memcg: simplify LRU handling by new rule
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
93 MEM_CGROUP_STAT_NSTATS,
94};
95
e9f8974f
JW
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
102 MEM_CGROUP_EVENTS_NSTATS,
103};
7a159cc9
JW
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 113 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
114 MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 118#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 119
d52aa412 120struct mem_cgroup_stat_cpu {
7a159cc9 121 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 123 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
124};
125
527a5ec9
JW
126struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
131};
132
6d12e2d8
KH
133/*
134 * per-zone information in memory controller.
135 */
6d12e2d8 136struct mem_cgroup_per_zone {
6290df54 137 struct lruvec lruvec;
b69408e8 138 unsigned long count[NR_LRU_LISTS];
3e2f41f1 139
527a5ec9
JW
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
3e2f41f1 142 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
4e416953
BS
147 struct mem_cgroup *mem; /* Back pointer, we cannot */
148 /* use container_of */
6d12e2d8
KH
149};
150/* Macro for accessing counter */
151#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
152
153struct mem_cgroup_per_node {
154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155};
156
157struct mem_cgroup_lru_info {
158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159};
160
f64c3f54
BS
161/*
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
164 */
165
166struct mem_cgroup_tree_per_zone {
167 struct rb_root rb_root;
168 spinlock_t lock;
169};
170
171struct mem_cgroup_tree_per_node {
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173};
174
175struct mem_cgroup_tree {
176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177};
178
179static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
2e72b634
KS
181struct mem_cgroup_threshold {
182 struct eventfd_ctx *eventfd;
183 u64 threshold;
184};
185
9490ff27 186/* For threshold */
2e72b634
KS
187struct mem_cgroup_threshold_ary {
188 /* An array index points to threshold just below usage. */
5407a562 189 int current_threshold;
2e72b634
KS
190 /* Size of entries[] */
191 unsigned int size;
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries[0];
194};
2c488db2
KS
195
196struct mem_cgroup_thresholds {
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary *primary;
199 /*
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
203 */
204 struct mem_cgroup_threshold_ary *spare;
205};
206
9490ff27
KH
207/* for OOM */
208struct mem_cgroup_eventfd_list {
209 struct list_head list;
210 struct eventfd_ctx *eventfd;
211};
2e72b634 212
c0ff4b85
R
213static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 215
8cdea7c0
BS
216/*
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
221 *
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
8cdea7c0
BS
226 */
227struct mem_cgroup {
228 struct cgroup_subsys_state css;
229 /*
230 * the counter to account for memory usage
231 */
232 struct res_counter res;
8c7c6e34
KH
233 /*
234 * the counter to account for mem+swap usage.
235 */
236 struct res_counter memsw;
78fb7466
PE
237 /*
238 * Per cgroup active and inactive list, similar to the
239 * per zone LRU lists.
78fb7466 240 */
6d12e2d8 241 struct mem_cgroup_lru_info info;
889976db
YH
242 int last_scanned_node;
243#if MAX_NUMNODES > 1
244 nodemask_t scan_nodes;
453a9bf3
KH
245 atomic_t numainfo_events;
246 atomic_t numainfo_updating;
889976db 247#endif
18f59ea7
BS
248 /*
249 * Should the accounting and control be hierarchical, per subtree?
250 */
251 bool use_hierarchy;
79dfdacc
MH
252
253 bool oom_lock;
254 atomic_t under_oom;
255
8c7c6e34 256 atomic_t refcnt;
14797e23 257
1f4c025b 258 int swappiness;
3c11ecf4
KH
259 /* OOM-Killer disable */
260 int oom_kill_disable;
a7885eb8 261
22a668d7
KH
262 /* set when res.limit == memsw.limit */
263 bool memsw_is_minimum;
264
2e72b634
KS
265 /* protect arrays of thresholds */
266 struct mutex thresholds_lock;
267
268 /* thresholds for memory usage. RCU-protected */
2c488db2 269 struct mem_cgroup_thresholds thresholds;
907860ed 270
2e72b634 271 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 272 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 273
9490ff27
KH
274 /* For oom notifier event fd */
275 struct list_head oom_notify;
185efc0f 276
7dc74be0
DN
277 /*
278 * Should we move charges of a task when a task is moved into this
279 * mem_cgroup ? And what type of charges should we move ?
280 */
281 unsigned long move_charge_at_immigrate;
d52aa412 282 /*
c62b1a3b 283 * percpu counter.
d52aa412 284 */
c62b1a3b 285 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
286 /*
287 * used when a cpu is offlined or other synchronizations
288 * See mem_cgroup_read_stat().
289 */
290 struct mem_cgroup_stat_cpu nocpu_base;
291 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
292
293#ifdef CONFIG_INET
294 struct tcp_memcontrol tcp_mem;
295#endif
8cdea7c0
BS
296};
297
7dc74be0
DN
298/* Stuffs for move charges at task migration. */
299/*
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
302 */
303enum move_type {
4ffef5fe 304 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 305 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
306 NR_MOVE_TYPE,
307};
308
4ffef5fe
DN
309/* "mc" and its members are protected by cgroup_mutex */
310static struct move_charge_struct {
b1dd693e 311 spinlock_t lock; /* for from, to */
4ffef5fe
DN
312 struct mem_cgroup *from;
313 struct mem_cgroup *to;
314 unsigned long precharge;
854ffa8d 315 unsigned long moved_charge;
483c30b5 316 unsigned long moved_swap;
8033b97c
DN
317 struct task_struct *moving_task; /* a task moving charges */
318 wait_queue_head_t waitq; /* a waitq for other context */
319} mc = {
2bd9bb20 320 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
321 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322};
4ffef5fe 323
90254a65
DN
324static bool move_anon(void)
325{
326 return test_bit(MOVE_CHARGE_TYPE_ANON,
327 &mc.to->move_charge_at_immigrate);
328}
329
87946a72
DN
330static bool move_file(void)
331{
332 return test_bit(MOVE_CHARGE_TYPE_FILE,
333 &mc.to->move_charge_at_immigrate);
334}
335
4e416953
BS
336/*
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
339 */
340#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
341#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
342
217bc319
KH
343enum charge_type {
344 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 346 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 347 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 349 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
350 NR_CHARGE_TYPE,
351};
352
8c7c6e34 353/* for encoding cft->private value on file */
65c64ce8
GC
354#define _MEM (0)
355#define _MEMSWAP (1)
356#define _OOM_TYPE (2)
8c7c6e34
KH
357#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
358#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
359#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
360/* Used for OOM nofiier */
361#define OOM_CONTROL (0)
8c7c6e34 362
75822b44
BS
363/*
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
365 */
366#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
367#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
369#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370
c0ff4b85
R
371static void mem_cgroup_get(struct mem_cgroup *memcg);
372static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
373
374/* Writing them here to avoid exposing memcg's inner layout */
375#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376#ifdef CONFIG_INET
377#include <net/sock.h>
d1a4c0b3 378#include <net/ip.h>
e1aab161
GC
379
380static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
381void sock_update_memcg(struct sock *sk)
382{
e1aab161
GC
383 if (static_branch(&memcg_socket_limit_enabled)) {
384 struct mem_cgroup *memcg;
385
386 BUG_ON(!sk->sk_prot->proto_cgroup);
387
f3f511e1
GC
388 /* Socket cloning can throw us here with sk_cgrp already
389 * filled. It won't however, necessarily happen from
390 * process context. So the test for root memcg given
391 * the current task's memcg won't help us in this case.
392 *
393 * Respecting the original socket's memcg is a better
394 * decision in this case.
395 */
396 if (sk->sk_cgrp) {
397 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
398 mem_cgroup_get(sk->sk_cgrp->memcg);
399 return;
400 }
401
e1aab161
GC
402 rcu_read_lock();
403 memcg = mem_cgroup_from_task(current);
404 if (!mem_cgroup_is_root(memcg)) {
405 mem_cgroup_get(memcg);
406 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
407 }
408 rcu_read_unlock();
409 }
410}
411EXPORT_SYMBOL(sock_update_memcg);
412
413void sock_release_memcg(struct sock *sk)
414{
415 if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
416 struct mem_cgroup *memcg;
417 WARN_ON(!sk->sk_cgrp->memcg);
418 memcg = sk->sk_cgrp->memcg;
419 mem_cgroup_put(memcg);
420 }
421}
d1a4c0b3
GC
422
423struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424{
425 if (!memcg || mem_cgroup_is_root(memcg))
426 return NULL;
427
428 return &memcg->tcp_mem.cg_proto;
429}
430EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
431#endif /* CONFIG_INET */
432#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433
c0ff4b85 434static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 435
f64c3f54 436static struct mem_cgroup_per_zone *
c0ff4b85 437mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 438{
c0ff4b85 439 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
440}
441
c0ff4b85 442struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 443{
c0ff4b85 444 return &memcg->css;
d324236b
WF
445}
446
f64c3f54 447static struct mem_cgroup_per_zone *
c0ff4b85 448page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 449{
97a6c37b
JW
450 int nid = page_to_nid(page);
451 int zid = page_zonenum(page);
f64c3f54 452
c0ff4b85 453 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
454}
455
456static struct mem_cgroup_tree_per_zone *
457soft_limit_tree_node_zone(int nid, int zid)
458{
459 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460}
461
462static struct mem_cgroup_tree_per_zone *
463soft_limit_tree_from_page(struct page *page)
464{
465 int nid = page_to_nid(page);
466 int zid = page_zonenum(page);
467
468 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469}
470
471static void
c0ff4b85 472__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 473 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
474 struct mem_cgroup_tree_per_zone *mctz,
475 unsigned long long new_usage_in_excess)
f64c3f54
BS
476{
477 struct rb_node **p = &mctz->rb_root.rb_node;
478 struct rb_node *parent = NULL;
479 struct mem_cgroup_per_zone *mz_node;
480
481 if (mz->on_tree)
482 return;
483
ef8745c1
KH
484 mz->usage_in_excess = new_usage_in_excess;
485 if (!mz->usage_in_excess)
486 return;
f64c3f54
BS
487 while (*p) {
488 parent = *p;
489 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490 tree_node);
491 if (mz->usage_in_excess < mz_node->usage_in_excess)
492 p = &(*p)->rb_left;
493 /*
494 * We can't avoid mem cgroups that are over their soft
495 * limit by the same amount
496 */
497 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498 p = &(*p)->rb_right;
499 }
500 rb_link_node(&mz->tree_node, parent, p);
501 rb_insert_color(&mz->tree_node, &mctz->rb_root);
502 mz->on_tree = true;
4e416953
BS
503}
504
505static void
c0ff4b85 506__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
507 struct mem_cgroup_per_zone *mz,
508 struct mem_cgroup_tree_per_zone *mctz)
509{
510 if (!mz->on_tree)
511 return;
512 rb_erase(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = false;
514}
515
f64c3f54 516static void
c0ff4b85 517mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
518 struct mem_cgroup_per_zone *mz,
519 struct mem_cgroup_tree_per_zone *mctz)
520{
521 spin_lock(&mctz->lock);
c0ff4b85 522 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
523 spin_unlock(&mctz->lock);
524}
525
f64c3f54 526
c0ff4b85 527static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 528{
ef8745c1 529 unsigned long long excess;
f64c3f54
BS
530 struct mem_cgroup_per_zone *mz;
531 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
532 int nid = page_to_nid(page);
533 int zid = page_zonenum(page);
f64c3f54
BS
534 mctz = soft_limit_tree_from_page(page);
535
536 /*
4e649152
KH
537 * Necessary to update all ancestors when hierarchy is used.
538 * because their event counter is not touched.
f64c3f54 539 */
c0ff4b85
R
540 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
543 /*
544 * We have to update the tree if mz is on RB-tree or
545 * mem is over its softlimit.
546 */
ef8745c1 547 if (excess || mz->on_tree) {
4e649152
KH
548 spin_lock(&mctz->lock);
549 /* if on-tree, remove it */
550 if (mz->on_tree)
c0ff4b85 551 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 552 /*
ef8745c1
KH
553 * Insert again. mz->usage_in_excess will be updated.
554 * If excess is 0, no tree ops.
4e649152 555 */
c0ff4b85 556 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
557 spin_unlock(&mctz->lock);
558 }
f64c3f54
BS
559 }
560}
561
c0ff4b85 562static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
563{
564 int node, zone;
565 struct mem_cgroup_per_zone *mz;
566 struct mem_cgroup_tree_per_zone *mctz;
567
568 for_each_node_state(node, N_POSSIBLE) {
569 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 570 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 571 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 572 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
573 }
574 }
575}
576
4e416953
BS
577static struct mem_cgroup_per_zone *
578__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579{
580 struct rb_node *rightmost = NULL;
26251eaf 581 struct mem_cgroup_per_zone *mz;
4e416953
BS
582
583retry:
26251eaf 584 mz = NULL;
4e416953
BS
585 rightmost = rb_last(&mctz->rb_root);
586 if (!rightmost)
587 goto done; /* Nothing to reclaim from */
588
589 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590 /*
591 * Remove the node now but someone else can add it back,
592 * we will to add it back at the end of reclaim to its correct
593 * position in the tree.
594 */
595 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 !css_tryget(&mz->mem->css))
598 goto retry;
599done:
600 return mz;
601}
602
603static struct mem_cgroup_per_zone *
604mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605{
606 struct mem_cgroup_per_zone *mz;
607
608 spin_lock(&mctz->lock);
609 mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 spin_unlock(&mctz->lock);
611 return mz;
612}
613
711d3d2c
KH
614/*
615 * Implementation Note: reading percpu statistics for memcg.
616 *
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
621 *
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
627 *
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
632 */
c0ff4b85 633static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 634 enum mem_cgroup_stat_index idx)
c62b1a3b 635{
7a159cc9 636 long val = 0;
c62b1a3b 637 int cpu;
c62b1a3b 638
711d3d2c
KH
639 get_online_cpus();
640 for_each_online_cpu(cpu)
c0ff4b85 641 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 642#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
643 spin_lock(&memcg->pcp_counter_lock);
644 val += memcg->nocpu_base.count[idx];
645 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
646#endif
647 put_online_cpus();
c62b1a3b
KH
648 return val;
649}
650
c0ff4b85 651static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
652 bool charge)
653{
654 int val = (charge) ? 1 : -1;
c0ff4b85 655 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
656}
657
c0ff4b85 658static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
659 enum mem_cgroup_events_index idx)
660{
661 unsigned long val = 0;
662 int cpu;
663
664 for_each_online_cpu(cpu)
c0ff4b85 665 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 666#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
667 spin_lock(&memcg->pcp_counter_lock);
668 val += memcg->nocpu_base.events[idx];
669 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
670#endif
671 return val;
672}
673
c0ff4b85 674static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
e401f176 675 bool file, int nr_pages)
d52aa412 676{
c62b1a3b
KH
677 preempt_disable();
678
e401f176 679 if (file)
c0ff4b85
R
680 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681 nr_pages);
d52aa412 682 else
c0ff4b85
R
683 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684 nr_pages);
55e462b0 685
e401f176
KH
686 /* pagein of a big page is an event. So, ignore page size */
687 if (nr_pages > 0)
c0ff4b85 688 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 689 else {
c0ff4b85 690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
691 nr_pages = -nr_pages; /* for event */
692 }
e401f176 693
c0ff4b85 694 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 695
c62b1a3b 696 preempt_enable();
6d12e2d8
KH
697}
698
bb2a0de9 699unsigned long
c0ff4b85 700mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 701 unsigned int lru_mask)
889976db
YH
702{
703 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
704 enum lru_list l;
705 unsigned long ret = 0;
706
c0ff4b85 707 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9
KH
708
709 for_each_lru(l) {
710 if (BIT(l) & lru_mask)
711 ret += MEM_CGROUP_ZSTAT(mz, l);
712 }
713 return ret;
714}
715
716static unsigned long
c0ff4b85 717mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
718 int nid, unsigned int lru_mask)
719{
889976db
YH
720 u64 total = 0;
721 int zid;
722
bb2a0de9 723 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
724 total += mem_cgroup_zone_nr_lru_pages(memcg,
725 nid, zid, lru_mask);
bb2a0de9 726
889976db
YH
727 return total;
728}
bb2a0de9 729
c0ff4b85 730static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 731 unsigned int lru_mask)
6d12e2d8 732{
889976db 733 int nid;
6d12e2d8
KH
734 u64 total = 0;
735
bb2a0de9 736 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 737 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 738 return total;
d52aa412
KH
739}
740
f53d7ce3
JW
741static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742 enum mem_cgroup_events_target target)
7a159cc9
JW
743{
744 unsigned long val, next;
745
4799401f
SR
746 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 748 /* from time_after() in jiffies.h */
f53d7ce3
JW
749 if ((long)next - (long)val < 0) {
750 switch (target) {
751 case MEM_CGROUP_TARGET_THRESH:
752 next = val + THRESHOLDS_EVENTS_TARGET;
753 break;
754 case MEM_CGROUP_TARGET_SOFTLIMIT:
755 next = val + SOFTLIMIT_EVENTS_TARGET;
756 break;
757 case MEM_CGROUP_TARGET_NUMAINFO:
758 next = val + NUMAINFO_EVENTS_TARGET;
759 break;
760 default:
761 break;
762 }
763 __this_cpu_write(memcg->stat->targets[target], next);
764 return true;
7a159cc9 765 }
f53d7ce3 766 return false;
d2265e6f
KH
767}
768
769/*
770 * Check events in order.
771 *
772 */
c0ff4b85 773static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 774{
4799401f 775 preempt_disable();
d2265e6f 776 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
777 if (unlikely(mem_cgroup_event_ratelimit(memcg,
778 MEM_CGROUP_TARGET_THRESH))) {
779 bool do_softlimit, do_numainfo;
780
781 do_softlimit = mem_cgroup_event_ratelimit(memcg,
782 MEM_CGROUP_TARGET_SOFTLIMIT);
783#if MAX_NUMNODES > 1
784 do_numainfo = mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_NUMAINFO);
786#endif
787 preempt_enable();
788
c0ff4b85 789 mem_cgroup_threshold(memcg);
f53d7ce3 790 if (unlikely(do_softlimit))
c0ff4b85 791 mem_cgroup_update_tree(memcg, page);
453a9bf3 792#if MAX_NUMNODES > 1
f53d7ce3 793 if (unlikely(do_numainfo))
c0ff4b85 794 atomic_inc(&memcg->numainfo_events);
453a9bf3 795#endif
f53d7ce3
JW
796 } else
797 preempt_enable();
d2265e6f
KH
798}
799
d1a4c0b3 800struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
801{
802 return container_of(cgroup_subsys_state(cont,
803 mem_cgroup_subsys_id), struct mem_cgroup,
804 css);
805}
806
cf475ad2 807struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 808{
31a78f23
BS
809 /*
810 * mm_update_next_owner() may clear mm->owner to NULL
811 * if it races with swapoff, page migration, etc.
812 * So this can be called with p == NULL.
813 */
814 if (unlikely(!p))
815 return NULL;
816
78fb7466
PE
817 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
818 struct mem_cgroup, css);
819}
820
a433658c 821struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 822{
c0ff4b85 823 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
824
825 if (!mm)
826 return NULL;
54595fe2
KH
827 /*
828 * Because we have no locks, mm->owner's may be being moved to other
829 * cgroup. We use css_tryget() here even if this looks
830 * pessimistic (rather than adding locks here).
831 */
832 rcu_read_lock();
833 do {
c0ff4b85
R
834 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
835 if (unlikely(!memcg))
54595fe2 836 break;
c0ff4b85 837 } while (!css_tryget(&memcg->css));
54595fe2 838 rcu_read_unlock();
c0ff4b85 839 return memcg;
54595fe2
KH
840}
841
5660048c
JW
842/**
843 * mem_cgroup_iter - iterate over memory cgroup hierarchy
844 * @root: hierarchy root
845 * @prev: previously returned memcg, NULL on first invocation
846 * @reclaim: cookie for shared reclaim walks, NULL for full walks
847 *
848 * Returns references to children of the hierarchy below @root, or
849 * @root itself, or %NULL after a full round-trip.
850 *
851 * Caller must pass the return value in @prev on subsequent
852 * invocations for reference counting, or use mem_cgroup_iter_break()
853 * to cancel a hierarchy walk before the round-trip is complete.
854 *
855 * Reclaimers can specify a zone and a priority level in @reclaim to
856 * divide up the memcgs in the hierarchy among all concurrent
857 * reclaimers operating on the same zone and priority.
858 */
859struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
860 struct mem_cgroup *prev,
861 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 862{
9f3a0d09
JW
863 struct mem_cgroup *memcg = NULL;
864 int id = 0;
711d3d2c 865
5660048c
JW
866 if (mem_cgroup_disabled())
867 return NULL;
868
9f3a0d09
JW
869 if (!root)
870 root = root_mem_cgroup;
7d74b06f 871
9f3a0d09
JW
872 if (prev && !reclaim)
873 id = css_id(&prev->css);
14067bb3 874
9f3a0d09
JW
875 if (prev && prev != root)
876 css_put(&prev->css);
14067bb3 877
9f3a0d09
JW
878 if (!root->use_hierarchy && root != root_mem_cgroup) {
879 if (prev)
880 return NULL;
881 return root;
882 }
14067bb3 883
9f3a0d09 884 while (!memcg) {
527a5ec9 885 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 886 struct cgroup_subsys_state *css;
711d3d2c 887
527a5ec9
JW
888 if (reclaim) {
889 int nid = zone_to_nid(reclaim->zone);
890 int zid = zone_idx(reclaim->zone);
891 struct mem_cgroup_per_zone *mz;
892
893 mz = mem_cgroup_zoneinfo(root, nid, zid);
894 iter = &mz->reclaim_iter[reclaim->priority];
895 if (prev && reclaim->generation != iter->generation)
896 return NULL;
897 id = iter->position;
898 }
7d74b06f 899
9f3a0d09
JW
900 rcu_read_lock();
901 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
902 if (css) {
903 if (css == &root->css || css_tryget(css))
904 memcg = container_of(css,
905 struct mem_cgroup, css);
906 } else
907 id = 0;
14067bb3 908 rcu_read_unlock();
14067bb3 909
527a5ec9
JW
910 if (reclaim) {
911 iter->position = id;
912 if (!css)
913 iter->generation++;
914 else if (!prev && memcg)
915 reclaim->generation = iter->generation;
916 }
9f3a0d09
JW
917
918 if (prev && !css)
919 return NULL;
920 }
921 return memcg;
14067bb3 922}
7d74b06f 923
5660048c
JW
924/**
925 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
926 * @root: hierarchy root
927 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
928 */
929void mem_cgroup_iter_break(struct mem_cgroup *root,
930 struct mem_cgroup *prev)
9f3a0d09
JW
931{
932 if (!root)
933 root = root_mem_cgroup;
934 if (prev && prev != root)
935 css_put(&prev->css);
936}
7d74b06f 937
9f3a0d09
JW
938/*
939 * Iteration constructs for visiting all cgroups (under a tree). If
940 * loops are exited prematurely (break), mem_cgroup_iter_break() must
941 * be used for reference counting.
942 */
943#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 944 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 945 iter != NULL; \
527a5ec9 946 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 947
9f3a0d09 948#define for_each_mem_cgroup(iter) \
527a5ec9 949 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 950 iter != NULL; \
527a5ec9 951 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 952
c0ff4b85 953static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 954{
c0ff4b85 955 return (memcg == root_mem_cgroup);
4b3bde4c
BS
956}
957
456f998e
YH
958void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
959{
c0ff4b85 960 struct mem_cgroup *memcg;
456f998e
YH
961
962 if (!mm)
963 return;
964
965 rcu_read_lock();
c0ff4b85
R
966 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
967 if (unlikely(!memcg))
456f998e
YH
968 goto out;
969
970 switch (idx) {
456f998e 971 case PGFAULT:
0e574a93
JW
972 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
973 break;
974 case PGMAJFAULT:
975 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
976 break;
977 default:
978 BUG();
979 }
980out:
981 rcu_read_unlock();
982}
983EXPORT_SYMBOL(mem_cgroup_count_vm_event);
984
925b7673
JW
985/**
986 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
987 * @zone: zone of the wanted lruvec
988 * @mem: memcg of the wanted lruvec
989 *
990 * Returns the lru list vector holding pages for the given @zone and
991 * @mem. This can be the global zone lruvec, if the memory controller
992 * is disabled.
993 */
994struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
995 struct mem_cgroup *memcg)
996{
997 struct mem_cgroup_per_zone *mz;
998
999 if (mem_cgroup_disabled())
1000 return &zone->lruvec;
1001
1002 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1003 return &mz->lruvec;
1004}
1005
08e552c6
KH
1006/*
1007 * Following LRU functions are allowed to be used without PCG_LOCK.
1008 * Operations are called by routine of global LRU independently from memcg.
1009 * What we have to take care of here is validness of pc->mem_cgroup.
1010 *
1011 * Changes to pc->mem_cgroup happens when
1012 * 1. charge
1013 * 2. moving account
1014 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1015 * It is added to LRU before charge.
1016 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1017 * When moving account, the page is not on LRU. It's isolated.
1018 */
4f98a2fe 1019
925b7673
JW
1020/**
1021 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1022 * @zone: zone of the page
1023 * @page: the page
1024 * @lru: current lru
1025 *
1026 * This function accounts for @page being added to @lru, and returns
1027 * the lruvec for the given @zone and the memcg @page is charged to.
1028 *
1029 * The callsite is then responsible for physically linking the page to
1030 * the returned lruvec->lists[@lru].
1031 */
1032struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1033 enum lru_list lru)
08e552c6 1034{
08e552c6 1035 struct mem_cgroup_per_zone *mz;
925b7673
JW
1036 struct mem_cgroup *memcg;
1037 struct page_cgroup *pc;
6d12e2d8 1038
f8d66542 1039 if (mem_cgroup_disabled())
925b7673
JW
1040 return &zone->lruvec;
1041
08e552c6 1042 pc = lookup_page_cgroup(page);
38c5d72f 1043 memcg = pc->mem_cgroup;
925b7673
JW
1044 mz = page_cgroup_zoneinfo(memcg, page);
1045 /* compound_order() is stabilized through lru_lock */
1046 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1047 return &mz->lruvec;
08e552c6 1048}
b69408e8 1049
925b7673
JW
1050/**
1051 * mem_cgroup_lru_del_list - account for removing an lru page
1052 * @page: the page
1053 * @lru: target lru
1054 *
1055 * This function accounts for @page being removed from @lru.
1056 *
1057 * The callsite is then responsible for physically unlinking
1058 * @page->lru.
3f58a829 1059 */
925b7673 1060void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1061{
1062 struct mem_cgroup_per_zone *mz;
925b7673 1063 struct mem_cgroup *memcg;
3f58a829 1064 struct page_cgroup *pc;
3f58a829
MK
1065
1066 if (mem_cgroup_disabled())
1067 return;
1068
1069 pc = lookup_page_cgroup(page);
38c5d72f
KH
1070 memcg = pc->mem_cgroup;
1071 VM_BUG_ON(!memcg);
925b7673
JW
1072 mz = page_cgroup_zoneinfo(memcg, page);
1073 /* huge page split is done under lru_lock. so, we have no races. */
1074 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
3f58a829
MK
1075}
1076
925b7673 1077void mem_cgroup_lru_del(struct page *page)
08e552c6 1078{
925b7673 1079 mem_cgroup_lru_del_list(page, page_lru(page));
6d12e2d8
KH
1080}
1081
925b7673
JW
1082/**
1083 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1084 * @zone: zone of the page
1085 * @page: the page
1086 * @from: current lru
1087 * @to: target lru
1088 *
1089 * This function accounts for @page being moved between the lrus @from
1090 * and @to, and returns the lruvec for the given @zone and the memcg
1091 * @page is charged to.
1092 *
1093 * The callsite is then responsible for physically relinking
1094 * @page->lru to the returned lruvec->lists[@to].
1095 */
1096struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1097 struct page *page,
1098 enum lru_list from,
1099 enum lru_list to)
66e1707b 1100{
925b7673
JW
1101 /* XXX: Optimize this, especially for @from == @to */
1102 mem_cgroup_lru_del_list(page, from);
1103 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1104}
544122e5 1105
3e92041d 1106/*
c0ff4b85 1107 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1108 * hierarchy subtree
1109 */
c0ff4b85
R
1110static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1111 struct mem_cgroup *memcg)
3e92041d 1112{
c0ff4b85
R
1113 if (root_memcg != memcg) {
1114 return (root_memcg->use_hierarchy &&
1115 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1116 }
1117
1118 return true;
1119}
1120
c0ff4b85 1121int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1122{
1123 int ret;
0b7f569e 1124 struct mem_cgroup *curr = NULL;
158e0a2d 1125 struct task_struct *p;
4c4a2214 1126
158e0a2d 1127 p = find_lock_task_mm(task);
de077d22
DR
1128 if (p) {
1129 curr = try_get_mem_cgroup_from_mm(p->mm);
1130 task_unlock(p);
1131 } else {
1132 /*
1133 * All threads may have already detached their mm's, but the oom
1134 * killer still needs to detect if they have already been oom
1135 * killed to prevent needlessly killing additional tasks.
1136 */
1137 task_lock(task);
1138 curr = mem_cgroup_from_task(task);
1139 if (curr)
1140 css_get(&curr->css);
1141 task_unlock(task);
1142 }
0b7f569e
KH
1143 if (!curr)
1144 return 0;
d31f56db 1145 /*
c0ff4b85 1146 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1147 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1148 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1149 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1150 */
c0ff4b85 1151 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1152 css_put(&curr->css);
4c4a2214
DR
1153 return ret;
1154}
1155
9b272977 1156int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1157{
9b272977
JW
1158 unsigned long inactive_ratio;
1159 int nid = zone_to_nid(zone);
1160 int zid = zone_idx(zone);
14797e23 1161 unsigned long inactive;
9b272977 1162 unsigned long active;
c772be93 1163 unsigned long gb;
14797e23 1164
9b272977
JW
1165 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1166 BIT(LRU_INACTIVE_ANON));
1167 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1168 BIT(LRU_ACTIVE_ANON));
14797e23 1169
c772be93
KM
1170 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1171 if (gb)
1172 inactive_ratio = int_sqrt(10 * gb);
1173 else
1174 inactive_ratio = 1;
1175
9b272977 1176 return inactive * inactive_ratio < active;
14797e23
KM
1177}
1178
9b272977 1179int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1180{
1181 unsigned long active;
1182 unsigned long inactive;
9b272977
JW
1183 int zid = zone_idx(zone);
1184 int nid = zone_to_nid(zone);
56e49d21 1185
9b272977
JW
1186 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1187 BIT(LRU_INACTIVE_FILE));
1188 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1189 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1190
1191 return (active > inactive);
1192}
1193
3e2f41f1
KM
1194struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1195 struct zone *zone)
1196{
13d7e3a2 1197 int nid = zone_to_nid(zone);
3e2f41f1
KM
1198 int zid = zone_idx(zone);
1199 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1200
1201 return &mz->reclaim_stat;
1202}
1203
1204struct zone_reclaim_stat *
1205mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1206{
1207 struct page_cgroup *pc;
1208 struct mem_cgroup_per_zone *mz;
1209
1210 if (mem_cgroup_disabled())
1211 return NULL;
1212
1213 pc = lookup_page_cgroup(page);
bd112db8
DN
1214 if (!PageCgroupUsed(pc))
1215 return NULL;
713735b4
JW
1216 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1217 smp_rmb();
97a6c37b 1218 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1219 return &mz->reclaim_stat;
1220}
1221
6d61ef40
BS
1222#define mem_cgroup_from_res_counter(counter, member) \
1223 container_of(counter, struct mem_cgroup, member)
1224
19942822 1225/**
9d11ea9f
JW
1226 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1227 * @mem: the memory cgroup
19942822 1228 *
9d11ea9f 1229 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1230 * pages.
19942822 1231 */
c0ff4b85 1232static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1233{
9d11ea9f
JW
1234 unsigned long long margin;
1235
c0ff4b85 1236 margin = res_counter_margin(&memcg->res);
9d11ea9f 1237 if (do_swap_account)
c0ff4b85 1238 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1239 return margin >> PAGE_SHIFT;
19942822
JW
1240}
1241
1f4c025b 1242int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1243{
1244 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1245
1246 /* root ? */
1247 if (cgrp->parent == NULL)
1248 return vm_swappiness;
1249
bf1ff263 1250 return memcg->swappiness;
a7885eb8
KM
1251}
1252
c0ff4b85 1253static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a
KH
1254{
1255 int cpu;
1489ebad
KH
1256
1257 get_online_cpus();
c0ff4b85 1258 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1259 for_each_online_cpu(cpu)
c0ff4b85
R
1260 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1261 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1262 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1263 put_online_cpus();
32047e2a
KH
1264
1265 synchronize_rcu();
1266}
1267
c0ff4b85 1268static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a
KH
1269{
1270 int cpu;
1271
c0ff4b85 1272 if (!memcg)
32047e2a 1273 return;
1489ebad 1274 get_online_cpus();
c0ff4b85 1275 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1276 for_each_online_cpu(cpu)
c0ff4b85
R
1277 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1278 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1279 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1280 put_online_cpus();
32047e2a
KH
1281}
1282/*
1283 * 2 routines for checking "mem" is under move_account() or not.
1284 *
1285 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1286 * for avoiding race in accounting. If true,
1287 * pc->mem_cgroup may be overwritten.
1288 *
1289 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1290 * under hierarchy of moving cgroups. This is for
1291 * waiting at hith-memory prressure caused by "move".
1292 */
1293
c0ff4b85 1294static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
32047e2a
KH
1295{
1296 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85 1297 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
32047e2a 1298}
4b534334 1299
c0ff4b85 1300static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1301{
2bd9bb20
KH
1302 struct mem_cgroup *from;
1303 struct mem_cgroup *to;
4b534334 1304 bool ret = false;
2bd9bb20
KH
1305 /*
1306 * Unlike task_move routines, we access mc.to, mc.from not under
1307 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1308 */
1309 spin_lock(&mc.lock);
1310 from = mc.from;
1311 to = mc.to;
1312 if (!from)
1313 goto unlock;
3e92041d 1314
c0ff4b85
R
1315 ret = mem_cgroup_same_or_subtree(memcg, from)
1316 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1317unlock:
1318 spin_unlock(&mc.lock);
4b534334
KH
1319 return ret;
1320}
1321
c0ff4b85 1322static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1323{
1324 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1325 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1326 DEFINE_WAIT(wait);
1327 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1328 /* moving charge context might have finished. */
1329 if (mc.moving_task)
1330 schedule();
1331 finish_wait(&mc.waitq, &wait);
1332 return true;
1333 }
1334 }
1335 return false;
1336}
1337
e222432b 1338/**
6a6135b6 1339 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1340 * @memcg: The memory cgroup that went over limit
1341 * @p: Task that is going to be killed
1342 *
1343 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1344 * enabled
1345 */
1346void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1347{
1348 struct cgroup *task_cgrp;
1349 struct cgroup *mem_cgrp;
1350 /*
1351 * Need a buffer in BSS, can't rely on allocations. The code relies
1352 * on the assumption that OOM is serialized for memory controller.
1353 * If this assumption is broken, revisit this code.
1354 */
1355 static char memcg_name[PATH_MAX];
1356 int ret;
1357
d31f56db 1358 if (!memcg || !p)
e222432b
BS
1359 return;
1360
1361
1362 rcu_read_lock();
1363
1364 mem_cgrp = memcg->css.cgroup;
1365 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1366
1367 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1368 if (ret < 0) {
1369 /*
1370 * Unfortunately, we are unable to convert to a useful name
1371 * But we'll still print out the usage information
1372 */
1373 rcu_read_unlock();
1374 goto done;
1375 }
1376 rcu_read_unlock();
1377
1378 printk(KERN_INFO "Task in %s killed", memcg_name);
1379
1380 rcu_read_lock();
1381 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1382 if (ret < 0) {
1383 rcu_read_unlock();
1384 goto done;
1385 }
1386 rcu_read_unlock();
1387
1388 /*
1389 * Continues from above, so we don't need an KERN_ level
1390 */
1391 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1392done:
1393
1394 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1395 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1396 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1397 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1398 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1399 "failcnt %llu\n",
1400 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1401 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1402 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1403}
1404
81d39c20
KH
1405/*
1406 * This function returns the number of memcg under hierarchy tree. Returns
1407 * 1(self count) if no children.
1408 */
c0ff4b85 1409static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1410{
1411 int num = 0;
7d74b06f
KH
1412 struct mem_cgroup *iter;
1413
c0ff4b85 1414 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1415 num++;
81d39c20
KH
1416 return num;
1417}
1418
a63d83f4
DR
1419/*
1420 * Return the memory (and swap, if configured) limit for a memcg.
1421 */
1422u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1423{
1424 u64 limit;
1425 u64 memsw;
1426
f3e8eb70
JW
1427 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1428 limit += total_swap_pages << PAGE_SHIFT;
1429
a63d83f4
DR
1430 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1431 /*
1432 * If memsw is finite and limits the amount of swap space available
1433 * to this memcg, return that limit.
1434 */
1435 return min(limit, memsw);
1436}
1437
5660048c
JW
1438static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1439 gfp_t gfp_mask,
1440 unsigned long flags)
1441{
1442 unsigned long total = 0;
1443 bool noswap = false;
1444 int loop;
1445
1446 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1447 noswap = true;
1448 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1449 noswap = true;
1450
1451 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1452 if (loop)
1453 drain_all_stock_async(memcg);
1454 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1455 /*
1456 * Allow limit shrinkers, which are triggered directly
1457 * by userspace, to catch signals and stop reclaim
1458 * after minimal progress, regardless of the margin.
1459 */
1460 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1461 break;
1462 if (mem_cgroup_margin(memcg))
1463 break;
1464 /*
1465 * If nothing was reclaimed after two attempts, there
1466 * may be no reclaimable pages in this hierarchy.
1467 */
1468 if (loop && !total)
1469 break;
1470 }
1471 return total;
1472}
1473
4d0c066d
KH
1474/**
1475 * test_mem_cgroup_node_reclaimable
1476 * @mem: the target memcg
1477 * @nid: the node ID to be checked.
1478 * @noswap : specify true here if the user wants flle only information.
1479 *
1480 * This function returns whether the specified memcg contains any
1481 * reclaimable pages on a node. Returns true if there are any reclaimable
1482 * pages in the node.
1483 */
c0ff4b85 1484static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1485 int nid, bool noswap)
1486{
c0ff4b85 1487 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1488 return true;
1489 if (noswap || !total_swap_pages)
1490 return false;
c0ff4b85 1491 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1492 return true;
1493 return false;
1494
1495}
889976db
YH
1496#if MAX_NUMNODES > 1
1497
1498/*
1499 * Always updating the nodemask is not very good - even if we have an empty
1500 * list or the wrong list here, we can start from some node and traverse all
1501 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1502 *
1503 */
c0ff4b85 1504static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1505{
1506 int nid;
453a9bf3
KH
1507 /*
1508 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1509 * pagein/pageout changes since the last update.
1510 */
c0ff4b85 1511 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1512 return;
c0ff4b85 1513 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1514 return;
1515
889976db 1516 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1517 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1518
1519 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1520
c0ff4b85
R
1521 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1522 node_clear(nid, memcg->scan_nodes);
889976db 1523 }
453a9bf3 1524
c0ff4b85
R
1525 atomic_set(&memcg->numainfo_events, 0);
1526 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1527}
1528
1529/*
1530 * Selecting a node where we start reclaim from. Because what we need is just
1531 * reducing usage counter, start from anywhere is O,K. Considering
1532 * memory reclaim from current node, there are pros. and cons.
1533 *
1534 * Freeing memory from current node means freeing memory from a node which
1535 * we'll use or we've used. So, it may make LRU bad. And if several threads
1536 * hit limits, it will see a contention on a node. But freeing from remote
1537 * node means more costs for memory reclaim because of memory latency.
1538 *
1539 * Now, we use round-robin. Better algorithm is welcomed.
1540 */
c0ff4b85 1541int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1542{
1543 int node;
1544
c0ff4b85
R
1545 mem_cgroup_may_update_nodemask(memcg);
1546 node = memcg->last_scanned_node;
889976db 1547
c0ff4b85 1548 node = next_node(node, memcg->scan_nodes);
889976db 1549 if (node == MAX_NUMNODES)
c0ff4b85 1550 node = first_node(memcg->scan_nodes);
889976db
YH
1551 /*
1552 * We call this when we hit limit, not when pages are added to LRU.
1553 * No LRU may hold pages because all pages are UNEVICTABLE or
1554 * memcg is too small and all pages are not on LRU. In that case,
1555 * we use curret node.
1556 */
1557 if (unlikely(node == MAX_NUMNODES))
1558 node = numa_node_id();
1559
c0ff4b85 1560 memcg->last_scanned_node = node;
889976db
YH
1561 return node;
1562}
1563
4d0c066d
KH
1564/*
1565 * Check all nodes whether it contains reclaimable pages or not.
1566 * For quick scan, we make use of scan_nodes. This will allow us to skip
1567 * unused nodes. But scan_nodes is lazily updated and may not cotain
1568 * enough new information. We need to do double check.
1569 */
c0ff4b85 1570bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1571{
1572 int nid;
1573
1574 /*
1575 * quick check...making use of scan_node.
1576 * We can skip unused nodes.
1577 */
c0ff4b85
R
1578 if (!nodes_empty(memcg->scan_nodes)) {
1579 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1580 nid < MAX_NUMNODES;
c0ff4b85 1581 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1582
c0ff4b85 1583 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1584 return true;
1585 }
1586 }
1587 /*
1588 * Check rest of nodes.
1589 */
1590 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1591 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1592 continue;
c0ff4b85 1593 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1594 return true;
1595 }
1596 return false;
1597}
1598
889976db 1599#else
c0ff4b85 1600int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1601{
1602 return 0;
1603}
4d0c066d 1604
c0ff4b85 1605bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1606{
c0ff4b85 1607 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1608}
889976db
YH
1609#endif
1610
5660048c
JW
1611static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1612 struct zone *zone,
1613 gfp_t gfp_mask,
1614 unsigned long *total_scanned)
6d61ef40 1615{
9f3a0d09 1616 struct mem_cgroup *victim = NULL;
5660048c 1617 int total = 0;
04046e1a 1618 int loop = 0;
9d11ea9f 1619 unsigned long excess;
185efc0f 1620 unsigned long nr_scanned;
527a5ec9
JW
1621 struct mem_cgroup_reclaim_cookie reclaim = {
1622 .zone = zone,
1623 .priority = 0,
1624 };
9d11ea9f 1625
c0ff4b85 1626 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1627
4e416953 1628 while (1) {
527a5ec9 1629 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1630 if (!victim) {
04046e1a 1631 loop++;
4e416953
BS
1632 if (loop >= 2) {
1633 /*
1634 * If we have not been able to reclaim
1635 * anything, it might because there are
1636 * no reclaimable pages under this hierarchy
1637 */
5660048c 1638 if (!total)
4e416953 1639 break;
4e416953 1640 /*
25985edc 1641 * We want to do more targeted reclaim.
4e416953
BS
1642 * excess >> 2 is not to excessive so as to
1643 * reclaim too much, nor too less that we keep
1644 * coming back to reclaim from this cgroup
1645 */
1646 if (total >= (excess >> 2) ||
9f3a0d09 1647 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1648 break;
4e416953 1649 }
9f3a0d09 1650 continue;
4e416953 1651 }
5660048c 1652 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1653 continue;
5660048c
JW
1654 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1655 zone, &nr_scanned);
1656 *total_scanned += nr_scanned;
1657 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1658 break;
6d61ef40 1659 }
9f3a0d09 1660 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1661 return total;
6d61ef40
BS
1662}
1663
867578cb
KH
1664/*
1665 * Check OOM-Killer is already running under our hierarchy.
1666 * If someone is running, return false.
1af8efe9 1667 * Has to be called with memcg_oom_lock
867578cb 1668 */
c0ff4b85 1669static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1670{
79dfdacc 1671 struct mem_cgroup *iter, *failed = NULL;
a636b327 1672
9f3a0d09 1673 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1674 if (iter->oom_lock) {
79dfdacc
MH
1675 /*
1676 * this subtree of our hierarchy is already locked
1677 * so we cannot give a lock.
1678 */
79dfdacc 1679 failed = iter;
9f3a0d09
JW
1680 mem_cgroup_iter_break(memcg, iter);
1681 break;
23751be0
JW
1682 } else
1683 iter->oom_lock = true;
7d74b06f 1684 }
867578cb 1685
79dfdacc 1686 if (!failed)
23751be0 1687 return true;
79dfdacc
MH
1688
1689 /*
1690 * OK, we failed to lock the whole subtree so we have to clean up
1691 * what we set up to the failing subtree
1692 */
9f3a0d09 1693 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1694 if (iter == failed) {
9f3a0d09
JW
1695 mem_cgroup_iter_break(memcg, iter);
1696 break;
79dfdacc
MH
1697 }
1698 iter->oom_lock = false;
1699 }
23751be0 1700 return false;
a636b327 1701}
0b7f569e 1702
79dfdacc 1703/*
1af8efe9 1704 * Has to be called with memcg_oom_lock
79dfdacc 1705 */
c0ff4b85 1706static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1707{
7d74b06f
KH
1708 struct mem_cgroup *iter;
1709
c0ff4b85 1710 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1711 iter->oom_lock = false;
1712 return 0;
1713}
1714
c0ff4b85 1715static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1716{
1717 struct mem_cgroup *iter;
1718
c0ff4b85 1719 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1720 atomic_inc(&iter->under_oom);
1721}
1722
c0ff4b85 1723static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1724{
1725 struct mem_cgroup *iter;
1726
867578cb
KH
1727 /*
1728 * When a new child is created while the hierarchy is under oom,
1729 * mem_cgroup_oom_lock() may not be called. We have to use
1730 * atomic_add_unless() here.
1731 */
c0ff4b85 1732 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1733 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1734}
1735
1af8efe9 1736static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1737static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1738
dc98df5a
KH
1739struct oom_wait_info {
1740 struct mem_cgroup *mem;
1741 wait_queue_t wait;
1742};
1743
1744static int memcg_oom_wake_function(wait_queue_t *wait,
1745 unsigned mode, int sync, void *arg)
1746{
c0ff4b85
R
1747 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1748 *oom_wait_memcg;
dc98df5a
KH
1749 struct oom_wait_info *oom_wait_info;
1750
1751 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
c0ff4b85 1752 oom_wait_memcg = oom_wait_info->mem;
dc98df5a 1753
dc98df5a
KH
1754 /*
1755 * Both of oom_wait_info->mem and wake_mem are stable under us.
1756 * Then we can use css_is_ancestor without taking care of RCU.
1757 */
c0ff4b85
R
1758 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1759 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1760 return 0;
dc98df5a
KH
1761 return autoremove_wake_function(wait, mode, sync, arg);
1762}
1763
c0ff4b85 1764static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1765{
c0ff4b85
R
1766 /* for filtering, pass "memcg" as argument. */
1767 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1768}
1769
c0ff4b85 1770static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1771{
c0ff4b85
R
1772 if (memcg && atomic_read(&memcg->under_oom))
1773 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1774}
1775
867578cb
KH
1776/*
1777 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1778 */
c0ff4b85 1779bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
0b7f569e 1780{
dc98df5a 1781 struct oom_wait_info owait;
3c11ecf4 1782 bool locked, need_to_kill;
867578cb 1783
c0ff4b85 1784 owait.mem = memcg;
dc98df5a
KH
1785 owait.wait.flags = 0;
1786 owait.wait.func = memcg_oom_wake_function;
1787 owait.wait.private = current;
1788 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1789 need_to_kill = true;
c0ff4b85 1790 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1791
c0ff4b85 1792 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1793 spin_lock(&memcg_oom_lock);
c0ff4b85 1794 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1795 /*
1796 * Even if signal_pending(), we can't quit charge() loop without
1797 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1798 * under OOM is always welcomed, use TASK_KILLABLE here.
1799 */
3c11ecf4 1800 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1801 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1802 need_to_kill = false;
1803 if (locked)
c0ff4b85 1804 mem_cgroup_oom_notify(memcg);
1af8efe9 1805 spin_unlock(&memcg_oom_lock);
867578cb 1806
3c11ecf4
KH
1807 if (need_to_kill) {
1808 finish_wait(&memcg_oom_waitq, &owait.wait);
c0ff4b85 1809 mem_cgroup_out_of_memory(memcg, mask);
3c11ecf4 1810 } else {
867578cb 1811 schedule();
dc98df5a 1812 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1813 }
1af8efe9 1814 spin_lock(&memcg_oom_lock);
79dfdacc 1815 if (locked)
c0ff4b85
R
1816 mem_cgroup_oom_unlock(memcg);
1817 memcg_wakeup_oom(memcg);
1af8efe9 1818 spin_unlock(&memcg_oom_lock);
867578cb 1819
c0ff4b85 1820 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1821
867578cb
KH
1822 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1823 return false;
1824 /* Give chance to dying process */
715a5ee8 1825 schedule_timeout_uninterruptible(1);
867578cb 1826 return true;
0b7f569e
KH
1827}
1828
d69b042f
BS
1829/*
1830 * Currently used to update mapped file statistics, but the routine can be
1831 * generalized to update other statistics as well.
32047e2a
KH
1832 *
1833 * Notes: Race condition
1834 *
1835 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1836 * it tends to be costly. But considering some conditions, we doesn't need
1837 * to do so _always_.
1838 *
1839 * Considering "charge", lock_page_cgroup() is not required because all
1840 * file-stat operations happen after a page is attached to radix-tree. There
1841 * are no race with "charge".
1842 *
1843 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1844 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1845 * if there are race with "uncharge". Statistics itself is properly handled
1846 * by flags.
1847 *
1848 * Considering "move", this is an only case we see a race. To make the race
1849 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1850 * possibility of race condition. If there is, we take a lock.
d69b042f 1851 */
26174efd 1852
2a7106f2
GT
1853void mem_cgroup_update_page_stat(struct page *page,
1854 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1855{
c0ff4b85 1856 struct mem_cgroup *memcg;
32047e2a
KH
1857 struct page_cgroup *pc = lookup_page_cgroup(page);
1858 bool need_unlock = false;
dbd4ea78 1859 unsigned long uninitialized_var(flags);
d69b042f 1860
cfa44946 1861 if (mem_cgroup_disabled())
d69b042f
BS
1862 return;
1863
32047e2a 1864 rcu_read_lock();
c0ff4b85
R
1865 memcg = pc->mem_cgroup;
1866 if (unlikely(!memcg || !PageCgroupUsed(pc)))
32047e2a
KH
1867 goto out;
1868 /* pc->mem_cgroup is unstable ? */
c0ff4b85 1869 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
32047e2a 1870 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1871 move_lock_page_cgroup(pc, &flags);
32047e2a 1872 need_unlock = true;
c0ff4b85
R
1873 memcg = pc->mem_cgroup;
1874 if (!memcg || !PageCgroupUsed(pc))
32047e2a
KH
1875 goto out;
1876 }
26174efd 1877
26174efd 1878 switch (idx) {
2a7106f2 1879 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1880 if (val > 0)
1881 SetPageCgroupFileMapped(pc);
1882 else if (!page_mapped(page))
0c270f8f 1883 ClearPageCgroupFileMapped(pc);
2a7106f2 1884 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1885 break;
1886 default:
1887 BUG();
8725d541 1888 }
d69b042f 1889
c0ff4b85 1890 this_cpu_add(memcg->stat->count[idx], val);
2a7106f2 1891
32047e2a
KH
1892out:
1893 if (unlikely(need_unlock))
dbd4ea78 1894 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1895 rcu_read_unlock();
1896 return;
d69b042f 1897}
2a7106f2 1898EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1899
cdec2e42
KH
1900/*
1901 * size of first charge trial. "32" comes from vmscan.c's magic value.
1902 * TODO: maybe necessary to use big numbers in big irons.
1903 */
7ec99d62 1904#define CHARGE_BATCH 32U
cdec2e42
KH
1905struct memcg_stock_pcp {
1906 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1907 unsigned int nr_pages;
cdec2e42 1908 struct work_struct work;
26fe6168
KH
1909 unsigned long flags;
1910#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
1911};
1912static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1913static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1914
1915/*
11c9ea4e 1916 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1917 * from local stock and true is returned. If the stock is 0 or charges from a
1918 * cgroup which is not current target, returns false. This stock will be
1919 * refilled.
1920 */
c0ff4b85 1921static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
1922{
1923 struct memcg_stock_pcp *stock;
1924 bool ret = true;
1925
1926 stock = &get_cpu_var(memcg_stock);
c0ff4b85 1927 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 1928 stock->nr_pages--;
cdec2e42
KH
1929 else /* need to call res_counter_charge */
1930 ret = false;
1931 put_cpu_var(memcg_stock);
1932 return ret;
1933}
1934
1935/*
1936 * Returns stocks cached in percpu to res_counter and reset cached information.
1937 */
1938static void drain_stock(struct memcg_stock_pcp *stock)
1939{
1940 struct mem_cgroup *old = stock->cached;
1941
11c9ea4e
JW
1942 if (stock->nr_pages) {
1943 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1944
1945 res_counter_uncharge(&old->res, bytes);
cdec2e42 1946 if (do_swap_account)
11c9ea4e
JW
1947 res_counter_uncharge(&old->memsw, bytes);
1948 stock->nr_pages = 0;
cdec2e42
KH
1949 }
1950 stock->cached = NULL;
cdec2e42
KH
1951}
1952
1953/*
1954 * This must be called under preempt disabled or must be called by
1955 * a thread which is pinned to local cpu.
1956 */
1957static void drain_local_stock(struct work_struct *dummy)
1958{
1959 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1960 drain_stock(stock);
26fe6168 1961 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1962}
1963
1964/*
1965 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1966 * This will be consumed by consume_stock() function, later.
cdec2e42 1967 */
c0ff4b85 1968static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1969{
1970 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1971
c0ff4b85 1972 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1973 drain_stock(stock);
c0ff4b85 1974 stock->cached = memcg;
cdec2e42 1975 }
11c9ea4e 1976 stock->nr_pages += nr_pages;
cdec2e42
KH
1977 put_cpu_var(memcg_stock);
1978}
1979
1980/*
c0ff4b85 1981 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
1982 * of the hierarchy under it. sync flag says whether we should block
1983 * until the work is done.
cdec2e42 1984 */
c0ff4b85 1985static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 1986{
26fe6168 1987 int cpu, curcpu;
d38144b7 1988
cdec2e42 1989 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1990 get_online_cpus();
5af12d0e 1991 curcpu = get_cpu();
cdec2e42
KH
1992 for_each_online_cpu(cpu) {
1993 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1994 struct mem_cgroup *memcg;
26fe6168 1995
c0ff4b85
R
1996 memcg = stock->cached;
1997 if (!memcg || !stock->nr_pages)
26fe6168 1998 continue;
c0ff4b85 1999 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2000 continue;
d1a05b69
MH
2001 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2002 if (cpu == curcpu)
2003 drain_local_stock(&stock->work);
2004 else
2005 schedule_work_on(cpu, &stock->work);
2006 }
cdec2e42 2007 }
5af12d0e 2008 put_cpu();
d38144b7
MH
2009
2010 if (!sync)
2011 goto out;
2012
2013 for_each_online_cpu(cpu) {
2014 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2015 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2016 flush_work(&stock->work);
2017 }
2018out:
cdec2e42 2019 put_online_cpus();
d38144b7
MH
2020}
2021
2022/*
2023 * Tries to drain stocked charges in other cpus. This function is asynchronous
2024 * and just put a work per cpu for draining localy on each cpu. Caller can
2025 * expects some charges will be back to res_counter later but cannot wait for
2026 * it.
2027 */
c0ff4b85 2028static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2029{
9f50fad6
MH
2030 /*
2031 * If someone calls draining, avoid adding more kworker runs.
2032 */
2033 if (!mutex_trylock(&percpu_charge_mutex))
2034 return;
c0ff4b85 2035 drain_all_stock(root_memcg, false);
9f50fad6 2036 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2037}
2038
2039/* This is a synchronous drain interface. */
c0ff4b85 2040static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2041{
2042 /* called when force_empty is called */
9f50fad6 2043 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2044 drain_all_stock(root_memcg, true);
9f50fad6 2045 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2046}
2047
711d3d2c
KH
2048/*
2049 * This function drains percpu counter value from DEAD cpu and
2050 * move it to local cpu. Note that this function can be preempted.
2051 */
c0ff4b85 2052static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2053{
2054 int i;
2055
c0ff4b85 2056 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2057 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2058 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2059
c0ff4b85
R
2060 per_cpu(memcg->stat->count[i], cpu) = 0;
2061 memcg->nocpu_base.count[i] += x;
711d3d2c 2062 }
e9f8974f 2063 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2064 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2065
c0ff4b85
R
2066 per_cpu(memcg->stat->events[i], cpu) = 0;
2067 memcg->nocpu_base.events[i] += x;
e9f8974f 2068 }
1489ebad 2069 /* need to clear ON_MOVE value, works as a kind of lock. */
c0ff4b85
R
2070 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2071 spin_unlock(&memcg->pcp_counter_lock);
1489ebad
KH
2072}
2073
c0ff4b85 2074static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
1489ebad
KH
2075{
2076 int idx = MEM_CGROUP_ON_MOVE;
2077
c0ff4b85
R
2078 spin_lock(&memcg->pcp_counter_lock);
2079 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2080 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2081}
2082
2083static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2084 unsigned long action,
2085 void *hcpu)
2086{
2087 int cpu = (unsigned long)hcpu;
2088 struct memcg_stock_pcp *stock;
711d3d2c 2089 struct mem_cgroup *iter;
cdec2e42 2090
1489ebad 2091 if ((action == CPU_ONLINE)) {
9f3a0d09 2092 for_each_mem_cgroup(iter)
1489ebad
KH
2093 synchronize_mem_cgroup_on_move(iter, cpu);
2094 return NOTIFY_OK;
2095 }
2096
711d3d2c 2097 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2098 return NOTIFY_OK;
711d3d2c 2099
9f3a0d09 2100 for_each_mem_cgroup(iter)
711d3d2c
KH
2101 mem_cgroup_drain_pcp_counter(iter, cpu);
2102
cdec2e42
KH
2103 stock = &per_cpu(memcg_stock, cpu);
2104 drain_stock(stock);
2105 return NOTIFY_OK;
2106}
2107
4b534334
KH
2108
2109/* See __mem_cgroup_try_charge() for details */
2110enum {
2111 CHARGE_OK, /* success */
2112 CHARGE_RETRY, /* need to retry but retry is not bad */
2113 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2114 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2115 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2116};
2117
c0ff4b85 2118static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2119 unsigned int nr_pages, bool oom_check)
4b534334 2120{
7ec99d62 2121 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2122 struct mem_cgroup *mem_over_limit;
2123 struct res_counter *fail_res;
2124 unsigned long flags = 0;
2125 int ret;
2126
c0ff4b85 2127 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2128
2129 if (likely(!ret)) {
2130 if (!do_swap_account)
2131 return CHARGE_OK;
c0ff4b85 2132 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2133 if (likely(!ret))
2134 return CHARGE_OK;
2135
c0ff4b85 2136 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2137 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2138 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2139 } else
2140 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2141 /*
7ec99d62
JW
2142 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2143 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2144 *
2145 * Never reclaim on behalf of optional batching, retry with a
2146 * single page instead.
2147 */
7ec99d62 2148 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2149 return CHARGE_RETRY;
2150
2151 if (!(gfp_mask & __GFP_WAIT))
2152 return CHARGE_WOULDBLOCK;
2153
5660048c 2154 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2155 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2156 return CHARGE_RETRY;
4b534334 2157 /*
19942822
JW
2158 * Even though the limit is exceeded at this point, reclaim
2159 * may have been able to free some pages. Retry the charge
2160 * before killing the task.
2161 *
2162 * Only for regular pages, though: huge pages are rather
2163 * unlikely to succeed so close to the limit, and we fall back
2164 * to regular pages anyway in case of failure.
4b534334 2165 */
7ec99d62 2166 if (nr_pages == 1 && ret)
4b534334
KH
2167 return CHARGE_RETRY;
2168
2169 /*
2170 * At task move, charge accounts can be doubly counted. So, it's
2171 * better to wait until the end of task_move if something is going on.
2172 */
2173 if (mem_cgroup_wait_acct_move(mem_over_limit))
2174 return CHARGE_RETRY;
2175
2176 /* If we don't need to call oom-killer at el, return immediately */
2177 if (!oom_check)
2178 return CHARGE_NOMEM;
2179 /* check OOM */
2180 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2181 return CHARGE_OOM_DIE;
2182
2183 return CHARGE_RETRY;
2184}
2185
f817ed48 2186/*
38c5d72f
KH
2187 * __mem_cgroup_try_charge() does
2188 * 1. detect memcg to be charged against from passed *mm and *ptr,
2189 * 2. update res_counter
2190 * 3. call memory reclaim if necessary.
2191 *
2192 * In some special case, if the task is fatal, fatal_signal_pending() or
2193 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2194 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2195 * as possible without any hazards. 2: all pages should have a valid
2196 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2197 * pointer, that is treated as a charge to root_mem_cgroup.
2198 *
2199 * So __mem_cgroup_try_charge() will return
2200 * 0 ... on success, filling *ptr with a valid memcg pointer.
2201 * -ENOMEM ... charge failure because of resource limits.
2202 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2203 *
2204 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2205 * the oom-killer can be invoked.
8a9f3ccd 2206 */
f817ed48 2207static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2208 gfp_t gfp_mask,
7ec99d62 2209 unsigned int nr_pages,
c0ff4b85 2210 struct mem_cgroup **ptr,
7ec99d62 2211 bool oom)
8a9f3ccd 2212{
7ec99d62 2213 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2214 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2215 struct mem_cgroup *memcg = NULL;
4b534334 2216 int ret;
a636b327 2217
867578cb
KH
2218 /*
2219 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2220 * in system level. So, allow to go ahead dying process in addition to
2221 * MEMDIE process.
2222 */
2223 if (unlikely(test_thread_flag(TIF_MEMDIE)
2224 || fatal_signal_pending(current)))
2225 goto bypass;
a636b327 2226
8a9f3ccd 2227 /*
3be91277
HD
2228 * We always charge the cgroup the mm_struct belongs to.
2229 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2230 * thread group leader migrates. It's possible that mm is not
2231 * set, if so charge the init_mm (happens for pagecache usage).
2232 */
c0ff4b85 2233 if (!*ptr && !mm)
38c5d72f 2234 *ptr = root_mem_cgroup;
f75ca962 2235again:
c0ff4b85
R
2236 if (*ptr) { /* css should be a valid one */
2237 memcg = *ptr;
2238 VM_BUG_ON(css_is_removed(&memcg->css));
2239 if (mem_cgroup_is_root(memcg))
f75ca962 2240 goto done;
c0ff4b85 2241 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2242 goto done;
c0ff4b85 2243 css_get(&memcg->css);
4b534334 2244 } else {
f75ca962 2245 struct task_struct *p;
54595fe2 2246
f75ca962
KH
2247 rcu_read_lock();
2248 p = rcu_dereference(mm->owner);
f75ca962 2249 /*
ebb76ce1 2250 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2251 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2252 * race with swapoff. Then, we have small risk of mis-accouning.
2253 * But such kind of mis-account by race always happens because
2254 * we don't have cgroup_mutex(). It's overkill and we allo that
2255 * small race, here.
2256 * (*) swapoff at el will charge against mm-struct not against
2257 * task-struct. So, mm->owner can be NULL.
f75ca962 2258 */
c0ff4b85 2259 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2260 if (!memcg)
2261 memcg = root_mem_cgroup;
2262 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2263 rcu_read_unlock();
2264 goto done;
2265 }
c0ff4b85 2266 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2267 /*
2268 * It seems dagerous to access memcg without css_get().
2269 * But considering how consume_stok works, it's not
2270 * necessary. If consume_stock success, some charges
2271 * from this memcg are cached on this cpu. So, we
2272 * don't need to call css_get()/css_tryget() before
2273 * calling consume_stock().
2274 */
2275 rcu_read_unlock();
2276 goto done;
2277 }
2278 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2279 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2280 rcu_read_unlock();
2281 goto again;
2282 }
2283 rcu_read_unlock();
2284 }
8a9f3ccd 2285
4b534334
KH
2286 do {
2287 bool oom_check;
7a81b88c 2288
4b534334 2289 /* If killed, bypass charge */
f75ca962 2290 if (fatal_signal_pending(current)) {
c0ff4b85 2291 css_put(&memcg->css);
4b534334 2292 goto bypass;
f75ca962 2293 }
6d61ef40 2294
4b534334
KH
2295 oom_check = false;
2296 if (oom && !nr_oom_retries) {
2297 oom_check = true;
2298 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2299 }
66e1707b 2300
c0ff4b85 2301 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2302 switch (ret) {
2303 case CHARGE_OK:
2304 break;
2305 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2306 batch = nr_pages;
c0ff4b85
R
2307 css_put(&memcg->css);
2308 memcg = NULL;
f75ca962 2309 goto again;
4b534334 2310 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2311 css_put(&memcg->css);
4b534334
KH
2312 goto nomem;
2313 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2314 if (!oom) {
c0ff4b85 2315 css_put(&memcg->css);
867578cb 2316 goto nomem;
f75ca962 2317 }
4b534334
KH
2318 /* If oom, we never return -ENOMEM */
2319 nr_oom_retries--;
2320 break;
2321 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2322 css_put(&memcg->css);
867578cb 2323 goto bypass;
66e1707b 2324 }
4b534334
KH
2325 } while (ret != CHARGE_OK);
2326
7ec99d62 2327 if (batch > nr_pages)
c0ff4b85
R
2328 refill_stock(memcg, batch - nr_pages);
2329 css_put(&memcg->css);
0c3e73e8 2330done:
c0ff4b85 2331 *ptr = memcg;
7a81b88c
KH
2332 return 0;
2333nomem:
c0ff4b85 2334 *ptr = NULL;
7a81b88c 2335 return -ENOMEM;
867578cb 2336bypass:
38c5d72f
KH
2337 *ptr = root_mem_cgroup;
2338 return -EINTR;
7a81b88c 2339}
8a9f3ccd 2340
a3032a2c
DN
2341/*
2342 * Somemtimes we have to undo a charge we got by try_charge().
2343 * This function is for that and do uncharge, put css's refcnt.
2344 * gotten by try_charge().
2345 */
c0ff4b85 2346static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2347 unsigned int nr_pages)
a3032a2c 2348{
c0ff4b85 2349 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2350 unsigned long bytes = nr_pages * PAGE_SIZE;
2351
c0ff4b85 2352 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2353 if (do_swap_account)
c0ff4b85 2354 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2355 }
854ffa8d
DN
2356}
2357
a3b2d692
KH
2358/*
2359 * A helper function to get mem_cgroup from ID. must be called under
2360 * rcu_read_lock(). The caller must check css_is_removed() or some if
2361 * it's concern. (dropping refcnt from swap can be called against removed
2362 * memcg.)
2363 */
2364static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2365{
2366 struct cgroup_subsys_state *css;
2367
2368 /* ID 0 is unused ID */
2369 if (!id)
2370 return NULL;
2371 css = css_lookup(&mem_cgroup_subsys, id);
2372 if (!css)
2373 return NULL;
2374 return container_of(css, struct mem_cgroup, css);
2375}
2376
e42d9d5d 2377struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2378{
c0ff4b85 2379 struct mem_cgroup *memcg = NULL;
3c776e64 2380 struct page_cgroup *pc;
a3b2d692 2381 unsigned short id;
b5a84319
KH
2382 swp_entry_t ent;
2383
3c776e64
DN
2384 VM_BUG_ON(!PageLocked(page));
2385
3c776e64 2386 pc = lookup_page_cgroup(page);
c0bd3f63 2387 lock_page_cgroup(pc);
a3b2d692 2388 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2389 memcg = pc->mem_cgroup;
2390 if (memcg && !css_tryget(&memcg->css))
2391 memcg = NULL;
e42d9d5d 2392 } else if (PageSwapCache(page)) {
3c776e64 2393 ent.val = page_private(page);
9fb4b7cc 2394 id = lookup_swap_cgroup_id(ent);
a3b2d692 2395 rcu_read_lock();
c0ff4b85
R
2396 memcg = mem_cgroup_lookup(id);
2397 if (memcg && !css_tryget(&memcg->css))
2398 memcg = NULL;
a3b2d692 2399 rcu_read_unlock();
3c776e64 2400 }
c0bd3f63 2401 unlock_page_cgroup(pc);
c0ff4b85 2402 return memcg;
b5a84319
KH
2403}
2404
c0ff4b85 2405static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2406 struct page *page,
7ec99d62 2407 unsigned int nr_pages,
ca3e0214 2408 struct page_cgroup *pc,
7ec99d62 2409 enum charge_type ctype)
7a81b88c 2410{
ca3e0214
KH
2411 lock_page_cgroup(pc);
2412 if (unlikely(PageCgroupUsed(pc))) {
2413 unlock_page_cgroup(pc);
c0ff4b85 2414 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2415 return;
2416 }
2417 /*
2418 * we don't need page_cgroup_lock about tail pages, becase they are not
2419 * accessed by any other context at this point.
2420 */
c0ff4b85 2421 pc->mem_cgroup = memcg;
261fb61a
KH
2422 /*
2423 * We access a page_cgroup asynchronously without lock_page_cgroup().
2424 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2425 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2426 * before USED bit, we need memory barrier here.
2427 * See mem_cgroup_add_lru_list(), etc.
2428 */
08e552c6 2429 smp_wmb();
4b3bde4c
BS
2430 switch (ctype) {
2431 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2432 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2433 SetPageCgroupCache(pc);
2434 SetPageCgroupUsed(pc);
2435 break;
2436 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2437 ClearPageCgroupCache(pc);
2438 SetPageCgroupUsed(pc);
2439 break;
2440 default:
2441 break;
2442 }
3be91277 2443
c0ff4b85 2444 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
52d4b9ac 2445 unlock_page_cgroup(pc);
38c5d72f 2446 WARN_ON_ONCE(PageLRU(page));
430e4863
KH
2447 /*
2448 * "charge_statistics" updated event counter. Then, check it.
2449 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2450 * if they exceeds softlimit.
2451 */
c0ff4b85 2452 memcg_check_events(memcg, page);
7a81b88c 2453}
66e1707b 2454
ca3e0214
KH
2455#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2456
2457#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
38c5d72f 2458 (1 << PCG_MIGRATION))
ca3e0214
KH
2459/*
2460 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2461 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2462 * charge/uncharge will be never happen and move_account() is done under
2463 * compound_lock(), so we don't have to take care of races.
ca3e0214 2464 */
e94c8a9c 2465void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2466{
2467 struct page_cgroup *head_pc = lookup_page_cgroup(head);
38c5d72f 2468 struct mem_cgroup_per_zone *mz;
e94c8a9c 2469 struct page_cgroup *pc;
38c5d72f 2470 enum lru_list lru;
e94c8a9c 2471 int i;
ca3e0214 2472
3d37c4a9
KH
2473 if (mem_cgroup_disabled())
2474 return;
e94c8a9c
KH
2475 for (i = 1; i < HPAGE_PMD_NR; i++) {
2476 pc = head_pc + i;
2477 pc->mem_cgroup = head_pc->mem_cgroup;
2478 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2479 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2480 }
38c5d72f
KH
2481 /*
2482 * Tail pages will be added to LRU.
2483 * We hold lru_lock,then,reduce counter directly.
2484 */
2485 lru = page_lru(head);
2486 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2487 MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
ca3e0214
KH
2488}
2489#endif
2490
f817ed48 2491/**
de3638d9 2492 * mem_cgroup_move_account - move account of the page
5564e88b 2493 * @page: the page
7ec99d62 2494 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2495 * @pc: page_cgroup of the page.
2496 * @from: mem_cgroup which the page is moved from.
2497 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2498 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2499 *
2500 * The caller must confirm following.
08e552c6 2501 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2502 * - compound_lock is held when nr_pages > 1
f817ed48 2503 *
854ffa8d 2504 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2505 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2506 * true, this function does "uncharge" from old cgroup, but it doesn't if
2507 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2508 */
7ec99d62
JW
2509static int mem_cgroup_move_account(struct page *page,
2510 unsigned int nr_pages,
2511 struct page_cgroup *pc,
2512 struct mem_cgroup *from,
2513 struct mem_cgroup *to,
2514 bool uncharge)
f817ed48 2515{
de3638d9
JW
2516 unsigned long flags;
2517 int ret;
987eba66 2518
f817ed48 2519 VM_BUG_ON(from == to);
5564e88b 2520 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2521 /*
2522 * The page is isolated from LRU. So, collapse function
2523 * will not handle this page. But page splitting can happen.
2524 * Do this check under compound_page_lock(). The caller should
2525 * hold it.
2526 */
2527 ret = -EBUSY;
7ec99d62 2528 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2529 goto out;
2530
2531 lock_page_cgroup(pc);
2532
2533 ret = -EINVAL;
2534 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2535 goto unlock;
2536
2537 move_lock_page_cgroup(pc, &flags);
f817ed48 2538
8725d541 2539 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2540 /* Update mapped_file data for mem_cgroup */
2541 preempt_disable();
2542 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2543 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2544 preempt_enable();
d69b042f 2545 }
987eba66 2546 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2547 if (uncharge)
2548 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2549 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2550
854ffa8d 2551 /* caller should have done css_get */
08e552c6 2552 pc->mem_cgroup = to;
987eba66 2553 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2554 /*
2555 * We charges against "to" which may not have any tasks. Then, "to"
2556 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2557 * this function is just force_empty() and move charge, so it's
25985edc 2558 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2559 * status here.
88703267 2560 */
de3638d9
JW
2561 move_unlock_page_cgroup(pc, &flags);
2562 ret = 0;
2563unlock:
57f9fd7d 2564 unlock_page_cgroup(pc);
d2265e6f
KH
2565 /*
2566 * check events
2567 */
5564e88b
JW
2568 memcg_check_events(to, page);
2569 memcg_check_events(from, page);
de3638d9 2570out:
f817ed48
KH
2571 return ret;
2572}
2573
2574/*
2575 * move charges to its parent.
2576 */
2577
5564e88b
JW
2578static int mem_cgroup_move_parent(struct page *page,
2579 struct page_cgroup *pc,
f817ed48
KH
2580 struct mem_cgroup *child,
2581 gfp_t gfp_mask)
2582{
2583 struct cgroup *cg = child->css.cgroup;
2584 struct cgroup *pcg = cg->parent;
2585 struct mem_cgroup *parent;
7ec99d62 2586 unsigned int nr_pages;
4be4489f 2587 unsigned long uninitialized_var(flags);
f817ed48
KH
2588 int ret;
2589
2590 /* Is ROOT ? */
2591 if (!pcg)
2592 return -EINVAL;
2593
57f9fd7d
DN
2594 ret = -EBUSY;
2595 if (!get_page_unless_zero(page))
2596 goto out;
2597 if (isolate_lru_page(page))
2598 goto put;
52dbb905 2599
7ec99d62 2600 nr_pages = hpage_nr_pages(page);
08e552c6 2601
f817ed48 2602 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2603 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
38c5d72f 2604 if (ret)
57f9fd7d 2605 goto put_back;
f817ed48 2606
7ec99d62 2607 if (nr_pages > 1)
987eba66
KH
2608 flags = compound_lock_irqsave(page);
2609
7ec99d62 2610 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2611 if (ret)
7ec99d62 2612 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2613
7ec99d62 2614 if (nr_pages > 1)
987eba66 2615 compound_unlock_irqrestore(page, flags);
8dba474f 2616put_back:
08e552c6 2617 putback_lru_page(page);
57f9fd7d 2618put:
40d58138 2619 put_page(page);
57f9fd7d 2620out:
f817ed48
KH
2621 return ret;
2622}
2623
7a81b88c
KH
2624/*
2625 * Charge the memory controller for page usage.
2626 * Return
2627 * 0 if the charge was successful
2628 * < 0 if the cgroup is over its limit
2629 */
2630static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2631 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2632{
c0ff4b85 2633 struct mem_cgroup *memcg = NULL;
7ec99d62 2634 unsigned int nr_pages = 1;
7a81b88c 2635 struct page_cgroup *pc;
8493ae43 2636 bool oom = true;
7a81b88c 2637 int ret;
ec168510 2638
37c2ac78 2639 if (PageTransHuge(page)) {
7ec99d62 2640 nr_pages <<= compound_order(page);
37c2ac78 2641 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2642 /*
2643 * Never OOM-kill a process for a huge page. The
2644 * fault handler will fall back to regular pages.
2645 */
2646 oom = false;
37c2ac78 2647 }
7a81b88c
KH
2648
2649 pc = lookup_page_cgroup(page);
c0ff4b85 2650 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2651 if (ret == -ENOMEM)
7a81b88c 2652 return ret;
c0ff4b85 2653 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
8a9f3ccd 2654 return 0;
8a9f3ccd
BS
2655}
2656
7a81b88c
KH
2657int mem_cgroup_newpage_charge(struct page *page,
2658 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2659{
f8d66542 2660 if (mem_cgroup_disabled())
cede86ac 2661 return 0;
7a0524cf
JW
2662 VM_BUG_ON(page_mapped(page));
2663 VM_BUG_ON(page->mapping && !PageAnon(page));
2664 VM_BUG_ON(!mm);
217bc319 2665 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2666 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2667}
2668
83aae4c7
DN
2669static void
2670__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2671 enum charge_type ctype);
2672
5a6475a4 2673static void
c0ff4b85 2674__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
5a6475a4
KH
2675 enum charge_type ctype)
2676{
2677 struct page_cgroup *pc = lookup_page_cgroup(page);
36b62ad5
KH
2678 struct zone *zone = page_zone(page);
2679 unsigned long flags;
2680 bool removed = false;
2681
5a6475a4
KH
2682 /*
2683 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2684 * is already on LRU. It means the page may on some other page_cgroup's
2685 * LRU. Take care of it.
2686 */
36b62ad5
KH
2687 spin_lock_irqsave(&zone->lru_lock, flags);
2688 if (PageLRU(page)) {
2689 del_page_from_lru_list(zone, page, page_lru(page));
2690 ClearPageLRU(page);
2691 removed = true;
2692 }
c0ff4b85 2693 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
36b62ad5
KH
2694 if (removed) {
2695 add_page_to_lru_list(zone, page, page_lru(page));
2696 SetPageLRU(page);
2697 }
2698 spin_unlock_irqrestore(&zone->lru_lock, flags);
5a6475a4
KH
2699 return;
2700}
2701
e1a1cd59
BS
2702int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2703 gfp_t gfp_mask)
8697d331 2704{
c0ff4b85 2705 struct mem_cgroup *memcg = NULL;
dc67d504 2706 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2707 int ret;
2708
f8d66542 2709 if (mem_cgroup_disabled())
cede86ac 2710 return 0;
52d4b9ac
KH
2711 if (PageCompound(page))
2712 return 0;
accf163e 2713
73045c47 2714 if (unlikely(!mm))
8697d331 2715 mm = &init_mm;
dc67d504
KH
2716 if (!page_is_file_cache(page))
2717 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2718
38c5d72f 2719 if (!PageSwapCache(page))
dc67d504 2720 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2721 else { /* page is swapcache/shmem */
c0ff4b85 2722 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2723 if (!ret)
dc67d504
KH
2724 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2725 }
b5a84319 2726 return ret;
e8589cc1
KH
2727}
2728
54595fe2
KH
2729/*
2730 * While swap-in, try_charge -> commit or cancel, the page is locked.
2731 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2732 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2733 * "commit()" or removed by "cancel()"
2734 */
8c7c6e34
KH
2735int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2736 struct page *page,
72835c86 2737 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2738{
c0ff4b85 2739 struct mem_cgroup *memcg;
54595fe2 2740 int ret;
8c7c6e34 2741
72835c86 2742 *memcgp = NULL;
56039efa 2743
f8d66542 2744 if (mem_cgroup_disabled())
8c7c6e34
KH
2745 return 0;
2746
2747 if (!do_swap_account)
2748 goto charge_cur_mm;
8c7c6e34
KH
2749 /*
2750 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2751 * the pte, and even removed page from swap cache: in those cases
2752 * do_swap_page()'s pte_same() test will fail; but there's also a
2753 * KSM case which does need to charge the page.
8c7c6e34
KH
2754 */
2755 if (!PageSwapCache(page))
407f9c8b 2756 goto charge_cur_mm;
c0ff4b85
R
2757 memcg = try_get_mem_cgroup_from_page(page);
2758 if (!memcg)
54595fe2 2759 goto charge_cur_mm;
72835c86
JW
2760 *memcgp = memcg;
2761 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2762 css_put(&memcg->css);
38c5d72f
KH
2763 if (ret == -EINTR)
2764 ret = 0;
54595fe2 2765 return ret;
8c7c6e34
KH
2766charge_cur_mm:
2767 if (unlikely(!mm))
2768 mm = &init_mm;
38c5d72f
KH
2769 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2770 if (ret == -EINTR)
2771 ret = 0;
2772 return ret;
8c7c6e34
KH
2773}
2774
83aae4c7 2775static void
72835c86 2776__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2777 enum charge_type ctype)
7a81b88c 2778{
f8d66542 2779 if (mem_cgroup_disabled())
7a81b88c 2780 return;
72835c86 2781 if (!memcg)
7a81b88c 2782 return;
72835c86 2783 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2784
72835c86 2785 __mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
8c7c6e34
KH
2786 /*
2787 * Now swap is on-memory. This means this page may be
2788 * counted both as mem and swap....double count.
03f3c433
KH
2789 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2790 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2791 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2792 */
03f3c433 2793 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2794 swp_entry_t ent = {.val = page_private(page)};
72835c86 2795 struct mem_cgroup *swap_memcg;
a3b2d692 2796 unsigned short id;
a3b2d692
KH
2797
2798 id = swap_cgroup_record(ent, 0);
2799 rcu_read_lock();
72835c86
JW
2800 swap_memcg = mem_cgroup_lookup(id);
2801 if (swap_memcg) {
a3b2d692
KH
2802 /*
2803 * This recorded memcg can be obsolete one. So, avoid
2804 * calling css_tryget
2805 */
72835c86
JW
2806 if (!mem_cgroup_is_root(swap_memcg))
2807 res_counter_uncharge(&swap_memcg->memsw,
2808 PAGE_SIZE);
2809 mem_cgroup_swap_statistics(swap_memcg, false);
2810 mem_cgroup_put(swap_memcg);
8c7c6e34 2811 }
a3b2d692 2812 rcu_read_unlock();
8c7c6e34 2813 }
88703267
KH
2814 /*
2815 * At swapin, we may charge account against cgroup which has no tasks.
2816 * So, rmdir()->pre_destroy() can be called while we do this charge.
2817 * In that case, we need to call pre_destroy() again. check it here.
2818 */
72835c86 2819 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2820}
2821
72835c86
JW
2822void mem_cgroup_commit_charge_swapin(struct page *page,
2823 struct mem_cgroup *memcg)
83aae4c7 2824{
72835c86
JW
2825 __mem_cgroup_commit_charge_swapin(page, memcg,
2826 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2827}
2828
c0ff4b85 2829void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2830{
f8d66542 2831 if (mem_cgroup_disabled())
7a81b88c 2832 return;
c0ff4b85 2833 if (!memcg)
7a81b88c 2834 return;
c0ff4b85 2835 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2836}
2837
c0ff4b85 2838static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2839 unsigned int nr_pages,
2840 const enum charge_type ctype)
569b846d
KH
2841{
2842 struct memcg_batch_info *batch = NULL;
2843 bool uncharge_memsw = true;
7ec99d62 2844
569b846d
KH
2845 /* If swapout, usage of swap doesn't decrease */
2846 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2847 uncharge_memsw = false;
569b846d
KH
2848
2849 batch = &current->memcg_batch;
2850 /*
2851 * In usual, we do css_get() when we remember memcg pointer.
2852 * But in this case, we keep res->usage until end of a series of
2853 * uncharges. Then, it's ok to ignore memcg's refcnt.
2854 */
2855 if (!batch->memcg)
c0ff4b85 2856 batch->memcg = memcg;
3c11ecf4
KH
2857 /*
2858 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2859 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2860 * the same cgroup and we have chance to coalesce uncharges.
2861 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2862 * because we want to do uncharge as soon as possible.
2863 */
2864
2865 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2866 goto direct_uncharge;
2867
7ec99d62 2868 if (nr_pages > 1)
ec168510
AA
2869 goto direct_uncharge;
2870
569b846d
KH
2871 /*
2872 * In typical case, batch->memcg == mem. This means we can
2873 * merge a series of uncharges to an uncharge of res_counter.
2874 * If not, we uncharge res_counter ony by one.
2875 */
c0ff4b85 2876 if (batch->memcg != memcg)
569b846d
KH
2877 goto direct_uncharge;
2878 /* remember freed charge and uncharge it later */
7ffd4ca7 2879 batch->nr_pages++;
569b846d 2880 if (uncharge_memsw)
7ffd4ca7 2881 batch->memsw_nr_pages++;
569b846d
KH
2882 return;
2883direct_uncharge:
c0ff4b85 2884 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2885 if (uncharge_memsw)
c0ff4b85
R
2886 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2887 if (unlikely(batch->memcg != memcg))
2888 memcg_oom_recover(memcg);
569b846d
KH
2889 return;
2890}
7a81b88c 2891
8a9f3ccd 2892/*
69029cd5 2893 * uncharge if !page_mapped(page)
8a9f3ccd 2894 */
8c7c6e34 2895static struct mem_cgroup *
69029cd5 2896__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2897{
c0ff4b85 2898 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2899 unsigned int nr_pages = 1;
2900 struct page_cgroup *pc;
8a9f3ccd 2901
f8d66542 2902 if (mem_cgroup_disabled())
8c7c6e34 2903 return NULL;
4077960e 2904
d13d1443 2905 if (PageSwapCache(page))
8c7c6e34 2906 return NULL;
d13d1443 2907
37c2ac78 2908 if (PageTransHuge(page)) {
7ec99d62 2909 nr_pages <<= compound_order(page);
37c2ac78
AA
2910 VM_BUG_ON(!PageTransHuge(page));
2911 }
8697d331 2912 /*
3c541e14 2913 * Check if our page_cgroup is valid
8697d331 2914 */
52d4b9ac 2915 pc = lookup_page_cgroup(page);
cfa44946 2916 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2917 return NULL;
b9c565d5 2918
52d4b9ac 2919 lock_page_cgroup(pc);
d13d1443 2920
c0ff4b85 2921 memcg = pc->mem_cgroup;
8c7c6e34 2922
d13d1443
KH
2923 if (!PageCgroupUsed(pc))
2924 goto unlock_out;
2925
2926 switch (ctype) {
2927 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2928 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2929 /* See mem_cgroup_prepare_migration() */
2930 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2931 goto unlock_out;
2932 break;
2933 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2934 if (!PageAnon(page)) { /* Shared memory */
2935 if (page->mapping && !page_is_file_cache(page))
2936 goto unlock_out;
2937 } else if (page_mapped(page)) /* Anon */
2938 goto unlock_out;
2939 break;
2940 default:
2941 break;
52d4b9ac 2942 }
d13d1443 2943
c0ff4b85 2944 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
04046e1a 2945
52d4b9ac 2946 ClearPageCgroupUsed(pc);
544122e5
KH
2947 /*
2948 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2949 * freed from LRU. This is safe because uncharged page is expected not
2950 * to be reused (freed soon). Exception is SwapCache, it's handled by
2951 * special functions.
2952 */
b9c565d5 2953
52d4b9ac 2954 unlock_page_cgroup(pc);
f75ca962 2955 /*
c0ff4b85 2956 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
2957 * will never be freed.
2958 */
c0ff4b85 2959 memcg_check_events(memcg, page);
f75ca962 2960 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
2961 mem_cgroup_swap_statistics(memcg, true);
2962 mem_cgroup_get(memcg);
f75ca962 2963 }
c0ff4b85
R
2964 if (!mem_cgroup_is_root(memcg))
2965 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 2966
c0ff4b85 2967 return memcg;
d13d1443
KH
2968
2969unlock_out:
2970 unlock_page_cgroup(pc);
8c7c6e34 2971 return NULL;
3c541e14
BS
2972}
2973
69029cd5
KH
2974void mem_cgroup_uncharge_page(struct page *page)
2975{
52d4b9ac
KH
2976 /* early check. */
2977 if (page_mapped(page))
2978 return;
40f23a21 2979 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
2980 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2981}
2982
2983void mem_cgroup_uncharge_cache_page(struct page *page)
2984{
2985 VM_BUG_ON(page_mapped(page));
b7abea96 2986 VM_BUG_ON(page->mapping);
69029cd5
KH
2987 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2988}
2989
569b846d
KH
2990/*
2991 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2992 * In that cases, pages are freed continuously and we can expect pages
2993 * are in the same memcg. All these calls itself limits the number of
2994 * pages freed at once, then uncharge_start/end() is called properly.
2995 * This may be called prural(2) times in a context,
2996 */
2997
2998void mem_cgroup_uncharge_start(void)
2999{
3000 current->memcg_batch.do_batch++;
3001 /* We can do nest. */
3002 if (current->memcg_batch.do_batch == 1) {
3003 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3004 current->memcg_batch.nr_pages = 0;
3005 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3006 }
3007}
3008
3009void mem_cgroup_uncharge_end(void)
3010{
3011 struct memcg_batch_info *batch = &current->memcg_batch;
3012
3013 if (!batch->do_batch)
3014 return;
3015
3016 batch->do_batch--;
3017 if (batch->do_batch) /* If stacked, do nothing. */
3018 return;
3019
3020 if (!batch->memcg)
3021 return;
3022 /*
3023 * This "batch->memcg" is valid without any css_get/put etc...
3024 * bacause we hide charges behind us.
3025 */
7ffd4ca7
JW
3026 if (batch->nr_pages)
3027 res_counter_uncharge(&batch->memcg->res,
3028 batch->nr_pages * PAGE_SIZE);
3029 if (batch->memsw_nr_pages)
3030 res_counter_uncharge(&batch->memcg->memsw,
3031 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3032 memcg_oom_recover(batch->memcg);
569b846d
KH
3033 /* forget this pointer (for sanity check) */
3034 batch->memcg = NULL;
3035}
3036
4e5f01c2
KH
3037/*
3038 * A function for resetting pc->mem_cgroup for newly allocated pages.
3039 * This function should be called if the newpage will be added to LRU
3040 * before start accounting.
3041 */
3042void mem_cgroup_reset_owner(struct page *newpage)
3043{
3044 struct page_cgroup *pc;
3045
3046 if (mem_cgroup_disabled())
3047 return;
3048
3049 pc = lookup_page_cgroup(newpage);
3050 VM_BUG_ON(PageCgroupUsed(pc));
3051 pc->mem_cgroup = root_mem_cgroup;
3052}
3053
e767e056 3054#ifdef CONFIG_SWAP
8c7c6e34 3055/*
e767e056 3056 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3057 * memcg information is recorded to swap_cgroup of "ent"
3058 */
8a9478ca
KH
3059void
3060mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3061{
3062 struct mem_cgroup *memcg;
8a9478ca
KH
3063 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3064
3065 if (!swapout) /* this was a swap cache but the swap is unused ! */
3066 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3067
3068 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3069
f75ca962
KH
3070 /*
3071 * record memcg information, if swapout && memcg != NULL,
3072 * mem_cgroup_get() was called in uncharge().
3073 */
3074 if (do_swap_account && swapout && memcg)
a3b2d692 3075 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3076}
e767e056 3077#endif
8c7c6e34
KH
3078
3079#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3080/*
3081 * called from swap_entry_free(). remove record in swap_cgroup and
3082 * uncharge "memsw" account.
3083 */
3084void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3085{
8c7c6e34 3086 struct mem_cgroup *memcg;
a3b2d692 3087 unsigned short id;
8c7c6e34
KH
3088
3089 if (!do_swap_account)
3090 return;
3091
a3b2d692
KH
3092 id = swap_cgroup_record(ent, 0);
3093 rcu_read_lock();
3094 memcg = mem_cgroup_lookup(id);
8c7c6e34 3095 if (memcg) {
a3b2d692
KH
3096 /*
3097 * We uncharge this because swap is freed.
3098 * This memcg can be obsolete one. We avoid calling css_tryget
3099 */
0c3e73e8 3100 if (!mem_cgroup_is_root(memcg))
4e649152 3101 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3102 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3103 mem_cgroup_put(memcg);
3104 }
a3b2d692 3105 rcu_read_unlock();
d13d1443 3106}
02491447
DN
3107
3108/**
3109 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3110 * @entry: swap entry to be moved
3111 * @from: mem_cgroup which the entry is moved from
3112 * @to: mem_cgroup which the entry is moved to
483c30b5 3113 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3114 *
3115 * It succeeds only when the swap_cgroup's record for this entry is the same
3116 * as the mem_cgroup's id of @from.
3117 *
3118 * Returns 0 on success, -EINVAL on failure.
3119 *
3120 * The caller must have charged to @to, IOW, called res_counter_charge() about
3121 * both res and memsw, and called css_get().
3122 */
3123static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3124 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3125{
3126 unsigned short old_id, new_id;
3127
3128 old_id = css_id(&from->css);
3129 new_id = css_id(&to->css);
3130
3131 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3132 mem_cgroup_swap_statistics(from, false);
483c30b5 3133 mem_cgroup_swap_statistics(to, true);
02491447 3134 /*
483c30b5
DN
3135 * This function is only called from task migration context now.
3136 * It postpones res_counter and refcount handling till the end
3137 * of task migration(mem_cgroup_clear_mc()) for performance
3138 * improvement. But we cannot postpone mem_cgroup_get(to)
3139 * because if the process that has been moved to @to does
3140 * swap-in, the refcount of @to might be decreased to 0.
02491447 3141 */
02491447 3142 mem_cgroup_get(to);
483c30b5
DN
3143 if (need_fixup) {
3144 if (!mem_cgroup_is_root(from))
3145 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3146 mem_cgroup_put(from);
3147 /*
3148 * we charged both to->res and to->memsw, so we should
3149 * uncharge to->res.
3150 */
3151 if (!mem_cgroup_is_root(to))
3152 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3153 }
02491447
DN
3154 return 0;
3155 }
3156 return -EINVAL;
3157}
3158#else
3159static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3160 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3161{
3162 return -EINVAL;
3163}
8c7c6e34 3164#endif
d13d1443 3165
ae41be37 3166/*
01b1ae63
KH
3167 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3168 * page belongs to.
ae41be37 3169 */
ac39cf8c 3170int mem_cgroup_prepare_migration(struct page *page,
72835c86 3171 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3172{
c0ff4b85 3173 struct mem_cgroup *memcg = NULL;
7ec99d62 3174 struct page_cgroup *pc;
ac39cf8c 3175 enum charge_type ctype;
e8589cc1 3176 int ret = 0;
8869b8f6 3177
72835c86 3178 *memcgp = NULL;
56039efa 3179
ec168510 3180 VM_BUG_ON(PageTransHuge(page));
f8d66542 3181 if (mem_cgroup_disabled())
4077960e
BS
3182 return 0;
3183
52d4b9ac
KH
3184 pc = lookup_page_cgroup(page);
3185 lock_page_cgroup(pc);
3186 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3187 memcg = pc->mem_cgroup;
3188 css_get(&memcg->css);
ac39cf8c 3189 /*
3190 * At migrating an anonymous page, its mapcount goes down
3191 * to 0 and uncharge() will be called. But, even if it's fully
3192 * unmapped, migration may fail and this page has to be
3193 * charged again. We set MIGRATION flag here and delay uncharge
3194 * until end_migration() is called
3195 *
3196 * Corner Case Thinking
3197 * A)
3198 * When the old page was mapped as Anon and it's unmap-and-freed
3199 * while migration was ongoing.
3200 * If unmap finds the old page, uncharge() of it will be delayed
3201 * until end_migration(). If unmap finds a new page, it's
3202 * uncharged when it make mapcount to be 1->0. If unmap code
3203 * finds swap_migration_entry, the new page will not be mapped
3204 * and end_migration() will find it(mapcount==0).
3205 *
3206 * B)
3207 * When the old page was mapped but migraion fails, the kernel
3208 * remaps it. A charge for it is kept by MIGRATION flag even
3209 * if mapcount goes down to 0. We can do remap successfully
3210 * without charging it again.
3211 *
3212 * C)
3213 * The "old" page is under lock_page() until the end of
3214 * migration, so, the old page itself will not be swapped-out.
3215 * If the new page is swapped out before end_migraton, our
3216 * hook to usual swap-out path will catch the event.
3217 */
3218 if (PageAnon(page))
3219 SetPageCgroupMigration(pc);
e8589cc1 3220 }
52d4b9ac 3221 unlock_page_cgroup(pc);
ac39cf8c 3222 /*
3223 * If the page is not charged at this point,
3224 * we return here.
3225 */
c0ff4b85 3226 if (!memcg)
ac39cf8c 3227 return 0;
01b1ae63 3228
72835c86
JW
3229 *memcgp = memcg;
3230 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3231 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3232 if (ret) {
ac39cf8c 3233 if (PageAnon(page)) {
3234 lock_page_cgroup(pc);
3235 ClearPageCgroupMigration(pc);
3236 unlock_page_cgroup(pc);
3237 /*
3238 * The old page may be fully unmapped while we kept it.
3239 */
3240 mem_cgroup_uncharge_page(page);
3241 }
38c5d72f 3242 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3243 return -ENOMEM;
e8589cc1 3244 }
ac39cf8c 3245 /*
3246 * We charge new page before it's used/mapped. So, even if unlock_page()
3247 * is called before end_migration, we can catch all events on this new
3248 * page. In the case new page is migrated but not remapped, new page's
3249 * mapcount will be finally 0 and we call uncharge in end_migration().
3250 */
3251 pc = lookup_page_cgroup(newpage);
3252 if (PageAnon(page))
3253 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3254 else if (page_is_file_cache(page))
3255 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3256 else
3257 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
c0ff4b85 3258 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
e8589cc1 3259 return ret;
ae41be37 3260}
8869b8f6 3261
69029cd5 3262/* remove redundant charge if migration failed*/
c0ff4b85 3263void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3264 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3265{
ac39cf8c 3266 struct page *used, *unused;
01b1ae63 3267 struct page_cgroup *pc;
01b1ae63 3268
c0ff4b85 3269 if (!memcg)
01b1ae63 3270 return;
ac39cf8c 3271 /* blocks rmdir() */
c0ff4b85 3272 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3273 if (!migration_ok) {
ac39cf8c 3274 used = oldpage;
3275 unused = newpage;
01b1ae63 3276 } else {
ac39cf8c 3277 used = newpage;
01b1ae63
KH
3278 unused = oldpage;
3279 }
69029cd5 3280 /*
ac39cf8c 3281 * We disallowed uncharge of pages under migration because mapcount
3282 * of the page goes down to zero, temporarly.
3283 * Clear the flag and check the page should be charged.
01b1ae63 3284 */
ac39cf8c 3285 pc = lookup_page_cgroup(oldpage);
3286 lock_page_cgroup(pc);
3287 ClearPageCgroupMigration(pc);
3288 unlock_page_cgroup(pc);
01b1ae63 3289
ac39cf8c 3290 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3291
01b1ae63 3292 /*
ac39cf8c 3293 * If a page is a file cache, radix-tree replacement is very atomic
3294 * and we can skip this check. When it was an Anon page, its mapcount
3295 * goes down to 0. But because we added MIGRATION flage, it's not
3296 * uncharged yet. There are several case but page->mapcount check
3297 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3298 * check. (see prepare_charge() also)
69029cd5 3299 */
ac39cf8c 3300 if (PageAnon(used))
3301 mem_cgroup_uncharge_page(used);
88703267 3302 /*
ac39cf8c 3303 * At migration, we may charge account against cgroup which has no
3304 * tasks.
88703267
KH
3305 * So, rmdir()->pre_destroy() can be called while we do this charge.
3306 * In that case, we need to call pre_destroy() again. check it here.
3307 */
c0ff4b85 3308 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3309}
78fb7466 3310
ab936cbc
KH
3311/*
3312 * At replace page cache, newpage is not under any memcg but it's on
3313 * LRU. So, this function doesn't touch res_counter but handles LRU
3314 * in correct way. Both pages are locked so we cannot race with uncharge.
3315 */
3316void mem_cgroup_replace_page_cache(struct page *oldpage,
3317 struct page *newpage)
3318{
3319 struct mem_cgroup *memcg;
3320 struct page_cgroup *pc;
ab936cbc 3321 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3322
3323 if (mem_cgroup_disabled())
3324 return;
3325
3326 pc = lookup_page_cgroup(oldpage);
3327 /* fix accounting on old pages */
3328 lock_page_cgroup(pc);
3329 memcg = pc->mem_cgroup;
3330 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3331 ClearPageCgroupUsed(pc);
3332 unlock_page_cgroup(pc);
3333
3334 if (PageSwapBacked(oldpage))
3335 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3336
ab936cbc
KH
3337 /*
3338 * Even if newpage->mapping was NULL before starting replacement,
3339 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3340 * LRU while we overwrite pc->mem_cgroup.
3341 */
36b62ad5 3342 __mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
ab936cbc
KH
3343}
3344
f212ad7c
DN
3345#ifdef CONFIG_DEBUG_VM
3346static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3347{
3348 struct page_cgroup *pc;
3349
3350 pc = lookup_page_cgroup(page);
cfa44946
JW
3351 /*
3352 * Can be NULL while feeding pages into the page allocator for
3353 * the first time, i.e. during boot or memory hotplug;
3354 * or when mem_cgroup_disabled().
3355 */
f212ad7c
DN
3356 if (likely(pc) && PageCgroupUsed(pc))
3357 return pc;
3358 return NULL;
3359}
3360
3361bool mem_cgroup_bad_page_check(struct page *page)
3362{
3363 if (mem_cgroup_disabled())
3364 return false;
3365
3366 return lookup_page_cgroup_used(page) != NULL;
3367}
3368
3369void mem_cgroup_print_bad_page(struct page *page)
3370{
3371 struct page_cgroup *pc;
3372
3373 pc = lookup_page_cgroup_used(page);
3374 if (pc) {
3375 int ret = -1;
3376 char *path;
3377
3378 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3379 pc, pc->flags, pc->mem_cgroup);
3380
3381 path = kmalloc(PATH_MAX, GFP_KERNEL);
3382 if (path) {
3383 rcu_read_lock();
3384 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3385 path, PATH_MAX);
3386 rcu_read_unlock();
3387 }
3388
3389 printk(KERN_CONT "(%s)\n",
3390 (ret < 0) ? "cannot get the path" : path);
3391 kfree(path);
3392 }
3393}
3394#endif
3395
8c7c6e34
KH
3396static DEFINE_MUTEX(set_limit_mutex);
3397
d38d2a75 3398static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3399 unsigned long long val)
628f4235 3400{
81d39c20 3401 int retry_count;
3c11ecf4 3402 u64 memswlimit, memlimit;
628f4235 3403 int ret = 0;
81d39c20
KH
3404 int children = mem_cgroup_count_children(memcg);
3405 u64 curusage, oldusage;
3c11ecf4 3406 int enlarge;
81d39c20
KH
3407
3408 /*
3409 * For keeping hierarchical_reclaim simple, how long we should retry
3410 * is depends on callers. We set our retry-count to be function
3411 * of # of children which we should visit in this loop.
3412 */
3413 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3414
3415 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3416
3c11ecf4 3417 enlarge = 0;
8c7c6e34 3418 while (retry_count) {
628f4235
KH
3419 if (signal_pending(current)) {
3420 ret = -EINTR;
3421 break;
3422 }
8c7c6e34
KH
3423 /*
3424 * Rather than hide all in some function, I do this in
3425 * open coded manner. You see what this really does.
c0ff4b85 3426 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3427 */
3428 mutex_lock(&set_limit_mutex);
3429 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3430 if (memswlimit < val) {
3431 ret = -EINVAL;
3432 mutex_unlock(&set_limit_mutex);
628f4235
KH
3433 break;
3434 }
3c11ecf4
KH
3435
3436 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3437 if (memlimit < val)
3438 enlarge = 1;
3439
8c7c6e34 3440 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3441 if (!ret) {
3442 if (memswlimit == val)
3443 memcg->memsw_is_minimum = true;
3444 else
3445 memcg->memsw_is_minimum = false;
3446 }
8c7c6e34
KH
3447 mutex_unlock(&set_limit_mutex);
3448
3449 if (!ret)
3450 break;
3451
5660048c
JW
3452 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3453 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3454 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3455 /* Usage is reduced ? */
3456 if (curusage >= oldusage)
3457 retry_count--;
3458 else
3459 oldusage = curusage;
8c7c6e34 3460 }
3c11ecf4
KH
3461 if (!ret && enlarge)
3462 memcg_oom_recover(memcg);
14797e23 3463
8c7c6e34
KH
3464 return ret;
3465}
3466
338c8431
LZ
3467static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3468 unsigned long long val)
8c7c6e34 3469{
81d39c20 3470 int retry_count;
3c11ecf4 3471 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3472 int children = mem_cgroup_count_children(memcg);
3473 int ret = -EBUSY;
3c11ecf4 3474 int enlarge = 0;
8c7c6e34 3475
81d39c20
KH
3476 /* see mem_cgroup_resize_res_limit */
3477 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3478 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3479 while (retry_count) {
3480 if (signal_pending(current)) {
3481 ret = -EINTR;
3482 break;
3483 }
3484 /*
3485 * Rather than hide all in some function, I do this in
3486 * open coded manner. You see what this really does.
c0ff4b85 3487 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3488 */
3489 mutex_lock(&set_limit_mutex);
3490 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3491 if (memlimit > val) {
3492 ret = -EINVAL;
3493 mutex_unlock(&set_limit_mutex);
3494 break;
3495 }
3c11ecf4
KH
3496 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3497 if (memswlimit < val)
3498 enlarge = 1;
8c7c6e34 3499 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3500 if (!ret) {
3501 if (memlimit == val)
3502 memcg->memsw_is_minimum = true;
3503 else
3504 memcg->memsw_is_minimum = false;
3505 }
8c7c6e34
KH
3506 mutex_unlock(&set_limit_mutex);
3507
3508 if (!ret)
3509 break;
3510
5660048c
JW
3511 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3512 MEM_CGROUP_RECLAIM_NOSWAP |
3513 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3514 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3515 /* Usage is reduced ? */
8c7c6e34 3516 if (curusage >= oldusage)
628f4235 3517 retry_count--;
81d39c20
KH
3518 else
3519 oldusage = curusage;
628f4235 3520 }
3c11ecf4
KH
3521 if (!ret && enlarge)
3522 memcg_oom_recover(memcg);
628f4235
KH
3523 return ret;
3524}
3525
4e416953 3526unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3527 gfp_t gfp_mask,
3528 unsigned long *total_scanned)
4e416953
BS
3529{
3530 unsigned long nr_reclaimed = 0;
3531 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3532 unsigned long reclaimed;
3533 int loop = 0;
3534 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3535 unsigned long long excess;
0ae5e89c 3536 unsigned long nr_scanned;
4e416953
BS
3537
3538 if (order > 0)
3539 return 0;
3540
00918b6a 3541 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3542 /*
3543 * This loop can run a while, specially if mem_cgroup's continuously
3544 * keep exceeding their soft limit and putting the system under
3545 * pressure
3546 */
3547 do {
3548 if (next_mz)
3549 mz = next_mz;
3550 else
3551 mz = mem_cgroup_largest_soft_limit_node(mctz);
3552 if (!mz)
3553 break;
3554
0ae5e89c 3555 nr_scanned = 0;
5660048c
JW
3556 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3557 gfp_mask, &nr_scanned);
4e416953 3558 nr_reclaimed += reclaimed;
0ae5e89c 3559 *total_scanned += nr_scanned;
4e416953
BS
3560 spin_lock(&mctz->lock);
3561
3562 /*
3563 * If we failed to reclaim anything from this memory cgroup
3564 * it is time to move on to the next cgroup
3565 */
3566 next_mz = NULL;
3567 if (!reclaimed) {
3568 do {
3569 /*
3570 * Loop until we find yet another one.
3571 *
3572 * By the time we get the soft_limit lock
3573 * again, someone might have aded the
3574 * group back on the RB tree. Iterate to
3575 * make sure we get a different mem.
3576 * mem_cgroup_largest_soft_limit_node returns
3577 * NULL if no other cgroup is present on
3578 * the tree
3579 */
3580 next_mz =
3581 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3582 if (next_mz == mz)
4e416953 3583 css_put(&next_mz->mem->css);
39cc98f1 3584 else /* next_mz == NULL or other memcg */
4e416953
BS
3585 break;
3586 } while (1);
3587 }
4e416953 3588 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3589 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3590 /*
3591 * One school of thought says that we should not add
3592 * back the node to the tree if reclaim returns 0.
3593 * But our reclaim could return 0, simply because due
3594 * to priority we are exposing a smaller subset of
3595 * memory to reclaim from. Consider this as a longer
3596 * term TODO.
3597 */
ef8745c1
KH
3598 /* If excess == 0, no tree ops */
3599 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3600 spin_unlock(&mctz->lock);
3601 css_put(&mz->mem->css);
3602 loop++;
3603 /*
3604 * Could not reclaim anything and there are no more
3605 * mem cgroups to try or we seem to be looping without
3606 * reclaiming anything.
3607 */
3608 if (!nr_reclaimed &&
3609 (next_mz == NULL ||
3610 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3611 break;
3612 } while (!nr_reclaimed);
3613 if (next_mz)
3614 css_put(&next_mz->mem->css);
3615 return nr_reclaimed;
3616}
3617
cc847582
KH
3618/*
3619 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3620 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3621 */
c0ff4b85 3622static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3623 int node, int zid, enum lru_list lru)
cc847582 3624{
08e552c6 3625 struct mem_cgroup_per_zone *mz;
08e552c6 3626 unsigned long flags, loop;
072c56c1 3627 struct list_head *list;
925b7673
JW
3628 struct page *busy;
3629 struct zone *zone;
f817ed48 3630 int ret = 0;
072c56c1 3631
08e552c6 3632 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3633 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3634 list = &mz->lruvec.lists[lru];
cc847582 3635
f817ed48
KH
3636 loop = MEM_CGROUP_ZSTAT(mz, lru);
3637 /* give some margin against EBUSY etc...*/
3638 loop += 256;
3639 busy = NULL;
3640 while (loop--) {
925b7673 3641 struct page_cgroup *pc;
5564e88b
JW
3642 struct page *page;
3643
f817ed48 3644 ret = 0;
08e552c6 3645 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3646 if (list_empty(list)) {
08e552c6 3647 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3648 break;
f817ed48 3649 }
925b7673
JW
3650 page = list_entry(list->prev, struct page, lru);
3651 if (busy == page) {
3652 list_move(&page->lru, list);
648bcc77 3653 busy = NULL;
08e552c6 3654 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3655 continue;
3656 }
08e552c6 3657 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3658
925b7673 3659 pc = lookup_page_cgroup(page);
5564e88b 3660
c0ff4b85 3661 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3662 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3663 break;
f817ed48
KH
3664
3665 if (ret == -EBUSY || ret == -EINVAL) {
3666 /* found lock contention or "pc" is obsolete. */
925b7673 3667 busy = page;
f817ed48
KH
3668 cond_resched();
3669 } else
3670 busy = NULL;
cc847582 3671 }
08e552c6 3672
f817ed48
KH
3673 if (!ret && !list_empty(list))
3674 return -EBUSY;
3675 return ret;
cc847582
KH
3676}
3677
3678/*
3679 * make mem_cgroup's charge to be 0 if there is no task.
3680 * This enables deleting this mem_cgroup.
3681 */
c0ff4b85 3682static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3683{
f817ed48
KH
3684 int ret;
3685 int node, zid, shrink;
3686 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3687 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3688
c0ff4b85 3689 css_get(&memcg->css);
f817ed48
KH
3690
3691 shrink = 0;
c1e862c1
KH
3692 /* should free all ? */
3693 if (free_all)
3694 goto try_to_free;
f817ed48 3695move_account:
fce66477 3696 do {
f817ed48 3697 ret = -EBUSY;
c1e862c1
KH
3698 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3699 goto out;
3700 ret = -EINTR;
3701 if (signal_pending(current))
cc847582 3702 goto out;
52d4b9ac
KH
3703 /* This is for making all *used* pages to be on LRU. */
3704 lru_add_drain_all();
c0ff4b85 3705 drain_all_stock_sync(memcg);
f817ed48 3706 ret = 0;
c0ff4b85 3707 mem_cgroup_start_move(memcg);
299b4eaa 3708 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3709 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3710 enum lru_list l;
f817ed48 3711 for_each_lru(l) {
c0ff4b85 3712 ret = mem_cgroup_force_empty_list(memcg,
08e552c6 3713 node, zid, l);
f817ed48
KH
3714 if (ret)
3715 break;
3716 }
1ecaab2b 3717 }
f817ed48
KH
3718 if (ret)
3719 break;
3720 }
c0ff4b85
R
3721 mem_cgroup_end_move(memcg);
3722 memcg_oom_recover(memcg);
f817ed48
KH
3723 /* it seems parent cgroup doesn't have enough mem */
3724 if (ret == -ENOMEM)
3725 goto try_to_free;
52d4b9ac 3726 cond_resched();
fce66477 3727 /* "ret" should also be checked to ensure all lists are empty. */
c0ff4b85 3728 } while (memcg->res.usage > 0 || ret);
cc847582 3729out:
c0ff4b85 3730 css_put(&memcg->css);
cc847582 3731 return ret;
f817ed48
KH
3732
3733try_to_free:
c1e862c1
KH
3734 /* returns EBUSY if there is a task or if we come here twice. */
3735 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3736 ret = -EBUSY;
3737 goto out;
3738 }
c1e862c1
KH
3739 /* we call try-to-free pages for make this cgroup empty */
3740 lru_add_drain_all();
f817ed48
KH
3741 /* try to free all pages in this cgroup */
3742 shrink = 1;
c0ff4b85 3743 while (nr_retries && memcg->res.usage > 0) {
f817ed48 3744 int progress;
c1e862c1
KH
3745
3746 if (signal_pending(current)) {
3747 ret = -EINTR;
3748 goto out;
3749 }
c0ff4b85 3750 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3751 false);
c1e862c1 3752 if (!progress) {
f817ed48 3753 nr_retries--;
c1e862c1 3754 /* maybe some writeback is necessary */
8aa7e847 3755 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3756 }
f817ed48
KH
3757
3758 }
08e552c6 3759 lru_add_drain();
f817ed48 3760 /* try move_account...there may be some *locked* pages. */
fce66477 3761 goto move_account;
cc847582
KH
3762}
3763
c1e862c1
KH
3764int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3765{
3766 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3767}
3768
3769
18f59ea7
BS
3770static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3771{
3772 return mem_cgroup_from_cont(cont)->use_hierarchy;
3773}
3774
3775static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3776 u64 val)
3777{
3778 int retval = 0;
c0ff4b85 3779 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3780 struct cgroup *parent = cont->parent;
c0ff4b85 3781 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3782
3783 if (parent)
c0ff4b85 3784 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3785
3786 cgroup_lock();
3787 /*
af901ca1 3788 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3789 * in the child subtrees. If it is unset, then the change can
3790 * occur, provided the current cgroup has no children.
3791 *
3792 * For the root cgroup, parent_mem is NULL, we allow value to be
3793 * set if there are no children.
3794 */
c0ff4b85 3795 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3796 (val == 1 || val == 0)) {
3797 if (list_empty(&cont->children))
c0ff4b85 3798 memcg->use_hierarchy = val;
18f59ea7
BS
3799 else
3800 retval = -EBUSY;
3801 } else
3802 retval = -EINVAL;
3803 cgroup_unlock();
3804
3805 return retval;
3806}
3807
0c3e73e8 3808
c0ff4b85 3809static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3810 enum mem_cgroup_stat_index idx)
0c3e73e8 3811{
7d74b06f 3812 struct mem_cgroup *iter;
7a159cc9 3813 long val = 0;
0c3e73e8 3814
7a159cc9 3815 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3816 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3817 val += mem_cgroup_read_stat(iter, idx);
3818
3819 if (val < 0) /* race ? */
3820 val = 0;
3821 return val;
0c3e73e8
BS
3822}
3823
c0ff4b85 3824static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3825{
7d74b06f 3826 u64 val;
104f3928 3827
c0ff4b85 3828 if (!mem_cgroup_is_root(memcg)) {
104f3928 3829 if (!swap)
65c64ce8 3830 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3831 else
65c64ce8 3832 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3833 }
3834
c0ff4b85
R
3835 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3836 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3837
7d74b06f 3838 if (swap)
c0ff4b85 3839 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3840
3841 return val << PAGE_SHIFT;
3842}
3843
2c3daa72 3844static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3845{
c0ff4b85 3846 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
104f3928 3847 u64 val;
8c7c6e34
KH
3848 int type, name;
3849
3850 type = MEMFILE_TYPE(cft->private);
3851 name = MEMFILE_ATTR(cft->private);
3852 switch (type) {
3853 case _MEM:
104f3928 3854 if (name == RES_USAGE)
c0ff4b85 3855 val = mem_cgroup_usage(memcg, false);
104f3928 3856 else
c0ff4b85 3857 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3858 break;
3859 case _MEMSWAP:
104f3928 3860 if (name == RES_USAGE)
c0ff4b85 3861 val = mem_cgroup_usage(memcg, true);
104f3928 3862 else
c0ff4b85 3863 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3864 break;
3865 default:
3866 BUG();
3867 break;
3868 }
3869 return val;
8cdea7c0 3870}
628f4235
KH
3871/*
3872 * The user of this function is...
3873 * RES_LIMIT.
3874 */
856c13aa
PM
3875static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3876 const char *buffer)
8cdea7c0 3877{
628f4235 3878 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3879 int type, name;
628f4235
KH
3880 unsigned long long val;
3881 int ret;
3882
8c7c6e34
KH
3883 type = MEMFILE_TYPE(cft->private);
3884 name = MEMFILE_ATTR(cft->private);
3885 switch (name) {
628f4235 3886 case RES_LIMIT:
4b3bde4c
BS
3887 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3888 ret = -EINVAL;
3889 break;
3890 }
628f4235
KH
3891 /* This function does all necessary parse...reuse it */
3892 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3893 if (ret)
3894 break;
3895 if (type == _MEM)
628f4235 3896 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3897 else
3898 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3899 break;
296c81d8
BS
3900 case RES_SOFT_LIMIT:
3901 ret = res_counter_memparse_write_strategy(buffer, &val);
3902 if (ret)
3903 break;
3904 /*
3905 * For memsw, soft limits are hard to implement in terms
3906 * of semantics, for now, we support soft limits for
3907 * control without swap
3908 */
3909 if (type == _MEM)
3910 ret = res_counter_set_soft_limit(&memcg->res, val);
3911 else
3912 ret = -EINVAL;
3913 break;
628f4235
KH
3914 default:
3915 ret = -EINVAL; /* should be BUG() ? */
3916 break;
3917 }
3918 return ret;
8cdea7c0
BS
3919}
3920
fee7b548
KH
3921static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3922 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3923{
3924 struct cgroup *cgroup;
3925 unsigned long long min_limit, min_memsw_limit, tmp;
3926
3927 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3928 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3929 cgroup = memcg->css.cgroup;
3930 if (!memcg->use_hierarchy)
3931 goto out;
3932
3933 while (cgroup->parent) {
3934 cgroup = cgroup->parent;
3935 memcg = mem_cgroup_from_cont(cgroup);
3936 if (!memcg->use_hierarchy)
3937 break;
3938 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3939 min_limit = min(min_limit, tmp);
3940 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3941 min_memsw_limit = min(min_memsw_limit, tmp);
3942 }
3943out:
3944 *mem_limit = min_limit;
3945 *memsw_limit = min_memsw_limit;
3946 return;
3947}
3948
29f2a4da 3949static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3950{
c0ff4b85 3951 struct mem_cgroup *memcg;
8c7c6e34 3952 int type, name;
c84872e1 3953
c0ff4b85 3954 memcg = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3955 type = MEMFILE_TYPE(event);
3956 name = MEMFILE_ATTR(event);
3957 switch (name) {
29f2a4da 3958 case RES_MAX_USAGE:
8c7c6e34 3959 if (type == _MEM)
c0ff4b85 3960 res_counter_reset_max(&memcg->res);
8c7c6e34 3961 else
c0ff4b85 3962 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
3963 break;
3964 case RES_FAILCNT:
8c7c6e34 3965 if (type == _MEM)
c0ff4b85 3966 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 3967 else
c0ff4b85 3968 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
3969 break;
3970 }
f64c3f54 3971
85cc59db 3972 return 0;
c84872e1
PE
3973}
3974
7dc74be0
DN
3975static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3976 struct cftype *cft)
3977{
3978 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3979}
3980
02491447 3981#ifdef CONFIG_MMU
7dc74be0
DN
3982static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3983 struct cftype *cft, u64 val)
3984{
c0ff4b85 3985 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
3986
3987 if (val >= (1 << NR_MOVE_TYPE))
3988 return -EINVAL;
3989 /*
3990 * We check this value several times in both in can_attach() and
3991 * attach(), so we need cgroup lock to prevent this value from being
3992 * inconsistent.
3993 */
3994 cgroup_lock();
c0ff4b85 3995 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3996 cgroup_unlock();
3997
3998 return 0;
3999}
02491447
DN
4000#else
4001static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4002 struct cftype *cft, u64 val)
4003{
4004 return -ENOSYS;
4005}
4006#endif
7dc74be0 4007
14067bb3
KH
4008
4009/* For read statistics */
4010enum {
4011 MCS_CACHE,
4012 MCS_RSS,
d8046582 4013 MCS_FILE_MAPPED,
14067bb3
KH
4014 MCS_PGPGIN,
4015 MCS_PGPGOUT,
1dd3a273 4016 MCS_SWAP,
456f998e
YH
4017 MCS_PGFAULT,
4018 MCS_PGMAJFAULT,
14067bb3
KH
4019 MCS_INACTIVE_ANON,
4020 MCS_ACTIVE_ANON,
4021 MCS_INACTIVE_FILE,
4022 MCS_ACTIVE_FILE,
4023 MCS_UNEVICTABLE,
4024 NR_MCS_STAT,
4025};
4026
4027struct mcs_total_stat {
4028 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4029};
4030
14067bb3
KH
4031struct {
4032 char *local_name;
4033 char *total_name;
4034} memcg_stat_strings[NR_MCS_STAT] = {
4035 {"cache", "total_cache"},
4036 {"rss", "total_rss"},
d69b042f 4037 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4038 {"pgpgin", "total_pgpgin"},
4039 {"pgpgout", "total_pgpgout"},
1dd3a273 4040 {"swap", "total_swap"},
456f998e
YH
4041 {"pgfault", "total_pgfault"},
4042 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4043 {"inactive_anon", "total_inactive_anon"},
4044 {"active_anon", "total_active_anon"},
4045 {"inactive_file", "total_inactive_file"},
4046 {"active_file", "total_active_file"},
4047 {"unevictable", "total_unevictable"}
4048};
4049
4050
7d74b06f 4051static void
c0ff4b85 4052mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4053{
14067bb3
KH
4054 s64 val;
4055
4056 /* per cpu stat */
c0ff4b85 4057 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4058 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4059 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4060 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4061 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4062 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4063 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4064 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4065 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4066 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4067 if (do_swap_account) {
c0ff4b85 4068 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4069 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4070 }
c0ff4b85 4071 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4072 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4073 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4074 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4075
4076 /* per zone stat */
c0ff4b85 4077 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4078 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4079 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4080 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4081 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4082 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4083 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4084 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4085 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4086 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4087}
4088
4089static void
c0ff4b85 4090mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4091{
7d74b06f
KH
4092 struct mem_cgroup *iter;
4093
c0ff4b85 4094 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4095 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4096}
4097
406eb0c9
YH
4098#ifdef CONFIG_NUMA
4099static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4100{
4101 int nid;
4102 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4103 unsigned long node_nr;
4104 struct cgroup *cont = m->private;
4105 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4106
bb2a0de9 4107 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4108 seq_printf(m, "total=%lu", total_nr);
4109 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4110 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4111 seq_printf(m, " N%d=%lu", nid, node_nr);
4112 }
4113 seq_putc(m, '\n');
4114
bb2a0de9 4115 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4116 seq_printf(m, "file=%lu", file_nr);
4117 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4118 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4119 LRU_ALL_FILE);
406eb0c9
YH
4120 seq_printf(m, " N%d=%lu", nid, node_nr);
4121 }
4122 seq_putc(m, '\n');
4123
bb2a0de9 4124 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4125 seq_printf(m, "anon=%lu", anon_nr);
4126 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4127 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4128 LRU_ALL_ANON);
406eb0c9
YH
4129 seq_printf(m, " N%d=%lu", nid, node_nr);
4130 }
4131 seq_putc(m, '\n');
4132
bb2a0de9 4133 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4134 seq_printf(m, "unevictable=%lu", unevictable_nr);
4135 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4136 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4137 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4138 seq_printf(m, " N%d=%lu", nid, node_nr);
4139 }
4140 seq_putc(m, '\n');
4141 return 0;
4142}
4143#endif /* CONFIG_NUMA */
4144
c64745cf
PM
4145static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4146 struct cgroup_map_cb *cb)
d2ceb9b7 4147{
d2ceb9b7 4148 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4149 struct mcs_total_stat mystat;
d2ceb9b7
KH
4150 int i;
4151
14067bb3
KH
4152 memset(&mystat, 0, sizeof(mystat));
4153 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4154
406eb0c9 4155
1dd3a273
DN
4156 for (i = 0; i < NR_MCS_STAT; i++) {
4157 if (i == MCS_SWAP && !do_swap_account)
4158 continue;
14067bb3 4159 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4160 }
7b854121 4161
14067bb3 4162 /* Hierarchical information */
fee7b548
KH
4163 {
4164 unsigned long long limit, memsw_limit;
4165 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4166 cb->fill(cb, "hierarchical_memory_limit", limit);
4167 if (do_swap_account)
4168 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4169 }
7f016ee8 4170
14067bb3
KH
4171 memset(&mystat, 0, sizeof(mystat));
4172 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4173 for (i = 0; i < NR_MCS_STAT; i++) {
4174 if (i == MCS_SWAP && !do_swap_account)
4175 continue;
14067bb3 4176 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4177 }
14067bb3 4178
7f016ee8 4179#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4180 {
4181 int nid, zid;
4182 struct mem_cgroup_per_zone *mz;
4183 unsigned long recent_rotated[2] = {0, 0};
4184 unsigned long recent_scanned[2] = {0, 0};
4185
4186 for_each_online_node(nid)
4187 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4188 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4189
4190 recent_rotated[0] +=
4191 mz->reclaim_stat.recent_rotated[0];
4192 recent_rotated[1] +=
4193 mz->reclaim_stat.recent_rotated[1];
4194 recent_scanned[0] +=
4195 mz->reclaim_stat.recent_scanned[0];
4196 recent_scanned[1] +=
4197 mz->reclaim_stat.recent_scanned[1];
4198 }
4199 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4200 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4201 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4202 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4203 }
4204#endif
4205
d2ceb9b7
KH
4206 return 0;
4207}
4208
a7885eb8
KM
4209static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4210{
4211 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4212
1f4c025b 4213 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4214}
4215
4216static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4217 u64 val)
4218{
4219 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4220 struct mem_cgroup *parent;
068b38c1 4221
a7885eb8
KM
4222 if (val > 100)
4223 return -EINVAL;
4224
4225 if (cgrp->parent == NULL)
4226 return -EINVAL;
4227
4228 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4229
4230 cgroup_lock();
4231
a7885eb8
KM
4232 /* If under hierarchy, only empty-root can set this value */
4233 if ((parent->use_hierarchy) ||
068b38c1
LZ
4234 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4235 cgroup_unlock();
a7885eb8 4236 return -EINVAL;
068b38c1 4237 }
a7885eb8 4238
a7885eb8 4239 memcg->swappiness = val;
a7885eb8 4240
068b38c1
LZ
4241 cgroup_unlock();
4242
a7885eb8
KM
4243 return 0;
4244}
4245
2e72b634
KS
4246static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4247{
4248 struct mem_cgroup_threshold_ary *t;
4249 u64 usage;
4250 int i;
4251
4252 rcu_read_lock();
4253 if (!swap)
2c488db2 4254 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4255 else
2c488db2 4256 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4257
4258 if (!t)
4259 goto unlock;
4260
4261 usage = mem_cgroup_usage(memcg, swap);
4262
4263 /*
4264 * current_threshold points to threshold just below usage.
4265 * If it's not true, a threshold was crossed after last
4266 * call of __mem_cgroup_threshold().
4267 */
5407a562 4268 i = t->current_threshold;
2e72b634
KS
4269
4270 /*
4271 * Iterate backward over array of thresholds starting from
4272 * current_threshold and check if a threshold is crossed.
4273 * If none of thresholds below usage is crossed, we read
4274 * only one element of the array here.
4275 */
4276 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4277 eventfd_signal(t->entries[i].eventfd, 1);
4278
4279 /* i = current_threshold + 1 */
4280 i++;
4281
4282 /*
4283 * Iterate forward over array of thresholds starting from
4284 * current_threshold+1 and check if a threshold is crossed.
4285 * If none of thresholds above usage is crossed, we read
4286 * only one element of the array here.
4287 */
4288 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4289 eventfd_signal(t->entries[i].eventfd, 1);
4290
4291 /* Update current_threshold */
5407a562 4292 t->current_threshold = i - 1;
2e72b634
KS
4293unlock:
4294 rcu_read_unlock();
4295}
4296
4297static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4298{
ad4ca5f4
KS
4299 while (memcg) {
4300 __mem_cgroup_threshold(memcg, false);
4301 if (do_swap_account)
4302 __mem_cgroup_threshold(memcg, true);
4303
4304 memcg = parent_mem_cgroup(memcg);
4305 }
2e72b634
KS
4306}
4307
4308static int compare_thresholds(const void *a, const void *b)
4309{
4310 const struct mem_cgroup_threshold *_a = a;
4311 const struct mem_cgroup_threshold *_b = b;
4312
4313 return _a->threshold - _b->threshold;
4314}
4315
c0ff4b85 4316static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4317{
4318 struct mem_cgroup_eventfd_list *ev;
4319
c0ff4b85 4320 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4321 eventfd_signal(ev->eventfd, 1);
4322 return 0;
4323}
4324
c0ff4b85 4325static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4326{
7d74b06f
KH
4327 struct mem_cgroup *iter;
4328
c0ff4b85 4329 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4330 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4331}
4332
4333static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4334 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4335{
4336 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4337 struct mem_cgroup_thresholds *thresholds;
4338 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4339 int type = MEMFILE_TYPE(cft->private);
4340 u64 threshold, usage;
2c488db2 4341 int i, size, ret;
2e72b634
KS
4342
4343 ret = res_counter_memparse_write_strategy(args, &threshold);
4344 if (ret)
4345 return ret;
4346
4347 mutex_lock(&memcg->thresholds_lock);
2c488db2 4348
2e72b634 4349 if (type == _MEM)
2c488db2 4350 thresholds = &memcg->thresholds;
2e72b634 4351 else if (type == _MEMSWAP)
2c488db2 4352 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4353 else
4354 BUG();
4355
4356 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4357
4358 /* Check if a threshold crossed before adding a new one */
2c488db2 4359 if (thresholds->primary)
2e72b634
KS
4360 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4361
2c488db2 4362 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4363
4364 /* Allocate memory for new array of thresholds */
2c488db2 4365 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4366 GFP_KERNEL);
2c488db2 4367 if (!new) {
2e72b634
KS
4368 ret = -ENOMEM;
4369 goto unlock;
4370 }
2c488db2 4371 new->size = size;
2e72b634
KS
4372
4373 /* Copy thresholds (if any) to new array */
2c488db2
KS
4374 if (thresholds->primary) {
4375 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4376 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4377 }
4378
2e72b634 4379 /* Add new threshold */
2c488db2
KS
4380 new->entries[size - 1].eventfd = eventfd;
4381 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4382
4383 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4384 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4385 compare_thresholds, NULL);
4386
4387 /* Find current threshold */
2c488db2 4388 new->current_threshold = -1;
2e72b634 4389 for (i = 0; i < size; i++) {
2c488db2 4390 if (new->entries[i].threshold < usage) {
2e72b634 4391 /*
2c488db2
KS
4392 * new->current_threshold will not be used until
4393 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4394 * it here.
4395 */
2c488db2 4396 ++new->current_threshold;
2e72b634
KS
4397 }
4398 }
4399
2c488db2
KS
4400 /* Free old spare buffer and save old primary buffer as spare */
4401 kfree(thresholds->spare);
4402 thresholds->spare = thresholds->primary;
4403
4404 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4405
907860ed 4406 /* To be sure that nobody uses thresholds */
2e72b634
KS
4407 synchronize_rcu();
4408
2e72b634
KS
4409unlock:
4410 mutex_unlock(&memcg->thresholds_lock);
4411
4412 return ret;
4413}
4414
907860ed 4415static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4416 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4417{
4418 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4419 struct mem_cgroup_thresholds *thresholds;
4420 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4421 int type = MEMFILE_TYPE(cft->private);
4422 u64 usage;
2c488db2 4423 int i, j, size;
2e72b634
KS
4424
4425 mutex_lock(&memcg->thresholds_lock);
4426 if (type == _MEM)
2c488db2 4427 thresholds = &memcg->thresholds;
2e72b634 4428 else if (type == _MEMSWAP)
2c488db2 4429 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4430 else
4431 BUG();
4432
4433 /*
4434 * Something went wrong if we trying to unregister a threshold
4435 * if we don't have thresholds
4436 */
4437 BUG_ON(!thresholds);
4438
4439 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4440
4441 /* Check if a threshold crossed before removing */
4442 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4443
4444 /* Calculate new number of threshold */
2c488db2
KS
4445 size = 0;
4446 for (i = 0; i < thresholds->primary->size; i++) {
4447 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4448 size++;
4449 }
4450
2c488db2 4451 new = thresholds->spare;
907860ed 4452
2e72b634
KS
4453 /* Set thresholds array to NULL if we don't have thresholds */
4454 if (!size) {
2c488db2
KS
4455 kfree(new);
4456 new = NULL;
907860ed 4457 goto swap_buffers;
2e72b634
KS
4458 }
4459
2c488db2 4460 new->size = size;
2e72b634
KS
4461
4462 /* Copy thresholds and find current threshold */
2c488db2
KS
4463 new->current_threshold = -1;
4464 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4465 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4466 continue;
4467
2c488db2
KS
4468 new->entries[j] = thresholds->primary->entries[i];
4469 if (new->entries[j].threshold < usage) {
2e72b634 4470 /*
2c488db2 4471 * new->current_threshold will not be used
2e72b634
KS
4472 * until rcu_assign_pointer(), so it's safe to increment
4473 * it here.
4474 */
2c488db2 4475 ++new->current_threshold;
2e72b634
KS
4476 }
4477 j++;
4478 }
4479
907860ed 4480swap_buffers:
2c488db2
KS
4481 /* Swap primary and spare array */
4482 thresholds->spare = thresholds->primary;
4483 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4484
907860ed 4485 /* To be sure that nobody uses thresholds */
2e72b634
KS
4486 synchronize_rcu();
4487
2e72b634 4488 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4489}
c1e862c1 4490
9490ff27
KH
4491static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4492 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4493{
4494 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4495 struct mem_cgroup_eventfd_list *event;
4496 int type = MEMFILE_TYPE(cft->private);
4497
4498 BUG_ON(type != _OOM_TYPE);
4499 event = kmalloc(sizeof(*event), GFP_KERNEL);
4500 if (!event)
4501 return -ENOMEM;
4502
1af8efe9 4503 spin_lock(&memcg_oom_lock);
9490ff27
KH
4504
4505 event->eventfd = eventfd;
4506 list_add(&event->list, &memcg->oom_notify);
4507
4508 /* already in OOM ? */
79dfdacc 4509 if (atomic_read(&memcg->under_oom))
9490ff27 4510 eventfd_signal(eventfd, 1);
1af8efe9 4511 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4512
4513 return 0;
4514}
4515
907860ed 4516static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4517 struct cftype *cft, struct eventfd_ctx *eventfd)
4518{
c0ff4b85 4519 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4520 struct mem_cgroup_eventfd_list *ev, *tmp;
4521 int type = MEMFILE_TYPE(cft->private);
4522
4523 BUG_ON(type != _OOM_TYPE);
4524
1af8efe9 4525 spin_lock(&memcg_oom_lock);
9490ff27 4526
c0ff4b85 4527 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4528 if (ev->eventfd == eventfd) {
4529 list_del(&ev->list);
4530 kfree(ev);
4531 }
4532 }
4533
1af8efe9 4534 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4535}
4536
3c11ecf4
KH
4537static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4538 struct cftype *cft, struct cgroup_map_cb *cb)
4539{
c0ff4b85 4540 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4541
c0ff4b85 4542 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4543
c0ff4b85 4544 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4545 cb->fill(cb, "under_oom", 1);
4546 else
4547 cb->fill(cb, "under_oom", 0);
4548 return 0;
4549}
4550
3c11ecf4
KH
4551static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4552 struct cftype *cft, u64 val)
4553{
c0ff4b85 4554 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4555 struct mem_cgroup *parent;
4556
4557 /* cannot set to root cgroup and only 0 and 1 are allowed */
4558 if (!cgrp->parent || !((val == 0) || (val == 1)))
4559 return -EINVAL;
4560
4561 parent = mem_cgroup_from_cont(cgrp->parent);
4562
4563 cgroup_lock();
4564 /* oom-kill-disable is a flag for subhierarchy. */
4565 if ((parent->use_hierarchy) ||
c0ff4b85 4566 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4567 cgroup_unlock();
4568 return -EINVAL;
4569 }
c0ff4b85 4570 memcg->oom_kill_disable = val;
4d845ebf 4571 if (!val)
c0ff4b85 4572 memcg_oom_recover(memcg);
3c11ecf4
KH
4573 cgroup_unlock();
4574 return 0;
4575}
4576
406eb0c9
YH
4577#ifdef CONFIG_NUMA
4578static const struct file_operations mem_control_numa_stat_file_operations = {
4579 .read = seq_read,
4580 .llseek = seq_lseek,
4581 .release = single_release,
4582};
4583
4584static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4585{
4586 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4587
4588 file->f_op = &mem_control_numa_stat_file_operations;
4589 return single_open(file, mem_control_numa_stat_show, cont);
4590}
4591#endif /* CONFIG_NUMA */
4592
e5671dfa 4593#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e5671dfa
GC
4594static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4595{
d1a4c0b3
GC
4596 /*
4597 * Part of this would be better living in a separate allocation
4598 * function, leaving us with just the cgroup tree population work.
4599 * We, however, depend on state such as network's proto_list that
4600 * is only initialized after cgroup creation. I found the less
4601 * cumbersome way to deal with it to defer it all to populate time
4602 */
65c64ce8 4603 return mem_cgroup_sockets_init(cont, ss);
e5671dfa
GC
4604};
4605
d1a4c0b3
GC
4606static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4607 struct cgroup *cont)
4608{
4609 mem_cgroup_sockets_destroy(cont, ss);
4610}
e5671dfa
GC
4611#else
4612static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4613{
4614 return 0;
4615}
d1a4c0b3
GC
4616
4617static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4618 struct cgroup *cont)
4619{
4620}
e5671dfa
GC
4621#endif
4622
8cdea7c0
BS
4623static struct cftype mem_cgroup_files[] = {
4624 {
0eea1030 4625 .name = "usage_in_bytes",
8c7c6e34 4626 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4627 .read_u64 = mem_cgroup_read,
9490ff27
KH
4628 .register_event = mem_cgroup_usage_register_event,
4629 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4630 },
c84872e1
PE
4631 {
4632 .name = "max_usage_in_bytes",
8c7c6e34 4633 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4634 .trigger = mem_cgroup_reset,
c84872e1
PE
4635 .read_u64 = mem_cgroup_read,
4636 },
8cdea7c0 4637 {
0eea1030 4638 .name = "limit_in_bytes",
8c7c6e34 4639 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4640 .write_string = mem_cgroup_write,
2c3daa72 4641 .read_u64 = mem_cgroup_read,
8cdea7c0 4642 },
296c81d8
BS
4643 {
4644 .name = "soft_limit_in_bytes",
4645 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4646 .write_string = mem_cgroup_write,
4647 .read_u64 = mem_cgroup_read,
4648 },
8cdea7c0
BS
4649 {
4650 .name = "failcnt",
8c7c6e34 4651 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4652 .trigger = mem_cgroup_reset,
2c3daa72 4653 .read_u64 = mem_cgroup_read,
8cdea7c0 4654 },
d2ceb9b7
KH
4655 {
4656 .name = "stat",
c64745cf 4657 .read_map = mem_control_stat_show,
d2ceb9b7 4658 },
c1e862c1
KH
4659 {
4660 .name = "force_empty",
4661 .trigger = mem_cgroup_force_empty_write,
4662 },
18f59ea7
BS
4663 {
4664 .name = "use_hierarchy",
4665 .write_u64 = mem_cgroup_hierarchy_write,
4666 .read_u64 = mem_cgroup_hierarchy_read,
4667 },
a7885eb8
KM
4668 {
4669 .name = "swappiness",
4670 .read_u64 = mem_cgroup_swappiness_read,
4671 .write_u64 = mem_cgroup_swappiness_write,
4672 },
7dc74be0
DN
4673 {
4674 .name = "move_charge_at_immigrate",
4675 .read_u64 = mem_cgroup_move_charge_read,
4676 .write_u64 = mem_cgroup_move_charge_write,
4677 },
9490ff27
KH
4678 {
4679 .name = "oom_control",
3c11ecf4
KH
4680 .read_map = mem_cgroup_oom_control_read,
4681 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4682 .register_event = mem_cgroup_oom_register_event,
4683 .unregister_event = mem_cgroup_oom_unregister_event,
4684 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4685 },
406eb0c9
YH
4686#ifdef CONFIG_NUMA
4687 {
4688 .name = "numa_stat",
4689 .open = mem_control_numa_stat_open,
89577127 4690 .mode = S_IRUGO,
406eb0c9
YH
4691 },
4692#endif
8cdea7c0
BS
4693};
4694
8c7c6e34
KH
4695#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4696static struct cftype memsw_cgroup_files[] = {
4697 {
4698 .name = "memsw.usage_in_bytes",
4699 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4700 .read_u64 = mem_cgroup_read,
9490ff27
KH
4701 .register_event = mem_cgroup_usage_register_event,
4702 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4703 },
4704 {
4705 .name = "memsw.max_usage_in_bytes",
4706 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4707 .trigger = mem_cgroup_reset,
4708 .read_u64 = mem_cgroup_read,
4709 },
4710 {
4711 .name = "memsw.limit_in_bytes",
4712 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4713 .write_string = mem_cgroup_write,
4714 .read_u64 = mem_cgroup_read,
4715 },
4716 {
4717 .name = "memsw.failcnt",
4718 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4719 .trigger = mem_cgroup_reset,
4720 .read_u64 = mem_cgroup_read,
4721 },
4722};
4723
4724static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4725{
4726 if (!do_swap_account)
4727 return 0;
4728 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4729 ARRAY_SIZE(memsw_cgroup_files));
4730};
4731#else
4732static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4733{
4734 return 0;
4735}
4736#endif
4737
c0ff4b85 4738static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4739{
4740 struct mem_cgroup_per_node *pn;
1ecaab2b 4741 struct mem_cgroup_per_zone *mz;
b69408e8 4742 enum lru_list l;
41e3355d 4743 int zone, tmp = node;
1ecaab2b
KH
4744 /*
4745 * This routine is called against possible nodes.
4746 * But it's BUG to call kmalloc() against offline node.
4747 *
4748 * TODO: this routine can waste much memory for nodes which will
4749 * never be onlined. It's better to use memory hotplug callback
4750 * function.
4751 */
41e3355d
KH
4752 if (!node_state(node, N_NORMAL_MEMORY))
4753 tmp = -1;
17295c88 4754 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4755 if (!pn)
4756 return 1;
1ecaab2b 4757
1ecaab2b
KH
4758 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4759 mz = &pn->zoneinfo[zone];
b69408e8 4760 for_each_lru(l)
6290df54 4761 INIT_LIST_HEAD(&mz->lruvec.lists[l]);
f64c3f54 4762 mz->usage_in_excess = 0;
4e416953 4763 mz->on_tree = false;
c0ff4b85 4764 mz->mem = memcg;
1ecaab2b 4765 }
0a619e58 4766 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4767 return 0;
4768}
4769
c0ff4b85 4770static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4771{
c0ff4b85 4772 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4773}
4774
33327948
KH
4775static struct mem_cgroup *mem_cgroup_alloc(void)
4776{
4777 struct mem_cgroup *mem;
c62b1a3b 4778 int size = sizeof(struct mem_cgroup);
33327948 4779
c62b1a3b 4780 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4781 if (size < PAGE_SIZE)
17295c88 4782 mem = kzalloc(size, GFP_KERNEL);
33327948 4783 else
17295c88 4784 mem = vzalloc(size);
33327948 4785
e7bbcdf3
DC
4786 if (!mem)
4787 return NULL;
4788
c62b1a3b 4789 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4790 if (!mem->stat)
4791 goto out_free;
711d3d2c 4792 spin_lock_init(&mem->pcp_counter_lock);
33327948 4793 return mem;
d2e61b8d
DC
4794
4795out_free:
4796 if (size < PAGE_SIZE)
4797 kfree(mem);
4798 else
4799 vfree(mem);
4800 return NULL;
33327948
KH
4801}
4802
8c7c6e34
KH
4803/*
4804 * At destroying mem_cgroup, references from swap_cgroup can remain.
4805 * (scanning all at force_empty is too costly...)
4806 *
4807 * Instead of clearing all references at force_empty, we remember
4808 * the number of reference from swap_cgroup and free mem_cgroup when
4809 * it goes down to 0.
4810 *
8c7c6e34
KH
4811 * Removal of cgroup itself succeeds regardless of refs from swap.
4812 */
4813
c0ff4b85 4814static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4815{
08e552c6
KH
4816 int node;
4817
c0ff4b85
R
4818 mem_cgroup_remove_from_trees(memcg);
4819 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4820
08e552c6 4821 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 4822 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4823
c0ff4b85 4824 free_percpu(memcg->stat);
c62b1a3b 4825 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
c0ff4b85 4826 kfree(memcg);
33327948 4827 else
c0ff4b85 4828 vfree(memcg);
33327948
KH
4829}
4830
c0ff4b85 4831static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4832{
c0ff4b85 4833 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4834}
4835
c0ff4b85 4836static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4837{
c0ff4b85
R
4838 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4839 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4840 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4841 if (parent)
4842 mem_cgroup_put(parent);
4843 }
8c7c6e34
KH
4844}
4845
c0ff4b85 4846static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4847{
c0ff4b85 4848 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4849}
4850
7bcc1bb1
DN
4851/*
4852 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4853 */
e1aab161 4854struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4855{
c0ff4b85 4856 if (!memcg->res.parent)
7bcc1bb1 4857 return NULL;
c0ff4b85 4858 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4859}
e1aab161 4860EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4861
c077719b
KH
4862#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4863static void __init enable_swap_cgroup(void)
4864{
f8d66542 4865 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4866 do_swap_account = 1;
4867}
4868#else
4869static void __init enable_swap_cgroup(void)
4870{
4871}
4872#endif
4873
f64c3f54
BS
4874static int mem_cgroup_soft_limit_tree_init(void)
4875{
4876 struct mem_cgroup_tree_per_node *rtpn;
4877 struct mem_cgroup_tree_per_zone *rtpz;
4878 int tmp, node, zone;
4879
4880 for_each_node_state(node, N_POSSIBLE) {
4881 tmp = node;
4882 if (!node_state(node, N_NORMAL_MEMORY))
4883 tmp = -1;
4884 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4885 if (!rtpn)
c3cecc68 4886 goto err_cleanup;
f64c3f54
BS
4887
4888 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4889
4890 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4891 rtpz = &rtpn->rb_tree_per_zone[zone];
4892 rtpz->rb_root = RB_ROOT;
4893 spin_lock_init(&rtpz->lock);
4894 }
4895 }
4896 return 0;
c3cecc68
MH
4897
4898err_cleanup:
4899 for_each_node_state(node, N_POSSIBLE) {
4900 if (!soft_limit_tree.rb_tree_per_node[node])
4901 break;
4902 kfree(soft_limit_tree.rb_tree_per_node[node]);
4903 soft_limit_tree.rb_tree_per_node[node] = NULL;
4904 }
4905 return 1;
4906
f64c3f54
BS
4907}
4908
0eb253e2 4909static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4910mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4911{
c0ff4b85 4912 struct mem_cgroup *memcg, *parent;
04046e1a 4913 long error = -ENOMEM;
6d12e2d8 4914 int node;
8cdea7c0 4915
c0ff4b85
R
4916 memcg = mem_cgroup_alloc();
4917 if (!memcg)
04046e1a 4918 return ERR_PTR(error);
78fb7466 4919
6d12e2d8 4920 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 4921 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4922 goto free_out;
f64c3f54 4923
c077719b 4924 /* root ? */
28dbc4b6 4925 if (cont->parent == NULL) {
cdec2e42 4926 int cpu;
c077719b 4927 enable_swap_cgroup();
28dbc4b6 4928 parent = NULL;
f64c3f54
BS
4929 if (mem_cgroup_soft_limit_tree_init())
4930 goto free_out;
a41c58a6 4931 root_mem_cgroup = memcg;
cdec2e42
KH
4932 for_each_possible_cpu(cpu) {
4933 struct memcg_stock_pcp *stock =
4934 &per_cpu(memcg_stock, cpu);
4935 INIT_WORK(&stock->work, drain_local_stock);
4936 }
711d3d2c 4937 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4938 } else {
28dbc4b6 4939 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4940 memcg->use_hierarchy = parent->use_hierarchy;
4941 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4942 }
28dbc4b6 4943
18f59ea7 4944 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4945 res_counter_init(&memcg->res, &parent->res);
4946 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4947 /*
4948 * We increment refcnt of the parent to ensure that we can
4949 * safely access it on res_counter_charge/uncharge.
4950 * This refcnt will be decremented when freeing this
4951 * mem_cgroup(see mem_cgroup_put).
4952 */
4953 mem_cgroup_get(parent);
18f59ea7 4954 } else {
c0ff4b85
R
4955 res_counter_init(&memcg->res, NULL);
4956 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4957 }
c0ff4b85
R
4958 memcg->last_scanned_node = MAX_NUMNODES;
4959 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4960
a7885eb8 4961 if (parent)
c0ff4b85
R
4962 memcg->swappiness = mem_cgroup_swappiness(parent);
4963 atomic_set(&memcg->refcnt, 1);
4964 memcg->move_charge_at_immigrate = 0;
4965 mutex_init(&memcg->thresholds_lock);
4966 return &memcg->css;
6d12e2d8 4967free_out:
c0ff4b85 4968 __mem_cgroup_free(memcg);
04046e1a 4969 return ERR_PTR(error);
8cdea7c0
BS
4970}
4971
ec64f515 4972static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4973 struct cgroup *cont)
4974{
c0ff4b85 4975 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 4976
c0ff4b85 4977 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
4978}
4979
8cdea7c0
BS
4980static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4981 struct cgroup *cont)
4982{
c0ff4b85 4983 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 4984
d1a4c0b3
GC
4985 kmem_cgroup_destroy(ss, cont);
4986
c0ff4b85 4987 mem_cgroup_put(memcg);
8cdea7c0
BS
4988}
4989
4990static int mem_cgroup_populate(struct cgroup_subsys *ss,
4991 struct cgroup *cont)
4992{
8c7c6e34
KH
4993 int ret;
4994
4995 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4996 ARRAY_SIZE(mem_cgroup_files));
4997
4998 if (!ret)
4999 ret = register_memsw_files(cont, ss);
e5671dfa
GC
5000
5001 if (!ret)
5002 ret = register_kmem_files(cont, ss);
5003
8c7c6e34 5004 return ret;
8cdea7c0
BS
5005}
5006
02491447 5007#ifdef CONFIG_MMU
7dc74be0 5008/* Handlers for move charge at task migration. */
854ffa8d
DN
5009#define PRECHARGE_COUNT_AT_ONCE 256
5010static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5011{
854ffa8d
DN
5012 int ret = 0;
5013 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5014 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5015
c0ff4b85 5016 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5017 mc.precharge += count;
5018 /* we don't need css_get for root */
5019 return ret;
5020 }
5021 /* try to charge at once */
5022 if (count > 1) {
5023 struct res_counter *dummy;
5024 /*
c0ff4b85 5025 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5026 * by cgroup_lock_live_cgroup() that it is not removed and we
5027 * are still under the same cgroup_mutex. So we can postpone
5028 * css_get().
5029 */
c0ff4b85 5030 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5031 goto one_by_one;
c0ff4b85 5032 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5033 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5034 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5035 goto one_by_one;
5036 }
5037 mc.precharge += count;
854ffa8d
DN
5038 return ret;
5039 }
5040one_by_one:
5041 /* fall back to one by one charge */
5042 while (count--) {
5043 if (signal_pending(current)) {
5044 ret = -EINTR;
5045 break;
5046 }
5047 if (!batch_count--) {
5048 batch_count = PRECHARGE_COUNT_AT_ONCE;
5049 cond_resched();
5050 }
c0ff4b85
R
5051 ret = __mem_cgroup_try_charge(NULL,
5052 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5053 if (ret)
854ffa8d 5054 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5055 return ret;
854ffa8d
DN
5056 mc.precharge++;
5057 }
4ffef5fe
DN
5058 return ret;
5059}
5060
5061/**
5062 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5063 * @vma: the vma the pte to be checked belongs
5064 * @addr: the address corresponding to the pte to be checked
5065 * @ptent: the pte to be checked
02491447 5066 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5067 *
5068 * Returns
5069 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5070 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5071 * move charge. if @target is not NULL, the page is stored in target->page
5072 * with extra refcnt got(Callers should handle it).
02491447
DN
5073 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5074 * target for charge migration. if @target is not NULL, the entry is stored
5075 * in target->ent.
4ffef5fe
DN
5076 *
5077 * Called with pte lock held.
5078 */
4ffef5fe
DN
5079union mc_target {
5080 struct page *page;
02491447 5081 swp_entry_t ent;
4ffef5fe
DN
5082};
5083
4ffef5fe
DN
5084enum mc_target_type {
5085 MC_TARGET_NONE, /* not used */
5086 MC_TARGET_PAGE,
02491447 5087 MC_TARGET_SWAP,
4ffef5fe
DN
5088};
5089
90254a65
DN
5090static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5091 unsigned long addr, pte_t ptent)
4ffef5fe 5092{
90254a65 5093 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5094
90254a65
DN
5095 if (!page || !page_mapped(page))
5096 return NULL;
5097 if (PageAnon(page)) {
5098 /* we don't move shared anon */
5099 if (!move_anon() || page_mapcount(page) > 2)
5100 return NULL;
87946a72
DN
5101 } else if (!move_file())
5102 /* we ignore mapcount for file pages */
90254a65
DN
5103 return NULL;
5104 if (!get_page_unless_zero(page))
5105 return NULL;
5106
5107 return page;
5108}
5109
5110static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5111 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5112{
5113 int usage_count;
5114 struct page *page = NULL;
5115 swp_entry_t ent = pte_to_swp_entry(ptent);
5116
5117 if (!move_anon() || non_swap_entry(ent))
5118 return NULL;
5119 usage_count = mem_cgroup_count_swap_user(ent, &page);
5120 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5121 if (page)
5122 put_page(page);
90254a65 5123 return NULL;
02491447 5124 }
90254a65
DN
5125 if (do_swap_account)
5126 entry->val = ent.val;
5127
5128 return page;
5129}
5130
87946a72
DN
5131static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5132 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5133{
5134 struct page *page = NULL;
5135 struct inode *inode;
5136 struct address_space *mapping;
5137 pgoff_t pgoff;
5138
5139 if (!vma->vm_file) /* anonymous vma */
5140 return NULL;
5141 if (!move_file())
5142 return NULL;
5143
5144 inode = vma->vm_file->f_path.dentry->d_inode;
5145 mapping = vma->vm_file->f_mapping;
5146 if (pte_none(ptent))
5147 pgoff = linear_page_index(vma, addr);
5148 else /* pte_file(ptent) is true */
5149 pgoff = pte_to_pgoff(ptent);
5150
5151 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5152 page = find_get_page(mapping, pgoff);
5153
5154#ifdef CONFIG_SWAP
5155 /* shmem/tmpfs may report page out on swap: account for that too. */
5156 if (radix_tree_exceptional_entry(page)) {
5157 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5158 if (do_swap_account)
aa3b1895
HD
5159 *entry = swap;
5160 page = find_get_page(&swapper_space, swap.val);
87946a72 5161 }
aa3b1895 5162#endif
87946a72
DN
5163 return page;
5164}
5165
90254a65
DN
5166static int is_target_pte_for_mc(struct vm_area_struct *vma,
5167 unsigned long addr, pte_t ptent, union mc_target *target)
5168{
5169 struct page *page = NULL;
5170 struct page_cgroup *pc;
5171 int ret = 0;
5172 swp_entry_t ent = { .val = 0 };
5173
5174 if (pte_present(ptent))
5175 page = mc_handle_present_pte(vma, addr, ptent);
5176 else if (is_swap_pte(ptent))
5177 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5178 else if (pte_none(ptent) || pte_file(ptent))
5179 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5180
5181 if (!page && !ent.val)
5182 return 0;
02491447
DN
5183 if (page) {
5184 pc = lookup_page_cgroup(page);
5185 /*
5186 * Do only loose check w/o page_cgroup lock.
5187 * mem_cgroup_move_account() checks the pc is valid or not under
5188 * the lock.
5189 */
5190 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5191 ret = MC_TARGET_PAGE;
5192 if (target)
5193 target->page = page;
5194 }
5195 if (!ret || !target)
5196 put_page(page);
5197 }
90254a65
DN
5198 /* There is a swap entry and a page doesn't exist or isn't charged */
5199 if (ent.val && !ret &&
9fb4b7cc 5200 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5201 ret = MC_TARGET_SWAP;
5202 if (target)
5203 target->ent = ent;
4ffef5fe 5204 }
4ffef5fe
DN
5205 return ret;
5206}
5207
5208static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5209 unsigned long addr, unsigned long end,
5210 struct mm_walk *walk)
5211{
5212 struct vm_area_struct *vma = walk->private;
5213 pte_t *pte;
5214 spinlock_t *ptl;
5215
03319327
DH
5216 split_huge_page_pmd(walk->mm, pmd);
5217
4ffef5fe
DN
5218 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5219 for (; addr != end; pte++, addr += PAGE_SIZE)
5220 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5221 mc.precharge++; /* increment precharge temporarily */
5222 pte_unmap_unlock(pte - 1, ptl);
5223 cond_resched();
5224
7dc74be0
DN
5225 return 0;
5226}
5227
4ffef5fe
DN
5228static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5229{
5230 unsigned long precharge;
5231 struct vm_area_struct *vma;
5232
dfe076b0 5233 down_read(&mm->mmap_sem);
4ffef5fe
DN
5234 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5235 struct mm_walk mem_cgroup_count_precharge_walk = {
5236 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5237 .mm = mm,
5238 .private = vma,
5239 };
5240 if (is_vm_hugetlb_page(vma))
5241 continue;
4ffef5fe
DN
5242 walk_page_range(vma->vm_start, vma->vm_end,
5243 &mem_cgroup_count_precharge_walk);
5244 }
dfe076b0 5245 up_read(&mm->mmap_sem);
4ffef5fe
DN
5246
5247 precharge = mc.precharge;
5248 mc.precharge = 0;
5249
5250 return precharge;
5251}
5252
4ffef5fe
DN
5253static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5254{
dfe076b0
DN
5255 unsigned long precharge = mem_cgroup_count_precharge(mm);
5256
5257 VM_BUG_ON(mc.moving_task);
5258 mc.moving_task = current;
5259 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5260}
5261
dfe076b0
DN
5262/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5263static void __mem_cgroup_clear_mc(void)
4ffef5fe 5264{
2bd9bb20
KH
5265 struct mem_cgroup *from = mc.from;
5266 struct mem_cgroup *to = mc.to;
5267
4ffef5fe 5268 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5269 if (mc.precharge) {
5270 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5271 mc.precharge = 0;
5272 }
5273 /*
5274 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5275 * we must uncharge here.
5276 */
5277 if (mc.moved_charge) {
5278 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5279 mc.moved_charge = 0;
4ffef5fe 5280 }
483c30b5
DN
5281 /* we must fixup refcnts and charges */
5282 if (mc.moved_swap) {
483c30b5
DN
5283 /* uncharge swap account from the old cgroup */
5284 if (!mem_cgroup_is_root(mc.from))
5285 res_counter_uncharge(&mc.from->memsw,
5286 PAGE_SIZE * mc.moved_swap);
5287 __mem_cgroup_put(mc.from, mc.moved_swap);
5288
5289 if (!mem_cgroup_is_root(mc.to)) {
5290 /*
5291 * we charged both to->res and to->memsw, so we should
5292 * uncharge to->res.
5293 */
5294 res_counter_uncharge(&mc.to->res,
5295 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5296 }
5297 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5298 mc.moved_swap = 0;
5299 }
dfe076b0
DN
5300 memcg_oom_recover(from);
5301 memcg_oom_recover(to);
5302 wake_up_all(&mc.waitq);
5303}
5304
5305static void mem_cgroup_clear_mc(void)
5306{
5307 struct mem_cgroup *from = mc.from;
5308
5309 /*
5310 * we must clear moving_task before waking up waiters at the end of
5311 * task migration.
5312 */
5313 mc.moving_task = NULL;
5314 __mem_cgroup_clear_mc();
2bd9bb20 5315 spin_lock(&mc.lock);
4ffef5fe
DN
5316 mc.from = NULL;
5317 mc.to = NULL;
2bd9bb20 5318 spin_unlock(&mc.lock);
32047e2a 5319 mem_cgroup_end_move(from);
4ffef5fe
DN
5320}
5321
7dc74be0
DN
5322static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5323 struct cgroup *cgroup,
2f7ee569 5324 struct cgroup_taskset *tset)
7dc74be0 5325{
2f7ee569 5326 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5327 int ret = 0;
c0ff4b85 5328 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5329
c0ff4b85 5330 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5331 struct mm_struct *mm;
5332 struct mem_cgroup *from = mem_cgroup_from_task(p);
5333
c0ff4b85 5334 VM_BUG_ON(from == memcg);
7dc74be0
DN
5335
5336 mm = get_task_mm(p);
5337 if (!mm)
5338 return 0;
7dc74be0 5339 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5340 if (mm->owner == p) {
5341 VM_BUG_ON(mc.from);
5342 VM_BUG_ON(mc.to);
5343 VM_BUG_ON(mc.precharge);
854ffa8d 5344 VM_BUG_ON(mc.moved_charge);
483c30b5 5345 VM_BUG_ON(mc.moved_swap);
32047e2a 5346 mem_cgroup_start_move(from);
2bd9bb20 5347 spin_lock(&mc.lock);
4ffef5fe 5348 mc.from = from;
c0ff4b85 5349 mc.to = memcg;
2bd9bb20 5350 spin_unlock(&mc.lock);
dfe076b0 5351 /* We set mc.moving_task later */
4ffef5fe
DN
5352
5353 ret = mem_cgroup_precharge_mc(mm);
5354 if (ret)
5355 mem_cgroup_clear_mc();
dfe076b0
DN
5356 }
5357 mmput(mm);
7dc74be0
DN
5358 }
5359 return ret;
5360}
5361
5362static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5363 struct cgroup *cgroup,
2f7ee569 5364 struct cgroup_taskset *tset)
7dc74be0 5365{
4ffef5fe 5366 mem_cgroup_clear_mc();
7dc74be0
DN
5367}
5368
4ffef5fe
DN
5369static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5370 unsigned long addr, unsigned long end,
5371 struct mm_walk *walk)
7dc74be0 5372{
4ffef5fe
DN
5373 int ret = 0;
5374 struct vm_area_struct *vma = walk->private;
5375 pte_t *pte;
5376 spinlock_t *ptl;
5377
03319327 5378 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5379retry:
5380 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5381 for (; addr != end; addr += PAGE_SIZE) {
5382 pte_t ptent = *(pte++);
5383 union mc_target target;
5384 int type;
5385 struct page *page;
5386 struct page_cgroup *pc;
02491447 5387 swp_entry_t ent;
4ffef5fe
DN
5388
5389 if (!mc.precharge)
5390 break;
5391
5392 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5393 switch (type) {
5394 case MC_TARGET_PAGE:
5395 page = target.page;
5396 if (isolate_lru_page(page))
5397 goto put;
5398 pc = lookup_page_cgroup(page);
7ec99d62
JW
5399 if (!mem_cgroup_move_account(page, 1, pc,
5400 mc.from, mc.to, false)) {
4ffef5fe 5401 mc.precharge--;
854ffa8d
DN
5402 /* we uncharge from mc.from later. */
5403 mc.moved_charge++;
4ffef5fe
DN
5404 }
5405 putback_lru_page(page);
5406put: /* is_target_pte_for_mc() gets the page */
5407 put_page(page);
5408 break;
02491447
DN
5409 case MC_TARGET_SWAP:
5410 ent = target.ent;
483c30b5
DN
5411 if (!mem_cgroup_move_swap_account(ent,
5412 mc.from, mc.to, false)) {
02491447 5413 mc.precharge--;
483c30b5
DN
5414 /* we fixup refcnts and charges later. */
5415 mc.moved_swap++;
5416 }
02491447 5417 break;
4ffef5fe
DN
5418 default:
5419 break;
5420 }
5421 }
5422 pte_unmap_unlock(pte - 1, ptl);
5423 cond_resched();
5424
5425 if (addr != end) {
5426 /*
5427 * We have consumed all precharges we got in can_attach().
5428 * We try charge one by one, but don't do any additional
5429 * charges to mc.to if we have failed in charge once in attach()
5430 * phase.
5431 */
854ffa8d 5432 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5433 if (!ret)
5434 goto retry;
5435 }
5436
5437 return ret;
5438}
5439
5440static void mem_cgroup_move_charge(struct mm_struct *mm)
5441{
5442 struct vm_area_struct *vma;
5443
5444 lru_add_drain_all();
dfe076b0
DN
5445retry:
5446 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5447 /*
5448 * Someone who are holding the mmap_sem might be waiting in
5449 * waitq. So we cancel all extra charges, wake up all waiters,
5450 * and retry. Because we cancel precharges, we might not be able
5451 * to move enough charges, but moving charge is a best-effort
5452 * feature anyway, so it wouldn't be a big problem.
5453 */
5454 __mem_cgroup_clear_mc();
5455 cond_resched();
5456 goto retry;
5457 }
4ffef5fe
DN
5458 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5459 int ret;
5460 struct mm_walk mem_cgroup_move_charge_walk = {
5461 .pmd_entry = mem_cgroup_move_charge_pte_range,
5462 .mm = mm,
5463 .private = vma,
5464 };
5465 if (is_vm_hugetlb_page(vma))
5466 continue;
4ffef5fe
DN
5467 ret = walk_page_range(vma->vm_start, vma->vm_end,
5468 &mem_cgroup_move_charge_walk);
5469 if (ret)
5470 /*
5471 * means we have consumed all precharges and failed in
5472 * doing additional charge. Just abandon here.
5473 */
5474 break;
5475 }
dfe076b0 5476 up_read(&mm->mmap_sem);
7dc74be0
DN
5477}
5478
67e465a7
BS
5479static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5480 struct cgroup *cont,
2f7ee569 5481 struct cgroup_taskset *tset)
67e465a7 5482{
2f7ee569 5483 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5484 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5485
dfe076b0 5486 if (mm) {
a433658c
KM
5487 if (mc.to)
5488 mem_cgroup_move_charge(mm);
5489 put_swap_token(mm);
dfe076b0
DN
5490 mmput(mm);
5491 }
a433658c
KM
5492 if (mc.to)
5493 mem_cgroup_clear_mc();
67e465a7 5494}
5cfb80a7
DN
5495#else /* !CONFIG_MMU */
5496static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5497 struct cgroup *cgroup,
2f7ee569 5498 struct cgroup_taskset *tset)
5cfb80a7
DN
5499{
5500 return 0;
5501}
5502static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5503 struct cgroup *cgroup,
2f7ee569 5504 struct cgroup_taskset *tset)
5cfb80a7
DN
5505{
5506}
5507static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5508 struct cgroup *cont,
2f7ee569 5509 struct cgroup_taskset *tset)
5cfb80a7
DN
5510{
5511}
5512#endif
67e465a7 5513
8cdea7c0
BS
5514struct cgroup_subsys mem_cgroup_subsys = {
5515 .name = "memory",
5516 .subsys_id = mem_cgroup_subsys_id,
5517 .create = mem_cgroup_create,
df878fb0 5518 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5519 .destroy = mem_cgroup_destroy,
5520 .populate = mem_cgroup_populate,
7dc74be0
DN
5521 .can_attach = mem_cgroup_can_attach,
5522 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5523 .attach = mem_cgroup_move_task,
6d12e2d8 5524 .early_init = 0,
04046e1a 5525 .use_id = 1,
8cdea7c0 5526};
c077719b
KH
5527
5528#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5529static int __init enable_swap_account(char *s)
5530{
5531 /* consider enabled if no parameter or 1 is given */
a2c8990a 5532 if (!strcmp(s, "1"))
a42c390c 5533 really_do_swap_account = 1;
a2c8990a 5534 else if (!strcmp(s, "0"))
a42c390c
MH
5535 really_do_swap_account = 0;
5536 return 1;
5537}
a2c8990a 5538__setup("swapaccount=", enable_swap_account);
c077719b 5539
c077719b 5540#endif