 6135 event->memcg = memcg;
79bd9814 6136 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
6137 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6138 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6139 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
6140
6141 efile = fdget(efd);
6142 if (!efile.file) {
6143 ret = -EBADF;
6144 goto out_kfree;
6145 }
6146
6147 event->eventfd = eventfd_ctx_fileget(efile.file);
6148 if (IS_ERR(event->eventfd)) {
6149 ret = PTR_ERR(event->eventfd);
6150 goto out_put_efile;
6151 }
6152
6153 cfile = fdget(cfd);
6154 if (!cfile.file) {
6155 ret = -EBADF;
6156 goto out_put_eventfd;
6157 }
6158
6159 /* the process need read permission on control file */
6160 /* AV: shouldn't we check that it's been opened for read instead? */
6161 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6162 if (ret < 0)
6163 goto out_put_cfile;
6164
fba94807
TH
6165 /*
6166 * Determine the event callbacks and set them in @event. This used
6167 * to be done via struct cftype but cgroup core no longer knows
6168 * about these events. The following is crude but the whole thing
6169 * is for compatibility anyway.
3bc942f3
TH
6170 *
6171 * DO NOT ADD NEW FILES.
fba94807
TH
6172 */
6173 name = cfile.file->f_dentry->d_name.name;
6174
6175 if (!strcmp(name, "memory.usage_in_bytes")) {
6176 event->register_event = mem_cgroup_usage_register_event;
6177 event->unregister_event = mem_cgroup_usage_unregister_event;
6178 } else if (!strcmp(name, "memory.oom_control")) {
6179 event->register_event = mem_cgroup_oom_register_event;
6180 event->unregister_event = mem_cgroup_oom_unregister_event;
6181 } else if (!strcmp(name, "memory.pressure_level")) {
6182 event->register_event = vmpressure_register_event;
6183 event->unregister_event = vmpressure_unregister_event;
6184 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
6185 event->register_event = memsw_cgroup_usage_register_event;
6186 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
6187 } else {
6188 ret = -EINVAL;
6189 goto out_put_cfile;
6190 }
6191
79bd9814 6192 /*
b5557c4c
TH
6193 * Verify @cfile should belong to @css. Also, remaining events are
6194 * automatically removed on cgroup destruction but the removal is
6195 * asynchronous, so take an extra ref on @css.
79bd9814
TH
6196 */
6197 rcu_read_lock();
6198
6199 ret = -EINVAL;
b5557c4c
TH
6200 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6201 &mem_cgroup_subsys);
6202 if (cfile_css == css && css_tryget(css))
79bd9814
TH
6203 ret = 0;
6204
6205 rcu_read_unlock();
6206 if (ret)
6207 goto out_put_cfile;
6208
59b6f873 6209 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
6210 if (ret)
6211 goto out_put_css;
6212
6213 efile.file->f_op->poll(efile.file, &event->pt);
6214
fba94807
TH
6215 spin_lock(&memcg->event_list_lock);
6216 list_add(&event->list, &memcg->event_list);
6217 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6218
6219 fdput(cfile);
6220 fdput(efile);
6221
6222 return 0;
6223
6224out_put_css:
b5557c4c 6225 css_put(css);
79bd9814
TH
6226out_put_cfile:
6227 fdput(cfile);
6228out_put_eventfd:
6229 eventfd_ctx_put(event->eventfd);
6230out_put_efile:
6231 fdput(efile);
6232out_kfree:
6233 kfree(event);
6234
6235 return ret;
6236}
6237
8cdea7c0
BS
6238static struct cftype mem_cgroup_files[] = {
6239 {
0eea1030 6240 .name = "usage_in_bytes",
8c7c6e34 6241 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 6242 .read = mem_cgroup_read,
8cdea7c0 6243 },
c84872e1
PE
6244 {
6245 .name = "max_usage_in_bytes",
8c7c6e34 6246 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6247 .trigger = mem_cgroup_reset,
af36f906 6248 .read = mem_cgroup_read,
c84872e1 6249 },
8cdea7c0 6250 {
0eea1030 6251 .name = "limit_in_bytes",
8c7c6e34 6252 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6253 .write_string = mem_cgroup_write,
af36f906 6254 .read = mem_cgroup_read,
8cdea7c0 6255 },
296c81d8
BS
6256 {
6257 .name = "soft_limit_in_bytes",
6258 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6259 .write_string = mem_cgroup_write,
af36f906 6260 .read = mem_cgroup_read,
296c81d8 6261 },
8cdea7c0
BS
6262 {
6263 .name = "failcnt",
8c7c6e34 6264 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6265 .trigger = mem_cgroup_reset,
af36f906 6266 .read = mem_cgroup_read,
8cdea7c0 6267 },
d2ceb9b7
KH
6268 {
6269 .name = "stat",
ab215884 6270 .read_seq_string = memcg_stat_show,
d2ceb9b7 6271 },
c1e862c1
KH
6272 {
6273 .name = "force_empty",
6274 .trigger = mem_cgroup_force_empty_write,
6275 },
18f59ea7
BS
6276 {
6277 .name = "use_hierarchy",
f00baae7 6278 .flags = CFTYPE_INSANE,
18f59ea7
BS
6279 .write_u64 = mem_cgroup_hierarchy_write,
6280 .read_u64 = mem_cgroup_hierarchy_read,
6281 },
79bd9814 6282 {
3bc942f3
TH
6283 .name = "cgroup.event_control", /* XXX: for compat */
6284 .write_string = memcg_write_event_control,
79bd9814
TH
6285 .flags = CFTYPE_NO_PREFIX,
6286 .mode = S_IWUGO,
6287 },
a7885eb8
KM
6288 {
6289 .name = "swappiness",
6290 .read_u64 = mem_cgroup_swappiness_read,
6291 .write_u64 = mem_cgroup_swappiness_write,
6292 },
7dc74be0
DN
6293 {
6294 .name = "move_charge_at_immigrate",
6295 .read_u64 = mem_cgroup_move_charge_read,
6296 .write_u64 = mem_cgroup_move_charge_write,
6297 },
9490ff27
KH
6298 {
6299 .name = "oom_control",
3c11ecf4
KH
6300 .read_map = mem_cgroup_oom_control_read,
6301 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6302 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6303 },
70ddf637
AV
6304 {
6305 .name = "pressure_level",
70ddf637 6306 },
406eb0c9
YH
6307#ifdef CONFIG_NUMA
6308 {
6309 .name = "numa_stat",
ab215884 6310 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
6311 },
6312#endif
510fc4e1
GC
6313#ifdef CONFIG_MEMCG_KMEM
6314 {
6315 .name = "kmem.limit_in_bytes",
6316 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6317 .write_string = mem_cgroup_write,
6318 .read = mem_cgroup_read,
6319 },
6320 {
6321 .name = "kmem.usage_in_bytes",
6322 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6323 .read = mem_cgroup_read,
6324 },
6325 {
6326 .name = "kmem.failcnt",
6327 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6328 .trigger = mem_cgroup_reset,
6329 .read = mem_cgroup_read,
6330 },
6331 {
6332 .name = "kmem.max_usage_in_bytes",
6333 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6334 .trigger = mem_cgroup_reset,
6335 .read = mem_cgroup_read,
6336 },
749c5415
GC
6337#ifdef CONFIG_SLABINFO
6338 {
6339 .name = "kmem.slabinfo",
6340 .read_seq_string = mem_cgroup_slabinfo_read,
6341 },
6342#endif
8c7c6e34 6343#endif
6bc10349 6344 { }, /* terminate */
af36f906 6345};
8c7c6e34 6346
2d11085e
MH
6347#ifdef CONFIG_MEMCG_SWAP
6348static struct cftype memsw_cgroup_files[] = {
6349 {
6350 .name = "memsw.usage_in_bytes",
6351 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6352 .read = mem_cgroup_read,
2d11085e
MH
6353 },
6354 {
6355 .name = "memsw.max_usage_in_bytes",
6356 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6357 .trigger = mem_cgroup_reset,
6358 .read = mem_cgroup_read,
6359 },
6360 {
6361 .name = "memsw.limit_in_bytes",
6362 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6363 .write_string = mem_cgroup_write,
6364 .read = mem_cgroup_read,
6365 },
6366 {
6367 .name = "memsw.failcnt",
6368 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6369 .trigger = mem_cgroup_reset,
6370 .read = mem_cgroup_read,
6371 },
6372 { }, /* terminate */
6373};
6374#endif
c0ff4b85 6375static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6376{
6377 struct mem_cgroup_per_node *pn;
1ecaab2b 6378 struct mem_cgroup_per_zone *mz;
41e3355d 6379 int zone, tmp = node;
1ecaab2b
KH
6380 /*
6381 * This routine is called against possible nodes.
6382 * But it's BUG to call kmalloc() against offline node.
6383 *
6384 * TODO: this routine can waste much memory for nodes which will
6385 * never be onlined. It's better to use memory hotplug callback
6386 * function.
6387 */
41e3355d
KH
6388 if (!node_state(node, N_NORMAL_MEMORY))
6389 tmp = -1;
17295c88 6390 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6391 if (!pn)
6392 return 1;
1ecaab2b 6393
1ecaab2b
KH
6394 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6395 mz = &pn->zoneinfo[zone];
bea8c150 6396 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6397 mz->usage_in_excess = 0;
6398 mz->on_tree = false;
d79154bb 6399 mz->memcg = memcg;
1ecaab2b 6400 }
54f72fe0 6401 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6402 return 0;
6403}
6404
c0ff4b85 6405static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6406{
54f72fe0 6407 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6408}
6409
33327948
KH
6410static struct mem_cgroup *mem_cgroup_alloc(void)
6411{
d79154bb 6412 struct mem_cgroup *memcg;
45cf7ebd 6413 size_t size = memcg_size();
33327948 6414
45cf7ebd 6415 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6416 if (size < PAGE_SIZE)
d79154bb 6417 memcg = kzalloc(size, GFP_KERNEL);
33327948 6418 else
d79154bb 6419 memcg = vzalloc(size);
33327948 6420
d79154bb 6421 if (!memcg)
e7bbcdf3
DC
6422 return NULL;
6423
d79154bb
HD
6424 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6425 if (!memcg->stat)
d2e61b8d 6426 goto out_free;
d79154bb
HD
6427 spin_lock_init(&memcg->pcp_counter_lock);
6428 return memcg;
d2e61b8d
DC
6429
6430out_free:
6431 if (size < PAGE_SIZE)
d79154bb 6432 kfree(memcg);
d2e61b8d 6433 else
d79154bb 6434 vfree(memcg);
d2e61b8d 6435 return NULL;
33327948
KH
6436}
6437
59927fb9 6438/*
c8b2a36f
GC
6439 * At destroying mem_cgroup, references from swap_cgroup can remain.
6440 * (scanning all at force_empty is too costly...)
6441 *
6442 * Instead of clearing all references at force_empty, we remember
6443 * the number of reference from swap_cgroup and free mem_cgroup when
6444 * it goes down to 0.
6445 *
6446 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6447 */
c8b2a36f
GC
6448
6449static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6450{
c8b2a36f 6451 int node;
45cf7ebd 6452 size_t size = memcg_size();
59927fb9 6453
bb4cc1a8 6454 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6455
6456 for_each_node(node)
6457 free_mem_cgroup_per_zone_info(memcg, node);
6458
6459 free_percpu(memcg->stat);
6460
3f134619
GC
6461 /*
6462 * We need to make sure that (at least for now), the jump label
6463 * destruction code runs outside of the cgroup lock. This is because
6464 * get_online_cpus(), which is called from the static_branch update,
6465 * can't be called inside the cgroup_lock. cpusets are the ones
6466 * enforcing this dependency, so if they ever change, we might as well.
6467 *
6468 * schedule_work() will guarantee this happens. Be careful if you need
6469 * to move this code around, and make sure it is outside
6470 * the cgroup_lock.
6471 */
a8964b9b 6472 disarm_static_keys(memcg);
3afe36b1
GC
6473 if (size < PAGE_SIZE)
6474 kfree(memcg);
6475 else
6476 vfree(memcg);
59927fb9 6477}
3afe36b1 6478
7bcc1bb1
DN
6479/*
6480 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6481 */
e1aab161 6482struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6483{
c0ff4b85 6484 if (!memcg->res.parent)
7bcc1bb1 6485 return NULL;
c0ff4b85 6486 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6487}
e1aab161 6488EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6489
bb4cc1a8
AM
6490static void __init mem_cgroup_soft_limit_tree_init(void)
6491{
6492 struct mem_cgroup_tree_per_node *rtpn;
6493 struct mem_cgroup_tree_per_zone *rtpz;
6494 int tmp, node, zone;
6495
6496 for_each_node(node) {
6497 tmp = node;
6498 if (!node_state(node, N_NORMAL_MEMORY))
6499 tmp = -1;
6500 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6501 BUG_ON(!rtpn);
6502
6503 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6504
6505 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6506 rtpz = &rtpn->rb_tree_per_zone[zone];
6507 rtpz->rb_root = RB_ROOT;
6508 spin_lock_init(&rtpz->lock);
6509 }
6510 }
6511}
6512
0eb253e2 6513static struct cgroup_subsys_state * __ref
eb95419b 6514mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6515{
d142e3e6 6516 struct mem_cgroup *memcg;
04046e1a 6517 long error = -ENOMEM;
6d12e2d8 6518 int node;
8cdea7c0 6519
c0ff4b85
R
6520 memcg = mem_cgroup_alloc();
6521 if (!memcg)
04046e1a 6522 return ERR_PTR(error);
78fb7466 6523
3ed28fa1 6524 for_each_node(node)
c0ff4b85 6525 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6526 goto free_out;
f64c3f54 6527
c077719b 6528 /* root ? */
eb95419b 6529 if (parent_css == NULL) {
a41c58a6 6530 root_mem_cgroup = memcg;
d142e3e6
GC
6531 res_counter_init(&memcg->res, NULL);
6532 res_counter_init(&memcg->memsw, NULL);
6533 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6534 }
28dbc4b6 6535
d142e3e6
GC
6536 memcg->last_scanned_node = MAX_NUMNODES;
6537 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6538 memcg->move_charge_at_immigrate = 0;
6539 mutex_init(&memcg->thresholds_lock);
6540 spin_lock_init(&memcg->move_lock);
70ddf637 6541 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6542 INIT_LIST_HEAD(&memcg->event_list);
6543 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6544
6545 return &memcg->css;
6546
6547free_out:
6548 __mem_cgroup_free(memcg);
6549 return ERR_PTR(error);
6550}
6551
6552static int
eb95419b 6553mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6554{
eb95419b
TH
6555 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6556 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6557 int error = 0;
6558
4219b2da
LZ
6559 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6560 return -ENOSPC;
6561
63876986 6562 if (!parent)
d142e3e6
GC
6563 return 0;
6564
0999821b 6565 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6566
6567 memcg->use_hierarchy = parent->use_hierarchy;
6568 memcg->oom_kill_disable = parent->oom_kill_disable;
6569 memcg->swappiness = mem_cgroup_swappiness(parent);
6570
6571 if (parent->use_hierarchy) {
c0ff4b85
R
6572 res_counter_init(&memcg->res, &parent->res);
6573 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6574 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6575
7bcc1bb1 6576 /*
8d76a979
LZ
6577 * No need to take a reference to the parent because cgroup
6578 * core guarantees its existence.
7bcc1bb1 6579 */
18f59ea7 6580 } else {
c0ff4b85
R
6581 res_counter_init(&memcg->res, NULL);
6582 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6583 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6584 /*
6585 * Deeper hierachy with use_hierarchy == false doesn't make
6586 * much sense so let cgroup subsystem know about this
6587 * unfortunate state in our controller.
6588 */
d142e3e6 6589 if (parent != root_mem_cgroup)
8c7f6edb 6590 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6591 }
cbe128e3
GC
6592
6593 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6594 mutex_unlock(&memcg_create_mutex);
d142e3e6 6595 return error;
8cdea7c0
BS
6596}
6597
5f578161
MH
6598/*
6599 * Announce all parents that a group from their hierarchy is gone.
6600 */
6601static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6602{
6603 struct mem_cgroup *parent = memcg;
6604
6605 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6606 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6607
6608 /*
6609 * if the root memcg is not hierarchical we have to check it
6610 * explicitely.
6611 */
6612 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6613 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6614}
6615
eb95419b 6616static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6617{
eb95419b 6618 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6619 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
6620
6621 /*
6622 * Unregister events and notify userspace.
6623 * Notify userspace about cgroup removing only after rmdir of cgroup
6624 * directory to avoid race between userspace and kernelspace.
6625 */
fba94807
TH
6626 spin_lock(&memcg->event_list_lock);
6627 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6628 list_del_init(&event->list);
6629 schedule_work(&event->remove);
6630 }
fba94807 6631 spin_unlock(&memcg->event_list_lock);
ec64f515 6632
10d5ebf4
LZ
6633 kmem_cgroup_css_offline(memcg);
6634
5f578161 6635 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6636 mem_cgroup_reparent_charges(memcg);
1f458cbf 6637 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6638 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6639}
6640
eb95419b 6641static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6642{
eb95419b 6643 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6644
10d5ebf4 6645 memcg_destroy_kmem(memcg);
465939a1 6646 __mem_cgroup_free(memcg);
8cdea7c0
BS
6647}
6648
02491447 6649#ifdef CONFIG_MMU
7dc74be0 6650/* Handlers for move charge at task migration. */
854ffa8d
DN
6651#define PRECHARGE_COUNT_AT_ONCE 256
6652static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6653{
854ffa8d
DN
6654 int ret = 0;
6655 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6656 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6657
c0ff4b85 6658 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6659 mc.precharge += count;
6660 /* we don't need css_get for root */
6661 return ret;
6662 }
6663 /* try to charge at once */
6664 if (count > 1) {
6665 struct res_counter *dummy;
6666 /*
c0ff4b85 6667 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6668 * by cgroup_lock_live_cgroup() that it is not removed and we
6669 * are still under the same cgroup_mutex. So we can postpone
6670 * css_get().
6671 */
c0ff4b85 6672 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6673 goto one_by_one;
c0ff4b85 6674 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6675 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6676 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6677 goto one_by_one;
6678 }
6679 mc.precharge += count;
854ffa8d
DN
6680 return ret;
6681 }
6682one_by_one:
6683 /* fall back to one by one charge */
6684 while (count--) {
6685 if (signal_pending(current)) {
6686 ret = -EINTR;
6687 break;
6688 }
6689 if (!batch_count--) {
6690 batch_count = PRECHARGE_COUNT_AT_ONCE;
6691 cond_resched();
6692 }
c0ff4b85
R
6693 ret = __mem_cgroup_try_charge(NULL,
6694 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6695 if (ret)
854ffa8d 6696 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6697 return ret;
854ffa8d
DN
6698 mc.precharge++;
6699 }
4ffef5fe
DN
6700 return ret;
6701}
6702
6703/**
8d32ff84 6704 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6705 * @vma: the vma the pte to be checked belongs
6706 * @addr: the address corresponding to the pte to be checked
6707 * @ptent: the pte to be checked
02491447 6708 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6709 *
6710 * Returns
6711 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6712 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6713 * move charge. if @target is not NULL, the page is stored in target->page
6714 * with extra refcnt got(Callers should handle it).
02491447
DN
6715 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6716 * target for charge migration. if @target is not NULL, the entry is stored
6717 * in target->ent.
4ffef5fe
DN
6718 *
6719 * Called with pte lock held.
6720 */
4ffef5fe
DN
6721union mc_target {
6722 struct page *page;
02491447 6723 swp_entry_t ent;
4ffef5fe
DN
6724};
6725
4ffef5fe 6726enum mc_target_type {
8d32ff84 6727 MC_TARGET_NONE = 0,
4ffef5fe 6728 MC_TARGET_PAGE,
02491447 6729 MC_TARGET_SWAP,
4ffef5fe
DN
6730};
6731
90254a65
DN
6732static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6733 unsigned long addr, pte_t ptent)
4ffef5fe 6734{
90254a65 6735 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6736
90254a65
DN
6737 if (!page || !page_mapped(page))
6738 return NULL;
6739 if (PageAnon(page)) {
6740 /* we don't move shared anon */
4b91355e 6741 if (!move_anon())
90254a65 6742 return NULL;
87946a72
DN
6743 } else if (!move_file())
6744 /* we ignore mapcount for file pages */
90254a65
DN
6745 return NULL;
6746 if (!get_page_unless_zero(page))
6747 return NULL;
6748
6749 return page;
6750}
6751
4b91355e 6752#ifdef CONFIG_SWAP
90254a65
DN
6753static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6754 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6755{
90254a65
DN
6756 struct page *page = NULL;
6757 swp_entry_t ent = pte_to_swp_entry(ptent);
6758
6759 if (!move_anon() || non_swap_entry(ent))
6760 return NULL;
4b91355e
KH
6761 /*
6762 * Because lookup_swap_cache() updates some statistics counter,
6763 * we call find_get_page() with swapper_space directly.
6764 */
33806f06 6765 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6766 if (do_swap_account)
6767 entry->val = ent.val;
6768
6769 return page;
6770}
4b91355e
KH
6771#else
6772static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6773 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6774{
6775 return NULL;
6776}
6777#endif
90254a65 6778
87946a72
DN
6779static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6780 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6781{
6782 struct page *page = NULL;
87946a72
DN
6783 struct address_space *mapping;
6784 pgoff_t pgoff;
6785
6786 if (!vma->vm_file) /* anonymous vma */
6787 return NULL;
6788 if (!move_file())
6789 return NULL;
6790
87946a72
DN
6791 mapping = vma->vm_file->f_mapping;
6792 if (pte_none(ptent))
6793 pgoff = linear_page_index(vma, addr);
6794 else /* pte_file(ptent) is true */
6795 pgoff = pte_to_pgoff(ptent);
6796
6797 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6798 page = find_get_page(mapping, pgoff);
6799
6800#ifdef CONFIG_SWAP
6801 /* shmem/tmpfs may report page out on swap: account for that too. */
6802 if (radix_tree_exceptional_entry(page)) {
6803 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6804 if (do_swap_account)
aa3b1895 6805 *entry = swap;
33806f06 6806 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6807 }
aa3b1895 6808#endif
87946a72
DN
6809 return page;
6810}
6811
8d32ff84 6812static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6813 unsigned long addr, pte_t ptent, union mc_target *target)
6814{
6815 struct page *page = NULL;
6816 struct page_cgroup *pc;
8d32ff84 6817 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6818 swp_entry_t ent = { .val = 0 };
6819
6820 if (pte_present(ptent))
6821 page = mc_handle_present_pte(vma, addr, ptent);
6822 else if (is_swap_pte(ptent))
6823 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6824 else if (pte_none(ptent) || pte_file(ptent))
6825 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6826
6827 if (!page && !ent.val)
8d32ff84 6828 return ret;
02491447
DN
6829 if (page) {
6830 pc = lookup_page_cgroup(page);
6831 /*
6832 * Do only loose check w/o page_cgroup lock.
6833 * mem_cgroup_move_account() checks the pc is valid or not under
6834 * the lock.
6835 */
6836 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6837 ret = MC_TARGET_PAGE;
6838 if (target)
6839 target->page = page;
6840 }
6841 if (!ret || !target)
6842 put_page(page);
6843 }
90254a65
DN
6844 /* There is a swap entry and a page doesn't exist or isn't charged */
6845 if (ent.val && !ret &&
34c00c31 6846 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6847 ret = MC_TARGET_SWAP;
6848 if (target)
6849 target->ent = ent;
4ffef5fe 6850 }
4ffef5fe
DN
6851 return ret;
6852}
6853
12724850
NH
6854#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6855/*
6856 * We don't consider swapping or file mapped pages because THP does not
6857 * support them for now.
6858 * Caller should make sure that pmd_trans_huge(pmd) is true.
6859 */
6860static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6861 unsigned long addr, pmd_t pmd, union mc_target *target)
6862{
6863 struct page *page = NULL;
6864 struct page_cgroup *pc;
6865 enum mc_target_type ret = MC_TARGET_NONE;
6866
6867 page = pmd_page(pmd);
6868 VM_BUG_ON(!page || !PageHead(page));
6869 if (!move_anon())
6870 return ret;
6871 pc = lookup_page_cgroup(page);
6872 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6873 ret = MC_TARGET_PAGE;
6874 if (target) {
6875 get_page(page);
6876 target->page = page;
6877 }
6878 }
6879 return ret;
6880}
6881#else
6882static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6883 unsigned long addr, pmd_t pmd, union mc_target *target)
6884{
6885 return MC_TARGET_NONE;
6886}
6887#endif
6888
4ffef5fe
DN
6889static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6890 unsigned long addr, unsigned long end,
6891 struct mm_walk *walk)
6892{
6893 struct vm_area_struct *vma = walk->private;
6894 pte_t *pte;
6895 spinlock_t *ptl;
6896
bf929152 6897 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6898 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6899 mc.precharge += HPAGE_PMD_NR;
bf929152 6900 spin_unlock(ptl);
1a5a9906 6901 return 0;
12724850 6902 }
03319327 6903
45f83cef
AA
6904 if (pmd_trans_unstable(pmd))
6905 return 0;
4ffef5fe
DN
6906 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6907 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6908 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6909 mc.precharge++; /* increment precharge temporarily */
6910 pte_unmap_unlock(pte - 1, ptl);
6911 cond_resched();
6912
7dc74be0
DN
6913 return 0;
6914}
6915
4ffef5fe
DN
6916static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6917{
6918 unsigned long precharge;
6919 struct vm_area_struct *vma;
6920
dfe076b0 6921 down_read(&mm->mmap_sem);
4ffef5fe
DN
6922 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6923 struct mm_walk mem_cgroup_count_precharge_walk = {
6924 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6925 .mm = mm,
6926 .private = vma,
6927 };
6928 if (is_vm_hugetlb_page(vma))
6929 continue;
4ffef5fe
DN
6930 walk_page_range(vma->vm_start, vma->vm_end,
6931 &mem_cgroup_count_precharge_walk);
6932 }
dfe076b0 6933 up_read(&mm->mmap_sem);
4ffef5fe
DN
6934
6935 precharge = mc.precharge;
6936 mc.precharge = 0;
6937
6938 return precharge;
6939}
6940
4ffef5fe
DN
6941static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6942{
dfe076b0
DN
6943 unsigned long precharge = mem_cgroup_count_precharge(mm);
6944
6945 VM_BUG_ON(mc.moving_task);
6946 mc.moving_task = current;
6947 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6948}
6949
dfe076b0
DN
6950/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6951static void __mem_cgroup_clear_mc(void)
4ffef5fe 6952{
2bd9bb20
KH
6953 struct mem_cgroup *from = mc.from;
6954 struct mem_cgroup *to = mc.to;
4050377b 6955 int i;
2bd9bb20 6956
4ffef5fe 6957 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6958 if (mc.precharge) {
6959 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6960 mc.precharge = 0;
6961 }
6962 /*
6963 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6964 * we must uncharge here.
6965 */
6966 if (mc.moved_charge) {
6967 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6968 mc.moved_charge = 0;
4ffef5fe 6969 }
483c30b5
DN
6970 /* we must fixup refcnts and charges */
6971 if (mc.moved_swap) {
483c30b5
DN
6972 /* uncharge swap account from the old cgroup */
6973 if (!mem_cgroup_is_root(mc.from))
6974 res_counter_uncharge(&mc.from->memsw,
6975 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6976
6977 for (i = 0; i < mc.moved_swap; i++)
6978 css_put(&mc.from->css);
483c30b5
DN
6979
6980 if (!mem_cgroup_is_root(mc.to)) {
6981 /*
6982 * we charged both to->res and to->memsw, so we should
6983 * uncharge to->res.
6984 */
6985 res_counter_uncharge(&mc.to->res,
6986 PAGE_SIZE * mc.moved_swap);
483c30b5 6987 }
4050377b 6988 /* we've already done css_get(mc.to) */
483c30b5
DN
6989 mc.moved_swap = 0;
6990 }
dfe076b0
DN
6991 memcg_oom_recover(from);
6992 memcg_oom_recover(to);
6993 wake_up_all(&mc.waitq);
6994}
6995
6996static void mem_cgroup_clear_mc(void)
6997{
6998 struct mem_cgroup *from = mc.from;
6999
7000 /*
7001 * we must clear moving_task before waking up waiters at the end of
7002 * task migration.
7003 */
7004 mc.moving_task = NULL;
7005 __mem_cgroup_clear_mc();
2bd9bb20 7006 spin_lock(&mc.lock);
4ffef5fe
DN
7007 mc.from = NULL;
7008 mc.to = NULL;
2bd9bb20 7009 spin_unlock(&mc.lock);
32047e2a 7010 mem_cgroup_end_move(from);
4ffef5fe
DN
7011}
7012
eb95419b 7013static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7014 struct cgroup_taskset *tset)
7dc74be0 7015{
2f7ee569 7016 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 7017 int ret = 0;
eb95419b 7018 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 7019 unsigned long move_charge_at_immigrate;
7dc74be0 7020
ee5e8472
GC
7021 /*
7022 * We are now commited to this value whatever it is. Changes in this
7023 * tunable will only affect upcoming migrations, not the current one.
7024 * So we need to save it, and keep it going.
7025 */
7026 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7027 if (move_charge_at_immigrate) {
7dc74be0
DN
7028 struct mm_struct *mm;
7029 struct mem_cgroup *from = mem_cgroup_from_task(p);
7030
c0ff4b85 7031 VM_BUG_ON(from == memcg);
7dc74be0
DN
7032
7033 mm = get_task_mm(p);
7034 if (!mm)
7035 return 0;
7dc74be0 7036 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
7037 if (mm->owner == p) {
7038 VM_BUG_ON(mc.from);
7039 VM_BUG_ON(mc.to);
7040 VM_BUG_ON(mc.precharge);
854ffa8d 7041 VM_BUG_ON(mc.moved_charge);
483c30b5 7042 VM_BUG_ON(mc.moved_swap);
32047e2a 7043 mem_cgroup_start_move(from);
2bd9bb20 7044 spin_lock(&mc.lock);
4ffef5fe 7045 mc.from = from;
c0ff4b85 7046 mc.to = memcg;
ee5e8472 7047 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 7048 spin_unlock(&mc.lock);
dfe076b0 7049 /* We set mc.moving_task later */
4ffef5fe
DN
7050
7051 ret = mem_cgroup_precharge_mc(mm);
7052 if (ret)
7053 mem_cgroup_clear_mc();
dfe076b0
DN
7054 }
7055 mmput(mm);
7dc74be0
DN
7056 }
7057 return ret;
7058}
7059
eb95419b 7060static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7061 struct cgroup_taskset *tset)
7dc74be0 7062{
4ffef5fe 7063 mem_cgroup_clear_mc();
7dc74be0
DN
7064}
7065
4ffef5fe
DN
7066static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7067 unsigned long addr, unsigned long end,
7068 struct mm_walk *walk)
7dc74be0 7069{
4ffef5fe
DN
7070 int ret = 0;
7071 struct vm_area_struct *vma = walk->private;
7072 pte_t *pte;
7073 spinlock_t *ptl;
12724850
NH
7074 enum mc_target_type target_type;
7075 union mc_target target;
7076 struct page *page;
7077 struct page_cgroup *pc;
4ffef5fe 7078
12724850
NH
7079 /*
7080 * We don't take compound_lock() here but no race with splitting thp
7081 * happens because:
7082 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7083 * under splitting, which means there's no concurrent thp split,
7084 * - if another thread runs into split_huge_page() just after we
7085 * entered this if-block, the thread must wait for page table lock
7086 * to be unlocked in __split_huge_page_splitting(), where the main
7087 * part of thp split is not executed yet.
7088 */
bf929152 7089 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 7090 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 7091 spin_unlock(ptl);
12724850
NH
7092 return 0;
7093 }
7094 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7095 if (target_type == MC_TARGET_PAGE) {
7096 page = target.page;
7097 if (!isolate_lru_page(page)) {
7098 pc = lookup_page_cgroup(page);
7099 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 7100 pc, mc.from, mc.to)) {
12724850
NH
7101 mc.precharge -= HPAGE_PMD_NR;
7102 mc.moved_charge += HPAGE_PMD_NR;
7103 }
7104 putback_lru_page(page);
7105 }
7106 put_page(page);
7107 }
bf929152 7108 spin_unlock(ptl);
1a5a9906 7109 return 0;
12724850
NH
7110 }
7111
45f83cef
AA
7112 if (pmd_trans_unstable(pmd))
7113 return 0;
4ffef5fe
DN
7114retry:
7115 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7116 for (; addr != end; addr += PAGE_SIZE) {
7117 pte_t ptent = *(pte++);
02491447 7118 swp_entry_t ent;
4ffef5fe
DN
7119
7120 if (!mc.precharge)
7121 break;
7122
8d32ff84 7123 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7124 case MC_TARGET_PAGE:
7125 page = target.page;
7126 if (isolate_lru_page(page))
7127 goto put;
7128 pc = lookup_page_cgroup(page);
7ec99d62 7129 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7130 mc.from, mc.to)) {
4ffef5fe 7131 mc.precharge--;
854ffa8d
DN
7132 /* we uncharge from mc.from later. */
7133 mc.moved_charge++;
4ffef5fe
DN
7134 }
7135 putback_lru_page(page);
8d32ff84 7136put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7137 put_page(page);
7138 break;
02491447
DN
7139 case MC_TARGET_SWAP:
7140 ent = target.ent;
e91cbb42 7141 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7142 mc.precharge--;
483c30b5
DN
7143 /* we fixup refcnts and charges later. */
7144 mc.moved_swap++;
7145 }
02491447 7146 break;
4ffef5fe
DN
7147 default:
7148 break;
7149 }
7150 }
7151 pte_unmap_unlock(pte - 1, ptl);
7152 cond_resched();
7153
7154 if (addr != end) {
7155 /*
7156 * We have consumed all precharges we got in can_attach().
7157 * We try charge one by one, but don't do any additional
7158 * charges to mc.to if we have failed in charge once in attach()
7159 * phase.
7160 */
854ffa8d 7161 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7162 if (!ret)
7163 goto retry;
7164 }
7165
7166 return ret;
7167}
7168
7169static void mem_cgroup_move_charge(struct mm_struct *mm)
7170{
7171 struct vm_area_struct *vma;
7172
7173 lru_add_drain_all();
dfe076b0
DN
7174retry:
7175 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7176 /*
7177 * Someone who are holding the mmap_sem might be waiting in
7178 * waitq. So we cancel all extra charges, wake up all waiters,
7179 * and retry. Because we cancel precharges, we might not be able
7180 * to move enough charges, but moving charge is a best-effort
7181 * feature anyway, so it wouldn't be a big problem.
7182 */
7183 __mem_cgroup_clear_mc();
7184 cond_resched();
7185 goto retry;
7186 }
4ffef5fe
DN
7187 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7188 int ret;
7189 struct mm_walk mem_cgroup_move_charge_walk = {
7190 .pmd_entry = mem_cgroup_move_charge_pte_range,
7191 .mm = mm,
7192 .private = vma,
7193 };
7194 if (is_vm_hugetlb_page(vma))
7195 continue;
4ffef5fe
DN
7196 ret = walk_page_range(vma->vm_start, vma->vm_end,
7197 &mem_cgroup_move_charge_walk);
7198 if (ret)
7199 /*
7200 * means we have consumed all precharges and failed in
7201 * doing additional charge. Just abandon here.
7202 */
7203 break;
7204 }
dfe076b0 7205 up_read(&mm->mmap_sem);
7dc74be0
DN
7206}
7207
eb95419b 7208static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7209 struct cgroup_taskset *tset)
67e465a7 7210{
2f7ee569 7211 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7212 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7213
dfe076b0 7214 if (mm) {
a433658c
KM
7215 if (mc.to)
7216 mem_cgroup_move_charge(mm);
dfe076b0
DN
7217 mmput(mm);
7218 }
a433658c
KM
7219 if (mc.to)
7220 mem_cgroup_clear_mc();
67e465a7 7221}
5cfb80a7 7222#else /* !CONFIG_MMU */
eb95419b 7223static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7224 struct cgroup_taskset *tset)
5cfb80a7
DN
7225{
7226 return 0;
7227}
eb95419b 7228static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7229 struct cgroup_taskset *tset)
5cfb80a7
DN
7230{
7231}
eb95419b 7232static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7233 struct cgroup_taskset *tset)
5cfb80a7
DN
7234{
7235}
7236#endif
67e465a7 7237
f00baae7
TH
7238/*
7239 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7240 * to verify sane_behavior flag on each mount attempt.
7241 */
eb95419b 7242static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7243{
7244 /*
7245 * use_hierarchy is forced with sane_behavior. cgroup core
7246 * guarantees that @root doesn't have any children, so turning it
7247 * on for the root memcg is enough.
7248 */
eb95419b
TH
7249 if (cgroup_sane_behavior(root_css->cgroup))
7250 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7251}
7252
8cdea7c0
BS
7253struct cgroup_subsys mem_cgroup_subsys = {
7254 .name = "memory",
7255 .subsys_id = mem_cgroup_subsys_id,
92fb9748 7256 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7257 .css_online = mem_cgroup_css_online,
92fb9748
TH
7258 .css_offline = mem_cgroup_css_offline,
7259 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7260 .can_attach = mem_cgroup_can_attach,
7261 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7262 .attach = mem_cgroup_move_task,
f00baae7 7263 .bind = mem_cgroup_bind,
6bc10349 7264 .base_cftypes = mem_cgroup_files,
6d12e2d8 7265 .early_init = 0,
8cdea7c0 7266};
c077719b 7267
c255a458 7268#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7269static int __init enable_swap_account(char *s)
7270{
a2c8990a 7271 if (!strcmp(s, "1"))
a42c390c 7272 really_do_swap_account = 1;
a2c8990a 7273 else if (!strcmp(s, "0"))
a42c390c
MH
7274 really_do_swap_account = 0;
7275 return 1;
7276}
a2c8990a 7277__setup("swapaccount=", enable_swap_account);
c077719b 7278
2d11085e
MH
7279static void __init memsw_file_init(void)
7280{
6acc8b02
MH
7281 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7282}
7283
7284static void __init enable_swap_cgroup(void)
7285{
7286 if (!mem_cgroup_disabled() && really_do_swap_account) {
7287 do_swap_account = 1;
7288 memsw_file_init();
7289 }
2d11085e 7290}
6acc8b02 7291
2d11085e 7292#else
6acc8b02 7293static void __init enable_swap_cgroup(void)
2d11085e
MH
7294{
7295}
c077719b 7296#endif
2d11085e
MH
7297
7298/*
1081312f
MH
7299 * subsys_initcall() for memory controller.
7300 *
7301 * Some parts like hotcpu_notifier() have to be initialized from this context
7302 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7303 * everything that doesn't depend on a specific mem_cgroup structure should
7304 * be initialized from here.
2d11085e
MH
7305 */
7306static int __init mem_cgroup_init(void)
7307{
7308 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7309 enable_swap_cgroup();
bb4cc1a8 7310 mem_cgroup_soft_limit_tree_init();
e4777496 7311 memcg_stock_init();
2d11085e
MH
7312 return 0;
7313}
7314subsys_initcall(mem_cgroup_init);