mm: memcontrol: separate kmem code from legacy tcp accounting code
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
d1a4c0b3 69#include <net/tcp_memcontrol.h>
f35c3a8e 70#include "slab.h"
8cdea7c0 71
8697d331
BS
72#include <asm/uaccess.h>
73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
7d828602
JW
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
a181b0e8 81#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 82
f7e1cb6e
JW
83/* Socket memory accounting disabled? */
84static bool cgroup_memory_nosocket;
85
21afa38e 86/* Whether the swap controller is active */
c255a458 87#ifdef CONFIG_MEMCG_SWAP
c077719b 88int do_swap_account __read_mostly;
c077719b 89#else
a0db00fc 90#define do_swap_account 0
c077719b
KH
91#endif
92
7941d214
JW
93/* Whether legacy memory+swap accounting is active */
94static bool do_memsw_account(void)
95{
96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
97}
98
af7c4b0e
JW
99static const char * const mem_cgroup_stat_names[] = {
100 "cache",
101 "rss",
b070e65c 102 "rss_huge",
af7c4b0e 103 "mapped_file",
c4843a75 104 "dirty",
3ea67d06 105 "writeback",
af7c4b0e
JW
106 "swap",
107};
108
af7c4b0e
JW
109static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114};
115
58cf188e
SZ
116static const char * const mem_cgroup_lru_names[] = {
117 "inactive_anon",
118 "active_anon",
119 "inactive_file",
120 "active_file",
121 "unevictable",
122};
123
a0db00fc
KS
124#define THRESHOLDS_EVENTS_TARGET 128
125#define SOFTLIMIT_EVENTS_TARGET 1024
126#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 127
bb4cc1a8
AM
128/*
129 * Cgroups above their limits are maintained in a RB-Tree, independent of
130 * their hierarchy representation
131 */
132
133struct mem_cgroup_tree_per_zone {
134 struct rb_root rb_root;
135 spinlock_t lock;
136};
137
138struct mem_cgroup_tree_per_node {
139 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
140};
141
142struct mem_cgroup_tree {
143 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144};
145
146static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147
9490ff27
KH
148/* for OOM */
149struct mem_cgroup_eventfd_list {
150 struct list_head list;
151 struct eventfd_ctx *eventfd;
152};
2e72b634 153
79bd9814
TH
154/*
155 * cgroup_event represents events which userspace want to receive.
156 */
3bc942f3 157struct mem_cgroup_event {
79bd9814 158 /*
59b6f873 159 * memcg which the event belongs to.
79bd9814 160 */
59b6f873 161 struct mem_cgroup *memcg;
79bd9814
TH
162 /*
163 * eventfd to signal userspace about the event.
164 */
165 struct eventfd_ctx *eventfd;
166 /*
167 * Each of these stored in a list by the cgroup.
168 */
169 struct list_head list;
fba94807
TH
170 /*
171 * register_event() callback will be used to add new userspace
172 * waiter for changes related to this event. Use eventfd_signal()
173 * on eventfd to send notification to userspace.
174 */
59b6f873 175 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 176 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
177 /*
178 * unregister_event() callback will be called when userspace closes
179 * the eventfd or on cgroup removing. This callback must be set,
180 * if you want provide notification functionality.
181 */
59b6f873 182 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 183 struct eventfd_ctx *eventfd);
79bd9814
TH
184 /*
185 * All fields below needed to unregister event when
186 * userspace closes eventfd.
187 */
188 poll_table pt;
189 wait_queue_head_t *wqh;
190 wait_queue_t wait;
191 struct work_struct remove;
192};
193
c0ff4b85
R
194static void mem_cgroup_threshold(struct mem_cgroup *memcg);
195static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 196
7dc74be0
DN
197/* Stuffs for move charges at task migration. */
198/*
1dfab5ab 199 * Types of charges to be moved.
7dc74be0 200 */
1dfab5ab
JW
201#define MOVE_ANON 0x1U
202#define MOVE_FILE 0x2U
203#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 204
4ffef5fe
DN
205/* "mc" and its members are protected by cgroup_mutex */
206static struct move_charge_struct {
b1dd693e 207 spinlock_t lock; /* for from, to */
4ffef5fe
DN
208 struct mem_cgroup *from;
209 struct mem_cgroup *to;
1dfab5ab 210 unsigned long flags;
4ffef5fe 211 unsigned long precharge;
854ffa8d 212 unsigned long moved_charge;
483c30b5 213 unsigned long moved_swap;
8033b97c
DN
214 struct task_struct *moving_task; /* a task moving charges */
215 wait_queue_head_t waitq; /* a waitq for other context */
216} mc = {
2bd9bb20 217 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
218 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
219};
4ffef5fe 220
4e416953
BS
221/*
222 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
223 * limit reclaim to prevent infinite loops, if they ever occur.
224 */
a0db00fc 225#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 226#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 227
217bc319
KH
228enum charge_type {
229 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 230 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 231 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 232 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
233 NR_CHARGE_TYPE,
234};
235
8c7c6e34 236/* for encoding cft->private value on file */
86ae53e1
GC
237enum res_type {
238 _MEM,
239 _MEMSWAP,
240 _OOM_TYPE,
510fc4e1 241 _KMEM,
86ae53e1
GC
242};
243
a0db00fc
KS
244#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 246#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
247/* Used for OOM nofiier */
248#define OOM_CONTROL (0)
8c7c6e34 249
0999821b
GC
250/*
251 * The memcg_create_mutex will be held whenever a new cgroup is created.
252 * As a consequence, any change that needs to protect against new child cgroups
253 * appearing has to hold it as well.
254 */
255static DEFINE_MUTEX(memcg_create_mutex);
256
70ddf637
AV
257/* Some nice accessors for the vmpressure. */
258struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
259{
260 if (!memcg)
261 memcg = root_mem_cgroup;
262 return &memcg->vmpressure;
263}
264
265struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
266{
267 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
268}
269
7ffc0edc
MH
270static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
271{
272 return (memcg == root_mem_cgroup);
273}
274
4219b2da
LZ
275/*
276 * We restrict the id in the range of [1, 65535], so it can fit into
277 * an unsigned short.
278 */
279#define MEM_CGROUP_ID_MAX USHRT_MAX
280
34c00c31
LZ
281static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
282{
15a4c835 283 return memcg->css.id;
34c00c31
LZ
284}
285
adbe427b
VD
286/*
287 * A helper function to get mem_cgroup from ID. must be called under
288 * rcu_read_lock(). The caller is responsible for calling
289 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
290 * refcnt from swap can be called against removed memcg.)
291 */
34c00c31
LZ
292static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
293{
294 struct cgroup_subsys_state *css;
295
7d699ddb 296 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
297 return mem_cgroup_from_css(css);
298}
299
a8964b9b 300#ifdef CONFIG_MEMCG_KMEM
55007d84 301/*
f7ce3190 302 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
303 * The main reason for not using cgroup id for this:
304 * this works better in sparse environments, where we have a lot of memcgs,
305 * but only a few kmem-limited. Or also, if we have, for instance, 200
306 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
307 * 200 entry array for that.
55007d84 308 *
dbcf73e2
VD
309 * The current size of the caches array is stored in memcg_nr_cache_ids. It
310 * will double each time we have to increase it.
55007d84 311 */
dbcf73e2
VD
312static DEFINE_IDA(memcg_cache_ida);
313int memcg_nr_cache_ids;
749c5415 314
05257a1a
VD
315/* Protects memcg_nr_cache_ids */
316static DECLARE_RWSEM(memcg_cache_ids_sem);
317
318void memcg_get_cache_ids(void)
319{
320 down_read(&memcg_cache_ids_sem);
321}
322
323void memcg_put_cache_ids(void)
324{
325 up_read(&memcg_cache_ids_sem);
326}
327
55007d84
GC
328/*
329 * MIN_SIZE is different than 1, because we would like to avoid going through
330 * the alloc/free process all the time. In a small machine, 4 kmem-limited
331 * cgroups is a reasonable guess. In the future, it could be a parameter or
332 * tunable, but that is strictly not necessary.
333 *
b8627835 334 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
335 * this constant directly from cgroup, but it is understandable that this is
336 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 337 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
338 * increase ours as well if it increases.
339 */
340#define MEMCG_CACHES_MIN_SIZE 4
b8627835 341#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 342
d7f25f8a
GC
343/*
344 * A lot of the calls to the cache allocation functions are expected to be
345 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
346 * conditional to this static branch, we'll have to allow modules that does
347 * kmem_cache_alloc and the such to see this symbol as well
348 */
ef12947c 349DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 350EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 351
a8964b9b
GC
352#endif /* CONFIG_MEMCG_KMEM */
353
f64c3f54 354static struct mem_cgroup_per_zone *
e231875b 355mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 356{
e231875b
JZ
357 int nid = zone_to_nid(zone);
358 int zid = zone_idx(zone);
359
54f72fe0 360 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
361}
362
ad7fa852
TH
363/**
364 * mem_cgroup_css_from_page - css of the memcg associated with a page
365 * @page: page of interest
366 *
367 * If memcg is bound to the default hierarchy, css of the memcg associated
368 * with @page is returned. The returned css remains associated with @page
369 * until it is released.
370 *
371 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
372 * is returned.
373 *
374 * XXX: The above description of behavior on the default hierarchy isn't
375 * strictly true yet as replace_page_cache_page() can modify the
376 * association before @page is released even on the default hierarchy;
377 * however, the current and planned usages don't mix the the two functions
378 * and replace_page_cache_page() will soon be updated to make the invariant
379 * actually true.
380 */
381struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
382{
383 struct mem_cgroup *memcg;
384
ad7fa852
TH
385 memcg = page->mem_cgroup;
386
9e10a130 387 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
388 memcg = root_mem_cgroup;
389
ad7fa852
TH
390 return &memcg->css;
391}
392
2fc04524
VD
393/**
394 * page_cgroup_ino - return inode number of the memcg a page is charged to
395 * @page: the page
396 *
397 * Look up the closest online ancestor of the memory cgroup @page is charged to
398 * and return its inode number or 0 if @page is not charged to any cgroup. It
399 * is safe to call this function without holding a reference to @page.
400 *
401 * Note, this function is inherently racy, because there is nothing to prevent
402 * the cgroup inode from getting torn down and potentially reallocated a moment
403 * after page_cgroup_ino() returns, so it only should be used by callers that
404 * do not care (such as procfs interfaces).
405 */
406ino_t page_cgroup_ino(struct page *page)
407{
408 struct mem_cgroup *memcg;
409 unsigned long ino = 0;
410
411 rcu_read_lock();
412 memcg = READ_ONCE(page->mem_cgroup);
413 while (memcg && !(memcg->css.flags & CSS_ONLINE))
414 memcg = parent_mem_cgroup(memcg);
415 if (memcg)
416 ino = cgroup_ino(memcg->css.cgroup);
417 rcu_read_unlock();
418 return ino;
419}
420
f64c3f54 421static struct mem_cgroup_per_zone *
e231875b 422mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 423{
97a6c37b
JW
424 int nid = page_to_nid(page);
425 int zid = page_zonenum(page);
f64c3f54 426
e231875b 427 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
428}
429
bb4cc1a8
AM
430static struct mem_cgroup_tree_per_zone *
431soft_limit_tree_node_zone(int nid, int zid)
432{
433 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
434}
435
436static struct mem_cgroup_tree_per_zone *
437soft_limit_tree_from_page(struct page *page)
438{
439 int nid = page_to_nid(page);
440 int zid = page_zonenum(page);
441
442 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
443}
444
cf2c8127
JW
445static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
446 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 447 unsigned long new_usage_in_excess)
bb4cc1a8
AM
448{
449 struct rb_node **p = &mctz->rb_root.rb_node;
450 struct rb_node *parent = NULL;
451 struct mem_cgroup_per_zone *mz_node;
452
453 if (mz->on_tree)
454 return;
455
456 mz->usage_in_excess = new_usage_in_excess;
457 if (!mz->usage_in_excess)
458 return;
459 while (*p) {
460 parent = *p;
461 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
462 tree_node);
463 if (mz->usage_in_excess < mz_node->usage_in_excess)
464 p = &(*p)->rb_left;
465 /*
466 * We can't avoid mem cgroups that are over their soft
467 * limit by the same amount
468 */
469 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
470 p = &(*p)->rb_right;
471 }
472 rb_link_node(&mz->tree_node, parent, p);
473 rb_insert_color(&mz->tree_node, &mctz->rb_root);
474 mz->on_tree = true;
475}
476
cf2c8127
JW
477static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
478 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
479{
480 if (!mz->on_tree)
481 return;
482 rb_erase(&mz->tree_node, &mctz->rb_root);
483 mz->on_tree = false;
484}
485
cf2c8127
JW
486static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
487 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 488{
0a31bc97
JW
489 unsigned long flags;
490
491 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 492 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 493 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
494}
495
3e32cb2e
JW
496static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
497{
498 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 499 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
500 unsigned long excess = 0;
501
502 if (nr_pages > soft_limit)
503 excess = nr_pages - soft_limit;
504
505 return excess;
506}
bb4cc1a8
AM
507
508static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
509{
3e32cb2e 510 unsigned long excess;
bb4cc1a8
AM
511 struct mem_cgroup_per_zone *mz;
512 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 513
e231875b 514 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
515 /*
516 * Necessary to update all ancestors when hierarchy is used.
517 * because their event counter is not touched.
518 */
519 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 520 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 521 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
522 /*
523 * We have to update the tree if mz is on RB-tree or
524 * mem is over its softlimit.
525 */
526 if (excess || mz->on_tree) {
0a31bc97
JW
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
530 /* if on-tree, remove it */
531 if (mz->on_tree)
cf2c8127 532 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
533 /*
534 * Insert again. mz->usage_in_excess will be updated.
535 * If excess is 0, no tree ops.
536 */
cf2c8127 537 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 538 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
539 }
540 }
541}
542
543static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
544{
bb4cc1a8 545 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
546 struct mem_cgroup_per_zone *mz;
547 int nid, zid;
bb4cc1a8 548
e231875b
JZ
549 for_each_node(nid) {
550 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
551 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
552 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 553 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
554 }
555 }
556}
557
558static struct mem_cgroup_per_zone *
559__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
560{
561 struct rb_node *rightmost = NULL;
562 struct mem_cgroup_per_zone *mz;
563
564retry:
565 mz = NULL;
566 rightmost = rb_last(&mctz->rb_root);
567 if (!rightmost)
568 goto done; /* Nothing to reclaim from */
569
570 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
571 /*
572 * Remove the node now but someone else can add it back,
573 * we will to add it back at the end of reclaim to its correct
574 * position in the tree.
575 */
cf2c8127 576 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 577 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 578 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
579 goto retry;
580done:
581 return mz;
582}
583
584static struct mem_cgroup_per_zone *
585mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
586{
587 struct mem_cgroup_per_zone *mz;
588
0a31bc97 589 spin_lock_irq(&mctz->lock);
bb4cc1a8 590 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 591 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
592 return mz;
593}
594
711d3d2c 595/*
484ebb3b
GT
596 * Return page count for single (non recursive) @memcg.
597 *
711d3d2c
KH
598 * Implementation Note: reading percpu statistics for memcg.
599 *
600 * Both of vmstat[] and percpu_counter has threshold and do periodic
601 * synchronization to implement "quick" read. There are trade-off between
602 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 603 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
604 *
605 * But this _read() function is used for user interface now. The user accounts
606 * memory usage by memory cgroup and he _always_ requires exact value because
607 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
608 * have to visit all online cpus and make sum. So, for now, unnecessary
609 * synchronization is not implemented. (just implemented for cpu hotplug)
610 *
611 * If there are kernel internal actions which can make use of some not-exact
612 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 613 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
614 * implemented.
615 */
484ebb3b
GT
616static unsigned long
617mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 618{
7a159cc9 619 long val = 0;
c62b1a3b 620 int cpu;
c62b1a3b 621
484ebb3b 622 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 623 for_each_possible_cpu(cpu)
c0ff4b85 624 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
625 /*
626 * Summing races with updates, so val may be negative. Avoid exposing
627 * transient negative values.
628 */
629 if (val < 0)
630 val = 0;
c62b1a3b
KH
631 return val;
632}
633
c0ff4b85 634static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
635 enum mem_cgroup_events_index idx)
636{
637 unsigned long val = 0;
638 int cpu;
639
733a572e 640 for_each_possible_cpu(cpu)
c0ff4b85 641 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
642 return val;
643}
644
c0ff4b85 645static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 646 struct page *page,
f627c2f5 647 bool compound, int nr_pages)
d52aa412 648{
b2402857
KH
649 /*
650 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
651 * counted as CACHE even if it's on ANON LRU.
652 */
0a31bc97 653 if (PageAnon(page))
b2402857 654 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 655 nr_pages);
d52aa412 656 else
b2402857 657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 658 nr_pages);
55e462b0 659
f627c2f5
KS
660 if (compound) {
661 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
662 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
663 nr_pages);
f627c2f5 664 }
b070e65c 665
e401f176
KH
666 /* pagein of a big page is an event. So, ignore page size */
667 if (nr_pages > 0)
c0ff4b85 668 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 669 else {
c0ff4b85 670 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
671 nr_pages = -nr_pages; /* for event */
672 }
e401f176 673
13114716 674 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
675}
676
e231875b
JZ
677static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
678 int nid,
679 unsigned int lru_mask)
bb2a0de9 680{
e231875b 681 unsigned long nr = 0;
889976db
YH
682 int zid;
683
e231875b 684 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 685
e231875b
JZ
686 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
687 struct mem_cgroup_per_zone *mz;
688 enum lru_list lru;
689
690 for_each_lru(lru) {
691 if (!(BIT(lru) & lru_mask))
692 continue;
693 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
694 nr += mz->lru_size[lru];
695 }
696 }
697 return nr;
889976db 698}
bb2a0de9 699
c0ff4b85 700static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 701 unsigned int lru_mask)
6d12e2d8 702{
e231875b 703 unsigned long nr = 0;
889976db 704 int nid;
6d12e2d8 705
31aaea4a 706 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
707 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
708 return nr;
d52aa412
KH
709}
710
f53d7ce3
JW
711static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
712 enum mem_cgroup_events_target target)
7a159cc9
JW
713{
714 unsigned long val, next;
715
13114716 716 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 717 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 718 /* from time_after() in jiffies.h */
f53d7ce3
JW
719 if ((long)next - (long)val < 0) {
720 switch (target) {
721 case MEM_CGROUP_TARGET_THRESH:
722 next = val + THRESHOLDS_EVENTS_TARGET;
723 break;
bb4cc1a8
AM
724 case MEM_CGROUP_TARGET_SOFTLIMIT:
725 next = val + SOFTLIMIT_EVENTS_TARGET;
726 break;
f53d7ce3
JW
727 case MEM_CGROUP_TARGET_NUMAINFO:
728 next = val + NUMAINFO_EVENTS_TARGET;
729 break;
730 default:
731 break;
732 }
733 __this_cpu_write(memcg->stat->targets[target], next);
734 return true;
7a159cc9 735 }
f53d7ce3 736 return false;
d2265e6f
KH
737}
738
739/*
740 * Check events in order.
741 *
742 */
c0ff4b85 743static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
744{
745 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
746 if (unlikely(mem_cgroup_event_ratelimit(memcg,
747 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 748 bool do_softlimit;
82b3f2a7 749 bool do_numainfo __maybe_unused;
f53d7ce3 750
bb4cc1a8
AM
751 do_softlimit = mem_cgroup_event_ratelimit(memcg,
752 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
753#if MAX_NUMNODES > 1
754 do_numainfo = mem_cgroup_event_ratelimit(memcg,
755 MEM_CGROUP_TARGET_NUMAINFO);
756#endif
c0ff4b85 757 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
758 if (unlikely(do_softlimit))
759 mem_cgroup_update_tree(memcg, page);
453a9bf3 760#if MAX_NUMNODES > 1
f53d7ce3 761 if (unlikely(do_numainfo))
c0ff4b85 762 atomic_inc(&memcg->numainfo_events);
453a9bf3 763#endif
0a31bc97 764 }
d2265e6f
KH
765}
766
cf475ad2 767struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 768{
31a78f23
BS
769 /*
770 * mm_update_next_owner() may clear mm->owner to NULL
771 * if it races with swapoff, page migration, etc.
772 * So this can be called with p == NULL.
773 */
774 if (unlikely(!p))
775 return NULL;
776
073219e9 777 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 778}
33398cf2 779EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 780
df381975 781static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 782{
c0ff4b85 783 struct mem_cgroup *memcg = NULL;
0b7f569e 784
54595fe2
KH
785 rcu_read_lock();
786 do {
6f6acb00
MH
787 /*
788 * Page cache insertions can happen withou an
789 * actual mm context, e.g. during disk probing
790 * on boot, loopback IO, acct() writes etc.
791 */
792 if (unlikely(!mm))
df381975 793 memcg = root_mem_cgroup;
6f6acb00
MH
794 else {
795 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
796 if (unlikely(!memcg))
797 memcg = root_mem_cgroup;
798 }
ec903c0c 799 } while (!css_tryget_online(&memcg->css));
54595fe2 800 rcu_read_unlock();
c0ff4b85 801 return memcg;
54595fe2
KH
802}
803
5660048c
JW
804/**
805 * mem_cgroup_iter - iterate over memory cgroup hierarchy
806 * @root: hierarchy root
807 * @prev: previously returned memcg, NULL on first invocation
808 * @reclaim: cookie for shared reclaim walks, NULL for full walks
809 *
810 * Returns references to children of the hierarchy below @root, or
811 * @root itself, or %NULL after a full round-trip.
812 *
813 * Caller must pass the return value in @prev on subsequent
814 * invocations for reference counting, or use mem_cgroup_iter_break()
815 * to cancel a hierarchy walk before the round-trip is complete.
816 *
817 * Reclaimers can specify a zone and a priority level in @reclaim to
818 * divide up the memcgs in the hierarchy among all concurrent
819 * reclaimers operating on the same zone and priority.
820 */
694fbc0f 821struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 822 struct mem_cgroup *prev,
694fbc0f 823 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 824{
33398cf2 825 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 826 struct cgroup_subsys_state *css = NULL;
9f3a0d09 827 struct mem_cgroup *memcg = NULL;
5ac8fb31 828 struct mem_cgroup *pos = NULL;
711d3d2c 829
694fbc0f
AM
830 if (mem_cgroup_disabled())
831 return NULL;
5660048c 832
9f3a0d09
JW
833 if (!root)
834 root = root_mem_cgroup;
7d74b06f 835
9f3a0d09 836 if (prev && !reclaim)
5ac8fb31 837 pos = prev;
14067bb3 838
9f3a0d09
JW
839 if (!root->use_hierarchy && root != root_mem_cgroup) {
840 if (prev)
5ac8fb31 841 goto out;
694fbc0f 842 return root;
9f3a0d09 843 }
14067bb3 844
542f85f9 845 rcu_read_lock();
5f578161 846
5ac8fb31
JW
847 if (reclaim) {
848 struct mem_cgroup_per_zone *mz;
849
850 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
851 iter = &mz->iter[reclaim->priority];
852
853 if (prev && reclaim->generation != iter->generation)
854 goto out_unlock;
855
6df38689 856 while (1) {
4db0c3c2 857 pos = READ_ONCE(iter->position);
6df38689
VD
858 if (!pos || css_tryget(&pos->css))
859 break;
5ac8fb31 860 /*
6df38689
VD
861 * css reference reached zero, so iter->position will
862 * be cleared by ->css_released. However, we should not
863 * rely on this happening soon, because ->css_released
864 * is called from a work queue, and by busy-waiting we
865 * might block it. So we clear iter->position right
866 * away.
5ac8fb31 867 */
6df38689
VD
868 (void)cmpxchg(&iter->position, pos, NULL);
869 }
5ac8fb31
JW
870 }
871
872 if (pos)
873 css = &pos->css;
874
875 for (;;) {
876 css = css_next_descendant_pre(css, &root->css);
877 if (!css) {
878 /*
879 * Reclaimers share the hierarchy walk, and a
880 * new one might jump in right at the end of
881 * the hierarchy - make sure they see at least
882 * one group and restart from the beginning.
883 */
884 if (!prev)
885 continue;
886 break;
527a5ec9 887 }
7d74b06f 888
5ac8fb31
JW
889 /*
890 * Verify the css and acquire a reference. The root
891 * is provided by the caller, so we know it's alive
892 * and kicking, and don't take an extra reference.
893 */
894 memcg = mem_cgroup_from_css(css);
14067bb3 895
5ac8fb31
JW
896 if (css == &root->css)
897 break;
14067bb3 898
b2052564 899 if (css_tryget(css)) {
5ac8fb31
JW
900 /*
901 * Make sure the memcg is initialized:
902 * mem_cgroup_css_online() orders the the
903 * initialization against setting the flag.
904 */
905 if (smp_load_acquire(&memcg->initialized))
906 break;
542f85f9 907
5ac8fb31 908 css_put(css);
527a5ec9 909 }
9f3a0d09 910
5ac8fb31 911 memcg = NULL;
9f3a0d09 912 }
5ac8fb31
JW
913
914 if (reclaim) {
5ac8fb31 915 /*
6df38689
VD
916 * The position could have already been updated by a competing
917 * thread, so check that the value hasn't changed since we read
918 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 919 */
6df38689
VD
920 (void)cmpxchg(&iter->position, pos, memcg);
921
5ac8fb31
JW
922 if (pos)
923 css_put(&pos->css);
924
925 if (!memcg)
926 iter->generation++;
927 else if (!prev)
928 reclaim->generation = iter->generation;
9f3a0d09 929 }
5ac8fb31 930
542f85f9
MH
931out_unlock:
932 rcu_read_unlock();
5ac8fb31 933out:
c40046f3
MH
934 if (prev && prev != root)
935 css_put(&prev->css);
936
9f3a0d09 937 return memcg;
14067bb3 938}
7d74b06f 939
5660048c
JW
940/**
941 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
942 * @root: hierarchy root
943 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
944 */
945void mem_cgroup_iter_break(struct mem_cgroup *root,
946 struct mem_cgroup *prev)
9f3a0d09
JW
947{
948 if (!root)
949 root = root_mem_cgroup;
950 if (prev && prev != root)
951 css_put(&prev->css);
952}
7d74b06f 953
6df38689
VD
954static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
955{
956 struct mem_cgroup *memcg = dead_memcg;
957 struct mem_cgroup_reclaim_iter *iter;
958 struct mem_cgroup_per_zone *mz;
959 int nid, zid;
960 int i;
961
962 while ((memcg = parent_mem_cgroup(memcg))) {
963 for_each_node(nid) {
964 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
965 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
966 for (i = 0; i <= DEF_PRIORITY; i++) {
967 iter = &mz->iter[i];
968 cmpxchg(&iter->position,
969 dead_memcg, NULL);
970 }
971 }
972 }
973 }
974}
975
9f3a0d09
JW
976/*
977 * Iteration constructs for visiting all cgroups (under a tree). If
978 * loops are exited prematurely (break), mem_cgroup_iter_break() must
979 * be used for reference counting.
980 */
981#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 982 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 983 iter != NULL; \
527a5ec9 984 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 985
9f3a0d09 986#define for_each_mem_cgroup(iter) \
527a5ec9 987 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 988 iter != NULL; \
527a5ec9 989 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 990
925b7673
JW
991/**
992 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
993 * @zone: zone of the wanted lruvec
fa9add64 994 * @memcg: memcg of the wanted lruvec
925b7673
JW
995 *
996 * Returns the lru list vector holding pages for the given @zone and
997 * @mem. This can be the global zone lruvec, if the memory controller
998 * is disabled.
999 */
1000struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1001 struct mem_cgroup *memcg)
1002{
1003 struct mem_cgroup_per_zone *mz;
bea8c150 1004 struct lruvec *lruvec;
925b7673 1005
bea8c150
HD
1006 if (mem_cgroup_disabled()) {
1007 lruvec = &zone->lruvec;
1008 goto out;
1009 }
925b7673 1010
e231875b 1011 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1012 lruvec = &mz->lruvec;
1013out:
1014 /*
1015 * Since a node can be onlined after the mem_cgroup was created,
1016 * we have to be prepared to initialize lruvec->zone here;
1017 * and if offlined then reonlined, we need to reinitialize it.
1018 */
1019 if (unlikely(lruvec->zone != zone))
1020 lruvec->zone = zone;
1021 return lruvec;
925b7673
JW
1022}
1023
925b7673 1024/**
dfe0e773 1025 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1026 * @page: the page
fa9add64 1027 * @zone: zone of the page
dfe0e773
JW
1028 *
1029 * This function is only safe when following the LRU page isolation
1030 * and putback protocol: the LRU lock must be held, and the page must
1031 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1032 */
fa9add64 1033struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1034{
08e552c6 1035 struct mem_cgroup_per_zone *mz;
925b7673 1036 struct mem_cgroup *memcg;
bea8c150 1037 struct lruvec *lruvec;
6d12e2d8 1038
bea8c150
HD
1039 if (mem_cgroup_disabled()) {
1040 lruvec = &zone->lruvec;
1041 goto out;
1042 }
925b7673 1043
1306a85a 1044 memcg = page->mem_cgroup;
7512102c 1045 /*
dfe0e773 1046 * Swapcache readahead pages are added to the LRU - and
29833315 1047 * possibly migrated - before they are charged.
7512102c 1048 */
29833315
JW
1049 if (!memcg)
1050 memcg = root_mem_cgroup;
7512102c 1051
e231875b 1052 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1053 lruvec = &mz->lruvec;
1054out:
1055 /*
1056 * Since a node can be onlined after the mem_cgroup was created,
1057 * we have to be prepared to initialize lruvec->zone here;
1058 * and if offlined then reonlined, we need to reinitialize it.
1059 */
1060 if (unlikely(lruvec->zone != zone))
1061 lruvec->zone = zone;
1062 return lruvec;
08e552c6 1063}
b69408e8 1064
925b7673 1065/**
fa9add64
HD
1066 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1067 * @lruvec: mem_cgroup per zone lru vector
1068 * @lru: index of lru list the page is sitting on
1069 * @nr_pages: positive when adding or negative when removing
925b7673 1070 *
fa9add64
HD
1071 * This function must be called when a page is added to or removed from an
1072 * lru list.
3f58a829 1073 */
fa9add64
HD
1074void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1075 int nr_pages)
3f58a829
MK
1076{
1077 struct mem_cgroup_per_zone *mz;
fa9add64 1078 unsigned long *lru_size;
3f58a829
MK
1079
1080 if (mem_cgroup_disabled())
1081 return;
1082
fa9add64
HD
1083 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1084 lru_size = mz->lru_size + lru;
1085 *lru_size += nr_pages;
1086 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1087}
544122e5 1088
2314b42d 1089bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1090{
2314b42d 1091 struct mem_cgroup *task_memcg;
158e0a2d 1092 struct task_struct *p;
ffbdccf5 1093 bool ret;
4c4a2214 1094
158e0a2d 1095 p = find_lock_task_mm(task);
de077d22 1096 if (p) {
2314b42d 1097 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1098 task_unlock(p);
1099 } else {
1100 /*
1101 * All threads may have already detached their mm's, but the oom
1102 * killer still needs to detect if they have already been oom
1103 * killed to prevent needlessly killing additional tasks.
1104 */
ffbdccf5 1105 rcu_read_lock();
2314b42d
JW
1106 task_memcg = mem_cgroup_from_task(task);
1107 css_get(&task_memcg->css);
ffbdccf5 1108 rcu_read_unlock();
de077d22 1109 }
2314b42d
JW
1110 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1111 css_put(&task_memcg->css);
4c4a2214
DR
1112 return ret;
1113}
1114
19942822 1115/**
9d11ea9f 1116 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1117 * @memcg: the memory cgroup
19942822 1118 *
9d11ea9f 1119 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1120 * pages.
19942822 1121 */
c0ff4b85 1122static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1123{
3e32cb2e
JW
1124 unsigned long margin = 0;
1125 unsigned long count;
1126 unsigned long limit;
9d11ea9f 1127
3e32cb2e 1128 count = page_counter_read(&memcg->memory);
4db0c3c2 1129 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1130 if (count < limit)
1131 margin = limit - count;
1132
7941d214 1133 if (do_memsw_account()) {
3e32cb2e 1134 count = page_counter_read(&memcg->memsw);
4db0c3c2 1135 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1136 if (count <= limit)
1137 margin = min(margin, limit - count);
1138 }
1139
1140 return margin;
19942822
JW
1141}
1142
32047e2a 1143/*
bdcbb659 1144 * A routine for checking "mem" is under move_account() or not.
32047e2a 1145 *
bdcbb659
QH
1146 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1147 * moving cgroups. This is for waiting at high-memory pressure
1148 * caused by "move".
32047e2a 1149 */
c0ff4b85 1150static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1151{
2bd9bb20
KH
1152 struct mem_cgroup *from;
1153 struct mem_cgroup *to;
4b534334 1154 bool ret = false;
2bd9bb20
KH
1155 /*
1156 * Unlike task_move routines, we access mc.to, mc.from not under
1157 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1158 */
1159 spin_lock(&mc.lock);
1160 from = mc.from;
1161 to = mc.to;
1162 if (!from)
1163 goto unlock;
3e92041d 1164
2314b42d
JW
1165 ret = mem_cgroup_is_descendant(from, memcg) ||
1166 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1167unlock:
1168 spin_unlock(&mc.lock);
4b534334
KH
1169 return ret;
1170}
1171
c0ff4b85 1172static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1173{
1174 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1175 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1176 DEFINE_WAIT(wait);
1177 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1178 /* moving charge context might have finished. */
1179 if (mc.moving_task)
1180 schedule();
1181 finish_wait(&mc.waitq, &wait);
1182 return true;
1183 }
1184 }
1185 return false;
1186}
1187
58cf188e 1188#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1189/**
58cf188e 1190 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1191 * @memcg: The memory cgroup that went over limit
1192 * @p: Task that is going to be killed
1193 *
1194 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1195 * enabled
1196 */
1197void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1198{
e61734c5 1199 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1200 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1201 struct mem_cgroup *iter;
1202 unsigned int i;
e222432b 1203
08088cb9 1204 mutex_lock(&oom_info_lock);
e222432b
BS
1205 rcu_read_lock();
1206
2415b9f5
BV
1207 if (p) {
1208 pr_info("Task in ");
1209 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1210 pr_cont(" killed as a result of limit of ");
1211 } else {
1212 pr_info("Memory limit reached of cgroup ");
1213 }
1214
e61734c5 1215 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1216 pr_cont("\n");
e222432b 1217
e222432b
BS
1218 rcu_read_unlock();
1219
3e32cb2e
JW
1220 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1221 K((u64)page_counter_read(&memcg->memory)),
1222 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1223 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1224 K((u64)page_counter_read(&memcg->memsw)),
1225 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1226 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1227 K((u64)page_counter_read(&memcg->kmem)),
1228 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1229
1230 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1231 pr_info("Memory cgroup stats for ");
1232 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1233 pr_cont(":");
1234
1235 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 1236 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
58cf188e 1237 continue;
484ebb3b 1238 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1239 K(mem_cgroup_read_stat(iter, i)));
1240 }
1241
1242 for (i = 0; i < NR_LRU_LISTS; i++)
1243 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1244 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1245
1246 pr_cont("\n");
1247 }
08088cb9 1248 mutex_unlock(&oom_info_lock);
e222432b
BS
1249}
1250
81d39c20
KH
1251/*
1252 * This function returns the number of memcg under hierarchy tree. Returns
1253 * 1(self count) if no children.
1254 */
c0ff4b85 1255static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1256{
1257 int num = 0;
7d74b06f
KH
1258 struct mem_cgroup *iter;
1259
c0ff4b85 1260 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1261 num++;
81d39c20
KH
1262 return num;
1263}
1264
a63d83f4
DR
1265/*
1266 * Return the memory (and swap, if configured) limit for a memcg.
1267 */
3e32cb2e 1268static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1269{
3e32cb2e 1270 unsigned long limit;
f3e8eb70 1271
3e32cb2e 1272 limit = memcg->memory.limit;
9a5a8f19 1273 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1274 unsigned long memsw_limit;
9a5a8f19 1275
3e32cb2e
JW
1276 memsw_limit = memcg->memsw.limit;
1277 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1278 }
9a5a8f19 1279 return limit;
a63d83f4
DR
1280}
1281
19965460
DR
1282static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1283 int order)
9cbb78bb 1284{
6e0fc46d
DR
1285 struct oom_control oc = {
1286 .zonelist = NULL,
1287 .nodemask = NULL,
1288 .gfp_mask = gfp_mask,
1289 .order = order,
6e0fc46d 1290 };
9cbb78bb
DR
1291 struct mem_cgroup *iter;
1292 unsigned long chosen_points = 0;
1293 unsigned long totalpages;
1294 unsigned int points = 0;
1295 struct task_struct *chosen = NULL;
1296
dc56401f
JW
1297 mutex_lock(&oom_lock);
1298
876aafbf 1299 /*
465adcf1
DR
1300 * If current has a pending SIGKILL or is exiting, then automatically
1301 * select it. The goal is to allow it to allocate so that it may
1302 * quickly exit and free its memory.
876aafbf 1303 */
d003f371 1304 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1305 mark_oom_victim(current);
dc56401f 1306 goto unlock;
876aafbf
DR
1307 }
1308
6e0fc46d 1309 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1310 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1311 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1312 struct css_task_iter it;
9cbb78bb
DR
1313 struct task_struct *task;
1314
72ec7029
TH
1315 css_task_iter_start(&iter->css, &it);
1316 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1317 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1318 case OOM_SCAN_SELECT:
1319 if (chosen)
1320 put_task_struct(chosen);
1321 chosen = task;
1322 chosen_points = ULONG_MAX;
1323 get_task_struct(chosen);
1324 /* fall through */
1325 case OOM_SCAN_CONTINUE:
1326 continue;
1327 case OOM_SCAN_ABORT:
72ec7029 1328 css_task_iter_end(&it);
9cbb78bb
DR
1329 mem_cgroup_iter_break(memcg, iter);
1330 if (chosen)
1331 put_task_struct(chosen);
dc56401f 1332 goto unlock;
9cbb78bb
DR
1333 case OOM_SCAN_OK:
1334 break;
1335 };
1336 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1337 if (!points || points < chosen_points)
1338 continue;
1339 /* Prefer thread group leaders for display purposes */
1340 if (points == chosen_points &&
1341 thread_group_leader(chosen))
1342 continue;
1343
1344 if (chosen)
1345 put_task_struct(chosen);
1346 chosen = task;
1347 chosen_points = points;
1348 get_task_struct(chosen);
9cbb78bb 1349 }
72ec7029 1350 css_task_iter_end(&it);
9cbb78bb
DR
1351 }
1352
dc56401f
JW
1353 if (chosen) {
1354 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1355 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1356 "Memory cgroup out of memory");
dc56401f
JW
1357 }
1358unlock:
1359 mutex_unlock(&oom_lock);
9cbb78bb
DR
1360}
1361
ae6e71d3
MC
1362#if MAX_NUMNODES > 1
1363
4d0c066d
KH
1364/**
1365 * test_mem_cgroup_node_reclaimable
dad7557e 1366 * @memcg: the target memcg
4d0c066d
KH
1367 * @nid: the node ID to be checked.
1368 * @noswap : specify true here if the user wants flle only information.
1369 *
1370 * This function returns whether the specified memcg contains any
1371 * reclaimable pages on a node. Returns true if there are any reclaimable
1372 * pages in the node.
1373 */
c0ff4b85 1374static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1375 int nid, bool noswap)
1376{
c0ff4b85 1377 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1378 return true;
1379 if (noswap || !total_swap_pages)
1380 return false;
c0ff4b85 1381 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1382 return true;
1383 return false;
1384
1385}
889976db
YH
1386
1387/*
1388 * Always updating the nodemask is not very good - even if we have an empty
1389 * list or the wrong list here, we can start from some node and traverse all
1390 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1391 *
1392 */
c0ff4b85 1393static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1394{
1395 int nid;
453a9bf3
KH
1396 /*
1397 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1398 * pagein/pageout changes since the last update.
1399 */
c0ff4b85 1400 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1401 return;
c0ff4b85 1402 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1403 return;
1404
889976db 1405 /* make a nodemask where this memcg uses memory from */
31aaea4a 1406 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1407
31aaea4a 1408 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1409
c0ff4b85
R
1410 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1411 node_clear(nid, memcg->scan_nodes);
889976db 1412 }
453a9bf3 1413
c0ff4b85
R
1414 atomic_set(&memcg->numainfo_events, 0);
1415 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1416}
1417
1418/*
1419 * Selecting a node where we start reclaim from. Because what we need is just
1420 * reducing usage counter, start from anywhere is O,K. Considering
1421 * memory reclaim from current node, there are pros. and cons.
1422 *
1423 * Freeing memory from current node means freeing memory from a node which
1424 * we'll use or we've used. So, it may make LRU bad. And if several threads
1425 * hit limits, it will see a contention on a node. But freeing from remote
1426 * node means more costs for memory reclaim because of memory latency.
1427 *
1428 * Now, we use round-robin. Better algorithm is welcomed.
1429 */
c0ff4b85 1430int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1431{
1432 int node;
1433
c0ff4b85
R
1434 mem_cgroup_may_update_nodemask(memcg);
1435 node = memcg->last_scanned_node;
889976db 1436
c0ff4b85 1437 node = next_node(node, memcg->scan_nodes);
889976db 1438 if (node == MAX_NUMNODES)
c0ff4b85 1439 node = first_node(memcg->scan_nodes);
889976db
YH
1440 /*
1441 * We call this when we hit limit, not when pages are added to LRU.
1442 * No LRU may hold pages because all pages are UNEVICTABLE or
1443 * memcg is too small and all pages are not on LRU. In that case,
1444 * we use curret node.
1445 */
1446 if (unlikely(node == MAX_NUMNODES))
1447 node = numa_node_id();
1448
c0ff4b85 1449 memcg->last_scanned_node = node;
889976db
YH
1450 return node;
1451}
889976db 1452#else
c0ff4b85 1453int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1454{
1455 return 0;
1456}
1457#endif
1458
0608f43d
AM
1459static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1460 struct zone *zone,
1461 gfp_t gfp_mask,
1462 unsigned long *total_scanned)
1463{
1464 struct mem_cgroup *victim = NULL;
1465 int total = 0;
1466 int loop = 0;
1467 unsigned long excess;
1468 unsigned long nr_scanned;
1469 struct mem_cgroup_reclaim_cookie reclaim = {
1470 .zone = zone,
1471 .priority = 0,
1472 };
1473
3e32cb2e 1474 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1475
1476 while (1) {
1477 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1478 if (!victim) {
1479 loop++;
1480 if (loop >= 2) {
1481 /*
1482 * If we have not been able to reclaim
1483 * anything, it might because there are
1484 * no reclaimable pages under this hierarchy
1485 */
1486 if (!total)
1487 break;
1488 /*
1489 * We want to do more targeted reclaim.
1490 * excess >> 2 is not to excessive so as to
1491 * reclaim too much, nor too less that we keep
1492 * coming back to reclaim from this cgroup
1493 */
1494 if (total >= (excess >> 2) ||
1495 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1496 break;
1497 }
1498 continue;
1499 }
0608f43d
AM
1500 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1501 zone, &nr_scanned);
1502 *total_scanned += nr_scanned;
3e32cb2e 1503 if (!soft_limit_excess(root_memcg))
0608f43d 1504 break;
6d61ef40 1505 }
0608f43d
AM
1506 mem_cgroup_iter_break(root_memcg, victim);
1507 return total;
6d61ef40
BS
1508}
1509
0056f4e6
JW
1510#ifdef CONFIG_LOCKDEP
1511static struct lockdep_map memcg_oom_lock_dep_map = {
1512 .name = "memcg_oom_lock",
1513};
1514#endif
1515
fb2a6fc5
JW
1516static DEFINE_SPINLOCK(memcg_oom_lock);
1517
867578cb
KH
1518/*
1519 * Check OOM-Killer is already running under our hierarchy.
1520 * If someone is running, return false.
1521 */
fb2a6fc5 1522static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1523{
79dfdacc 1524 struct mem_cgroup *iter, *failed = NULL;
a636b327 1525
fb2a6fc5
JW
1526 spin_lock(&memcg_oom_lock);
1527
9f3a0d09 1528 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1529 if (iter->oom_lock) {
79dfdacc
MH
1530 /*
1531 * this subtree of our hierarchy is already locked
1532 * so we cannot give a lock.
1533 */
79dfdacc 1534 failed = iter;
9f3a0d09
JW
1535 mem_cgroup_iter_break(memcg, iter);
1536 break;
23751be0
JW
1537 } else
1538 iter->oom_lock = true;
7d74b06f 1539 }
867578cb 1540
fb2a6fc5
JW
1541 if (failed) {
1542 /*
1543 * OK, we failed to lock the whole subtree so we have
1544 * to clean up what we set up to the failing subtree
1545 */
1546 for_each_mem_cgroup_tree(iter, memcg) {
1547 if (iter == failed) {
1548 mem_cgroup_iter_break(memcg, iter);
1549 break;
1550 }
1551 iter->oom_lock = false;
79dfdacc 1552 }
0056f4e6
JW
1553 } else
1554 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1555
1556 spin_unlock(&memcg_oom_lock);
1557
1558 return !failed;
a636b327 1559}
0b7f569e 1560
fb2a6fc5 1561static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1562{
7d74b06f
KH
1563 struct mem_cgroup *iter;
1564
fb2a6fc5 1565 spin_lock(&memcg_oom_lock);
0056f4e6 1566 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1567 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1568 iter->oom_lock = false;
fb2a6fc5 1569 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1570}
1571
c0ff4b85 1572static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1573{
1574 struct mem_cgroup *iter;
1575
c2b42d3c 1576 spin_lock(&memcg_oom_lock);
c0ff4b85 1577 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1578 iter->under_oom++;
1579 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1580}
1581
c0ff4b85 1582static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1583{
1584 struct mem_cgroup *iter;
1585
867578cb
KH
1586 /*
1587 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1588 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1589 */
c2b42d3c 1590 spin_lock(&memcg_oom_lock);
c0ff4b85 1591 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1592 if (iter->under_oom > 0)
1593 iter->under_oom--;
1594 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1595}
1596
867578cb
KH
1597static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1598
dc98df5a 1599struct oom_wait_info {
d79154bb 1600 struct mem_cgroup *memcg;
dc98df5a
KH
1601 wait_queue_t wait;
1602};
1603
1604static int memcg_oom_wake_function(wait_queue_t *wait,
1605 unsigned mode, int sync, void *arg)
1606{
d79154bb
HD
1607 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1608 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1609 struct oom_wait_info *oom_wait_info;
1610
1611 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1612 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1613
2314b42d
JW
1614 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1615 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1616 return 0;
dc98df5a
KH
1617 return autoremove_wake_function(wait, mode, sync, arg);
1618}
1619
c0ff4b85 1620static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1621{
c2b42d3c
TH
1622 /*
1623 * For the following lockless ->under_oom test, the only required
1624 * guarantee is that it must see the state asserted by an OOM when
1625 * this function is called as a result of userland actions
1626 * triggered by the notification of the OOM. This is trivially
1627 * achieved by invoking mem_cgroup_mark_under_oom() before
1628 * triggering notification.
1629 */
1630 if (memcg && memcg->under_oom)
f4b90b70 1631 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1632}
1633
3812c8c8 1634static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1635{
626ebc41 1636 if (!current->memcg_may_oom)
3812c8c8 1637 return;
867578cb 1638 /*
49426420
JW
1639 * We are in the middle of the charge context here, so we
1640 * don't want to block when potentially sitting on a callstack
1641 * that holds all kinds of filesystem and mm locks.
1642 *
1643 * Also, the caller may handle a failed allocation gracefully
1644 * (like optional page cache readahead) and so an OOM killer
1645 * invocation might not even be necessary.
1646 *
1647 * That's why we don't do anything here except remember the
1648 * OOM context and then deal with it at the end of the page
1649 * fault when the stack is unwound, the locks are released,
1650 * and when we know whether the fault was overall successful.
867578cb 1651 */
49426420 1652 css_get(&memcg->css);
626ebc41
TH
1653 current->memcg_in_oom = memcg;
1654 current->memcg_oom_gfp_mask = mask;
1655 current->memcg_oom_order = order;
3812c8c8
JW
1656}
1657
1658/**
1659 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1660 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1661 *
49426420
JW
1662 * This has to be called at the end of a page fault if the memcg OOM
1663 * handler was enabled.
3812c8c8 1664 *
49426420 1665 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1666 * sleep on a waitqueue until the userspace task resolves the
1667 * situation. Sleeping directly in the charge context with all kinds
1668 * of locks held is not a good idea, instead we remember an OOM state
1669 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1670 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1671 *
1672 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1673 * completed, %false otherwise.
3812c8c8 1674 */
49426420 1675bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1676{
626ebc41 1677 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1678 struct oom_wait_info owait;
49426420 1679 bool locked;
3812c8c8
JW
1680
1681 /* OOM is global, do not handle */
3812c8c8 1682 if (!memcg)
49426420 1683 return false;
3812c8c8 1684
c32b3cbe 1685 if (!handle || oom_killer_disabled)
49426420 1686 goto cleanup;
3812c8c8
JW
1687
1688 owait.memcg = memcg;
1689 owait.wait.flags = 0;
1690 owait.wait.func = memcg_oom_wake_function;
1691 owait.wait.private = current;
1692 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1693
3812c8c8 1694 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1695 mem_cgroup_mark_under_oom(memcg);
1696
1697 locked = mem_cgroup_oom_trylock(memcg);
1698
1699 if (locked)
1700 mem_cgroup_oom_notify(memcg);
1701
1702 if (locked && !memcg->oom_kill_disable) {
1703 mem_cgroup_unmark_under_oom(memcg);
1704 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1705 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1706 current->memcg_oom_order);
49426420 1707 } else {
3812c8c8 1708 schedule();
49426420
JW
1709 mem_cgroup_unmark_under_oom(memcg);
1710 finish_wait(&memcg_oom_waitq, &owait.wait);
1711 }
1712
1713 if (locked) {
fb2a6fc5
JW
1714 mem_cgroup_oom_unlock(memcg);
1715 /*
1716 * There is no guarantee that an OOM-lock contender
1717 * sees the wakeups triggered by the OOM kill
1718 * uncharges. Wake any sleepers explicitely.
1719 */
1720 memcg_oom_recover(memcg);
1721 }
49426420 1722cleanup:
626ebc41 1723 current->memcg_in_oom = NULL;
3812c8c8 1724 css_put(&memcg->css);
867578cb 1725 return true;
0b7f569e
KH
1726}
1727
d7365e78
JW
1728/**
1729 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1730 * @page: page that is going to change accounted state
32047e2a 1731 *
d7365e78
JW
1732 * This function must mark the beginning of an accounted page state
1733 * change to prevent double accounting when the page is concurrently
1734 * being moved to another memcg:
32047e2a 1735 *
6de22619 1736 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1737 * if (TestClearPageState(page))
1738 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1739 * mem_cgroup_end_page_stat(memcg);
d69b042f 1740 */
6de22619 1741struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1742{
1743 struct mem_cgroup *memcg;
6de22619 1744 unsigned long flags;
89c06bd5 1745
6de22619
JW
1746 /*
1747 * The RCU lock is held throughout the transaction. The fast
1748 * path can get away without acquiring the memcg->move_lock
1749 * because page moving starts with an RCU grace period.
1750 *
1751 * The RCU lock also protects the memcg from being freed when
1752 * the page state that is going to change is the only thing
1753 * preventing the page from being uncharged.
1754 * E.g. end-writeback clearing PageWriteback(), which allows
1755 * migration to go ahead and uncharge the page before the
1756 * account transaction might be complete.
1757 */
d7365e78
JW
1758 rcu_read_lock();
1759
1760 if (mem_cgroup_disabled())
1761 return NULL;
89c06bd5 1762again:
1306a85a 1763 memcg = page->mem_cgroup;
29833315 1764 if (unlikely(!memcg))
d7365e78
JW
1765 return NULL;
1766
bdcbb659 1767 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1768 return memcg;
89c06bd5 1769
6de22619 1770 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1771 if (memcg != page->mem_cgroup) {
6de22619 1772 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1773 goto again;
1774 }
6de22619
JW
1775
1776 /*
1777 * When charge migration first begins, we can have locked and
1778 * unlocked page stat updates happening concurrently. Track
1779 * the task who has the lock for mem_cgroup_end_page_stat().
1780 */
1781 memcg->move_lock_task = current;
1782 memcg->move_lock_flags = flags;
d7365e78
JW
1783
1784 return memcg;
89c06bd5 1785}
c4843a75 1786EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1787
d7365e78
JW
1788/**
1789 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1790 * @memcg: the memcg that was accounted against
d7365e78 1791 */
6de22619 1792void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1793{
6de22619
JW
1794 if (memcg && memcg->move_lock_task == current) {
1795 unsigned long flags = memcg->move_lock_flags;
1796
1797 memcg->move_lock_task = NULL;
1798 memcg->move_lock_flags = 0;
1799
1800 spin_unlock_irqrestore(&memcg->move_lock, flags);
1801 }
89c06bd5 1802
d7365e78 1803 rcu_read_unlock();
89c06bd5 1804}
c4843a75 1805EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1806
cdec2e42
KH
1807/*
1808 * size of first charge trial. "32" comes from vmscan.c's magic value.
1809 * TODO: maybe necessary to use big numbers in big irons.
1810 */
7ec99d62 1811#define CHARGE_BATCH 32U
cdec2e42
KH
1812struct memcg_stock_pcp {
1813 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1814 unsigned int nr_pages;
cdec2e42 1815 struct work_struct work;
26fe6168 1816 unsigned long flags;
a0db00fc 1817#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1818};
1819static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1820static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1821
a0956d54
SS
1822/**
1823 * consume_stock: Try to consume stocked charge on this cpu.
1824 * @memcg: memcg to consume from.
1825 * @nr_pages: how many pages to charge.
1826 *
1827 * The charges will only happen if @memcg matches the current cpu's memcg
1828 * stock, and at least @nr_pages are available in that stock. Failure to
1829 * service an allocation will refill the stock.
1830 *
1831 * returns true if successful, false otherwise.
cdec2e42 1832 */
a0956d54 1833static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1834{
1835 struct memcg_stock_pcp *stock;
3e32cb2e 1836 bool ret = false;
cdec2e42 1837
a0956d54 1838 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1839 return ret;
a0956d54 1840
cdec2e42 1841 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1842 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1843 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1844 ret = true;
1845 }
cdec2e42
KH
1846 put_cpu_var(memcg_stock);
1847 return ret;
1848}
1849
1850/*
3e32cb2e 1851 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1852 */
1853static void drain_stock(struct memcg_stock_pcp *stock)
1854{
1855 struct mem_cgroup *old = stock->cached;
1856
11c9ea4e 1857 if (stock->nr_pages) {
3e32cb2e 1858 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1859 if (do_memsw_account())
3e32cb2e 1860 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1861 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1862 stock->nr_pages = 0;
cdec2e42
KH
1863 }
1864 stock->cached = NULL;
cdec2e42
KH
1865}
1866
1867/*
1868 * This must be called under preempt disabled or must be called by
1869 * a thread which is pinned to local cpu.
1870 */
1871static void drain_local_stock(struct work_struct *dummy)
1872{
7c8e0181 1873 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1874 drain_stock(stock);
26fe6168 1875 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1876}
1877
1878/*
3e32cb2e 1879 * Cache charges(val) to local per_cpu area.
320cc51d 1880 * This will be consumed by consume_stock() function, later.
cdec2e42 1881 */
c0ff4b85 1882static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1883{
1884 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1885
c0ff4b85 1886 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1887 drain_stock(stock);
c0ff4b85 1888 stock->cached = memcg;
cdec2e42 1889 }
11c9ea4e 1890 stock->nr_pages += nr_pages;
cdec2e42
KH
1891 put_cpu_var(memcg_stock);
1892}
1893
1894/*
c0ff4b85 1895 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1896 * of the hierarchy under it.
cdec2e42 1897 */
6d3d6aa2 1898static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1899{
26fe6168 1900 int cpu, curcpu;
d38144b7 1901
6d3d6aa2
JW
1902 /* If someone's already draining, avoid adding running more workers. */
1903 if (!mutex_trylock(&percpu_charge_mutex))
1904 return;
cdec2e42 1905 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1906 get_online_cpus();
5af12d0e 1907 curcpu = get_cpu();
cdec2e42
KH
1908 for_each_online_cpu(cpu) {
1909 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1910 struct mem_cgroup *memcg;
26fe6168 1911
c0ff4b85
R
1912 memcg = stock->cached;
1913 if (!memcg || !stock->nr_pages)
26fe6168 1914 continue;
2314b42d 1915 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1916 continue;
d1a05b69
MH
1917 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1918 if (cpu == curcpu)
1919 drain_local_stock(&stock->work);
1920 else
1921 schedule_work_on(cpu, &stock->work);
1922 }
cdec2e42 1923 }
5af12d0e 1924 put_cpu();
f894ffa8 1925 put_online_cpus();
9f50fad6 1926 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1927}
1928
0db0628d 1929static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1930 unsigned long action,
1931 void *hcpu)
1932{
1933 int cpu = (unsigned long)hcpu;
1934 struct memcg_stock_pcp *stock;
1935
619d094b 1936 if (action == CPU_ONLINE)
1489ebad 1937 return NOTIFY_OK;
1489ebad 1938
d833049b 1939 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1940 return NOTIFY_OK;
711d3d2c 1941
cdec2e42
KH
1942 stock = &per_cpu(memcg_stock, cpu);
1943 drain_stock(stock);
1944 return NOTIFY_OK;
1945}
1946
f7e1cb6e
JW
1947static void reclaim_high(struct mem_cgroup *memcg,
1948 unsigned int nr_pages,
1949 gfp_t gfp_mask)
1950{
1951 do {
1952 if (page_counter_read(&memcg->memory) <= memcg->high)
1953 continue;
1954 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1955 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1956 } while ((memcg = parent_mem_cgroup(memcg)));
1957}
1958
1959static void high_work_func(struct work_struct *work)
1960{
1961 struct mem_cgroup *memcg;
1962
1963 memcg = container_of(work, struct mem_cgroup, high_work);
1964 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1965}
1966
b23afb93
TH
1967/*
1968 * Scheduled by try_charge() to be executed from the userland return path
1969 * and reclaims memory over the high limit.
1970 */
1971void mem_cgroup_handle_over_high(void)
1972{
1973 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1974 struct mem_cgroup *memcg;
b23afb93
TH
1975
1976 if (likely(!nr_pages))
1977 return;
1978
f7e1cb6e
JW
1979 memcg = get_mem_cgroup_from_mm(current->mm);
1980 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1981 css_put(&memcg->css);
1982 current->memcg_nr_pages_over_high = 0;
1983}
1984
00501b53
JW
1985static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1986 unsigned int nr_pages)
8a9f3ccd 1987{
7ec99d62 1988 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1989 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1990 struct mem_cgroup *mem_over_limit;
3e32cb2e 1991 struct page_counter *counter;
6539cc05 1992 unsigned long nr_reclaimed;
b70a2a21
JW
1993 bool may_swap = true;
1994 bool drained = false;
a636b327 1995
ce00a967 1996 if (mem_cgroup_is_root(memcg))
10d53c74 1997 return 0;
6539cc05 1998retry:
b6b6cc72 1999 if (consume_stock(memcg, nr_pages))
10d53c74 2000 return 0;
8a9f3ccd 2001
7941d214 2002 if (!do_memsw_account() ||
6071ca52
JW
2003 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2004 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2005 goto done_restock;
7941d214 2006 if (do_memsw_account())
3e32cb2e
JW
2007 page_counter_uncharge(&memcg->memsw, batch);
2008 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2009 } else {
3e32cb2e 2010 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2011 may_swap = false;
3fbe7244 2012 }
7a81b88c 2013
6539cc05
JW
2014 if (batch > nr_pages) {
2015 batch = nr_pages;
2016 goto retry;
2017 }
6d61ef40 2018
06b078fc
JW
2019 /*
2020 * Unlike in global OOM situations, memcg is not in a physical
2021 * memory shortage. Allow dying and OOM-killed tasks to
2022 * bypass the last charges so that they can exit quickly and
2023 * free their memory.
2024 */
2025 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2026 fatal_signal_pending(current) ||
2027 current->flags & PF_EXITING))
10d53c74 2028 goto force;
06b078fc
JW
2029
2030 if (unlikely(task_in_memcg_oom(current)))
2031 goto nomem;
2032
d0164adc 2033 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2034 goto nomem;
4b534334 2035
241994ed
JW
2036 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2037
b70a2a21
JW
2038 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2039 gfp_mask, may_swap);
6539cc05 2040
61e02c74 2041 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2042 goto retry;
28c34c29 2043
b70a2a21 2044 if (!drained) {
6d3d6aa2 2045 drain_all_stock(mem_over_limit);
b70a2a21
JW
2046 drained = true;
2047 goto retry;
2048 }
2049
28c34c29
JW
2050 if (gfp_mask & __GFP_NORETRY)
2051 goto nomem;
6539cc05
JW
2052 /*
2053 * Even though the limit is exceeded at this point, reclaim
2054 * may have been able to free some pages. Retry the charge
2055 * before killing the task.
2056 *
2057 * Only for regular pages, though: huge pages are rather
2058 * unlikely to succeed so close to the limit, and we fall back
2059 * to regular pages anyway in case of failure.
2060 */
61e02c74 2061 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2062 goto retry;
2063 /*
2064 * At task move, charge accounts can be doubly counted. So, it's
2065 * better to wait until the end of task_move if something is going on.
2066 */
2067 if (mem_cgroup_wait_acct_move(mem_over_limit))
2068 goto retry;
2069
9b130619
JW
2070 if (nr_retries--)
2071 goto retry;
2072
06b078fc 2073 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2074 goto force;
06b078fc 2075
6539cc05 2076 if (fatal_signal_pending(current))
10d53c74 2077 goto force;
6539cc05 2078
241994ed
JW
2079 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2080
3608de07
JM
2081 mem_cgroup_oom(mem_over_limit, gfp_mask,
2082 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2083nomem:
6d1fdc48 2084 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2085 return -ENOMEM;
10d53c74
TH
2086force:
2087 /*
2088 * The allocation either can't fail or will lead to more memory
2089 * being freed very soon. Allow memory usage go over the limit
2090 * temporarily by force charging it.
2091 */
2092 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2093 if (do_memsw_account())
10d53c74
TH
2094 page_counter_charge(&memcg->memsw, nr_pages);
2095 css_get_many(&memcg->css, nr_pages);
2096
2097 return 0;
6539cc05
JW
2098
2099done_restock:
e8ea14cc 2100 css_get_many(&memcg->css, batch);
6539cc05
JW
2101 if (batch > nr_pages)
2102 refill_stock(memcg, batch - nr_pages);
b23afb93 2103
241994ed 2104 /*
b23afb93
TH
2105 * If the hierarchy is above the normal consumption range, schedule
2106 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2107 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2108 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2109 * not recorded as it most likely matches current's and won't
2110 * change in the meantime. As high limit is checked again before
2111 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2112 */
2113 do {
b23afb93 2114 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2115 /* Don't bother a random interrupted task */
2116 if (in_interrupt()) {
2117 schedule_work(&memcg->high_work);
2118 break;
2119 }
9516a18a 2120 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2121 set_notify_resume(current);
2122 break;
2123 }
241994ed 2124 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2125
2126 return 0;
7a81b88c 2127}
8a9f3ccd 2128
00501b53 2129static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2130{
ce00a967
JW
2131 if (mem_cgroup_is_root(memcg))
2132 return;
2133
3e32cb2e 2134 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2135 if (do_memsw_account())
3e32cb2e 2136 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2137
e8ea14cc 2138 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2139}
2140
0a31bc97
JW
2141static void lock_page_lru(struct page *page, int *isolated)
2142{
2143 struct zone *zone = page_zone(page);
2144
2145 spin_lock_irq(&zone->lru_lock);
2146 if (PageLRU(page)) {
2147 struct lruvec *lruvec;
2148
2149 lruvec = mem_cgroup_page_lruvec(page, zone);
2150 ClearPageLRU(page);
2151 del_page_from_lru_list(page, lruvec, page_lru(page));
2152 *isolated = 1;
2153 } else
2154 *isolated = 0;
2155}
2156
2157static void unlock_page_lru(struct page *page, int isolated)
2158{
2159 struct zone *zone = page_zone(page);
2160
2161 if (isolated) {
2162 struct lruvec *lruvec;
2163
2164 lruvec = mem_cgroup_page_lruvec(page, zone);
2165 VM_BUG_ON_PAGE(PageLRU(page), page);
2166 SetPageLRU(page);
2167 add_page_to_lru_list(page, lruvec, page_lru(page));
2168 }
2169 spin_unlock_irq(&zone->lru_lock);
2170}
2171
00501b53 2172static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2173 bool lrucare)
7a81b88c 2174{
0a31bc97 2175 int isolated;
9ce70c02 2176
1306a85a 2177 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2178
2179 /*
2180 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2181 * may already be on some other mem_cgroup's LRU. Take care of it.
2182 */
0a31bc97
JW
2183 if (lrucare)
2184 lock_page_lru(page, &isolated);
9ce70c02 2185
0a31bc97
JW
2186 /*
2187 * Nobody should be changing or seriously looking at
1306a85a 2188 * page->mem_cgroup at this point:
0a31bc97
JW
2189 *
2190 * - the page is uncharged
2191 *
2192 * - the page is off-LRU
2193 *
2194 * - an anonymous fault has exclusive page access, except for
2195 * a locked page table
2196 *
2197 * - a page cache insertion, a swapin fault, or a migration
2198 * have the page locked
2199 */
1306a85a 2200 page->mem_cgroup = memcg;
9ce70c02 2201
0a31bc97
JW
2202 if (lrucare)
2203 unlock_page_lru(page, isolated);
7a81b88c 2204}
66e1707b 2205
7ae1e1d0 2206#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2207static int memcg_alloc_cache_id(void)
55007d84 2208{
f3bb3043
VD
2209 int id, size;
2210 int err;
2211
dbcf73e2 2212 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2213 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2214 if (id < 0)
2215 return id;
55007d84 2216
dbcf73e2 2217 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2218 return id;
2219
2220 /*
2221 * There's no space for the new id in memcg_caches arrays,
2222 * so we have to grow them.
2223 */
05257a1a 2224 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2225
2226 size = 2 * (id + 1);
55007d84
GC
2227 if (size < MEMCG_CACHES_MIN_SIZE)
2228 size = MEMCG_CACHES_MIN_SIZE;
2229 else if (size > MEMCG_CACHES_MAX_SIZE)
2230 size = MEMCG_CACHES_MAX_SIZE;
2231
f3bb3043 2232 err = memcg_update_all_caches(size);
60d3fd32
VD
2233 if (!err)
2234 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2235 if (!err)
2236 memcg_nr_cache_ids = size;
2237
2238 up_write(&memcg_cache_ids_sem);
2239
f3bb3043 2240 if (err) {
dbcf73e2 2241 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2242 return err;
2243 }
2244 return id;
2245}
2246
2247static void memcg_free_cache_id(int id)
2248{
dbcf73e2 2249 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2250}
2251
d5b3cf71 2252struct memcg_kmem_cache_create_work {
5722d094
VD
2253 struct mem_cgroup *memcg;
2254 struct kmem_cache *cachep;
2255 struct work_struct work;
2256};
2257
d5b3cf71 2258static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2259{
d5b3cf71
VD
2260 struct memcg_kmem_cache_create_work *cw =
2261 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2262 struct mem_cgroup *memcg = cw->memcg;
2263 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2264
d5b3cf71 2265 memcg_create_kmem_cache(memcg, cachep);
bd673145 2266
5722d094 2267 css_put(&memcg->css);
d7f25f8a
GC
2268 kfree(cw);
2269}
2270
2271/*
2272 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2273 */
d5b3cf71
VD
2274static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2275 struct kmem_cache *cachep)
d7f25f8a 2276{
d5b3cf71 2277 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2278
776ed0f0 2279 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2280 if (!cw)
d7f25f8a 2281 return;
8135be5a
VD
2282
2283 css_get(&memcg->css);
d7f25f8a
GC
2284
2285 cw->memcg = memcg;
2286 cw->cachep = cachep;
d5b3cf71 2287 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2288
d7f25f8a
GC
2289 schedule_work(&cw->work);
2290}
2291
d5b3cf71
VD
2292static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2293 struct kmem_cache *cachep)
0e9d92f2
GC
2294{
2295 /*
2296 * We need to stop accounting when we kmalloc, because if the
2297 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2298 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2299 *
2300 * However, it is better to enclose the whole function. Depending on
2301 * the debugging options enabled, INIT_WORK(), for instance, can
2302 * trigger an allocation. This too, will make us recurse. Because at
2303 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2304 * the safest choice is to do it like this, wrapping the whole function.
2305 */
6f185c29 2306 current->memcg_kmem_skip_account = 1;
d5b3cf71 2307 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2308 current->memcg_kmem_skip_account = 0;
0e9d92f2 2309}
c67a8a68 2310
d7f25f8a
GC
2311/*
2312 * Return the kmem_cache we're supposed to use for a slab allocation.
2313 * We try to use the current memcg's version of the cache.
2314 *
2315 * If the cache does not exist yet, if we are the first user of it,
2316 * we either create it immediately, if possible, or create it asynchronously
2317 * in a workqueue.
2318 * In the latter case, we will let the current allocation go through with
2319 * the original cache.
2320 *
2321 * Can't be called in interrupt context or from kernel threads.
2322 * This function needs to be called with rcu_read_lock() held.
2323 */
230e9fc2 2324struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2325{
2326 struct mem_cgroup *memcg;
959c8963 2327 struct kmem_cache *memcg_cachep;
2a4db7eb 2328 int kmemcg_id;
d7f25f8a 2329
f7ce3190 2330 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2331
230e9fc2
VD
2332 if (cachep->flags & SLAB_ACCOUNT)
2333 gfp |= __GFP_ACCOUNT;
2334
2335 if (!(gfp & __GFP_ACCOUNT))
2336 return cachep;
2337
9d100c5e 2338 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2339 return cachep;
2340
8135be5a 2341 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2342 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2343 if (kmemcg_id < 0)
ca0dde97 2344 goto out;
d7f25f8a 2345
2a4db7eb 2346 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2347 if (likely(memcg_cachep))
2348 return memcg_cachep;
ca0dde97
LZ
2349
2350 /*
2351 * If we are in a safe context (can wait, and not in interrupt
2352 * context), we could be be predictable and return right away.
2353 * This would guarantee that the allocation being performed
2354 * already belongs in the new cache.
2355 *
2356 * However, there are some clashes that can arrive from locking.
2357 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2358 * memcg_create_kmem_cache, this means no further allocation
2359 * could happen with the slab_mutex held. So it's better to
2360 * defer everything.
ca0dde97 2361 */
d5b3cf71 2362 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2363out:
8135be5a 2364 css_put(&memcg->css);
ca0dde97 2365 return cachep;
d7f25f8a 2366}
d7f25f8a 2367
8135be5a
VD
2368void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2369{
2370 if (!is_root_cache(cachep))
f7ce3190 2371 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2372}
2373
f3ccb2c4
VD
2374int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2375 struct mem_cgroup *memcg)
7ae1e1d0 2376{
f3ccb2c4
VD
2377 unsigned int nr_pages = 1 << order;
2378 struct page_counter *counter;
7ae1e1d0
GC
2379 int ret;
2380
567e9ab2 2381 if (!memcg_kmem_online(memcg))
d05e83a6 2382 return 0;
6d42c232 2383
6071ca52
JW
2384 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2385 return -ENOMEM;
7ae1e1d0 2386
f3ccb2c4
VD
2387 ret = try_charge(memcg, gfp, nr_pages);
2388 if (ret) {
2389 page_counter_uncharge(&memcg->kmem, nr_pages);
2390 return ret;
7ae1e1d0
GC
2391 }
2392
f3ccb2c4 2393 page->mem_cgroup = memcg;
7ae1e1d0 2394
f3ccb2c4 2395 return 0;
7ae1e1d0
GC
2396}
2397
f3ccb2c4 2398int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2399{
f3ccb2c4
VD
2400 struct mem_cgroup *memcg;
2401 int ret;
7ae1e1d0 2402
f3ccb2c4
VD
2403 memcg = get_mem_cgroup_from_mm(current->mm);
2404 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2405 css_put(&memcg->css);
d05e83a6 2406 return ret;
7ae1e1d0
GC
2407}
2408
d05e83a6 2409void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2410{
1306a85a 2411 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2412 unsigned int nr_pages = 1 << order;
7ae1e1d0 2413
7ae1e1d0
GC
2414 if (!memcg)
2415 return;
2416
309381fe 2417 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2418
f3ccb2c4
VD
2419 page_counter_uncharge(&memcg->kmem, nr_pages);
2420 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2421 if (do_memsw_account())
f3ccb2c4 2422 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2423
1306a85a 2424 page->mem_cgroup = NULL;
f3ccb2c4 2425 css_put_many(&memcg->css, nr_pages);
60d3fd32 2426}
7ae1e1d0
GC
2427#endif /* CONFIG_MEMCG_KMEM */
2428
ca3e0214
KH
2429#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2430
ca3e0214
KH
2431/*
2432 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2433 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2434 */
e94c8a9c 2435void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2436{
e94c8a9c 2437 int i;
ca3e0214 2438
3d37c4a9
KH
2439 if (mem_cgroup_disabled())
2440 return;
b070e65c 2441
29833315 2442 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2443 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2444
1306a85a 2445 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2446 HPAGE_PMD_NR);
ca3e0214 2447}
12d27107 2448#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2449
c255a458 2450#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2451static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2452 bool charge)
d13d1443 2453{
0a31bc97
JW
2454 int val = (charge) ? 1 : -1;
2455 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2456}
02491447
DN
2457
2458/**
2459 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2460 * @entry: swap entry to be moved
2461 * @from: mem_cgroup which the entry is moved from
2462 * @to: mem_cgroup which the entry is moved to
2463 *
2464 * It succeeds only when the swap_cgroup's record for this entry is the same
2465 * as the mem_cgroup's id of @from.
2466 *
2467 * Returns 0 on success, -EINVAL on failure.
2468 *
3e32cb2e 2469 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2470 * both res and memsw, and called css_get().
2471 */
2472static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2473 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2474{
2475 unsigned short old_id, new_id;
2476
34c00c31
LZ
2477 old_id = mem_cgroup_id(from);
2478 new_id = mem_cgroup_id(to);
02491447
DN
2479
2480 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2481 mem_cgroup_swap_statistics(from, false);
483c30b5 2482 mem_cgroup_swap_statistics(to, true);
02491447
DN
2483 return 0;
2484 }
2485 return -EINVAL;
2486}
2487#else
2488static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2489 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2490{
2491 return -EINVAL;
2492}
8c7c6e34 2493#endif
d13d1443 2494
3e32cb2e 2495static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2496
d38d2a75 2497static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2498 unsigned long limit)
628f4235 2499{
3e32cb2e
JW
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
81d39c20 2503 int retry_count;
3e32cb2e 2504 int ret;
81d39c20
KH
2505
2506 /*
2507 * For keeping hierarchical_reclaim simple, how long we should retry
2508 * is depends on callers. We set our retry-count to be function
2509 * of # of children which we should visit in this loop.
2510 */
3e32cb2e
JW
2511 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2512 mem_cgroup_count_children(memcg);
81d39c20 2513
3e32cb2e 2514 oldusage = page_counter_read(&memcg->memory);
628f4235 2515
3e32cb2e 2516 do {
628f4235
KH
2517 if (signal_pending(current)) {
2518 ret = -EINTR;
2519 break;
2520 }
3e32cb2e
JW
2521
2522 mutex_lock(&memcg_limit_mutex);
2523 if (limit > memcg->memsw.limit) {
2524 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2525 ret = -EINVAL;
628f4235
KH
2526 break;
2527 }
3e32cb2e
JW
2528 if (limit > memcg->memory.limit)
2529 enlarge = true;
2530 ret = page_counter_limit(&memcg->memory, limit);
2531 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2532
2533 if (!ret)
2534 break;
2535
b70a2a21
JW
2536 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2537
3e32cb2e 2538 curusage = page_counter_read(&memcg->memory);
81d39c20 2539 /* Usage is reduced ? */
f894ffa8 2540 if (curusage >= oldusage)
81d39c20
KH
2541 retry_count--;
2542 else
2543 oldusage = curusage;
3e32cb2e
JW
2544 } while (retry_count);
2545
3c11ecf4
KH
2546 if (!ret && enlarge)
2547 memcg_oom_recover(memcg);
14797e23 2548
8c7c6e34
KH
2549 return ret;
2550}
2551
338c8431 2552static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2553 unsigned long limit)
8c7c6e34 2554{
3e32cb2e
JW
2555 unsigned long curusage;
2556 unsigned long oldusage;
2557 bool enlarge = false;
81d39c20 2558 int retry_count;
3e32cb2e 2559 int ret;
8c7c6e34 2560
81d39c20 2561 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2562 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2563 mem_cgroup_count_children(memcg);
2564
2565 oldusage = page_counter_read(&memcg->memsw);
2566
2567 do {
8c7c6e34
KH
2568 if (signal_pending(current)) {
2569 ret = -EINTR;
2570 break;
2571 }
3e32cb2e
JW
2572
2573 mutex_lock(&memcg_limit_mutex);
2574 if (limit < memcg->memory.limit) {
2575 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2576 ret = -EINVAL;
8c7c6e34
KH
2577 break;
2578 }
3e32cb2e
JW
2579 if (limit > memcg->memsw.limit)
2580 enlarge = true;
2581 ret = page_counter_limit(&memcg->memsw, limit);
2582 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2583
2584 if (!ret)
2585 break;
2586
b70a2a21
JW
2587 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2588
3e32cb2e 2589 curusage = page_counter_read(&memcg->memsw);
81d39c20 2590 /* Usage is reduced ? */
8c7c6e34 2591 if (curusage >= oldusage)
628f4235 2592 retry_count--;
81d39c20
KH
2593 else
2594 oldusage = curusage;
3e32cb2e
JW
2595 } while (retry_count);
2596
3c11ecf4
KH
2597 if (!ret && enlarge)
2598 memcg_oom_recover(memcg);
3e32cb2e 2599
628f4235
KH
2600 return ret;
2601}
2602
0608f43d
AM
2603unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2604 gfp_t gfp_mask,
2605 unsigned long *total_scanned)
2606{
2607 unsigned long nr_reclaimed = 0;
2608 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2609 unsigned long reclaimed;
2610 int loop = 0;
2611 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2612 unsigned long excess;
0608f43d
AM
2613 unsigned long nr_scanned;
2614
2615 if (order > 0)
2616 return 0;
2617
2618 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2619 /*
2620 * This loop can run a while, specially if mem_cgroup's continuously
2621 * keep exceeding their soft limit and putting the system under
2622 * pressure
2623 */
2624 do {
2625 if (next_mz)
2626 mz = next_mz;
2627 else
2628 mz = mem_cgroup_largest_soft_limit_node(mctz);
2629 if (!mz)
2630 break;
2631
2632 nr_scanned = 0;
2633 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2634 gfp_mask, &nr_scanned);
2635 nr_reclaimed += reclaimed;
2636 *total_scanned += nr_scanned;
0a31bc97 2637 spin_lock_irq(&mctz->lock);
bc2f2e7f 2638 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2639
2640 /*
2641 * If we failed to reclaim anything from this memory cgroup
2642 * it is time to move on to the next cgroup
2643 */
2644 next_mz = NULL;
bc2f2e7f
VD
2645 if (!reclaimed)
2646 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2647
3e32cb2e 2648 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2649 /*
2650 * One school of thought says that we should not add
2651 * back the node to the tree if reclaim returns 0.
2652 * But our reclaim could return 0, simply because due
2653 * to priority we are exposing a smaller subset of
2654 * memory to reclaim from. Consider this as a longer
2655 * term TODO.
2656 */
2657 /* If excess == 0, no tree ops */
cf2c8127 2658 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2659 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2660 css_put(&mz->memcg->css);
2661 loop++;
2662 /*
2663 * Could not reclaim anything and there are no more
2664 * mem cgroups to try or we seem to be looping without
2665 * reclaiming anything.
2666 */
2667 if (!nr_reclaimed &&
2668 (next_mz == NULL ||
2669 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2670 break;
2671 } while (!nr_reclaimed);
2672 if (next_mz)
2673 css_put(&next_mz->memcg->css);
2674 return nr_reclaimed;
2675}
2676
ea280e7b
TH
2677/*
2678 * Test whether @memcg has children, dead or alive. Note that this
2679 * function doesn't care whether @memcg has use_hierarchy enabled and
2680 * returns %true if there are child csses according to the cgroup
2681 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2682 */
b5f99b53
GC
2683static inline bool memcg_has_children(struct mem_cgroup *memcg)
2684{
ea280e7b
TH
2685 bool ret;
2686
696ac172 2687 /*
ea280e7b
TH
2688 * The lock does not prevent addition or deletion of children, but
2689 * it prevents a new child from being initialized based on this
2690 * parent in css_online(), so it's enough to decide whether
2691 * hierarchically inherited attributes can still be changed or not.
696ac172 2692 */
ea280e7b
TH
2693 lockdep_assert_held(&memcg_create_mutex);
2694
2695 rcu_read_lock();
2696 ret = css_next_child(NULL, &memcg->css);
2697 rcu_read_unlock();
2698 return ret;
b5f99b53
GC
2699}
2700
c26251f9
MH
2701/*
2702 * Reclaims as many pages from the given memcg as possible and moves
2703 * the rest to the parent.
2704 *
2705 * Caller is responsible for holding css reference for memcg.
2706 */
2707static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2708{
2709 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2710
c1e862c1
KH
2711 /* we call try-to-free pages for make this cgroup empty */
2712 lru_add_drain_all();
f817ed48 2713 /* try to free all pages in this cgroup */
3e32cb2e 2714 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2715 int progress;
c1e862c1 2716
c26251f9
MH
2717 if (signal_pending(current))
2718 return -EINTR;
2719
b70a2a21
JW
2720 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2721 GFP_KERNEL, true);
c1e862c1 2722 if (!progress) {
f817ed48 2723 nr_retries--;
c1e862c1 2724 /* maybe some writeback is necessary */
8aa7e847 2725 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2726 }
f817ed48
KH
2727
2728 }
ab5196c2
MH
2729
2730 return 0;
cc847582
KH
2731}
2732
6770c64e
TH
2733static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2734 char *buf, size_t nbytes,
2735 loff_t off)
c1e862c1 2736{
6770c64e 2737 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2738
d8423011
MH
2739 if (mem_cgroup_is_root(memcg))
2740 return -EINVAL;
6770c64e 2741 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2742}
2743
182446d0
TH
2744static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2745 struct cftype *cft)
18f59ea7 2746{
182446d0 2747 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2748}
2749
182446d0
TH
2750static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2751 struct cftype *cft, u64 val)
18f59ea7
BS
2752{
2753 int retval = 0;
182446d0 2754 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2755 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2756
0999821b 2757 mutex_lock(&memcg_create_mutex);
567fb435
GC
2758
2759 if (memcg->use_hierarchy == val)
2760 goto out;
2761
18f59ea7 2762 /*
af901ca1 2763 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2764 * in the child subtrees. If it is unset, then the change can
2765 * occur, provided the current cgroup has no children.
2766 *
2767 * For the root cgroup, parent_mem is NULL, we allow value to be
2768 * set if there are no children.
2769 */
c0ff4b85 2770 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2771 (val == 1 || val == 0)) {
ea280e7b 2772 if (!memcg_has_children(memcg))
c0ff4b85 2773 memcg->use_hierarchy = val;
18f59ea7
BS
2774 else
2775 retval = -EBUSY;
2776 } else
2777 retval = -EINVAL;
567fb435
GC
2778
2779out:
0999821b 2780 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2781
2782 return retval;
2783}
2784
3e32cb2e
JW
2785static unsigned long tree_stat(struct mem_cgroup *memcg,
2786 enum mem_cgroup_stat_index idx)
ce00a967
JW
2787{
2788 struct mem_cgroup *iter;
484ebb3b 2789 unsigned long val = 0;
ce00a967 2790
ce00a967
JW
2791 for_each_mem_cgroup_tree(iter, memcg)
2792 val += mem_cgroup_read_stat(iter, idx);
2793
ce00a967
JW
2794 return val;
2795}
2796
6f646156 2797static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2798{
c12176d3 2799 unsigned long val;
ce00a967 2800
3e32cb2e
JW
2801 if (mem_cgroup_is_root(memcg)) {
2802 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2803 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2804 if (swap)
2805 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2806 } else {
ce00a967 2807 if (!swap)
3e32cb2e 2808 val = page_counter_read(&memcg->memory);
ce00a967 2809 else
3e32cb2e 2810 val = page_counter_read(&memcg->memsw);
ce00a967 2811 }
c12176d3 2812 return val;
ce00a967
JW
2813}
2814
3e32cb2e
JW
2815enum {
2816 RES_USAGE,
2817 RES_LIMIT,
2818 RES_MAX_USAGE,
2819 RES_FAILCNT,
2820 RES_SOFT_LIMIT,
2821};
ce00a967 2822
791badbd 2823static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2824 struct cftype *cft)
8cdea7c0 2825{
182446d0 2826 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2827 struct page_counter *counter;
af36f906 2828
3e32cb2e 2829 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2830 case _MEM:
3e32cb2e
JW
2831 counter = &memcg->memory;
2832 break;
8c7c6e34 2833 case _MEMSWAP:
3e32cb2e
JW
2834 counter = &memcg->memsw;
2835 break;
510fc4e1 2836 case _KMEM:
3e32cb2e 2837 counter = &memcg->kmem;
510fc4e1 2838 break;
8c7c6e34
KH
2839 default:
2840 BUG();
8c7c6e34 2841 }
3e32cb2e
JW
2842
2843 switch (MEMFILE_ATTR(cft->private)) {
2844 case RES_USAGE:
2845 if (counter == &memcg->memory)
c12176d3 2846 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2847 if (counter == &memcg->memsw)
c12176d3 2848 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2849 return (u64)page_counter_read(counter) * PAGE_SIZE;
2850 case RES_LIMIT:
2851 return (u64)counter->limit * PAGE_SIZE;
2852 case RES_MAX_USAGE:
2853 return (u64)counter->watermark * PAGE_SIZE;
2854 case RES_FAILCNT:
2855 return counter->failcnt;
2856 case RES_SOFT_LIMIT:
2857 return (u64)memcg->soft_limit * PAGE_SIZE;
2858 default:
2859 BUG();
2860 }
8cdea7c0 2861}
510fc4e1 2862
510fc4e1 2863#ifdef CONFIG_MEMCG_KMEM
567e9ab2 2864static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637
VD
2865{
2866 int err = 0;
2867 int memcg_id;
2868
2a4db7eb 2869 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2870 BUG_ON(memcg->kmem_state);
d6441637 2871
510fc4e1
GC
2872 /*
2873 * For simplicity, we won't allow this to be disabled. It also can't
2874 * be changed if the cgroup has children already, or if tasks had
2875 * already joined.
2876 *
2877 * If tasks join before we set the limit, a person looking at
2878 * kmem.usage_in_bytes will have no way to determine when it took
2879 * place, which makes the value quite meaningless.
2880 *
2881 * After it first became limited, changes in the value of the limit are
2882 * of course permitted.
510fc4e1 2883 */
0999821b 2884 mutex_lock(&memcg_create_mutex);
27bd4dbb 2885 if (cgroup_is_populated(memcg->css.cgroup) ||
ea280e7b 2886 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2887 err = -EBUSY;
2888 mutex_unlock(&memcg_create_mutex);
2889 if (err)
2890 goto out;
510fc4e1 2891
f3bb3043 2892 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2893 if (memcg_id < 0) {
2894 err = memcg_id;
2895 goto out;
2896 }
2897
ef12947c 2898 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2899 /*
567e9ab2 2900 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2901 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2902 * guarantee no one starts accounting before all call sites are
2903 * patched.
2904 */
900a38f0 2905 memcg->kmemcg_id = memcg_id;
567e9ab2 2906 memcg->kmem_state = KMEM_ONLINE;
510fc4e1 2907out:
d6441637 2908 return err;
d6441637
VD
2909}
2910
d6441637 2911static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2912 unsigned long limit)
d6441637
VD
2913{
2914 int ret;
2915
3e32cb2e 2916 mutex_lock(&memcg_limit_mutex);
b15aac11 2917 /* Top-level cgroup doesn't propagate from root */
567e9ab2
JW
2918 if (!memcg_kmem_online(memcg)) {
2919 ret = memcg_online_kmem(memcg);
b15aac11
JW
2920 if (ret)
2921 goto out;
2922 }
2923 ret = page_counter_limit(&memcg->kmem, limit);
2924out:
3e32cb2e 2925 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
2926 return ret;
2927}
2928
55007d84 2929static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 2930{
55007d84 2931 int ret = 0;
510fc4e1 2932 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 2933
d6441637
VD
2934 if (!parent)
2935 return 0;
55007d84 2936
8c0145b6 2937 mutex_lock(&memcg_limit_mutex);
55007d84 2938 /*
567e9ab2
JW
2939 * If the parent cgroup is not kmem-online now, it cannot be
2940 * onlined after this point, because it has at least one child
2941 * already.
55007d84 2942 */
567e9ab2
JW
2943 if (memcg_kmem_online(parent))
2944 ret = memcg_online_kmem(memcg);
8c0145b6 2945 mutex_unlock(&memcg_limit_mutex);
55007d84 2946 return ret;
510fc4e1 2947}
8e0a8912 2948
8e0a8912
JW
2949static void memcg_offline_kmem(struct mem_cgroup *memcg)
2950{
2951 struct cgroup_subsys_state *css;
2952 struct mem_cgroup *parent, *child;
2953 int kmemcg_id;
2954
2955 if (memcg->kmem_state != KMEM_ONLINE)
2956 return;
2957 /*
2958 * Clear the online state before clearing memcg_caches array
2959 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2960 * guarantees that no cache will be created for this cgroup
2961 * after we are done (see memcg_create_kmem_cache()).
2962 */
2963 memcg->kmem_state = KMEM_ALLOCATED;
2964
2965 memcg_deactivate_kmem_caches(memcg);
2966
2967 kmemcg_id = memcg->kmemcg_id;
2968 BUG_ON(kmemcg_id < 0);
2969
2970 parent = parent_mem_cgroup(memcg);
2971 if (!parent)
2972 parent = root_mem_cgroup;
2973
2974 /*
2975 * Change kmemcg_id of this cgroup and all its descendants to the
2976 * parent's id, and then move all entries from this cgroup's list_lrus
2977 * to ones of the parent. After we have finished, all list_lrus
2978 * corresponding to this cgroup are guaranteed to remain empty. The
2979 * ordering is imposed by list_lru_node->lock taken by
2980 * memcg_drain_all_list_lrus().
2981 */
2982 css_for_each_descendant_pre(css, &memcg->css) {
2983 child = mem_cgroup_from_css(css);
2984 BUG_ON(child->kmemcg_id != kmemcg_id);
2985 child->kmemcg_id = parent->kmemcg_id;
2986 if (!memcg->use_hierarchy)
2987 break;
2988 }
2989 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2990
2991 memcg_free_cache_id(kmemcg_id);
2992}
2993
2994static void memcg_free_kmem(struct mem_cgroup *memcg)
2995{
2996 if (memcg->kmem_state == KMEM_ALLOCATED) {
2997 memcg_destroy_kmem_caches(memcg);
2998 static_branch_dec(&memcg_kmem_enabled_key);
2999 WARN_ON(page_counter_read(&memcg->kmem));
3000 }
8e0a8912 3001}
d6441637
VD
3002#else
3003static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3004 unsigned long limit)
d6441637
VD
3005{
3006 return -EINVAL;
3007}
8e0a8912
JW
3008static void memcg_offline_kmem(struct mem_cgroup *memcg)
3009{
3010}
6d043990 3011#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3012
628f4235
KH
3013/*
3014 * The user of this function is...
3015 * RES_LIMIT.
3016 */
451af504
TH
3017static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3018 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3019{
451af504 3020 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3021 unsigned long nr_pages;
628f4235
KH
3022 int ret;
3023
451af504 3024 buf = strstrip(buf);
650c5e56 3025 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3026 if (ret)
3027 return ret;
af36f906 3028
3e32cb2e 3029 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3030 case RES_LIMIT:
4b3bde4c
BS
3031 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3032 ret = -EINVAL;
3033 break;
3034 }
3e32cb2e
JW
3035 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3036 case _MEM:
3037 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3038 break;
3e32cb2e
JW
3039 case _MEMSWAP:
3040 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3041 break;
3e32cb2e
JW
3042 case _KMEM:
3043 ret = memcg_update_kmem_limit(memcg, nr_pages);
3044 break;
3045 }
296c81d8 3046 break;
3e32cb2e
JW
3047 case RES_SOFT_LIMIT:
3048 memcg->soft_limit = nr_pages;
3049 ret = 0;
628f4235
KH
3050 break;
3051 }
451af504 3052 return ret ?: nbytes;
8cdea7c0
BS
3053}
3054
6770c64e
TH
3055static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3056 size_t nbytes, loff_t off)
c84872e1 3057{
6770c64e 3058 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3059 struct page_counter *counter;
c84872e1 3060
3e32cb2e
JW
3061 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3062 case _MEM:
3063 counter = &memcg->memory;
3064 break;
3065 case _MEMSWAP:
3066 counter = &memcg->memsw;
3067 break;
3068 case _KMEM:
3069 counter = &memcg->kmem;
3070 break;
3071 default:
3072 BUG();
3073 }
af36f906 3074
3e32cb2e 3075 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3076 case RES_MAX_USAGE:
3e32cb2e 3077 page_counter_reset_watermark(counter);
29f2a4da
PE
3078 break;
3079 case RES_FAILCNT:
3e32cb2e 3080 counter->failcnt = 0;
29f2a4da 3081 break;
3e32cb2e
JW
3082 default:
3083 BUG();
29f2a4da 3084 }
f64c3f54 3085
6770c64e 3086 return nbytes;
c84872e1
PE
3087}
3088
182446d0 3089static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3090 struct cftype *cft)
3091{
182446d0 3092 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3093}
3094
02491447 3095#ifdef CONFIG_MMU
182446d0 3096static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3097 struct cftype *cft, u64 val)
3098{
182446d0 3099 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3100
1dfab5ab 3101 if (val & ~MOVE_MASK)
7dc74be0 3102 return -EINVAL;
ee5e8472 3103
7dc74be0 3104 /*
ee5e8472
GC
3105 * No kind of locking is needed in here, because ->can_attach() will
3106 * check this value once in the beginning of the process, and then carry
3107 * on with stale data. This means that changes to this value will only
3108 * affect task migrations starting after the change.
7dc74be0 3109 */
c0ff4b85 3110 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3111 return 0;
3112}
02491447 3113#else
182446d0 3114static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3115 struct cftype *cft, u64 val)
3116{
3117 return -ENOSYS;
3118}
3119#endif
7dc74be0 3120
406eb0c9 3121#ifdef CONFIG_NUMA
2da8ca82 3122static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3123{
25485de6
GT
3124 struct numa_stat {
3125 const char *name;
3126 unsigned int lru_mask;
3127 };
3128
3129 static const struct numa_stat stats[] = {
3130 { "total", LRU_ALL },
3131 { "file", LRU_ALL_FILE },
3132 { "anon", LRU_ALL_ANON },
3133 { "unevictable", BIT(LRU_UNEVICTABLE) },
3134 };
3135 const struct numa_stat *stat;
406eb0c9 3136 int nid;
25485de6 3137 unsigned long nr;
2da8ca82 3138 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3139
25485de6
GT
3140 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3141 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3142 seq_printf(m, "%s=%lu", stat->name, nr);
3143 for_each_node_state(nid, N_MEMORY) {
3144 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3145 stat->lru_mask);
3146 seq_printf(m, " N%d=%lu", nid, nr);
3147 }
3148 seq_putc(m, '\n');
406eb0c9 3149 }
406eb0c9 3150
071aee13
YH
3151 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3152 struct mem_cgroup *iter;
3153
3154 nr = 0;
3155 for_each_mem_cgroup_tree(iter, memcg)
3156 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3157 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3158 for_each_node_state(nid, N_MEMORY) {
3159 nr = 0;
3160 for_each_mem_cgroup_tree(iter, memcg)
3161 nr += mem_cgroup_node_nr_lru_pages(
3162 iter, nid, stat->lru_mask);
3163 seq_printf(m, " N%d=%lu", nid, nr);
3164 }
3165 seq_putc(m, '\n');
406eb0c9 3166 }
406eb0c9 3167
406eb0c9
YH
3168 return 0;
3169}
3170#endif /* CONFIG_NUMA */
3171
2da8ca82 3172static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3173{
2da8ca82 3174 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3175 unsigned long memory, memsw;
af7c4b0e
JW
3176 struct mem_cgroup *mi;
3177 unsigned int i;
406eb0c9 3178
0ca44b14
GT
3179 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3180 MEM_CGROUP_STAT_NSTATS);
3181 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3182 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3183 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3184
af7c4b0e 3185 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3186 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3187 continue;
484ebb3b 3188 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3189 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3190 }
7b854121 3191
af7c4b0e
JW
3192 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3193 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3194 mem_cgroup_read_events(memcg, i));
3195
3196 for (i = 0; i < NR_LRU_LISTS; i++)
3197 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3198 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3199
14067bb3 3200 /* Hierarchical information */
3e32cb2e
JW
3201 memory = memsw = PAGE_COUNTER_MAX;
3202 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3203 memory = min(memory, mi->memory.limit);
3204 memsw = min(memsw, mi->memsw.limit);
fee7b548 3205 }
3e32cb2e
JW
3206 seq_printf(m, "hierarchical_memory_limit %llu\n",
3207 (u64)memory * PAGE_SIZE);
7941d214 3208 if (do_memsw_account())
3e32cb2e
JW
3209 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3210 (u64)memsw * PAGE_SIZE);
7f016ee8 3211
af7c4b0e 3212 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3213 unsigned long long val = 0;
af7c4b0e 3214
7941d214 3215 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3216 continue;
af7c4b0e
JW
3217 for_each_mem_cgroup_tree(mi, memcg)
3218 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3219 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3220 }
3221
3222 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3223 unsigned long long val = 0;
3224
3225 for_each_mem_cgroup_tree(mi, memcg)
3226 val += mem_cgroup_read_events(mi, i);
3227 seq_printf(m, "total_%s %llu\n",
3228 mem_cgroup_events_names[i], val);
3229 }
3230
3231 for (i = 0; i < NR_LRU_LISTS; i++) {
3232 unsigned long long val = 0;
3233
3234 for_each_mem_cgroup_tree(mi, memcg)
3235 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3236 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3237 }
14067bb3 3238
7f016ee8 3239#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3240 {
3241 int nid, zid;
3242 struct mem_cgroup_per_zone *mz;
89abfab1 3243 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3244 unsigned long recent_rotated[2] = {0, 0};
3245 unsigned long recent_scanned[2] = {0, 0};
3246
3247 for_each_online_node(nid)
3248 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3249 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3250 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3251
89abfab1
HD
3252 recent_rotated[0] += rstat->recent_rotated[0];
3253 recent_rotated[1] += rstat->recent_rotated[1];
3254 recent_scanned[0] += rstat->recent_scanned[0];
3255 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3256 }
78ccf5b5
JW
3257 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3258 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3259 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3260 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3261 }
3262#endif
3263
d2ceb9b7
KH
3264 return 0;
3265}
3266
182446d0
TH
3267static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3268 struct cftype *cft)
a7885eb8 3269{
182446d0 3270 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3271
1f4c025b 3272 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3273}
3274
182446d0
TH
3275static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3276 struct cftype *cft, u64 val)
a7885eb8 3277{
182446d0 3278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3279
3dae7fec 3280 if (val > 100)
a7885eb8
KM
3281 return -EINVAL;
3282
14208b0e 3283 if (css->parent)
3dae7fec
JW
3284 memcg->swappiness = val;
3285 else
3286 vm_swappiness = val;
068b38c1 3287
a7885eb8
KM
3288 return 0;
3289}
3290
2e72b634
KS
3291static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3292{
3293 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3294 unsigned long usage;
2e72b634
KS
3295 int i;
3296
3297 rcu_read_lock();
3298 if (!swap)
2c488db2 3299 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3300 else
2c488db2 3301 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3302
3303 if (!t)
3304 goto unlock;
3305
ce00a967 3306 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3307
3308 /*
748dad36 3309 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3310 * If it's not true, a threshold was crossed after last
3311 * call of __mem_cgroup_threshold().
3312 */
5407a562 3313 i = t->current_threshold;
2e72b634
KS
3314
3315 /*
3316 * Iterate backward over array of thresholds starting from
3317 * current_threshold and check if a threshold is crossed.
3318 * If none of thresholds below usage is crossed, we read
3319 * only one element of the array here.
3320 */
3321 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3322 eventfd_signal(t->entries[i].eventfd, 1);
3323
3324 /* i = current_threshold + 1 */
3325 i++;
3326
3327 /*
3328 * Iterate forward over array of thresholds starting from
3329 * current_threshold+1 and check if a threshold is crossed.
3330 * If none of thresholds above usage is crossed, we read
3331 * only one element of the array here.
3332 */
3333 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3334 eventfd_signal(t->entries[i].eventfd, 1);
3335
3336 /* Update current_threshold */
5407a562 3337 t->current_threshold = i - 1;
2e72b634
KS
3338unlock:
3339 rcu_read_unlock();
3340}
3341
3342static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3343{
ad4ca5f4
KS
3344 while (memcg) {
3345 __mem_cgroup_threshold(memcg, false);
7941d214 3346 if (do_memsw_account())
ad4ca5f4
KS
3347 __mem_cgroup_threshold(memcg, true);
3348
3349 memcg = parent_mem_cgroup(memcg);
3350 }
2e72b634
KS
3351}
3352
3353static int compare_thresholds(const void *a, const void *b)
3354{
3355 const struct mem_cgroup_threshold *_a = a;
3356 const struct mem_cgroup_threshold *_b = b;
3357
2bff24a3
GT
3358 if (_a->threshold > _b->threshold)
3359 return 1;
3360
3361 if (_a->threshold < _b->threshold)
3362 return -1;
3363
3364 return 0;
2e72b634
KS
3365}
3366
c0ff4b85 3367static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3368{
3369 struct mem_cgroup_eventfd_list *ev;
3370
2bcf2e92
MH
3371 spin_lock(&memcg_oom_lock);
3372
c0ff4b85 3373 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3374 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3375
3376 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3377 return 0;
3378}
3379
c0ff4b85 3380static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3381{
7d74b06f
KH
3382 struct mem_cgroup *iter;
3383
c0ff4b85 3384 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3385 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3386}
3387
59b6f873 3388static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3389 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3390{
2c488db2
KS
3391 struct mem_cgroup_thresholds *thresholds;
3392 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3393 unsigned long threshold;
3394 unsigned long usage;
2c488db2 3395 int i, size, ret;
2e72b634 3396
650c5e56 3397 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3398 if (ret)
3399 return ret;
3400
3401 mutex_lock(&memcg->thresholds_lock);
2c488db2 3402
05b84301 3403 if (type == _MEM) {
2c488db2 3404 thresholds = &memcg->thresholds;
ce00a967 3405 usage = mem_cgroup_usage(memcg, false);
05b84301 3406 } else if (type == _MEMSWAP) {
2c488db2 3407 thresholds = &memcg->memsw_thresholds;
ce00a967 3408 usage = mem_cgroup_usage(memcg, true);
05b84301 3409 } else
2e72b634
KS
3410 BUG();
3411
2e72b634 3412 /* Check if a threshold crossed before adding a new one */
2c488db2 3413 if (thresholds->primary)
2e72b634
KS
3414 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3415
2c488db2 3416 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3417
3418 /* Allocate memory for new array of thresholds */
2c488db2 3419 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3420 GFP_KERNEL);
2c488db2 3421 if (!new) {
2e72b634
KS
3422 ret = -ENOMEM;
3423 goto unlock;
3424 }
2c488db2 3425 new->size = size;
2e72b634
KS
3426
3427 /* Copy thresholds (if any) to new array */
2c488db2
KS
3428 if (thresholds->primary) {
3429 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3430 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3431 }
3432
2e72b634 3433 /* Add new threshold */
2c488db2
KS
3434 new->entries[size - 1].eventfd = eventfd;
3435 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3436
3437 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3438 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3439 compare_thresholds, NULL);
3440
3441 /* Find current threshold */
2c488db2 3442 new->current_threshold = -1;
2e72b634 3443 for (i = 0; i < size; i++) {
748dad36 3444 if (new->entries[i].threshold <= usage) {
2e72b634 3445 /*
2c488db2
KS
3446 * new->current_threshold will not be used until
3447 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3448 * it here.
3449 */
2c488db2 3450 ++new->current_threshold;
748dad36
SZ
3451 } else
3452 break;
2e72b634
KS
3453 }
3454
2c488db2
KS
3455 /* Free old spare buffer and save old primary buffer as spare */
3456 kfree(thresholds->spare);
3457 thresholds->spare = thresholds->primary;
3458
3459 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3460
907860ed 3461 /* To be sure that nobody uses thresholds */
2e72b634
KS
3462 synchronize_rcu();
3463
2e72b634
KS
3464unlock:
3465 mutex_unlock(&memcg->thresholds_lock);
3466
3467 return ret;
3468}
3469
59b6f873 3470static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3471 struct eventfd_ctx *eventfd, const char *args)
3472{
59b6f873 3473 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3474}
3475
59b6f873 3476static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3477 struct eventfd_ctx *eventfd, const char *args)
3478{
59b6f873 3479 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3480}
3481
59b6f873 3482static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3483 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3484{
2c488db2
KS
3485 struct mem_cgroup_thresholds *thresholds;
3486 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3487 unsigned long usage;
2c488db2 3488 int i, j, size;
2e72b634
KS
3489
3490 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3491
3492 if (type == _MEM) {
2c488db2 3493 thresholds = &memcg->thresholds;
ce00a967 3494 usage = mem_cgroup_usage(memcg, false);
05b84301 3495 } else if (type == _MEMSWAP) {
2c488db2 3496 thresholds = &memcg->memsw_thresholds;
ce00a967 3497 usage = mem_cgroup_usage(memcg, true);
05b84301 3498 } else
2e72b634
KS
3499 BUG();
3500
371528ca
AV
3501 if (!thresholds->primary)
3502 goto unlock;
3503
2e72b634
KS
3504 /* Check if a threshold crossed before removing */
3505 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3506
3507 /* Calculate new number of threshold */
2c488db2
KS
3508 size = 0;
3509 for (i = 0; i < thresholds->primary->size; i++) {
3510 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3511 size++;
3512 }
3513
2c488db2 3514 new = thresholds->spare;
907860ed 3515
2e72b634
KS
3516 /* Set thresholds array to NULL if we don't have thresholds */
3517 if (!size) {
2c488db2
KS
3518 kfree(new);
3519 new = NULL;
907860ed 3520 goto swap_buffers;
2e72b634
KS
3521 }
3522
2c488db2 3523 new->size = size;
2e72b634
KS
3524
3525 /* Copy thresholds and find current threshold */
2c488db2
KS
3526 new->current_threshold = -1;
3527 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3528 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3529 continue;
3530
2c488db2 3531 new->entries[j] = thresholds->primary->entries[i];
748dad36 3532 if (new->entries[j].threshold <= usage) {
2e72b634 3533 /*
2c488db2 3534 * new->current_threshold will not be used
2e72b634
KS
3535 * until rcu_assign_pointer(), so it's safe to increment
3536 * it here.
3537 */
2c488db2 3538 ++new->current_threshold;
2e72b634
KS
3539 }
3540 j++;
3541 }
3542
907860ed 3543swap_buffers:
2c488db2
KS
3544 /* Swap primary and spare array */
3545 thresholds->spare = thresholds->primary;
8c757763 3546
2c488db2 3547 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3548
907860ed 3549 /* To be sure that nobody uses thresholds */
2e72b634 3550 synchronize_rcu();
6611d8d7
MC
3551
3552 /* If all events are unregistered, free the spare array */
3553 if (!new) {
3554 kfree(thresholds->spare);
3555 thresholds->spare = NULL;
3556 }
371528ca 3557unlock:
2e72b634 3558 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3559}
c1e862c1 3560
59b6f873 3561static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3562 struct eventfd_ctx *eventfd)
3563{
59b6f873 3564 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3565}
3566
59b6f873 3567static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3568 struct eventfd_ctx *eventfd)
3569{
59b6f873 3570 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3571}
3572
59b6f873 3573static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3574 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3575{
9490ff27 3576 struct mem_cgroup_eventfd_list *event;
9490ff27 3577
9490ff27
KH
3578 event = kmalloc(sizeof(*event), GFP_KERNEL);
3579 if (!event)
3580 return -ENOMEM;
3581
1af8efe9 3582 spin_lock(&memcg_oom_lock);
9490ff27
KH
3583
3584 event->eventfd = eventfd;
3585 list_add(&event->list, &memcg->oom_notify);
3586
3587 /* already in OOM ? */
c2b42d3c 3588 if (memcg->under_oom)
9490ff27 3589 eventfd_signal(eventfd, 1);
1af8efe9 3590 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3591
3592 return 0;
3593}
3594
59b6f873 3595static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3596 struct eventfd_ctx *eventfd)
9490ff27 3597{
9490ff27 3598 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3599
1af8efe9 3600 spin_lock(&memcg_oom_lock);
9490ff27 3601
c0ff4b85 3602 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3603 if (ev->eventfd == eventfd) {
3604 list_del(&ev->list);
3605 kfree(ev);
3606 }
3607 }
3608
1af8efe9 3609 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3610}
3611
2da8ca82 3612static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3613{
2da8ca82 3614 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3615
791badbd 3616 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3617 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3618 return 0;
3619}
3620
182446d0 3621static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3622 struct cftype *cft, u64 val)
3623{
182446d0 3624 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3625
3626 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3627 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3628 return -EINVAL;
3629
c0ff4b85 3630 memcg->oom_kill_disable = val;
4d845ebf 3631 if (!val)
c0ff4b85 3632 memcg_oom_recover(memcg);
3dae7fec 3633
3c11ecf4
KH
3634 return 0;
3635}
3636
52ebea74
TH
3637#ifdef CONFIG_CGROUP_WRITEBACK
3638
3639struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3640{
3641 return &memcg->cgwb_list;
3642}
3643
841710aa
TH
3644static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3645{
3646 return wb_domain_init(&memcg->cgwb_domain, gfp);
3647}
3648
3649static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3650{
3651 wb_domain_exit(&memcg->cgwb_domain);
3652}
3653
2529bb3a
TH
3654static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3655{
3656 wb_domain_size_changed(&memcg->cgwb_domain);
3657}
3658
841710aa
TH
3659struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3660{
3661 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3662
3663 if (!memcg->css.parent)
3664 return NULL;
3665
3666 return &memcg->cgwb_domain;
3667}
3668
c2aa723a
TH
3669/**
3670 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3671 * @wb: bdi_writeback in question
c5edf9cd
TH
3672 * @pfilepages: out parameter for number of file pages
3673 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3674 * @pdirty: out parameter for number of dirty pages
3675 * @pwriteback: out parameter for number of pages under writeback
3676 *
c5edf9cd
TH
3677 * Determine the numbers of file, headroom, dirty, and writeback pages in
3678 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3679 * is a bit more involved.
c2aa723a 3680 *
c5edf9cd
TH
3681 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3682 * headroom is calculated as the lowest headroom of itself and the
3683 * ancestors. Note that this doesn't consider the actual amount of
3684 * available memory in the system. The caller should further cap
3685 * *@pheadroom accordingly.
c2aa723a 3686 */
c5edf9cd
TH
3687void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3688 unsigned long *pheadroom, unsigned long *pdirty,
3689 unsigned long *pwriteback)
c2aa723a
TH
3690{
3691 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3692 struct mem_cgroup *parent;
c2aa723a
TH
3693
3694 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3695
3696 /* this should eventually include NR_UNSTABLE_NFS */
3697 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3698 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3699 (1 << LRU_ACTIVE_FILE));
3700 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3701
c2aa723a
TH
3702 while ((parent = parent_mem_cgroup(memcg))) {
3703 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3704 unsigned long used = page_counter_read(&memcg->memory);
3705
c5edf9cd 3706 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3707 memcg = parent;
3708 }
c2aa723a
TH
3709}
3710
841710aa
TH
3711#else /* CONFIG_CGROUP_WRITEBACK */
3712
3713static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3714{
3715 return 0;
3716}
3717
3718static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3719{
3720}
3721
2529bb3a
TH
3722static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3723{
3724}
3725
52ebea74
TH
3726#endif /* CONFIG_CGROUP_WRITEBACK */
3727
3bc942f3
TH
3728/*
3729 * DO NOT USE IN NEW FILES.
3730 *
3731 * "cgroup.event_control" implementation.
3732 *
3733 * This is way over-engineered. It tries to support fully configurable
3734 * events for each user. Such level of flexibility is completely
3735 * unnecessary especially in the light of the planned unified hierarchy.
3736 *
3737 * Please deprecate this and replace with something simpler if at all
3738 * possible.
3739 */
3740
79bd9814
TH
3741/*
3742 * Unregister event and free resources.
3743 *
3744 * Gets called from workqueue.
3745 */
3bc942f3 3746static void memcg_event_remove(struct work_struct *work)
79bd9814 3747{
3bc942f3
TH
3748 struct mem_cgroup_event *event =
3749 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3750 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3751
3752 remove_wait_queue(event->wqh, &event->wait);
3753
59b6f873 3754 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3755
3756 /* Notify userspace the event is going away. */
3757 eventfd_signal(event->eventfd, 1);
3758
3759 eventfd_ctx_put(event->eventfd);
3760 kfree(event);
59b6f873 3761 css_put(&memcg->css);
79bd9814
TH
3762}
3763
3764/*
3765 * Gets called on POLLHUP on eventfd when user closes it.
3766 *
3767 * Called with wqh->lock held and interrupts disabled.
3768 */
3bc942f3
TH
3769static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3770 int sync, void *key)
79bd9814 3771{
3bc942f3
TH
3772 struct mem_cgroup_event *event =
3773 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3774 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3775 unsigned long flags = (unsigned long)key;
3776
3777 if (flags & POLLHUP) {
3778 /*
3779 * If the event has been detached at cgroup removal, we
3780 * can simply return knowing the other side will cleanup
3781 * for us.
3782 *
3783 * We can't race against event freeing since the other
3784 * side will require wqh->lock via remove_wait_queue(),
3785 * which we hold.
3786 */
fba94807 3787 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3788 if (!list_empty(&event->list)) {
3789 list_del_init(&event->list);
3790 /*
3791 * We are in atomic context, but cgroup_event_remove()
3792 * may sleep, so we have to call it in workqueue.
3793 */
3794 schedule_work(&event->remove);
3795 }
fba94807 3796 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3797 }
3798
3799 return 0;
3800}
3801
3bc942f3 3802static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3803 wait_queue_head_t *wqh, poll_table *pt)
3804{
3bc942f3
TH
3805 struct mem_cgroup_event *event =
3806 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3807
3808 event->wqh = wqh;
3809 add_wait_queue(wqh, &event->wait);
3810}
3811
3812/*
3bc942f3
TH
3813 * DO NOT USE IN NEW FILES.
3814 *
79bd9814
TH
3815 * Parse input and register new cgroup event handler.
3816 *
3817 * Input must be in format '<event_fd> <control_fd> <args>'.
3818 * Interpretation of args is defined by control file implementation.
3819 */
451af504
TH
3820static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3821 char *buf, size_t nbytes, loff_t off)
79bd9814 3822{
451af504 3823 struct cgroup_subsys_state *css = of_css(of);
fba94807 3824 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3825 struct mem_cgroup_event *event;
79bd9814
TH
3826 struct cgroup_subsys_state *cfile_css;
3827 unsigned int efd, cfd;
3828 struct fd efile;
3829 struct fd cfile;
fba94807 3830 const char *name;
79bd9814
TH
3831 char *endp;
3832 int ret;
3833
451af504
TH
3834 buf = strstrip(buf);
3835
3836 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3837 if (*endp != ' ')
3838 return -EINVAL;
451af504 3839 buf = endp + 1;
79bd9814 3840
451af504 3841 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3842 if ((*endp != ' ') && (*endp != '\0'))
3843 return -EINVAL;
451af504 3844 buf = endp + 1;
79bd9814
TH
3845
3846 event = kzalloc(sizeof(*event), GFP_KERNEL);
3847 if (!event)
3848 return -ENOMEM;
3849
59b6f873 3850 event->memcg = memcg;
79bd9814 3851 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3852 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3853 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3854 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3855
3856 efile = fdget(efd);
3857 if (!efile.file) {
3858 ret = -EBADF;
3859 goto out_kfree;
3860 }
3861
3862 event->eventfd = eventfd_ctx_fileget(efile.file);
3863 if (IS_ERR(event->eventfd)) {
3864 ret = PTR_ERR(event->eventfd);
3865 goto out_put_efile;
3866 }
3867
3868 cfile = fdget(cfd);
3869 if (!cfile.file) {
3870 ret = -EBADF;
3871 goto out_put_eventfd;
3872 }
3873
3874 /* the process need read permission on control file */
3875 /* AV: shouldn't we check that it's been opened for read instead? */
3876 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3877 if (ret < 0)
3878 goto out_put_cfile;
3879
fba94807
TH
3880 /*
3881 * Determine the event callbacks and set them in @event. This used
3882 * to be done via struct cftype but cgroup core no longer knows
3883 * about these events. The following is crude but the whole thing
3884 * is for compatibility anyway.
3bc942f3
TH
3885 *
3886 * DO NOT ADD NEW FILES.
fba94807 3887 */
b583043e 3888 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3889
3890 if (!strcmp(name, "memory.usage_in_bytes")) {
3891 event->register_event = mem_cgroup_usage_register_event;
3892 event->unregister_event = mem_cgroup_usage_unregister_event;
3893 } else if (!strcmp(name, "memory.oom_control")) {
3894 event->register_event = mem_cgroup_oom_register_event;
3895 event->unregister_event = mem_cgroup_oom_unregister_event;
3896 } else if (!strcmp(name, "memory.pressure_level")) {
3897 event->register_event = vmpressure_register_event;
3898 event->unregister_event = vmpressure_unregister_event;
3899 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3900 event->register_event = memsw_cgroup_usage_register_event;
3901 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3902 } else {
3903 ret = -EINVAL;
3904 goto out_put_cfile;
3905 }
3906
79bd9814 3907 /*
b5557c4c
TH
3908 * Verify @cfile should belong to @css. Also, remaining events are
3909 * automatically removed on cgroup destruction but the removal is
3910 * asynchronous, so take an extra ref on @css.
79bd9814 3911 */
b583043e 3912 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3913 &memory_cgrp_subsys);
79bd9814 3914 ret = -EINVAL;
5a17f543 3915 if (IS_ERR(cfile_css))
79bd9814 3916 goto out_put_cfile;
5a17f543
TH
3917 if (cfile_css != css) {
3918 css_put(cfile_css);
79bd9814 3919 goto out_put_cfile;
5a17f543 3920 }
79bd9814 3921
451af504 3922 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3923 if (ret)
3924 goto out_put_css;
3925
3926 efile.file->f_op->poll(efile.file, &event->pt);
3927
fba94807
TH
3928 spin_lock(&memcg->event_list_lock);
3929 list_add(&event->list, &memcg->event_list);
3930 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3931
3932 fdput(cfile);
3933 fdput(efile);
3934
451af504 3935 return nbytes;
79bd9814
TH
3936
3937out_put_css:
b5557c4c 3938 css_put(css);
79bd9814
TH
3939out_put_cfile:
3940 fdput(cfile);
3941out_put_eventfd:
3942 eventfd_ctx_put(event->eventfd);
3943out_put_efile:
3944 fdput(efile);
3945out_kfree:
3946 kfree(event);
3947
3948 return ret;
3949}
3950
241994ed 3951static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3952 {
0eea1030 3953 .name = "usage_in_bytes",
8c7c6e34 3954 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3955 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3956 },
c84872e1
PE
3957 {
3958 .name = "max_usage_in_bytes",
8c7c6e34 3959 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3960 .write = mem_cgroup_reset,
791badbd 3961 .read_u64 = mem_cgroup_read_u64,
c84872e1 3962 },
8cdea7c0 3963 {
0eea1030 3964 .name = "limit_in_bytes",
8c7c6e34 3965 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3966 .write = mem_cgroup_write,
791badbd 3967 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3968 },
296c81d8
BS
3969 {
3970 .name = "soft_limit_in_bytes",
3971 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3972 .write = mem_cgroup_write,
791badbd 3973 .read_u64 = mem_cgroup_read_u64,
296c81d8 3974 },
8cdea7c0
BS
3975 {
3976 .name = "failcnt",
8c7c6e34 3977 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3978 .write = mem_cgroup_reset,
791badbd 3979 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3980 },
d2ceb9b7
KH
3981 {
3982 .name = "stat",
2da8ca82 3983 .seq_show = memcg_stat_show,
d2ceb9b7 3984 },
c1e862c1
KH
3985 {
3986 .name = "force_empty",
6770c64e 3987 .write = mem_cgroup_force_empty_write,
c1e862c1 3988 },
18f59ea7
BS
3989 {
3990 .name = "use_hierarchy",
3991 .write_u64 = mem_cgroup_hierarchy_write,
3992 .read_u64 = mem_cgroup_hierarchy_read,
3993 },
79bd9814 3994 {
3bc942f3 3995 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3996 .write = memcg_write_event_control,
7dbdb199 3997 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3998 },
a7885eb8
KM
3999 {
4000 .name = "swappiness",
4001 .read_u64 = mem_cgroup_swappiness_read,
4002 .write_u64 = mem_cgroup_swappiness_write,
4003 },
7dc74be0
DN
4004 {
4005 .name = "move_charge_at_immigrate",
4006 .read_u64 = mem_cgroup_move_charge_read,
4007 .write_u64 = mem_cgroup_move_charge_write,
4008 },
9490ff27
KH
4009 {
4010 .name = "oom_control",
2da8ca82 4011 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4012 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4013 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4014 },
70ddf637
AV
4015 {
4016 .name = "pressure_level",
70ddf637 4017 },
406eb0c9
YH
4018#ifdef CONFIG_NUMA
4019 {
4020 .name = "numa_stat",
2da8ca82 4021 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4022 },
4023#endif
510fc4e1
GC
4024#ifdef CONFIG_MEMCG_KMEM
4025 {
4026 .name = "kmem.limit_in_bytes",
4027 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4028 .write = mem_cgroup_write,
791badbd 4029 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4030 },
4031 {
4032 .name = "kmem.usage_in_bytes",
4033 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4034 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4035 },
4036 {
4037 .name = "kmem.failcnt",
4038 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4039 .write = mem_cgroup_reset,
791badbd 4040 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4041 },
4042 {
4043 .name = "kmem.max_usage_in_bytes",
4044 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4045 .write = mem_cgroup_reset,
791badbd 4046 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4047 },
749c5415
GC
4048#ifdef CONFIG_SLABINFO
4049 {
4050 .name = "kmem.slabinfo",
b047501c
VD
4051 .seq_start = slab_start,
4052 .seq_next = slab_next,
4053 .seq_stop = slab_stop,
4054 .seq_show = memcg_slab_show,
749c5415
GC
4055 },
4056#endif
8c7c6e34 4057#endif
6bc10349 4058 { }, /* terminate */
af36f906 4059};
8c7c6e34 4060
c0ff4b85 4061static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4062{
4063 struct mem_cgroup_per_node *pn;
1ecaab2b 4064 struct mem_cgroup_per_zone *mz;
41e3355d 4065 int zone, tmp = node;
1ecaab2b
KH
4066 /*
4067 * This routine is called against possible nodes.
4068 * But it's BUG to call kmalloc() against offline node.
4069 *
4070 * TODO: this routine can waste much memory for nodes which will
4071 * never be onlined. It's better to use memory hotplug callback
4072 * function.
4073 */
41e3355d
KH
4074 if (!node_state(node, N_NORMAL_MEMORY))
4075 tmp = -1;
17295c88 4076 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4077 if (!pn)
4078 return 1;
1ecaab2b 4079
1ecaab2b
KH
4080 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4081 mz = &pn->zoneinfo[zone];
bea8c150 4082 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4083 mz->usage_in_excess = 0;
4084 mz->on_tree = false;
d79154bb 4085 mz->memcg = memcg;
1ecaab2b 4086 }
54f72fe0 4087 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4088 return 0;
4089}
4090
c0ff4b85 4091static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4092{
54f72fe0 4093 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4094}
4095
33327948
KH
4096static struct mem_cgroup *mem_cgroup_alloc(void)
4097{
d79154bb 4098 struct mem_cgroup *memcg;
8ff69e2c 4099 size_t size;
33327948 4100
8ff69e2c
VD
4101 size = sizeof(struct mem_cgroup);
4102 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4103
8ff69e2c 4104 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4105 if (!memcg)
e7bbcdf3
DC
4106 return NULL;
4107
d79154bb
HD
4108 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4109 if (!memcg->stat)
d2e61b8d 4110 goto out_free;
841710aa
TH
4111
4112 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4113 goto out_free_stat;
4114
d79154bb 4115 return memcg;
d2e61b8d 4116
841710aa
TH
4117out_free_stat:
4118 free_percpu(memcg->stat);
d2e61b8d 4119out_free:
8ff69e2c 4120 kfree(memcg);
d2e61b8d 4121 return NULL;
33327948
KH
4122}
4123
59927fb9 4124/*
c8b2a36f
GC
4125 * At destroying mem_cgroup, references from swap_cgroup can remain.
4126 * (scanning all at force_empty is too costly...)
4127 *
4128 * Instead of clearing all references at force_empty, we remember
4129 * the number of reference from swap_cgroup and free mem_cgroup when
4130 * it goes down to 0.
4131 *
4132 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4133 */
c8b2a36f
GC
4134
4135static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4136{
c8b2a36f 4137 int node;
59927fb9 4138
f7e1cb6e
JW
4139 cancel_work_sync(&memcg->high_work);
4140
bb4cc1a8 4141 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4142
4143 for_each_node(node)
4144 free_mem_cgroup_per_zone_info(memcg, node);
4145
4146 free_percpu(memcg->stat);
841710aa 4147 memcg_wb_domain_exit(memcg);
8ff69e2c 4148 kfree(memcg);
59927fb9 4149}
3afe36b1 4150
0eb253e2 4151static struct cgroup_subsys_state * __ref
eb95419b 4152mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4153{
d142e3e6 4154 struct mem_cgroup *memcg;
04046e1a 4155 long error = -ENOMEM;
6d12e2d8 4156 int node;
8cdea7c0 4157
c0ff4b85
R
4158 memcg = mem_cgroup_alloc();
4159 if (!memcg)
04046e1a 4160 return ERR_PTR(error);
78fb7466 4161
3ed28fa1 4162 for_each_node(node)
c0ff4b85 4163 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4164 goto free_out;
f64c3f54 4165
c077719b 4166 /* root ? */
eb95419b 4167 if (parent_css == NULL) {
a41c58a6 4168 root_mem_cgroup = memcg;
3e32cb2e 4169 page_counter_init(&memcg->memory, NULL);
241994ed 4170 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4171 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4172 page_counter_init(&memcg->memsw, NULL);
4173 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4174 }
28dbc4b6 4175
f7e1cb6e 4176 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4177 memcg->last_scanned_node = MAX_NUMNODES;
4178 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4179 memcg->move_charge_at_immigrate = 0;
4180 mutex_init(&memcg->thresholds_lock);
4181 spin_lock_init(&memcg->move_lock);
70ddf637 4182 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4183 INIT_LIST_HEAD(&memcg->event_list);
4184 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4185#ifdef CONFIG_MEMCG_KMEM
4186 memcg->kmemcg_id = -1;
900a38f0 4187#endif
52ebea74
TH
4188#ifdef CONFIG_CGROUP_WRITEBACK
4189 INIT_LIST_HEAD(&memcg->cgwb_list);
8e8ae645
JW
4190#endif
4191#ifdef CONFIG_INET
4192 memcg->socket_pressure = jiffies;
52ebea74 4193#endif
d142e3e6
GC
4194 return &memcg->css;
4195
4196free_out:
4197 __mem_cgroup_free(memcg);
4198 return ERR_PTR(error);
4199}
4200
4201static int
eb95419b 4202mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4203{
eb95419b 4204 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4205 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4206 int ret;
d142e3e6 4207
15a4c835 4208 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4209 return -ENOSPC;
4210
63876986 4211 if (!parent)
d142e3e6
GC
4212 return 0;
4213
0999821b 4214 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4215
4216 memcg->use_hierarchy = parent->use_hierarchy;
4217 memcg->oom_kill_disable = parent->oom_kill_disable;
4218 memcg->swappiness = mem_cgroup_swappiness(parent);
4219
4220 if (parent->use_hierarchy) {
3e32cb2e 4221 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4222 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4223 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4224 page_counter_init(&memcg->memsw, &parent->memsw);
4225 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4226
7bcc1bb1 4227 /*
8d76a979
LZ
4228 * No need to take a reference to the parent because cgroup
4229 * core guarantees its existence.
7bcc1bb1 4230 */
18f59ea7 4231 } else {
3e32cb2e 4232 page_counter_init(&memcg->memory, NULL);
241994ed 4233 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4234 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4235 page_counter_init(&memcg->memsw, NULL);
4236 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4237 /*
4238 * Deeper hierachy with use_hierarchy == false doesn't make
4239 * much sense so let cgroup subsystem know about this
4240 * unfortunate state in our controller.
4241 */
d142e3e6 4242 if (parent != root_mem_cgroup)
073219e9 4243 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4244 }
0999821b 4245 mutex_unlock(&memcg_create_mutex);
d6441637 4246
3893e302
JW
4247#ifdef CONFIG_MEMCG_KMEM
4248 ret = memcg_propagate_kmem(memcg);
2f7dd7a4
JW
4249 if (ret)
4250 return ret;
3893e302
JW
4251 ret = tcp_init_cgroup(memcg);
4252 if (ret)
4253 return ret;
4254#endif
2f7dd7a4 4255
f7e1cb6e
JW
4256#ifdef CONFIG_INET
4257 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4258 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e
JW
4259#endif
4260
2f7dd7a4
JW
4261 /*
4262 * Make sure the memcg is initialized: mem_cgroup_iter()
4263 * orders reading memcg->initialized against its callers
4264 * reading the memcg members.
4265 */
4266 smp_store_release(&memcg->initialized, 1);
4267
4268 return 0;
8cdea7c0
BS
4269}
4270
eb95419b 4271static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4272{
eb95419b 4273 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4274 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4275
4276 /*
4277 * Unregister events and notify userspace.
4278 * Notify userspace about cgroup removing only after rmdir of cgroup
4279 * directory to avoid race between userspace and kernelspace.
4280 */
fba94807
TH
4281 spin_lock(&memcg->event_list_lock);
4282 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4283 list_del_init(&event->list);
4284 schedule_work(&event->remove);
4285 }
fba94807 4286 spin_unlock(&memcg->event_list_lock);
ec64f515 4287
33cb876e 4288 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb 4289
567e9ab2 4290 memcg_offline_kmem(memcg);
52ebea74
TH
4291
4292 wb_memcg_offline(memcg);
df878fb0
KH
4293}
4294
6df38689
VD
4295static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4296{
4297 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4298
4299 invalidate_reclaim_iterators(memcg);
4300}
4301
eb95419b 4302static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4303{
eb95419b 4304 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4305
f7e1cb6e
JW
4306#ifdef CONFIG_INET
4307 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4308 static_branch_dec(&memcg_sockets_enabled_key);
f7e1cb6e 4309#endif
3893e302
JW
4310
4311#ifdef CONFIG_MEMCG_KMEM
4312 memcg_free_kmem(memcg);
4313 tcp_destroy_cgroup(memcg);
4314#endif
4315
465939a1 4316 __mem_cgroup_free(memcg);
8cdea7c0
BS
4317}
4318
1ced953b
TH
4319/**
4320 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4321 * @css: the target css
4322 *
4323 * Reset the states of the mem_cgroup associated with @css. This is
4324 * invoked when the userland requests disabling on the default hierarchy
4325 * but the memcg is pinned through dependency. The memcg should stop
4326 * applying policies and should revert to the vanilla state as it may be
4327 * made visible again.
4328 *
4329 * The current implementation only resets the essential configurations.
4330 * This needs to be expanded to cover all the visible parts.
4331 */
4332static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4333{
4334 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4335
3e32cb2e
JW
4336 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4337 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4338 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4339 memcg->low = 0;
4340 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4341 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4342 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4343}
4344
02491447 4345#ifdef CONFIG_MMU
7dc74be0 4346/* Handlers for move charge at task migration. */
854ffa8d 4347static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4348{
05b84301 4349 int ret;
9476db97 4350
d0164adc
MG
4351 /* Try a single bulk charge without reclaim first, kswapd may wake */
4352 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4353 if (!ret) {
854ffa8d 4354 mc.precharge += count;
854ffa8d
DN
4355 return ret;
4356 }
9476db97
JW
4357
4358 /* Try charges one by one with reclaim */
854ffa8d 4359 while (count--) {
00501b53 4360 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4361 if (ret)
38c5d72f 4362 return ret;
854ffa8d 4363 mc.precharge++;
9476db97 4364 cond_resched();
854ffa8d 4365 }
9476db97 4366 return 0;
4ffef5fe
DN
4367}
4368
4369/**
8d32ff84 4370 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4371 * @vma: the vma the pte to be checked belongs
4372 * @addr: the address corresponding to the pte to be checked
4373 * @ptent: the pte to be checked
02491447 4374 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4375 *
4376 * Returns
4377 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4378 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4379 * move charge. if @target is not NULL, the page is stored in target->page
4380 * with extra refcnt got(Callers should handle it).
02491447
DN
4381 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4382 * target for charge migration. if @target is not NULL, the entry is stored
4383 * in target->ent.
4ffef5fe
DN
4384 *
4385 * Called with pte lock held.
4386 */
4ffef5fe
DN
4387union mc_target {
4388 struct page *page;
02491447 4389 swp_entry_t ent;
4ffef5fe
DN
4390};
4391
4ffef5fe 4392enum mc_target_type {
8d32ff84 4393 MC_TARGET_NONE = 0,
4ffef5fe 4394 MC_TARGET_PAGE,
02491447 4395 MC_TARGET_SWAP,
4ffef5fe
DN
4396};
4397
90254a65
DN
4398static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4399 unsigned long addr, pte_t ptent)
4ffef5fe 4400{
90254a65 4401 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4402
90254a65
DN
4403 if (!page || !page_mapped(page))
4404 return NULL;
4405 if (PageAnon(page)) {
1dfab5ab 4406 if (!(mc.flags & MOVE_ANON))
90254a65 4407 return NULL;
1dfab5ab
JW
4408 } else {
4409 if (!(mc.flags & MOVE_FILE))
4410 return NULL;
4411 }
90254a65
DN
4412 if (!get_page_unless_zero(page))
4413 return NULL;
4414
4415 return page;
4416}
4417
4b91355e 4418#ifdef CONFIG_SWAP
90254a65
DN
4419static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4420 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4421{
90254a65
DN
4422 struct page *page = NULL;
4423 swp_entry_t ent = pte_to_swp_entry(ptent);
4424
1dfab5ab 4425 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4426 return NULL;
4b91355e
KH
4427 /*
4428 * Because lookup_swap_cache() updates some statistics counter,
4429 * we call find_get_page() with swapper_space directly.
4430 */
33806f06 4431 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4432 if (do_memsw_account())
90254a65
DN
4433 entry->val = ent.val;
4434
4435 return page;
4436}
4b91355e
KH
4437#else
4438static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4439 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4440{
4441 return NULL;
4442}
4443#endif
90254a65 4444
87946a72
DN
4445static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4446 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4447{
4448 struct page *page = NULL;
87946a72
DN
4449 struct address_space *mapping;
4450 pgoff_t pgoff;
4451
4452 if (!vma->vm_file) /* anonymous vma */
4453 return NULL;
1dfab5ab 4454 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4455 return NULL;
4456
87946a72 4457 mapping = vma->vm_file->f_mapping;
0661a336 4458 pgoff = linear_page_index(vma, addr);
87946a72
DN
4459
4460 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4461#ifdef CONFIG_SWAP
4462 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4463 if (shmem_mapping(mapping)) {
4464 page = find_get_entry(mapping, pgoff);
4465 if (radix_tree_exceptional_entry(page)) {
4466 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4467 if (do_memsw_account())
139b6a6f
JW
4468 *entry = swp;
4469 page = find_get_page(swap_address_space(swp), swp.val);
4470 }
4471 } else
4472 page = find_get_page(mapping, pgoff);
4473#else
4474 page = find_get_page(mapping, pgoff);
aa3b1895 4475#endif
87946a72
DN
4476 return page;
4477}
4478
b1b0deab
CG
4479/**
4480 * mem_cgroup_move_account - move account of the page
4481 * @page: the page
4482 * @nr_pages: number of regular pages (>1 for huge pages)
4483 * @from: mem_cgroup which the page is moved from.
4484 * @to: mem_cgroup which the page is moved to. @from != @to.
4485 *
3ac808fd 4486 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4487 *
4488 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4489 * from old cgroup.
4490 */
4491static int mem_cgroup_move_account(struct page *page,
f627c2f5 4492 bool compound,
b1b0deab
CG
4493 struct mem_cgroup *from,
4494 struct mem_cgroup *to)
4495{
4496 unsigned long flags;
f627c2f5 4497 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4498 int ret;
c4843a75 4499 bool anon;
b1b0deab
CG
4500
4501 VM_BUG_ON(from == to);
4502 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4503 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4504
4505 /*
45637bab
HD
4506 * Prevent mem_cgroup_replace_page() from looking at
4507 * page->mem_cgroup of its source page while we change it.
b1b0deab 4508 */
f627c2f5 4509 ret = -EBUSY;
b1b0deab
CG
4510 if (!trylock_page(page))
4511 goto out;
4512
4513 ret = -EINVAL;
4514 if (page->mem_cgroup != from)
4515 goto out_unlock;
4516
c4843a75
GT
4517 anon = PageAnon(page);
4518
b1b0deab
CG
4519 spin_lock_irqsave(&from->move_lock, flags);
4520
c4843a75 4521 if (!anon && page_mapped(page)) {
b1b0deab
CG
4522 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4523 nr_pages);
4524 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4525 nr_pages);
4526 }
4527
c4843a75
GT
4528 /*
4529 * move_lock grabbed above and caller set from->moving_account, so
4530 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4531 * So mapping should be stable for dirty pages.
4532 */
4533 if (!anon && PageDirty(page)) {
4534 struct address_space *mapping = page_mapping(page);
4535
4536 if (mapping_cap_account_dirty(mapping)) {
4537 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4538 nr_pages);
4539 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4540 nr_pages);
4541 }
4542 }
4543
b1b0deab
CG
4544 if (PageWriteback(page)) {
4545 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4546 nr_pages);
4547 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4548 nr_pages);
4549 }
4550
4551 /*
4552 * It is safe to change page->mem_cgroup here because the page
4553 * is referenced, charged, and isolated - we can't race with
4554 * uncharging, charging, migration, or LRU putback.
4555 */
4556
4557 /* caller should have done css_get */
4558 page->mem_cgroup = to;
4559 spin_unlock_irqrestore(&from->move_lock, flags);
4560
4561 ret = 0;
4562
4563 local_irq_disable();
f627c2f5 4564 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4565 memcg_check_events(to, page);
f627c2f5 4566 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4567 memcg_check_events(from, page);
4568 local_irq_enable();
4569out_unlock:
4570 unlock_page(page);
4571out:
4572 return ret;
4573}
4574
8d32ff84 4575static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4576 unsigned long addr, pte_t ptent, union mc_target *target)
4577{
4578 struct page *page = NULL;
8d32ff84 4579 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4580 swp_entry_t ent = { .val = 0 };
4581
4582 if (pte_present(ptent))
4583 page = mc_handle_present_pte(vma, addr, ptent);
4584 else if (is_swap_pte(ptent))
4585 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4586 else if (pte_none(ptent))
87946a72 4587 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4588
4589 if (!page && !ent.val)
8d32ff84 4590 return ret;
02491447 4591 if (page) {
02491447 4592 /*
0a31bc97 4593 * Do only loose check w/o serialization.
1306a85a 4594 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4595 * not under LRU exclusion.
02491447 4596 */
1306a85a 4597 if (page->mem_cgroup == mc.from) {
02491447
DN
4598 ret = MC_TARGET_PAGE;
4599 if (target)
4600 target->page = page;
4601 }
4602 if (!ret || !target)
4603 put_page(page);
4604 }
90254a65
DN
4605 /* There is a swap entry and a page doesn't exist or isn't charged */
4606 if (ent.val && !ret &&
34c00c31 4607 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4608 ret = MC_TARGET_SWAP;
4609 if (target)
4610 target->ent = ent;
4ffef5fe 4611 }
4ffef5fe
DN
4612 return ret;
4613}
4614
12724850
NH
4615#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4616/*
4617 * We don't consider swapping or file mapped pages because THP does not
4618 * support them for now.
4619 * Caller should make sure that pmd_trans_huge(pmd) is true.
4620 */
4621static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4622 unsigned long addr, pmd_t pmd, union mc_target *target)
4623{
4624 struct page *page = NULL;
12724850
NH
4625 enum mc_target_type ret = MC_TARGET_NONE;
4626
4627 page = pmd_page(pmd);
309381fe 4628 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4629 if (!(mc.flags & MOVE_ANON))
12724850 4630 return ret;
1306a85a 4631 if (page->mem_cgroup == mc.from) {
12724850
NH
4632 ret = MC_TARGET_PAGE;
4633 if (target) {
4634 get_page(page);
4635 target->page = page;
4636 }
4637 }
4638 return ret;
4639}
4640#else
4641static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4642 unsigned long addr, pmd_t pmd, union mc_target *target)
4643{
4644 return MC_TARGET_NONE;
4645}
4646#endif
4647
4ffef5fe
DN
4648static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4649 unsigned long addr, unsigned long end,
4650 struct mm_walk *walk)
4651{
26bcd64a 4652 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4653 pte_t *pte;
4654 spinlock_t *ptl;
4655
4b471e88 4656 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
12724850
NH
4657 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4658 mc.precharge += HPAGE_PMD_NR;
bf929152 4659 spin_unlock(ptl);
1a5a9906 4660 return 0;
12724850 4661 }
03319327 4662
45f83cef
AA
4663 if (pmd_trans_unstable(pmd))
4664 return 0;
4ffef5fe
DN
4665 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4666 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4667 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4668 mc.precharge++; /* increment precharge temporarily */
4669 pte_unmap_unlock(pte - 1, ptl);
4670 cond_resched();
4671
7dc74be0
DN
4672 return 0;
4673}
4674
4ffef5fe
DN
4675static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4676{
4677 unsigned long precharge;
4ffef5fe 4678
26bcd64a
NH
4679 struct mm_walk mem_cgroup_count_precharge_walk = {
4680 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4681 .mm = mm,
4682 };
dfe076b0 4683 down_read(&mm->mmap_sem);
26bcd64a 4684 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4685 up_read(&mm->mmap_sem);
4ffef5fe
DN
4686
4687 precharge = mc.precharge;
4688 mc.precharge = 0;
4689
4690 return precharge;
4691}
4692
4ffef5fe
DN
4693static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4694{
dfe076b0
DN
4695 unsigned long precharge = mem_cgroup_count_precharge(mm);
4696
4697 VM_BUG_ON(mc.moving_task);
4698 mc.moving_task = current;
4699 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4700}
4701
dfe076b0
DN
4702/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4703static void __mem_cgroup_clear_mc(void)
4ffef5fe 4704{
2bd9bb20
KH
4705 struct mem_cgroup *from = mc.from;
4706 struct mem_cgroup *to = mc.to;
4707
4ffef5fe 4708 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4709 if (mc.precharge) {
00501b53 4710 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4711 mc.precharge = 0;
4712 }
4713 /*
4714 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4715 * we must uncharge here.
4716 */
4717 if (mc.moved_charge) {
00501b53 4718 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4719 mc.moved_charge = 0;
4ffef5fe 4720 }
483c30b5
DN
4721 /* we must fixup refcnts and charges */
4722 if (mc.moved_swap) {
483c30b5 4723 /* uncharge swap account from the old cgroup */
ce00a967 4724 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4725 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4726
05b84301 4727 /*
3e32cb2e
JW
4728 * we charged both to->memory and to->memsw, so we
4729 * should uncharge to->memory.
05b84301 4730 */
ce00a967 4731 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4732 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4733
e8ea14cc 4734 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4735
4050377b 4736 /* we've already done css_get(mc.to) */
483c30b5
DN
4737 mc.moved_swap = 0;
4738 }
dfe076b0
DN
4739 memcg_oom_recover(from);
4740 memcg_oom_recover(to);
4741 wake_up_all(&mc.waitq);
4742}
4743
4744static void mem_cgroup_clear_mc(void)
4745{
dfe076b0
DN
4746 /*
4747 * we must clear moving_task before waking up waiters at the end of
4748 * task migration.
4749 */
4750 mc.moving_task = NULL;
4751 __mem_cgroup_clear_mc();
2bd9bb20 4752 spin_lock(&mc.lock);
4ffef5fe
DN
4753 mc.from = NULL;
4754 mc.to = NULL;
2bd9bb20 4755 spin_unlock(&mc.lock);
4ffef5fe
DN
4756}
4757
1f7dd3e5 4758static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4759{
1f7dd3e5 4760 struct cgroup_subsys_state *css;
eed67d75 4761 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4762 struct mem_cgroup *from;
4530eddb 4763 struct task_struct *leader, *p;
9f2115f9 4764 struct mm_struct *mm;
1dfab5ab 4765 unsigned long move_flags;
9f2115f9 4766 int ret = 0;
7dc74be0 4767
1f7dd3e5
TH
4768 /* charge immigration isn't supported on the default hierarchy */
4769 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4770 return 0;
4771
4530eddb
TH
4772 /*
4773 * Multi-process migrations only happen on the default hierarchy
4774 * where charge immigration is not used. Perform charge
4775 * immigration if @tset contains a leader and whine if there are
4776 * multiple.
4777 */
4778 p = NULL;
1f7dd3e5 4779 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4780 WARN_ON_ONCE(p);
4781 p = leader;
1f7dd3e5 4782 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4783 }
4784 if (!p)
4785 return 0;
4786
1f7dd3e5
TH
4787 /*
4788 * We are now commited to this value whatever it is. Changes in this
4789 * tunable will only affect upcoming migrations, not the current one.
4790 * So we need to save it, and keep it going.
4791 */
4792 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4793 if (!move_flags)
4794 return 0;
4795
9f2115f9
TH
4796 from = mem_cgroup_from_task(p);
4797
4798 VM_BUG_ON(from == memcg);
4799
4800 mm = get_task_mm(p);
4801 if (!mm)
4802 return 0;
4803 /* We move charges only when we move a owner of the mm */
4804 if (mm->owner == p) {
4805 VM_BUG_ON(mc.from);
4806 VM_BUG_ON(mc.to);
4807 VM_BUG_ON(mc.precharge);
4808 VM_BUG_ON(mc.moved_charge);
4809 VM_BUG_ON(mc.moved_swap);
4810
4811 spin_lock(&mc.lock);
4812 mc.from = from;
4813 mc.to = memcg;
4814 mc.flags = move_flags;
4815 spin_unlock(&mc.lock);
4816 /* We set mc.moving_task later */
4817
4818 ret = mem_cgroup_precharge_mc(mm);
4819 if (ret)
4820 mem_cgroup_clear_mc();
7dc74be0 4821 }
9f2115f9 4822 mmput(mm);
7dc74be0
DN
4823 return ret;
4824}
4825
1f7dd3e5 4826static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4827{
4e2f245d
JW
4828 if (mc.to)
4829 mem_cgroup_clear_mc();
7dc74be0
DN
4830}
4831
4ffef5fe
DN
4832static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4833 unsigned long addr, unsigned long end,
4834 struct mm_walk *walk)
7dc74be0 4835{
4ffef5fe 4836 int ret = 0;
26bcd64a 4837 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4838 pte_t *pte;
4839 spinlock_t *ptl;
12724850
NH
4840 enum mc_target_type target_type;
4841 union mc_target target;
4842 struct page *page;
4ffef5fe 4843
4b471e88 4844 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
62ade86a 4845 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4846 spin_unlock(ptl);
12724850
NH
4847 return 0;
4848 }
4849 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4850 if (target_type == MC_TARGET_PAGE) {
4851 page = target.page;
4852 if (!isolate_lru_page(page)) {
f627c2f5 4853 if (!mem_cgroup_move_account(page, true,
1306a85a 4854 mc.from, mc.to)) {
12724850
NH
4855 mc.precharge -= HPAGE_PMD_NR;
4856 mc.moved_charge += HPAGE_PMD_NR;
4857 }
4858 putback_lru_page(page);
4859 }
4860 put_page(page);
4861 }
bf929152 4862 spin_unlock(ptl);
1a5a9906 4863 return 0;
12724850
NH
4864 }
4865
45f83cef
AA
4866 if (pmd_trans_unstable(pmd))
4867 return 0;
4ffef5fe
DN
4868retry:
4869 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4870 for (; addr != end; addr += PAGE_SIZE) {
4871 pte_t ptent = *(pte++);
02491447 4872 swp_entry_t ent;
4ffef5fe
DN
4873
4874 if (!mc.precharge)
4875 break;
4876
8d32ff84 4877 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4878 case MC_TARGET_PAGE:
4879 page = target.page;
53f9263b
KS
4880 /*
4881 * We can have a part of the split pmd here. Moving it
4882 * can be done but it would be too convoluted so simply
4883 * ignore such a partial THP and keep it in original
4884 * memcg. There should be somebody mapping the head.
4885 */
4886 if (PageTransCompound(page))
4887 goto put;
4ffef5fe
DN
4888 if (isolate_lru_page(page))
4889 goto put;
f627c2f5
KS
4890 if (!mem_cgroup_move_account(page, false,
4891 mc.from, mc.to)) {
4ffef5fe 4892 mc.precharge--;
854ffa8d
DN
4893 /* we uncharge from mc.from later. */
4894 mc.moved_charge++;
4ffef5fe
DN
4895 }
4896 putback_lru_page(page);
8d32ff84 4897put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4898 put_page(page);
4899 break;
02491447
DN
4900 case MC_TARGET_SWAP:
4901 ent = target.ent;
e91cbb42 4902 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4903 mc.precharge--;
483c30b5
DN
4904 /* we fixup refcnts and charges later. */
4905 mc.moved_swap++;
4906 }
02491447 4907 break;
4ffef5fe
DN
4908 default:
4909 break;
4910 }
4911 }
4912 pte_unmap_unlock(pte - 1, ptl);
4913 cond_resched();
4914
4915 if (addr != end) {
4916 /*
4917 * We have consumed all precharges we got in can_attach().
4918 * We try charge one by one, but don't do any additional
4919 * charges to mc.to if we have failed in charge once in attach()
4920 * phase.
4921 */
854ffa8d 4922 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4923 if (!ret)
4924 goto retry;
4925 }
4926
4927 return ret;
4928}
4929
4930static void mem_cgroup_move_charge(struct mm_struct *mm)
4931{
26bcd64a
NH
4932 struct mm_walk mem_cgroup_move_charge_walk = {
4933 .pmd_entry = mem_cgroup_move_charge_pte_range,
4934 .mm = mm,
4935 };
4ffef5fe
DN
4936
4937 lru_add_drain_all();
312722cb
JW
4938 /*
4939 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4940 * move_lock while we're moving its pages to another memcg.
4941 * Then wait for already started RCU-only updates to finish.
4942 */
4943 atomic_inc(&mc.from->moving_account);
4944 synchronize_rcu();
dfe076b0
DN
4945retry:
4946 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4947 /*
4948 * Someone who are holding the mmap_sem might be waiting in
4949 * waitq. So we cancel all extra charges, wake up all waiters,
4950 * and retry. Because we cancel precharges, we might not be able
4951 * to move enough charges, but moving charge is a best-effort
4952 * feature anyway, so it wouldn't be a big problem.
4953 */
4954 __mem_cgroup_clear_mc();
4955 cond_resched();
4956 goto retry;
4957 }
26bcd64a
NH
4958 /*
4959 * When we have consumed all precharges and failed in doing
4960 * additional charge, the page walk just aborts.
4961 */
4962 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 4963 up_read(&mm->mmap_sem);
312722cb 4964 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4965}
4966
1f7dd3e5 4967static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 4968{
1f7dd3e5
TH
4969 struct cgroup_subsys_state *css;
4970 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 4971 struct mm_struct *mm = get_task_mm(p);
dfe076b0 4972
dfe076b0 4973 if (mm) {
a433658c
KM
4974 if (mc.to)
4975 mem_cgroup_move_charge(mm);
dfe076b0
DN
4976 mmput(mm);
4977 }
a433658c
KM
4978 if (mc.to)
4979 mem_cgroup_clear_mc();
67e465a7 4980}
5cfb80a7 4981#else /* !CONFIG_MMU */
1f7dd3e5 4982static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4983{
4984 return 0;
4985}
1f7dd3e5 4986static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4987{
4988}
1f7dd3e5 4989static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
4990{
4991}
4992#endif
67e465a7 4993
f00baae7
TH
4994/*
4995 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4996 * to verify whether we're attached to the default hierarchy on each mount
4997 * attempt.
f00baae7 4998 */
eb95419b 4999static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5000{
5001 /*
aa6ec29b 5002 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5003 * guarantees that @root doesn't have any children, so turning it
5004 * on for the root memcg is enough.
5005 */
9e10a130 5006 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5007 root_mem_cgroup->use_hierarchy = true;
5008 else
5009 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5010}
5011
241994ed
JW
5012static u64 memory_current_read(struct cgroup_subsys_state *css,
5013 struct cftype *cft)
5014{
f5fc3c5d
JW
5015 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5016
5017 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5018}
5019
5020static int memory_low_show(struct seq_file *m, void *v)
5021{
5022 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5023 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5024
5025 if (low == PAGE_COUNTER_MAX)
d2973697 5026 seq_puts(m, "max\n");
241994ed
JW
5027 else
5028 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5029
5030 return 0;
5031}
5032
5033static ssize_t memory_low_write(struct kernfs_open_file *of,
5034 char *buf, size_t nbytes, loff_t off)
5035{
5036 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5037 unsigned long low;
5038 int err;
5039
5040 buf = strstrip(buf);
d2973697 5041 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5042 if (err)
5043 return err;
5044
5045 memcg->low = low;
5046
5047 return nbytes;
5048}
5049
5050static int memory_high_show(struct seq_file *m, void *v)
5051{
5052 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5053 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5054
5055 if (high == PAGE_COUNTER_MAX)
d2973697 5056 seq_puts(m, "max\n");
241994ed
JW
5057 else
5058 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5059
5060 return 0;
5061}
5062
5063static ssize_t memory_high_write(struct kernfs_open_file *of,
5064 char *buf, size_t nbytes, loff_t off)
5065{
5066 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5067 unsigned long high;
5068 int err;
5069
5070 buf = strstrip(buf);
d2973697 5071 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5072 if (err)
5073 return err;
5074
5075 memcg->high = high;
5076
2529bb3a 5077 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5078 return nbytes;
5079}
5080
5081static int memory_max_show(struct seq_file *m, void *v)
5082{
5083 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5084 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5085
5086 if (max == PAGE_COUNTER_MAX)
d2973697 5087 seq_puts(m, "max\n");
241994ed
JW
5088 else
5089 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5090
5091 return 0;
5092}
5093
5094static ssize_t memory_max_write(struct kernfs_open_file *of,
5095 char *buf, size_t nbytes, loff_t off)
5096{
5097 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5098 unsigned long max;
5099 int err;
5100
5101 buf = strstrip(buf);
d2973697 5102 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5103 if (err)
5104 return err;
5105
5106 err = mem_cgroup_resize_limit(memcg, max);
5107 if (err)
5108 return err;
5109
2529bb3a 5110 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5111 return nbytes;
5112}
5113
5114static int memory_events_show(struct seq_file *m, void *v)
5115{
5116 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5117
5118 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5119 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5120 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5121 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5122
5123 return 0;
5124}
5125
5126static struct cftype memory_files[] = {
5127 {
5128 .name = "current",
f5fc3c5d 5129 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5130 .read_u64 = memory_current_read,
5131 },
5132 {
5133 .name = "low",
5134 .flags = CFTYPE_NOT_ON_ROOT,
5135 .seq_show = memory_low_show,
5136 .write = memory_low_write,
5137 },
5138 {
5139 .name = "high",
5140 .flags = CFTYPE_NOT_ON_ROOT,
5141 .seq_show = memory_high_show,
5142 .write = memory_high_write,
5143 },
5144 {
5145 .name = "max",
5146 .flags = CFTYPE_NOT_ON_ROOT,
5147 .seq_show = memory_max_show,
5148 .write = memory_max_write,
5149 },
5150 {
5151 .name = "events",
5152 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5153 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5154 .seq_show = memory_events_show,
5155 },
5156 { } /* terminate */
5157};
5158
073219e9 5159struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5160 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5161 .css_online = mem_cgroup_css_online,
92fb9748 5162 .css_offline = mem_cgroup_css_offline,
6df38689 5163 .css_released = mem_cgroup_css_released,
92fb9748 5164 .css_free = mem_cgroup_css_free,
1ced953b 5165 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5166 .can_attach = mem_cgroup_can_attach,
5167 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5168 .attach = mem_cgroup_move_task,
f00baae7 5169 .bind = mem_cgroup_bind,
241994ed
JW
5170 .dfl_cftypes = memory_files,
5171 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5172 .early_init = 0,
8cdea7c0 5173};
c077719b 5174
241994ed
JW
5175/**
5176 * mem_cgroup_low - check if memory consumption is below the normal range
5177 * @root: the highest ancestor to consider
5178 * @memcg: the memory cgroup to check
5179 *
5180 * Returns %true if memory consumption of @memcg, and that of all
5181 * configurable ancestors up to @root, is below the normal range.
5182 */
5183bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5184{
5185 if (mem_cgroup_disabled())
5186 return false;
5187
5188 /*
5189 * The toplevel group doesn't have a configurable range, so
5190 * it's never low when looked at directly, and it is not
5191 * considered an ancestor when assessing the hierarchy.
5192 */
5193
5194 if (memcg == root_mem_cgroup)
5195 return false;
5196
4e54dede 5197 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5198 return false;
5199
5200 while (memcg != root) {
5201 memcg = parent_mem_cgroup(memcg);
5202
5203 if (memcg == root_mem_cgroup)
5204 break;
5205
4e54dede 5206 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5207 return false;
5208 }
5209 return true;
5210}
5211
00501b53
JW
5212/**
5213 * mem_cgroup_try_charge - try charging a page
5214 * @page: page to charge
5215 * @mm: mm context of the victim
5216 * @gfp_mask: reclaim mode
5217 * @memcgp: charged memcg return
5218 *
5219 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5220 * pages according to @gfp_mask if necessary.
5221 *
5222 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5223 * Otherwise, an error code is returned.
5224 *
5225 * After page->mapping has been set up, the caller must finalize the
5226 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5227 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5228 */
5229int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5230 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5231 bool compound)
00501b53
JW
5232{
5233 struct mem_cgroup *memcg = NULL;
f627c2f5 5234 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5235 int ret = 0;
5236
5237 if (mem_cgroup_disabled())
5238 goto out;
5239
5240 if (PageSwapCache(page)) {
00501b53
JW
5241 /*
5242 * Every swap fault against a single page tries to charge the
5243 * page, bail as early as possible. shmem_unuse() encounters
5244 * already charged pages, too. The USED bit is protected by
5245 * the page lock, which serializes swap cache removal, which
5246 * in turn serializes uncharging.
5247 */
e993d905 5248 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5249 if (page->mem_cgroup)
00501b53 5250 goto out;
e993d905 5251
7941d214 5252 if (do_memsw_account()) {
e993d905
VD
5253 swp_entry_t ent = { .val = page_private(page), };
5254 unsigned short id = lookup_swap_cgroup_id(ent);
5255
5256 rcu_read_lock();
5257 memcg = mem_cgroup_from_id(id);
5258 if (memcg && !css_tryget_online(&memcg->css))
5259 memcg = NULL;
5260 rcu_read_unlock();
5261 }
00501b53
JW
5262 }
5263
00501b53
JW
5264 if (!memcg)
5265 memcg = get_mem_cgroup_from_mm(mm);
5266
5267 ret = try_charge(memcg, gfp_mask, nr_pages);
5268
5269 css_put(&memcg->css);
00501b53
JW
5270out:
5271 *memcgp = memcg;
5272 return ret;
5273}
5274
5275/**
5276 * mem_cgroup_commit_charge - commit a page charge
5277 * @page: page to charge
5278 * @memcg: memcg to charge the page to
5279 * @lrucare: page might be on LRU already
5280 *
5281 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5282 * after page->mapping has been set up. This must happen atomically
5283 * as part of the page instantiation, i.e. under the page table lock
5284 * for anonymous pages, under the page lock for page and swap cache.
5285 *
5286 * In addition, the page must not be on the LRU during the commit, to
5287 * prevent racing with task migration. If it might be, use @lrucare.
5288 *
5289 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5290 */
5291void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5292 bool lrucare, bool compound)
00501b53 5293{
f627c2f5 5294 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5295
5296 VM_BUG_ON_PAGE(!page->mapping, page);
5297 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5298
5299 if (mem_cgroup_disabled())
5300 return;
5301 /*
5302 * Swap faults will attempt to charge the same page multiple
5303 * times. But reuse_swap_page() might have removed the page
5304 * from swapcache already, so we can't check PageSwapCache().
5305 */
5306 if (!memcg)
5307 return;
5308
6abb5a86
JW
5309 commit_charge(page, memcg, lrucare);
5310
6abb5a86 5311 local_irq_disable();
f627c2f5 5312 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5313 memcg_check_events(memcg, page);
5314 local_irq_enable();
00501b53 5315
7941d214 5316 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5317 swp_entry_t entry = { .val = page_private(page) };
5318 /*
5319 * The swap entry might not get freed for a long time,
5320 * let's not wait for it. The page already received a
5321 * memory+swap charge, drop the swap entry duplicate.
5322 */
5323 mem_cgroup_uncharge_swap(entry);
5324 }
5325}
5326
5327/**
5328 * mem_cgroup_cancel_charge - cancel a page charge
5329 * @page: page to charge
5330 * @memcg: memcg to charge the page to
5331 *
5332 * Cancel a charge transaction started by mem_cgroup_try_charge().
5333 */
f627c2f5
KS
5334void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5335 bool compound)
00501b53 5336{
f627c2f5 5337 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5338
5339 if (mem_cgroup_disabled())
5340 return;
5341 /*
5342 * Swap faults will attempt to charge the same page multiple
5343 * times. But reuse_swap_page() might have removed the page
5344 * from swapcache already, so we can't check PageSwapCache().
5345 */
5346 if (!memcg)
5347 return;
5348
00501b53
JW
5349 cancel_charge(memcg, nr_pages);
5350}
5351
747db954 5352static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5353 unsigned long nr_anon, unsigned long nr_file,
5354 unsigned long nr_huge, struct page *dummy_page)
5355{
18eca2e6 5356 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5357 unsigned long flags;
5358
ce00a967 5359 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5360 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5361 if (do_memsw_account())
18eca2e6 5362 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5363 memcg_oom_recover(memcg);
5364 }
747db954
JW
5365
5366 local_irq_save(flags);
5367 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5368 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5369 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5370 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5371 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5372 memcg_check_events(memcg, dummy_page);
5373 local_irq_restore(flags);
e8ea14cc
JW
5374
5375 if (!mem_cgroup_is_root(memcg))
18eca2e6 5376 css_put_many(&memcg->css, nr_pages);
747db954
JW
5377}
5378
5379static void uncharge_list(struct list_head *page_list)
5380{
5381 struct mem_cgroup *memcg = NULL;
747db954
JW
5382 unsigned long nr_anon = 0;
5383 unsigned long nr_file = 0;
5384 unsigned long nr_huge = 0;
5385 unsigned long pgpgout = 0;
747db954
JW
5386 struct list_head *next;
5387 struct page *page;
5388
5389 next = page_list->next;
5390 do {
5391 unsigned int nr_pages = 1;
747db954
JW
5392
5393 page = list_entry(next, struct page, lru);
5394 next = page->lru.next;
5395
5396 VM_BUG_ON_PAGE(PageLRU(page), page);
5397 VM_BUG_ON_PAGE(page_count(page), page);
5398
1306a85a 5399 if (!page->mem_cgroup)
747db954
JW
5400 continue;
5401
5402 /*
5403 * Nobody should be changing or seriously looking at
1306a85a 5404 * page->mem_cgroup at this point, we have fully
29833315 5405 * exclusive access to the page.
747db954
JW
5406 */
5407
1306a85a 5408 if (memcg != page->mem_cgroup) {
747db954 5409 if (memcg) {
18eca2e6
JW
5410 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5411 nr_huge, page);
5412 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5413 }
1306a85a 5414 memcg = page->mem_cgroup;
747db954
JW
5415 }
5416
5417 if (PageTransHuge(page)) {
5418 nr_pages <<= compound_order(page);
5419 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5420 nr_huge += nr_pages;
5421 }
5422
5423 if (PageAnon(page))
5424 nr_anon += nr_pages;
5425 else
5426 nr_file += nr_pages;
5427
1306a85a 5428 page->mem_cgroup = NULL;
747db954
JW
5429
5430 pgpgout++;
5431 } while (next != page_list);
5432
5433 if (memcg)
18eca2e6
JW
5434 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5435 nr_huge, page);
747db954
JW
5436}
5437
0a31bc97
JW
5438/**
5439 * mem_cgroup_uncharge - uncharge a page
5440 * @page: page to uncharge
5441 *
5442 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5443 * mem_cgroup_commit_charge().
5444 */
5445void mem_cgroup_uncharge(struct page *page)
5446{
0a31bc97
JW
5447 if (mem_cgroup_disabled())
5448 return;
5449
747db954 5450 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5451 if (!page->mem_cgroup)
0a31bc97
JW
5452 return;
5453
747db954
JW
5454 INIT_LIST_HEAD(&page->lru);
5455 uncharge_list(&page->lru);
5456}
0a31bc97 5457
747db954
JW
5458/**
5459 * mem_cgroup_uncharge_list - uncharge a list of page
5460 * @page_list: list of pages to uncharge
5461 *
5462 * Uncharge a list of pages previously charged with
5463 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5464 */
5465void mem_cgroup_uncharge_list(struct list_head *page_list)
5466{
5467 if (mem_cgroup_disabled())
5468 return;
0a31bc97 5469
747db954
JW
5470 if (!list_empty(page_list))
5471 uncharge_list(page_list);
0a31bc97
JW
5472}
5473
5474/**
45637bab 5475 * mem_cgroup_replace_page - migrate a charge to another page
0a31bc97
JW
5476 * @oldpage: currently charged page
5477 * @newpage: page to transfer the charge to
0a31bc97
JW
5478 *
5479 * Migrate the charge from @oldpage to @newpage.
5480 *
5481 * Both pages must be locked, @newpage->mapping must be set up.
25be6a65 5482 * Either or both pages might be on the LRU already.
0a31bc97 5483 */
45637bab 5484void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
0a31bc97 5485{
29833315 5486 struct mem_cgroup *memcg;
0a31bc97
JW
5487 int isolated;
5488
5489 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5490 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5491 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5492 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5493 newpage);
0a31bc97
JW
5494
5495 if (mem_cgroup_disabled())
5496 return;
5497
5498 /* Page cache replacement: new page already charged? */
1306a85a 5499 if (newpage->mem_cgroup)
0a31bc97
JW
5500 return;
5501
45637bab 5502 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5503 memcg = oldpage->mem_cgroup;
29833315 5504 if (!memcg)
0a31bc97
JW
5505 return;
5506
45637bab 5507 lock_page_lru(oldpage, &isolated);
1306a85a 5508 oldpage->mem_cgroup = NULL;
45637bab 5509 unlock_page_lru(oldpage, isolated);
0a31bc97 5510
45637bab 5511 commit_charge(newpage, memcg, true);
0a31bc97
JW
5512}
5513
f7e1cb6e 5514#ifdef CONFIG_INET
11092087 5515
ef12947c 5516DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5517EXPORT_SYMBOL(memcg_sockets_enabled_key);
5518
5519void sock_update_memcg(struct sock *sk)
5520{
5521 struct mem_cgroup *memcg;
5522
5523 /* Socket cloning can throw us here with sk_cgrp already
5524 * filled. It won't however, necessarily happen from
5525 * process context. So the test for root memcg given
5526 * the current task's memcg won't help us in this case.
5527 *
5528 * Respecting the original socket's memcg is a better
5529 * decision in this case.
5530 */
5531 if (sk->sk_memcg) {
5532 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5533 css_get(&sk->sk_memcg->css);
5534 return;
5535 }
5536
5537 rcu_read_lock();
5538 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5539 if (memcg == root_mem_cgroup)
5540 goto out;
5541#ifdef CONFIG_MEMCG_KMEM
5542 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
5543 goto out;
5544#endif
5545 if (css_tryget_online(&memcg->css))
11092087 5546 sk->sk_memcg = memcg;
f7e1cb6e 5547out:
11092087
JW
5548 rcu_read_unlock();
5549}
5550EXPORT_SYMBOL(sock_update_memcg);
5551
5552void sock_release_memcg(struct sock *sk)
5553{
5554 WARN_ON(!sk->sk_memcg);
5555 css_put(&sk->sk_memcg->css);
5556}
5557
5558/**
5559 * mem_cgroup_charge_skmem - charge socket memory
5560 * @memcg: memcg to charge
5561 * @nr_pages: number of pages to charge
5562 *
5563 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5564 * @memcg's configured limit, %false if the charge had to be forced.
5565 */
5566bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5567{
f7e1cb6e 5568 gfp_t gfp_mask = GFP_KERNEL;
11092087 5569
f7e1cb6e
JW
5570#ifdef CONFIG_MEMCG_KMEM
5571 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5572 struct page_counter *counter;
5573
5574 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5575 nr_pages, &counter)) {
5576 memcg->tcp_mem.memory_pressure = 0;
5577 return true;
5578 }
5579 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5580 memcg->tcp_mem.memory_pressure = 1;
5581 return false;
11092087 5582 }
f7e1cb6e
JW
5583#endif
5584 /* Don't block in the packet receive path */
5585 if (in_softirq())
5586 gfp_mask = GFP_NOWAIT;
5587
5588 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5589 return true;
5590
5591 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5592 return false;
5593}
5594
5595/**
5596 * mem_cgroup_uncharge_skmem - uncharge socket memory
5597 * @memcg - memcg to uncharge
5598 * @nr_pages - number of pages to uncharge
5599 */
5600void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5601{
f7e1cb6e
JW
5602#ifdef CONFIG_MEMCG_KMEM
5603 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5604 page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
5605 nr_pages);
5606 return;
5607 }
5608#endif
5609 page_counter_uncharge(&memcg->memory, nr_pages);
5610 css_put_many(&memcg->css, nr_pages);
11092087
JW
5611}
5612
f7e1cb6e
JW
5613#endif /* CONFIG_INET */
5614
5615static int __init cgroup_memory(char *s)
5616{
5617 char *token;
5618
5619 while ((token = strsep(&s, ",")) != NULL) {
5620 if (!*token)
5621 continue;
5622 if (!strcmp(token, "nosocket"))
5623 cgroup_memory_nosocket = true;
5624 }
5625 return 0;
5626}
5627__setup("cgroup.memory=", cgroup_memory);
11092087 5628
2d11085e 5629/*
1081312f
MH
5630 * subsys_initcall() for memory controller.
5631 *
5632 * Some parts like hotcpu_notifier() have to be initialized from this context
5633 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5634 * everything that doesn't depend on a specific mem_cgroup structure should
5635 * be initialized from here.
2d11085e
MH
5636 */
5637static int __init mem_cgroup_init(void)
5638{
95a045f6
JW
5639 int cpu, node;
5640
2d11085e 5641 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5642
5643 for_each_possible_cpu(cpu)
5644 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5645 drain_local_stock);
5646
5647 for_each_node(node) {
5648 struct mem_cgroup_tree_per_node *rtpn;
5649 int zone;
5650
5651 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5652 node_online(node) ? node : NUMA_NO_NODE);
5653
5654 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5655 struct mem_cgroup_tree_per_zone *rtpz;
5656
5657 rtpz = &rtpn->rb_tree_per_zone[zone];
5658 rtpz->rb_root = RB_ROOT;
5659 spin_lock_init(&rtpz->lock);
5660 }
5661 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5662 }
5663
2d11085e
MH
5664 return 0;
5665}
5666subsys_initcall(mem_cgroup_init);
21afa38e
JW
5667
5668#ifdef CONFIG_MEMCG_SWAP
5669/**
5670 * mem_cgroup_swapout - transfer a memsw charge to swap
5671 * @page: page whose memsw charge to transfer
5672 * @entry: swap entry to move the charge to
5673 *
5674 * Transfer the memsw charge of @page to @entry.
5675 */
5676void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5677{
5678 struct mem_cgroup *memcg;
5679 unsigned short oldid;
5680
5681 VM_BUG_ON_PAGE(PageLRU(page), page);
5682 VM_BUG_ON_PAGE(page_count(page), page);
5683
7941d214 5684 if (!do_memsw_account())
21afa38e
JW
5685 return;
5686
5687 memcg = page->mem_cgroup;
5688
5689 /* Readahead page, never charged */
5690 if (!memcg)
5691 return;
5692
5693 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5694 VM_BUG_ON_PAGE(oldid, page);
5695 mem_cgroup_swap_statistics(memcg, true);
5696
5697 page->mem_cgroup = NULL;
5698
5699 if (!mem_cgroup_is_root(memcg))
5700 page_counter_uncharge(&memcg->memory, 1);
5701
ce9ce665
SAS
5702 /*
5703 * Interrupts should be disabled here because the caller holds the
5704 * mapping->tree_lock lock which is taken with interrupts-off. It is
5705 * important here to have the interrupts disabled because it is the
5706 * only synchronisation we have for udpating the per-CPU variables.
5707 */
5708 VM_BUG_ON(!irqs_disabled());
f627c2f5 5709 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5710 memcg_check_events(memcg, page);
5711}
5712
5713/**
5714 * mem_cgroup_uncharge_swap - uncharge a swap entry
5715 * @entry: swap entry to uncharge
5716 *
5717 * Drop the memsw charge associated with @entry.
5718 */
5719void mem_cgroup_uncharge_swap(swp_entry_t entry)
5720{
5721 struct mem_cgroup *memcg;
5722 unsigned short id;
5723
7941d214 5724 if (!do_memsw_account())
21afa38e
JW
5725 return;
5726
5727 id = swap_cgroup_record(entry, 0);
5728 rcu_read_lock();
adbe427b 5729 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5730 if (memcg) {
5731 if (!mem_cgroup_is_root(memcg))
5732 page_counter_uncharge(&memcg->memsw, 1);
5733 mem_cgroup_swap_statistics(memcg, false);
5734 css_put(&memcg->css);
5735 }
5736 rcu_read_unlock();
5737}
5738
5739/* for remember boot option*/
5740#ifdef CONFIG_MEMCG_SWAP_ENABLED
5741static int really_do_swap_account __initdata = 1;
5742#else
5743static int really_do_swap_account __initdata;
5744#endif
5745
5746static int __init enable_swap_account(char *s)
5747{
5748 if (!strcmp(s, "1"))
5749 really_do_swap_account = 1;
5750 else if (!strcmp(s, "0"))
5751 really_do_swap_account = 0;
5752 return 1;
5753}
5754__setup("swapaccount=", enable_swap_account);
5755
5756static struct cftype memsw_cgroup_files[] = {
5757 {
5758 .name = "memsw.usage_in_bytes",
5759 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5760 .read_u64 = mem_cgroup_read_u64,
5761 },
5762 {
5763 .name = "memsw.max_usage_in_bytes",
5764 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5765 .write = mem_cgroup_reset,
5766 .read_u64 = mem_cgroup_read_u64,
5767 },
5768 {
5769 .name = "memsw.limit_in_bytes",
5770 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5771 .write = mem_cgroup_write,
5772 .read_u64 = mem_cgroup_read_u64,
5773 },
5774 {
5775 .name = "memsw.failcnt",
5776 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5777 .write = mem_cgroup_reset,
5778 .read_u64 = mem_cgroup_read_u64,
5779 },
5780 { }, /* terminate */
5781};
5782
5783static int __init mem_cgroup_swap_init(void)
5784{
5785 if (!mem_cgroup_disabled() && really_do_swap_account) {
5786 do_swap_account = 1;
5787 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5788 memsw_cgroup_files));
5789 }
5790 return 0;
5791}
5792subsys_initcall(mem_cgroup_swap_init);
5793
5794#endif /* CONFIG_MEMCG_SWAP */