memcg: clear pc->mem_cgroup if necessary.
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
93 MEM_CGROUP_STAT_NSTATS,
94};
95
e9f8974f
JW
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
102 MEM_CGROUP_EVENTS_NSTATS,
103};
7a159cc9
JW
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 113 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
114 MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 118#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 119
d52aa412 120struct mem_cgroup_stat_cpu {
7a159cc9 121 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 123 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
124};
125
527a5ec9
JW
126struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
131};
132
6d12e2d8
KH
133/*
134 * per-zone information in memory controller.
135 */
6d12e2d8 136struct mem_cgroup_per_zone {
6290df54 137 struct lruvec lruvec;
b69408e8 138 unsigned long count[NR_LRU_LISTS];
3e2f41f1 139
527a5ec9
JW
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
3e2f41f1 142 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
4e416953
BS
147 struct mem_cgroup *mem; /* Back pointer, we cannot */
148 /* use container_of */
6d12e2d8
KH
149};
150/* Macro for accessing counter */
151#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
152
153struct mem_cgroup_per_node {
154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155};
156
157struct mem_cgroup_lru_info {
158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159};
160
f64c3f54
BS
161/*
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
164 */
165
166struct mem_cgroup_tree_per_zone {
167 struct rb_root rb_root;
168 spinlock_t lock;
169};
170
171struct mem_cgroup_tree_per_node {
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173};
174
175struct mem_cgroup_tree {
176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177};
178
179static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
2e72b634
KS
181struct mem_cgroup_threshold {
182 struct eventfd_ctx *eventfd;
183 u64 threshold;
184};
185
9490ff27 186/* For threshold */
2e72b634
KS
187struct mem_cgroup_threshold_ary {
188 /* An array index points to threshold just below usage. */
5407a562 189 int current_threshold;
2e72b634
KS
190 /* Size of entries[] */
191 unsigned int size;
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries[0];
194};
2c488db2
KS
195
196struct mem_cgroup_thresholds {
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary *primary;
199 /*
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
203 */
204 struct mem_cgroup_threshold_ary *spare;
205};
206
9490ff27
KH
207/* for OOM */
208struct mem_cgroup_eventfd_list {
209 struct list_head list;
210 struct eventfd_ctx *eventfd;
211};
2e72b634 212
c0ff4b85
R
213static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 215
8cdea7c0
BS
216/*
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
221 *
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
8cdea7c0
BS
226 */
227struct mem_cgroup {
228 struct cgroup_subsys_state css;
229 /*
230 * the counter to account for memory usage
231 */
232 struct res_counter res;
8c7c6e34
KH
233 /*
234 * the counter to account for mem+swap usage.
235 */
236 struct res_counter memsw;
78fb7466
PE
237 /*
238 * Per cgroup active and inactive list, similar to the
239 * per zone LRU lists.
78fb7466 240 */
6d12e2d8 241 struct mem_cgroup_lru_info info;
889976db
YH
242 int last_scanned_node;
243#if MAX_NUMNODES > 1
244 nodemask_t scan_nodes;
453a9bf3
KH
245 atomic_t numainfo_events;
246 atomic_t numainfo_updating;
889976db 247#endif
18f59ea7
BS
248 /*
249 * Should the accounting and control be hierarchical, per subtree?
250 */
251 bool use_hierarchy;
79dfdacc
MH
252
253 bool oom_lock;
254 atomic_t under_oom;
255
8c7c6e34 256 atomic_t refcnt;
14797e23 257
1f4c025b 258 int swappiness;
3c11ecf4
KH
259 /* OOM-Killer disable */
260 int oom_kill_disable;
a7885eb8 261
22a668d7
KH
262 /* set when res.limit == memsw.limit */
263 bool memsw_is_minimum;
264
2e72b634
KS
265 /* protect arrays of thresholds */
266 struct mutex thresholds_lock;
267
268 /* thresholds for memory usage. RCU-protected */
2c488db2 269 struct mem_cgroup_thresholds thresholds;
907860ed 270
2e72b634 271 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 272 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 273
9490ff27
KH
274 /* For oom notifier event fd */
275 struct list_head oom_notify;
185efc0f 276
7dc74be0
DN
277 /*
278 * Should we move charges of a task when a task is moved into this
279 * mem_cgroup ? And what type of charges should we move ?
280 */
281 unsigned long move_charge_at_immigrate;
d52aa412 282 /*
c62b1a3b 283 * percpu counter.
d52aa412 284 */
c62b1a3b 285 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
286 /*
287 * used when a cpu is offlined or other synchronizations
288 * See mem_cgroup_read_stat().
289 */
290 struct mem_cgroup_stat_cpu nocpu_base;
291 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
292
293#ifdef CONFIG_INET
294 struct tcp_memcontrol tcp_mem;
295#endif
8cdea7c0
BS
296};
297
7dc74be0
DN
298/* Stuffs for move charges at task migration. */
299/*
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
302 */
303enum move_type {
4ffef5fe 304 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 305 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
306 NR_MOVE_TYPE,
307};
308
4ffef5fe
DN
309/* "mc" and its members are protected by cgroup_mutex */
310static struct move_charge_struct {
b1dd693e 311 spinlock_t lock; /* for from, to */
4ffef5fe
DN
312 struct mem_cgroup *from;
313 struct mem_cgroup *to;
314 unsigned long precharge;
854ffa8d 315 unsigned long moved_charge;
483c30b5 316 unsigned long moved_swap;
8033b97c
DN
317 struct task_struct *moving_task; /* a task moving charges */
318 wait_queue_head_t waitq; /* a waitq for other context */
319} mc = {
2bd9bb20 320 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
321 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322};
4ffef5fe 323
90254a65
DN
324static bool move_anon(void)
325{
326 return test_bit(MOVE_CHARGE_TYPE_ANON,
327 &mc.to->move_charge_at_immigrate);
328}
329
87946a72
DN
330static bool move_file(void)
331{
332 return test_bit(MOVE_CHARGE_TYPE_FILE,
333 &mc.to->move_charge_at_immigrate);
334}
335
4e416953
BS
336/*
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
339 */
340#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
341#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
342
217bc319
KH
343enum charge_type {
344 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 346 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 347 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 349 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
350 NR_CHARGE_TYPE,
351};
352
8c7c6e34 353/* for encoding cft->private value on file */
65c64ce8
GC
354#define _MEM (0)
355#define _MEMSWAP (1)
356#define _OOM_TYPE (2)
8c7c6e34
KH
357#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
358#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
359#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
360/* Used for OOM nofiier */
361#define OOM_CONTROL (0)
8c7c6e34 362
75822b44
BS
363/*
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
365 */
366#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
367#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
369#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370
c0ff4b85
R
371static void mem_cgroup_get(struct mem_cgroup *memcg);
372static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
373
374/* Writing them here to avoid exposing memcg's inner layout */
375#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376#ifdef CONFIG_INET
377#include <net/sock.h>
d1a4c0b3 378#include <net/ip.h>
e1aab161
GC
379
380static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
381void sock_update_memcg(struct sock *sk)
382{
e1aab161
GC
383 if (static_branch(&memcg_socket_limit_enabled)) {
384 struct mem_cgroup *memcg;
385
386 BUG_ON(!sk->sk_prot->proto_cgroup);
387
f3f511e1
GC
388 /* Socket cloning can throw us here with sk_cgrp already
389 * filled. It won't however, necessarily happen from
390 * process context. So the test for root memcg given
391 * the current task's memcg won't help us in this case.
392 *
393 * Respecting the original socket's memcg is a better
394 * decision in this case.
395 */
396 if (sk->sk_cgrp) {
397 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
398 mem_cgroup_get(sk->sk_cgrp->memcg);
399 return;
400 }
401
e1aab161
GC
402 rcu_read_lock();
403 memcg = mem_cgroup_from_task(current);
404 if (!mem_cgroup_is_root(memcg)) {
405 mem_cgroup_get(memcg);
406 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
407 }
408 rcu_read_unlock();
409 }
410}
411EXPORT_SYMBOL(sock_update_memcg);
412
413void sock_release_memcg(struct sock *sk)
414{
415 if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
416 struct mem_cgroup *memcg;
417 WARN_ON(!sk->sk_cgrp->memcg);
418 memcg = sk->sk_cgrp->memcg;
419 mem_cgroup_put(memcg);
420 }
421}
d1a4c0b3
GC
422
423struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424{
425 if (!memcg || mem_cgroup_is_root(memcg))
426 return NULL;
427
428 return &memcg->tcp_mem.cg_proto;
429}
430EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
431#endif /* CONFIG_INET */
432#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433
c0ff4b85 434static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 435
f64c3f54 436static struct mem_cgroup_per_zone *
c0ff4b85 437mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 438{
c0ff4b85 439 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
440}
441
c0ff4b85 442struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 443{
c0ff4b85 444 return &memcg->css;
d324236b
WF
445}
446
f64c3f54 447static struct mem_cgroup_per_zone *
c0ff4b85 448page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 449{
97a6c37b
JW
450 int nid = page_to_nid(page);
451 int zid = page_zonenum(page);
f64c3f54 452
c0ff4b85 453 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
454}
455
456static struct mem_cgroup_tree_per_zone *
457soft_limit_tree_node_zone(int nid, int zid)
458{
459 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460}
461
462static struct mem_cgroup_tree_per_zone *
463soft_limit_tree_from_page(struct page *page)
464{
465 int nid = page_to_nid(page);
466 int zid = page_zonenum(page);
467
468 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469}
470
471static void
c0ff4b85 472__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 473 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
474 struct mem_cgroup_tree_per_zone *mctz,
475 unsigned long long new_usage_in_excess)
f64c3f54
BS
476{
477 struct rb_node **p = &mctz->rb_root.rb_node;
478 struct rb_node *parent = NULL;
479 struct mem_cgroup_per_zone *mz_node;
480
481 if (mz->on_tree)
482 return;
483
ef8745c1
KH
484 mz->usage_in_excess = new_usage_in_excess;
485 if (!mz->usage_in_excess)
486 return;
f64c3f54
BS
487 while (*p) {
488 parent = *p;
489 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490 tree_node);
491 if (mz->usage_in_excess < mz_node->usage_in_excess)
492 p = &(*p)->rb_left;
493 /*
494 * We can't avoid mem cgroups that are over their soft
495 * limit by the same amount
496 */
497 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498 p = &(*p)->rb_right;
499 }
500 rb_link_node(&mz->tree_node, parent, p);
501 rb_insert_color(&mz->tree_node, &mctz->rb_root);
502 mz->on_tree = true;
4e416953
BS
503}
504
505static void
c0ff4b85 506__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
507 struct mem_cgroup_per_zone *mz,
508 struct mem_cgroup_tree_per_zone *mctz)
509{
510 if (!mz->on_tree)
511 return;
512 rb_erase(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = false;
514}
515
f64c3f54 516static void
c0ff4b85 517mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
518 struct mem_cgroup_per_zone *mz,
519 struct mem_cgroup_tree_per_zone *mctz)
520{
521 spin_lock(&mctz->lock);
c0ff4b85 522 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
523 spin_unlock(&mctz->lock);
524}
525
f64c3f54 526
c0ff4b85 527static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 528{
ef8745c1 529 unsigned long long excess;
f64c3f54
BS
530 struct mem_cgroup_per_zone *mz;
531 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
532 int nid = page_to_nid(page);
533 int zid = page_zonenum(page);
f64c3f54
BS
534 mctz = soft_limit_tree_from_page(page);
535
536 /*
4e649152
KH
537 * Necessary to update all ancestors when hierarchy is used.
538 * because their event counter is not touched.
f64c3f54 539 */
c0ff4b85
R
540 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
543 /*
544 * We have to update the tree if mz is on RB-tree or
545 * mem is over its softlimit.
546 */
ef8745c1 547 if (excess || mz->on_tree) {
4e649152
KH
548 spin_lock(&mctz->lock);
549 /* if on-tree, remove it */
550 if (mz->on_tree)
c0ff4b85 551 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 552 /*
ef8745c1
KH
553 * Insert again. mz->usage_in_excess will be updated.
554 * If excess is 0, no tree ops.
4e649152 555 */
c0ff4b85 556 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
557 spin_unlock(&mctz->lock);
558 }
f64c3f54
BS
559 }
560}
561
c0ff4b85 562static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
563{
564 int node, zone;
565 struct mem_cgroup_per_zone *mz;
566 struct mem_cgroup_tree_per_zone *mctz;
567
568 for_each_node_state(node, N_POSSIBLE) {
569 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 570 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 571 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 572 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
573 }
574 }
575}
576
4e416953
BS
577static struct mem_cgroup_per_zone *
578__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579{
580 struct rb_node *rightmost = NULL;
26251eaf 581 struct mem_cgroup_per_zone *mz;
4e416953
BS
582
583retry:
26251eaf 584 mz = NULL;
4e416953
BS
585 rightmost = rb_last(&mctz->rb_root);
586 if (!rightmost)
587 goto done; /* Nothing to reclaim from */
588
589 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590 /*
591 * Remove the node now but someone else can add it back,
592 * we will to add it back at the end of reclaim to its correct
593 * position in the tree.
594 */
595 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 !css_tryget(&mz->mem->css))
598 goto retry;
599done:
600 return mz;
601}
602
603static struct mem_cgroup_per_zone *
604mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605{
606 struct mem_cgroup_per_zone *mz;
607
608 spin_lock(&mctz->lock);
609 mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 spin_unlock(&mctz->lock);
611 return mz;
612}
613
711d3d2c
KH
614/*
615 * Implementation Note: reading percpu statistics for memcg.
616 *
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
621 *
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
627 *
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
632 */
c0ff4b85 633static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 634 enum mem_cgroup_stat_index idx)
c62b1a3b 635{
7a159cc9 636 long val = 0;
c62b1a3b 637 int cpu;
c62b1a3b 638
711d3d2c
KH
639 get_online_cpus();
640 for_each_online_cpu(cpu)
c0ff4b85 641 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 642#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
643 spin_lock(&memcg->pcp_counter_lock);
644 val += memcg->nocpu_base.count[idx];
645 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
646#endif
647 put_online_cpus();
c62b1a3b
KH
648 return val;
649}
650
c0ff4b85 651static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
652 bool charge)
653{
654 int val = (charge) ? 1 : -1;
c0ff4b85 655 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
656}
657
c0ff4b85 658static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
659 enum mem_cgroup_events_index idx)
660{
661 unsigned long val = 0;
662 int cpu;
663
664 for_each_online_cpu(cpu)
c0ff4b85 665 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 666#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
667 spin_lock(&memcg->pcp_counter_lock);
668 val += memcg->nocpu_base.events[idx];
669 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
670#endif
671 return val;
672}
673
c0ff4b85 674static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
e401f176 675 bool file, int nr_pages)
d52aa412 676{
c62b1a3b
KH
677 preempt_disable();
678
e401f176 679 if (file)
c0ff4b85
R
680 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681 nr_pages);
d52aa412 682 else
c0ff4b85
R
683 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684 nr_pages);
55e462b0 685
e401f176
KH
686 /* pagein of a big page is an event. So, ignore page size */
687 if (nr_pages > 0)
c0ff4b85 688 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 689 else {
c0ff4b85 690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
691 nr_pages = -nr_pages; /* for event */
692 }
e401f176 693
c0ff4b85 694 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 695
c62b1a3b 696 preempt_enable();
6d12e2d8
KH
697}
698
bb2a0de9 699unsigned long
c0ff4b85 700mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 701 unsigned int lru_mask)
889976db
YH
702{
703 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
704 enum lru_list l;
705 unsigned long ret = 0;
706
c0ff4b85 707 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9
KH
708
709 for_each_lru(l) {
710 if (BIT(l) & lru_mask)
711 ret += MEM_CGROUP_ZSTAT(mz, l);
712 }
713 return ret;
714}
715
716static unsigned long
c0ff4b85 717mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
718 int nid, unsigned int lru_mask)
719{
889976db
YH
720 u64 total = 0;
721 int zid;
722
bb2a0de9 723 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
724 total += mem_cgroup_zone_nr_lru_pages(memcg,
725 nid, zid, lru_mask);
bb2a0de9 726
889976db
YH
727 return total;
728}
bb2a0de9 729
c0ff4b85 730static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 731 unsigned int lru_mask)
6d12e2d8 732{
889976db 733 int nid;
6d12e2d8
KH
734 u64 total = 0;
735
bb2a0de9 736 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 737 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 738 return total;
d52aa412
KH
739}
740
f53d7ce3
JW
741static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742 enum mem_cgroup_events_target target)
7a159cc9
JW
743{
744 unsigned long val, next;
745
4799401f
SR
746 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 748 /* from time_after() in jiffies.h */
f53d7ce3
JW
749 if ((long)next - (long)val < 0) {
750 switch (target) {
751 case MEM_CGROUP_TARGET_THRESH:
752 next = val + THRESHOLDS_EVENTS_TARGET;
753 break;
754 case MEM_CGROUP_TARGET_SOFTLIMIT:
755 next = val + SOFTLIMIT_EVENTS_TARGET;
756 break;
757 case MEM_CGROUP_TARGET_NUMAINFO:
758 next = val + NUMAINFO_EVENTS_TARGET;
759 break;
760 default:
761 break;
762 }
763 __this_cpu_write(memcg->stat->targets[target], next);
764 return true;
7a159cc9 765 }
f53d7ce3 766 return false;
d2265e6f
KH
767}
768
769/*
770 * Check events in order.
771 *
772 */
c0ff4b85 773static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 774{
4799401f 775 preempt_disable();
d2265e6f 776 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
777 if (unlikely(mem_cgroup_event_ratelimit(memcg,
778 MEM_CGROUP_TARGET_THRESH))) {
779 bool do_softlimit, do_numainfo;
780
781 do_softlimit = mem_cgroup_event_ratelimit(memcg,
782 MEM_CGROUP_TARGET_SOFTLIMIT);
783#if MAX_NUMNODES > 1
784 do_numainfo = mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_NUMAINFO);
786#endif
787 preempt_enable();
788
c0ff4b85 789 mem_cgroup_threshold(memcg);
f53d7ce3 790 if (unlikely(do_softlimit))
c0ff4b85 791 mem_cgroup_update_tree(memcg, page);
453a9bf3 792#if MAX_NUMNODES > 1
f53d7ce3 793 if (unlikely(do_numainfo))
c0ff4b85 794 atomic_inc(&memcg->numainfo_events);
453a9bf3 795#endif
f53d7ce3
JW
796 } else
797 preempt_enable();
d2265e6f
KH
798}
799
d1a4c0b3 800struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
801{
802 return container_of(cgroup_subsys_state(cont,
803 mem_cgroup_subsys_id), struct mem_cgroup,
804 css);
805}
806
cf475ad2 807struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 808{
31a78f23
BS
809 /*
810 * mm_update_next_owner() may clear mm->owner to NULL
811 * if it races with swapoff, page migration, etc.
812 * So this can be called with p == NULL.
813 */
814 if (unlikely(!p))
815 return NULL;
816
78fb7466
PE
817 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
818 struct mem_cgroup, css);
819}
820
a433658c 821struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 822{
c0ff4b85 823 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
824
825 if (!mm)
826 return NULL;
54595fe2
KH
827 /*
828 * Because we have no locks, mm->owner's may be being moved to other
829 * cgroup. We use css_tryget() here even if this looks
830 * pessimistic (rather than adding locks here).
831 */
832 rcu_read_lock();
833 do {
c0ff4b85
R
834 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
835 if (unlikely(!memcg))
54595fe2 836 break;
c0ff4b85 837 } while (!css_tryget(&memcg->css));
54595fe2 838 rcu_read_unlock();
c0ff4b85 839 return memcg;
54595fe2
KH
840}
841
5660048c
JW
842/**
843 * mem_cgroup_iter - iterate over memory cgroup hierarchy
844 * @root: hierarchy root
845 * @prev: previously returned memcg, NULL on first invocation
846 * @reclaim: cookie for shared reclaim walks, NULL for full walks
847 *
848 * Returns references to children of the hierarchy below @root, or
849 * @root itself, or %NULL after a full round-trip.
850 *
851 * Caller must pass the return value in @prev on subsequent
852 * invocations for reference counting, or use mem_cgroup_iter_break()
853 * to cancel a hierarchy walk before the round-trip is complete.
854 *
855 * Reclaimers can specify a zone and a priority level in @reclaim to
856 * divide up the memcgs in the hierarchy among all concurrent
857 * reclaimers operating on the same zone and priority.
858 */
859struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
860 struct mem_cgroup *prev,
861 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 862{
9f3a0d09
JW
863 struct mem_cgroup *memcg = NULL;
864 int id = 0;
711d3d2c 865
5660048c
JW
866 if (mem_cgroup_disabled())
867 return NULL;
868
9f3a0d09
JW
869 if (!root)
870 root = root_mem_cgroup;
7d74b06f 871
9f3a0d09
JW
872 if (prev && !reclaim)
873 id = css_id(&prev->css);
14067bb3 874
9f3a0d09
JW
875 if (prev && prev != root)
876 css_put(&prev->css);
14067bb3 877
9f3a0d09
JW
878 if (!root->use_hierarchy && root != root_mem_cgroup) {
879 if (prev)
880 return NULL;
881 return root;
882 }
14067bb3 883
9f3a0d09 884 while (!memcg) {
527a5ec9 885 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 886 struct cgroup_subsys_state *css;
711d3d2c 887
527a5ec9
JW
888 if (reclaim) {
889 int nid = zone_to_nid(reclaim->zone);
890 int zid = zone_idx(reclaim->zone);
891 struct mem_cgroup_per_zone *mz;
892
893 mz = mem_cgroup_zoneinfo(root, nid, zid);
894 iter = &mz->reclaim_iter[reclaim->priority];
895 if (prev && reclaim->generation != iter->generation)
896 return NULL;
897 id = iter->position;
898 }
7d74b06f 899
9f3a0d09
JW
900 rcu_read_lock();
901 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
902 if (css) {
903 if (css == &root->css || css_tryget(css))
904 memcg = container_of(css,
905 struct mem_cgroup, css);
906 } else
907 id = 0;
14067bb3 908 rcu_read_unlock();
14067bb3 909
527a5ec9
JW
910 if (reclaim) {
911 iter->position = id;
912 if (!css)
913 iter->generation++;
914 else if (!prev && memcg)
915 reclaim->generation = iter->generation;
916 }
9f3a0d09
JW
917
918 if (prev && !css)
919 return NULL;
920 }
921 return memcg;
14067bb3 922}
7d74b06f 923
5660048c
JW
924/**
925 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
926 * @root: hierarchy root
927 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
928 */
929void mem_cgroup_iter_break(struct mem_cgroup *root,
930 struct mem_cgroup *prev)
9f3a0d09
JW
931{
932 if (!root)
933 root = root_mem_cgroup;
934 if (prev && prev != root)
935 css_put(&prev->css);
936}
7d74b06f 937
9f3a0d09
JW
938/*
939 * Iteration constructs for visiting all cgroups (under a tree). If
940 * loops are exited prematurely (break), mem_cgroup_iter_break() must
941 * be used for reference counting.
942 */
943#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 944 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 945 iter != NULL; \
527a5ec9 946 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 947
9f3a0d09 948#define for_each_mem_cgroup(iter) \
527a5ec9 949 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 950 iter != NULL; \
527a5ec9 951 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 952
c0ff4b85 953static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 954{
c0ff4b85 955 return (memcg == root_mem_cgroup);
4b3bde4c
BS
956}
957
456f998e
YH
958void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
959{
c0ff4b85 960 struct mem_cgroup *memcg;
456f998e
YH
961
962 if (!mm)
963 return;
964
965 rcu_read_lock();
c0ff4b85
R
966 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
967 if (unlikely(!memcg))
456f998e
YH
968 goto out;
969
970 switch (idx) {
456f998e 971 case PGFAULT:
0e574a93
JW
972 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
973 break;
974 case PGMAJFAULT:
975 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
976 break;
977 default:
978 BUG();
979 }
980out:
981 rcu_read_unlock();
982}
983EXPORT_SYMBOL(mem_cgroup_count_vm_event);
984
925b7673
JW
985/**
986 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
987 * @zone: zone of the wanted lruvec
988 * @mem: memcg of the wanted lruvec
989 *
990 * Returns the lru list vector holding pages for the given @zone and
991 * @mem. This can be the global zone lruvec, if the memory controller
992 * is disabled.
993 */
994struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
995 struct mem_cgroup *memcg)
996{
997 struct mem_cgroup_per_zone *mz;
998
999 if (mem_cgroup_disabled())
1000 return &zone->lruvec;
1001
1002 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1003 return &mz->lruvec;
1004}
1005
08e552c6
KH
1006/*
1007 * Following LRU functions are allowed to be used without PCG_LOCK.
1008 * Operations are called by routine of global LRU independently from memcg.
1009 * What we have to take care of here is validness of pc->mem_cgroup.
1010 *
1011 * Changes to pc->mem_cgroup happens when
1012 * 1. charge
1013 * 2. moving account
1014 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1015 * It is added to LRU before charge.
1016 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1017 * When moving account, the page is not on LRU. It's isolated.
1018 */
4f98a2fe 1019
925b7673
JW
1020/**
1021 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1022 * @zone: zone of the page
1023 * @page: the page
1024 * @lru: current lru
1025 *
1026 * This function accounts for @page being added to @lru, and returns
1027 * the lruvec for the given @zone and the memcg @page is charged to.
1028 *
1029 * The callsite is then responsible for physically linking the page to
1030 * the returned lruvec->lists[@lru].
1031 */
1032struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1033 enum lru_list lru)
08e552c6 1034{
08e552c6 1035 struct mem_cgroup_per_zone *mz;
925b7673
JW
1036 struct mem_cgroup *memcg;
1037 struct page_cgroup *pc;
6d12e2d8 1038
f8d66542 1039 if (mem_cgroup_disabled())
925b7673
JW
1040 return &zone->lruvec;
1041
08e552c6 1042 pc = lookup_page_cgroup(page);
925b7673 1043 VM_BUG_ON(PageCgroupAcctLRU(pc));
544122e5 1044 /*
925b7673
JW
1045 * putback: charge:
1046 * SetPageLRU SetPageCgroupUsed
1047 * smp_mb smp_mb
1048 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1049 *
1050 * Ensure that one of the two sides adds the page to the memcg
1051 * LRU during a race.
544122e5 1052 */
925b7673
JW
1053 smp_mb();
1054 /*
1055 * If the page is uncharged, it may be freed soon, but it
1056 * could also be swap cache (readahead, swapoff) that needs to
1057 * be reclaimable in the future. root_mem_cgroup will babysit
1058 * it for the time being.
1059 */
1060 if (PageCgroupUsed(pc)) {
1061 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1062 smp_rmb();
1063 memcg = pc->mem_cgroup;
1064 SetPageCgroupAcctLRU(pc);
1065 } else
1066 memcg = root_mem_cgroup;
1067 mz = page_cgroup_zoneinfo(memcg, page);
1068 /* compound_order() is stabilized through lru_lock */
1069 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1070 return &mz->lruvec;
08e552c6 1071}
b69408e8 1072
925b7673
JW
1073/**
1074 * mem_cgroup_lru_del_list - account for removing an lru page
1075 * @page: the page
1076 * @lru: target lru
1077 *
1078 * This function accounts for @page being removed from @lru.
1079 *
1080 * The callsite is then responsible for physically unlinking
1081 * @page->lru.
3f58a829 1082 */
925b7673 1083void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1084{
1085 struct mem_cgroup_per_zone *mz;
925b7673 1086 struct mem_cgroup *memcg;
3f58a829 1087 struct page_cgroup *pc;
3f58a829
MK
1088
1089 if (mem_cgroup_disabled())
1090 return;
1091
1092 pc = lookup_page_cgroup(page);
925b7673
JW
1093 /*
1094 * root_mem_cgroup babysits uncharged LRU pages, but
1095 * PageCgroupUsed is cleared when the page is about to get
1096 * freed. PageCgroupAcctLRU remembers whether the
1097 * LRU-accounting happened against pc->mem_cgroup or
1098 * root_mem_cgroup.
1099 */
1100 if (TestClearPageCgroupAcctLRU(pc)) {
1101 VM_BUG_ON(!pc->mem_cgroup);
1102 memcg = pc->mem_cgroup;
1103 } else
1104 memcg = root_mem_cgroup;
1105 mz = page_cgroup_zoneinfo(memcg, page);
1106 /* huge page split is done under lru_lock. so, we have no races. */
1107 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
3f58a829
MK
1108}
1109
925b7673 1110void mem_cgroup_lru_del(struct page *page)
08e552c6 1111{
925b7673 1112 mem_cgroup_lru_del_list(page, page_lru(page));
6d12e2d8
KH
1113}
1114
925b7673
JW
1115/**
1116 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1117 * @zone: zone of the page
1118 * @page: the page
1119 * @from: current lru
1120 * @to: target lru
1121 *
1122 * This function accounts for @page being moved between the lrus @from
1123 * and @to, and returns the lruvec for the given @zone and the memcg
1124 * @page is charged to.
1125 *
1126 * The callsite is then responsible for physically relinking
1127 * @page->lru to the returned lruvec->lists[@to].
1128 */
1129struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1130 struct page *page,
1131 enum lru_list from,
1132 enum lru_list to)
66e1707b 1133{
925b7673
JW
1134 /* XXX: Optimize this, especially for @from == @to */
1135 mem_cgroup_lru_del_list(page, from);
1136 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1137}
544122e5 1138
3e92041d 1139/*
c0ff4b85 1140 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1141 * hierarchy subtree
1142 */
c0ff4b85
R
1143static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1144 struct mem_cgroup *memcg)
3e92041d 1145{
c0ff4b85
R
1146 if (root_memcg != memcg) {
1147 return (root_memcg->use_hierarchy &&
1148 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1149 }
1150
1151 return true;
1152}
1153
c0ff4b85 1154int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1155{
1156 int ret;
0b7f569e 1157 struct mem_cgroup *curr = NULL;
158e0a2d 1158 struct task_struct *p;
4c4a2214 1159
158e0a2d 1160 p = find_lock_task_mm(task);
de077d22
DR
1161 if (p) {
1162 curr = try_get_mem_cgroup_from_mm(p->mm);
1163 task_unlock(p);
1164 } else {
1165 /*
1166 * All threads may have already detached their mm's, but the oom
1167 * killer still needs to detect if they have already been oom
1168 * killed to prevent needlessly killing additional tasks.
1169 */
1170 task_lock(task);
1171 curr = mem_cgroup_from_task(task);
1172 if (curr)
1173 css_get(&curr->css);
1174 task_unlock(task);
1175 }
0b7f569e
KH
1176 if (!curr)
1177 return 0;
d31f56db 1178 /*
c0ff4b85 1179 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1180 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1181 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1182 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1183 */
c0ff4b85 1184 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1185 css_put(&curr->css);
4c4a2214
DR
1186 return ret;
1187}
1188
9b272977 1189int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1190{
9b272977
JW
1191 unsigned long inactive_ratio;
1192 int nid = zone_to_nid(zone);
1193 int zid = zone_idx(zone);
14797e23 1194 unsigned long inactive;
9b272977 1195 unsigned long active;
c772be93 1196 unsigned long gb;
14797e23 1197
9b272977
JW
1198 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1199 BIT(LRU_INACTIVE_ANON));
1200 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1201 BIT(LRU_ACTIVE_ANON));
14797e23 1202
c772be93
KM
1203 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1204 if (gb)
1205 inactive_ratio = int_sqrt(10 * gb);
1206 else
1207 inactive_ratio = 1;
1208
9b272977 1209 return inactive * inactive_ratio < active;
14797e23
KM
1210}
1211
9b272977 1212int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1213{
1214 unsigned long active;
1215 unsigned long inactive;
9b272977
JW
1216 int zid = zone_idx(zone);
1217 int nid = zone_to_nid(zone);
56e49d21 1218
9b272977
JW
1219 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1220 BIT(LRU_INACTIVE_FILE));
1221 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1222 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1223
1224 return (active > inactive);
1225}
1226
3e2f41f1
KM
1227struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1228 struct zone *zone)
1229{
13d7e3a2 1230 int nid = zone_to_nid(zone);
3e2f41f1
KM
1231 int zid = zone_idx(zone);
1232 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1233
1234 return &mz->reclaim_stat;
1235}
1236
1237struct zone_reclaim_stat *
1238mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1239{
1240 struct page_cgroup *pc;
1241 struct mem_cgroup_per_zone *mz;
1242
1243 if (mem_cgroup_disabled())
1244 return NULL;
1245
1246 pc = lookup_page_cgroup(page);
bd112db8
DN
1247 if (!PageCgroupUsed(pc))
1248 return NULL;
713735b4
JW
1249 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1250 smp_rmb();
97a6c37b 1251 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1252 return &mz->reclaim_stat;
1253}
1254
6d61ef40
BS
1255#define mem_cgroup_from_res_counter(counter, member) \
1256 container_of(counter, struct mem_cgroup, member)
1257
19942822 1258/**
9d11ea9f
JW
1259 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1260 * @mem: the memory cgroup
19942822 1261 *
9d11ea9f 1262 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1263 * pages.
19942822 1264 */
c0ff4b85 1265static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1266{
9d11ea9f
JW
1267 unsigned long long margin;
1268
c0ff4b85 1269 margin = res_counter_margin(&memcg->res);
9d11ea9f 1270 if (do_swap_account)
c0ff4b85 1271 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1272 return margin >> PAGE_SHIFT;
19942822
JW
1273}
1274
1f4c025b 1275int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1276{
1277 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1278
1279 /* root ? */
1280 if (cgrp->parent == NULL)
1281 return vm_swappiness;
1282
bf1ff263 1283 return memcg->swappiness;
a7885eb8
KM
1284}
1285
c0ff4b85 1286static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a
KH
1287{
1288 int cpu;
1489ebad
KH
1289
1290 get_online_cpus();
c0ff4b85 1291 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1292 for_each_online_cpu(cpu)
c0ff4b85
R
1293 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1294 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1295 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1296 put_online_cpus();
32047e2a
KH
1297
1298 synchronize_rcu();
1299}
1300
c0ff4b85 1301static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a
KH
1302{
1303 int cpu;
1304
c0ff4b85 1305 if (!memcg)
32047e2a 1306 return;
1489ebad 1307 get_online_cpus();
c0ff4b85 1308 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1309 for_each_online_cpu(cpu)
c0ff4b85
R
1310 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1311 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1312 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1313 put_online_cpus();
32047e2a
KH
1314}
1315/*
1316 * 2 routines for checking "mem" is under move_account() or not.
1317 *
1318 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1319 * for avoiding race in accounting. If true,
1320 * pc->mem_cgroup may be overwritten.
1321 *
1322 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1323 * under hierarchy of moving cgroups. This is for
1324 * waiting at hith-memory prressure caused by "move".
1325 */
1326
c0ff4b85 1327static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
32047e2a
KH
1328{
1329 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85 1330 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
32047e2a 1331}
4b534334 1332
c0ff4b85 1333static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1334{
2bd9bb20
KH
1335 struct mem_cgroup *from;
1336 struct mem_cgroup *to;
4b534334 1337 bool ret = false;
2bd9bb20
KH
1338 /*
1339 * Unlike task_move routines, we access mc.to, mc.from not under
1340 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1341 */
1342 spin_lock(&mc.lock);
1343 from = mc.from;
1344 to = mc.to;
1345 if (!from)
1346 goto unlock;
3e92041d 1347
c0ff4b85
R
1348 ret = mem_cgroup_same_or_subtree(memcg, from)
1349 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1350unlock:
1351 spin_unlock(&mc.lock);
4b534334
KH
1352 return ret;
1353}
1354
c0ff4b85 1355static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1356{
1357 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1358 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1359 DEFINE_WAIT(wait);
1360 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1361 /* moving charge context might have finished. */
1362 if (mc.moving_task)
1363 schedule();
1364 finish_wait(&mc.waitq, &wait);
1365 return true;
1366 }
1367 }
1368 return false;
1369}
1370
e222432b 1371/**
6a6135b6 1372 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1373 * @memcg: The memory cgroup that went over limit
1374 * @p: Task that is going to be killed
1375 *
1376 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1377 * enabled
1378 */
1379void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1380{
1381 struct cgroup *task_cgrp;
1382 struct cgroup *mem_cgrp;
1383 /*
1384 * Need a buffer in BSS, can't rely on allocations. The code relies
1385 * on the assumption that OOM is serialized for memory controller.
1386 * If this assumption is broken, revisit this code.
1387 */
1388 static char memcg_name[PATH_MAX];
1389 int ret;
1390
d31f56db 1391 if (!memcg || !p)
e222432b
BS
1392 return;
1393
1394
1395 rcu_read_lock();
1396
1397 mem_cgrp = memcg->css.cgroup;
1398 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1399
1400 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1401 if (ret < 0) {
1402 /*
1403 * Unfortunately, we are unable to convert to a useful name
1404 * But we'll still print out the usage information
1405 */
1406 rcu_read_unlock();
1407 goto done;
1408 }
1409 rcu_read_unlock();
1410
1411 printk(KERN_INFO "Task in %s killed", memcg_name);
1412
1413 rcu_read_lock();
1414 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1415 if (ret < 0) {
1416 rcu_read_unlock();
1417 goto done;
1418 }
1419 rcu_read_unlock();
1420
1421 /*
1422 * Continues from above, so we don't need an KERN_ level
1423 */
1424 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1425done:
1426
1427 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1428 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1429 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1430 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1431 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1432 "failcnt %llu\n",
1433 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1434 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1435 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1436}
1437
81d39c20
KH
1438/*
1439 * This function returns the number of memcg under hierarchy tree. Returns
1440 * 1(self count) if no children.
1441 */
c0ff4b85 1442static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1443{
1444 int num = 0;
7d74b06f
KH
1445 struct mem_cgroup *iter;
1446
c0ff4b85 1447 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1448 num++;
81d39c20
KH
1449 return num;
1450}
1451
a63d83f4
DR
1452/*
1453 * Return the memory (and swap, if configured) limit for a memcg.
1454 */
1455u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1456{
1457 u64 limit;
1458 u64 memsw;
1459
f3e8eb70
JW
1460 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1461 limit += total_swap_pages << PAGE_SHIFT;
1462
a63d83f4
DR
1463 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1464 /*
1465 * If memsw is finite and limits the amount of swap space available
1466 * to this memcg, return that limit.
1467 */
1468 return min(limit, memsw);
1469}
1470
5660048c
JW
1471static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1472 gfp_t gfp_mask,
1473 unsigned long flags)
1474{
1475 unsigned long total = 0;
1476 bool noswap = false;
1477 int loop;
1478
1479 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1480 noswap = true;
1481 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1482 noswap = true;
1483
1484 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1485 if (loop)
1486 drain_all_stock_async(memcg);
1487 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1488 /*
1489 * Allow limit shrinkers, which are triggered directly
1490 * by userspace, to catch signals and stop reclaim
1491 * after minimal progress, regardless of the margin.
1492 */
1493 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1494 break;
1495 if (mem_cgroup_margin(memcg))
1496 break;
1497 /*
1498 * If nothing was reclaimed after two attempts, there
1499 * may be no reclaimable pages in this hierarchy.
1500 */
1501 if (loop && !total)
1502 break;
1503 }
1504 return total;
1505}
1506
4d0c066d
KH
1507/**
1508 * test_mem_cgroup_node_reclaimable
1509 * @mem: the target memcg
1510 * @nid: the node ID to be checked.
1511 * @noswap : specify true here if the user wants flle only information.
1512 *
1513 * This function returns whether the specified memcg contains any
1514 * reclaimable pages on a node. Returns true if there are any reclaimable
1515 * pages in the node.
1516 */
c0ff4b85 1517static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1518 int nid, bool noswap)
1519{
c0ff4b85 1520 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1521 return true;
1522 if (noswap || !total_swap_pages)
1523 return false;
c0ff4b85 1524 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1525 return true;
1526 return false;
1527
1528}
889976db
YH
1529#if MAX_NUMNODES > 1
1530
1531/*
1532 * Always updating the nodemask is not very good - even if we have an empty
1533 * list or the wrong list here, we can start from some node and traverse all
1534 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1535 *
1536 */
c0ff4b85 1537static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1538{
1539 int nid;
453a9bf3
KH
1540 /*
1541 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1542 * pagein/pageout changes since the last update.
1543 */
c0ff4b85 1544 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1545 return;
c0ff4b85 1546 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1547 return;
1548
889976db 1549 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1550 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1551
1552 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1553
c0ff4b85
R
1554 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1555 node_clear(nid, memcg->scan_nodes);
889976db 1556 }
453a9bf3 1557
c0ff4b85
R
1558 atomic_set(&memcg->numainfo_events, 0);
1559 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1560}
1561
1562/*
1563 * Selecting a node where we start reclaim from. Because what we need is just
1564 * reducing usage counter, start from anywhere is O,K. Considering
1565 * memory reclaim from current node, there are pros. and cons.
1566 *
1567 * Freeing memory from current node means freeing memory from a node which
1568 * we'll use or we've used. So, it may make LRU bad. And if several threads
1569 * hit limits, it will see a contention on a node. But freeing from remote
1570 * node means more costs for memory reclaim because of memory latency.
1571 *
1572 * Now, we use round-robin. Better algorithm is welcomed.
1573 */
c0ff4b85 1574int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1575{
1576 int node;
1577
c0ff4b85
R
1578 mem_cgroup_may_update_nodemask(memcg);
1579 node = memcg->last_scanned_node;
889976db 1580
c0ff4b85 1581 node = next_node(node, memcg->scan_nodes);
889976db 1582 if (node == MAX_NUMNODES)
c0ff4b85 1583 node = first_node(memcg->scan_nodes);
889976db
YH
1584 /*
1585 * We call this when we hit limit, not when pages are added to LRU.
1586 * No LRU may hold pages because all pages are UNEVICTABLE or
1587 * memcg is too small and all pages are not on LRU. In that case,
1588 * we use curret node.
1589 */
1590 if (unlikely(node == MAX_NUMNODES))
1591 node = numa_node_id();
1592
c0ff4b85 1593 memcg->last_scanned_node = node;
889976db
YH
1594 return node;
1595}
1596
4d0c066d
KH
1597/*
1598 * Check all nodes whether it contains reclaimable pages or not.
1599 * For quick scan, we make use of scan_nodes. This will allow us to skip
1600 * unused nodes. But scan_nodes is lazily updated and may not cotain
1601 * enough new information. We need to do double check.
1602 */
c0ff4b85 1603bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1604{
1605 int nid;
1606
1607 /*
1608 * quick check...making use of scan_node.
1609 * We can skip unused nodes.
1610 */
c0ff4b85
R
1611 if (!nodes_empty(memcg->scan_nodes)) {
1612 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1613 nid < MAX_NUMNODES;
c0ff4b85 1614 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1615
c0ff4b85 1616 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1617 return true;
1618 }
1619 }
1620 /*
1621 * Check rest of nodes.
1622 */
1623 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1624 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1625 continue;
c0ff4b85 1626 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1627 return true;
1628 }
1629 return false;
1630}
1631
889976db 1632#else
c0ff4b85 1633int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1634{
1635 return 0;
1636}
4d0c066d 1637
c0ff4b85 1638bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1639{
c0ff4b85 1640 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1641}
889976db
YH
1642#endif
1643
5660048c
JW
1644static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1645 struct zone *zone,
1646 gfp_t gfp_mask,
1647 unsigned long *total_scanned)
6d61ef40 1648{
9f3a0d09 1649 struct mem_cgroup *victim = NULL;
5660048c 1650 int total = 0;
04046e1a 1651 int loop = 0;
9d11ea9f 1652 unsigned long excess;
185efc0f 1653 unsigned long nr_scanned;
527a5ec9
JW
1654 struct mem_cgroup_reclaim_cookie reclaim = {
1655 .zone = zone,
1656 .priority = 0,
1657 };
9d11ea9f 1658
c0ff4b85 1659 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1660
4e416953 1661 while (1) {
527a5ec9 1662 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1663 if (!victim) {
04046e1a 1664 loop++;
4e416953
BS
1665 if (loop >= 2) {
1666 /*
1667 * If we have not been able to reclaim
1668 * anything, it might because there are
1669 * no reclaimable pages under this hierarchy
1670 */
5660048c 1671 if (!total)
4e416953 1672 break;
4e416953 1673 /*
25985edc 1674 * We want to do more targeted reclaim.
4e416953
BS
1675 * excess >> 2 is not to excessive so as to
1676 * reclaim too much, nor too less that we keep
1677 * coming back to reclaim from this cgroup
1678 */
1679 if (total >= (excess >> 2) ||
9f3a0d09 1680 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1681 break;
4e416953 1682 }
9f3a0d09 1683 continue;
4e416953 1684 }
5660048c 1685 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1686 continue;
5660048c
JW
1687 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1688 zone, &nr_scanned);
1689 *total_scanned += nr_scanned;
1690 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1691 break;
6d61ef40 1692 }
9f3a0d09 1693 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1694 return total;
6d61ef40
BS
1695}
1696
867578cb
KH
1697/*
1698 * Check OOM-Killer is already running under our hierarchy.
1699 * If someone is running, return false.
1af8efe9 1700 * Has to be called with memcg_oom_lock
867578cb 1701 */
c0ff4b85 1702static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1703{
79dfdacc 1704 struct mem_cgroup *iter, *failed = NULL;
a636b327 1705
9f3a0d09 1706 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1707 if (iter->oom_lock) {
79dfdacc
MH
1708 /*
1709 * this subtree of our hierarchy is already locked
1710 * so we cannot give a lock.
1711 */
79dfdacc 1712 failed = iter;
9f3a0d09
JW
1713 mem_cgroup_iter_break(memcg, iter);
1714 break;
23751be0
JW
1715 } else
1716 iter->oom_lock = true;
7d74b06f 1717 }
867578cb 1718
79dfdacc 1719 if (!failed)
23751be0 1720 return true;
79dfdacc
MH
1721
1722 /*
1723 * OK, we failed to lock the whole subtree so we have to clean up
1724 * what we set up to the failing subtree
1725 */
9f3a0d09 1726 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1727 if (iter == failed) {
9f3a0d09
JW
1728 mem_cgroup_iter_break(memcg, iter);
1729 break;
79dfdacc
MH
1730 }
1731 iter->oom_lock = false;
1732 }
23751be0 1733 return false;
a636b327 1734}
0b7f569e 1735
79dfdacc 1736/*
1af8efe9 1737 * Has to be called with memcg_oom_lock
79dfdacc 1738 */
c0ff4b85 1739static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1740{
7d74b06f
KH
1741 struct mem_cgroup *iter;
1742
c0ff4b85 1743 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1744 iter->oom_lock = false;
1745 return 0;
1746}
1747
c0ff4b85 1748static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1749{
1750 struct mem_cgroup *iter;
1751
c0ff4b85 1752 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1753 atomic_inc(&iter->under_oom);
1754}
1755
c0ff4b85 1756static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1757{
1758 struct mem_cgroup *iter;
1759
867578cb
KH
1760 /*
1761 * When a new child is created while the hierarchy is under oom,
1762 * mem_cgroup_oom_lock() may not be called. We have to use
1763 * atomic_add_unless() here.
1764 */
c0ff4b85 1765 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1766 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1767}
1768
1af8efe9 1769static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1770static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1771
dc98df5a
KH
1772struct oom_wait_info {
1773 struct mem_cgroup *mem;
1774 wait_queue_t wait;
1775};
1776
1777static int memcg_oom_wake_function(wait_queue_t *wait,
1778 unsigned mode, int sync, void *arg)
1779{
c0ff4b85
R
1780 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1781 *oom_wait_memcg;
dc98df5a
KH
1782 struct oom_wait_info *oom_wait_info;
1783
1784 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
c0ff4b85 1785 oom_wait_memcg = oom_wait_info->mem;
dc98df5a 1786
dc98df5a
KH
1787 /*
1788 * Both of oom_wait_info->mem and wake_mem are stable under us.
1789 * Then we can use css_is_ancestor without taking care of RCU.
1790 */
c0ff4b85
R
1791 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1792 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1793 return 0;
dc98df5a
KH
1794 return autoremove_wake_function(wait, mode, sync, arg);
1795}
1796
c0ff4b85 1797static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1798{
c0ff4b85
R
1799 /* for filtering, pass "memcg" as argument. */
1800 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1801}
1802
c0ff4b85 1803static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1804{
c0ff4b85
R
1805 if (memcg && atomic_read(&memcg->under_oom))
1806 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1807}
1808
867578cb
KH
1809/*
1810 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1811 */
c0ff4b85 1812bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
0b7f569e 1813{
dc98df5a 1814 struct oom_wait_info owait;
3c11ecf4 1815 bool locked, need_to_kill;
867578cb 1816
c0ff4b85 1817 owait.mem = memcg;
dc98df5a
KH
1818 owait.wait.flags = 0;
1819 owait.wait.func = memcg_oom_wake_function;
1820 owait.wait.private = current;
1821 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1822 need_to_kill = true;
c0ff4b85 1823 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1824
c0ff4b85 1825 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1826 spin_lock(&memcg_oom_lock);
c0ff4b85 1827 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1828 /*
1829 * Even if signal_pending(), we can't quit charge() loop without
1830 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1831 * under OOM is always welcomed, use TASK_KILLABLE here.
1832 */
3c11ecf4 1833 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1834 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1835 need_to_kill = false;
1836 if (locked)
c0ff4b85 1837 mem_cgroup_oom_notify(memcg);
1af8efe9 1838 spin_unlock(&memcg_oom_lock);
867578cb 1839
3c11ecf4
KH
1840 if (need_to_kill) {
1841 finish_wait(&memcg_oom_waitq, &owait.wait);
c0ff4b85 1842 mem_cgroup_out_of_memory(memcg, mask);
3c11ecf4 1843 } else {
867578cb 1844 schedule();
dc98df5a 1845 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1846 }
1af8efe9 1847 spin_lock(&memcg_oom_lock);
79dfdacc 1848 if (locked)
c0ff4b85
R
1849 mem_cgroup_oom_unlock(memcg);
1850 memcg_wakeup_oom(memcg);
1af8efe9 1851 spin_unlock(&memcg_oom_lock);
867578cb 1852
c0ff4b85 1853 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1854
867578cb
KH
1855 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1856 return false;
1857 /* Give chance to dying process */
715a5ee8 1858 schedule_timeout_uninterruptible(1);
867578cb 1859 return true;
0b7f569e
KH
1860}
1861
d69b042f
BS
1862/*
1863 * Currently used to update mapped file statistics, but the routine can be
1864 * generalized to update other statistics as well.
32047e2a
KH
1865 *
1866 * Notes: Race condition
1867 *
1868 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1869 * it tends to be costly. But considering some conditions, we doesn't need
1870 * to do so _always_.
1871 *
1872 * Considering "charge", lock_page_cgroup() is not required because all
1873 * file-stat operations happen after a page is attached to radix-tree. There
1874 * are no race with "charge".
1875 *
1876 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1877 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1878 * if there are race with "uncharge". Statistics itself is properly handled
1879 * by flags.
1880 *
1881 * Considering "move", this is an only case we see a race. To make the race
1882 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1883 * possibility of race condition. If there is, we take a lock.
d69b042f 1884 */
26174efd 1885
2a7106f2
GT
1886void mem_cgroup_update_page_stat(struct page *page,
1887 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1888{
c0ff4b85 1889 struct mem_cgroup *memcg;
32047e2a
KH
1890 struct page_cgroup *pc = lookup_page_cgroup(page);
1891 bool need_unlock = false;
dbd4ea78 1892 unsigned long uninitialized_var(flags);
d69b042f 1893
cfa44946 1894 if (mem_cgroup_disabled())
d69b042f
BS
1895 return;
1896
32047e2a 1897 rcu_read_lock();
c0ff4b85
R
1898 memcg = pc->mem_cgroup;
1899 if (unlikely(!memcg || !PageCgroupUsed(pc)))
32047e2a
KH
1900 goto out;
1901 /* pc->mem_cgroup is unstable ? */
c0ff4b85 1902 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
32047e2a 1903 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1904 move_lock_page_cgroup(pc, &flags);
32047e2a 1905 need_unlock = true;
c0ff4b85
R
1906 memcg = pc->mem_cgroup;
1907 if (!memcg || !PageCgroupUsed(pc))
32047e2a
KH
1908 goto out;
1909 }
26174efd 1910
26174efd 1911 switch (idx) {
2a7106f2 1912 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1913 if (val > 0)
1914 SetPageCgroupFileMapped(pc);
1915 else if (!page_mapped(page))
0c270f8f 1916 ClearPageCgroupFileMapped(pc);
2a7106f2 1917 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1918 break;
1919 default:
1920 BUG();
8725d541 1921 }
d69b042f 1922
c0ff4b85 1923 this_cpu_add(memcg->stat->count[idx], val);
2a7106f2 1924
32047e2a
KH
1925out:
1926 if (unlikely(need_unlock))
dbd4ea78 1927 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1928 rcu_read_unlock();
1929 return;
d69b042f 1930}
2a7106f2 1931EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1932
cdec2e42
KH
1933/*
1934 * size of first charge trial. "32" comes from vmscan.c's magic value.
1935 * TODO: maybe necessary to use big numbers in big irons.
1936 */
7ec99d62 1937#define CHARGE_BATCH 32U
cdec2e42
KH
1938struct memcg_stock_pcp {
1939 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1940 unsigned int nr_pages;
cdec2e42 1941 struct work_struct work;
26fe6168
KH
1942 unsigned long flags;
1943#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
1944};
1945static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1946static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1947
1948/*
11c9ea4e 1949 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1950 * from local stock and true is returned. If the stock is 0 or charges from a
1951 * cgroup which is not current target, returns false. This stock will be
1952 * refilled.
1953 */
c0ff4b85 1954static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
1955{
1956 struct memcg_stock_pcp *stock;
1957 bool ret = true;
1958
1959 stock = &get_cpu_var(memcg_stock);
c0ff4b85 1960 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 1961 stock->nr_pages--;
cdec2e42
KH
1962 else /* need to call res_counter_charge */
1963 ret = false;
1964 put_cpu_var(memcg_stock);
1965 return ret;
1966}
1967
1968/*
1969 * Returns stocks cached in percpu to res_counter and reset cached information.
1970 */
1971static void drain_stock(struct memcg_stock_pcp *stock)
1972{
1973 struct mem_cgroup *old = stock->cached;
1974
11c9ea4e
JW
1975 if (stock->nr_pages) {
1976 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1977
1978 res_counter_uncharge(&old->res, bytes);
cdec2e42 1979 if (do_swap_account)
11c9ea4e
JW
1980 res_counter_uncharge(&old->memsw, bytes);
1981 stock->nr_pages = 0;
cdec2e42
KH
1982 }
1983 stock->cached = NULL;
cdec2e42
KH
1984}
1985
1986/*
1987 * This must be called under preempt disabled or must be called by
1988 * a thread which is pinned to local cpu.
1989 */
1990static void drain_local_stock(struct work_struct *dummy)
1991{
1992 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1993 drain_stock(stock);
26fe6168 1994 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1995}
1996
1997/*
1998 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1999 * This will be consumed by consume_stock() function, later.
cdec2e42 2000 */
c0ff4b85 2001static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2002{
2003 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2004
c0ff4b85 2005 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2006 drain_stock(stock);
c0ff4b85 2007 stock->cached = memcg;
cdec2e42 2008 }
11c9ea4e 2009 stock->nr_pages += nr_pages;
cdec2e42
KH
2010 put_cpu_var(memcg_stock);
2011}
2012
2013/*
c0ff4b85 2014 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2015 * of the hierarchy under it. sync flag says whether we should block
2016 * until the work is done.
cdec2e42 2017 */
c0ff4b85 2018static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2019{
26fe6168 2020 int cpu, curcpu;
d38144b7 2021
cdec2e42 2022 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2023 get_online_cpus();
5af12d0e 2024 curcpu = get_cpu();
cdec2e42
KH
2025 for_each_online_cpu(cpu) {
2026 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2027 struct mem_cgroup *memcg;
26fe6168 2028
c0ff4b85
R
2029 memcg = stock->cached;
2030 if (!memcg || !stock->nr_pages)
26fe6168 2031 continue;
c0ff4b85 2032 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2033 continue;
d1a05b69
MH
2034 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2035 if (cpu == curcpu)
2036 drain_local_stock(&stock->work);
2037 else
2038 schedule_work_on(cpu, &stock->work);
2039 }
cdec2e42 2040 }
5af12d0e 2041 put_cpu();
d38144b7
MH
2042
2043 if (!sync)
2044 goto out;
2045
2046 for_each_online_cpu(cpu) {
2047 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2048 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2049 flush_work(&stock->work);
2050 }
2051out:
cdec2e42 2052 put_online_cpus();
d38144b7
MH
2053}
2054
2055/*
2056 * Tries to drain stocked charges in other cpus. This function is asynchronous
2057 * and just put a work per cpu for draining localy on each cpu. Caller can
2058 * expects some charges will be back to res_counter later but cannot wait for
2059 * it.
2060 */
c0ff4b85 2061static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2062{
9f50fad6
MH
2063 /*
2064 * If someone calls draining, avoid adding more kworker runs.
2065 */
2066 if (!mutex_trylock(&percpu_charge_mutex))
2067 return;
c0ff4b85 2068 drain_all_stock(root_memcg, false);
9f50fad6 2069 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2070}
2071
2072/* This is a synchronous drain interface. */
c0ff4b85 2073static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2074{
2075 /* called when force_empty is called */
9f50fad6 2076 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2077 drain_all_stock(root_memcg, true);
9f50fad6 2078 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2079}
2080
711d3d2c
KH
2081/*
2082 * This function drains percpu counter value from DEAD cpu and
2083 * move it to local cpu. Note that this function can be preempted.
2084 */
c0ff4b85 2085static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2086{
2087 int i;
2088
c0ff4b85 2089 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2090 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2091 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2092
c0ff4b85
R
2093 per_cpu(memcg->stat->count[i], cpu) = 0;
2094 memcg->nocpu_base.count[i] += x;
711d3d2c 2095 }
e9f8974f 2096 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2097 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2098
c0ff4b85
R
2099 per_cpu(memcg->stat->events[i], cpu) = 0;
2100 memcg->nocpu_base.events[i] += x;
e9f8974f 2101 }
1489ebad 2102 /* need to clear ON_MOVE value, works as a kind of lock. */
c0ff4b85
R
2103 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2104 spin_unlock(&memcg->pcp_counter_lock);
1489ebad
KH
2105}
2106
c0ff4b85 2107static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
1489ebad
KH
2108{
2109 int idx = MEM_CGROUP_ON_MOVE;
2110
c0ff4b85
R
2111 spin_lock(&memcg->pcp_counter_lock);
2112 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2113 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2114}
2115
2116static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2117 unsigned long action,
2118 void *hcpu)
2119{
2120 int cpu = (unsigned long)hcpu;
2121 struct memcg_stock_pcp *stock;
711d3d2c 2122 struct mem_cgroup *iter;
cdec2e42 2123
1489ebad 2124 if ((action == CPU_ONLINE)) {
9f3a0d09 2125 for_each_mem_cgroup(iter)
1489ebad
KH
2126 synchronize_mem_cgroup_on_move(iter, cpu);
2127 return NOTIFY_OK;
2128 }
2129
711d3d2c 2130 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2131 return NOTIFY_OK;
711d3d2c 2132
9f3a0d09 2133 for_each_mem_cgroup(iter)
711d3d2c
KH
2134 mem_cgroup_drain_pcp_counter(iter, cpu);
2135
cdec2e42
KH
2136 stock = &per_cpu(memcg_stock, cpu);
2137 drain_stock(stock);
2138 return NOTIFY_OK;
2139}
2140
4b534334
KH
2141
2142/* See __mem_cgroup_try_charge() for details */
2143enum {
2144 CHARGE_OK, /* success */
2145 CHARGE_RETRY, /* need to retry but retry is not bad */
2146 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2147 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2148 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2149};
2150
c0ff4b85 2151static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2152 unsigned int nr_pages, bool oom_check)
4b534334 2153{
7ec99d62 2154 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2155 struct mem_cgroup *mem_over_limit;
2156 struct res_counter *fail_res;
2157 unsigned long flags = 0;
2158 int ret;
2159
c0ff4b85 2160 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2161
2162 if (likely(!ret)) {
2163 if (!do_swap_account)
2164 return CHARGE_OK;
c0ff4b85 2165 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2166 if (likely(!ret))
2167 return CHARGE_OK;
2168
c0ff4b85 2169 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2170 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2171 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2172 } else
2173 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2174 /*
7ec99d62
JW
2175 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2176 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2177 *
2178 * Never reclaim on behalf of optional batching, retry with a
2179 * single page instead.
2180 */
7ec99d62 2181 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2182 return CHARGE_RETRY;
2183
2184 if (!(gfp_mask & __GFP_WAIT))
2185 return CHARGE_WOULDBLOCK;
2186
5660048c 2187 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2188 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2189 return CHARGE_RETRY;
4b534334 2190 /*
19942822
JW
2191 * Even though the limit is exceeded at this point, reclaim
2192 * may have been able to free some pages. Retry the charge
2193 * before killing the task.
2194 *
2195 * Only for regular pages, though: huge pages are rather
2196 * unlikely to succeed so close to the limit, and we fall back
2197 * to regular pages anyway in case of failure.
4b534334 2198 */
7ec99d62 2199 if (nr_pages == 1 && ret)
4b534334
KH
2200 return CHARGE_RETRY;
2201
2202 /*
2203 * At task move, charge accounts can be doubly counted. So, it's
2204 * better to wait until the end of task_move if something is going on.
2205 */
2206 if (mem_cgroup_wait_acct_move(mem_over_limit))
2207 return CHARGE_RETRY;
2208
2209 /* If we don't need to call oom-killer at el, return immediately */
2210 if (!oom_check)
2211 return CHARGE_NOMEM;
2212 /* check OOM */
2213 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2214 return CHARGE_OOM_DIE;
2215
2216 return CHARGE_RETRY;
2217}
2218
f817ed48
KH
2219/*
2220 * Unlike exported interface, "oom" parameter is added. if oom==true,
2221 * oom-killer can be invoked.
8a9f3ccd 2222 */
f817ed48 2223static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2224 gfp_t gfp_mask,
7ec99d62 2225 unsigned int nr_pages,
c0ff4b85 2226 struct mem_cgroup **ptr,
7ec99d62 2227 bool oom)
8a9f3ccd 2228{
7ec99d62 2229 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2230 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2231 struct mem_cgroup *memcg = NULL;
4b534334 2232 int ret;
a636b327 2233
867578cb
KH
2234 /*
2235 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2236 * in system level. So, allow to go ahead dying process in addition to
2237 * MEMDIE process.
2238 */
2239 if (unlikely(test_thread_flag(TIF_MEMDIE)
2240 || fatal_signal_pending(current)))
2241 goto bypass;
a636b327 2242
8a9f3ccd 2243 /*
3be91277
HD
2244 * We always charge the cgroup the mm_struct belongs to.
2245 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2246 * thread group leader migrates. It's possible that mm is not
2247 * set, if so charge the init_mm (happens for pagecache usage).
2248 */
c0ff4b85 2249 if (!*ptr && !mm)
f75ca962
KH
2250 goto bypass;
2251again:
c0ff4b85
R
2252 if (*ptr) { /* css should be a valid one */
2253 memcg = *ptr;
2254 VM_BUG_ON(css_is_removed(&memcg->css));
2255 if (mem_cgroup_is_root(memcg))
f75ca962 2256 goto done;
c0ff4b85 2257 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2258 goto done;
c0ff4b85 2259 css_get(&memcg->css);
4b534334 2260 } else {
f75ca962 2261 struct task_struct *p;
54595fe2 2262
f75ca962
KH
2263 rcu_read_lock();
2264 p = rcu_dereference(mm->owner);
f75ca962 2265 /*
ebb76ce1 2266 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2267 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2268 * race with swapoff. Then, we have small risk of mis-accouning.
2269 * But such kind of mis-account by race always happens because
2270 * we don't have cgroup_mutex(). It's overkill and we allo that
2271 * small race, here.
2272 * (*) swapoff at el will charge against mm-struct not against
2273 * task-struct. So, mm->owner can be NULL.
f75ca962 2274 */
c0ff4b85
R
2275 memcg = mem_cgroup_from_task(p);
2276 if (!memcg || mem_cgroup_is_root(memcg)) {
f75ca962
KH
2277 rcu_read_unlock();
2278 goto done;
2279 }
c0ff4b85 2280 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2281 /*
2282 * It seems dagerous to access memcg without css_get().
2283 * But considering how consume_stok works, it's not
2284 * necessary. If consume_stock success, some charges
2285 * from this memcg are cached on this cpu. So, we
2286 * don't need to call css_get()/css_tryget() before
2287 * calling consume_stock().
2288 */
2289 rcu_read_unlock();
2290 goto done;
2291 }
2292 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2293 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2294 rcu_read_unlock();
2295 goto again;
2296 }
2297 rcu_read_unlock();
2298 }
8a9f3ccd 2299
4b534334
KH
2300 do {
2301 bool oom_check;
7a81b88c 2302
4b534334 2303 /* If killed, bypass charge */
f75ca962 2304 if (fatal_signal_pending(current)) {
c0ff4b85 2305 css_put(&memcg->css);
4b534334 2306 goto bypass;
f75ca962 2307 }
6d61ef40 2308
4b534334
KH
2309 oom_check = false;
2310 if (oom && !nr_oom_retries) {
2311 oom_check = true;
2312 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2313 }
66e1707b 2314
c0ff4b85 2315 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2316 switch (ret) {
2317 case CHARGE_OK:
2318 break;
2319 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2320 batch = nr_pages;
c0ff4b85
R
2321 css_put(&memcg->css);
2322 memcg = NULL;
f75ca962 2323 goto again;
4b534334 2324 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2325 css_put(&memcg->css);
4b534334
KH
2326 goto nomem;
2327 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2328 if (!oom) {
c0ff4b85 2329 css_put(&memcg->css);
867578cb 2330 goto nomem;
f75ca962 2331 }
4b534334
KH
2332 /* If oom, we never return -ENOMEM */
2333 nr_oom_retries--;
2334 break;
2335 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2336 css_put(&memcg->css);
867578cb 2337 goto bypass;
66e1707b 2338 }
4b534334
KH
2339 } while (ret != CHARGE_OK);
2340
7ec99d62 2341 if (batch > nr_pages)
c0ff4b85
R
2342 refill_stock(memcg, batch - nr_pages);
2343 css_put(&memcg->css);
0c3e73e8 2344done:
c0ff4b85 2345 *ptr = memcg;
7a81b88c
KH
2346 return 0;
2347nomem:
c0ff4b85 2348 *ptr = NULL;
7a81b88c 2349 return -ENOMEM;
867578cb 2350bypass:
c0ff4b85 2351 *ptr = NULL;
867578cb 2352 return 0;
7a81b88c 2353}
8a9f3ccd 2354
a3032a2c
DN
2355/*
2356 * Somemtimes we have to undo a charge we got by try_charge().
2357 * This function is for that and do uncharge, put css's refcnt.
2358 * gotten by try_charge().
2359 */
c0ff4b85 2360static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2361 unsigned int nr_pages)
a3032a2c 2362{
c0ff4b85 2363 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2364 unsigned long bytes = nr_pages * PAGE_SIZE;
2365
c0ff4b85 2366 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2367 if (do_swap_account)
c0ff4b85 2368 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2369 }
854ffa8d
DN
2370}
2371
a3b2d692
KH
2372/*
2373 * A helper function to get mem_cgroup from ID. must be called under
2374 * rcu_read_lock(). The caller must check css_is_removed() or some if
2375 * it's concern. (dropping refcnt from swap can be called against removed
2376 * memcg.)
2377 */
2378static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2379{
2380 struct cgroup_subsys_state *css;
2381
2382 /* ID 0 is unused ID */
2383 if (!id)
2384 return NULL;
2385 css = css_lookup(&mem_cgroup_subsys, id);
2386 if (!css)
2387 return NULL;
2388 return container_of(css, struct mem_cgroup, css);
2389}
2390
e42d9d5d 2391struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2392{
c0ff4b85 2393 struct mem_cgroup *memcg = NULL;
3c776e64 2394 struct page_cgroup *pc;
a3b2d692 2395 unsigned short id;
b5a84319
KH
2396 swp_entry_t ent;
2397
3c776e64
DN
2398 VM_BUG_ON(!PageLocked(page));
2399
3c776e64 2400 pc = lookup_page_cgroup(page);
c0bd3f63 2401 lock_page_cgroup(pc);
a3b2d692 2402 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2403 memcg = pc->mem_cgroup;
2404 if (memcg && !css_tryget(&memcg->css))
2405 memcg = NULL;
e42d9d5d 2406 } else if (PageSwapCache(page)) {
3c776e64 2407 ent.val = page_private(page);
9fb4b7cc 2408 id = lookup_swap_cgroup_id(ent);
a3b2d692 2409 rcu_read_lock();
c0ff4b85
R
2410 memcg = mem_cgroup_lookup(id);
2411 if (memcg && !css_tryget(&memcg->css))
2412 memcg = NULL;
a3b2d692 2413 rcu_read_unlock();
3c776e64 2414 }
c0bd3f63 2415 unlock_page_cgroup(pc);
c0ff4b85 2416 return memcg;
b5a84319
KH
2417}
2418
c0ff4b85 2419static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2420 struct page *page,
7ec99d62 2421 unsigned int nr_pages,
ca3e0214 2422 struct page_cgroup *pc,
7ec99d62 2423 enum charge_type ctype)
7a81b88c 2424{
ca3e0214
KH
2425 lock_page_cgroup(pc);
2426 if (unlikely(PageCgroupUsed(pc))) {
2427 unlock_page_cgroup(pc);
c0ff4b85 2428 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2429 return;
2430 }
2431 /*
2432 * we don't need page_cgroup_lock about tail pages, becase they are not
2433 * accessed by any other context at this point.
2434 */
c0ff4b85 2435 pc->mem_cgroup = memcg;
261fb61a
KH
2436 /*
2437 * We access a page_cgroup asynchronously without lock_page_cgroup().
2438 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2439 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2440 * before USED bit, we need memory barrier here.
2441 * See mem_cgroup_add_lru_list(), etc.
2442 */
08e552c6 2443 smp_wmb();
4b3bde4c
BS
2444 switch (ctype) {
2445 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2446 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2447 SetPageCgroupCache(pc);
2448 SetPageCgroupUsed(pc);
2449 break;
2450 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2451 ClearPageCgroupCache(pc);
2452 SetPageCgroupUsed(pc);
2453 break;
2454 default:
2455 break;
2456 }
3be91277 2457
c0ff4b85 2458 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
52d4b9ac 2459 unlock_page_cgroup(pc);
430e4863
KH
2460 /*
2461 * "charge_statistics" updated event counter. Then, check it.
2462 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2463 * if they exceeds softlimit.
2464 */
c0ff4b85 2465 memcg_check_events(memcg, page);
7a81b88c 2466}
66e1707b 2467
ca3e0214
KH
2468#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2469
2470#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2471 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2472/*
2473 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2474 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2475 * charge/uncharge will be never happen and move_account() is done under
2476 * compound_lock(), so we don't have to take care of races.
ca3e0214 2477 */
e94c8a9c 2478void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2479{
2480 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2481 struct page_cgroup *pc;
2482 int i;
ca3e0214 2483
3d37c4a9
KH
2484 if (mem_cgroup_disabled())
2485 return;
e94c8a9c
KH
2486 for (i = 1; i < HPAGE_PMD_NR; i++) {
2487 pc = head_pc + i;
2488 pc->mem_cgroup = head_pc->mem_cgroup;
2489 smp_wmb();/* see __commit_charge() */
2490 /*
2491 * LRU flags cannot be copied because we need to add tail
2492 * page to LRU by generic call and our hooks will be called.
2493 */
2494 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2495 }
ca3e0214 2496
ece35ca8
KH
2497 if (PageCgroupAcctLRU(head_pc)) {
2498 enum lru_list lru;
2499 struct mem_cgroup_per_zone *mz;
ece35ca8 2500 /*
ece35ca8
KH
2501 * We hold lru_lock, then, reduce counter directly.
2502 */
2503 lru = page_lru(head);
97a6c37b 2504 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
e94c8a9c 2505 MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
ece35ca8 2506 }
ca3e0214
KH
2507}
2508#endif
2509
f817ed48 2510/**
de3638d9 2511 * mem_cgroup_move_account - move account of the page
5564e88b 2512 * @page: the page
7ec99d62 2513 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2514 * @pc: page_cgroup of the page.
2515 * @from: mem_cgroup which the page is moved from.
2516 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2517 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2518 *
2519 * The caller must confirm following.
08e552c6 2520 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2521 * - compound_lock is held when nr_pages > 1
f817ed48 2522 *
854ffa8d 2523 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2524 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2525 * true, this function does "uncharge" from old cgroup, but it doesn't if
2526 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2527 */
7ec99d62
JW
2528static int mem_cgroup_move_account(struct page *page,
2529 unsigned int nr_pages,
2530 struct page_cgroup *pc,
2531 struct mem_cgroup *from,
2532 struct mem_cgroup *to,
2533 bool uncharge)
f817ed48 2534{
de3638d9
JW
2535 unsigned long flags;
2536 int ret;
987eba66 2537
f817ed48 2538 VM_BUG_ON(from == to);
5564e88b 2539 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2540 /*
2541 * The page is isolated from LRU. So, collapse function
2542 * will not handle this page. But page splitting can happen.
2543 * Do this check under compound_page_lock(). The caller should
2544 * hold it.
2545 */
2546 ret = -EBUSY;
7ec99d62 2547 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2548 goto out;
2549
2550 lock_page_cgroup(pc);
2551
2552 ret = -EINVAL;
2553 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2554 goto unlock;
2555
2556 move_lock_page_cgroup(pc, &flags);
f817ed48 2557
8725d541 2558 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2559 /* Update mapped_file data for mem_cgroup */
2560 preempt_disable();
2561 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2562 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2563 preempt_enable();
d69b042f 2564 }
987eba66 2565 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2566 if (uncharge)
2567 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2568 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2569
854ffa8d 2570 /* caller should have done css_get */
08e552c6 2571 pc->mem_cgroup = to;
987eba66 2572 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2573 /*
2574 * We charges against "to" which may not have any tasks. Then, "to"
2575 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2576 * this function is just force_empty() and move charge, so it's
25985edc 2577 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2578 * status here.
88703267 2579 */
de3638d9
JW
2580 move_unlock_page_cgroup(pc, &flags);
2581 ret = 0;
2582unlock:
57f9fd7d 2583 unlock_page_cgroup(pc);
d2265e6f
KH
2584 /*
2585 * check events
2586 */
5564e88b
JW
2587 memcg_check_events(to, page);
2588 memcg_check_events(from, page);
de3638d9 2589out:
f817ed48
KH
2590 return ret;
2591}
2592
2593/*
2594 * move charges to its parent.
2595 */
2596
5564e88b
JW
2597static int mem_cgroup_move_parent(struct page *page,
2598 struct page_cgroup *pc,
f817ed48
KH
2599 struct mem_cgroup *child,
2600 gfp_t gfp_mask)
2601{
2602 struct cgroup *cg = child->css.cgroup;
2603 struct cgroup *pcg = cg->parent;
2604 struct mem_cgroup *parent;
7ec99d62 2605 unsigned int nr_pages;
4be4489f 2606 unsigned long uninitialized_var(flags);
f817ed48
KH
2607 int ret;
2608
2609 /* Is ROOT ? */
2610 if (!pcg)
2611 return -EINVAL;
2612
57f9fd7d
DN
2613 ret = -EBUSY;
2614 if (!get_page_unless_zero(page))
2615 goto out;
2616 if (isolate_lru_page(page))
2617 goto put;
52dbb905 2618
7ec99d62 2619 nr_pages = hpage_nr_pages(page);
08e552c6 2620
f817ed48 2621 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2622 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2623 if (ret || !parent)
57f9fd7d 2624 goto put_back;
f817ed48 2625
7ec99d62 2626 if (nr_pages > 1)
987eba66
KH
2627 flags = compound_lock_irqsave(page);
2628
7ec99d62 2629 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2630 if (ret)
7ec99d62 2631 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2632
7ec99d62 2633 if (nr_pages > 1)
987eba66 2634 compound_unlock_irqrestore(page, flags);
8dba474f 2635put_back:
08e552c6 2636 putback_lru_page(page);
57f9fd7d 2637put:
40d58138 2638 put_page(page);
57f9fd7d 2639out:
f817ed48
KH
2640 return ret;
2641}
2642
7a81b88c
KH
2643/*
2644 * Charge the memory controller for page usage.
2645 * Return
2646 * 0 if the charge was successful
2647 * < 0 if the cgroup is over its limit
2648 */
2649static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2650 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2651{
c0ff4b85 2652 struct mem_cgroup *memcg = NULL;
7ec99d62 2653 unsigned int nr_pages = 1;
7a81b88c 2654 struct page_cgroup *pc;
8493ae43 2655 bool oom = true;
7a81b88c 2656 int ret;
ec168510 2657
37c2ac78 2658 if (PageTransHuge(page)) {
7ec99d62 2659 nr_pages <<= compound_order(page);
37c2ac78 2660 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2661 /*
2662 * Never OOM-kill a process for a huge page. The
2663 * fault handler will fall back to regular pages.
2664 */
2665 oom = false;
37c2ac78 2666 }
7a81b88c
KH
2667
2668 pc = lookup_page_cgroup(page);
c0ff4b85
R
2669 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2670 if (ret || !memcg)
7a81b88c
KH
2671 return ret;
2672
c0ff4b85 2673 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
8a9f3ccd 2674 return 0;
8a9f3ccd
BS
2675}
2676
7a81b88c
KH
2677int mem_cgroup_newpage_charge(struct page *page,
2678 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2679{
f8d66542 2680 if (mem_cgroup_disabled())
cede86ac 2681 return 0;
7a0524cf
JW
2682 VM_BUG_ON(page_mapped(page));
2683 VM_BUG_ON(page->mapping && !PageAnon(page));
2684 VM_BUG_ON(!mm);
217bc319 2685 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2686 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2687}
2688
83aae4c7
DN
2689static void
2690__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2691 enum charge_type ctype);
2692
5a6475a4 2693static void
c0ff4b85 2694__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
5a6475a4
KH
2695 enum charge_type ctype)
2696{
2697 struct page_cgroup *pc = lookup_page_cgroup(page);
36b62ad5
KH
2698 struct zone *zone = page_zone(page);
2699 unsigned long flags;
2700 bool removed = false;
2701
5a6475a4
KH
2702 /*
2703 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2704 * is already on LRU. It means the page may on some other page_cgroup's
2705 * LRU. Take care of it.
2706 */
36b62ad5
KH
2707 spin_lock_irqsave(&zone->lru_lock, flags);
2708 if (PageLRU(page)) {
2709 del_page_from_lru_list(zone, page, page_lru(page));
2710 ClearPageLRU(page);
2711 removed = true;
2712 }
c0ff4b85 2713 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
36b62ad5
KH
2714 if (removed) {
2715 add_page_to_lru_list(zone, page, page_lru(page));
2716 SetPageLRU(page);
2717 }
2718 spin_unlock_irqrestore(&zone->lru_lock, flags);
5a6475a4
KH
2719 return;
2720}
2721
e1a1cd59
BS
2722int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2723 gfp_t gfp_mask)
8697d331 2724{
c0ff4b85 2725 struct mem_cgroup *memcg = NULL;
dc67d504 2726 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2727 int ret;
2728
f8d66542 2729 if (mem_cgroup_disabled())
cede86ac 2730 return 0;
52d4b9ac
KH
2731 if (PageCompound(page))
2732 return 0;
accf163e 2733
73045c47 2734 if (unlikely(!mm))
8697d331 2735 mm = &init_mm;
dc67d504
KH
2736 if (!page_is_file_cache(page))
2737 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2738
dc67d504
KH
2739 if (!PageSwapCache(page)) {
2740 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2741 WARN_ON_ONCE(PageLRU(page));
2742 } else { /* page is swapcache/shmem */
c0ff4b85 2743 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2744 if (!ret)
dc67d504
KH
2745 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2746 }
b5a84319 2747 return ret;
e8589cc1
KH
2748}
2749
54595fe2
KH
2750/*
2751 * While swap-in, try_charge -> commit or cancel, the page is locked.
2752 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2753 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2754 * "commit()" or removed by "cancel()"
2755 */
8c7c6e34
KH
2756int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2757 struct page *page,
72835c86 2758 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2759{
c0ff4b85 2760 struct mem_cgroup *memcg;
54595fe2 2761 int ret;
8c7c6e34 2762
72835c86 2763 *memcgp = NULL;
56039efa 2764
f8d66542 2765 if (mem_cgroup_disabled())
8c7c6e34
KH
2766 return 0;
2767
2768 if (!do_swap_account)
2769 goto charge_cur_mm;
8c7c6e34
KH
2770 /*
2771 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2772 * the pte, and even removed page from swap cache: in those cases
2773 * do_swap_page()'s pte_same() test will fail; but there's also a
2774 * KSM case which does need to charge the page.
8c7c6e34
KH
2775 */
2776 if (!PageSwapCache(page))
407f9c8b 2777 goto charge_cur_mm;
c0ff4b85
R
2778 memcg = try_get_mem_cgroup_from_page(page);
2779 if (!memcg)
54595fe2 2780 goto charge_cur_mm;
72835c86
JW
2781 *memcgp = memcg;
2782 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2783 css_put(&memcg->css);
54595fe2 2784 return ret;
8c7c6e34
KH
2785charge_cur_mm:
2786 if (unlikely(!mm))
2787 mm = &init_mm;
72835c86 2788 return __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
8c7c6e34
KH
2789}
2790
83aae4c7 2791static void
72835c86 2792__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2793 enum charge_type ctype)
7a81b88c 2794{
f8d66542 2795 if (mem_cgroup_disabled())
7a81b88c 2796 return;
72835c86 2797 if (!memcg)
7a81b88c 2798 return;
72835c86 2799 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2800
72835c86 2801 __mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
8c7c6e34
KH
2802 /*
2803 * Now swap is on-memory. This means this page may be
2804 * counted both as mem and swap....double count.
03f3c433
KH
2805 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2806 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2807 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2808 */
03f3c433 2809 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2810 swp_entry_t ent = {.val = page_private(page)};
72835c86 2811 struct mem_cgroup *swap_memcg;
a3b2d692 2812 unsigned short id;
a3b2d692
KH
2813
2814 id = swap_cgroup_record(ent, 0);
2815 rcu_read_lock();
72835c86
JW
2816 swap_memcg = mem_cgroup_lookup(id);
2817 if (swap_memcg) {
a3b2d692
KH
2818 /*
2819 * This recorded memcg can be obsolete one. So, avoid
2820 * calling css_tryget
2821 */
72835c86
JW
2822 if (!mem_cgroup_is_root(swap_memcg))
2823 res_counter_uncharge(&swap_memcg->memsw,
2824 PAGE_SIZE);
2825 mem_cgroup_swap_statistics(swap_memcg, false);
2826 mem_cgroup_put(swap_memcg);
8c7c6e34 2827 }
a3b2d692 2828 rcu_read_unlock();
8c7c6e34 2829 }
88703267
KH
2830 /*
2831 * At swapin, we may charge account against cgroup which has no tasks.
2832 * So, rmdir()->pre_destroy() can be called while we do this charge.
2833 * In that case, we need to call pre_destroy() again. check it here.
2834 */
72835c86 2835 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2836}
2837
72835c86
JW
2838void mem_cgroup_commit_charge_swapin(struct page *page,
2839 struct mem_cgroup *memcg)
83aae4c7 2840{
72835c86
JW
2841 __mem_cgroup_commit_charge_swapin(page, memcg,
2842 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2843}
2844
c0ff4b85 2845void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2846{
f8d66542 2847 if (mem_cgroup_disabled())
7a81b88c 2848 return;
c0ff4b85 2849 if (!memcg)
7a81b88c 2850 return;
c0ff4b85 2851 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2852}
2853
c0ff4b85 2854static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2855 unsigned int nr_pages,
2856 const enum charge_type ctype)
569b846d
KH
2857{
2858 struct memcg_batch_info *batch = NULL;
2859 bool uncharge_memsw = true;
7ec99d62 2860
569b846d
KH
2861 /* If swapout, usage of swap doesn't decrease */
2862 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2863 uncharge_memsw = false;
569b846d
KH
2864
2865 batch = &current->memcg_batch;
2866 /*
2867 * In usual, we do css_get() when we remember memcg pointer.
2868 * But in this case, we keep res->usage until end of a series of
2869 * uncharges. Then, it's ok to ignore memcg's refcnt.
2870 */
2871 if (!batch->memcg)
c0ff4b85 2872 batch->memcg = memcg;
3c11ecf4
KH
2873 /*
2874 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2875 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2876 * the same cgroup and we have chance to coalesce uncharges.
2877 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2878 * because we want to do uncharge as soon as possible.
2879 */
2880
2881 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2882 goto direct_uncharge;
2883
7ec99d62 2884 if (nr_pages > 1)
ec168510
AA
2885 goto direct_uncharge;
2886
569b846d
KH
2887 /*
2888 * In typical case, batch->memcg == mem. This means we can
2889 * merge a series of uncharges to an uncharge of res_counter.
2890 * If not, we uncharge res_counter ony by one.
2891 */
c0ff4b85 2892 if (batch->memcg != memcg)
569b846d
KH
2893 goto direct_uncharge;
2894 /* remember freed charge and uncharge it later */
7ffd4ca7 2895 batch->nr_pages++;
569b846d 2896 if (uncharge_memsw)
7ffd4ca7 2897 batch->memsw_nr_pages++;
569b846d
KH
2898 return;
2899direct_uncharge:
c0ff4b85 2900 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2901 if (uncharge_memsw)
c0ff4b85
R
2902 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2903 if (unlikely(batch->memcg != memcg))
2904 memcg_oom_recover(memcg);
569b846d
KH
2905 return;
2906}
7a81b88c 2907
8a9f3ccd 2908/*
69029cd5 2909 * uncharge if !page_mapped(page)
8a9f3ccd 2910 */
8c7c6e34 2911static struct mem_cgroup *
69029cd5 2912__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2913{
c0ff4b85 2914 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2915 unsigned int nr_pages = 1;
2916 struct page_cgroup *pc;
8a9f3ccd 2917
f8d66542 2918 if (mem_cgroup_disabled())
8c7c6e34 2919 return NULL;
4077960e 2920
d13d1443 2921 if (PageSwapCache(page))
8c7c6e34 2922 return NULL;
d13d1443 2923
37c2ac78 2924 if (PageTransHuge(page)) {
7ec99d62 2925 nr_pages <<= compound_order(page);
37c2ac78
AA
2926 VM_BUG_ON(!PageTransHuge(page));
2927 }
8697d331 2928 /*
3c541e14 2929 * Check if our page_cgroup is valid
8697d331 2930 */
52d4b9ac 2931 pc = lookup_page_cgroup(page);
cfa44946 2932 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2933 return NULL;
b9c565d5 2934
52d4b9ac 2935 lock_page_cgroup(pc);
d13d1443 2936
c0ff4b85 2937 memcg = pc->mem_cgroup;
8c7c6e34 2938
d13d1443
KH
2939 if (!PageCgroupUsed(pc))
2940 goto unlock_out;
2941
2942 switch (ctype) {
2943 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2944 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2945 /* See mem_cgroup_prepare_migration() */
2946 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2947 goto unlock_out;
2948 break;
2949 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2950 if (!PageAnon(page)) { /* Shared memory */
2951 if (page->mapping && !page_is_file_cache(page))
2952 goto unlock_out;
2953 } else if (page_mapped(page)) /* Anon */
2954 goto unlock_out;
2955 break;
2956 default:
2957 break;
52d4b9ac 2958 }
d13d1443 2959
c0ff4b85 2960 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
04046e1a 2961
52d4b9ac 2962 ClearPageCgroupUsed(pc);
544122e5
KH
2963 /*
2964 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2965 * freed from LRU. This is safe because uncharged page is expected not
2966 * to be reused (freed soon). Exception is SwapCache, it's handled by
2967 * special functions.
2968 */
b9c565d5 2969
52d4b9ac 2970 unlock_page_cgroup(pc);
f75ca962 2971 /*
c0ff4b85 2972 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
2973 * will never be freed.
2974 */
c0ff4b85 2975 memcg_check_events(memcg, page);
f75ca962 2976 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
2977 mem_cgroup_swap_statistics(memcg, true);
2978 mem_cgroup_get(memcg);
f75ca962 2979 }
c0ff4b85
R
2980 if (!mem_cgroup_is_root(memcg))
2981 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 2982
c0ff4b85 2983 return memcg;
d13d1443
KH
2984
2985unlock_out:
2986 unlock_page_cgroup(pc);
8c7c6e34 2987 return NULL;
3c541e14
BS
2988}
2989
69029cd5
KH
2990void mem_cgroup_uncharge_page(struct page *page)
2991{
52d4b9ac
KH
2992 /* early check. */
2993 if (page_mapped(page))
2994 return;
40f23a21 2995 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
2996 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2997}
2998
2999void mem_cgroup_uncharge_cache_page(struct page *page)
3000{
3001 VM_BUG_ON(page_mapped(page));
b7abea96 3002 VM_BUG_ON(page->mapping);
69029cd5
KH
3003 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3004}
3005
569b846d
KH
3006/*
3007 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3008 * In that cases, pages are freed continuously and we can expect pages
3009 * are in the same memcg. All these calls itself limits the number of
3010 * pages freed at once, then uncharge_start/end() is called properly.
3011 * This may be called prural(2) times in a context,
3012 */
3013
3014void mem_cgroup_uncharge_start(void)
3015{
3016 current->memcg_batch.do_batch++;
3017 /* We can do nest. */
3018 if (current->memcg_batch.do_batch == 1) {
3019 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3020 current->memcg_batch.nr_pages = 0;
3021 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3022 }
3023}
3024
3025void mem_cgroup_uncharge_end(void)
3026{
3027 struct memcg_batch_info *batch = &current->memcg_batch;
3028
3029 if (!batch->do_batch)
3030 return;
3031
3032 batch->do_batch--;
3033 if (batch->do_batch) /* If stacked, do nothing. */
3034 return;
3035
3036 if (!batch->memcg)
3037 return;
3038 /*
3039 * This "batch->memcg" is valid without any css_get/put etc...
3040 * bacause we hide charges behind us.
3041 */
7ffd4ca7
JW
3042 if (batch->nr_pages)
3043 res_counter_uncharge(&batch->memcg->res,
3044 batch->nr_pages * PAGE_SIZE);
3045 if (batch->memsw_nr_pages)
3046 res_counter_uncharge(&batch->memcg->memsw,
3047 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3048 memcg_oom_recover(batch->memcg);
569b846d
KH
3049 /* forget this pointer (for sanity check) */
3050 batch->memcg = NULL;
3051}
3052
4e5f01c2
KH
3053/*
3054 * A function for resetting pc->mem_cgroup for newly allocated pages.
3055 * This function should be called if the newpage will be added to LRU
3056 * before start accounting.
3057 */
3058void mem_cgroup_reset_owner(struct page *newpage)
3059{
3060 struct page_cgroup *pc;
3061
3062 if (mem_cgroup_disabled())
3063 return;
3064
3065 pc = lookup_page_cgroup(newpage);
3066 VM_BUG_ON(PageCgroupUsed(pc));
3067 pc->mem_cgroup = root_mem_cgroup;
3068}
3069
e767e056 3070#ifdef CONFIG_SWAP
8c7c6e34 3071/*
e767e056 3072 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3073 * memcg information is recorded to swap_cgroup of "ent"
3074 */
8a9478ca
KH
3075void
3076mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3077{
3078 struct mem_cgroup *memcg;
8a9478ca
KH
3079 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3080
3081 if (!swapout) /* this was a swap cache but the swap is unused ! */
3082 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3083
3084 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3085
f75ca962
KH
3086 /*
3087 * record memcg information, if swapout && memcg != NULL,
3088 * mem_cgroup_get() was called in uncharge().
3089 */
3090 if (do_swap_account && swapout && memcg)
a3b2d692 3091 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3092}
e767e056 3093#endif
8c7c6e34
KH
3094
3095#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3096/*
3097 * called from swap_entry_free(). remove record in swap_cgroup and
3098 * uncharge "memsw" account.
3099 */
3100void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3101{
8c7c6e34 3102 struct mem_cgroup *memcg;
a3b2d692 3103 unsigned short id;
8c7c6e34
KH
3104
3105 if (!do_swap_account)
3106 return;
3107
a3b2d692
KH
3108 id = swap_cgroup_record(ent, 0);
3109 rcu_read_lock();
3110 memcg = mem_cgroup_lookup(id);
8c7c6e34 3111 if (memcg) {
a3b2d692
KH
3112 /*
3113 * We uncharge this because swap is freed.
3114 * This memcg can be obsolete one. We avoid calling css_tryget
3115 */
0c3e73e8 3116 if (!mem_cgroup_is_root(memcg))
4e649152 3117 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3118 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3119 mem_cgroup_put(memcg);
3120 }
a3b2d692 3121 rcu_read_unlock();
d13d1443 3122}
02491447
DN
3123
3124/**
3125 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3126 * @entry: swap entry to be moved
3127 * @from: mem_cgroup which the entry is moved from
3128 * @to: mem_cgroup which the entry is moved to
483c30b5 3129 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3130 *
3131 * It succeeds only when the swap_cgroup's record for this entry is the same
3132 * as the mem_cgroup's id of @from.
3133 *
3134 * Returns 0 on success, -EINVAL on failure.
3135 *
3136 * The caller must have charged to @to, IOW, called res_counter_charge() about
3137 * both res and memsw, and called css_get().
3138 */
3139static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3140 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3141{
3142 unsigned short old_id, new_id;
3143
3144 old_id = css_id(&from->css);
3145 new_id = css_id(&to->css);
3146
3147 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3148 mem_cgroup_swap_statistics(from, false);
483c30b5 3149 mem_cgroup_swap_statistics(to, true);
02491447 3150 /*
483c30b5
DN
3151 * This function is only called from task migration context now.
3152 * It postpones res_counter and refcount handling till the end
3153 * of task migration(mem_cgroup_clear_mc()) for performance
3154 * improvement. But we cannot postpone mem_cgroup_get(to)
3155 * because if the process that has been moved to @to does
3156 * swap-in, the refcount of @to might be decreased to 0.
02491447 3157 */
02491447 3158 mem_cgroup_get(to);
483c30b5
DN
3159 if (need_fixup) {
3160 if (!mem_cgroup_is_root(from))
3161 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3162 mem_cgroup_put(from);
3163 /*
3164 * we charged both to->res and to->memsw, so we should
3165 * uncharge to->res.
3166 */
3167 if (!mem_cgroup_is_root(to))
3168 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3169 }
02491447
DN
3170 return 0;
3171 }
3172 return -EINVAL;
3173}
3174#else
3175static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3176 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3177{
3178 return -EINVAL;
3179}
8c7c6e34 3180#endif
d13d1443 3181
ae41be37 3182/*
01b1ae63
KH
3183 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3184 * page belongs to.
ae41be37 3185 */
ac39cf8c 3186int mem_cgroup_prepare_migration(struct page *page,
72835c86 3187 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3188{
c0ff4b85 3189 struct mem_cgroup *memcg = NULL;
7ec99d62 3190 struct page_cgroup *pc;
ac39cf8c 3191 enum charge_type ctype;
e8589cc1 3192 int ret = 0;
8869b8f6 3193
72835c86 3194 *memcgp = NULL;
56039efa 3195
ec168510 3196 VM_BUG_ON(PageTransHuge(page));
f8d66542 3197 if (mem_cgroup_disabled())
4077960e
BS
3198 return 0;
3199
52d4b9ac
KH
3200 pc = lookup_page_cgroup(page);
3201 lock_page_cgroup(pc);
3202 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3203 memcg = pc->mem_cgroup;
3204 css_get(&memcg->css);
ac39cf8c 3205 /*
3206 * At migrating an anonymous page, its mapcount goes down
3207 * to 0 and uncharge() will be called. But, even if it's fully
3208 * unmapped, migration may fail and this page has to be
3209 * charged again. We set MIGRATION flag here and delay uncharge
3210 * until end_migration() is called
3211 *
3212 * Corner Case Thinking
3213 * A)
3214 * When the old page was mapped as Anon and it's unmap-and-freed
3215 * while migration was ongoing.
3216 * If unmap finds the old page, uncharge() of it will be delayed
3217 * until end_migration(). If unmap finds a new page, it's
3218 * uncharged when it make mapcount to be 1->0. If unmap code
3219 * finds swap_migration_entry, the new page will not be mapped
3220 * and end_migration() will find it(mapcount==0).
3221 *
3222 * B)
3223 * When the old page was mapped but migraion fails, the kernel
3224 * remaps it. A charge for it is kept by MIGRATION flag even
3225 * if mapcount goes down to 0. We can do remap successfully
3226 * without charging it again.
3227 *
3228 * C)
3229 * The "old" page is under lock_page() until the end of
3230 * migration, so, the old page itself will not be swapped-out.
3231 * If the new page is swapped out before end_migraton, our
3232 * hook to usual swap-out path will catch the event.
3233 */
3234 if (PageAnon(page))
3235 SetPageCgroupMigration(pc);
e8589cc1 3236 }
52d4b9ac 3237 unlock_page_cgroup(pc);
ac39cf8c 3238 /*
3239 * If the page is not charged at this point,
3240 * we return here.
3241 */
c0ff4b85 3242 if (!memcg)
ac39cf8c 3243 return 0;
01b1ae63 3244
72835c86
JW
3245 *memcgp = memcg;
3246 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3247 css_put(&memcg->css);/* drop extra refcnt */
72835c86 3248 if (ret || *memcgp == NULL) {
ac39cf8c 3249 if (PageAnon(page)) {
3250 lock_page_cgroup(pc);
3251 ClearPageCgroupMigration(pc);
3252 unlock_page_cgroup(pc);
3253 /*
3254 * The old page may be fully unmapped while we kept it.
3255 */
3256 mem_cgroup_uncharge_page(page);
3257 }
3258 return -ENOMEM;
e8589cc1 3259 }
ac39cf8c 3260 /*
3261 * We charge new page before it's used/mapped. So, even if unlock_page()
3262 * is called before end_migration, we can catch all events on this new
3263 * page. In the case new page is migrated but not remapped, new page's
3264 * mapcount will be finally 0 and we call uncharge in end_migration().
3265 */
3266 pc = lookup_page_cgroup(newpage);
3267 if (PageAnon(page))
3268 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3269 else if (page_is_file_cache(page))
3270 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3271 else
3272 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
c0ff4b85 3273 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
e8589cc1 3274 return ret;
ae41be37 3275}
8869b8f6 3276
69029cd5 3277/* remove redundant charge if migration failed*/
c0ff4b85 3278void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3279 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3280{
ac39cf8c 3281 struct page *used, *unused;
01b1ae63 3282 struct page_cgroup *pc;
01b1ae63 3283
c0ff4b85 3284 if (!memcg)
01b1ae63 3285 return;
ac39cf8c 3286 /* blocks rmdir() */
c0ff4b85 3287 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3288 if (!migration_ok) {
ac39cf8c 3289 used = oldpage;
3290 unused = newpage;
01b1ae63 3291 } else {
ac39cf8c 3292 used = newpage;
01b1ae63
KH
3293 unused = oldpage;
3294 }
69029cd5 3295 /*
ac39cf8c 3296 * We disallowed uncharge of pages under migration because mapcount
3297 * of the page goes down to zero, temporarly.
3298 * Clear the flag and check the page should be charged.
01b1ae63 3299 */
ac39cf8c 3300 pc = lookup_page_cgroup(oldpage);
3301 lock_page_cgroup(pc);
3302 ClearPageCgroupMigration(pc);
3303 unlock_page_cgroup(pc);
01b1ae63 3304
ac39cf8c 3305 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3306
01b1ae63 3307 /*
ac39cf8c 3308 * If a page is a file cache, radix-tree replacement is very atomic
3309 * and we can skip this check. When it was an Anon page, its mapcount
3310 * goes down to 0. But because we added MIGRATION flage, it's not
3311 * uncharged yet. There are several case but page->mapcount check
3312 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3313 * check. (see prepare_charge() also)
69029cd5 3314 */
ac39cf8c 3315 if (PageAnon(used))
3316 mem_cgroup_uncharge_page(used);
88703267 3317 /*
ac39cf8c 3318 * At migration, we may charge account against cgroup which has no
3319 * tasks.
88703267
KH
3320 * So, rmdir()->pre_destroy() can be called while we do this charge.
3321 * In that case, we need to call pre_destroy() again. check it here.
3322 */
c0ff4b85 3323 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3324}
78fb7466 3325
ab936cbc
KH
3326/*
3327 * At replace page cache, newpage is not under any memcg but it's on
3328 * LRU. So, this function doesn't touch res_counter but handles LRU
3329 * in correct way. Both pages are locked so we cannot race with uncharge.
3330 */
3331void mem_cgroup_replace_page_cache(struct page *oldpage,
3332 struct page *newpage)
3333{
3334 struct mem_cgroup *memcg;
3335 struct page_cgroup *pc;
ab936cbc 3336 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3337
3338 if (mem_cgroup_disabled())
3339 return;
3340
3341 pc = lookup_page_cgroup(oldpage);
3342 /* fix accounting on old pages */
3343 lock_page_cgroup(pc);
3344 memcg = pc->mem_cgroup;
3345 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3346 ClearPageCgroupUsed(pc);
3347 unlock_page_cgroup(pc);
3348
3349 if (PageSwapBacked(oldpage))
3350 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3351
ab936cbc
KH
3352 /*
3353 * Even if newpage->mapping was NULL before starting replacement,
3354 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3355 * LRU while we overwrite pc->mem_cgroup.
3356 */
36b62ad5 3357 __mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
ab936cbc
KH
3358}
3359
f212ad7c
DN
3360#ifdef CONFIG_DEBUG_VM
3361static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3362{
3363 struct page_cgroup *pc;
3364
3365 pc = lookup_page_cgroup(page);
cfa44946
JW
3366 /*
3367 * Can be NULL while feeding pages into the page allocator for
3368 * the first time, i.e. during boot or memory hotplug;
3369 * or when mem_cgroup_disabled().
3370 */
f212ad7c
DN
3371 if (likely(pc) && PageCgroupUsed(pc))
3372 return pc;
3373 return NULL;
3374}
3375
3376bool mem_cgroup_bad_page_check(struct page *page)
3377{
3378 if (mem_cgroup_disabled())
3379 return false;
3380
3381 return lookup_page_cgroup_used(page) != NULL;
3382}
3383
3384void mem_cgroup_print_bad_page(struct page *page)
3385{
3386 struct page_cgroup *pc;
3387
3388 pc = lookup_page_cgroup_used(page);
3389 if (pc) {
3390 int ret = -1;
3391 char *path;
3392
3393 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3394 pc, pc->flags, pc->mem_cgroup);
3395
3396 path = kmalloc(PATH_MAX, GFP_KERNEL);
3397 if (path) {
3398 rcu_read_lock();
3399 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3400 path, PATH_MAX);
3401 rcu_read_unlock();
3402 }
3403
3404 printk(KERN_CONT "(%s)\n",
3405 (ret < 0) ? "cannot get the path" : path);
3406 kfree(path);
3407 }
3408}
3409#endif
3410
8c7c6e34
KH
3411static DEFINE_MUTEX(set_limit_mutex);
3412
d38d2a75 3413static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3414 unsigned long long val)
628f4235 3415{
81d39c20 3416 int retry_count;
3c11ecf4 3417 u64 memswlimit, memlimit;
628f4235 3418 int ret = 0;
81d39c20
KH
3419 int children = mem_cgroup_count_children(memcg);
3420 u64 curusage, oldusage;
3c11ecf4 3421 int enlarge;
81d39c20
KH
3422
3423 /*
3424 * For keeping hierarchical_reclaim simple, how long we should retry
3425 * is depends on callers. We set our retry-count to be function
3426 * of # of children which we should visit in this loop.
3427 */
3428 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3429
3430 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3431
3c11ecf4 3432 enlarge = 0;
8c7c6e34 3433 while (retry_count) {
628f4235
KH
3434 if (signal_pending(current)) {
3435 ret = -EINTR;
3436 break;
3437 }
8c7c6e34
KH
3438 /*
3439 * Rather than hide all in some function, I do this in
3440 * open coded manner. You see what this really does.
c0ff4b85 3441 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3442 */
3443 mutex_lock(&set_limit_mutex);
3444 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3445 if (memswlimit < val) {
3446 ret = -EINVAL;
3447 mutex_unlock(&set_limit_mutex);
628f4235
KH
3448 break;
3449 }
3c11ecf4
KH
3450
3451 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3452 if (memlimit < val)
3453 enlarge = 1;
3454
8c7c6e34 3455 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3456 if (!ret) {
3457 if (memswlimit == val)
3458 memcg->memsw_is_minimum = true;
3459 else
3460 memcg->memsw_is_minimum = false;
3461 }
8c7c6e34
KH
3462 mutex_unlock(&set_limit_mutex);
3463
3464 if (!ret)
3465 break;
3466
5660048c
JW
3467 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3468 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3469 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3470 /* Usage is reduced ? */
3471 if (curusage >= oldusage)
3472 retry_count--;
3473 else
3474 oldusage = curusage;
8c7c6e34 3475 }
3c11ecf4
KH
3476 if (!ret && enlarge)
3477 memcg_oom_recover(memcg);
14797e23 3478
8c7c6e34
KH
3479 return ret;
3480}
3481
338c8431
LZ
3482static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3483 unsigned long long val)
8c7c6e34 3484{
81d39c20 3485 int retry_count;
3c11ecf4 3486 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3487 int children = mem_cgroup_count_children(memcg);
3488 int ret = -EBUSY;
3c11ecf4 3489 int enlarge = 0;
8c7c6e34 3490
81d39c20
KH
3491 /* see mem_cgroup_resize_res_limit */
3492 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3493 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3494 while (retry_count) {
3495 if (signal_pending(current)) {
3496 ret = -EINTR;
3497 break;
3498 }
3499 /*
3500 * Rather than hide all in some function, I do this in
3501 * open coded manner. You see what this really does.
c0ff4b85 3502 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3503 */
3504 mutex_lock(&set_limit_mutex);
3505 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3506 if (memlimit > val) {
3507 ret = -EINVAL;
3508 mutex_unlock(&set_limit_mutex);
3509 break;
3510 }
3c11ecf4
KH
3511 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3512 if (memswlimit < val)
3513 enlarge = 1;
8c7c6e34 3514 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3515 if (!ret) {
3516 if (memlimit == val)
3517 memcg->memsw_is_minimum = true;
3518 else
3519 memcg->memsw_is_minimum = false;
3520 }
8c7c6e34
KH
3521 mutex_unlock(&set_limit_mutex);
3522
3523 if (!ret)
3524 break;
3525
5660048c
JW
3526 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3527 MEM_CGROUP_RECLAIM_NOSWAP |
3528 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3529 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3530 /* Usage is reduced ? */
8c7c6e34 3531 if (curusage >= oldusage)
628f4235 3532 retry_count--;
81d39c20
KH
3533 else
3534 oldusage = curusage;
628f4235 3535 }
3c11ecf4
KH
3536 if (!ret && enlarge)
3537 memcg_oom_recover(memcg);
628f4235
KH
3538 return ret;
3539}
3540
4e416953 3541unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3542 gfp_t gfp_mask,
3543 unsigned long *total_scanned)
4e416953
BS
3544{
3545 unsigned long nr_reclaimed = 0;
3546 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3547 unsigned long reclaimed;
3548 int loop = 0;
3549 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3550 unsigned long long excess;
0ae5e89c 3551 unsigned long nr_scanned;
4e416953
BS
3552
3553 if (order > 0)
3554 return 0;
3555
00918b6a 3556 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3557 /*
3558 * This loop can run a while, specially if mem_cgroup's continuously
3559 * keep exceeding their soft limit and putting the system under
3560 * pressure
3561 */
3562 do {
3563 if (next_mz)
3564 mz = next_mz;
3565 else
3566 mz = mem_cgroup_largest_soft_limit_node(mctz);
3567 if (!mz)
3568 break;
3569
0ae5e89c 3570 nr_scanned = 0;
5660048c
JW
3571 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3572 gfp_mask, &nr_scanned);
4e416953 3573 nr_reclaimed += reclaimed;
0ae5e89c 3574 *total_scanned += nr_scanned;
4e416953
BS
3575 spin_lock(&mctz->lock);
3576
3577 /*
3578 * If we failed to reclaim anything from this memory cgroup
3579 * it is time to move on to the next cgroup
3580 */
3581 next_mz = NULL;
3582 if (!reclaimed) {
3583 do {
3584 /*
3585 * Loop until we find yet another one.
3586 *
3587 * By the time we get the soft_limit lock
3588 * again, someone might have aded the
3589 * group back on the RB tree. Iterate to
3590 * make sure we get a different mem.
3591 * mem_cgroup_largest_soft_limit_node returns
3592 * NULL if no other cgroup is present on
3593 * the tree
3594 */
3595 next_mz =
3596 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3597 if (next_mz == mz)
4e416953 3598 css_put(&next_mz->mem->css);
39cc98f1 3599 else /* next_mz == NULL or other memcg */
4e416953
BS
3600 break;
3601 } while (1);
3602 }
4e416953 3603 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3604 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3605 /*
3606 * One school of thought says that we should not add
3607 * back the node to the tree if reclaim returns 0.
3608 * But our reclaim could return 0, simply because due
3609 * to priority we are exposing a smaller subset of
3610 * memory to reclaim from. Consider this as a longer
3611 * term TODO.
3612 */
ef8745c1
KH
3613 /* If excess == 0, no tree ops */
3614 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3615 spin_unlock(&mctz->lock);
3616 css_put(&mz->mem->css);
3617 loop++;
3618 /*
3619 * Could not reclaim anything and there are no more
3620 * mem cgroups to try or we seem to be looping without
3621 * reclaiming anything.
3622 */
3623 if (!nr_reclaimed &&
3624 (next_mz == NULL ||
3625 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3626 break;
3627 } while (!nr_reclaimed);
3628 if (next_mz)
3629 css_put(&next_mz->mem->css);
3630 return nr_reclaimed;
3631}
3632
cc847582
KH
3633/*
3634 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3635 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3636 */
c0ff4b85 3637static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3638 int node, int zid, enum lru_list lru)
cc847582 3639{
08e552c6 3640 struct mem_cgroup_per_zone *mz;
08e552c6 3641 unsigned long flags, loop;
072c56c1 3642 struct list_head *list;
925b7673
JW
3643 struct page *busy;
3644 struct zone *zone;
f817ed48 3645 int ret = 0;
072c56c1 3646
08e552c6 3647 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3648 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3649 list = &mz->lruvec.lists[lru];
cc847582 3650
f817ed48
KH
3651 loop = MEM_CGROUP_ZSTAT(mz, lru);
3652 /* give some margin against EBUSY etc...*/
3653 loop += 256;
3654 busy = NULL;
3655 while (loop--) {
925b7673 3656 struct page_cgroup *pc;
5564e88b
JW
3657 struct page *page;
3658
f817ed48 3659 ret = 0;
08e552c6 3660 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3661 if (list_empty(list)) {
08e552c6 3662 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3663 break;
f817ed48 3664 }
925b7673
JW
3665 page = list_entry(list->prev, struct page, lru);
3666 if (busy == page) {
3667 list_move(&page->lru, list);
648bcc77 3668 busy = NULL;
08e552c6 3669 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3670 continue;
3671 }
08e552c6 3672 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3673
925b7673 3674 pc = lookup_page_cgroup(page);
5564e88b 3675
c0ff4b85 3676 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
f817ed48 3677 if (ret == -ENOMEM)
52d4b9ac 3678 break;
f817ed48
KH
3679
3680 if (ret == -EBUSY || ret == -EINVAL) {
3681 /* found lock contention or "pc" is obsolete. */
925b7673 3682 busy = page;
f817ed48
KH
3683 cond_resched();
3684 } else
3685 busy = NULL;
cc847582 3686 }
08e552c6 3687
f817ed48
KH
3688 if (!ret && !list_empty(list))
3689 return -EBUSY;
3690 return ret;
cc847582
KH
3691}
3692
3693/*
3694 * make mem_cgroup's charge to be 0 if there is no task.
3695 * This enables deleting this mem_cgroup.
3696 */
c0ff4b85 3697static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3698{
f817ed48
KH
3699 int ret;
3700 int node, zid, shrink;
3701 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3702 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3703
c0ff4b85 3704 css_get(&memcg->css);
f817ed48
KH
3705
3706 shrink = 0;
c1e862c1
KH
3707 /* should free all ? */
3708 if (free_all)
3709 goto try_to_free;
f817ed48 3710move_account:
fce66477 3711 do {
f817ed48 3712 ret = -EBUSY;
c1e862c1
KH
3713 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3714 goto out;
3715 ret = -EINTR;
3716 if (signal_pending(current))
cc847582 3717 goto out;
52d4b9ac
KH
3718 /* This is for making all *used* pages to be on LRU. */
3719 lru_add_drain_all();
c0ff4b85 3720 drain_all_stock_sync(memcg);
f817ed48 3721 ret = 0;
c0ff4b85 3722 mem_cgroup_start_move(memcg);
299b4eaa 3723 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3724 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3725 enum lru_list l;
f817ed48 3726 for_each_lru(l) {
c0ff4b85 3727 ret = mem_cgroup_force_empty_list(memcg,
08e552c6 3728 node, zid, l);
f817ed48
KH
3729 if (ret)
3730 break;
3731 }
1ecaab2b 3732 }
f817ed48
KH
3733 if (ret)
3734 break;
3735 }
c0ff4b85
R
3736 mem_cgroup_end_move(memcg);
3737 memcg_oom_recover(memcg);
f817ed48
KH
3738 /* it seems parent cgroup doesn't have enough mem */
3739 if (ret == -ENOMEM)
3740 goto try_to_free;
52d4b9ac 3741 cond_resched();
fce66477 3742 /* "ret" should also be checked to ensure all lists are empty. */
c0ff4b85 3743 } while (memcg->res.usage > 0 || ret);
cc847582 3744out:
c0ff4b85 3745 css_put(&memcg->css);
cc847582 3746 return ret;
f817ed48
KH
3747
3748try_to_free:
c1e862c1
KH
3749 /* returns EBUSY if there is a task or if we come here twice. */
3750 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3751 ret = -EBUSY;
3752 goto out;
3753 }
c1e862c1
KH
3754 /* we call try-to-free pages for make this cgroup empty */
3755 lru_add_drain_all();
f817ed48
KH
3756 /* try to free all pages in this cgroup */
3757 shrink = 1;
c0ff4b85 3758 while (nr_retries && memcg->res.usage > 0) {
f817ed48 3759 int progress;
c1e862c1
KH
3760
3761 if (signal_pending(current)) {
3762 ret = -EINTR;
3763 goto out;
3764 }
c0ff4b85 3765 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3766 false);
c1e862c1 3767 if (!progress) {
f817ed48 3768 nr_retries--;
c1e862c1 3769 /* maybe some writeback is necessary */
8aa7e847 3770 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3771 }
f817ed48
KH
3772
3773 }
08e552c6 3774 lru_add_drain();
f817ed48 3775 /* try move_account...there may be some *locked* pages. */
fce66477 3776 goto move_account;
cc847582
KH
3777}
3778
c1e862c1
KH
3779int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3780{
3781 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3782}
3783
3784
18f59ea7
BS
3785static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3786{
3787 return mem_cgroup_from_cont(cont)->use_hierarchy;
3788}
3789
3790static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3791 u64 val)
3792{
3793 int retval = 0;
c0ff4b85 3794 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3795 struct cgroup *parent = cont->parent;
c0ff4b85 3796 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3797
3798 if (parent)
c0ff4b85 3799 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3800
3801 cgroup_lock();
3802 /*
af901ca1 3803 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3804 * in the child subtrees. If it is unset, then the change can
3805 * occur, provided the current cgroup has no children.
3806 *
3807 * For the root cgroup, parent_mem is NULL, we allow value to be
3808 * set if there are no children.
3809 */
c0ff4b85 3810 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3811 (val == 1 || val == 0)) {
3812 if (list_empty(&cont->children))
c0ff4b85 3813 memcg->use_hierarchy = val;
18f59ea7
BS
3814 else
3815 retval = -EBUSY;
3816 } else
3817 retval = -EINVAL;
3818 cgroup_unlock();
3819
3820 return retval;
3821}
3822
0c3e73e8 3823
c0ff4b85 3824static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3825 enum mem_cgroup_stat_index idx)
0c3e73e8 3826{
7d74b06f 3827 struct mem_cgroup *iter;
7a159cc9 3828 long val = 0;
0c3e73e8 3829
7a159cc9 3830 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3831 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3832 val += mem_cgroup_read_stat(iter, idx);
3833
3834 if (val < 0) /* race ? */
3835 val = 0;
3836 return val;
0c3e73e8
BS
3837}
3838
c0ff4b85 3839static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3840{
7d74b06f 3841 u64 val;
104f3928 3842
c0ff4b85 3843 if (!mem_cgroup_is_root(memcg)) {
104f3928 3844 if (!swap)
65c64ce8 3845 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3846 else
65c64ce8 3847 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3848 }
3849
c0ff4b85
R
3850 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3851 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3852
7d74b06f 3853 if (swap)
c0ff4b85 3854 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3855
3856 return val << PAGE_SHIFT;
3857}
3858
2c3daa72 3859static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3860{
c0ff4b85 3861 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
104f3928 3862 u64 val;
8c7c6e34
KH
3863 int type, name;
3864
3865 type = MEMFILE_TYPE(cft->private);
3866 name = MEMFILE_ATTR(cft->private);
3867 switch (type) {
3868 case _MEM:
104f3928 3869 if (name == RES_USAGE)
c0ff4b85 3870 val = mem_cgroup_usage(memcg, false);
104f3928 3871 else
c0ff4b85 3872 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3873 break;
3874 case _MEMSWAP:
104f3928 3875 if (name == RES_USAGE)
c0ff4b85 3876 val = mem_cgroup_usage(memcg, true);
104f3928 3877 else
c0ff4b85 3878 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3879 break;
3880 default:
3881 BUG();
3882 break;
3883 }
3884 return val;
8cdea7c0 3885}
628f4235
KH
3886/*
3887 * The user of this function is...
3888 * RES_LIMIT.
3889 */
856c13aa
PM
3890static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3891 const char *buffer)
8cdea7c0 3892{
628f4235 3893 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3894 int type, name;
628f4235
KH
3895 unsigned long long val;
3896 int ret;
3897
8c7c6e34
KH
3898 type = MEMFILE_TYPE(cft->private);
3899 name = MEMFILE_ATTR(cft->private);
3900 switch (name) {
628f4235 3901 case RES_LIMIT:
4b3bde4c
BS
3902 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3903 ret = -EINVAL;
3904 break;
3905 }
628f4235
KH
3906 /* This function does all necessary parse...reuse it */
3907 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3908 if (ret)
3909 break;
3910 if (type == _MEM)
628f4235 3911 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3912 else
3913 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3914 break;
296c81d8
BS
3915 case RES_SOFT_LIMIT:
3916 ret = res_counter_memparse_write_strategy(buffer, &val);
3917 if (ret)
3918 break;
3919 /*
3920 * For memsw, soft limits are hard to implement in terms
3921 * of semantics, for now, we support soft limits for
3922 * control without swap
3923 */
3924 if (type == _MEM)
3925 ret = res_counter_set_soft_limit(&memcg->res, val);
3926 else
3927 ret = -EINVAL;
3928 break;
628f4235
KH
3929 default:
3930 ret = -EINVAL; /* should be BUG() ? */
3931 break;
3932 }
3933 return ret;
8cdea7c0
BS
3934}
3935
fee7b548
KH
3936static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3937 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3938{
3939 struct cgroup *cgroup;
3940 unsigned long long min_limit, min_memsw_limit, tmp;
3941
3942 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3943 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3944 cgroup = memcg->css.cgroup;
3945 if (!memcg->use_hierarchy)
3946 goto out;
3947
3948 while (cgroup->parent) {
3949 cgroup = cgroup->parent;
3950 memcg = mem_cgroup_from_cont(cgroup);
3951 if (!memcg->use_hierarchy)
3952 break;
3953 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3954 min_limit = min(min_limit, tmp);
3955 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3956 min_memsw_limit = min(min_memsw_limit, tmp);
3957 }
3958out:
3959 *mem_limit = min_limit;
3960 *memsw_limit = min_memsw_limit;
3961 return;
3962}
3963
29f2a4da 3964static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3965{
c0ff4b85 3966 struct mem_cgroup *memcg;
8c7c6e34 3967 int type, name;
c84872e1 3968
c0ff4b85 3969 memcg = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3970 type = MEMFILE_TYPE(event);
3971 name = MEMFILE_ATTR(event);
3972 switch (name) {
29f2a4da 3973 case RES_MAX_USAGE:
8c7c6e34 3974 if (type == _MEM)
c0ff4b85 3975 res_counter_reset_max(&memcg->res);
8c7c6e34 3976 else
c0ff4b85 3977 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
3978 break;
3979 case RES_FAILCNT:
8c7c6e34 3980 if (type == _MEM)
c0ff4b85 3981 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 3982 else
c0ff4b85 3983 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
3984 break;
3985 }
f64c3f54 3986
85cc59db 3987 return 0;
c84872e1
PE
3988}
3989
7dc74be0
DN
3990static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3991 struct cftype *cft)
3992{
3993 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3994}
3995
02491447 3996#ifdef CONFIG_MMU
7dc74be0
DN
3997static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3998 struct cftype *cft, u64 val)
3999{
c0ff4b85 4000 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4001
4002 if (val >= (1 << NR_MOVE_TYPE))
4003 return -EINVAL;
4004 /*
4005 * We check this value several times in both in can_attach() and
4006 * attach(), so we need cgroup lock to prevent this value from being
4007 * inconsistent.
4008 */
4009 cgroup_lock();
c0ff4b85 4010 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4011 cgroup_unlock();
4012
4013 return 0;
4014}
02491447
DN
4015#else
4016static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4017 struct cftype *cft, u64 val)
4018{
4019 return -ENOSYS;
4020}
4021#endif
7dc74be0 4022
14067bb3
KH
4023
4024/* For read statistics */
4025enum {
4026 MCS_CACHE,
4027 MCS_RSS,
d8046582 4028 MCS_FILE_MAPPED,
14067bb3
KH
4029 MCS_PGPGIN,
4030 MCS_PGPGOUT,
1dd3a273 4031 MCS_SWAP,
456f998e
YH
4032 MCS_PGFAULT,
4033 MCS_PGMAJFAULT,
14067bb3
KH
4034 MCS_INACTIVE_ANON,
4035 MCS_ACTIVE_ANON,
4036 MCS_INACTIVE_FILE,
4037 MCS_ACTIVE_FILE,
4038 MCS_UNEVICTABLE,
4039 NR_MCS_STAT,
4040};
4041
4042struct mcs_total_stat {
4043 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4044};
4045
14067bb3
KH
4046struct {
4047 char *local_name;
4048 char *total_name;
4049} memcg_stat_strings[NR_MCS_STAT] = {
4050 {"cache", "total_cache"},
4051 {"rss", "total_rss"},
d69b042f 4052 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4053 {"pgpgin", "total_pgpgin"},
4054 {"pgpgout", "total_pgpgout"},
1dd3a273 4055 {"swap", "total_swap"},
456f998e
YH
4056 {"pgfault", "total_pgfault"},
4057 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4058 {"inactive_anon", "total_inactive_anon"},
4059 {"active_anon", "total_active_anon"},
4060 {"inactive_file", "total_inactive_file"},
4061 {"active_file", "total_active_file"},
4062 {"unevictable", "total_unevictable"}
4063};
4064
4065
7d74b06f 4066static void
c0ff4b85 4067mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4068{
14067bb3
KH
4069 s64 val;
4070
4071 /* per cpu stat */
c0ff4b85 4072 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4073 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4074 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4075 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4076 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4077 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4078 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4079 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4080 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4081 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4082 if (do_swap_account) {
c0ff4b85 4083 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4084 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4085 }
c0ff4b85 4086 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4087 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4088 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4089 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4090
4091 /* per zone stat */
c0ff4b85 4092 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4093 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4094 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4095 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4096 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4097 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4098 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4099 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4100 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4101 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4102}
4103
4104static void
c0ff4b85 4105mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4106{
7d74b06f
KH
4107 struct mem_cgroup *iter;
4108
c0ff4b85 4109 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4110 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4111}
4112
406eb0c9
YH
4113#ifdef CONFIG_NUMA
4114static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4115{
4116 int nid;
4117 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4118 unsigned long node_nr;
4119 struct cgroup *cont = m->private;
4120 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4121
bb2a0de9 4122 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4123 seq_printf(m, "total=%lu", total_nr);
4124 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4125 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4126 seq_printf(m, " N%d=%lu", nid, node_nr);
4127 }
4128 seq_putc(m, '\n');
4129
bb2a0de9 4130 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4131 seq_printf(m, "file=%lu", file_nr);
4132 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4133 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4134 LRU_ALL_FILE);
406eb0c9
YH
4135 seq_printf(m, " N%d=%lu", nid, node_nr);
4136 }
4137 seq_putc(m, '\n');
4138
bb2a0de9 4139 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4140 seq_printf(m, "anon=%lu", anon_nr);
4141 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4142 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4143 LRU_ALL_ANON);
406eb0c9
YH
4144 seq_printf(m, " N%d=%lu", nid, node_nr);
4145 }
4146 seq_putc(m, '\n');
4147
bb2a0de9 4148 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4149 seq_printf(m, "unevictable=%lu", unevictable_nr);
4150 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4151 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4152 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4153 seq_printf(m, " N%d=%lu", nid, node_nr);
4154 }
4155 seq_putc(m, '\n');
4156 return 0;
4157}
4158#endif /* CONFIG_NUMA */
4159
c64745cf
PM
4160static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4161 struct cgroup_map_cb *cb)
d2ceb9b7 4162{
d2ceb9b7 4163 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4164 struct mcs_total_stat mystat;
d2ceb9b7
KH
4165 int i;
4166
14067bb3
KH
4167 memset(&mystat, 0, sizeof(mystat));
4168 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4169
406eb0c9 4170
1dd3a273
DN
4171 for (i = 0; i < NR_MCS_STAT; i++) {
4172 if (i == MCS_SWAP && !do_swap_account)
4173 continue;
14067bb3 4174 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4175 }
7b854121 4176
14067bb3 4177 /* Hierarchical information */
fee7b548
KH
4178 {
4179 unsigned long long limit, memsw_limit;
4180 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4181 cb->fill(cb, "hierarchical_memory_limit", limit);
4182 if (do_swap_account)
4183 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4184 }
7f016ee8 4185
14067bb3
KH
4186 memset(&mystat, 0, sizeof(mystat));
4187 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4188 for (i = 0; i < NR_MCS_STAT; i++) {
4189 if (i == MCS_SWAP && !do_swap_account)
4190 continue;
14067bb3 4191 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4192 }
14067bb3 4193
7f016ee8 4194#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4195 {
4196 int nid, zid;
4197 struct mem_cgroup_per_zone *mz;
4198 unsigned long recent_rotated[2] = {0, 0};
4199 unsigned long recent_scanned[2] = {0, 0};
4200
4201 for_each_online_node(nid)
4202 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4203 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4204
4205 recent_rotated[0] +=
4206 mz->reclaim_stat.recent_rotated[0];
4207 recent_rotated[1] +=
4208 mz->reclaim_stat.recent_rotated[1];
4209 recent_scanned[0] +=
4210 mz->reclaim_stat.recent_scanned[0];
4211 recent_scanned[1] +=
4212 mz->reclaim_stat.recent_scanned[1];
4213 }
4214 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4215 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4216 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4217 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4218 }
4219#endif
4220
d2ceb9b7
KH
4221 return 0;
4222}
4223
a7885eb8
KM
4224static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4225{
4226 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4227
1f4c025b 4228 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4229}
4230
4231static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4232 u64 val)
4233{
4234 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4235 struct mem_cgroup *parent;
068b38c1 4236
a7885eb8
KM
4237 if (val > 100)
4238 return -EINVAL;
4239
4240 if (cgrp->parent == NULL)
4241 return -EINVAL;
4242
4243 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4244
4245 cgroup_lock();
4246
a7885eb8
KM
4247 /* If under hierarchy, only empty-root can set this value */
4248 if ((parent->use_hierarchy) ||
068b38c1
LZ
4249 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4250 cgroup_unlock();
a7885eb8 4251 return -EINVAL;
068b38c1 4252 }
a7885eb8 4253
a7885eb8 4254 memcg->swappiness = val;
a7885eb8 4255
068b38c1
LZ
4256 cgroup_unlock();
4257
a7885eb8
KM
4258 return 0;
4259}
4260
2e72b634
KS
4261static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4262{
4263 struct mem_cgroup_threshold_ary *t;
4264 u64 usage;
4265 int i;
4266
4267 rcu_read_lock();
4268 if (!swap)
2c488db2 4269 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4270 else
2c488db2 4271 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4272
4273 if (!t)
4274 goto unlock;
4275
4276 usage = mem_cgroup_usage(memcg, swap);
4277
4278 /*
4279 * current_threshold points to threshold just below usage.
4280 * If it's not true, a threshold was crossed after last
4281 * call of __mem_cgroup_threshold().
4282 */
5407a562 4283 i = t->current_threshold;
2e72b634
KS
4284
4285 /*
4286 * Iterate backward over array of thresholds starting from
4287 * current_threshold and check if a threshold is crossed.
4288 * If none of thresholds below usage is crossed, we read
4289 * only one element of the array here.
4290 */
4291 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4292 eventfd_signal(t->entries[i].eventfd, 1);
4293
4294 /* i = current_threshold + 1 */
4295 i++;
4296
4297 /*
4298 * Iterate forward over array of thresholds starting from
4299 * current_threshold+1 and check if a threshold is crossed.
4300 * If none of thresholds above usage is crossed, we read
4301 * only one element of the array here.
4302 */
4303 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4304 eventfd_signal(t->entries[i].eventfd, 1);
4305
4306 /* Update current_threshold */
5407a562 4307 t->current_threshold = i - 1;
2e72b634
KS
4308unlock:
4309 rcu_read_unlock();
4310}
4311
4312static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4313{
ad4ca5f4
KS
4314 while (memcg) {
4315 __mem_cgroup_threshold(memcg, false);
4316 if (do_swap_account)
4317 __mem_cgroup_threshold(memcg, true);
4318
4319 memcg = parent_mem_cgroup(memcg);
4320 }
2e72b634
KS
4321}
4322
4323static int compare_thresholds(const void *a, const void *b)
4324{
4325 const struct mem_cgroup_threshold *_a = a;
4326 const struct mem_cgroup_threshold *_b = b;
4327
4328 return _a->threshold - _b->threshold;
4329}
4330
c0ff4b85 4331static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4332{
4333 struct mem_cgroup_eventfd_list *ev;
4334
c0ff4b85 4335 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4336 eventfd_signal(ev->eventfd, 1);
4337 return 0;
4338}
4339
c0ff4b85 4340static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4341{
7d74b06f
KH
4342 struct mem_cgroup *iter;
4343
c0ff4b85 4344 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4345 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4346}
4347
4348static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4349 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4350{
4351 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4352 struct mem_cgroup_thresholds *thresholds;
4353 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4354 int type = MEMFILE_TYPE(cft->private);
4355 u64 threshold, usage;
2c488db2 4356 int i, size, ret;
2e72b634
KS
4357
4358 ret = res_counter_memparse_write_strategy(args, &threshold);
4359 if (ret)
4360 return ret;
4361
4362 mutex_lock(&memcg->thresholds_lock);
2c488db2 4363
2e72b634 4364 if (type == _MEM)
2c488db2 4365 thresholds = &memcg->thresholds;
2e72b634 4366 else if (type == _MEMSWAP)
2c488db2 4367 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4368 else
4369 BUG();
4370
4371 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4372
4373 /* Check if a threshold crossed before adding a new one */
2c488db2 4374 if (thresholds->primary)
2e72b634
KS
4375 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4376
2c488db2 4377 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4378
4379 /* Allocate memory for new array of thresholds */
2c488db2 4380 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4381 GFP_KERNEL);
2c488db2 4382 if (!new) {
2e72b634
KS
4383 ret = -ENOMEM;
4384 goto unlock;
4385 }
2c488db2 4386 new->size = size;
2e72b634
KS
4387
4388 /* Copy thresholds (if any) to new array */
2c488db2
KS
4389 if (thresholds->primary) {
4390 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4391 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4392 }
4393
2e72b634 4394 /* Add new threshold */
2c488db2
KS
4395 new->entries[size - 1].eventfd = eventfd;
4396 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4397
4398 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4399 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4400 compare_thresholds, NULL);
4401
4402 /* Find current threshold */
2c488db2 4403 new->current_threshold = -1;
2e72b634 4404 for (i = 0; i < size; i++) {
2c488db2 4405 if (new->entries[i].threshold < usage) {
2e72b634 4406 /*
2c488db2
KS
4407 * new->current_threshold will not be used until
4408 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4409 * it here.
4410 */
2c488db2 4411 ++new->current_threshold;
2e72b634
KS
4412 }
4413 }
4414
2c488db2
KS
4415 /* Free old spare buffer and save old primary buffer as spare */
4416 kfree(thresholds->spare);
4417 thresholds->spare = thresholds->primary;
4418
4419 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4420
907860ed 4421 /* To be sure that nobody uses thresholds */
2e72b634
KS
4422 synchronize_rcu();
4423
2e72b634
KS
4424unlock:
4425 mutex_unlock(&memcg->thresholds_lock);
4426
4427 return ret;
4428}
4429
907860ed 4430static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4431 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4432{
4433 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4434 struct mem_cgroup_thresholds *thresholds;
4435 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4436 int type = MEMFILE_TYPE(cft->private);
4437 u64 usage;
2c488db2 4438 int i, j, size;
2e72b634
KS
4439
4440 mutex_lock(&memcg->thresholds_lock);
4441 if (type == _MEM)
2c488db2 4442 thresholds = &memcg->thresholds;
2e72b634 4443 else if (type == _MEMSWAP)
2c488db2 4444 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4445 else
4446 BUG();
4447
4448 /*
4449 * Something went wrong if we trying to unregister a threshold
4450 * if we don't have thresholds
4451 */
4452 BUG_ON(!thresholds);
4453
4454 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4455
4456 /* Check if a threshold crossed before removing */
4457 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4458
4459 /* Calculate new number of threshold */
2c488db2
KS
4460 size = 0;
4461 for (i = 0; i < thresholds->primary->size; i++) {
4462 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4463 size++;
4464 }
4465
2c488db2 4466 new = thresholds->spare;
907860ed 4467
2e72b634
KS
4468 /* Set thresholds array to NULL if we don't have thresholds */
4469 if (!size) {
2c488db2
KS
4470 kfree(new);
4471 new = NULL;
907860ed 4472 goto swap_buffers;
2e72b634
KS
4473 }
4474
2c488db2 4475 new->size = size;
2e72b634
KS
4476
4477 /* Copy thresholds and find current threshold */
2c488db2
KS
4478 new->current_threshold = -1;
4479 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4480 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4481 continue;
4482
2c488db2
KS
4483 new->entries[j] = thresholds->primary->entries[i];
4484 if (new->entries[j].threshold < usage) {
2e72b634 4485 /*
2c488db2 4486 * new->current_threshold will not be used
2e72b634
KS
4487 * until rcu_assign_pointer(), so it's safe to increment
4488 * it here.
4489 */
2c488db2 4490 ++new->current_threshold;
2e72b634
KS
4491 }
4492 j++;
4493 }
4494
907860ed 4495swap_buffers:
2c488db2
KS
4496 /* Swap primary and spare array */
4497 thresholds->spare = thresholds->primary;
4498 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4499
907860ed 4500 /* To be sure that nobody uses thresholds */
2e72b634
KS
4501 synchronize_rcu();
4502
2e72b634 4503 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4504}
c1e862c1 4505
9490ff27
KH
4506static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4507 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4508{
4509 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4510 struct mem_cgroup_eventfd_list *event;
4511 int type = MEMFILE_TYPE(cft->private);
4512
4513 BUG_ON(type != _OOM_TYPE);
4514 event = kmalloc(sizeof(*event), GFP_KERNEL);
4515 if (!event)
4516 return -ENOMEM;
4517
1af8efe9 4518 spin_lock(&memcg_oom_lock);
9490ff27
KH
4519
4520 event->eventfd = eventfd;
4521 list_add(&event->list, &memcg->oom_notify);
4522
4523 /* already in OOM ? */
79dfdacc 4524 if (atomic_read(&memcg->under_oom))
9490ff27 4525 eventfd_signal(eventfd, 1);
1af8efe9 4526 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4527
4528 return 0;
4529}
4530
907860ed 4531static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4532 struct cftype *cft, struct eventfd_ctx *eventfd)
4533{
c0ff4b85 4534 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4535 struct mem_cgroup_eventfd_list *ev, *tmp;
4536 int type = MEMFILE_TYPE(cft->private);
4537
4538 BUG_ON(type != _OOM_TYPE);
4539
1af8efe9 4540 spin_lock(&memcg_oom_lock);
9490ff27 4541
c0ff4b85 4542 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4543 if (ev->eventfd == eventfd) {
4544 list_del(&ev->list);
4545 kfree(ev);
4546 }
4547 }
4548
1af8efe9 4549 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4550}
4551
3c11ecf4
KH
4552static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4553 struct cftype *cft, struct cgroup_map_cb *cb)
4554{
c0ff4b85 4555 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4556
c0ff4b85 4557 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4558
c0ff4b85 4559 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4560 cb->fill(cb, "under_oom", 1);
4561 else
4562 cb->fill(cb, "under_oom", 0);
4563 return 0;
4564}
4565
3c11ecf4
KH
4566static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4567 struct cftype *cft, u64 val)
4568{
c0ff4b85 4569 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4570 struct mem_cgroup *parent;
4571
4572 /* cannot set to root cgroup and only 0 and 1 are allowed */
4573 if (!cgrp->parent || !((val == 0) || (val == 1)))
4574 return -EINVAL;
4575
4576 parent = mem_cgroup_from_cont(cgrp->parent);
4577
4578 cgroup_lock();
4579 /* oom-kill-disable is a flag for subhierarchy. */
4580 if ((parent->use_hierarchy) ||
c0ff4b85 4581 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4582 cgroup_unlock();
4583 return -EINVAL;
4584 }
c0ff4b85 4585 memcg->oom_kill_disable = val;
4d845ebf 4586 if (!val)
c0ff4b85 4587 memcg_oom_recover(memcg);
3c11ecf4
KH
4588 cgroup_unlock();
4589 return 0;
4590}
4591
406eb0c9
YH
4592#ifdef CONFIG_NUMA
4593static const struct file_operations mem_control_numa_stat_file_operations = {
4594 .read = seq_read,
4595 .llseek = seq_lseek,
4596 .release = single_release,
4597};
4598
4599static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4600{
4601 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4602
4603 file->f_op = &mem_control_numa_stat_file_operations;
4604 return single_open(file, mem_control_numa_stat_show, cont);
4605}
4606#endif /* CONFIG_NUMA */
4607
e5671dfa 4608#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e5671dfa
GC
4609static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4610{
d1a4c0b3
GC
4611 /*
4612 * Part of this would be better living in a separate allocation
4613 * function, leaving us with just the cgroup tree population work.
4614 * We, however, depend on state such as network's proto_list that
4615 * is only initialized after cgroup creation. I found the less
4616 * cumbersome way to deal with it to defer it all to populate time
4617 */
65c64ce8 4618 return mem_cgroup_sockets_init(cont, ss);
e5671dfa
GC
4619};
4620
d1a4c0b3
GC
4621static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4622 struct cgroup *cont)
4623{
4624 mem_cgroup_sockets_destroy(cont, ss);
4625}
e5671dfa
GC
4626#else
4627static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4628{
4629 return 0;
4630}
d1a4c0b3
GC
4631
4632static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4633 struct cgroup *cont)
4634{
4635}
e5671dfa
GC
4636#endif
4637
8cdea7c0
BS
4638static struct cftype mem_cgroup_files[] = {
4639 {
0eea1030 4640 .name = "usage_in_bytes",
8c7c6e34 4641 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4642 .read_u64 = mem_cgroup_read,
9490ff27
KH
4643 .register_event = mem_cgroup_usage_register_event,
4644 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4645 },
c84872e1
PE
4646 {
4647 .name = "max_usage_in_bytes",
8c7c6e34 4648 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4649 .trigger = mem_cgroup_reset,
c84872e1
PE
4650 .read_u64 = mem_cgroup_read,
4651 },
8cdea7c0 4652 {
0eea1030 4653 .name = "limit_in_bytes",
8c7c6e34 4654 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4655 .write_string = mem_cgroup_write,
2c3daa72 4656 .read_u64 = mem_cgroup_read,
8cdea7c0 4657 },
296c81d8
BS
4658 {
4659 .name = "soft_limit_in_bytes",
4660 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4661 .write_string = mem_cgroup_write,
4662 .read_u64 = mem_cgroup_read,
4663 },
8cdea7c0
BS
4664 {
4665 .name = "failcnt",
8c7c6e34 4666 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4667 .trigger = mem_cgroup_reset,
2c3daa72 4668 .read_u64 = mem_cgroup_read,
8cdea7c0 4669 },
d2ceb9b7
KH
4670 {
4671 .name = "stat",
c64745cf 4672 .read_map = mem_control_stat_show,
d2ceb9b7 4673 },
c1e862c1
KH
4674 {
4675 .name = "force_empty",
4676 .trigger = mem_cgroup_force_empty_write,
4677 },
18f59ea7
BS
4678 {
4679 .name = "use_hierarchy",
4680 .write_u64 = mem_cgroup_hierarchy_write,
4681 .read_u64 = mem_cgroup_hierarchy_read,
4682 },
a7885eb8
KM
4683 {
4684 .name = "swappiness",
4685 .read_u64 = mem_cgroup_swappiness_read,
4686 .write_u64 = mem_cgroup_swappiness_write,
4687 },
7dc74be0
DN
4688 {
4689 .name = "move_charge_at_immigrate",
4690 .read_u64 = mem_cgroup_move_charge_read,
4691 .write_u64 = mem_cgroup_move_charge_write,
4692 },
9490ff27
KH
4693 {
4694 .name = "oom_control",
3c11ecf4
KH
4695 .read_map = mem_cgroup_oom_control_read,
4696 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4697 .register_event = mem_cgroup_oom_register_event,
4698 .unregister_event = mem_cgroup_oom_unregister_event,
4699 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4700 },
406eb0c9
YH
4701#ifdef CONFIG_NUMA
4702 {
4703 .name = "numa_stat",
4704 .open = mem_control_numa_stat_open,
89577127 4705 .mode = S_IRUGO,
406eb0c9
YH
4706 },
4707#endif
8cdea7c0
BS
4708};
4709
8c7c6e34
KH
4710#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4711static struct cftype memsw_cgroup_files[] = {
4712 {
4713 .name = "memsw.usage_in_bytes",
4714 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4715 .read_u64 = mem_cgroup_read,
9490ff27
KH
4716 .register_event = mem_cgroup_usage_register_event,
4717 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4718 },
4719 {
4720 .name = "memsw.max_usage_in_bytes",
4721 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4722 .trigger = mem_cgroup_reset,
4723 .read_u64 = mem_cgroup_read,
4724 },
4725 {
4726 .name = "memsw.limit_in_bytes",
4727 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4728 .write_string = mem_cgroup_write,
4729 .read_u64 = mem_cgroup_read,
4730 },
4731 {
4732 .name = "memsw.failcnt",
4733 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4734 .trigger = mem_cgroup_reset,
4735 .read_u64 = mem_cgroup_read,
4736 },
4737};
4738
4739static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4740{
4741 if (!do_swap_account)
4742 return 0;
4743 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4744 ARRAY_SIZE(memsw_cgroup_files));
4745};
4746#else
4747static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4748{
4749 return 0;
4750}
4751#endif
4752
c0ff4b85 4753static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4754{
4755 struct mem_cgroup_per_node *pn;
1ecaab2b 4756 struct mem_cgroup_per_zone *mz;
b69408e8 4757 enum lru_list l;
41e3355d 4758 int zone, tmp = node;
1ecaab2b
KH
4759 /*
4760 * This routine is called against possible nodes.
4761 * But it's BUG to call kmalloc() against offline node.
4762 *
4763 * TODO: this routine can waste much memory for nodes which will
4764 * never be onlined. It's better to use memory hotplug callback
4765 * function.
4766 */
41e3355d
KH
4767 if (!node_state(node, N_NORMAL_MEMORY))
4768 tmp = -1;
17295c88 4769 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4770 if (!pn)
4771 return 1;
1ecaab2b 4772
1ecaab2b
KH
4773 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4774 mz = &pn->zoneinfo[zone];
b69408e8 4775 for_each_lru(l)
6290df54 4776 INIT_LIST_HEAD(&mz->lruvec.lists[l]);
f64c3f54 4777 mz->usage_in_excess = 0;
4e416953 4778 mz->on_tree = false;
c0ff4b85 4779 mz->mem = memcg;
1ecaab2b 4780 }
0a619e58 4781 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4782 return 0;
4783}
4784
c0ff4b85 4785static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4786{
c0ff4b85 4787 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4788}
4789
33327948
KH
4790static struct mem_cgroup *mem_cgroup_alloc(void)
4791{
4792 struct mem_cgroup *mem;
c62b1a3b 4793 int size = sizeof(struct mem_cgroup);
33327948 4794
c62b1a3b 4795 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4796 if (size < PAGE_SIZE)
17295c88 4797 mem = kzalloc(size, GFP_KERNEL);
33327948 4798 else
17295c88 4799 mem = vzalloc(size);
33327948 4800
e7bbcdf3
DC
4801 if (!mem)
4802 return NULL;
4803
c62b1a3b 4804 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4805 if (!mem->stat)
4806 goto out_free;
711d3d2c 4807 spin_lock_init(&mem->pcp_counter_lock);
33327948 4808 return mem;
d2e61b8d
DC
4809
4810out_free:
4811 if (size < PAGE_SIZE)
4812 kfree(mem);
4813 else
4814 vfree(mem);
4815 return NULL;
33327948
KH
4816}
4817
8c7c6e34
KH
4818/*
4819 * At destroying mem_cgroup, references from swap_cgroup can remain.
4820 * (scanning all at force_empty is too costly...)
4821 *
4822 * Instead of clearing all references at force_empty, we remember
4823 * the number of reference from swap_cgroup and free mem_cgroup when
4824 * it goes down to 0.
4825 *
8c7c6e34
KH
4826 * Removal of cgroup itself succeeds regardless of refs from swap.
4827 */
4828
c0ff4b85 4829static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4830{
08e552c6
KH
4831 int node;
4832
c0ff4b85
R
4833 mem_cgroup_remove_from_trees(memcg);
4834 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4835
08e552c6 4836 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 4837 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4838
c0ff4b85 4839 free_percpu(memcg->stat);
c62b1a3b 4840 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
c0ff4b85 4841 kfree(memcg);
33327948 4842 else
c0ff4b85 4843 vfree(memcg);
33327948
KH
4844}
4845
c0ff4b85 4846static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4847{
c0ff4b85 4848 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4849}
4850
c0ff4b85 4851static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4852{
c0ff4b85
R
4853 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4854 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4855 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4856 if (parent)
4857 mem_cgroup_put(parent);
4858 }
8c7c6e34
KH
4859}
4860
c0ff4b85 4861static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4862{
c0ff4b85 4863 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4864}
4865
7bcc1bb1
DN
4866/*
4867 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4868 */
e1aab161 4869struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4870{
c0ff4b85 4871 if (!memcg->res.parent)
7bcc1bb1 4872 return NULL;
c0ff4b85 4873 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4874}
e1aab161 4875EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4876
c077719b
KH
4877#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4878static void __init enable_swap_cgroup(void)
4879{
f8d66542 4880 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4881 do_swap_account = 1;
4882}
4883#else
4884static void __init enable_swap_cgroup(void)
4885{
4886}
4887#endif
4888
f64c3f54
BS
4889static int mem_cgroup_soft_limit_tree_init(void)
4890{
4891 struct mem_cgroup_tree_per_node *rtpn;
4892 struct mem_cgroup_tree_per_zone *rtpz;
4893 int tmp, node, zone;
4894
4895 for_each_node_state(node, N_POSSIBLE) {
4896 tmp = node;
4897 if (!node_state(node, N_NORMAL_MEMORY))
4898 tmp = -1;
4899 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4900 if (!rtpn)
c3cecc68 4901 goto err_cleanup;
f64c3f54
BS
4902
4903 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4904
4905 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4906 rtpz = &rtpn->rb_tree_per_zone[zone];
4907 rtpz->rb_root = RB_ROOT;
4908 spin_lock_init(&rtpz->lock);
4909 }
4910 }
4911 return 0;
c3cecc68
MH
4912
4913err_cleanup:
4914 for_each_node_state(node, N_POSSIBLE) {
4915 if (!soft_limit_tree.rb_tree_per_node[node])
4916 break;
4917 kfree(soft_limit_tree.rb_tree_per_node[node]);
4918 soft_limit_tree.rb_tree_per_node[node] = NULL;
4919 }
4920 return 1;
4921
f64c3f54
BS
4922}
4923
0eb253e2 4924static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4925mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4926{
c0ff4b85 4927 struct mem_cgroup *memcg, *parent;
04046e1a 4928 long error = -ENOMEM;
6d12e2d8 4929 int node;
8cdea7c0 4930
c0ff4b85
R
4931 memcg = mem_cgroup_alloc();
4932 if (!memcg)
04046e1a 4933 return ERR_PTR(error);
78fb7466 4934
6d12e2d8 4935 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 4936 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4937 goto free_out;
f64c3f54 4938
c077719b 4939 /* root ? */
28dbc4b6 4940 if (cont->parent == NULL) {
cdec2e42 4941 int cpu;
c077719b 4942 enable_swap_cgroup();
28dbc4b6 4943 parent = NULL;
f64c3f54
BS
4944 if (mem_cgroup_soft_limit_tree_init())
4945 goto free_out;
a41c58a6 4946 root_mem_cgroup = memcg;
cdec2e42
KH
4947 for_each_possible_cpu(cpu) {
4948 struct memcg_stock_pcp *stock =
4949 &per_cpu(memcg_stock, cpu);
4950 INIT_WORK(&stock->work, drain_local_stock);
4951 }
711d3d2c 4952 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4953 } else {
28dbc4b6 4954 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4955 memcg->use_hierarchy = parent->use_hierarchy;
4956 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4957 }
28dbc4b6 4958
18f59ea7 4959 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4960 res_counter_init(&memcg->res, &parent->res);
4961 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4962 /*
4963 * We increment refcnt of the parent to ensure that we can
4964 * safely access it on res_counter_charge/uncharge.
4965 * This refcnt will be decremented when freeing this
4966 * mem_cgroup(see mem_cgroup_put).
4967 */
4968 mem_cgroup_get(parent);
18f59ea7 4969 } else {
c0ff4b85
R
4970 res_counter_init(&memcg->res, NULL);
4971 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4972 }
c0ff4b85
R
4973 memcg->last_scanned_node = MAX_NUMNODES;
4974 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4975
a7885eb8 4976 if (parent)
c0ff4b85
R
4977 memcg->swappiness = mem_cgroup_swappiness(parent);
4978 atomic_set(&memcg->refcnt, 1);
4979 memcg->move_charge_at_immigrate = 0;
4980 mutex_init(&memcg->thresholds_lock);
4981 return &memcg->css;
6d12e2d8 4982free_out:
c0ff4b85 4983 __mem_cgroup_free(memcg);
04046e1a 4984 return ERR_PTR(error);
8cdea7c0
BS
4985}
4986
ec64f515 4987static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4988 struct cgroup *cont)
4989{
c0ff4b85 4990 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 4991
c0ff4b85 4992 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
4993}
4994
8cdea7c0
BS
4995static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4996 struct cgroup *cont)
4997{
c0ff4b85 4998 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 4999
d1a4c0b3
GC
5000 kmem_cgroup_destroy(ss, cont);
5001
c0ff4b85 5002 mem_cgroup_put(memcg);
8cdea7c0
BS
5003}
5004
5005static int mem_cgroup_populate(struct cgroup_subsys *ss,
5006 struct cgroup *cont)
5007{
8c7c6e34
KH
5008 int ret;
5009
5010 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5011 ARRAY_SIZE(mem_cgroup_files));
5012
5013 if (!ret)
5014 ret = register_memsw_files(cont, ss);
e5671dfa
GC
5015
5016 if (!ret)
5017 ret = register_kmem_files(cont, ss);
5018
8c7c6e34 5019 return ret;
8cdea7c0
BS
5020}
5021
02491447 5022#ifdef CONFIG_MMU
7dc74be0 5023/* Handlers for move charge at task migration. */
854ffa8d
DN
5024#define PRECHARGE_COUNT_AT_ONCE 256
5025static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5026{
854ffa8d
DN
5027 int ret = 0;
5028 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5029 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5030
c0ff4b85 5031 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5032 mc.precharge += count;
5033 /* we don't need css_get for root */
5034 return ret;
5035 }
5036 /* try to charge at once */
5037 if (count > 1) {
5038 struct res_counter *dummy;
5039 /*
c0ff4b85 5040 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5041 * by cgroup_lock_live_cgroup() that it is not removed and we
5042 * are still under the same cgroup_mutex. So we can postpone
5043 * css_get().
5044 */
c0ff4b85 5045 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5046 goto one_by_one;
c0ff4b85 5047 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5048 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5049 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5050 goto one_by_one;
5051 }
5052 mc.precharge += count;
854ffa8d
DN
5053 return ret;
5054 }
5055one_by_one:
5056 /* fall back to one by one charge */
5057 while (count--) {
5058 if (signal_pending(current)) {
5059 ret = -EINTR;
5060 break;
5061 }
5062 if (!batch_count--) {
5063 batch_count = PRECHARGE_COUNT_AT_ONCE;
5064 cond_resched();
5065 }
c0ff4b85
R
5066 ret = __mem_cgroup_try_charge(NULL,
5067 GFP_KERNEL, 1, &memcg, false);
5068 if (ret || !memcg)
854ffa8d
DN
5069 /* mem_cgroup_clear_mc() will do uncharge later */
5070 return -ENOMEM;
5071 mc.precharge++;
5072 }
4ffef5fe
DN
5073 return ret;
5074}
5075
5076/**
5077 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5078 * @vma: the vma the pte to be checked belongs
5079 * @addr: the address corresponding to the pte to be checked
5080 * @ptent: the pte to be checked
02491447 5081 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5082 *
5083 * Returns
5084 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5085 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5086 * move charge. if @target is not NULL, the page is stored in target->page
5087 * with extra refcnt got(Callers should handle it).
02491447
DN
5088 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5089 * target for charge migration. if @target is not NULL, the entry is stored
5090 * in target->ent.
4ffef5fe
DN
5091 *
5092 * Called with pte lock held.
5093 */
4ffef5fe
DN
5094union mc_target {
5095 struct page *page;
02491447 5096 swp_entry_t ent;
4ffef5fe
DN
5097};
5098
4ffef5fe
DN
5099enum mc_target_type {
5100 MC_TARGET_NONE, /* not used */
5101 MC_TARGET_PAGE,
02491447 5102 MC_TARGET_SWAP,
4ffef5fe
DN
5103};
5104
90254a65
DN
5105static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5106 unsigned long addr, pte_t ptent)
4ffef5fe 5107{
90254a65 5108 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5109
90254a65
DN
5110 if (!page || !page_mapped(page))
5111 return NULL;
5112 if (PageAnon(page)) {
5113 /* we don't move shared anon */
5114 if (!move_anon() || page_mapcount(page) > 2)
5115 return NULL;
87946a72
DN
5116 } else if (!move_file())
5117 /* we ignore mapcount for file pages */
90254a65
DN
5118 return NULL;
5119 if (!get_page_unless_zero(page))
5120 return NULL;
5121
5122 return page;
5123}
5124
5125static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5126 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5127{
5128 int usage_count;
5129 struct page *page = NULL;
5130 swp_entry_t ent = pte_to_swp_entry(ptent);
5131
5132 if (!move_anon() || non_swap_entry(ent))
5133 return NULL;
5134 usage_count = mem_cgroup_count_swap_user(ent, &page);
5135 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5136 if (page)
5137 put_page(page);
90254a65 5138 return NULL;
02491447 5139 }
90254a65
DN
5140 if (do_swap_account)
5141 entry->val = ent.val;
5142
5143 return page;
5144}
5145
87946a72
DN
5146static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5147 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5148{
5149 struct page *page = NULL;
5150 struct inode *inode;
5151 struct address_space *mapping;
5152 pgoff_t pgoff;
5153
5154 if (!vma->vm_file) /* anonymous vma */
5155 return NULL;
5156 if (!move_file())
5157 return NULL;
5158
5159 inode = vma->vm_file->f_path.dentry->d_inode;
5160 mapping = vma->vm_file->f_mapping;
5161 if (pte_none(ptent))
5162 pgoff = linear_page_index(vma, addr);
5163 else /* pte_file(ptent) is true */
5164 pgoff = pte_to_pgoff(ptent);
5165
5166 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5167 page = find_get_page(mapping, pgoff);
5168
5169#ifdef CONFIG_SWAP
5170 /* shmem/tmpfs may report page out on swap: account for that too. */
5171 if (radix_tree_exceptional_entry(page)) {
5172 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5173 if (do_swap_account)
aa3b1895
HD
5174 *entry = swap;
5175 page = find_get_page(&swapper_space, swap.val);
87946a72 5176 }
aa3b1895 5177#endif
87946a72
DN
5178 return page;
5179}
5180
90254a65
DN
5181static int is_target_pte_for_mc(struct vm_area_struct *vma,
5182 unsigned long addr, pte_t ptent, union mc_target *target)
5183{
5184 struct page *page = NULL;
5185 struct page_cgroup *pc;
5186 int ret = 0;
5187 swp_entry_t ent = { .val = 0 };
5188
5189 if (pte_present(ptent))
5190 page = mc_handle_present_pte(vma, addr, ptent);
5191 else if (is_swap_pte(ptent))
5192 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5193 else if (pte_none(ptent) || pte_file(ptent))
5194 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5195
5196 if (!page && !ent.val)
5197 return 0;
02491447
DN
5198 if (page) {
5199 pc = lookup_page_cgroup(page);
5200 /*
5201 * Do only loose check w/o page_cgroup lock.
5202 * mem_cgroup_move_account() checks the pc is valid or not under
5203 * the lock.
5204 */
5205 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5206 ret = MC_TARGET_PAGE;
5207 if (target)
5208 target->page = page;
5209 }
5210 if (!ret || !target)
5211 put_page(page);
5212 }
90254a65
DN
5213 /* There is a swap entry and a page doesn't exist or isn't charged */
5214 if (ent.val && !ret &&
9fb4b7cc 5215 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5216 ret = MC_TARGET_SWAP;
5217 if (target)
5218 target->ent = ent;
4ffef5fe 5219 }
4ffef5fe
DN
5220 return ret;
5221}
5222
5223static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5224 unsigned long addr, unsigned long end,
5225 struct mm_walk *walk)
5226{
5227 struct vm_area_struct *vma = walk->private;
5228 pte_t *pte;
5229 spinlock_t *ptl;
5230
03319327
DH
5231 split_huge_page_pmd(walk->mm, pmd);
5232
4ffef5fe
DN
5233 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5234 for (; addr != end; pte++, addr += PAGE_SIZE)
5235 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5236 mc.precharge++; /* increment precharge temporarily */
5237 pte_unmap_unlock(pte - 1, ptl);
5238 cond_resched();
5239
7dc74be0
DN
5240 return 0;
5241}
5242
4ffef5fe
DN
5243static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5244{
5245 unsigned long precharge;
5246 struct vm_area_struct *vma;
5247
dfe076b0 5248 down_read(&mm->mmap_sem);
4ffef5fe
DN
5249 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5250 struct mm_walk mem_cgroup_count_precharge_walk = {
5251 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5252 .mm = mm,
5253 .private = vma,
5254 };
5255 if (is_vm_hugetlb_page(vma))
5256 continue;
4ffef5fe
DN
5257 walk_page_range(vma->vm_start, vma->vm_end,
5258 &mem_cgroup_count_precharge_walk);
5259 }
dfe076b0 5260 up_read(&mm->mmap_sem);
4ffef5fe
DN
5261
5262 precharge = mc.precharge;
5263 mc.precharge = 0;
5264
5265 return precharge;
5266}
5267
4ffef5fe
DN
5268static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5269{
dfe076b0
DN
5270 unsigned long precharge = mem_cgroup_count_precharge(mm);
5271
5272 VM_BUG_ON(mc.moving_task);
5273 mc.moving_task = current;
5274 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5275}
5276
dfe076b0
DN
5277/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5278static void __mem_cgroup_clear_mc(void)
4ffef5fe 5279{
2bd9bb20
KH
5280 struct mem_cgroup *from = mc.from;
5281 struct mem_cgroup *to = mc.to;
5282
4ffef5fe 5283 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5284 if (mc.precharge) {
5285 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5286 mc.precharge = 0;
5287 }
5288 /*
5289 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5290 * we must uncharge here.
5291 */
5292 if (mc.moved_charge) {
5293 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5294 mc.moved_charge = 0;
4ffef5fe 5295 }
483c30b5
DN
5296 /* we must fixup refcnts and charges */
5297 if (mc.moved_swap) {
483c30b5
DN
5298 /* uncharge swap account from the old cgroup */
5299 if (!mem_cgroup_is_root(mc.from))
5300 res_counter_uncharge(&mc.from->memsw,
5301 PAGE_SIZE * mc.moved_swap);
5302 __mem_cgroup_put(mc.from, mc.moved_swap);
5303
5304 if (!mem_cgroup_is_root(mc.to)) {
5305 /*
5306 * we charged both to->res and to->memsw, so we should
5307 * uncharge to->res.
5308 */
5309 res_counter_uncharge(&mc.to->res,
5310 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5311 }
5312 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5313 mc.moved_swap = 0;
5314 }
dfe076b0
DN
5315 memcg_oom_recover(from);
5316 memcg_oom_recover(to);
5317 wake_up_all(&mc.waitq);
5318}
5319
5320static void mem_cgroup_clear_mc(void)
5321{
5322 struct mem_cgroup *from = mc.from;
5323
5324 /*
5325 * we must clear moving_task before waking up waiters at the end of
5326 * task migration.
5327 */
5328 mc.moving_task = NULL;
5329 __mem_cgroup_clear_mc();
2bd9bb20 5330 spin_lock(&mc.lock);
4ffef5fe
DN
5331 mc.from = NULL;
5332 mc.to = NULL;
2bd9bb20 5333 spin_unlock(&mc.lock);
32047e2a 5334 mem_cgroup_end_move(from);
4ffef5fe
DN
5335}
5336
7dc74be0
DN
5337static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5338 struct cgroup *cgroup,
2f7ee569 5339 struct cgroup_taskset *tset)
7dc74be0 5340{
2f7ee569 5341 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5342 int ret = 0;
c0ff4b85 5343 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5344
c0ff4b85 5345 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5346 struct mm_struct *mm;
5347 struct mem_cgroup *from = mem_cgroup_from_task(p);
5348
c0ff4b85 5349 VM_BUG_ON(from == memcg);
7dc74be0
DN
5350
5351 mm = get_task_mm(p);
5352 if (!mm)
5353 return 0;
7dc74be0 5354 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5355 if (mm->owner == p) {
5356 VM_BUG_ON(mc.from);
5357 VM_BUG_ON(mc.to);
5358 VM_BUG_ON(mc.precharge);
854ffa8d 5359 VM_BUG_ON(mc.moved_charge);
483c30b5 5360 VM_BUG_ON(mc.moved_swap);
32047e2a 5361 mem_cgroup_start_move(from);
2bd9bb20 5362 spin_lock(&mc.lock);
4ffef5fe 5363 mc.from = from;
c0ff4b85 5364 mc.to = memcg;
2bd9bb20 5365 spin_unlock(&mc.lock);
dfe076b0 5366 /* We set mc.moving_task later */
4ffef5fe
DN
5367
5368 ret = mem_cgroup_precharge_mc(mm);
5369 if (ret)
5370 mem_cgroup_clear_mc();
dfe076b0
DN
5371 }
5372 mmput(mm);
7dc74be0
DN
5373 }
5374 return ret;
5375}
5376
5377static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5378 struct cgroup *cgroup,
2f7ee569 5379 struct cgroup_taskset *tset)
7dc74be0 5380{
4ffef5fe 5381 mem_cgroup_clear_mc();
7dc74be0
DN
5382}
5383
4ffef5fe
DN
5384static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5385 unsigned long addr, unsigned long end,
5386 struct mm_walk *walk)
7dc74be0 5387{
4ffef5fe
DN
5388 int ret = 0;
5389 struct vm_area_struct *vma = walk->private;
5390 pte_t *pte;
5391 spinlock_t *ptl;
5392
03319327 5393 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5394retry:
5395 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5396 for (; addr != end; addr += PAGE_SIZE) {
5397 pte_t ptent = *(pte++);
5398 union mc_target target;
5399 int type;
5400 struct page *page;
5401 struct page_cgroup *pc;
02491447 5402 swp_entry_t ent;
4ffef5fe
DN
5403
5404 if (!mc.precharge)
5405 break;
5406
5407 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5408 switch (type) {
5409 case MC_TARGET_PAGE:
5410 page = target.page;
5411 if (isolate_lru_page(page))
5412 goto put;
5413 pc = lookup_page_cgroup(page);
7ec99d62
JW
5414 if (!mem_cgroup_move_account(page, 1, pc,
5415 mc.from, mc.to, false)) {
4ffef5fe 5416 mc.precharge--;
854ffa8d
DN
5417 /* we uncharge from mc.from later. */
5418 mc.moved_charge++;
4ffef5fe
DN
5419 }
5420 putback_lru_page(page);
5421put: /* is_target_pte_for_mc() gets the page */
5422 put_page(page);
5423 break;
02491447
DN
5424 case MC_TARGET_SWAP:
5425 ent = target.ent;
483c30b5
DN
5426 if (!mem_cgroup_move_swap_account(ent,
5427 mc.from, mc.to, false)) {
02491447 5428 mc.precharge--;
483c30b5
DN
5429 /* we fixup refcnts and charges later. */
5430 mc.moved_swap++;
5431 }
02491447 5432 break;
4ffef5fe
DN
5433 default:
5434 break;
5435 }
5436 }
5437 pte_unmap_unlock(pte - 1, ptl);
5438 cond_resched();
5439
5440 if (addr != end) {
5441 /*
5442 * We have consumed all precharges we got in can_attach().
5443 * We try charge one by one, but don't do any additional
5444 * charges to mc.to if we have failed in charge once in attach()
5445 * phase.
5446 */
854ffa8d 5447 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5448 if (!ret)
5449 goto retry;
5450 }
5451
5452 return ret;
5453}
5454
5455static void mem_cgroup_move_charge(struct mm_struct *mm)
5456{
5457 struct vm_area_struct *vma;
5458
5459 lru_add_drain_all();
dfe076b0
DN
5460retry:
5461 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5462 /*
5463 * Someone who are holding the mmap_sem might be waiting in
5464 * waitq. So we cancel all extra charges, wake up all waiters,
5465 * and retry. Because we cancel precharges, we might not be able
5466 * to move enough charges, but moving charge is a best-effort
5467 * feature anyway, so it wouldn't be a big problem.
5468 */
5469 __mem_cgroup_clear_mc();
5470 cond_resched();
5471 goto retry;
5472 }
4ffef5fe
DN
5473 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5474 int ret;
5475 struct mm_walk mem_cgroup_move_charge_walk = {
5476 .pmd_entry = mem_cgroup_move_charge_pte_range,
5477 .mm = mm,
5478 .private = vma,
5479 };
5480 if (is_vm_hugetlb_page(vma))
5481 continue;
4ffef5fe
DN
5482 ret = walk_page_range(vma->vm_start, vma->vm_end,
5483 &mem_cgroup_move_charge_walk);
5484 if (ret)
5485 /*
5486 * means we have consumed all precharges and failed in
5487 * doing additional charge. Just abandon here.
5488 */
5489 break;
5490 }
dfe076b0 5491 up_read(&mm->mmap_sem);
7dc74be0
DN
5492}
5493
67e465a7
BS
5494static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5495 struct cgroup *cont,
2f7ee569 5496 struct cgroup_taskset *tset)
67e465a7 5497{
2f7ee569 5498 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5499 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5500
dfe076b0 5501 if (mm) {
a433658c
KM
5502 if (mc.to)
5503 mem_cgroup_move_charge(mm);
5504 put_swap_token(mm);
dfe076b0
DN
5505 mmput(mm);
5506 }
a433658c
KM
5507 if (mc.to)
5508 mem_cgroup_clear_mc();
67e465a7 5509}
5cfb80a7
DN
5510#else /* !CONFIG_MMU */
5511static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5512 struct cgroup *cgroup,
2f7ee569 5513 struct cgroup_taskset *tset)
5cfb80a7
DN
5514{
5515 return 0;
5516}
5517static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5518 struct cgroup *cgroup,
2f7ee569 5519 struct cgroup_taskset *tset)
5cfb80a7
DN
5520{
5521}
5522static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5523 struct cgroup *cont,
2f7ee569 5524 struct cgroup_taskset *tset)
5cfb80a7
DN
5525{
5526}
5527#endif
67e465a7 5528
8cdea7c0
BS
5529struct cgroup_subsys mem_cgroup_subsys = {
5530 .name = "memory",
5531 .subsys_id = mem_cgroup_subsys_id,
5532 .create = mem_cgroup_create,
df878fb0 5533 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5534 .destroy = mem_cgroup_destroy,
5535 .populate = mem_cgroup_populate,
7dc74be0
DN
5536 .can_attach = mem_cgroup_can_attach,
5537 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5538 .attach = mem_cgroup_move_task,
6d12e2d8 5539 .early_init = 0,
04046e1a 5540 .use_id = 1,
8cdea7c0 5541};
c077719b
KH
5542
5543#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5544static int __init enable_swap_account(char *s)
5545{
5546 /* consider enabled if no parameter or 1 is given */
a2c8990a 5547 if (!strcmp(s, "1"))
a42c390c 5548 really_do_swap_account = 1;
a2c8990a 5549 else if (!strcmp(s, "0"))
a42c390c
MH
5550 really_do_swap_account = 0;
5551 return 1;
5552}
a2c8990a 5553__setup("swapaccount=", enable_swap_account);
c077719b 5554
c077719b 5555#endif