memcg: move memcg_{alloc,free}_cache_params to slab_common.c
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
2f7dd7a4
JW
295 /* css_online() has been completed */
296 int initialized;
297
465939a1
LZ
298 /*
299 * the counter to account for mem+swap usage.
300 */
301 struct res_counter memsw;
59927fb9 302
510fc4e1
GC
303 /*
304 * the counter to account for kernel memory usage.
305 */
306 struct res_counter kmem;
18f59ea7
BS
307 /*
308 * Should the accounting and control be hierarchical, per subtree?
309 */
310 bool use_hierarchy;
510fc4e1 311 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
312
313 bool oom_lock;
314 atomic_t under_oom;
3812c8c8 315 atomic_t oom_wakeups;
79dfdacc 316
1f4c025b 317 int swappiness;
3c11ecf4
KH
318 /* OOM-Killer disable */
319 int oom_kill_disable;
a7885eb8 320
22a668d7
KH
321 /* set when res.limit == memsw.limit */
322 bool memsw_is_minimum;
323
2e72b634
KS
324 /* protect arrays of thresholds */
325 struct mutex thresholds_lock;
326
327 /* thresholds for memory usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds thresholds;
907860ed 329
2e72b634 330 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 331 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 332
9490ff27
KH
333 /* For oom notifier event fd */
334 struct list_head oom_notify;
185efc0f 335
7dc74be0
DN
336 /*
337 * Should we move charges of a task when a task is moved into this
338 * mem_cgroup ? And what type of charges should we move ?
339 */
f894ffa8 340 unsigned long move_charge_at_immigrate;
619d094b
KH
341 /*
342 * set > 0 if pages under this cgroup are moving to other cgroup.
343 */
344 atomic_t moving_account;
312734c0
KH
345 /* taken only while moving_account > 0 */
346 spinlock_t move_lock;
d52aa412 347 /*
c62b1a3b 348 * percpu counter.
d52aa412 349 */
3a7951b4 350 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
351 /*
352 * used when a cpu is offlined or other synchronizations
353 * See mem_cgroup_read_stat().
354 */
355 struct mem_cgroup_stat_cpu nocpu_base;
356 spinlock_t pcp_counter_lock;
d1a4c0b3 357
5f578161 358 atomic_t dead_count;
4bd2c1ee 359#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 360 struct cg_proto tcp_mem;
d1a4c0b3 361#endif
2633d7a0 362#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
363 /* analogous to slab_common's slab_caches list, but per-memcg;
364 * protected by memcg_slab_mutex */
2633d7a0 365 struct list_head memcg_slab_caches;
2633d7a0
GC
366 /* Index in the kmem_cache->memcg_params->memcg_caches array */
367 int kmemcg_id;
368#endif
45cf7ebd
GC
369
370 int last_scanned_node;
371#if MAX_NUMNODES > 1
372 nodemask_t scan_nodes;
373 atomic_t numainfo_events;
374 atomic_t numainfo_updating;
375#endif
70ddf637 376
fba94807
TH
377 /* List of events which userspace want to receive */
378 struct list_head event_list;
379 spinlock_t event_list_lock;
380
54f72fe0
JW
381 struct mem_cgroup_per_node *nodeinfo[0];
382 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
383};
384
510fc4e1
GC
385/* internal only representation about the status of kmem accounting. */
386enum {
6de64beb 387 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 388 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
389};
390
510fc4e1
GC
391#ifdef CONFIG_MEMCG_KMEM
392static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
393{
394 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
395}
7de37682
GC
396
397static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
398{
399 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
400}
401
402static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
403{
10d5ebf4
LZ
404 /*
405 * Our caller must use css_get() first, because memcg_uncharge_kmem()
406 * will call css_put() if it sees the memcg is dead.
407 */
408 smp_wmb();
7de37682
GC
409 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
410 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
411}
412
413static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
414{
415 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
416 &memcg->kmem_account_flags);
417}
510fc4e1
GC
418#endif
419
7dc74be0
DN
420/* Stuffs for move charges at task migration. */
421/*
ee5e8472
GC
422 * Types of charges to be moved. "move_charge_at_immitgrate" and
423 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
424 */
425enum move_type {
4ffef5fe 426 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 427 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
428 NR_MOVE_TYPE,
429};
430
4ffef5fe
DN
431/* "mc" and its members are protected by cgroup_mutex */
432static struct move_charge_struct {
b1dd693e 433 spinlock_t lock; /* for from, to */
4ffef5fe
DN
434 struct mem_cgroup *from;
435 struct mem_cgroup *to;
ee5e8472 436 unsigned long immigrate_flags;
4ffef5fe 437 unsigned long precharge;
854ffa8d 438 unsigned long moved_charge;
483c30b5 439 unsigned long moved_swap;
8033b97c
DN
440 struct task_struct *moving_task; /* a task moving charges */
441 wait_queue_head_t waitq; /* a waitq for other context */
442} mc = {
2bd9bb20 443 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
444 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
445};
4ffef5fe 446
90254a65
DN
447static bool move_anon(void)
448{
ee5e8472 449 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
450}
451
87946a72
DN
452static bool move_file(void)
453{
ee5e8472 454 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
455}
456
4e416953
BS
457/*
458 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
459 * limit reclaim to prevent infinite loops, if they ever occur.
460 */
a0db00fc 461#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 462#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 463
217bc319
KH
464enum charge_type {
465 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 466 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 467 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 468 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
469 NR_CHARGE_TYPE,
470};
471
8c7c6e34 472/* for encoding cft->private value on file */
86ae53e1
GC
473enum res_type {
474 _MEM,
475 _MEMSWAP,
476 _OOM_TYPE,
510fc4e1 477 _KMEM,
86ae53e1
GC
478};
479
a0db00fc
KS
480#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
481#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 482#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
483/* Used for OOM nofiier */
484#define OOM_CONTROL (0)
8c7c6e34 485
75822b44
BS
486/*
487 * Reclaim flags for mem_cgroup_hierarchical_reclaim
488 */
489#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
490#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
491#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
492#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
493
0999821b
GC
494/*
495 * The memcg_create_mutex will be held whenever a new cgroup is created.
496 * As a consequence, any change that needs to protect against new child cgroups
497 * appearing has to hold it as well.
498 */
499static DEFINE_MUTEX(memcg_create_mutex);
500
b2145145
WL
501struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
502{
a7c6d554 503 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
504}
505
70ddf637
AV
506/* Some nice accessors for the vmpressure. */
507struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
508{
509 if (!memcg)
510 memcg = root_mem_cgroup;
511 return &memcg->vmpressure;
512}
513
514struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
515{
516 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
517}
518
7ffc0edc
MH
519static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
520{
521 return (memcg == root_mem_cgroup);
522}
523
4219b2da
LZ
524/*
525 * We restrict the id in the range of [1, 65535], so it can fit into
526 * an unsigned short.
527 */
528#define MEM_CGROUP_ID_MAX USHRT_MAX
529
34c00c31
LZ
530static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
531{
15a4c835 532 return memcg->css.id;
34c00c31
LZ
533}
534
535static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
536{
537 struct cgroup_subsys_state *css;
538
7d699ddb 539 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
540 return mem_cgroup_from_css(css);
541}
542
e1aab161 543/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 544#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 545
e1aab161
GC
546void sock_update_memcg(struct sock *sk)
547{
376be5ff 548 if (mem_cgroup_sockets_enabled) {
e1aab161 549 struct mem_cgroup *memcg;
3f134619 550 struct cg_proto *cg_proto;
e1aab161
GC
551
552 BUG_ON(!sk->sk_prot->proto_cgroup);
553
f3f511e1
GC
554 /* Socket cloning can throw us here with sk_cgrp already
555 * filled. It won't however, necessarily happen from
556 * process context. So the test for root memcg given
557 * the current task's memcg won't help us in this case.
558 *
559 * Respecting the original socket's memcg is a better
560 * decision in this case.
561 */
562 if (sk->sk_cgrp) {
563 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 564 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
565 return;
566 }
567
e1aab161
GC
568 rcu_read_lock();
569 memcg = mem_cgroup_from_task(current);
3f134619 570 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 571 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
572 memcg_proto_active(cg_proto) &&
573 css_tryget_online(&memcg->css)) {
3f134619 574 sk->sk_cgrp = cg_proto;
e1aab161
GC
575 }
576 rcu_read_unlock();
577 }
578}
579EXPORT_SYMBOL(sock_update_memcg);
580
581void sock_release_memcg(struct sock *sk)
582{
376be5ff 583 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
584 struct mem_cgroup *memcg;
585 WARN_ON(!sk->sk_cgrp->memcg);
586 memcg = sk->sk_cgrp->memcg;
5347e5ae 587 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
588 }
589}
d1a4c0b3
GC
590
591struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
592{
593 if (!memcg || mem_cgroup_is_root(memcg))
594 return NULL;
595
2e685cad 596 return &memcg->tcp_mem;
d1a4c0b3
GC
597}
598EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 599
3f134619
GC
600static void disarm_sock_keys(struct mem_cgroup *memcg)
601{
2e685cad 602 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
603 return;
604 static_key_slow_dec(&memcg_socket_limit_enabled);
605}
606#else
607static void disarm_sock_keys(struct mem_cgroup *memcg)
608{
609}
610#endif
611
a8964b9b 612#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
613/*
614 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
615 * The main reason for not using cgroup id for this:
616 * this works better in sparse environments, where we have a lot of memcgs,
617 * but only a few kmem-limited. Or also, if we have, for instance, 200
618 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
619 * 200 entry array for that.
55007d84
GC
620 *
621 * The current size of the caches array is stored in
622 * memcg_limited_groups_array_size. It will double each time we have to
623 * increase it.
624 */
625static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
626int memcg_limited_groups_array_size;
627
55007d84
GC
628/*
629 * MIN_SIZE is different than 1, because we would like to avoid going through
630 * the alloc/free process all the time. In a small machine, 4 kmem-limited
631 * cgroups is a reasonable guess. In the future, it could be a parameter or
632 * tunable, but that is strictly not necessary.
633 *
b8627835 634 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
635 * this constant directly from cgroup, but it is understandable that this is
636 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 637 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
638 * increase ours as well if it increases.
639 */
640#define MEMCG_CACHES_MIN_SIZE 4
b8627835 641#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 642
d7f25f8a
GC
643/*
644 * A lot of the calls to the cache allocation functions are expected to be
645 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
646 * conditional to this static branch, we'll have to allow modules that does
647 * kmem_cache_alloc and the such to see this symbol as well
648 */
a8964b9b 649struct static_key memcg_kmem_enabled_key;
d7f25f8a 650EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
651
652static void disarm_kmem_keys(struct mem_cgroup *memcg)
653{
55007d84 654 if (memcg_kmem_is_active(memcg)) {
a8964b9b 655 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
656 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
657 }
bea207c8
GC
658 /*
659 * This check can't live in kmem destruction function,
660 * since the charges will outlive the cgroup
661 */
662 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
663}
664#else
665static void disarm_kmem_keys(struct mem_cgroup *memcg)
666{
667}
668#endif /* CONFIG_MEMCG_KMEM */
669
670static void disarm_static_keys(struct mem_cgroup *memcg)
671{
672 disarm_sock_keys(memcg);
673 disarm_kmem_keys(memcg);
674}
675
c0ff4b85 676static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 677
f64c3f54 678static struct mem_cgroup_per_zone *
e231875b 679mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 680{
e231875b
JZ
681 int nid = zone_to_nid(zone);
682 int zid = zone_idx(zone);
683
54f72fe0 684 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
685}
686
c0ff4b85 687struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 688{
c0ff4b85 689 return &memcg->css;
d324236b
WF
690}
691
f64c3f54 692static struct mem_cgroup_per_zone *
e231875b 693mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 694{
97a6c37b
JW
695 int nid = page_to_nid(page);
696 int zid = page_zonenum(page);
f64c3f54 697
e231875b 698 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
699}
700
bb4cc1a8
AM
701static struct mem_cgroup_tree_per_zone *
702soft_limit_tree_node_zone(int nid, int zid)
703{
704 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
705}
706
707static struct mem_cgroup_tree_per_zone *
708soft_limit_tree_from_page(struct page *page)
709{
710 int nid = page_to_nid(page);
711 int zid = page_zonenum(page);
712
713 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
714}
715
cf2c8127
JW
716static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz,
718 unsigned long long new_usage_in_excess)
bb4cc1a8
AM
719{
720 struct rb_node **p = &mctz->rb_root.rb_node;
721 struct rb_node *parent = NULL;
722 struct mem_cgroup_per_zone *mz_node;
723
724 if (mz->on_tree)
725 return;
726
727 mz->usage_in_excess = new_usage_in_excess;
728 if (!mz->usage_in_excess)
729 return;
730 while (*p) {
731 parent = *p;
732 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
733 tree_node);
734 if (mz->usage_in_excess < mz_node->usage_in_excess)
735 p = &(*p)->rb_left;
736 /*
737 * We can't avoid mem cgroups that are over their soft
738 * limit by the same amount
739 */
740 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
741 p = &(*p)->rb_right;
742 }
743 rb_link_node(&mz->tree_node, parent, p);
744 rb_insert_color(&mz->tree_node, &mctz->rb_root);
745 mz->on_tree = true;
746}
747
cf2c8127
JW
748static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
749 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
750{
751 if (!mz->on_tree)
752 return;
753 rb_erase(&mz->tree_node, &mctz->rb_root);
754 mz->on_tree = false;
755}
756
cf2c8127
JW
757static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
758 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 759{
0a31bc97
JW
760 unsigned long flags;
761
762 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 763 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 764 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
765}
766
767
768static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
769{
770 unsigned long long excess;
771 struct mem_cgroup_per_zone *mz;
772 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 773
e231875b 774 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
775 /*
776 * Necessary to update all ancestors when hierarchy is used.
777 * because their event counter is not touched.
778 */
779 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 780 mz = mem_cgroup_page_zoneinfo(memcg, page);
bb4cc1a8
AM
781 excess = res_counter_soft_limit_excess(&memcg->res);
782 /*
783 * We have to update the tree if mz is on RB-tree or
784 * mem is over its softlimit.
785 */
786 if (excess || mz->on_tree) {
0a31bc97
JW
787 unsigned long flags;
788
789 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
790 /* if on-tree, remove it */
791 if (mz->on_tree)
cf2c8127 792 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
793 /*
794 * Insert again. mz->usage_in_excess will be updated.
795 * If excess is 0, no tree ops.
796 */
cf2c8127 797 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 798 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
799 }
800 }
801}
802
803static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
804{
bb4cc1a8 805 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
806 struct mem_cgroup_per_zone *mz;
807 int nid, zid;
bb4cc1a8 808
e231875b
JZ
809 for_each_node(nid) {
810 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
811 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
812 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 813 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
814 }
815 }
816}
817
818static struct mem_cgroup_per_zone *
819__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
820{
821 struct rb_node *rightmost = NULL;
822 struct mem_cgroup_per_zone *mz;
823
824retry:
825 mz = NULL;
826 rightmost = rb_last(&mctz->rb_root);
827 if (!rightmost)
828 goto done; /* Nothing to reclaim from */
829
830 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
831 /*
832 * Remove the node now but someone else can add it back,
833 * we will to add it back at the end of reclaim to its correct
834 * position in the tree.
835 */
cf2c8127 836 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8 837 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
ec903c0c 838 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
839 goto retry;
840done:
841 return mz;
842}
843
844static struct mem_cgroup_per_zone *
845mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
846{
847 struct mem_cgroup_per_zone *mz;
848
0a31bc97 849 spin_lock_irq(&mctz->lock);
bb4cc1a8 850 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 851 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
852 return mz;
853}
854
711d3d2c
KH
855/*
856 * Implementation Note: reading percpu statistics for memcg.
857 *
858 * Both of vmstat[] and percpu_counter has threshold and do periodic
859 * synchronization to implement "quick" read. There are trade-off between
860 * reading cost and precision of value. Then, we may have a chance to implement
861 * a periodic synchronizion of counter in memcg's counter.
862 *
863 * But this _read() function is used for user interface now. The user accounts
864 * memory usage by memory cgroup and he _always_ requires exact value because
865 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
866 * have to visit all online cpus and make sum. So, for now, unnecessary
867 * synchronization is not implemented. (just implemented for cpu hotplug)
868 *
869 * If there are kernel internal actions which can make use of some not-exact
870 * value, and reading all cpu value can be performance bottleneck in some
871 * common workload, threashold and synchonization as vmstat[] should be
872 * implemented.
873 */
c0ff4b85 874static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 875 enum mem_cgroup_stat_index idx)
c62b1a3b 876{
7a159cc9 877 long val = 0;
c62b1a3b 878 int cpu;
c62b1a3b 879
711d3d2c
KH
880 get_online_cpus();
881 for_each_online_cpu(cpu)
c0ff4b85 882 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 883#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
884 spin_lock(&memcg->pcp_counter_lock);
885 val += memcg->nocpu_base.count[idx];
886 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
887#endif
888 put_online_cpus();
c62b1a3b
KH
889 return val;
890}
891
c0ff4b85 892static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
893 enum mem_cgroup_events_index idx)
894{
895 unsigned long val = 0;
896 int cpu;
897
9c567512 898 get_online_cpus();
e9f8974f 899 for_each_online_cpu(cpu)
c0ff4b85 900 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 901#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
902 spin_lock(&memcg->pcp_counter_lock);
903 val += memcg->nocpu_base.events[idx];
904 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 905#endif
9c567512 906 put_online_cpus();
e9f8974f
JW
907 return val;
908}
909
c0ff4b85 910static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 911 struct page *page,
0a31bc97 912 int nr_pages)
d52aa412 913{
b2402857
KH
914 /*
915 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
916 * counted as CACHE even if it's on ANON LRU.
917 */
0a31bc97 918 if (PageAnon(page))
b2402857 919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 920 nr_pages);
d52aa412 921 else
b2402857 922 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 923 nr_pages);
55e462b0 924
b070e65c
DR
925 if (PageTransHuge(page))
926 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
927 nr_pages);
928
e401f176
KH
929 /* pagein of a big page is an event. So, ignore page size */
930 if (nr_pages > 0)
c0ff4b85 931 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 932 else {
c0ff4b85 933 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
934 nr_pages = -nr_pages; /* for event */
935 }
e401f176 936
13114716 937 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
938}
939
e231875b 940unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
941{
942 struct mem_cgroup_per_zone *mz;
943
944 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
945 return mz->lru_size[lru];
946}
947
e231875b
JZ
948static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
949 int nid,
950 unsigned int lru_mask)
bb2a0de9 951{
e231875b 952 unsigned long nr = 0;
889976db
YH
953 int zid;
954
e231875b 955 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 956
e231875b
JZ
957 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
958 struct mem_cgroup_per_zone *mz;
959 enum lru_list lru;
960
961 for_each_lru(lru) {
962 if (!(BIT(lru) & lru_mask))
963 continue;
964 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
965 nr += mz->lru_size[lru];
966 }
967 }
968 return nr;
889976db 969}
bb2a0de9 970
c0ff4b85 971static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 972 unsigned int lru_mask)
6d12e2d8 973{
e231875b 974 unsigned long nr = 0;
889976db 975 int nid;
6d12e2d8 976
31aaea4a 977 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
978 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
979 return nr;
d52aa412
KH
980}
981
f53d7ce3
JW
982static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
983 enum mem_cgroup_events_target target)
7a159cc9
JW
984{
985 unsigned long val, next;
986
13114716 987 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 988 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 989 /* from time_after() in jiffies.h */
f53d7ce3
JW
990 if ((long)next - (long)val < 0) {
991 switch (target) {
992 case MEM_CGROUP_TARGET_THRESH:
993 next = val + THRESHOLDS_EVENTS_TARGET;
994 break;
bb4cc1a8
AM
995 case MEM_CGROUP_TARGET_SOFTLIMIT:
996 next = val + SOFTLIMIT_EVENTS_TARGET;
997 break;
f53d7ce3
JW
998 case MEM_CGROUP_TARGET_NUMAINFO:
999 next = val + NUMAINFO_EVENTS_TARGET;
1000 break;
1001 default:
1002 break;
1003 }
1004 __this_cpu_write(memcg->stat->targets[target], next);
1005 return true;
7a159cc9 1006 }
f53d7ce3 1007 return false;
d2265e6f
KH
1008}
1009
1010/*
1011 * Check events in order.
1012 *
1013 */
c0ff4b85 1014static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
1015{
1016 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1017 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1018 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1019 bool do_softlimit;
82b3f2a7 1020 bool do_numainfo __maybe_unused;
f53d7ce3 1021
bb4cc1a8
AM
1022 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1023 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1024#if MAX_NUMNODES > 1
1025 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1026 MEM_CGROUP_TARGET_NUMAINFO);
1027#endif
c0ff4b85 1028 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1029 if (unlikely(do_softlimit))
1030 mem_cgroup_update_tree(memcg, page);
453a9bf3 1031#if MAX_NUMNODES > 1
f53d7ce3 1032 if (unlikely(do_numainfo))
c0ff4b85 1033 atomic_inc(&memcg->numainfo_events);
453a9bf3 1034#endif
0a31bc97 1035 }
d2265e6f
KH
1036}
1037
cf475ad2 1038struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1039{
31a78f23
BS
1040 /*
1041 * mm_update_next_owner() may clear mm->owner to NULL
1042 * if it races with swapoff, page migration, etc.
1043 * So this can be called with p == NULL.
1044 */
1045 if (unlikely(!p))
1046 return NULL;
1047
073219e9 1048 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1049}
1050
df381975 1051static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1052{
c0ff4b85 1053 struct mem_cgroup *memcg = NULL;
0b7f569e 1054
54595fe2
KH
1055 rcu_read_lock();
1056 do {
6f6acb00
MH
1057 /*
1058 * Page cache insertions can happen withou an
1059 * actual mm context, e.g. during disk probing
1060 * on boot, loopback IO, acct() writes etc.
1061 */
1062 if (unlikely(!mm))
df381975 1063 memcg = root_mem_cgroup;
6f6acb00
MH
1064 else {
1065 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1066 if (unlikely(!memcg))
1067 memcg = root_mem_cgroup;
1068 }
ec903c0c 1069 } while (!css_tryget_online(&memcg->css));
54595fe2 1070 rcu_read_unlock();
c0ff4b85 1071 return memcg;
54595fe2
KH
1072}
1073
16248d8f
MH
1074/*
1075 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1076 * ref. count) or NULL if the whole root's subtree has been visited.
1077 *
1078 * helper function to be used by mem_cgroup_iter
1079 */
1080static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1081 struct mem_cgroup *last_visited)
16248d8f 1082{
492eb21b 1083 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1084
bd8815a6 1085 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1086skip_node:
492eb21b 1087 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1088
1089 /*
1090 * Even if we found a group we have to make sure it is
1091 * alive. css && !memcg means that the groups should be
1092 * skipped and we should continue the tree walk.
1093 * last_visited css is safe to use because it is
1094 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1095 *
1096 * We do not take a reference on the root of the tree walk
1097 * because we might race with the root removal when it would
1098 * be the only node in the iterated hierarchy and mem_cgroup_iter
1099 * would end up in an endless loop because it expects that at
1100 * least one valid node will be returned. Root cannot disappear
1101 * because caller of the iterator should hold it already so
1102 * skipping css reference should be safe.
16248d8f 1103 */
492eb21b 1104 if (next_css) {
2f7dd7a4
JW
1105 struct mem_cgroup *memcg = mem_cgroup_from_css(next_css);
1106
1107 if (next_css == &root->css)
1108 return memcg;
1109
1110 if (css_tryget_online(next_css)) {
1111 /*
1112 * Make sure the memcg is initialized:
1113 * mem_cgroup_css_online() orders the the
1114 * initialization against setting the flag.
1115 */
1116 if (smp_load_acquire(&memcg->initialized))
1117 return memcg;
1118 css_put(next_css);
1119 }
0eef6156
MH
1120
1121 prev_css = next_css;
1122 goto skip_node;
16248d8f
MH
1123 }
1124
1125 return NULL;
1126}
1127
519ebea3
JW
1128static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1129{
1130 /*
1131 * When a group in the hierarchy below root is destroyed, the
1132 * hierarchy iterator can no longer be trusted since it might
1133 * have pointed to the destroyed group. Invalidate it.
1134 */
1135 atomic_inc(&root->dead_count);
1136}
1137
1138static struct mem_cgroup *
1139mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1140 struct mem_cgroup *root,
1141 int *sequence)
1142{
1143 struct mem_cgroup *position = NULL;
1144 /*
1145 * A cgroup destruction happens in two stages: offlining and
1146 * release. They are separated by a RCU grace period.
1147 *
1148 * If the iterator is valid, we may still race with an
1149 * offlining. The RCU lock ensures the object won't be
1150 * released, tryget will fail if we lost the race.
1151 */
1152 *sequence = atomic_read(&root->dead_count);
1153 if (iter->last_dead_count == *sequence) {
1154 smp_rmb();
1155 position = iter->last_visited;
ecc736fc
MH
1156
1157 /*
1158 * We cannot take a reference to root because we might race
1159 * with root removal and returning NULL would end up in
1160 * an endless loop on the iterator user level when root
1161 * would be returned all the time.
1162 */
1163 if (position && position != root &&
ec903c0c 1164 !css_tryget_online(&position->css))
519ebea3
JW
1165 position = NULL;
1166 }
1167 return position;
1168}
1169
1170static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1171 struct mem_cgroup *last_visited,
1172 struct mem_cgroup *new_position,
ecc736fc 1173 struct mem_cgroup *root,
519ebea3
JW
1174 int sequence)
1175{
ecc736fc
MH
1176 /* root reference counting symmetric to mem_cgroup_iter_load */
1177 if (last_visited && last_visited != root)
519ebea3
JW
1178 css_put(&last_visited->css);
1179 /*
1180 * We store the sequence count from the time @last_visited was
1181 * loaded successfully instead of rereading it here so that we
1182 * don't lose destruction events in between. We could have
1183 * raced with the destruction of @new_position after all.
1184 */
1185 iter->last_visited = new_position;
1186 smp_wmb();
1187 iter->last_dead_count = sequence;
1188}
1189
5660048c
JW
1190/**
1191 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1192 * @root: hierarchy root
1193 * @prev: previously returned memcg, NULL on first invocation
1194 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1195 *
1196 * Returns references to children of the hierarchy below @root, or
1197 * @root itself, or %NULL after a full round-trip.
1198 *
1199 * Caller must pass the return value in @prev on subsequent
1200 * invocations for reference counting, or use mem_cgroup_iter_break()
1201 * to cancel a hierarchy walk before the round-trip is complete.
1202 *
1203 * Reclaimers can specify a zone and a priority level in @reclaim to
1204 * divide up the memcgs in the hierarchy among all concurrent
1205 * reclaimers operating on the same zone and priority.
1206 */
694fbc0f 1207struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1208 struct mem_cgroup *prev,
694fbc0f 1209 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1210{
9f3a0d09 1211 struct mem_cgroup *memcg = NULL;
542f85f9 1212 struct mem_cgroup *last_visited = NULL;
711d3d2c 1213
694fbc0f
AM
1214 if (mem_cgroup_disabled())
1215 return NULL;
5660048c 1216
9f3a0d09
JW
1217 if (!root)
1218 root = root_mem_cgroup;
7d74b06f 1219
9f3a0d09 1220 if (prev && !reclaim)
542f85f9 1221 last_visited = prev;
14067bb3 1222
9f3a0d09
JW
1223 if (!root->use_hierarchy && root != root_mem_cgroup) {
1224 if (prev)
c40046f3 1225 goto out_css_put;
694fbc0f 1226 return root;
9f3a0d09 1227 }
14067bb3 1228
542f85f9 1229 rcu_read_lock();
9f3a0d09 1230 while (!memcg) {
527a5ec9 1231 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1232 int uninitialized_var(seq);
711d3d2c 1233
527a5ec9 1234 if (reclaim) {
527a5ec9
JW
1235 struct mem_cgroup_per_zone *mz;
1236
e231875b 1237 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
527a5ec9 1238 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1239 if (prev && reclaim->generation != iter->generation) {
5f578161 1240 iter->last_visited = NULL;
542f85f9
MH
1241 goto out_unlock;
1242 }
5f578161 1243
519ebea3 1244 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1245 }
7d74b06f 1246
694fbc0f 1247 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1248
527a5ec9 1249 if (reclaim) {
ecc736fc
MH
1250 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1251 seq);
542f85f9 1252
19f39402 1253 if (!memcg)
527a5ec9
JW
1254 iter->generation++;
1255 else if (!prev && memcg)
1256 reclaim->generation = iter->generation;
1257 }
9f3a0d09 1258
694fbc0f 1259 if (prev && !memcg)
542f85f9 1260 goto out_unlock;
9f3a0d09 1261 }
542f85f9
MH
1262out_unlock:
1263 rcu_read_unlock();
c40046f3
MH
1264out_css_put:
1265 if (prev && prev != root)
1266 css_put(&prev->css);
1267
9f3a0d09 1268 return memcg;
14067bb3 1269}
7d74b06f 1270
5660048c
JW
1271/**
1272 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1273 * @root: hierarchy root
1274 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1275 */
1276void mem_cgroup_iter_break(struct mem_cgroup *root,
1277 struct mem_cgroup *prev)
9f3a0d09
JW
1278{
1279 if (!root)
1280 root = root_mem_cgroup;
1281 if (prev && prev != root)
1282 css_put(&prev->css);
1283}
7d74b06f 1284
9f3a0d09
JW
1285/*
1286 * Iteration constructs for visiting all cgroups (under a tree). If
1287 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1288 * be used for reference counting.
1289 */
1290#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1291 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1292 iter != NULL; \
527a5ec9 1293 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1294
9f3a0d09 1295#define for_each_mem_cgroup(iter) \
527a5ec9 1296 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1297 iter != NULL; \
527a5ec9 1298 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1299
68ae564b 1300void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1301{
c0ff4b85 1302 struct mem_cgroup *memcg;
456f998e 1303
456f998e 1304 rcu_read_lock();
c0ff4b85
R
1305 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1306 if (unlikely(!memcg))
456f998e
YH
1307 goto out;
1308
1309 switch (idx) {
456f998e 1310 case PGFAULT:
0e574a93
JW
1311 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1312 break;
1313 case PGMAJFAULT:
1314 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1315 break;
1316 default:
1317 BUG();
1318 }
1319out:
1320 rcu_read_unlock();
1321}
68ae564b 1322EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1323
925b7673
JW
1324/**
1325 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1326 * @zone: zone of the wanted lruvec
fa9add64 1327 * @memcg: memcg of the wanted lruvec
925b7673
JW
1328 *
1329 * Returns the lru list vector holding pages for the given @zone and
1330 * @mem. This can be the global zone lruvec, if the memory controller
1331 * is disabled.
1332 */
1333struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1334 struct mem_cgroup *memcg)
1335{
1336 struct mem_cgroup_per_zone *mz;
bea8c150 1337 struct lruvec *lruvec;
925b7673 1338
bea8c150
HD
1339 if (mem_cgroup_disabled()) {
1340 lruvec = &zone->lruvec;
1341 goto out;
1342 }
925b7673 1343
e231875b 1344 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1345 lruvec = &mz->lruvec;
1346out:
1347 /*
1348 * Since a node can be onlined after the mem_cgroup was created,
1349 * we have to be prepared to initialize lruvec->zone here;
1350 * and if offlined then reonlined, we need to reinitialize it.
1351 */
1352 if (unlikely(lruvec->zone != zone))
1353 lruvec->zone = zone;
1354 return lruvec;
925b7673
JW
1355}
1356
925b7673 1357/**
fa9add64 1358 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1359 * @page: the page
fa9add64 1360 * @zone: zone of the page
925b7673 1361 */
fa9add64 1362struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1363{
08e552c6 1364 struct mem_cgroup_per_zone *mz;
925b7673
JW
1365 struct mem_cgroup *memcg;
1366 struct page_cgroup *pc;
bea8c150 1367 struct lruvec *lruvec;
6d12e2d8 1368
bea8c150
HD
1369 if (mem_cgroup_disabled()) {
1370 lruvec = &zone->lruvec;
1371 goto out;
1372 }
925b7673 1373
08e552c6 1374 pc = lookup_page_cgroup(page);
38c5d72f 1375 memcg = pc->mem_cgroup;
7512102c
HD
1376
1377 /*
fa9add64 1378 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1379 * an uncharged page off lru does nothing to secure
1380 * its former mem_cgroup from sudden removal.
1381 *
1382 * Our caller holds lru_lock, and PageCgroupUsed is updated
1383 * under page_cgroup lock: between them, they make all uses
1384 * of pc->mem_cgroup safe.
1385 */
fa9add64 1386 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1387 pc->mem_cgroup = memcg = root_mem_cgroup;
1388
e231875b 1389 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1390 lruvec = &mz->lruvec;
1391out:
1392 /*
1393 * Since a node can be onlined after the mem_cgroup was created,
1394 * we have to be prepared to initialize lruvec->zone here;
1395 * and if offlined then reonlined, we need to reinitialize it.
1396 */
1397 if (unlikely(lruvec->zone != zone))
1398 lruvec->zone = zone;
1399 return lruvec;
08e552c6 1400}
b69408e8 1401
925b7673 1402/**
fa9add64
HD
1403 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1404 * @lruvec: mem_cgroup per zone lru vector
1405 * @lru: index of lru list the page is sitting on
1406 * @nr_pages: positive when adding or negative when removing
925b7673 1407 *
fa9add64
HD
1408 * This function must be called when a page is added to or removed from an
1409 * lru list.
3f58a829 1410 */
fa9add64
HD
1411void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1412 int nr_pages)
3f58a829
MK
1413{
1414 struct mem_cgroup_per_zone *mz;
fa9add64 1415 unsigned long *lru_size;
3f58a829
MK
1416
1417 if (mem_cgroup_disabled())
1418 return;
1419
fa9add64
HD
1420 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1421 lru_size = mz->lru_size + lru;
1422 *lru_size += nr_pages;
1423 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1424}
544122e5 1425
3e92041d 1426/*
c0ff4b85 1427 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1428 * hierarchy subtree
1429 */
c3ac9a8a
JW
1430bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1431 struct mem_cgroup *memcg)
3e92041d 1432{
91c63734
JW
1433 if (root_memcg == memcg)
1434 return true;
3a981f48 1435 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1436 return false;
b47f77b5 1437 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1438}
1439
1440static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1441 struct mem_cgroup *memcg)
1442{
1443 bool ret;
1444
91c63734 1445 rcu_read_lock();
c3ac9a8a 1446 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1447 rcu_read_unlock();
1448 return ret;
3e92041d
MH
1449}
1450
ffbdccf5
DR
1451bool task_in_mem_cgroup(struct task_struct *task,
1452 const struct mem_cgroup *memcg)
4c4a2214 1453{
0b7f569e 1454 struct mem_cgroup *curr = NULL;
158e0a2d 1455 struct task_struct *p;
ffbdccf5 1456 bool ret;
4c4a2214 1457
158e0a2d 1458 p = find_lock_task_mm(task);
de077d22 1459 if (p) {
df381975 1460 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1461 task_unlock(p);
1462 } else {
1463 /*
1464 * All threads may have already detached their mm's, but the oom
1465 * killer still needs to detect if they have already been oom
1466 * killed to prevent needlessly killing additional tasks.
1467 */
ffbdccf5 1468 rcu_read_lock();
de077d22
DR
1469 curr = mem_cgroup_from_task(task);
1470 if (curr)
1471 css_get(&curr->css);
ffbdccf5 1472 rcu_read_unlock();
de077d22 1473 }
d31f56db 1474 /*
c0ff4b85 1475 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1476 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1477 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1478 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1479 */
c0ff4b85 1480 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1481 css_put(&curr->css);
4c4a2214
DR
1482 return ret;
1483}
1484
c56d5c7d 1485int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1486{
9b272977 1487 unsigned long inactive_ratio;
14797e23 1488 unsigned long inactive;
9b272977 1489 unsigned long active;
c772be93 1490 unsigned long gb;
14797e23 1491
4d7dcca2
HD
1492 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1493 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1494
c772be93
KM
1495 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1496 if (gb)
1497 inactive_ratio = int_sqrt(10 * gb);
1498 else
1499 inactive_ratio = 1;
1500
9b272977 1501 return inactive * inactive_ratio < active;
14797e23
KM
1502}
1503
6d61ef40
BS
1504#define mem_cgroup_from_res_counter(counter, member) \
1505 container_of(counter, struct mem_cgroup, member)
1506
19942822 1507/**
9d11ea9f 1508 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1509 * @memcg: the memory cgroup
19942822 1510 *
9d11ea9f 1511 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1512 * pages.
19942822 1513 */
c0ff4b85 1514static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1515{
9d11ea9f
JW
1516 unsigned long long margin;
1517
c0ff4b85 1518 margin = res_counter_margin(&memcg->res);
9d11ea9f 1519 if (do_swap_account)
c0ff4b85 1520 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1521 return margin >> PAGE_SHIFT;
19942822
JW
1522}
1523
1f4c025b 1524int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1525{
a7885eb8 1526 /* root ? */
14208b0e 1527 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1528 return vm_swappiness;
1529
bf1ff263 1530 return memcg->swappiness;
a7885eb8
KM
1531}
1532
619d094b
KH
1533/*
1534 * memcg->moving_account is used for checking possibility that some thread is
1535 * calling move_account(). When a thread on CPU-A starts moving pages under
1536 * a memcg, other threads should check memcg->moving_account under
1537 * rcu_read_lock(), like this:
1538 *
1539 * CPU-A CPU-B
1540 * rcu_read_lock()
1541 * memcg->moving_account+1 if (memcg->mocing_account)
1542 * take heavy locks.
1543 * synchronize_rcu() update something.
1544 * rcu_read_unlock()
1545 * start move here.
1546 */
4331f7d3
KH
1547
1548/* for quick checking without looking up memcg */
1549atomic_t memcg_moving __read_mostly;
1550
c0ff4b85 1551static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1552{
4331f7d3 1553 atomic_inc(&memcg_moving);
619d094b 1554 atomic_inc(&memcg->moving_account);
32047e2a
KH
1555 synchronize_rcu();
1556}
1557
c0ff4b85 1558static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1559{
619d094b
KH
1560 /*
1561 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1562 * We check NULL in callee rather than caller.
1563 */
4331f7d3
KH
1564 if (memcg) {
1565 atomic_dec(&memcg_moving);
619d094b 1566 atomic_dec(&memcg->moving_account);
4331f7d3 1567 }
32047e2a 1568}
619d094b 1569
32047e2a 1570/*
bdcbb659 1571 * A routine for checking "mem" is under move_account() or not.
32047e2a 1572 *
bdcbb659
QH
1573 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1574 * moving cgroups. This is for waiting at high-memory pressure
1575 * caused by "move".
32047e2a 1576 */
c0ff4b85 1577static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1578{
2bd9bb20
KH
1579 struct mem_cgroup *from;
1580 struct mem_cgroup *to;
4b534334 1581 bool ret = false;
2bd9bb20
KH
1582 /*
1583 * Unlike task_move routines, we access mc.to, mc.from not under
1584 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1585 */
1586 spin_lock(&mc.lock);
1587 from = mc.from;
1588 to = mc.to;
1589 if (!from)
1590 goto unlock;
3e92041d 1591
c0ff4b85
R
1592 ret = mem_cgroup_same_or_subtree(memcg, from)
1593 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1594unlock:
1595 spin_unlock(&mc.lock);
4b534334
KH
1596 return ret;
1597}
1598
c0ff4b85 1599static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1600{
1601 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1602 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1603 DEFINE_WAIT(wait);
1604 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1605 /* moving charge context might have finished. */
1606 if (mc.moving_task)
1607 schedule();
1608 finish_wait(&mc.waitq, &wait);
1609 return true;
1610 }
1611 }
1612 return false;
1613}
1614
312734c0
KH
1615/*
1616 * Take this lock when
1617 * - a code tries to modify page's memcg while it's USED.
1618 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1619 */
1620static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1621 unsigned long *flags)
1622{
1623 spin_lock_irqsave(&memcg->move_lock, *flags);
1624}
1625
1626static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1627 unsigned long *flags)
1628{
1629 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1630}
1631
58cf188e 1632#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1633/**
58cf188e 1634 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1635 * @memcg: The memory cgroup that went over limit
1636 * @p: Task that is going to be killed
1637 *
1638 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1639 * enabled
1640 */
1641void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1642{
e61734c5 1643 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1644 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1645 struct mem_cgroup *iter;
1646 unsigned int i;
e222432b 1647
58cf188e 1648 if (!p)
e222432b
BS
1649 return;
1650
08088cb9 1651 mutex_lock(&oom_info_lock);
e222432b
BS
1652 rcu_read_lock();
1653
e61734c5
TH
1654 pr_info("Task in ");
1655 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1656 pr_info(" killed as a result of limit of ");
1657 pr_cont_cgroup_path(memcg->css.cgroup);
1658 pr_info("\n");
e222432b 1659
e222432b
BS
1660 rcu_read_unlock();
1661
d045197f 1662 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1663 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1664 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1665 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1666 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1667 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1668 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1669 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1670 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1671 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1672 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1673 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1674
1675 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1676 pr_info("Memory cgroup stats for ");
1677 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1678 pr_cont(":");
1679
1680 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1681 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1682 continue;
1683 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1684 K(mem_cgroup_read_stat(iter, i)));
1685 }
1686
1687 for (i = 0; i < NR_LRU_LISTS; i++)
1688 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1689 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1690
1691 pr_cont("\n");
1692 }
08088cb9 1693 mutex_unlock(&oom_info_lock);
e222432b
BS
1694}
1695
81d39c20
KH
1696/*
1697 * This function returns the number of memcg under hierarchy tree. Returns
1698 * 1(self count) if no children.
1699 */
c0ff4b85 1700static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1701{
1702 int num = 0;
7d74b06f
KH
1703 struct mem_cgroup *iter;
1704
c0ff4b85 1705 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1706 num++;
81d39c20
KH
1707 return num;
1708}
1709
a63d83f4
DR
1710/*
1711 * Return the memory (and swap, if configured) limit for a memcg.
1712 */
9cbb78bb 1713static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1714{
1715 u64 limit;
a63d83f4 1716
f3e8eb70 1717 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1718
a63d83f4 1719 /*
9a5a8f19 1720 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1721 */
9a5a8f19
MH
1722 if (mem_cgroup_swappiness(memcg)) {
1723 u64 memsw;
1724
1725 limit += total_swap_pages << PAGE_SHIFT;
1726 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1727
1728 /*
1729 * If memsw is finite and limits the amount of swap space
1730 * available to this memcg, return that limit.
1731 */
1732 limit = min(limit, memsw);
1733 }
1734
1735 return limit;
a63d83f4
DR
1736}
1737
19965460
DR
1738static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1739 int order)
9cbb78bb
DR
1740{
1741 struct mem_cgroup *iter;
1742 unsigned long chosen_points = 0;
1743 unsigned long totalpages;
1744 unsigned int points = 0;
1745 struct task_struct *chosen = NULL;
1746
876aafbf 1747 /*
465adcf1
DR
1748 * If current has a pending SIGKILL or is exiting, then automatically
1749 * select it. The goal is to allow it to allocate so that it may
1750 * quickly exit and free its memory.
876aafbf 1751 */
465adcf1 1752 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1753 set_thread_flag(TIF_MEMDIE);
1754 return;
1755 }
1756
1757 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1758 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1759 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1760 struct css_task_iter it;
9cbb78bb
DR
1761 struct task_struct *task;
1762
72ec7029
TH
1763 css_task_iter_start(&iter->css, &it);
1764 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1765 switch (oom_scan_process_thread(task, totalpages, NULL,
1766 false)) {
1767 case OOM_SCAN_SELECT:
1768 if (chosen)
1769 put_task_struct(chosen);
1770 chosen = task;
1771 chosen_points = ULONG_MAX;
1772 get_task_struct(chosen);
1773 /* fall through */
1774 case OOM_SCAN_CONTINUE:
1775 continue;
1776 case OOM_SCAN_ABORT:
72ec7029 1777 css_task_iter_end(&it);
9cbb78bb
DR
1778 mem_cgroup_iter_break(memcg, iter);
1779 if (chosen)
1780 put_task_struct(chosen);
1781 return;
1782 case OOM_SCAN_OK:
1783 break;
1784 };
1785 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1786 if (!points || points < chosen_points)
1787 continue;
1788 /* Prefer thread group leaders for display purposes */
1789 if (points == chosen_points &&
1790 thread_group_leader(chosen))
1791 continue;
1792
1793 if (chosen)
1794 put_task_struct(chosen);
1795 chosen = task;
1796 chosen_points = points;
1797 get_task_struct(chosen);
9cbb78bb 1798 }
72ec7029 1799 css_task_iter_end(&it);
9cbb78bb
DR
1800 }
1801
1802 if (!chosen)
1803 return;
1804 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1805 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1806 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1807}
1808
5660048c
JW
1809static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1810 gfp_t gfp_mask,
1811 unsigned long flags)
1812{
1813 unsigned long total = 0;
1814 bool noswap = false;
1815 int loop;
1816
1817 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1818 noswap = true;
1819 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1820 noswap = true;
1821
1822 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1823 if (loop)
1824 drain_all_stock_async(memcg);
1825 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1826 /*
1827 * Allow limit shrinkers, which are triggered directly
1828 * by userspace, to catch signals and stop reclaim
1829 * after minimal progress, regardless of the margin.
1830 */
1831 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1832 break;
1833 if (mem_cgroup_margin(memcg))
1834 break;
1835 /*
1836 * If nothing was reclaimed after two attempts, there
1837 * may be no reclaimable pages in this hierarchy.
1838 */
1839 if (loop && !total)
1840 break;
1841 }
1842 return total;
1843}
1844
4d0c066d
KH
1845/**
1846 * test_mem_cgroup_node_reclaimable
dad7557e 1847 * @memcg: the target memcg
4d0c066d
KH
1848 * @nid: the node ID to be checked.
1849 * @noswap : specify true here if the user wants flle only information.
1850 *
1851 * This function returns whether the specified memcg contains any
1852 * reclaimable pages on a node. Returns true if there are any reclaimable
1853 * pages in the node.
1854 */
c0ff4b85 1855static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1856 int nid, bool noswap)
1857{
c0ff4b85 1858 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1859 return true;
1860 if (noswap || !total_swap_pages)
1861 return false;
c0ff4b85 1862 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1863 return true;
1864 return false;
1865
1866}
bb4cc1a8 1867#if MAX_NUMNODES > 1
889976db
YH
1868
1869/*
1870 * Always updating the nodemask is not very good - even if we have an empty
1871 * list or the wrong list here, we can start from some node and traverse all
1872 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1873 *
1874 */
c0ff4b85 1875static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1876{
1877 int nid;
453a9bf3
KH
1878 /*
1879 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1880 * pagein/pageout changes since the last update.
1881 */
c0ff4b85 1882 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1883 return;
c0ff4b85 1884 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1885 return;
1886
889976db 1887 /* make a nodemask where this memcg uses memory from */
31aaea4a 1888 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1889
31aaea4a 1890 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1891
c0ff4b85
R
1892 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1893 node_clear(nid, memcg->scan_nodes);
889976db 1894 }
453a9bf3 1895
c0ff4b85
R
1896 atomic_set(&memcg->numainfo_events, 0);
1897 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1898}
1899
1900/*
1901 * Selecting a node where we start reclaim from. Because what we need is just
1902 * reducing usage counter, start from anywhere is O,K. Considering
1903 * memory reclaim from current node, there are pros. and cons.
1904 *
1905 * Freeing memory from current node means freeing memory from a node which
1906 * we'll use or we've used. So, it may make LRU bad. And if several threads
1907 * hit limits, it will see a contention on a node. But freeing from remote
1908 * node means more costs for memory reclaim because of memory latency.
1909 *
1910 * Now, we use round-robin. Better algorithm is welcomed.
1911 */
c0ff4b85 1912int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1913{
1914 int node;
1915
c0ff4b85
R
1916 mem_cgroup_may_update_nodemask(memcg);
1917 node = memcg->last_scanned_node;
889976db 1918
c0ff4b85 1919 node = next_node(node, memcg->scan_nodes);
889976db 1920 if (node == MAX_NUMNODES)
c0ff4b85 1921 node = first_node(memcg->scan_nodes);
889976db
YH
1922 /*
1923 * We call this when we hit limit, not when pages are added to LRU.
1924 * No LRU may hold pages because all pages are UNEVICTABLE or
1925 * memcg is too small and all pages are not on LRU. In that case,
1926 * we use curret node.
1927 */
1928 if (unlikely(node == MAX_NUMNODES))
1929 node = numa_node_id();
1930
c0ff4b85 1931 memcg->last_scanned_node = node;
889976db
YH
1932 return node;
1933}
1934
bb4cc1a8
AM
1935/*
1936 * Check all nodes whether it contains reclaimable pages or not.
1937 * For quick scan, we make use of scan_nodes. This will allow us to skip
1938 * unused nodes. But scan_nodes is lazily updated and may not cotain
1939 * enough new information. We need to do double check.
1940 */
1941static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1942{
1943 int nid;
1944
1945 /*
1946 * quick check...making use of scan_node.
1947 * We can skip unused nodes.
1948 */
1949 if (!nodes_empty(memcg->scan_nodes)) {
1950 for (nid = first_node(memcg->scan_nodes);
1951 nid < MAX_NUMNODES;
1952 nid = next_node(nid, memcg->scan_nodes)) {
1953
1954 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1955 return true;
1956 }
1957 }
1958 /*
1959 * Check rest of nodes.
1960 */
1961 for_each_node_state(nid, N_MEMORY) {
1962 if (node_isset(nid, memcg->scan_nodes))
1963 continue;
1964 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1965 return true;
1966 }
1967 return false;
1968}
1969
889976db 1970#else
c0ff4b85 1971int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1972{
1973 return 0;
1974}
4d0c066d 1975
bb4cc1a8
AM
1976static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1977{
1978 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1979}
889976db
YH
1980#endif
1981
0608f43d
AM
1982static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1983 struct zone *zone,
1984 gfp_t gfp_mask,
1985 unsigned long *total_scanned)
1986{
1987 struct mem_cgroup *victim = NULL;
1988 int total = 0;
1989 int loop = 0;
1990 unsigned long excess;
1991 unsigned long nr_scanned;
1992 struct mem_cgroup_reclaim_cookie reclaim = {
1993 .zone = zone,
1994 .priority = 0,
1995 };
1996
1997 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1998
1999 while (1) {
2000 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2001 if (!victim) {
2002 loop++;
2003 if (loop >= 2) {
2004 /*
2005 * If we have not been able to reclaim
2006 * anything, it might because there are
2007 * no reclaimable pages under this hierarchy
2008 */
2009 if (!total)
2010 break;
2011 /*
2012 * We want to do more targeted reclaim.
2013 * excess >> 2 is not to excessive so as to
2014 * reclaim too much, nor too less that we keep
2015 * coming back to reclaim from this cgroup
2016 */
2017 if (total >= (excess >> 2) ||
2018 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2019 break;
2020 }
2021 continue;
2022 }
2023 if (!mem_cgroup_reclaimable(victim, false))
2024 continue;
2025 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2026 zone, &nr_scanned);
2027 *total_scanned += nr_scanned;
2028 if (!res_counter_soft_limit_excess(&root_memcg->res))
2029 break;
6d61ef40 2030 }
0608f43d
AM
2031 mem_cgroup_iter_break(root_memcg, victim);
2032 return total;
6d61ef40
BS
2033}
2034
0056f4e6
JW
2035#ifdef CONFIG_LOCKDEP
2036static struct lockdep_map memcg_oom_lock_dep_map = {
2037 .name = "memcg_oom_lock",
2038};
2039#endif
2040
fb2a6fc5
JW
2041static DEFINE_SPINLOCK(memcg_oom_lock);
2042
867578cb
KH
2043/*
2044 * Check OOM-Killer is already running under our hierarchy.
2045 * If someone is running, return false.
2046 */
fb2a6fc5 2047static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2048{
79dfdacc 2049 struct mem_cgroup *iter, *failed = NULL;
a636b327 2050
fb2a6fc5
JW
2051 spin_lock(&memcg_oom_lock);
2052
9f3a0d09 2053 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2054 if (iter->oom_lock) {
79dfdacc
MH
2055 /*
2056 * this subtree of our hierarchy is already locked
2057 * so we cannot give a lock.
2058 */
79dfdacc 2059 failed = iter;
9f3a0d09
JW
2060 mem_cgroup_iter_break(memcg, iter);
2061 break;
23751be0
JW
2062 } else
2063 iter->oom_lock = true;
7d74b06f 2064 }
867578cb 2065
fb2a6fc5
JW
2066 if (failed) {
2067 /*
2068 * OK, we failed to lock the whole subtree so we have
2069 * to clean up what we set up to the failing subtree
2070 */
2071 for_each_mem_cgroup_tree(iter, memcg) {
2072 if (iter == failed) {
2073 mem_cgroup_iter_break(memcg, iter);
2074 break;
2075 }
2076 iter->oom_lock = false;
79dfdacc 2077 }
0056f4e6
JW
2078 } else
2079 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2080
2081 spin_unlock(&memcg_oom_lock);
2082
2083 return !failed;
a636b327 2084}
0b7f569e 2085
fb2a6fc5 2086static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2087{
7d74b06f
KH
2088 struct mem_cgroup *iter;
2089
fb2a6fc5 2090 spin_lock(&memcg_oom_lock);
0056f4e6 2091 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2092 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2093 iter->oom_lock = false;
fb2a6fc5 2094 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2095}
2096
c0ff4b85 2097static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2098{
2099 struct mem_cgroup *iter;
2100
c0ff4b85 2101 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2102 atomic_inc(&iter->under_oom);
2103}
2104
c0ff4b85 2105static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2106{
2107 struct mem_cgroup *iter;
2108
867578cb
KH
2109 /*
2110 * When a new child is created while the hierarchy is under oom,
2111 * mem_cgroup_oom_lock() may not be called. We have to use
2112 * atomic_add_unless() here.
2113 */
c0ff4b85 2114 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2115 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2116}
2117
867578cb
KH
2118static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2119
dc98df5a 2120struct oom_wait_info {
d79154bb 2121 struct mem_cgroup *memcg;
dc98df5a
KH
2122 wait_queue_t wait;
2123};
2124
2125static int memcg_oom_wake_function(wait_queue_t *wait,
2126 unsigned mode, int sync, void *arg)
2127{
d79154bb
HD
2128 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2129 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2130 struct oom_wait_info *oom_wait_info;
2131
2132 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2133 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2134
dc98df5a 2135 /*
d79154bb 2136 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2137 * Then we can use css_is_ancestor without taking care of RCU.
2138 */
c0ff4b85
R
2139 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2140 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2141 return 0;
dc98df5a
KH
2142 return autoremove_wake_function(wait, mode, sync, arg);
2143}
2144
c0ff4b85 2145static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2146{
3812c8c8 2147 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2148 /* for filtering, pass "memcg" as argument. */
2149 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2150}
2151
c0ff4b85 2152static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2153{
c0ff4b85
R
2154 if (memcg && atomic_read(&memcg->under_oom))
2155 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2156}
2157
3812c8c8 2158static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2159{
3812c8c8
JW
2160 if (!current->memcg_oom.may_oom)
2161 return;
867578cb 2162 /*
49426420
JW
2163 * We are in the middle of the charge context here, so we
2164 * don't want to block when potentially sitting on a callstack
2165 * that holds all kinds of filesystem and mm locks.
2166 *
2167 * Also, the caller may handle a failed allocation gracefully
2168 * (like optional page cache readahead) and so an OOM killer
2169 * invocation might not even be necessary.
2170 *
2171 * That's why we don't do anything here except remember the
2172 * OOM context and then deal with it at the end of the page
2173 * fault when the stack is unwound, the locks are released,
2174 * and when we know whether the fault was overall successful.
867578cb 2175 */
49426420
JW
2176 css_get(&memcg->css);
2177 current->memcg_oom.memcg = memcg;
2178 current->memcg_oom.gfp_mask = mask;
2179 current->memcg_oom.order = order;
3812c8c8
JW
2180}
2181
2182/**
2183 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2184 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2185 *
49426420
JW
2186 * This has to be called at the end of a page fault if the memcg OOM
2187 * handler was enabled.
3812c8c8 2188 *
49426420 2189 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2190 * sleep on a waitqueue until the userspace task resolves the
2191 * situation. Sleeping directly in the charge context with all kinds
2192 * of locks held is not a good idea, instead we remember an OOM state
2193 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2194 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2195 *
2196 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2197 * completed, %false otherwise.
3812c8c8 2198 */
49426420 2199bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2200{
49426420 2201 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2202 struct oom_wait_info owait;
49426420 2203 bool locked;
3812c8c8
JW
2204
2205 /* OOM is global, do not handle */
3812c8c8 2206 if (!memcg)
49426420 2207 return false;
3812c8c8 2208
49426420
JW
2209 if (!handle)
2210 goto cleanup;
3812c8c8
JW
2211
2212 owait.memcg = memcg;
2213 owait.wait.flags = 0;
2214 owait.wait.func = memcg_oom_wake_function;
2215 owait.wait.private = current;
2216 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2217
3812c8c8 2218 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2219 mem_cgroup_mark_under_oom(memcg);
2220
2221 locked = mem_cgroup_oom_trylock(memcg);
2222
2223 if (locked)
2224 mem_cgroup_oom_notify(memcg);
2225
2226 if (locked && !memcg->oom_kill_disable) {
2227 mem_cgroup_unmark_under_oom(memcg);
2228 finish_wait(&memcg_oom_waitq, &owait.wait);
2229 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2230 current->memcg_oom.order);
2231 } else {
3812c8c8 2232 schedule();
49426420
JW
2233 mem_cgroup_unmark_under_oom(memcg);
2234 finish_wait(&memcg_oom_waitq, &owait.wait);
2235 }
2236
2237 if (locked) {
fb2a6fc5
JW
2238 mem_cgroup_oom_unlock(memcg);
2239 /*
2240 * There is no guarantee that an OOM-lock contender
2241 * sees the wakeups triggered by the OOM kill
2242 * uncharges. Wake any sleepers explicitely.
2243 */
2244 memcg_oom_recover(memcg);
2245 }
49426420
JW
2246cleanup:
2247 current->memcg_oom.memcg = NULL;
3812c8c8 2248 css_put(&memcg->css);
867578cb 2249 return true;
0b7f569e
KH
2250}
2251
d69b042f 2252/*
b5ffc856 2253 * Used to update mapped file or writeback or other statistics.
32047e2a
KH
2254 *
2255 * Notes: Race condition
2256 *
0a31bc97
JW
2257 * Charging occurs during page instantiation, while the page is
2258 * unmapped and locked in page migration, or while the page table is
2259 * locked in THP migration. No race is possible.
32047e2a 2260 *
0a31bc97 2261 * Uncharge happens to pages with zero references, no race possible.
32047e2a 2262 *
0a31bc97
JW
2263 * Charge moving between groups is protected by checking mm->moving
2264 * account and taking the move_lock in the slowpath.
d69b042f 2265 */
26174efd 2266
89c06bd5
KH
2267void __mem_cgroup_begin_update_page_stat(struct page *page,
2268 bool *locked, unsigned long *flags)
2269{
2270 struct mem_cgroup *memcg;
2271 struct page_cgroup *pc;
2272
2273 pc = lookup_page_cgroup(page);
2274again:
2275 memcg = pc->mem_cgroup;
2276 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2277 return;
2278 /*
2279 * If this memory cgroup is not under account moving, we don't
da92c47d 2280 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2281 * rcu_read_lock(), any calls to move_account will be delayed until
bdcbb659 2282 * rcu_read_unlock().
89c06bd5 2283 */
bdcbb659
QH
2284 VM_BUG_ON(!rcu_read_lock_held());
2285 if (atomic_read(&memcg->moving_account) <= 0)
89c06bd5
KH
2286 return;
2287
2288 move_lock_mem_cgroup(memcg, flags);
2289 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2290 move_unlock_mem_cgroup(memcg, flags);
2291 goto again;
2292 }
2293 *locked = true;
2294}
2295
2296void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2297{
2298 struct page_cgroup *pc = lookup_page_cgroup(page);
2299
2300 /*
2301 * It's guaranteed that pc->mem_cgroup never changes while
2302 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2303 * should take move_lock_mem_cgroup().
89c06bd5
KH
2304 */
2305 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2306}
2307
2a7106f2 2308void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2309 enum mem_cgroup_stat_index idx, int val)
d69b042f 2310{
c0ff4b85 2311 struct mem_cgroup *memcg;
32047e2a 2312 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2313 unsigned long uninitialized_var(flags);
d69b042f 2314
cfa44946 2315 if (mem_cgroup_disabled())
d69b042f 2316 return;
89c06bd5 2317
658b72c5 2318 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2319 memcg = pc->mem_cgroup;
2320 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2321 return;
26174efd 2322
c0ff4b85 2323 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2324}
26174efd 2325
cdec2e42
KH
2326/*
2327 * size of first charge trial. "32" comes from vmscan.c's magic value.
2328 * TODO: maybe necessary to use big numbers in big irons.
2329 */
7ec99d62 2330#define CHARGE_BATCH 32U
cdec2e42
KH
2331struct memcg_stock_pcp {
2332 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2333 unsigned int nr_pages;
cdec2e42 2334 struct work_struct work;
26fe6168 2335 unsigned long flags;
a0db00fc 2336#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2337};
2338static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2339static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2340
a0956d54
SS
2341/**
2342 * consume_stock: Try to consume stocked charge on this cpu.
2343 * @memcg: memcg to consume from.
2344 * @nr_pages: how many pages to charge.
2345 *
2346 * The charges will only happen if @memcg matches the current cpu's memcg
2347 * stock, and at least @nr_pages are available in that stock. Failure to
2348 * service an allocation will refill the stock.
2349 *
2350 * returns true if successful, false otherwise.
cdec2e42 2351 */
a0956d54 2352static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2353{
2354 struct memcg_stock_pcp *stock;
2355 bool ret = true;
2356
a0956d54
SS
2357 if (nr_pages > CHARGE_BATCH)
2358 return false;
2359
cdec2e42 2360 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2361 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2362 stock->nr_pages -= nr_pages;
cdec2e42
KH
2363 else /* need to call res_counter_charge */
2364 ret = false;
2365 put_cpu_var(memcg_stock);
2366 return ret;
2367}
2368
2369/*
2370 * Returns stocks cached in percpu to res_counter and reset cached information.
2371 */
2372static void drain_stock(struct memcg_stock_pcp *stock)
2373{
2374 struct mem_cgroup *old = stock->cached;
2375
11c9ea4e
JW
2376 if (stock->nr_pages) {
2377 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2378
2379 res_counter_uncharge(&old->res, bytes);
cdec2e42 2380 if (do_swap_account)
11c9ea4e
JW
2381 res_counter_uncharge(&old->memsw, bytes);
2382 stock->nr_pages = 0;
cdec2e42
KH
2383 }
2384 stock->cached = NULL;
cdec2e42
KH
2385}
2386
2387/*
2388 * This must be called under preempt disabled or must be called by
2389 * a thread which is pinned to local cpu.
2390 */
2391static void drain_local_stock(struct work_struct *dummy)
2392{
7c8e0181 2393 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2394 drain_stock(stock);
26fe6168 2395 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2396}
2397
e4777496
MH
2398static void __init memcg_stock_init(void)
2399{
2400 int cpu;
2401
2402 for_each_possible_cpu(cpu) {
2403 struct memcg_stock_pcp *stock =
2404 &per_cpu(memcg_stock, cpu);
2405 INIT_WORK(&stock->work, drain_local_stock);
2406 }
2407}
2408
cdec2e42
KH
2409/*
2410 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2411 * This will be consumed by consume_stock() function, later.
cdec2e42 2412 */
c0ff4b85 2413static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2414{
2415 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2416
c0ff4b85 2417 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2418 drain_stock(stock);
c0ff4b85 2419 stock->cached = memcg;
cdec2e42 2420 }
11c9ea4e 2421 stock->nr_pages += nr_pages;
cdec2e42
KH
2422 put_cpu_var(memcg_stock);
2423}
2424
2425/*
c0ff4b85 2426 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2427 * of the hierarchy under it. sync flag says whether we should block
2428 * until the work is done.
cdec2e42 2429 */
c0ff4b85 2430static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2431{
26fe6168 2432 int cpu, curcpu;
d38144b7 2433
cdec2e42 2434 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2435 get_online_cpus();
5af12d0e 2436 curcpu = get_cpu();
cdec2e42
KH
2437 for_each_online_cpu(cpu) {
2438 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2439 struct mem_cgroup *memcg;
26fe6168 2440
c0ff4b85
R
2441 memcg = stock->cached;
2442 if (!memcg || !stock->nr_pages)
26fe6168 2443 continue;
c0ff4b85 2444 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2445 continue;
d1a05b69
MH
2446 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2447 if (cpu == curcpu)
2448 drain_local_stock(&stock->work);
2449 else
2450 schedule_work_on(cpu, &stock->work);
2451 }
cdec2e42 2452 }
5af12d0e 2453 put_cpu();
d38144b7
MH
2454
2455 if (!sync)
2456 goto out;
2457
2458 for_each_online_cpu(cpu) {
2459 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2460 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2461 flush_work(&stock->work);
2462 }
2463out:
f894ffa8 2464 put_online_cpus();
d38144b7
MH
2465}
2466
2467/*
2468 * Tries to drain stocked charges in other cpus. This function is asynchronous
2469 * and just put a work per cpu for draining localy on each cpu. Caller can
2470 * expects some charges will be back to res_counter later but cannot wait for
2471 * it.
2472 */
c0ff4b85 2473static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2474{
9f50fad6
MH
2475 /*
2476 * If someone calls draining, avoid adding more kworker runs.
2477 */
2478 if (!mutex_trylock(&percpu_charge_mutex))
2479 return;
c0ff4b85 2480 drain_all_stock(root_memcg, false);
9f50fad6 2481 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2482}
2483
2484/* This is a synchronous drain interface. */
c0ff4b85 2485static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2486{
2487 /* called when force_empty is called */
9f50fad6 2488 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2489 drain_all_stock(root_memcg, true);
9f50fad6 2490 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2491}
2492
711d3d2c
KH
2493/*
2494 * This function drains percpu counter value from DEAD cpu and
2495 * move it to local cpu. Note that this function can be preempted.
2496 */
c0ff4b85 2497static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2498{
2499 int i;
2500
c0ff4b85 2501 spin_lock(&memcg->pcp_counter_lock);
6104621d 2502 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2503 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2504
c0ff4b85
R
2505 per_cpu(memcg->stat->count[i], cpu) = 0;
2506 memcg->nocpu_base.count[i] += x;
711d3d2c 2507 }
e9f8974f 2508 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2509 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2510
c0ff4b85
R
2511 per_cpu(memcg->stat->events[i], cpu) = 0;
2512 memcg->nocpu_base.events[i] += x;
e9f8974f 2513 }
c0ff4b85 2514 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2515}
2516
0db0628d 2517static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2518 unsigned long action,
2519 void *hcpu)
2520{
2521 int cpu = (unsigned long)hcpu;
2522 struct memcg_stock_pcp *stock;
711d3d2c 2523 struct mem_cgroup *iter;
cdec2e42 2524
619d094b 2525 if (action == CPU_ONLINE)
1489ebad 2526 return NOTIFY_OK;
1489ebad 2527
d833049b 2528 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2529 return NOTIFY_OK;
711d3d2c 2530
9f3a0d09 2531 for_each_mem_cgroup(iter)
711d3d2c
KH
2532 mem_cgroup_drain_pcp_counter(iter, cpu);
2533
cdec2e42
KH
2534 stock = &per_cpu(memcg_stock, cpu);
2535 drain_stock(stock);
2536 return NOTIFY_OK;
2537}
2538
00501b53
JW
2539static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2540 unsigned int nr_pages)
8a9f3ccd 2541{
7ec99d62 2542 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2543 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05
JW
2544 struct mem_cgroup *mem_over_limit;
2545 struct res_counter *fail_res;
2546 unsigned long nr_reclaimed;
2547 unsigned long flags = 0;
2548 unsigned long long size;
05b84301 2549 int ret = 0;
a636b327 2550
ce00a967
JW
2551 if (mem_cgroup_is_root(memcg))
2552 goto done;
6539cc05 2553retry:
b6b6cc72
MH
2554 if (consume_stock(memcg, nr_pages))
2555 goto done;
8a9f3ccd 2556
6539cc05
JW
2557 size = batch * PAGE_SIZE;
2558 if (!res_counter_charge(&memcg->res, size, &fail_res)) {
2559 if (!do_swap_account)
2560 goto done_restock;
2561 if (!res_counter_charge(&memcg->memsw, size, &fail_res))
2562 goto done_restock;
2563 res_counter_uncharge(&memcg->res, size);
2564 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2565 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2566 } else
2567 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
7a81b88c 2568
6539cc05
JW
2569 if (batch > nr_pages) {
2570 batch = nr_pages;
2571 goto retry;
2572 }
6d61ef40 2573
06b078fc
JW
2574 /*
2575 * Unlike in global OOM situations, memcg is not in a physical
2576 * memory shortage. Allow dying and OOM-killed tasks to
2577 * bypass the last charges so that they can exit quickly and
2578 * free their memory.
2579 */
2580 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2581 fatal_signal_pending(current) ||
2582 current->flags & PF_EXITING))
2583 goto bypass;
2584
2585 if (unlikely(task_in_memcg_oom(current)))
2586 goto nomem;
2587
6539cc05
JW
2588 if (!(gfp_mask & __GFP_WAIT))
2589 goto nomem;
4b534334 2590
6539cc05
JW
2591 nr_reclaimed = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2592
61e02c74 2593 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2594 goto retry;
28c34c29
JW
2595
2596 if (gfp_mask & __GFP_NORETRY)
2597 goto nomem;
6539cc05
JW
2598 /*
2599 * Even though the limit is exceeded at this point, reclaim
2600 * may have been able to free some pages. Retry the charge
2601 * before killing the task.
2602 *
2603 * Only for regular pages, though: huge pages are rather
2604 * unlikely to succeed so close to the limit, and we fall back
2605 * to regular pages anyway in case of failure.
2606 */
61e02c74 2607 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2608 goto retry;
2609 /*
2610 * At task move, charge accounts can be doubly counted. So, it's
2611 * better to wait until the end of task_move if something is going on.
2612 */
2613 if (mem_cgroup_wait_acct_move(mem_over_limit))
2614 goto retry;
2615
9b130619
JW
2616 if (nr_retries--)
2617 goto retry;
2618
06b078fc
JW
2619 if (gfp_mask & __GFP_NOFAIL)
2620 goto bypass;
2621
6539cc05
JW
2622 if (fatal_signal_pending(current))
2623 goto bypass;
2624
61e02c74 2625 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2626nomem:
6d1fdc48 2627 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2628 return -ENOMEM;
867578cb 2629bypass:
ce00a967 2630 return -EINTR;
6539cc05
JW
2631
2632done_restock:
2633 if (batch > nr_pages)
2634 refill_stock(memcg, batch - nr_pages);
2635done:
05b84301 2636 return ret;
7a81b88c 2637}
8a9f3ccd 2638
00501b53 2639static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2640{
05b84301 2641 unsigned long bytes = nr_pages * PAGE_SIZE;
e7018b8d 2642
ce00a967
JW
2643 if (mem_cgroup_is_root(memcg))
2644 return;
2645
05b84301
JW
2646 res_counter_uncharge(&memcg->res, bytes);
2647 if (do_swap_account)
2648 res_counter_uncharge(&memcg->memsw, bytes);
854ffa8d
DN
2649}
2650
d01dd17f
KH
2651/*
2652 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2653 * This is useful when moving usage to parent cgroup.
2654 */
2655static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2656 unsigned int nr_pages)
2657{
2658 unsigned long bytes = nr_pages * PAGE_SIZE;
2659
ce00a967
JW
2660 if (mem_cgroup_is_root(memcg))
2661 return;
2662
d01dd17f
KH
2663 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2664 if (do_swap_account)
2665 res_counter_uncharge_until(&memcg->memsw,
2666 memcg->memsw.parent, bytes);
2667}
2668
a3b2d692
KH
2669/*
2670 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2671 * rcu_read_lock(). The caller is responsible for calling
2672 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2673 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2674 */
2675static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2676{
a3b2d692
KH
2677 /* ID 0 is unused ID */
2678 if (!id)
2679 return NULL;
34c00c31 2680 return mem_cgroup_from_id(id);
a3b2d692
KH
2681}
2682
0a31bc97
JW
2683/*
2684 * try_get_mem_cgroup_from_page - look up page's memcg association
2685 * @page: the page
2686 *
2687 * Look up, get a css reference, and return the memcg that owns @page.
2688 *
2689 * The page must be locked to prevent racing with swap-in and page
2690 * cache charges. If coming from an unlocked page table, the caller
2691 * must ensure the page is on the LRU or this can race with charging.
2692 */
e42d9d5d 2693struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2694{
c0ff4b85 2695 struct mem_cgroup *memcg = NULL;
3c776e64 2696 struct page_cgroup *pc;
a3b2d692 2697 unsigned short id;
b5a84319
KH
2698 swp_entry_t ent;
2699
309381fe 2700 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2701
3c776e64 2702 pc = lookup_page_cgroup(page);
a3b2d692 2703 if (PageCgroupUsed(pc)) {
c0ff4b85 2704 memcg = pc->mem_cgroup;
ec903c0c 2705 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2706 memcg = NULL;
e42d9d5d 2707 } else if (PageSwapCache(page)) {
3c776e64 2708 ent.val = page_private(page);
9fb4b7cc 2709 id = lookup_swap_cgroup_id(ent);
a3b2d692 2710 rcu_read_lock();
c0ff4b85 2711 memcg = mem_cgroup_lookup(id);
ec903c0c 2712 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2713 memcg = NULL;
a3b2d692 2714 rcu_read_unlock();
3c776e64 2715 }
c0ff4b85 2716 return memcg;
b5a84319
KH
2717}
2718
0a31bc97
JW
2719static void lock_page_lru(struct page *page, int *isolated)
2720{
2721 struct zone *zone = page_zone(page);
2722
2723 spin_lock_irq(&zone->lru_lock);
2724 if (PageLRU(page)) {
2725 struct lruvec *lruvec;
2726
2727 lruvec = mem_cgroup_page_lruvec(page, zone);
2728 ClearPageLRU(page);
2729 del_page_from_lru_list(page, lruvec, page_lru(page));
2730 *isolated = 1;
2731 } else
2732 *isolated = 0;
2733}
2734
2735static void unlock_page_lru(struct page *page, int isolated)
2736{
2737 struct zone *zone = page_zone(page);
2738
2739 if (isolated) {
2740 struct lruvec *lruvec;
2741
2742 lruvec = mem_cgroup_page_lruvec(page, zone);
2743 VM_BUG_ON_PAGE(PageLRU(page), page);
2744 SetPageLRU(page);
2745 add_page_to_lru_list(page, lruvec, page_lru(page));
2746 }
2747 spin_unlock_irq(&zone->lru_lock);
2748}
2749
00501b53 2750static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2751 bool lrucare)
7a81b88c 2752{
ce587e65 2753 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2754 int isolated;
9ce70c02 2755
309381fe 2756 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2757 /*
2758 * we don't need page_cgroup_lock about tail pages, becase they are not
2759 * accessed by any other context at this point.
2760 */
9ce70c02
HD
2761
2762 /*
2763 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2764 * may already be on some other mem_cgroup's LRU. Take care of it.
2765 */
0a31bc97
JW
2766 if (lrucare)
2767 lock_page_lru(page, &isolated);
9ce70c02 2768
0a31bc97
JW
2769 /*
2770 * Nobody should be changing or seriously looking at
2771 * pc->mem_cgroup and pc->flags at this point:
2772 *
2773 * - the page is uncharged
2774 *
2775 * - the page is off-LRU
2776 *
2777 * - an anonymous fault has exclusive page access, except for
2778 * a locked page table
2779 *
2780 * - a page cache insertion, a swapin fault, or a migration
2781 * have the page locked
2782 */
c0ff4b85 2783 pc->mem_cgroup = memcg;
0a31bc97 2784 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
9ce70c02 2785
0a31bc97
JW
2786 if (lrucare)
2787 unlock_page_lru(page, isolated);
7a81b88c 2788}
66e1707b 2789
7cf27982
GC
2790static DEFINE_MUTEX(set_limit_mutex);
2791
7ae1e1d0 2792#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2793/*
2794 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2795 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2796 */
2797static DEFINE_MUTEX(memcg_slab_mutex);
2798
d6441637
VD
2799static DEFINE_MUTEX(activate_kmem_mutex);
2800
7ae1e1d0
GC
2801static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2802{
2803 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2804 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2805}
2806
1f458cbf
GC
2807/*
2808 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2809 * in the memcg_cache_params struct.
2810 */
2811static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2812{
2813 struct kmem_cache *cachep;
2814
2815 VM_BUG_ON(p->is_root_cache);
2816 cachep = p->root_cache;
7a67d7ab 2817 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2818}
2819
749c5415 2820#ifdef CONFIG_SLABINFO
2da8ca82 2821static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2822{
2da8ca82 2823 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2824 struct memcg_cache_params *params;
2825
2826 if (!memcg_can_account_kmem(memcg))
2827 return -EIO;
2828
2829 print_slabinfo_header(m);
2830
bd673145 2831 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2832 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2833 cache_show(memcg_params_to_cache(params), m);
bd673145 2834 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2835
2836 return 0;
2837}
2838#endif
2839
c67a8a68 2840static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
7ae1e1d0
GC
2841{
2842 struct res_counter *fail_res;
7ae1e1d0 2843 int ret = 0;
7ae1e1d0
GC
2844
2845 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2846 if (ret)
2847 return ret;
2848
00501b53 2849 ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
7ae1e1d0
GC
2850 if (ret == -EINTR) {
2851 /*
00501b53
JW
2852 * try_charge() chose to bypass to root due to OOM kill or
2853 * fatal signal. Since our only options are to either fail
2854 * the allocation or charge it to this cgroup, do it as a
2855 * temporary condition. But we can't fail. From a kmem/slab
2856 * perspective, the cache has already been selected, by
2857 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2858 * our minds.
2859 *
2860 * This condition will only trigger if the task entered
00501b53
JW
2861 * memcg_charge_kmem in a sane state, but was OOM-killed
2862 * during try_charge() above. Tasks that were already dying
2863 * when the allocation triggers should have been already
7ae1e1d0
GC
2864 * directed to the root cgroup in memcontrol.h
2865 */
2866 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2867 if (do_swap_account)
2868 res_counter_charge_nofail(&memcg->memsw, size,
2869 &fail_res);
2870 ret = 0;
2871 } else if (ret)
2872 res_counter_uncharge(&memcg->kmem, size);
2873
2874 return ret;
2875}
2876
c67a8a68 2877static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
7ae1e1d0 2878{
7ae1e1d0
GC
2879 res_counter_uncharge(&memcg->res, size);
2880 if (do_swap_account)
2881 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2882
2883 /* Not down to 0 */
2884 if (res_counter_uncharge(&memcg->kmem, size))
2885 return;
2886
10d5ebf4
LZ
2887 /*
2888 * Releases a reference taken in kmem_cgroup_css_offline in case
2889 * this last uncharge is racing with the offlining code or it is
2890 * outliving the memcg existence.
2891 *
2892 * The memory barrier imposed by test&clear is paired with the
2893 * explicit one in memcg_kmem_mark_dead().
2894 */
7de37682 2895 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2896 css_put(&memcg->css);
7ae1e1d0
GC
2897}
2898
2633d7a0
GC
2899/*
2900 * helper for acessing a memcg's index. It will be used as an index in the
2901 * child cache array in kmem_cache, and also to derive its name. This function
2902 * will return -1 when this is not a kmem-limited memcg.
2903 */
2904int memcg_cache_id(struct mem_cgroup *memcg)
2905{
2906 return memcg ? memcg->kmemcg_id : -1;
2907}
2908
55007d84
GC
2909static size_t memcg_caches_array_size(int num_groups)
2910{
2911 ssize_t size;
2912 if (num_groups <= 0)
2913 return 0;
2914
2915 size = 2 * num_groups;
2916 if (size < MEMCG_CACHES_MIN_SIZE)
2917 size = MEMCG_CACHES_MIN_SIZE;
2918 else if (size > MEMCG_CACHES_MAX_SIZE)
2919 size = MEMCG_CACHES_MAX_SIZE;
2920
2921 return size;
2922}
2923
2924/*
2925 * We should update the current array size iff all caches updates succeed. This
2926 * can only be done from the slab side. The slab mutex needs to be held when
2927 * calling this.
2928 */
2929void memcg_update_array_size(int num)
2930{
2931 if (num > memcg_limited_groups_array_size)
2932 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2933}
2934
2935int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2936{
2937 struct memcg_cache_params *cur_params = s->memcg_params;
2938
f35c3a8e 2939 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
2940
2941 if (num_groups > memcg_limited_groups_array_size) {
2942 int i;
f8570263 2943 struct memcg_cache_params *new_params;
55007d84
GC
2944 ssize_t size = memcg_caches_array_size(num_groups);
2945
2946 size *= sizeof(void *);
90c7a79c 2947 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 2948
f8570263
VD
2949 new_params = kzalloc(size, GFP_KERNEL);
2950 if (!new_params)
55007d84 2951 return -ENOMEM;
55007d84 2952
f8570263 2953 new_params->is_root_cache = true;
55007d84
GC
2954
2955 /*
2956 * There is the chance it will be bigger than
2957 * memcg_limited_groups_array_size, if we failed an allocation
2958 * in a cache, in which case all caches updated before it, will
2959 * have a bigger array.
2960 *
2961 * But if that is the case, the data after
2962 * memcg_limited_groups_array_size is certainly unused
2963 */
2964 for (i = 0; i < memcg_limited_groups_array_size; i++) {
2965 if (!cur_params->memcg_caches[i])
2966 continue;
f8570263 2967 new_params->memcg_caches[i] =
55007d84
GC
2968 cur_params->memcg_caches[i];
2969 }
2970
2971 /*
2972 * Ideally, we would wait until all caches succeed, and only
2973 * then free the old one. But this is not worth the extra
2974 * pointer per-cache we'd have to have for this.
2975 *
2976 * It is not a big deal if some caches are left with a size
2977 * bigger than the others. And all updates will reset this
2978 * anyway.
2979 */
f8570263
VD
2980 rcu_assign_pointer(s->memcg_params, new_params);
2981 if (cur_params)
2982 kfree_rcu(cur_params, rcu_head);
55007d84
GC
2983 }
2984 return 0;
2985}
2986
776ed0f0
VD
2987static void memcg_register_cache(struct mem_cgroup *memcg,
2988 struct kmem_cache *root_cache)
2633d7a0 2989{
93f39eea
VD
2990 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2991 memcg_slab_mutex */
bd673145 2992 struct kmem_cache *cachep;
d7f25f8a
GC
2993 int id;
2994
bd673145
VD
2995 lockdep_assert_held(&memcg_slab_mutex);
2996
2997 id = memcg_cache_id(memcg);
2998
2999 /*
3000 * Since per-memcg caches are created asynchronously on first
3001 * allocation (see memcg_kmem_get_cache()), several threads can try to
3002 * create the same cache, but only one of them may succeed.
3003 */
3004 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
3005 return;
3006
073ee1c6 3007 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 3008 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 3009 /*
bd673145
VD
3010 * If we could not create a memcg cache, do not complain, because
3011 * that's not critical at all as we can always proceed with the root
3012 * cache.
2edefe11 3013 */
bd673145
VD
3014 if (!cachep)
3015 return;
2edefe11 3016
33a690c4 3017 css_get(&memcg->css);
bd673145 3018 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 3019
d7f25f8a 3020 /*
959c8963
VD
3021 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3022 * barrier here to ensure nobody will see the kmem_cache partially
3023 * initialized.
d7f25f8a 3024 */
959c8963
VD
3025 smp_wmb();
3026
bd673145
VD
3027 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3028 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 3029}
d7f25f8a 3030
776ed0f0 3031static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 3032{
bd673145 3033 struct kmem_cache *root_cache;
1aa13254
VD
3034 struct mem_cgroup *memcg;
3035 int id;
3036
bd673145 3037 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 3038
bd673145 3039 BUG_ON(is_root_cache(cachep));
2edefe11 3040
bd673145
VD
3041 root_cache = cachep->memcg_params->root_cache;
3042 memcg = cachep->memcg_params->memcg;
96403da2 3043 id = memcg_cache_id(memcg);
d7f25f8a 3044
bd673145
VD
3045 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3046 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 3047
bd673145
VD
3048 list_del(&cachep->memcg_params->list);
3049
3050 kmem_cache_destroy(cachep);
33a690c4
VD
3051
3052 /* drop the reference taken in memcg_register_cache */
3053 css_put(&memcg->css);
2633d7a0
GC
3054}
3055
0e9d92f2
GC
3056/*
3057 * During the creation a new cache, we need to disable our accounting mechanism
3058 * altogether. This is true even if we are not creating, but rather just
3059 * enqueing new caches to be created.
3060 *
3061 * This is because that process will trigger allocations; some visible, like
3062 * explicit kmallocs to auxiliary data structures, name strings and internal
3063 * cache structures; some well concealed, like INIT_WORK() that can allocate
3064 * objects during debug.
3065 *
3066 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3067 * to it. This may not be a bounded recursion: since the first cache creation
3068 * failed to complete (waiting on the allocation), we'll just try to create the
3069 * cache again, failing at the same point.
3070 *
3071 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3072 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3073 * inside the following two functions.
3074 */
3075static inline void memcg_stop_kmem_account(void)
3076{
3077 VM_BUG_ON(!current->mm);
3078 current->memcg_kmem_skip_account++;
3079}
3080
3081static inline void memcg_resume_kmem_account(void)
3082{
3083 VM_BUG_ON(!current->mm);
3084 current->memcg_kmem_skip_account--;
3085}
3086
776ed0f0 3087int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
3088{
3089 struct kmem_cache *c;
b8529907 3090 int i, failed = 0;
7cf27982 3091
bd673145 3092 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
3093 for_each_memcg_cache_index(i) {
3094 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3095 if (!c)
3096 continue;
3097
776ed0f0 3098 memcg_unregister_cache(c);
b8529907
VD
3099
3100 if (cache_from_memcg_idx(s, i))
3101 failed++;
7cf27982 3102 }
bd673145 3103 mutex_unlock(&memcg_slab_mutex);
b8529907 3104 return failed;
7cf27982
GC
3105}
3106
776ed0f0 3107static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3108{
3109 struct kmem_cache *cachep;
bd673145 3110 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
3111
3112 if (!memcg_kmem_is_active(memcg))
3113 return;
3114
bd673145
VD
3115 mutex_lock(&memcg_slab_mutex);
3116 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 3117 cachep = memcg_params_to_cache(params);
bd673145
VD
3118 kmem_cache_shrink(cachep);
3119 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 3120 memcg_unregister_cache(cachep);
1f458cbf 3121 }
bd673145 3122 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
3123}
3124
776ed0f0 3125struct memcg_register_cache_work {
5722d094
VD
3126 struct mem_cgroup *memcg;
3127 struct kmem_cache *cachep;
3128 struct work_struct work;
3129};
3130
776ed0f0 3131static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 3132{
776ed0f0
VD
3133 struct memcg_register_cache_work *cw =
3134 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
3135 struct mem_cgroup *memcg = cw->memcg;
3136 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 3137
bd673145 3138 mutex_lock(&memcg_slab_mutex);
776ed0f0 3139 memcg_register_cache(memcg, cachep);
bd673145
VD
3140 mutex_unlock(&memcg_slab_mutex);
3141
5722d094 3142 css_put(&memcg->css);
d7f25f8a
GC
3143 kfree(cw);
3144}
3145
3146/*
3147 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3148 */
776ed0f0
VD
3149static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3150 struct kmem_cache *cachep)
d7f25f8a 3151{
776ed0f0 3152 struct memcg_register_cache_work *cw;
d7f25f8a 3153
776ed0f0 3154 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
3155 if (cw == NULL) {
3156 css_put(&memcg->css);
d7f25f8a
GC
3157 return;
3158 }
3159
3160 cw->memcg = memcg;
3161 cw->cachep = cachep;
3162
776ed0f0 3163 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
3164 schedule_work(&cw->work);
3165}
3166
776ed0f0
VD
3167static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3168 struct kmem_cache *cachep)
0e9d92f2
GC
3169{
3170 /*
3171 * We need to stop accounting when we kmalloc, because if the
3172 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 3173 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
3174 *
3175 * However, it is better to enclose the whole function. Depending on
3176 * the debugging options enabled, INIT_WORK(), for instance, can
3177 * trigger an allocation. This too, will make us recurse. Because at
3178 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3179 * the safest choice is to do it like this, wrapping the whole function.
3180 */
3181 memcg_stop_kmem_account();
776ed0f0 3182 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
3183 memcg_resume_kmem_account();
3184}
c67a8a68
VD
3185
3186int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3187{
3188 int res;
3189
3190 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3191 PAGE_SIZE << order);
3192 if (!res)
3193 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3194 return res;
3195}
3196
3197void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3198{
3199 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3200 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3201}
3202
d7f25f8a
GC
3203/*
3204 * Return the kmem_cache we're supposed to use for a slab allocation.
3205 * We try to use the current memcg's version of the cache.
3206 *
3207 * If the cache does not exist yet, if we are the first user of it,
3208 * we either create it immediately, if possible, or create it asynchronously
3209 * in a workqueue.
3210 * In the latter case, we will let the current allocation go through with
3211 * the original cache.
3212 *
3213 * Can't be called in interrupt context or from kernel threads.
3214 * This function needs to be called with rcu_read_lock() held.
3215 */
3216struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3217 gfp_t gfp)
3218{
3219 struct mem_cgroup *memcg;
959c8963 3220 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3221
3222 VM_BUG_ON(!cachep->memcg_params);
3223 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3224
0e9d92f2
GC
3225 if (!current->mm || current->memcg_kmem_skip_account)
3226 return cachep;
3227
d7f25f8a
GC
3228 rcu_read_lock();
3229 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3230
3231 if (!memcg_can_account_kmem(memcg))
ca0dde97 3232 goto out;
d7f25f8a 3233
959c8963
VD
3234 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3235 if (likely(memcg_cachep)) {
3236 cachep = memcg_cachep;
ca0dde97 3237 goto out;
d7f25f8a
GC
3238 }
3239
ca0dde97 3240 /* The corresponding put will be done in the workqueue. */
ec903c0c 3241 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3242 goto out;
3243 rcu_read_unlock();
3244
3245 /*
3246 * If we are in a safe context (can wait, and not in interrupt
3247 * context), we could be be predictable and return right away.
3248 * This would guarantee that the allocation being performed
3249 * already belongs in the new cache.
3250 *
3251 * However, there are some clashes that can arrive from locking.
3252 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3253 * memcg_create_kmem_cache, this means no further allocation
3254 * could happen with the slab_mutex held. So it's better to
3255 * defer everything.
ca0dde97 3256 */
776ed0f0 3257 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3258 return cachep;
3259out:
3260 rcu_read_unlock();
3261 return cachep;
d7f25f8a 3262}
d7f25f8a 3263
7ae1e1d0
GC
3264/*
3265 * We need to verify if the allocation against current->mm->owner's memcg is
3266 * possible for the given order. But the page is not allocated yet, so we'll
3267 * need a further commit step to do the final arrangements.
3268 *
3269 * It is possible for the task to switch cgroups in this mean time, so at
3270 * commit time, we can't rely on task conversion any longer. We'll then use
3271 * the handle argument to return to the caller which cgroup we should commit
3272 * against. We could also return the memcg directly and avoid the pointer
3273 * passing, but a boolean return value gives better semantics considering
3274 * the compiled-out case as well.
3275 *
3276 * Returning true means the allocation is possible.
3277 */
3278bool
3279__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3280{
3281 struct mem_cgroup *memcg;
3282 int ret;
3283
3284 *_memcg = NULL;
6d42c232
GC
3285
3286 /*
3287 * Disabling accounting is only relevant for some specific memcg
3288 * internal allocations. Therefore we would initially not have such
52383431
VD
3289 * check here, since direct calls to the page allocator that are
3290 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3291 * outside memcg core. We are mostly concerned with cache allocations,
3292 * and by having this test at memcg_kmem_get_cache, we are already able
3293 * to relay the allocation to the root cache and bypass the memcg cache
3294 * altogether.
6d42c232
GC
3295 *
3296 * There is one exception, though: the SLUB allocator does not create
3297 * large order caches, but rather service large kmallocs directly from
3298 * the page allocator. Therefore, the following sequence when backed by
3299 * the SLUB allocator:
3300 *
f894ffa8
AM
3301 * memcg_stop_kmem_account();
3302 * kmalloc(<large_number>)
3303 * memcg_resume_kmem_account();
6d42c232
GC
3304 *
3305 * would effectively ignore the fact that we should skip accounting,
3306 * since it will drive us directly to this function without passing
3307 * through the cache selector memcg_kmem_get_cache. Such large
3308 * allocations are extremely rare but can happen, for instance, for the
3309 * cache arrays. We bring this test here.
3310 */
3311 if (!current->mm || current->memcg_kmem_skip_account)
3312 return true;
3313
df381975 3314 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0
GC
3315
3316 if (!memcg_can_account_kmem(memcg)) {
3317 css_put(&memcg->css);
3318 return true;
3319 }
3320
7ae1e1d0
GC
3321 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3322 if (!ret)
3323 *_memcg = memcg;
7ae1e1d0
GC
3324
3325 css_put(&memcg->css);
3326 return (ret == 0);
3327}
3328
3329void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3330 int order)
3331{
3332 struct page_cgroup *pc;
3333
3334 VM_BUG_ON(mem_cgroup_is_root(memcg));
3335
3336 /* The page allocation failed. Revert */
3337 if (!page) {
3338 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3339 return;
3340 }
a840cda6
JW
3341 /*
3342 * The page is freshly allocated and not visible to any
3343 * outside callers yet. Set up pc non-atomically.
3344 */
7ae1e1d0 3345 pc = lookup_page_cgroup(page);
7ae1e1d0 3346 pc->mem_cgroup = memcg;
a840cda6 3347 pc->flags = PCG_USED;
7ae1e1d0
GC
3348}
3349
3350void __memcg_kmem_uncharge_pages(struct page *page, int order)
3351{
3352 struct mem_cgroup *memcg = NULL;
3353 struct page_cgroup *pc;
3354
3355
3356 pc = lookup_page_cgroup(page);
7ae1e1d0
GC
3357 if (!PageCgroupUsed(pc))
3358 return;
3359
a840cda6
JW
3360 memcg = pc->mem_cgroup;
3361 pc->flags = 0;
7ae1e1d0
GC
3362
3363 /*
3364 * We trust that only if there is a memcg associated with the page, it
3365 * is a valid allocation
3366 */
3367 if (!memcg)
3368 return;
3369
309381fe 3370 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3371 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3372}
1f458cbf 3373#else
776ed0f0 3374static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3375{
3376}
7ae1e1d0
GC
3377#endif /* CONFIG_MEMCG_KMEM */
3378
ca3e0214
KH
3379#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3380
ca3e0214
KH
3381/*
3382 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3383 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3384 * charge/uncharge will be never happen and move_account() is done under
3385 * compound_lock(), so we don't have to take care of races.
ca3e0214 3386 */
e94c8a9c 3387void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3388{
3389 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3390 struct page_cgroup *pc;
b070e65c 3391 struct mem_cgroup *memcg;
e94c8a9c 3392 int i;
ca3e0214 3393
3d37c4a9
KH
3394 if (mem_cgroup_disabled())
3395 return;
b070e65c
DR
3396
3397 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3398 for (i = 1; i < HPAGE_PMD_NR; i++) {
3399 pc = head_pc + i;
b070e65c 3400 pc->mem_cgroup = memcg;
0a31bc97 3401 pc->flags = head_pc->flags;
e94c8a9c 3402 }
b070e65c
DR
3403 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3404 HPAGE_PMD_NR);
ca3e0214 3405}
12d27107 3406#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3407
f817ed48 3408/**
de3638d9 3409 * mem_cgroup_move_account - move account of the page
5564e88b 3410 * @page: the page
7ec99d62 3411 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3412 * @pc: page_cgroup of the page.
3413 * @from: mem_cgroup which the page is moved from.
3414 * @to: mem_cgroup which the page is moved to. @from != @to.
3415 *
3416 * The caller must confirm following.
08e552c6 3417 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3418 * - compound_lock is held when nr_pages > 1
f817ed48 3419 *
2f3479b1
KH
3420 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3421 * from old cgroup.
f817ed48 3422 */
7ec99d62
JW
3423static int mem_cgroup_move_account(struct page *page,
3424 unsigned int nr_pages,
3425 struct page_cgroup *pc,
3426 struct mem_cgroup *from,
2f3479b1 3427 struct mem_cgroup *to)
f817ed48 3428{
de3638d9
JW
3429 unsigned long flags;
3430 int ret;
987eba66 3431
f817ed48 3432 VM_BUG_ON(from == to);
309381fe 3433 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3434 /*
3435 * The page is isolated from LRU. So, collapse function
3436 * will not handle this page. But page splitting can happen.
3437 * Do this check under compound_page_lock(). The caller should
3438 * hold it.
3439 */
3440 ret = -EBUSY;
7ec99d62 3441 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3442 goto out;
3443
0a31bc97
JW
3444 /*
3445 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3446 * of its source page while we change it: page migration takes
3447 * both pages off the LRU, but page cache replacement doesn't.
3448 */
3449 if (!trylock_page(page))
3450 goto out;
de3638d9
JW
3451
3452 ret = -EINVAL;
3453 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
0a31bc97 3454 goto out_unlock;
de3638d9 3455
312734c0 3456 move_lock_mem_cgroup(from, &flags);
f817ed48 3457
0a31bc97 3458 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3459 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3460 nr_pages);
3461 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3462 nr_pages);
3463 }
3ea67d06 3464
59d1d256
JW
3465 if (PageWriteback(page)) {
3466 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3467 nr_pages);
3468 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3469 nr_pages);
3470 }
3ea67d06 3471
0a31bc97
JW
3472 /*
3473 * It is safe to change pc->mem_cgroup here because the page
3474 * is referenced, charged, and isolated - we can't race with
3475 * uncharging, charging, migration, or LRU putback.
3476 */
d69b042f 3477
854ffa8d 3478 /* caller should have done css_get */
08e552c6 3479 pc->mem_cgroup = to;
312734c0 3480 move_unlock_mem_cgroup(from, &flags);
de3638d9 3481 ret = 0;
0a31bc97
JW
3482
3483 local_irq_disable();
3484 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3485 memcg_check_events(to, page);
0a31bc97 3486 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3487 memcg_check_events(from, page);
0a31bc97
JW
3488 local_irq_enable();
3489out_unlock:
3490 unlock_page(page);
de3638d9 3491out:
f817ed48
KH
3492 return ret;
3493}
3494
2ef37d3f
MH
3495/**
3496 * mem_cgroup_move_parent - moves page to the parent group
3497 * @page: the page to move
3498 * @pc: page_cgroup of the page
3499 * @child: page's cgroup
3500 *
3501 * move charges to its parent or the root cgroup if the group has no
3502 * parent (aka use_hierarchy==0).
3503 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3504 * mem_cgroup_move_account fails) the failure is always temporary and
3505 * it signals a race with a page removal/uncharge or migration. In the
3506 * first case the page is on the way out and it will vanish from the LRU
3507 * on the next attempt and the call should be retried later.
3508 * Isolation from the LRU fails only if page has been isolated from
3509 * the LRU since we looked at it and that usually means either global
3510 * reclaim or migration going on. The page will either get back to the
3511 * LRU or vanish.
3512 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3513 * (!PageCgroupUsed) or moved to a different group. The page will
3514 * disappear in the next attempt.
f817ed48 3515 */
5564e88b
JW
3516static int mem_cgroup_move_parent(struct page *page,
3517 struct page_cgroup *pc,
6068bf01 3518 struct mem_cgroup *child)
f817ed48 3519{
f817ed48 3520 struct mem_cgroup *parent;
7ec99d62 3521 unsigned int nr_pages;
4be4489f 3522 unsigned long uninitialized_var(flags);
f817ed48
KH
3523 int ret;
3524
d8423011 3525 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3526
57f9fd7d
DN
3527 ret = -EBUSY;
3528 if (!get_page_unless_zero(page))
3529 goto out;
3530 if (isolate_lru_page(page))
3531 goto put;
52dbb905 3532
7ec99d62 3533 nr_pages = hpage_nr_pages(page);
08e552c6 3534
cc926f78
KH
3535 parent = parent_mem_cgroup(child);
3536 /*
3537 * If no parent, move charges to root cgroup.
3538 */
3539 if (!parent)
3540 parent = root_mem_cgroup;
f817ed48 3541
2ef37d3f 3542 if (nr_pages > 1) {
309381fe 3543 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3544 flags = compound_lock_irqsave(page);
2ef37d3f 3545 }
987eba66 3546
cc926f78 3547 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3548 pc, child, parent);
cc926f78
KH
3549 if (!ret)
3550 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3551
7ec99d62 3552 if (nr_pages > 1)
987eba66 3553 compound_unlock_irqrestore(page, flags);
08e552c6 3554 putback_lru_page(page);
57f9fd7d 3555put:
40d58138 3556 put_page(page);
57f9fd7d 3557out:
f817ed48
KH
3558 return ret;
3559}
3560
c255a458 3561#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3562static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3563 bool charge)
d13d1443 3564{
0a31bc97
JW
3565 int val = (charge) ? 1 : -1;
3566 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3567}
02491447
DN
3568
3569/**
3570 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3571 * @entry: swap entry to be moved
3572 * @from: mem_cgroup which the entry is moved from
3573 * @to: mem_cgroup which the entry is moved to
3574 *
3575 * It succeeds only when the swap_cgroup's record for this entry is the same
3576 * as the mem_cgroup's id of @from.
3577 *
3578 * Returns 0 on success, -EINVAL on failure.
3579 *
3580 * The caller must have charged to @to, IOW, called res_counter_charge() about
3581 * both res and memsw, and called css_get().
3582 */
3583static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3584 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3585{
3586 unsigned short old_id, new_id;
3587
34c00c31
LZ
3588 old_id = mem_cgroup_id(from);
3589 new_id = mem_cgroup_id(to);
02491447
DN
3590
3591 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3592 mem_cgroup_swap_statistics(from, false);
483c30b5 3593 mem_cgroup_swap_statistics(to, true);
02491447 3594 /*
483c30b5
DN
3595 * This function is only called from task migration context now.
3596 * It postpones res_counter and refcount handling till the end
3597 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3598 * improvement. But we cannot postpone css_get(to) because if
3599 * the process that has been moved to @to does swap-in, the
3600 * refcount of @to might be decreased to 0.
3601 *
3602 * We are in attach() phase, so the cgroup is guaranteed to be
3603 * alive, so we can just call css_get().
02491447 3604 */
4050377b 3605 css_get(&to->css);
02491447
DN
3606 return 0;
3607 }
3608 return -EINVAL;
3609}
3610#else
3611static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3612 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3613{
3614 return -EINVAL;
3615}
8c7c6e34 3616#endif
d13d1443 3617
f212ad7c
DN
3618#ifdef CONFIG_DEBUG_VM
3619static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3620{
3621 struct page_cgroup *pc;
3622
3623 pc = lookup_page_cgroup(page);
cfa44946
JW
3624 /*
3625 * Can be NULL while feeding pages into the page allocator for
3626 * the first time, i.e. during boot or memory hotplug;
3627 * or when mem_cgroup_disabled().
3628 */
f212ad7c
DN
3629 if (likely(pc) && PageCgroupUsed(pc))
3630 return pc;
3631 return NULL;
3632}
3633
3634bool mem_cgroup_bad_page_check(struct page *page)
3635{
3636 if (mem_cgroup_disabled())
3637 return false;
3638
3639 return lookup_page_cgroup_used(page) != NULL;
3640}
3641
3642void mem_cgroup_print_bad_page(struct page *page)
3643{
3644 struct page_cgroup *pc;
3645
3646 pc = lookup_page_cgroup_used(page);
3647 if (pc) {
d045197f
AM
3648 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3649 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3650 }
3651}
3652#endif
3653
d38d2a75 3654static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3655 unsigned long long val)
628f4235 3656{
81d39c20 3657 int retry_count;
3c11ecf4 3658 u64 memswlimit, memlimit;
628f4235 3659 int ret = 0;
81d39c20
KH
3660 int children = mem_cgroup_count_children(memcg);
3661 u64 curusage, oldusage;
3c11ecf4 3662 int enlarge;
81d39c20
KH
3663
3664 /*
3665 * For keeping hierarchical_reclaim simple, how long we should retry
3666 * is depends on callers. We set our retry-count to be function
3667 * of # of children which we should visit in this loop.
3668 */
3669 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3670
3671 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3672
3c11ecf4 3673 enlarge = 0;
8c7c6e34 3674 while (retry_count) {
628f4235
KH
3675 if (signal_pending(current)) {
3676 ret = -EINTR;
3677 break;
3678 }
8c7c6e34
KH
3679 /*
3680 * Rather than hide all in some function, I do this in
3681 * open coded manner. You see what this really does.
aaad153e 3682 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3683 */
3684 mutex_lock(&set_limit_mutex);
3685 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3686 if (memswlimit < val) {
3687 ret = -EINVAL;
3688 mutex_unlock(&set_limit_mutex);
628f4235
KH
3689 break;
3690 }
3c11ecf4
KH
3691
3692 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3693 if (memlimit < val)
3694 enlarge = 1;
3695
8c7c6e34 3696 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3697 if (!ret) {
3698 if (memswlimit == val)
3699 memcg->memsw_is_minimum = true;
3700 else
3701 memcg->memsw_is_minimum = false;
3702 }
8c7c6e34
KH
3703 mutex_unlock(&set_limit_mutex);
3704
3705 if (!ret)
3706 break;
3707
5660048c
JW
3708 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3709 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3710 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3711 /* Usage is reduced ? */
f894ffa8 3712 if (curusage >= oldusage)
81d39c20
KH
3713 retry_count--;
3714 else
3715 oldusage = curusage;
8c7c6e34 3716 }
3c11ecf4
KH
3717 if (!ret && enlarge)
3718 memcg_oom_recover(memcg);
14797e23 3719
8c7c6e34
KH
3720 return ret;
3721}
3722
338c8431
LZ
3723static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3724 unsigned long long val)
8c7c6e34 3725{
81d39c20 3726 int retry_count;
3c11ecf4 3727 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3728 int children = mem_cgroup_count_children(memcg);
3729 int ret = -EBUSY;
3c11ecf4 3730 int enlarge = 0;
8c7c6e34 3731
81d39c20 3732 /* see mem_cgroup_resize_res_limit */
f894ffa8 3733 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 3734 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3735 while (retry_count) {
3736 if (signal_pending(current)) {
3737 ret = -EINTR;
3738 break;
3739 }
3740 /*
3741 * Rather than hide all in some function, I do this in
3742 * open coded manner. You see what this really does.
aaad153e 3743 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3744 */
3745 mutex_lock(&set_limit_mutex);
3746 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3747 if (memlimit > val) {
3748 ret = -EINVAL;
3749 mutex_unlock(&set_limit_mutex);
3750 break;
3751 }
3c11ecf4
KH
3752 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3753 if (memswlimit < val)
3754 enlarge = 1;
8c7c6e34 3755 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3756 if (!ret) {
3757 if (memlimit == val)
3758 memcg->memsw_is_minimum = true;
3759 else
3760 memcg->memsw_is_minimum = false;
3761 }
8c7c6e34
KH
3762 mutex_unlock(&set_limit_mutex);
3763
3764 if (!ret)
3765 break;
3766
5660048c
JW
3767 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3768 MEM_CGROUP_RECLAIM_NOSWAP |
3769 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3770 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3771 /* Usage is reduced ? */
8c7c6e34 3772 if (curusage >= oldusage)
628f4235 3773 retry_count--;
81d39c20
KH
3774 else
3775 oldusage = curusage;
628f4235 3776 }
3c11ecf4
KH
3777 if (!ret && enlarge)
3778 memcg_oom_recover(memcg);
628f4235
KH
3779 return ret;
3780}
3781
0608f43d
AM
3782unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3783 gfp_t gfp_mask,
3784 unsigned long *total_scanned)
3785{
3786 unsigned long nr_reclaimed = 0;
3787 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3788 unsigned long reclaimed;
3789 int loop = 0;
3790 struct mem_cgroup_tree_per_zone *mctz;
3791 unsigned long long excess;
3792 unsigned long nr_scanned;
3793
3794 if (order > 0)
3795 return 0;
3796
3797 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3798 /*
3799 * This loop can run a while, specially if mem_cgroup's continuously
3800 * keep exceeding their soft limit and putting the system under
3801 * pressure
3802 */
3803 do {
3804 if (next_mz)
3805 mz = next_mz;
3806 else
3807 mz = mem_cgroup_largest_soft_limit_node(mctz);
3808 if (!mz)
3809 break;
3810
3811 nr_scanned = 0;
3812 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3813 gfp_mask, &nr_scanned);
3814 nr_reclaimed += reclaimed;
3815 *total_scanned += nr_scanned;
0a31bc97 3816 spin_lock_irq(&mctz->lock);
0608f43d
AM
3817
3818 /*
3819 * If we failed to reclaim anything from this memory cgroup
3820 * it is time to move on to the next cgroup
3821 */
3822 next_mz = NULL;
3823 if (!reclaimed) {
3824 do {
3825 /*
3826 * Loop until we find yet another one.
3827 *
3828 * By the time we get the soft_limit lock
3829 * again, someone might have aded the
3830 * group back on the RB tree. Iterate to
3831 * make sure we get a different mem.
3832 * mem_cgroup_largest_soft_limit_node returns
3833 * NULL if no other cgroup is present on
3834 * the tree
3835 */
3836 next_mz =
3837 __mem_cgroup_largest_soft_limit_node(mctz);
3838 if (next_mz == mz)
3839 css_put(&next_mz->memcg->css);
3840 else /* next_mz == NULL or other memcg */
3841 break;
3842 } while (1);
3843 }
cf2c8127 3844 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3845 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3846 /*
3847 * One school of thought says that we should not add
3848 * back the node to the tree if reclaim returns 0.
3849 * But our reclaim could return 0, simply because due
3850 * to priority we are exposing a smaller subset of
3851 * memory to reclaim from. Consider this as a longer
3852 * term TODO.
3853 */
3854 /* If excess == 0, no tree ops */
cf2c8127 3855 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3856 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3857 css_put(&mz->memcg->css);
3858 loop++;
3859 /*
3860 * Could not reclaim anything and there are no more
3861 * mem cgroups to try or we seem to be looping without
3862 * reclaiming anything.
3863 */
3864 if (!nr_reclaimed &&
3865 (next_mz == NULL ||
3866 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3867 break;
3868 } while (!nr_reclaimed);
3869 if (next_mz)
3870 css_put(&next_mz->memcg->css);
3871 return nr_reclaimed;
3872}
3873
2ef37d3f
MH
3874/**
3875 * mem_cgroup_force_empty_list - clears LRU of a group
3876 * @memcg: group to clear
3877 * @node: NUMA node
3878 * @zid: zone id
3879 * @lru: lru to to clear
3880 *
3c935d18 3881 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
3882 * reclaim the pages page themselves - pages are moved to the parent (or root)
3883 * group.
cc847582 3884 */
2ef37d3f 3885static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3886 int node, int zid, enum lru_list lru)
cc847582 3887{
bea8c150 3888 struct lruvec *lruvec;
2ef37d3f 3889 unsigned long flags;
072c56c1 3890 struct list_head *list;
925b7673
JW
3891 struct page *busy;
3892 struct zone *zone;
072c56c1 3893
08e552c6 3894 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
3895 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3896 list = &lruvec->lists[lru];
cc847582 3897
f817ed48 3898 busy = NULL;
2ef37d3f 3899 do {
925b7673 3900 struct page_cgroup *pc;
5564e88b
JW
3901 struct page *page;
3902
08e552c6 3903 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3904 if (list_empty(list)) {
08e552c6 3905 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3906 break;
f817ed48 3907 }
925b7673
JW
3908 page = list_entry(list->prev, struct page, lru);
3909 if (busy == page) {
3910 list_move(&page->lru, list);
648bcc77 3911 busy = NULL;
08e552c6 3912 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3913 continue;
3914 }
08e552c6 3915 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3916
925b7673 3917 pc = lookup_page_cgroup(page);
5564e88b 3918
3c935d18 3919 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3920 /* found lock contention or "pc" is obsolete. */
925b7673 3921 busy = page;
f817ed48
KH
3922 } else
3923 busy = NULL;
2a7a0e0f 3924 cond_resched();
2ef37d3f 3925 } while (!list_empty(list));
cc847582
KH
3926}
3927
3928/*
c26251f9
MH
3929 * make mem_cgroup's charge to be 0 if there is no task by moving
3930 * all the charges and pages to the parent.
cc847582 3931 * This enables deleting this mem_cgroup.
c26251f9
MH
3932 *
3933 * Caller is responsible for holding css reference on the memcg.
cc847582 3934 */
ab5196c2 3935static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 3936{
c26251f9 3937 int node, zid;
bea207c8 3938 u64 usage;
f817ed48 3939
fce66477 3940 do {
52d4b9ac
KH
3941 /* This is for making all *used* pages to be on LRU. */
3942 lru_add_drain_all();
c0ff4b85 3943 drain_all_stock_sync(memcg);
c0ff4b85 3944 mem_cgroup_start_move(memcg);
31aaea4a 3945 for_each_node_state(node, N_MEMORY) {
2ef37d3f 3946 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3947 enum lru_list lru;
3948 for_each_lru(lru) {
2ef37d3f 3949 mem_cgroup_force_empty_list(memcg,
f156ab93 3950 node, zid, lru);
f817ed48 3951 }
1ecaab2b 3952 }
f817ed48 3953 }
c0ff4b85
R
3954 mem_cgroup_end_move(memcg);
3955 memcg_oom_recover(memcg);
52d4b9ac 3956 cond_resched();
f817ed48 3957
2ef37d3f 3958 /*
bea207c8
GC
3959 * Kernel memory may not necessarily be trackable to a specific
3960 * process. So they are not migrated, and therefore we can't
3961 * expect their value to drop to 0 here.
3962 * Having res filled up with kmem only is enough.
3963 *
2ef37d3f
MH
3964 * This is a safety check because mem_cgroup_force_empty_list
3965 * could have raced with mem_cgroup_replace_page_cache callers
3966 * so the lru seemed empty but the page could have been added
3967 * right after the check. RES_USAGE should be safe as we always
3968 * charge before adding to the LRU.
3969 */
bea207c8
GC
3970 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
3971 res_counter_read_u64(&memcg->kmem, RES_USAGE);
3972 } while (usage > 0);
c26251f9
MH
3973}
3974
ea280e7b
TH
3975/*
3976 * Test whether @memcg has children, dead or alive. Note that this
3977 * function doesn't care whether @memcg has use_hierarchy enabled and
3978 * returns %true if there are child csses according to the cgroup
3979 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3980 */
b5f99b53
GC
3981static inline bool memcg_has_children(struct mem_cgroup *memcg)
3982{
ea280e7b
TH
3983 bool ret;
3984
696ac172 3985 /*
ea280e7b
TH
3986 * The lock does not prevent addition or deletion of children, but
3987 * it prevents a new child from being initialized based on this
3988 * parent in css_online(), so it's enough to decide whether
3989 * hierarchically inherited attributes can still be changed or not.
696ac172 3990 */
ea280e7b
TH
3991 lockdep_assert_held(&memcg_create_mutex);
3992
3993 rcu_read_lock();
3994 ret = css_next_child(NULL, &memcg->css);
3995 rcu_read_unlock();
3996 return ret;
b5f99b53
GC
3997}
3998
c26251f9
MH
3999/*
4000 * Reclaims as many pages from the given memcg as possible and moves
4001 * the rest to the parent.
4002 *
4003 * Caller is responsible for holding css reference for memcg.
4004 */
4005static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4006{
4007 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 4008
c1e862c1
KH
4009 /* we call try-to-free pages for make this cgroup empty */
4010 lru_add_drain_all();
f817ed48 4011 /* try to free all pages in this cgroup */
569530fb 4012 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4013 int progress;
c1e862c1 4014
c26251f9
MH
4015 if (signal_pending(current))
4016 return -EINTR;
4017
c0ff4b85 4018 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4019 false);
c1e862c1 4020 if (!progress) {
f817ed48 4021 nr_retries--;
c1e862c1 4022 /* maybe some writeback is necessary */
8aa7e847 4023 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4024 }
f817ed48
KH
4025
4026 }
ab5196c2
MH
4027
4028 return 0;
cc847582
KH
4029}
4030
6770c64e
TH
4031static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
4032 char *buf, size_t nbytes,
4033 loff_t off)
c1e862c1 4034{
6770c64e 4035 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 4036
d8423011
MH
4037 if (mem_cgroup_is_root(memcg))
4038 return -EINVAL;
6770c64e 4039 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
4040}
4041
182446d0
TH
4042static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4043 struct cftype *cft)
18f59ea7 4044{
182446d0 4045 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4046}
4047
182446d0
TH
4048static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4049 struct cftype *cft, u64 val)
18f59ea7
BS
4050{
4051 int retval = 0;
182446d0 4052 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4053 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 4054
0999821b 4055 mutex_lock(&memcg_create_mutex);
567fb435
GC
4056
4057 if (memcg->use_hierarchy == val)
4058 goto out;
4059
18f59ea7 4060 /*
af901ca1 4061 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4062 * in the child subtrees. If it is unset, then the change can
4063 * occur, provided the current cgroup has no children.
4064 *
4065 * For the root cgroup, parent_mem is NULL, we allow value to be
4066 * set if there are no children.
4067 */
c0ff4b85 4068 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4069 (val == 1 || val == 0)) {
ea280e7b 4070 if (!memcg_has_children(memcg))
c0ff4b85 4071 memcg->use_hierarchy = val;
18f59ea7
BS
4072 else
4073 retval = -EBUSY;
4074 } else
4075 retval = -EINVAL;
567fb435
GC
4076
4077out:
0999821b 4078 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4079
4080 return retval;
4081}
4082
ce00a967
JW
4083static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4084 enum mem_cgroup_stat_index idx)
4085{
4086 struct mem_cgroup *iter;
4087 long val = 0;
4088
4089 /* Per-cpu values can be negative, use a signed accumulator */
4090 for_each_mem_cgroup_tree(iter, memcg)
4091 val += mem_cgroup_read_stat(iter, idx);
4092
4093 if (val < 0) /* race ? */
4094 val = 0;
4095 return val;
4096}
4097
4098static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4099{
4100 u64 val;
4101
4102 if (!mem_cgroup_is_root(memcg)) {
4103 if (!swap)
4104 return res_counter_read_u64(&memcg->res, RES_USAGE);
4105 else
4106 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4107 }
4108
4109 /*
4110 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4111 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4112 */
4113 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4114 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4115
4116 if (swap)
4117 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4118
4119 return val << PAGE_SHIFT;
4120}
4121
4122
791badbd 4123static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 4124 struct cftype *cft)
8cdea7c0 4125{
182446d0 4126 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
05b84301
JW
4127 enum res_type type = MEMFILE_TYPE(cft->private);
4128 int name = MEMFILE_ATTR(cft->private);
af36f906 4129
8c7c6e34
KH
4130 switch (type) {
4131 case _MEM:
ce00a967
JW
4132 if (name == RES_USAGE)
4133 return mem_cgroup_usage(memcg, false);
05b84301 4134 return res_counter_read_u64(&memcg->res, name);
8c7c6e34 4135 case _MEMSWAP:
ce00a967
JW
4136 if (name == RES_USAGE)
4137 return mem_cgroup_usage(memcg, true);
05b84301 4138 return res_counter_read_u64(&memcg->memsw, name);
510fc4e1 4139 case _KMEM:
05b84301 4140 return res_counter_read_u64(&memcg->kmem, name);
510fc4e1 4141 break;
8c7c6e34
KH
4142 default:
4143 BUG();
8c7c6e34 4144 }
8cdea7c0 4145}
510fc4e1 4146
510fc4e1 4147#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
4148/* should be called with activate_kmem_mutex held */
4149static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4150 unsigned long long limit)
4151{
4152 int err = 0;
4153 int memcg_id;
4154
4155 if (memcg_kmem_is_active(memcg))
4156 return 0;
4157
4158 /*
4159 * We are going to allocate memory for data shared by all memory
4160 * cgroups so let's stop accounting here.
4161 */
4162 memcg_stop_kmem_account();
4163
510fc4e1
GC
4164 /*
4165 * For simplicity, we won't allow this to be disabled. It also can't
4166 * be changed if the cgroup has children already, or if tasks had
4167 * already joined.
4168 *
4169 * If tasks join before we set the limit, a person looking at
4170 * kmem.usage_in_bytes will have no way to determine when it took
4171 * place, which makes the value quite meaningless.
4172 *
4173 * After it first became limited, changes in the value of the limit are
4174 * of course permitted.
510fc4e1 4175 */
0999821b 4176 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
4177 if (cgroup_has_tasks(memcg->css.cgroup) ||
4178 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
4179 err = -EBUSY;
4180 mutex_unlock(&memcg_create_mutex);
4181 if (err)
4182 goto out;
510fc4e1 4183
d6441637
VD
4184 memcg_id = ida_simple_get(&kmem_limited_groups,
4185 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4186 if (memcg_id < 0) {
4187 err = memcg_id;
4188 goto out;
4189 }
4190
4191 /*
4192 * Make sure we have enough space for this cgroup in each root cache's
4193 * memcg_params.
4194 */
bd673145 4195 mutex_lock(&memcg_slab_mutex);
d6441637 4196 err = memcg_update_all_caches(memcg_id + 1);
bd673145 4197 mutex_unlock(&memcg_slab_mutex);
d6441637
VD
4198 if (err)
4199 goto out_rmid;
4200
4201 memcg->kmemcg_id = memcg_id;
4202 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
4203
4204 /*
4205 * We couldn't have accounted to this cgroup, because it hasn't got the
4206 * active bit set yet, so this should succeed.
4207 */
4208 err = res_counter_set_limit(&memcg->kmem, limit);
4209 VM_BUG_ON(err);
4210
4211 static_key_slow_inc(&memcg_kmem_enabled_key);
4212 /*
4213 * Setting the active bit after enabling static branching will
4214 * guarantee no one starts accounting before all call sites are
4215 * patched.
4216 */
4217 memcg_kmem_set_active(memcg);
510fc4e1 4218out:
d6441637
VD
4219 memcg_resume_kmem_account();
4220 return err;
4221
4222out_rmid:
4223 ida_simple_remove(&kmem_limited_groups, memcg_id);
4224 goto out;
4225}
4226
4227static int memcg_activate_kmem(struct mem_cgroup *memcg,
4228 unsigned long long limit)
4229{
4230 int ret;
4231
4232 mutex_lock(&activate_kmem_mutex);
4233 ret = __memcg_activate_kmem(memcg, limit);
4234 mutex_unlock(&activate_kmem_mutex);
4235 return ret;
4236}
4237
4238static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4239 unsigned long long val)
4240{
4241 int ret;
4242
4243 if (!memcg_kmem_is_active(memcg))
4244 ret = memcg_activate_kmem(memcg, val);
4245 else
4246 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
4247 return ret;
4248}
4249
55007d84 4250static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4251{
55007d84 4252 int ret = 0;
510fc4e1 4253 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 4254
d6441637
VD
4255 if (!parent)
4256 return 0;
55007d84 4257
d6441637 4258 mutex_lock(&activate_kmem_mutex);
55007d84 4259 /*
d6441637
VD
4260 * If the parent cgroup is not kmem-active now, it cannot be activated
4261 * after this point, because it has at least one child already.
55007d84 4262 */
d6441637
VD
4263 if (memcg_kmem_is_active(parent))
4264 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4265 mutex_unlock(&activate_kmem_mutex);
55007d84 4266 return ret;
510fc4e1 4267}
d6441637
VD
4268#else
4269static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4270 unsigned long long val)
4271{
4272 return -EINVAL;
4273}
6d043990 4274#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 4275
628f4235
KH
4276/*
4277 * The user of this function is...
4278 * RES_LIMIT.
4279 */
451af504
TH
4280static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4281 char *buf, size_t nbytes, loff_t off)
8cdea7c0 4282{
451af504 4283 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
86ae53e1
GC
4284 enum res_type type;
4285 int name;
628f4235
KH
4286 unsigned long long val;
4287 int ret;
4288
451af504
TH
4289 buf = strstrip(buf);
4290 type = MEMFILE_TYPE(of_cft(of)->private);
4291 name = MEMFILE_ATTR(of_cft(of)->private);
af36f906 4292
8c7c6e34 4293 switch (name) {
628f4235 4294 case RES_LIMIT:
4b3bde4c
BS
4295 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4296 ret = -EINVAL;
4297 break;
4298 }
628f4235 4299 /* This function does all necessary parse...reuse it */
451af504 4300 ret = res_counter_memparse_write_strategy(buf, &val);
8c7c6e34
KH
4301 if (ret)
4302 break;
4303 if (type == _MEM)
628f4235 4304 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 4305 else if (type == _MEMSWAP)
8c7c6e34 4306 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 4307 else if (type == _KMEM)
d6441637 4308 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
4309 else
4310 return -EINVAL;
628f4235 4311 break;
296c81d8 4312 case RES_SOFT_LIMIT:
451af504 4313 ret = res_counter_memparse_write_strategy(buf, &val);
296c81d8
BS
4314 if (ret)
4315 break;
4316 /*
4317 * For memsw, soft limits are hard to implement in terms
4318 * of semantics, for now, we support soft limits for
4319 * control without swap
4320 */
4321 if (type == _MEM)
4322 ret = res_counter_set_soft_limit(&memcg->res, val);
4323 else
4324 ret = -EINVAL;
4325 break;
628f4235
KH
4326 default:
4327 ret = -EINVAL; /* should be BUG() ? */
4328 break;
4329 }
451af504 4330 return ret ?: nbytes;
8cdea7c0
BS
4331}
4332
fee7b548
KH
4333static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4334 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4335{
fee7b548
KH
4336 unsigned long long min_limit, min_memsw_limit, tmp;
4337
4338 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4339 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
4340 if (!memcg->use_hierarchy)
4341 goto out;
4342
5c9d535b
TH
4343 while (memcg->css.parent) {
4344 memcg = mem_cgroup_from_css(memcg->css.parent);
fee7b548
KH
4345 if (!memcg->use_hierarchy)
4346 break;
4347 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4348 min_limit = min(min_limit, tmp);
4349 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4350 min_memsw_limit = min(min_memsw_limit, tmp);
4351 }
4352out:
4353 *mem_limit = min_limit;
4354 *memsw_limit = min_memsw_limit;
fee7b548
KH
4355}
4356
6770c64e
TH
4357static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4358 size_t nbytes, loff_t off)
c84872e1 4359{
6770c64e 4360 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
86ae53e1
GC
4361 int name;
4362 enum res_type type;
c84872e1 4363
6770c64e
TH
4364 type = MEMFILE_TYPE(of_cft(of)->private);
4365 name = MEMFILE_ATTR(of_cft(of)->private);
af36f906 4366
8c7c6e34 4367 switch (name) {
29f2a4da 4368 case RES_MAX_USAGE:
8c7c6e34 4369 if (type == _MEM)
c0ff4b85 4370 res_counter_reset_max(&memcg->res);
510fc4e1 4371 else if (type == _MEMSWAP)
c0ff4b85 4372 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
4373 else if (type == _KMEM)
4374 res_counter_reset_max(&memcg->kmem);
4375 else
4376 return -EINVAL;
29f2a4da
PE
4377 break;
4378 case RES_FAILCNT:
8c7c6e34 4379 if (type == _MEM)
c0ff4b85 4380 res_counter_reset_failcnt(&memcg->res);
510fc4e1 4381 else if (type == _MEMSWAP)
c0ff4b85 4382 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
4383 else if (type == _KMEM)
4384 res_counter_reset_failcnt(&memcg->kmem);
4385 else
4386 return -EINVAL;
29f2a4da
PE
4387 break;
4388 }
f64c3f54 4389
6770c64e 4390 return nbytes;
c84872e1
PE
4391}
4392
182446d0 4393static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
4394 struct cftype *cft)
4395{
182446d0 4396 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
4397}
4398
02491447 4399#ifdef CONFIG_MMU
182446d0 4400static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
4401 struct cftype *cft, u64 val)
4402{
182446d0 4403 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
4404
4405 if (val >= (1 << NR_MOVE_TYPE))
4406 return -EINVAL;
ee5e8472 4407
7dc74be0 4408 /*
ee5e8472
GC
4409 * No kind of locking is needed in here, because ->can_attach() will
4410 * check this value once in the beginning of the process, and then carry
4411 * on with stale data. This means that changes to this value will only
4412 * affect task migrations starting after the change.
7dc74be0 4413 */
c0ff4b85 4414 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4415 return 0;
4416}
02491447 4417#else
182446d0 4418static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4419 struct cftype *cft, u64 val)
4420{
4421 return -ENOSYS;
4422}
4423#endif
7dc74be0 4424
406eb0c9 4425#ifdef CONFIG_NUMA
2da8ca82 4426static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4427{
25485de6
GT
4428 struct numa_stat {
4429 const char *name;
4430 unsigned int lru_mask;
4431 };
4432
4433 static const struct numa_stat stats[] = {
4434 { "total", LRU_ALL },
4435 { "file", LRU_ALL_FILE },
4436 { "anon", LRU_ALL_ANON },
4437 { "unevictable", BIT(LRU_UNEVICTABLE) },
4438 };
4439 const struct numa_stat *stat;
406eb0c9 4440 int nid;
25485de6 4441 unsigned long nr;
2da8ca82 4442 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 4443
25485de6
GT
4444 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4445 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4446 seq_printf(m, "%s=%lu", stat->name, nr);
4447 for_each_node_state(nid, N_MEMORY) {
4448 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4449 stat->lru_mask);
4450 seq_printf(m, " N%d=%lu", nid, nr);
4451 }
4452 seq_putc(m, '\n');
406eb0c9 4453 }
406eb0c9 4454
071aee13
YH
4455 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4456 struct mem_cgroup *iter;
4457
4458 nr = 0;
4459 for_each_mem_cgroup_tree(iter, memcg)
4460 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4461 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4462 for_each_node_state(nid, N_MEMORY) {
4463 nr = 0;
4464 for_each_mem_cgroup_tree(iter, memcg)
4465 nr += mem_cgroup_node_nr_lru_pages(
4466 iter, nid, stat->lru_mask);
4467 seq_printf(m, " N%d=%lu", nid, nr);
4468 }
4469 seq_putc(m, '\n');
406eb0c9 4470 }
406eb0c9 4471
406eb0c9
YH
4472 return 0;
4473}
4474#endif /* CONFIG_NUMA */
4475
af7c4b0e
JW
4476static inline void mem_cgroup_lru_names_not_uptodate(void)
4477{
4478 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4479}
4480
2da8ca82 4481static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4482{
2da8ca82 4483 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
4484 struct mem_cgroup *mi;
4485 unsigned int i;
406eb0c9 4486
af7c4b0e 4487 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4488 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4489 continue;
af7c4b0e
JW
4490 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4491 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4492 }
7b854121 4493
af7c4b0e
JW
4494 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4495 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4496 mem_cgroup_read_events(memcg, i));
4497
4498 for (i = 0; i < NR_LRU_LISTS; i++)
4499 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4500 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4501
14067bb3 4502 /* Hierarchical information */
fee7b548
KH
4503 {
4504 unsigned long long limit, memsw_limit;
d79154bb 4505 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4506 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4507 if (do_swap_account)
78ccf5b5
JW
4508 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4509 memsw_limit);
fee7b548 4510 }
7f016ee8 4511
af7c4b0e
JW
4512 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4513 long long val = 0;
4514
bff6bb83 4515 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4516 continue;
af7c4b0e
JW
4517 for_each_mem_cgroup_tree(mi, memcg)
4518 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4519 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4520 }
4521
4522 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4523 unsigned long long val = 0;
4524
4525 for_each_mem_cgroup_tree(mi, memcg)
4526 val += mem_cgroup_read_events(mi, i);
4527 seq_printf(m, "total_%s %llu\n",
4528 mem_cgroup_events_names[i], val);
4529 }
4530
4531 for (i = 0; i < NR_LRU_LISTS; i++) {
4532 unsigned long long val = 0;
4533
4534 for_each_mem_cgroup_tree(mi, memcg)
4535 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4536 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4537 }
14067bb3 4538
7f016ee8 4539#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4540 {
4541 int nid, zid;
4542 struct mem_cgroup_per_zone *mz;
89abfab1 4543 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4544 unsigned long recent_rotated[2] = {0, 0};
4545 unsigned long recent_scanned[2] = {0, 0};
4546
4547 for_each_online_node(nid)
4548 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 4549 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 4550 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4551
89abfab1
HD
4552 recent_rotated[0] += rstat->recent_rotated[0];
4553 recent_rotated[1] += rstat->recent_rotated[1];
4554 recent_scanned[0] += rstat->recent_scanned[0];
4555 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4556 }
78ccf5b5
JW
4557 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4558 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4559 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4560 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4561 }
4562#endif
4563
d2ceb9b7
KH
4564 return 0;
4565}
4566
182446d0
TH
4567static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4568 struct cftype *cft)
a7885eb8 4569{
182446d0 4570 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4571
1f4c025b 4572 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4573}
4574
182446d0
TH
4575static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4576 struct cftype *cft, u64 val)
a7885eb8 4577{
182446d0 4578 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4579
3dae7fec 4580 if (val > 100)
a7885eb8
KM
4581 return -EINVAL;
4582
14208b0e 4583 if (css->parent)
3dae7fec
JW
4584 memcg->swappiness = val;
4585 else
4586 vm_swappiness = val;
068b38c1 4587
a7885eb8
KM
4588 return 0;
4589}
4590
2e72b634
KS
4591static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4592{
4593 struct mem_cgroup_threshold_ary *t;
4594 u64 usage;
4595 int i;
4596
4597 rcu_read_lock();
4598 if (!swap)
2c488db2 4599 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4600 else
2c488db2 4601 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4602
4603 if (!t)
4604 goto unlock;
4605
ce00a967 4606 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4607
4608 /*
748dad36 4609 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4610 * If it's not true, a threshold was crossed after last
4611 * call of __mem_cgroup_threshold().
4612 */
5407a562 4613 i = t->current_threshold;
2e72b634
KS
4614
4615 /*
4616 * Iterate backward over array of thresholds starting from
4617 * current_threshold and check if a threshold is crossed.
4618 * If none of thresholds below usage is crossed, we read
4619 * only one element of the array here.
4620 */
4621 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4622 eventfd_signal(t->entries[i].eventfd, 1);
4623
4624 /* i = current_threshold + 1 */
4625 i++;
4626
4627 /*
4628 * Iterate forward over array of thresholds starting from
4629 * current_threshold+1 and check if a threshold is crossed.
4630 * If none of thresholds above usage is crossed, we read
4631 * only one element of the array here.
4632 */
4633 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4634 eventfd_signal(t->entries[i].eventfd, 1);
4635
4636 /* Update current_threshold */
5407a562 4637 t->current_threshold = i - 1;
2e72b634
KS
4638unlock:
4639 rcu_read_unlock();
4640}
4641
4642static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4643{
ad4ca5f4
KS
4644 while (memcg) {
4645 __mem_cgroup_threshold(memcg, false);
4646 if (do_swap_account)
4647 __mem_cgroup_threshold(memcg, true);
4648
4649 memcg = parent_mem_cgroup(memcg);
4650 }
2e72b634
KS
4651}
4652
4653static int compare_thresholds(const void *a, const void *b)
4654{
4655 const struct mem_cgroup_threshold *_a = a;
4656 const struct mem_cgroup_threshold *_b = b;
4657
2bff24a3
GT
4658 if (_a->threshold > _b->threshold)
4659 return 1;
4660
4661 if (_a->threshold < _b->threshold)
4662 return -1;
4663
4664 return 0;
2e72b634
KS
4665}
4666
c0ff4b85 4667static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4668{
4669 struct mem_cgroup_eventfd_list *ev;
4670
2bcf2e92
MH
4671 spin_lock(&memcg_oom_lock);
4672
c0ff4b85 4673 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4674 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4675
4676 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4677 return 0;
4678}
4679
c0ff4b85 4680static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4681{
7d74b06f
KH
4682 struct mem_cgroup *iter;
4683
c0ff4b85 4684 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4685 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4686}
4687
59b6f873 4688static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4689 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4690{
2c488db2
KS
4691 struct mem_cgroup_thresholds *thresholds;
4692 struct mem_cgroup_threshold_ary *new;
2e72b634 4693 u64 threshold, usage;
2c488db2 4694 int i, size, ret;
2e72b634
KS
4695
4696 ret = res_counter_memparse_write_strategy(args, &threshold);
4697 if (ret)
4698 return ret;
4699
4700 mutex_lock(&memcg->thresholds_lock);
2c488db2 4701
05b84301 4702 if (type == _MEM) {
2c488db2 4703 thresholds = &memcg->thresholds;
ce00a967 4704 usage = mem_cgroup_usage(memcg, false);
05b84301 4705 } else if (type == _MEMSWAP) {
2c488db2 4706 thresholds = &memcg->memsw_thresholds;
ce00a967 4707 usage = mem_cgroup_usage(memcg, true);
05b84301 4708 } else
2e72b634
KS
4709 BUG();
4710
2e72b634 4711 /* Check if a threshold crossed before adding a new one */
2c488db2 4712 if (thresholds->primary)
2e72b634
KS
4713 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4714
2c488db2 4715 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4716
4717 /* Allocate memory for new array of thresholds */
2c488db2 4718 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4719 GFP_KERNEL);
2c488db2 4720 if (!new) {
2e72b634
KS
4721 ret = -ENOMEM;
4722 goto unlock;
4723 }
2c488db2 4724 new->size = size;
2e72b634
KS
4725
4726 /* Copy thresholds (if any) to new array */
2c488db2
KS
4727 if (thresholds->primary) {
4728 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4729 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4730 }
4731
2e72b634 4732 /* Add new threshold */
2c488db2
KS
4733 new->entries[size - 1].eventfd = eventfd;
4734 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4735
4736 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4737 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4738 compare_thresholds, NULL);
4739
4740 /* Find current threshold */
2c488db2 4741 new->current_threshold = -1;
2e72b634 4742 for (i = 0; i < size; i++) {
748dad36 4743 if (new->entries[i].threshold <= usage) {
2e72b634 4744 /*
2c488db2
KS
4745 * new->current_threshold will not be used until
4746 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4747 * it here.
4748 */
2c488db2 4749 ++new->current_threshold;
748dad36
SZ
4750 } else
4751 break;
2e72b634
KS
4752 }
4753
2c488db2
KS
4754 /* Free old spare buffer and save old primary buffer as spare */
4755 kfree(thresholds->spare);
4756 thresholds->spare = thresholds->primary;
4757
4758 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4759
907860ed 4760 /* To be sure that nobody uses thresholds */
2e72b634
KS
4761 synchronize_rcu();
4762
2e72b634
KS
4763unlock:
4764 mutex_unlock(&memcg->thresholds_lock);
4765
4766 return ret;
4767}
4768
59b6f873 4769static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4770 struct eventfd_ctx *eventfd, const char *args)
4771{
59b6f873 4772 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4773}
4774
59b6f873 4775static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4776 struct eventfd_ctx *eventfd, const char *args)
4777{
59b6f873 4778 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4779}
4780
59b6f873 4781static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4782 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4783{
2c488db2
KS
4784 struct mem_cgroup_thresholds *thresholds;
4785 struct mem_cgroup_threshold_ary *new;
2e72b634 4786 u64 usage;
2c488db2 4787 int i, j, size;
2e72b634
KS
4788
4789 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4790
4791 if (type == _MEM) {
2c488db2 4792 thresholds = &memcg->thresholds;
ce00a967 4793 usage = mem_cgroup_usage(memcg, false);
05b84301 4794 } else if (type == _MEMSWAP) {
2c488db2 4795 thresholds = &memcg->memsw_thresholds;
ce00a967 4796 usage = mem_cgroup_usage(memcg, true);
05b84301 4797 } else
2e72b634
KS
4798 BUG();
4799
371528ca
AV
4800 if (!thresholds->primary)
4801 goto unlock;
4802
2e72b634
KS
4803 /* Check if a threshold crossed before removing */
4804 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4805
4806 /* Calculate new number of threshold */
2c488db2
KS
4807 size = 0;
4808 for (i = 0; i < thresholds->primary->size; i++) {
4809 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4810 size++;
4811 }
4812
2c488db2 4813 new = thresholds->spare;
907860ed 4814
2e72b634
KS
4815 /* Set thresholds array to NULL if we don't have thresholds */
4816 if (!size) {
2c488db2
KS
4817 kfree(new);
4818 new = NULL;
907860ed 4819 goto swap_buffers;
2e72b634
KS
4820 }
4821
2c488db2 4822 new->size = size;
2e72b634
KS
4823
4824 /* Copy thresholds and find current threshold */
2c488db2
KS
4825 new->current_threshold = -1;
4826 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4827 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4828 continue;
4829
2c488db2 4830 new->entries[j] = thresholds->primary->entries[i];
748dad36 4831 if (new->entries[j].threshold <= usage) {
2e72b634 4832 /*
2c488db2 4833 * new->current_threshold will not be used
2e72b634
KS
4834 * until rcu_assign_pointer(), so it's safe to increment
4835 * it here.
4836 */
2c488db2 4837 ++new->current_threshold;
2e72b634
KS
4838 }
4839 j++;
4840 }
4841
907860ed 4842swap_buffers:
2c488db2
KS
4843 /* Swap primary and spare array */
4844 thresholds->spare = thresholds->primary;
8c757763
SZ
4845 /* If all events are unregistered, free the spare array */
4846 if (!new) {
4847 kfree(thresholds->spare);
4848 thresholds->spare = NULL;
4849 }
4850
2c488db2 4851 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4852
907860ed 4853 /* To be sure that nobody uses thresholds */
2e72b634 4854 synchronize_rcu();
371528ca 4855unlock:
2e72b634 4856 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4857}
c1e862c1 4858
59b6f873 4859static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4860 struct eventfd_ctx *eventfd)
4861{
59b6f873 4862 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4863}
4864
59b6f873 4865static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4866 struct eventfd_ctx *eventfd)
4867{
59b6f873 4868 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4869}
4870
59b6f873 4871static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4872 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4873{
9490ff27 4874 struct mem_cgroup_eventfd_list *event;
9490ff27 4875
9490ff27
KH
4876 event = kmalloc(sizeof(*event), GFP_KERNEL);
4877 if (!event)
4878 return -ENOMEM;
4879
1af8efe9 4880 spin_lock(&memcg_oom_lock);
9490ff27
KH
4881
4882 event->eventfd = eventfd;
4883 list_add(&event->list, &memcg->oom_notify);
4884
4885 /* already in OOM ? */
79dfdacc 4886 if (atomic_read(&memcg->under_oom))
9490ff27 4887 eventfd_signal(eventfd, 1);
1af8efe9 4888 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4889
4890 return 0;
4891}
4892
59b6f873 4893static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4894 struct eventfd_ctx *eventfd)
9490ff27 4895{
9490ff27 4896 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4897
1af8efe9 4898 spin_lock(&memcg_oom_lock);
9490ff27 4899
c0ff4b85 4900 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4901 if (ev->eventfd == eventfd) {
4902 list_del(&ev->list);
4903 kfree(ev);
4904 }
4905 }
4906
1af8efe9 4907 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4908}
4909
2da8ca82 4910static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4911{
2da8ca82 4912 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4913
791badbd
TH
4914 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4915 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4916 return 0;
4917}
4918
182446d0 4919static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4920 struct cftype *cft, u64 val)
4921{
182446d0 4922 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4923
4924 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4925 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4926 return -EINVAL;
4927
c0ff4b85 4928 memcg->oom_kill_disable = val;
4d845ebf 4929 if (!val)
c0ff4b85 4930 memcg_oom_recover(memcg);
3dae7fec 4931
3c11ecf4
KH
4932 return 0;
4933}
4934
c255a458 4935#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4936static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4937{
55007d84
GC
4938 int ret;
4939
2633d7a0 4940 memcg->kmemcg_id = -1;
55007d84
GC
4941 ret = memcg_propagate_kmem(memcg);
4942 if (ret)
4943 return ret;
2633d7a0 4944
1d62e436 4945 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4946}
e5671dfa 4947
10d5ebf4 4948static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4949{
1d62e436 4950 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
4951}
4952
4953static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4954{
4955 if (!memcg_kmem_is_active(memcg))
4956 return;
4957
4958 /*
4959 * kmem charges can outlive the cgroup. In the case of slab
4960 * pages, for instance, a page contain objects from various
4961 * processes. As we prevent from taking a reference for every
4962 * such allocation we have to be careful when doing uncharge
4963 * (see memcg_uncharge_kmem) and here during offlining.
4964 *
4965 * The idea is that that only the _last_ uncharge which sees
4966 * the dead memcg will drop the last reference. An additional
4967 * reference is taken here before the group is marked dead
4968 * which is then paired with css_put during uncharge resp. here.
4969 *
4970 * Although this might sound strange as this path is called from
ec903c0c
TH
4971 * css_offline() when the referencemight have dropped down to 0 and
4972 * shouldn't be incremented anymore (css_tryget_online() would
4973 * fail) we do not have other options because of the kmem
4974 * allocations lifetime.
10d5ebf4
LZ
4975 */
4976 css_get(&memcg->css);
7de37682
GC
4977
4978 memcg_kmem_mark_dead(memcg);
4979
4980 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
4981 return;
4982
7de37682 4983 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 4984 css_put(&memcg->css);
d1a4c0b3 4985}
e5671dfa 4986#else
cbe128e3 4987static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4988{
4989 return 0;
4990}
d1a4c0b3 4991
10d5ebf4
LZ
4992static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4993{
4994}
4995
4996static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
4997{
4998}
e5671dfa
GC
4999#endif
5000
3bc942f3
TH
5001/*
5002 * DO NOT USE IN NEW FILES.
5003 *
5004 * "cgroup.event_control" implementation.
5005 *
5006 * This is way over-engineered. It tries to support fully configurable
5007 * events for each user. Such level of flexibility is completely
5008 * unnecessary especially in the light of the planned unified hierarchy.
5009 *
5010 * Please deprecate this and replace with something simpler if at all
5011 * possible.
5012 */
5013
79bd9814
TH
5014/*
5015 * Unregister event and free resources.
5016 *
5017 * Gets called from workqueue.
5018 */
3bc942f3 5019static void memcg_event_remove(struct work_struct *work)
79bd9814 5020{
3bc942f3
TH
5021 struct mem_cgroup_event *event =
5022 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5023 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5024
5025 remove_wait_queue(event->wqh, &event->wait);
5026
59b6f873 5027 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5028
5029 /* Notify userspace the event is going away. */
5030 eventfd_signal(event->eventfd, 1);
5031
5032 eventfd_ctx_put(event->eventfd);
5033 kfree(event);
59b6f873 5034 css_put(&memcg->css);
79bd9814
TH
5035}
5036
5037/*
5038 * Gets called on POLLHUP on eventfd when user closes it.
5039 *
5040 * Called with wqh->lock held and interrupts disabled.
5041 */
3bc942f3
TH
5042static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5043 int sync, void *key)
79bd9814 5044{
3bc942f3
TH
5045 struct mem_cgroup_event *event =
5046 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 5047 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5048 unsigned long flags = (unsigned long)key;
5049
5050 if (flags & POLLHUP) {
5051 /*
5052 * If the event has been detached at cgroup removal, we
5053 * can simply return knowing the other side will cleanup
5054 * for us.
5055 *
5056 * We can't race against event freeing since the other
5057 * side will require wqh->lock via remove_wait_queue(),
5058 * which we hold.
5059 */
fba94807 5060 spin_lock(&memcg->event_list_lock);
79bd9814
TH
5061 if (!list_empty(&event->list)) {
5062 list_del_init(&event->list);
5063 /*
5064 * We are in atomic context, but cgroup_event_remove()
5065 * may sleep, so we have to call it in workqueue.
5066 */
5067 schedule_work(&event->remove);
5068 }
fba94807 5069 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5070 }
5071
5072 return 0;
5073}
5074
3bc942f3 5075static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5076 wait_queue_head_t *wqh, poll_table *pt)
5077{
3bc942f3
TH
5078 struct mem_cgroup_event *event =
5079 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5080
5081 event->wqh = wqh;
5082 add_wait_queue(wqh, &event->wait);
5083}
5084
5085/*
3bc942f3
TH
5086 * DO NOT USE IN NEW FILES.
5087 *
79bd9814
TH
5088 * Parse input and register new cgroup event handler.
5089 *
5090 * Input must be in format '<event_fd> <control_fd> <args>'.
5091 * Interpretation of args is defined by control file implementation.
5092 */
451af504
TH
5093static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5094 char *buf, size_t nbytes, loff_t off)
79bd9814 5095{
451af504 5096 struct cgroup_subsys_state *css = of_css(of);
fba94807 5097 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5098 struct mem_cgroup_event *event;
79bd9814
TH
5099 struct cgroup_subsys_state *cfile_css;
5100 unsigned int efd, cfd;
5101 struct fd efile;
5102 struct fd cfile;
fba94807 5103 const char *name;
79bd9814
TH
5104 char *endp;
5105 int ret;
5106
451af504
TH
5107 buf = strstrip(buf);
5108
5109 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5110 if (*endp != ' ')
5111 return -EINVAL;
451af504 5112 buf = endp + 1;
79bd9814 5113
451af504 5114 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
5115 if ((*endp != ' ') && (*endp != '\0'))
5116 return -EINVAL;
451af504 5117 buf = endp + 1;
79bd9814
TH
5118
5119 event = kzalloc(sizeof(*event), GFP_KERNEL);
5120 if (!event)
5121 return -ENOMEM;
5122
59b6f873 5123 event->memcg = memcg;
79bd9814 5124 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5125 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5126 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5127 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5128
5129 efile = fdget(efd);
5130 if (!efile.file) {
5131 ret = -EBADF;
5132 goto out_kfree;
5133 }
5134
5135 event->eventfd = eventfd_ctx_fileget(efile.file);
5136 if (IS_ERR(event->eventfd)) {
5137 ret = PTR_ERR(event->eventfd);
5138 goto out_put_efile;
5139 }
5140
5141 cfile = fdget(cfd);
5142 if (!cfile.file) {
5143 ret = -EBADF;
5144 goto out_put_eventfd;
5145 }
5146
5147 /* the process need read permission on control file */
5148 /* AV: shouldn't we check that it's been opened for read instead? */
5149 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5150 if (ret < 0)
5151 goto out_put_cfile;
5152
fba94807
TH
5153 /*
5154 * Determine the event callbacks and set them in @event. This used
5155 * to be done via struct cftype but cgroup core no longer knows
5156 * about these events. The following is crude but the whole thing
5157 * is for compatibility anyway.
3bc942f3
TH
5158 *
5159 * DO NOT ADD NEW FILES.
fba94807
TH
5160 */
5161 name = cfile.file->f_dentry->d_name.name;
5162
5163 if (!strcmp(name, "memory.usage_in_bytes")) {
5164 event->register_event = mem_cgroup_usage_register_event;
5165 event->unregister_event = mem_cgroup_usage_unregister_event;
5166 } else if (!strcmp(name, "memory.oom_control")) {
5167 event->register_event = mem_cgroup_oom_register_event;
5168 event->unregister_event = mem_cgroup_oom_unregister_event;
5169 } else if (!strcmp(name, "memory.pressure_level")) {
5170 event->register_event = vmpressure_register_event;
5171 event->unregister_event = vmpressure_unregister_event;
5172 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5173 event->register_event = memsw_cgroup_usage_register_event;
5174 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5175 } else {
5176 ret = -EINVAL;
5177 goto out_put_cfile;
5178 }
5179
79bd9814 5180 /*
b5557c4c
TH
5181 * Verify @cfile should belong to @css. Also, remaining events are
5182 * automatically removed on cgroup destruction but the removal is
5183 * asynchronous, so take an extra ref on @css.
79bd9814 5184 */
ec903c0c
TH
5185 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5186 &memory_cgrp_subsys);
79bd9814 5187 ret = -EINVAL;
5a17f543 5188 if (IS_ERR(cfile_css))
79bd9814 5189 goto out_put_cfile;
5a17f543
TH
5190 if (cfile_css != css) {
5191 css_put(cfile_css);
79bd9814 5192 goto out_put_cfile;
5a17f543 5193 }
79bd9814 5194
451af504 5195 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
5196 if (ret)
5197 goto out_put_css;
5198
5199 efile.file->f_op->poll(efile.file, &event->pt);
5200
fba94807
TH
5201 spin_lock(&memcg->event_list_lock);
5202 list_add(&event->list, &memcg->event_list);
5203 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5204
5205 fdput(cfile);
5206 fdput(efile);
5207
451af504 5208 return nbytes;
79bd9814
TH
5209
5210out_put_css:
b5557c4c 5211 css_put(css);
79bd9814
TH
5212out_put_cfile:
5213 fdput(cfile);
5214out_put_eventfd:
5215 eventfd_ctx_put(event->eventfd);
5216out_put_efile:
5217 fdput(efile);
5218out_kfree:
5219 kfree(event);
5220
5221 return ret;
5222}
5223
8cdea7c0
BS
5224static struct cftype mem_cgroup_files[] = {
5225 {
0eea1030 5226 .name = "usage_in_bytes",
8c7c6e34 5227 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5228 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5229 },
c84872e1
PE
5230 {
5231 .name = "max_usage_in_bytes",
8c7c6e34 5232 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5233 .write = mem_cgroup_reset,
791badbd 5234 .read_u64 = mem_cgroup_read_u64,
c84872e1 5235 },
8cdea7c0 5236 {
0eea1030 5237 .name = "limit_in_bytes",
8c7c6e34 5238 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5239 .write = mem_cgroup_write,
791badbd 5240 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5241 },
296c81d8
BS
5242 {
5243 .name = "soft_limit_in_bytes",
5244 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5245 .write = mem_cgroup_write,
791badbd 5246 .read_u64 = mem_cgroup_read_u64,
296c81d8 5247 },
8cdea7c0
BS
5248 {
5249 .name = "failcnt",
8c7c6e34 5250 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5251 .write = mem_cgroup_reset,
791badbd 5252 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5253 },
d2ceb9b7
KH
5254 {
5255 .name = "stat",
2da8ca82 5256 .seq_show = memcg_stat_show,
d2ceb9b7 5257 },
c1e862c1
KH
5258 {
5259 .name = "force_empty",
6770c64e 5260 .write = mem_cgroup_force_empty_write,
c1e862c1 5261 },
18f59ea7
BS
5262 {
5263 .name = "use_hierarchy",
5264 .write_u64 = mem_cgroup_hierarchy_write,
5265 .read_u64 = mem_cgroup_hierarchy_read,
5266 },
79bd9814 5267 {
3bc942f3 5268 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5269 .write = memcg_write_event_control,
79bd9814
TH
5270 .flags = CFTYPE_NO_PREFIX,
5271 .mode = S_IWUGO,
5272 },
a7885eb8
KM
5273 {
5274 .name = "swappiness",
5275 .read_u64 = mem_cgroup_swappiness_read,
5276 .write_u64 = mem_cgroup_swappiness_write,
5277 },
7dc74be0
DN
5278 {
5279 .name = "move_charge_at_immigrate",
5280 .read_u64 = mem_cgroup_move_charge_read,
5281 .write_u64 = mem_cgroup_move_charge_write,
5282 },
9490ff27
KH
5283 {
5284 .name = "oom_control",
2da8ca82 5285 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5286 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5287 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5288 },
70ddf637
AV
5289 {
5290 .name = "pressure_level",
70ddf637 5291 },
406eb0c9
YH
5292#ifdef CONFIG_NUMA
5293 {
5294 .name = "numa_stat",
2da8ca82 5295 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5296 },
5297#endif
510fc4e1
GC
5298#ifdef CONFIG_MEMCG_KMEM
5299 {
5300 .name = "kmem.limit_in_bytes",
5301 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5302 .write = mem_cgroup_write,
791badbd 5303 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5304 },
5305 {
5306 .name = "kmem.usage_in_bytes",
5307 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5308 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5309 },
5310 {
5311 .name = "kmem.failcnt",
5312 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5313 .write = mem_cgroup_reset,
791badbd 5314 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5315 },
5316 {
5317 .name = "kmem.max_usage_in_bytes",
5318 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5319 .write = mem_cgroup_reset,
791badbd 5320 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5321 },
749c5415
GC
5322#ifdef CONFIG_SLABINFO
5323 {
5324 .name = "kmem.slabinfo",
2da8ca82 5325 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
5326 },
5327#endif
8c7c6e34 5328#endif
6bc10349 5329 { }, /* terminate */
af36f906 5330};
8c7c6e34 5331
2d11085e
MH
5332#ifdef CONFIG_MEMCG_SWAP
5333static struct cftype memsw_cgroup_files[] = {
5334 {
5335 .name = "memsw.usage_in_bytes",
5336 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 5337 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5338 },
5339 {
5340 .name = "memsw.max_usage_in_bytes",
5341 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 5342 .write = mem_cgroup_reset,
791badbd 5343 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5344 },
5345 {
5346 .name = "memsw.limit_in_bytes",
5347 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 5348 .write = mem_cgroup_write,
791badbd 5349 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5350 },
5351 {
5352 .name = "memsw.failcnt",
5353 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 5354 .write = mem_cgroup_reset,
791badbd 5355 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5356 },
5357 { }, /* terminate */
5358};
5359#endif
c0ff4b85 5360static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5361{
5362 struct mem_cgroup_per_node *pn;
1ecaab2b 5363 struct mem_cgroup_per_zone *mz;
41e3355d 5364 int zone, tmp = node;
1ecaab2b
KH
5365 /*
5366 * This routine is called against possible nodes.
5367 * But it's BUG to call kmalloc() against offline node.
5368 *
5369 * TODO: this routine can waste much memory for nodes which will
5370 * never be onlined. It's better to use memory hotplug callback
5371 * function.
5372 */
41e3355d
KH
5373 if (!node_state(node, N_NORMAL_MEMORY))
5374 tmp = -1;
17295c88 5375 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5376 if (!pn)
5377 return 1;
1ecaab2b 5378
1ecaab2b
KH
5379 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5380 mz = &pn->zoneinfo[zone];
bea8c150 5381 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
5382 mz->usage_in_excess = 0;
5383 mz->on_tree = false;
d79154bb 5384 mz->memcg = memcg;
1ecaab2b 5385 }
54f72fe0 5386 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5387 return 0;
5388}
5389
c0ff4b85 5390static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5391{
54f72fe0 5392 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
5393}
5394
33327948
KH
5395static struct mem_cgroup *mem_cgroup_alloc(void)
5396{
d79154bb 5397 struct mem_cgroup *memcg;
8ff69e2c 5398 size_t size;
33327948 5399
8ff69e2c
VD
5400 size = sizeof(struct mem_cgroup);
5401 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 5402
8ff69e2c 5403 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 5404 if (!memcg)
e7bbcdf3
DC
5405 return NULL;
5406
d79154bb
HD
5407 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5408 if (!memcg->stat)
d2e61b8d 5409 goto out_free;
d79154bb
HD
5410 spin_lock_init(&memcg->pcp_counter_lock);
5411 return memcg;
d2e61b8d
DC
5412
5413out_free:
8ff69e2c 5414 kfree(memcg);
d2e61b8d 5415 return NULL;
33327948
KH
5416}
5417
59927fb9 5418/*
c8b2a36f
GC
5419 * At destroying mem_cgroup, references from swap_cgroup can remain.
5420 * (scanning all at force_empty is too costly...)
5421 *
5422 * Instead of clearing all references at force_empty, we remember
5423 * the number of reference from swap_cgroup and free mem_cgroup when
5424 * it goes down to 0.
5425 *
5426 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5427 */
c8b2a36f
GC
5428
5429static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5430{
c8b2a36f 5431 int node;
59927fb9 5432
bb4cc1a8 5433 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
5434
5435 for_each_node(node)
5436 free_mem_cgroup_per_zone_info(memcg, node);
5437
5438 free_percpu(memcg->stat);
5439
3f134619
GC
5440 /*
5441 * We need to make sure that (at least for now), the jump label
5442 * destruction code runs outside of the cgroup lock. This is because
5443 * get_online_cpus(), which is called from the static_branch update,
5444 * can't be called inside the cgroup_lock. cpusets are the ones
5445 * enforcing this dependency, so if they ever change, we might as well.
5446 *
5447 * schedule_work() will guarantee this happens. Be careful if you need
5448 * to move this code around, and make sure it is outside
5449 * the cgroup_lock.
5450 */
a8964b9b 5451 disarm_static_keys(memcg);
8ff69e2c 5452 kfree(memcg);
59927fb9 5453}
3afe36b1 5454
7bcc1bb1
DN
5455/*
5456 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5457 */
e1aab161 5458struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5459{
c0ff4b85 5460 if (!memcg->res.parent)
7bcc1bb1 5461 return NULL;
c0ff4b85 5462 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 5463}
e1aab161 5464EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5465
bb4cc1a8
AM
5466static void __init mem_cgroup_soft_limit_tree_init(void)
5467{
5468 struct mem_cgroup_tree_per_node *rtpn;
5469 struct mem_cgroup_tree_per_zone *rtpz;
5470 int tmp, node, zone;
5471
5472 for_each_node(node) {
5473 tmp = node;
5474 if (!node_state(node, N_NORMAL_MEMORY))
5475 tmp = -1;
5476 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5477 BUG_ON(!rtpn);
5478
5479 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5480
5481 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5482 rtpz = &rtpn->rb_tree_per_zone[zone];
5483 rtpz->rb_root = RB_ROOT;
5484 spin_lock_init(&rtpz->lock);
5485 }
5486 }
5487}
5488
0eb253e2 5489static struct cgroup_subsys_state * __ref
eb95419b 5490mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 5491{
d142e3e6 5492 struct mem_cgroup *memcg;
04046e1a 5493 long error = -ENOMEM;
6d12e2d8 5494 int node;
8cdea7c0 5495
c0ff4b85
R
5496 memcg = mem_cgroup_alloc();
5497 if (!memcg)
04046e1a 5498 return ERR_PTR(error);
78fb7466 5499
3ed28fa1 5500 for_each_node(node)
c0ff4b85 5501 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5502 goto free_out;
f64c3f54 5503
c077719b 5504 /* root ? */
eb95419b 5505 if (parent_css == NULL) {
a41c58a6 5506 root_mem_cgroup = memcg;
d142e3e6
GC
5507 res_counter_init(&memcg->res, NULL);
5508 res_counter_init(&memcg->memsw, NULL);
5509 res_counter_init(&memcg->kmem, NULL);
18f59ea7 5510 }
28dbc4b6 5511
d142e3e6
GC
5512 memcg->last_scanned_node = MAX_NUMNODES;
5513 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5514 memcg->move_charge_at_immigrate = 0;
5515 mutex_init(&memcg->thresholds_lock);
5516 spin_lock_init(&memcg->move_lock);
70ddf637 5517 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5518 INIT_LIST_HEAD(&memcg->event_list);
5519 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
5520
5521 return &memcg->css;
5522
5523free_out:
5524 __mem_cgroup_free(memcg);
5525 return ERR_PTR(error);
5526}
5527
5528static int
eb95419b 5529mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 5530{
eb95419b 5531 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 5532 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 5533 int ret;
d142e3e6 5534
15a4c835 5535 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
5536 return -ENOSPC;
5537
63876986 5538 if (!parent)
d142e3e6
GC
5539 return 0;
5540
0999821b 5541 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
5542
5543 memcg->use_hierarchy = parent->use_hierarchy;
5544 memcg->oom_kill_disable = parent->oom_kill_disable;
5545 memcg->swappiness = mem_cgroup_swappiness(parent);
5546
5547 if (parent->use_hierarchy) {
c0ff4b85
R
5548 res_counter_init(&memcg->res, &parent->res);
5549 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 5550 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5551
7bcc1bb1 5552 /*
8d76a979
LZ
5553 * No need to take a reference to the parent because cgroup
5554 * core guarantees its existence.
7bcc1bb1 5555 */
18f59ea7 5556 } else {
ce00a967
JW
5557 res_counter_init(&memcg->res, NULL);
5558 res_counter_init(&memcg->memsw, NULL);
5559 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5560 /*
5561 * Deeper hierachy with use_hierarchy == false doesn't make
5562 * much sense so let cgroup subsystem know about this
5563 * unfortunate state in our controller.
5564 */
d142e3e6 5565 if (parent != root_mem_cgroup)
073219e9 5566 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5567 }
0999821b 5568 mutex_unlock(&memcg_create_mutex);
d6441637 5569
2f7dd7a4
JW
5570 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5571 if (ret)
5572 return ret;
5573
5574 /*
5575 * Make sure the memcg is initialized: mem_cgroup_iter()
5576 * orders reading memcg->initialized against its callers
5577 * reading the memcg members.
5578 */
5579 smp_store_release(&memcg->initialized, 1);
5580
5581 return 0;
8cdea7c0
BS
5582}
5583
5f578161
MH
5584/*
5585 * Announce all parents that a group from their hierarchy is gone.
5586 */
5587static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5588{
5589 struct mem_cgroup *parent = memcg;
5590
5591 while ((parent = parent_mem_cgroup(parent)))
519ebea3 5592 mem_cgroup_iter_invalidate(parent);
5f578161
MH
5593
5594 /*
5595 * if the root memcg is not hierarchical we have to check it
5596 * explicitely.
5597 */
5598 if (!root_mem_cgroup->use_hierarchy)
519ebea3 5599 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
5600}
5601
eb95419b 5602static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5603{
eb95419b 5604 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5605 struct mem_cgroup_event *event, *tmp;
4fb1a86f 5606 struct cgroup_subsys_state *iter;
79bd9814
TH
5607
5608 /*
5609 * Unregister events and notify userspace.
5610 * Notify userspace about cgroup removing only after rmdir of cgroup
5611 * directory to avoid race between userspace and kernelspace.
5612 */
fba94807
TH
5613 spin_lock(&memcg->event_list_lock);
5614 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5615 list_del_init(&event->list);
5616 schedule_work(&event->remove);
5617 }
fba94807 5618 spin_unlock(&memcg->event_list_lock);
ec64f515 5619
10d5ebf4
LZ
5620 kmem_cgroup_css_offline(memcg);
5621
5f578161 5622 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
5623
5624 /*
5625 * This requires that offlining is serialized. Right now that is
5626 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5627 */
5628 css_for_each_descendant_post(iter, css)
5629 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5630
776ed0f0 5631 memcg_unregister_all_caches(memcg);
33cb876e 5632 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
5633}
5634
eb95419b 5635static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5636{
eb95419b 5637 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
5638 /*
5639 * XXX: css_offline() would be where we should reparent all
5640 * memory to prepare the cgroup for destruction. However,
ec903c0c 5641 * memcg does not do css_tryget_online() and res_counter charging
96f1c58d
JW
5642 * under the same RCU lock region, which means that charging
5643 * could race with offlining. Offlining only happens to
5644 * cgroups with no tasks in them but charges can show up
5645 * without any tasks from the swapin path when the target
5646 * memcg is looked up from the swapout record and not from the
5647 * current task as it usually is. A race like this can leak
5648 * charges and put pages with stale cgroup pointers into
5649 * circulation:
5650 *
5651 * #0 #1
5652 * lookup_swap_cgroup_id()
5653 * rcu_read_lock()
5654 * mem_cgroup_lookup()
ec903c0c 5655 * css_tryget_online()
96f1c58d 5656 * rcu_read_unlock()
ec903c0c 5657 * disable css_tryget_online()
96f1c58d
JW
5658 * call_rcu()
5659 * offline_css()
5660 * reparent_charges()
5661 * res_counter_charge()
5662 * css_put()
5663 * css_free()
5664 * pc->mem_cgroup = dead memcg
5665 * add page to lru
5666 *
5667 * The bulk of the charges are still moved in offline_css() to
5668 * avoid pinning a lot of pages in case a long-term reference
5669 * like a swapout record is deferring the css_free() to long
5670 * after offlining. But this makes sure we catch any charges
5671 * made after offlining:
5672 */
5673 mem_cgroup_reparent_charges(memcg);
c268e994 5674
10d5ebf4 5675 memcg_destroy_kmem(memcg);
465939a1 5676 __mem_cgroup_free(memcg);
8cdea7c0
BS
5677}
5678
1ced953b
TH
5679/**
5680 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5681 * @css: the target css
5682 *
5683 * Reset the states of the mem_cgroup associated with @css. This is
5684 * invoked when the userland requests disabling on the default hierarchy
5685 * but the memcg is pinned through dependency. The memcg should stop
5686 * applying policies and should revert to the vanilla state as it may be
5687 * made visible again.
5688 *
5689 * The current implementation only resets the essential configurations.
5690 * This needs to be expanded to cover all the visible parts.
5691 */
5692static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5693{
5694 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5695
5696 mem_cgroup_resize_limit(memcg, ULLONG_MAX);
5697 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
5698 memcg_update_kmem_limit(memcg, ULLONG_MAX);
5699 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
5700}
5701
02491447 5702#ifdef CONFIG_MMU
7dc74be0 5703/* Handlers for move charge at task migration. */
854ffa8d 5704static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5705{
05b84301 5706 int ret;
9476db97
JW
5707
5708 /* Try a single bulk charge without reclaim first */
00501b53 5709 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5710 if (!ret) {
854ffa8d 5711 mc.precharge += count;
854ffa8d
DN
5712 return ret;
5713 }
692e7c45 5714 if (ret == -EINTR) {
00501b53 5715 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5716 return ret;
5717 }
9476db97
JW
5718
5719 /* Try charges one by one with reclaim */
854ffa8d 5720 while (count--) {
00501b53 5721 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5722 /*
5723 * In case of failure, any residual charges against
5724 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5725 * later on. However, cancel any charges that are
5726 * bypassed to root right away or they'll be lost.
9476db97 5727 */
692e7c45 5728 if (ret == -EINTR)
00501b53 5729 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5730 if (ret)
38c5d72f 5731 return ret;
854ffa8d 5732 mc.precharge++;
9476db97 5733 cond_resched();
854ffa8d 5734 }
9476db97 5735 return 0;
4ffef5fe
DN
5736}
5737
5738/**
8d32ff84 5739 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5740 * @vma: the vma the pte to be checked belongs
5741 * @addr: the address corresponding to the pte to be checked
5742 * @ptent: the pte to be checked
02491447 5743 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5744 *
5745 * Returns
5746 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5747 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5748 * move charge. if @target is not NULL, the page is stored in target->page
5749 * with extra refcnt got(Callers should handle it).
02491447
DN
5750 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5751 * target for charge migration. if @target is not NULL, the entry is stored
5752 * in target->ent.
4ffef5fe
DN
5753 *
5754 * Called with pte lock held.
5755 */
4ffef5fe
DN
5756union mc_target {
5757 struct page *page;
02491447 5758 swp_entry_t ent;
4ffef5fe
DN
5759};
5760
4ffef5fe 5761enum mc_target_type {
8d32ff84 5762 MC_TARGET_NONE = 0,
4ffef5fe 5763 MC_TARGET_PAGE,
02491447 5764 MC_TARGET_SWAP,
4ffef5fe
DN
5765};
5766
90254a65
DN
5767static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5768 unsigned long addr, pte_t ptent)
4ffef5fe 5769{
90254a65 5770 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5771
90254a65
DN
5772 if (!page || !page_mapped(page))
5773 return NULL;
5774 if (PageAnon(page)) {
5775 /* we don't move shared anon */
4b91355e 5776 if (!move_anon())
90254a65 5777 return NULL;
87946a72
DN
5778 } else if (!move_file())
5779 /* we ignore mapcount for file pages */
90254a65
DN
5780 return NULL;
5781 if (!get_page_unless_zero(page))
5782 return NULL;
5783
5784 return page;
5785}
5786
4b91355e 5787#ifdef CONFIG_SWAP
90254a65
DN
5788static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5789 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5790{
90254a65
DN
5791 struct page *page = NULL;
5792 swp_entry_t ent = pte_to_swp_entry(ptent);
5793
5794 if (!move_anon() || non_swap_entry(ent))
5795 return NULL;
4b91355e
KH
5796 /*
5797 * Because lookup_swap_cache() updates some statistics counter,
5798 * we call find_get_page() with swapper_space directly.
5799 */
33806f06 5800 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5801 if (do_swap_account)
5802 entry->val = ent.val;
5803
5804 return page;
5805}
4b91355e
KH
5806#else
5807static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5808 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5809{
5810 return NULL;
5811}
5812#endif
90254a65 5813
87946a72
DN
5814static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5815 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5816{
5817 struct page *page = NULL;
87946a72
DN
5818 struct address_space *mapping;
5819 pgoff_t pgoff;
5820
5821 if (!vma->vm_file) /* anonymous vma */
5822 return NULL;
5823 if (!move_file())
5824 return NULL;
5825
87946a72
DN
5826 mapping = vma->vm_file->f_mapping;
5827 if (pte_none(ptent))
5828 pgoff = linear_page_index(vma, addr);
5829 else /* pte_file(ptent) is true */
5830 pgoff = pte_to_pgoff(ptent);
5831
5832 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5833#ifdef CONFIG_SWAP
5834 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5835 if (shmem_mapping(mapping)) {
5836 page = find_get_entry(mapping, pgoff);
5837 if (radix_tree_exceptional_entry(page)) {
5838 swp_entry_t swp = radix_to_swp_entry(page);
5839 if (do_swap_account)
5840 *entry = swp;
5841 page = find_get_page(swap_address_space(swp), swp.val);
5842 }
5843 } else
5844 page = find_get_page(mapping, pgoff);
5845#else
5846 page = find_get_page(mapping, pgoff);
aa3b1895 5847#endif
87946a72
DN
5848 return page;
5849}
5850
8d32ff84 5851static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5852 unsigned long addr, pte_t ptent, union mc_target *target)
5853{
5854 struct page *page = NULL;
5855 struct page_cgroup *pc;
8d32ff84 5856 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5857 swp_entry_t ent = { .val = 0 };
5858
5859 if (pte_present(ptent))
5860 page = mc_handle_present_pte(vma, addr, ptent);
5861 else if (is_swap_pte(ptent))
5862 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5863 else if (pte_none(ptent) || pte_file(ptent))
5864 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5865
5866 if (!page && !ent.val)
8d32ff84 5867 return ret;
02491447
DN
5868 if (page) {
5869 pc = lookup_page_cgroup(page);
5870 /*
0a31bc97
JW
5871 * Do only loose check w/o serialization.
5872 * mem_cgroup_move_account() checks the pc is valid or
5873 * not under LRU exclusion.
02491447
DN
5874 */
5875 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5876 ret = MC_TARGET_PAGE;
5877 if (target)
5878 target->page = page;
5879 }
5880 if (!ret || !target)
5881 put_page(page);
5882 }
90254a65
DN
5883 /* There is a swap entry and a page doesn't exist or isn't charged */
5884 if (ent.val && !ret &&
34c00c31 5885 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5886 ret = MC_TARGET_SWAP;
5887 if (target)
5888 target->ent = ent;
4ffef5fe 5889 }
4ffef5fe
DN
5890 return ret;
5891}
5892
12724850
NH
5893#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5894/*
5895 * We don't consider swapping or file mapped pages because THP does not
5896 * support them for now.
5897 * Caller should make sure that pmd_trans_huge(pmd) is true.
5898 */
5899static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5900 unsigned long addr, pmd_t pmd, union mc_target *target)
5901{
5902 struct page *page = NULL;
5903 struct page_cgroup *pc;
5904 enum mc_target_type ret = MC_TARGET_NONE;
5905
5906 page = pmd_page(pmd);
309381fe 5907 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5908 if (!move_anon())
5909 return ret;
5910 pc = lookup_page_cgroup(page);
5911 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5912 ret = MC_TARGET_PAGE;
5913 if (target) {
5914 get_page(page);
5915 target->page = page;
5916 }
5917 }
5918 return ret;
5919}
5920#else
5921static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5922 unsigned long addr, pmd_t pmd, union mc_target *target)
5923{
5924 return MC_TARGET_NONE;
5925}
5926#endif
5927
4ffef5fe
DN
5928static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5929 unsigned long addr, unsigned long end,
5930 struct mm_walk *walk)
5931{
5932 struct vm_area_struct *vma = walk->private;
5933 pte_t *pte;
5934 spinlock_t *ptl;
5935
bf929152 5936 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5937 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5938 mc.precharge += HPAGE_PMD_NR;
bf929152 5939 spin_unlock(ptl);
1a5a9906 5940 return 0;
12724850 5941 }
03319327 5942
45f83cef
AA
5943 if (pmd_trans_unstable(pmd))
5944 return 0;
4ffef5fe
DN
5945 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5946 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5947 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5948 mc.precharge++; /* increment precharge temporarily */
5949 pte_unmap_unlock(pte - 1, ptl);
5950 cond_resched();
5951
7dc74be0
DN
5952 return 0;
5953}
5954
4ffef5fe
DN
5955static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5956{
5957 unsigned long precharge;
5958 struct vm_area_struct *vma;
5959
dfe076b0 5960 down_read(&mm->mmap_sem);
4ffef5fe
DN
5961 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5962 struct mm_walk mem_cgroup_count_precharge_walk = {
5963 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5964 .mm = mm,
5965 .private = vma,
5966 };
5967 if (is_vm_hugetlb_page(vma))
5968 continue;
4ffef5fe
DN
5969 walk_page_range(vma->vm_start, vma->vm_end,
5970 &mem_cgroup_count_precharge_walk);
5971 }
dfe076b0 5972 up_read(&mm->mmap_sem);
4ffef5fe
DN
5973
5974 precharge = mc.precharge;
5975 mc.precharge = 0;
5976
5977 return precharge;
5978}
5979
4ffef5fe
DN
5980static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5981{
dfe076b0
DN
5982 unsigned long precharge = mem_cgroup_count_precharge(mm);
5983
5984 VM_BUG_ON(mc.moving_task);
5985 mc.moving_task = current;
5986 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5987}
5988
dfe076b0
DN
5989/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5990static void __mem_cgroup_clear_mc(void)
4ffef5fe 5991{
2bd9bb20
KH
5992 struct mem_cgroup *from = mc.from;
5993 struct mem_cgroup *to = mc.to;
4050377b 5994 int i;
2bd9bb20 5995
4ffef5fe 5996 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5997 if (mc.precharge) {
00501b53 5998 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5999 mc.precharge = 0;
6000 }
6001 /*
6002 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6003 * we must uncharge here.
6004 */
6005 if (mc.moved_charge) {
00501b53 6006 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6007 mc.moved_charge = 0;
4ffef5fe 6008 }
483c30b5
DN
6009 /* we must fixup refcnts and charges */
6010 if (mc.moved_swap) {
483c30b5 6011 /* uncharge swap account from the old cgroup */
ce00a967
JW
6012 if (!mem_cgroup_is_root(mc.from))
6013 res_counter_uncharge(&mc.from->memsw,
6014 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6015
6016 for (i = 0; i < mc.moved_swap; i++)
6017 css_put(&mc.from->css);
483c30b5 6018
05b84301
JW
6019 /*
6020 * we charged both to->res and to->memsw, so we should
6021 * uncharge to->res.
6022 */
ce00a967
JW
6023 if (!mem_cgroup_is_root(mc.to))
6024 res_counter_uncharge(&mc.to->res,
6025 PAGE_SIZE * mc.moved_swap);
4050377b 6026 /* we've already done css_get(mc.to) */
483c30b5
DN
6027 mc.moved_swap = 0;
6028 }
dfe076b0
DN
6029 memcg_oom_recover(from);
6030 memcg_oom_recover(to);
6031 wake_up_all(&mc.waitq);
6032}
6033
6034static void mem_cgroup_clear_mc(void)
6035{
6036 struct mem_cgroup *from = mc.from;
6037
6038 /*
6039 * we must clear moving_task before waking up waiters at the end of
6040 * task migration.
6041 */
6042 mc.moving_task = NULL;
6043 __mem_cgroup_clear_mc();
2bd9bb20 6044 spin_lock(&mc.lock);
4ffef5fe
DN
6045 mc.from = NULL;
6046 mc.to = NULL;
2bd9bb20 6047 spin_unlock(&mc.lock);
32047e2a 6048 mem_cgroup_end_move(from);
4ffef5fe
DN
6049}
6050
eb95419b 6051static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6052 struct cgroup_taskset *tset)
7dc74be0 6053{
2f7ee569 6054 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6055 int ret = 0;
eb95419b 6056 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6057 unsigned long move_charge_at_immigrate;
7dc74be0 6058
ee5e8472
GC
6059 /*
6060 * We are now commited to this value whatever it is. Changes in this
6061 * tunable will only affect upcoming migrations, not the current one.
6062 * So we need to save it, and keep it going.
6063 */
6064 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6065 if (move_charge_at_immigrate) {
7dc74be0
DN
6066 struct mm_struct *mm;
6067 struct mem_cgroup *from = mem_cgroup_from_task(p);
6068
c0ff4b85 6069 VM_BUG_ON(from == memcg);
7dc74be0
DN
6070
6071 mm = get_task_mm(p);
6072 if (!mm)
6073 return 0;
7dc74be0 6074 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6075 if (mm->owner == p) {
6076 VM_BUG_ON(mc.from);
6077 VM_BUG_ON(mc.to);
6078 VM_BUG_ON(mc.precharge);
854ffa8d 6079 VM_BUG_ON(mc.moved_charge);
483c30b5 6080 VM_BUG_ON(mc.moved_swap);
32047e2a 6081 mem_cgroup_start_move(from);
2bd9bb20 6082 spin_lock(&mc.lock);
4ffef5fe 6083 mc.from = from;
c0ff4b85 6084 mc.to = memcg;
ee5e8472 6085 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6086 spin_unlock(&mc.lock);
dfe076b0 6087 /* We set mc.moving_task later */
4ffef5fe
DN
6088
6089 ret = mem_cgroup_precharge_mc(mm);
6090 if (ret)
6091 mem_cgroup_clear_mc();
dfe076b0
DN
6092 }
6093 mmput(mm);
7dc74be0
DN
6094 }
6095 return ret;
6096}
6097
eb95419b 6098static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6099 struct cgroup_taskset *tset)
7dc74be0 6100{
4ffef5fe 6101 mem_cgroup_clear_mc();
7dc74be0
DN
6102}
6103
4ffef5fe
DN
6104static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6105 unsigned long addr, unsigned long end,
6106 struct mm_walk *walk)
7dc74be0 6107{
4ffef5fe
DN
6108 int ret = 0;
6109 struct vm_area_struct *vma = walk->private;
6110 pte_t *pte;
6111 spinlock_t *ptl;
12724850
NH
6112 enum mc_target_type target_type;
6113 union mc_target target;
6114 struct page *page;
6115 struct page_cgroup *pc;
4ffef5fe 6116
12724850
NH
6117 /*
6118 * We don't take compound_lock() here but no race with splitting thp
6119 * happens because:
6120 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6121 * under splitting, which means there's no concurrent thp split,
6122 * - if another thread runs into split_huge_page() just after we
6123 * entered this if-block, the thread must wait for page table lock
6124 * to be unlocked in __split_huge_page_splitting(), where the main
6125 * part of thp split is not executed yet.
6126 */
bf929152 6127 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 6128 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6129 spin_unlock(ptl);
12724850
NH
6130 return 0;
6131 }
6132 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6133 if (target_type == MC_TARGET_PAGE) {
6134 page = target.page;
6135 if (!isolate_lru_page(page)) {
6136 pc = lookup_page_cgroup(page);
6137 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6138 pc, mc.from, mc.to)) {
12724850
NH
6139 mc.precharge -= HPAGE_PMD_NR;
6140 mc.moved_charge += HPAGE_PMD_NR;
6141 }
6142 putback_lru_page(page);
6143 }
6144 put_page(page);
6145 }
bf929152 6146 spin_unlock(ptl);
1a5a9906 6147 return 0;
12724850
NH
6148 }
6149
45f83cef
AA
6150 if (pmd_trans_unstable(pmd))
6151 return 0;
4ffef5fe
DN
6152retry:
6153 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6154 for (; addr != end; addr += PAGE_SIZE) {
6155 pte_t ptent = *(pte++);
02491447 6156 swp_entry_t ent;
4ffef5fe
DN
6157
6158 if (!mc.precharge)
6159 break;
6160
8d32ff84 6161 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6162 case MC_TARGET_PAGE:
6163 page = target.page;
6164 if (isolate_lru_page(page))
6165 goto put;
6166 pc = lookup_page_cgroup(page);
7ec99d62 6167 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6168 mc.from, mc.to)) {
4ffef5fe 6169 mc.precharge--;
854ffa8d
DN
6170 /* we uncharge from mc.from later. */
6171 mc.moved_charge++;
4ffef5fe
DN
6172 }
6173 putback_lru_page(page);
8d32ff84 6174put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6175 put_page(page);
6176 break;
02491447
DN
6177 case MC_TARGET_SWAP:
6178 ent = target.ent;
e91cbb42 6179 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6180 mc.precharge--;
483c30b5
DN
6181 /* we fixup refcnts and charges later. */
6182 mc.moved_swap++;
6183 }
02491447 6184 break;
4ffef5fe
DN
6185 default:
6186 break;
6187 }
6188 }
6189 pte_unmap_unlock(pte - 1, ptl);
6190 cond_resched();
6191
6192 if (addr != end) {
6193 /*
6194 * We have consumed all precharges we got in can_attach().
6195 * We try charge one by one, but don't do any additional
6196 * charges to mc.to if we have failed in charge once in attach()
6197 * phase.
6198 */
854ffa8d 6199 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6200 if (!ret)
6201 goto retry;
6202 }
6203
6204 return ret;
6205}
6206
6207static void mem_cgroup_move_charge(struct mm_struct *mm)
6208{
6209 struct vm_area_struct *vma;
6210
6211 lru_add_drain_all();
dfe076b0
DN
6212retry:
6213 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6214 /*
6215 * Someone who are holding the mmap_sem might be waiting in
6216 * waitq. So we cancel all extra charges, wake up all waiters,
6217 * and retry. Because we cancel precharges, we might not be able
6218 * to move enough charges, but moving charge is a best-effort
6219 * feature anyway, so it wouldn't be a big problem.
6220 */
6221 __mem_cgroup_clear_mc();
6222 cond_resched();
6223 goto retry;
6224 }
4ffef5fe
DN
6225 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6226 int ret;
6227 struct mm_walk mem_cgroup_move_charge_walk = {
6228 .pmd_entry = mem_cgroup_move_charge_pte_range,
6229 .mm = mm,
6230 .private = vma,
6231 };
6232 if (is_vm_hugetlb_page(vma))
6233 continue;
4ffef5fe
DN
6234 ret = walk_page_range(vma->vm_start, vma->vm_end,
6235 &mem_cgroup_move_charge_walk);
6236 if (ret)
6237 /*
6238 * means we have consumed all precharges and failed in
6239 * doing additional charge. Just abandon here.
6240 */
6241 break;
6242 }
dfe076b0 6243 up_read(&mm->mmap_sem);
7dc74be0
DN
6244}
6245
eb95419b 6246static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6247 struct cgroup_taskset *tset)
67e465a7 6248{
2f7ee569 6249 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6250 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6251
dfe076b0 6252 if (mm) {
a433658c
KM
6253 if (mc.to)
6254 mem_cgroup_move_charge(mm);
dfe076b0
DN
6255 mmput(mm);
6256 }
a433658c
KM
6257 if (mc.to)
6258 mem_cgroup_clear_mc();
67e465a7 6259}
5cfb80a7 6260#else /* !CONFIG_MMU */
eb95419b 6261static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6262 struct cgroup_taskset *tset)
5cfb80a7
DN
6263{
6264 return 0;
6265}
eb95419b 6266static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6267 struct cgroup_taskset *tset)
5cfb80a7
DN
6268{
6269}
eb95419b 6270static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6271 struct cgroup_taskset *tset)
5cfb80a7
DN
6272{
6273}
6274#endif
67e465a7 6275
f00baae7
TH
6276/*
6277 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6278 * to verify whether we're attached to the default hierarchy on each mount
6279 * attempt.
f00baae7 6280 */
eb95419b 6281static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6282{
6283 /*
aa6ec29b 6284 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6285 * guarantees that @root doesn't have any children, so turning it
6286 * on for the root memcg is enough.
6287 */
aa6ec29b 6288 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 6289 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6290}
6291
073219e9 6292struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6293 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6294 .css_online = mem_cgroup_css_online,
92fb9748
TH
6295 .css_offline = mem_cgroup_css_offline,
6296 .css_free = mem_cgroup_css_free,
1ced953b 6297 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6298 .can_attach = mem_cgroup_can_attach,
6299 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6300 .attach = mem_cgroup_move_task,
f00baae7 6301 .bind = mem_cgroup_bind,
5577964e 6302 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 6303 .early_init = 0,
8cdea7c0 6304};
c077719b 6305
c255a458 6306#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6307static int __init enable_swap_account(char *s)
6308{
a2c8990a 6309 if (!strcmp(s, "1"))
a42c390c 6310 really_do_swap_account = 1;
a2c8990a 6311 else if (!strcmp(s, "0"))
a42c390c
MH
6312 really_do_swap_account = 0;
6313 return 1;
6314}
a2c8990a 6315__setup("swapaccount=", enable_swap_account);
c077719b 6316
2d11085e
MH
6317static void __init memsw_file_init(void)
6318{
2cf669a5
TH
6319 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6320 memsw_cgroup_files));
6acc8b02
MH
6321}
6322
6323static void __init enable_swap_cgroup(void)
6324{
6325 if (!mem_cgroup_disabled() && really_do_swap_account) {
6326 do_swap_account = 1;
6327 memsw_file_init();
6328 }
2d11085e 6329}
6acc8b02 6330
2d11085e 6331#else
6acc8b02 6332static void __init enable_swap_cgroup(void)
2d11085e
MH
6333{
6334}
c077719b 6335#endif
2d11085e 6336
0a31bc97
JW
6337#ifdef CONFIG_MEMCG_SWAP
6338/**
6339 * mem_cgroup_swapout - transfer a memsw charge to swap
6340 * @page: page whose memsw charge to transfer
6341 * @entry: swap entry to move the charge to
6342 *
6343 * Transfer the memsw charge of @page to @entry.
6344 */
6345void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6346{
6347 struct page_cgroup *pc;
6348 unsigned short oldid;
6349
6350 VM_BUG_ON_PAGE(PageLRU(page), page);
6351 VM_BUG_ON_PAGE(page_count(page), page);
6352
6353 if (!do_swap_account)
6354 return;
6355
6356 pc = lookup_page_cgroup(page);
6357
6358 /* Readahead page, never charged */
6359 if (!PageCgroupUsed(pc))
6360 return;
6361
6362 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6363
6364 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6365 VM_BUG_ON_PAGE(oldid, page);
6366
6367 pc->flags &= ~PCG_MEMSW;
6368 css_get(&pc->mem_cgroup->css);
6369 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6370}
6371
6372/**
6373 * mem_cgroup_uncharge_swap - uncharge a swap entry
6374 * @entry: swap entry to uncharge
6375 *
6376 * Drop the memsw charge associated with @entry.
6377 */
6378void mem_cgroup_uncharge_swap(swp_entry_t entry)
6379{
6380 struct mem_cgroup *memcg;
6381 unsigned short id;
6382
6383 if (!do_swap_account)
6384 return;
6385
6386 id = swap_cgroup_record(entry, 0);
6387 rcu_read_lock();
6388 memcg = mem_cgroup_lookup(id);
6389 if (memcg) {
ce00a967
JW
6390 if (!mem_cgroup_is_root(memcg))
6391 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0a31bc97
JW
6392 mem_cgroup_swap_statistics(memcg, false);
6393 css_put(&memcg->css);
6394 }
6395 rcu_read_unlock();
6396}
6397#endif
6398
00501b53
JW
6399/**
6400 * mem_cgroup_try_charge - try charging a page
6401 * @page: page to charge
6402 * @mm: mm context of the victim
6403 * @gfp_mask: reclaim mode
6404 * @memcgp: charged memcg return
6405 *
6406 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6407 * pages according to @gfp_mask if necessary.
6408 *
6409 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6410 * Otherwise, an error code is returned.
6411 *
6412 * After page->mapping has been set up, the caller must finalize the
6413 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6414 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6415 */
6416int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6417 gfp_t gfp_mask, struct mem_cgroup **memcgp)
6418{
6419 struct mem_cgroup *memcg = NULL;
6420 unsigned int nr_pages = 1;
6421 int ret = 0;
6422
6423 if (mem_cgroup_disabled())
6424 goto out;
6425
6426 if (PageSwapCache(page)) {
6427 struct page_cgroup *pc = lookup_page_cgroup(page);
6428 /*
6429 * Every swap fault against a single page tries to charge the
6430 * page, bail as early as possible. shmem_unuse() encounters
6431 * already charged pages, too. The USED bit is protected by
6432 * the page lock, which serializes swap cache removal, which
6433 * in turn serializes uncharging.
6434 */
6435 if (PageCgroupUsed(pc))
6436 goto out;
6437 }
6438
6439 if (PageTransHuge(page)) {
6440 nr_pages <<= compound_order(page);
6441 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6442 }
6443
6444 if (do_swap_account && PageSwapCache(page))
6445 memcg = try_get_mem_cgroup_from_page(page);
6446 if (!memcg)
6447 memcg = get_mem_cgroup_from_mm(mm);
6448
6449 ret = try_charge(memcg, gfp_mask, nr_pages);
6450
6451 css_put(&memcg->css);
6452
6453 if (ret == -EINTR) {
6454 memcg = root_mem_cgroup;
6455 ret = 0;
6456 }
6457out:
6458 *memcgp = memcg;
6459 return ret;
6460}
6461
6462/**
6463 * mem_cgroup_commit_charge - commit a page charge
6464 * @page: page to charge
6465 * @memcg: memcg to charge the page to
6466 * @lrucare: page might be on LRU already
6467 *
6468 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6469 * after page->mapping has been set up. This must happen atomically
6470 * as part of the page instantiation, i.e. under the page table lock
6471 * for anonymous pages, under the page lock for page and swap cache.
6472 *
6473 * In addition, the page must not be on the LRU during the commit, to
6474 * prevent racing with task migration. If it might be, use @lrucare.
6475 *
6476 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6477 */
6478void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6479 bool lrucare)
6480{
6481 unsigned int nr_pages = 1;
6482
6483 VM_BUG_ON_PAGE(!page->mapping, page);
6484 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6485
6486 if (mem_cgroup_disabled())
6487 return;
6488 /*
6489 * Swap faults will attempt to charge the same page multiple
6490 * times. But reuse_swap_page() might have removed the page
6491 * from swapcache already, so we can't check PageSwapCache().
6492 */
6493 if (!memcg)
6494 return;
6495
6abb5a86
JW
6496 commit_charge(page, memcg, lrucare);
6497
00501b53
JW
6498 if (PageTransHuge(page)) {
6499 nr_pages <<= compound_order(page);
6500 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6501 }
6502
6abb5a86
JW
6503 local_irq_disable();
6504 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6505 memcg_check_events(memcg, page);
6506 local_irq_enable();
00501b53
JW
6507
6508 if (do_swap_account && PageSwapCache(page)) {
6509 swp_entry_t entry = { .val = page_private(page) };
6510 /*
6511 * The swap entry might not get freed for a long time,
6512 * let's not wait for it. The page already received a
6513 * memory+swap charge, drop the swap entry duplicate.
6514 */
6515 mem_cgroup_uncharge_swap(entry);
6516 }
6517}
6518
6519/**
6520 * mem_cgroup_cancel_charge - cancel a page charge
6521 * @page: page to charge
6522 * @memcg: memcg to charge the page to
6523 *
6524 * Cancel a charge transaction started by mem_cgroup_try_charge().
6525 */
6526void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6527{
6528 unsigned int nr_pages = 1;
6529
6530 if (mem_cgroup_disabled())
6531 return;
6532 /*
6533 * Swap faults will attempt to charge the same page multiple
6534 * times. But reuse_swap_page() might have removed the page
6535 * from swapcache already, so we can't check PageSwapCache().
6536 */
6537 if (!memcg)
6538 return;
6539
6540 if (PageTransHuge(page)) {
6541 nr_pages <<= compound_order(page);
6542 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6543 }
6544
6545 cancel_charge(memcg, nr_pages);
6546}
6547
747db954
JW
6548static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6549 unsigned long nr_mem, unsigned long nr_memsw,
6550 unsigned long nr_anon, unsigned long nr_file,
6551 unsigned long nr_huge, struct page *dummy_page)
6552{
6553 unsigned long flags;
6554
ce00a967
JW
6555 if (!mem_cgroup_is_root(memcg)) {
6556 if (nr_mem)
6557 res_counter_uncharge(&memcg->res,
6558 nr_mem * PAGE_SIZE);
6559 if (nr_memsw)
6560 res_counter_uncharge(&memcg->memsw,
6561 nr_memsw * PAGE_SIZE);
6562 memcg_oom_recover(memcg);
6563 }
747db954
JW
6564
6565 local_irq_save(flags);
6566 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6567 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6568 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6569 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6570 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6571 memcg_check_events(memcg, dummy_page);
6572 local_irq_restore(flags);
6573}
6574
6575static void uncharge_list(struct list_head *page_list)
6576{
6577 struct mem_cgroup *memcg = NULL;
6578 unsigned long nr_memsw = 0;
6579 unsigned long nr_anon = 0;
6580 unsigned long nr_file = 0;
6581 unsigned long nr_huge = 0;
6582 unsigned long pgpgout = 0;
6583 unsigned long nr_mem = 0;
6584 struct list_head *next;
6585 struct page *page;
6586
6587 next = page_list->next;
6588 do {
6589 unsigned int nr_pages = 1;
6590 struct page_cgroup *pc;
6591
6592 page = list_entry(next, struct page, lru);
6593 next = page->lru.next;
6594
6595 VM_BUG_ON_PAGE(PageLRU(page), page);
6596 VM_BUG_ON_PAGE(page_count(page), page);
6597
6598 pc = lookup_page_cgroup(page);
6599 if (!PageCgroupUsed(pc))
6600 continue;
6601
6602 /*
6603 * Nobody should be changing or seriously looking at
6604 * pc->mem_cgroup and pc->flags at this point, we have
6605 * fully exclusive access to the page.
6606 */
6607
6608 if (memcg != pc->mem_cgroup) {
6609 if (memcg) {
6610 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6611 nr_anon, nr_file, nr_huge, page);
6612 pgpgout = nr_mem = nr_memsw = 0;
6613 nr_anon = nr_file = nr_huge = 0;
6614 }
6615 memcg = pc->mem_cgroup;
6616 }
6617
6618 if (PageTransHuge(page)) {
6619 nr_pages <<= compound_order(page);
6620 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6621 nr_huge += nr_pages;
6622 }
6623
6624 if (PageAnon(page))
6625 nr_anon += nr_pages;
6626 else
6627 nr_file += nr_pages;
6628
6629 if (pc->flags & PCG_MEM)
6630 nr_mem += nr_pages;
6631 if (pc->flags & PCG_MEMSW)
6632 nr_memsw += nr_pages;
6633 pc->flags = 0;
6634
6635 pgpgout++;
6636 } while (next != page_list);
6637
6638 if (memcg)
6639 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6640 nr_anon, nr_file, nr_huge, page);
6641}
6642
0a31bc97
JW
6643/**
6644 * mem_cgroup_uncharge - uncharge a page
6645 * @page: page to uncharge
6646 *
6647 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6648 * mem_cgroup_commit_charge().
6649 */
6650void mem_cgroup_uncharge(struct page *page)
6651{
0a31bc97 6652 struct page_cgroup *pc;
0a31bc97
JW
6653
6654 if (mem_cgroup_disabled())
6655 return;
6656
747db954 6657 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 6658 pc = lookup_page_cgroup(page);
0a31bc97
JW
6659 if (!PageCgroupUsed(pc))
6660 return;
6661
747db954
JW
6662 INIT_LIST_HEAD(&page->lru);
6663 uncharge_list(&page->lru);
6664}
0a31bc97 6665
747db954
JW
6666/**
6667 * mem_cgroup_uncharge_list - uncharge a list of page
6668 * @page_list: list of pages to uncharge
6669 *
6670 * Uncharge a list of pages previously charged with
6671 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6672 */
6673void mem_cgroup_uncharge_list(struct list_head *page_list)
6674{
6675 if (mem_cgroup_disabled())
6676 return;
0a31bc97 6677
747db954
JW
6678 if (!list_empty(page_list))
6679 uncharge_list(page_list);
0a31bc97
JW
6680}
6681
6682/**
6683 * mem_cgroup_migrate - migrate a charge to another page
6684 * @oldpage: currently charged page
6685 * @newpage: page to transfer the charge to
6686 * @lrucare: both pages might be on the LRU already
6687 *
6688 * Migrate the charge from @oldpage to @newpage.
6689 *
6690 * Both pages must be locked, @newpage->mapping must be set up.
6691 */
6692void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6693 bool lrucare)
6694{
0a31bc97
JW
6695 struct page_cgroup *pc;
6696 int isolated;
6697
6698 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6699 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6700 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6701 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6702 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6703 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6704 newpage);
0a31bc97
JW
6705
6706 if (mem_cgroup_disabled())
6707 return;
6708
6709 /* Page cache replacement: new page already charged? */
6710 pc = lookup_page_cgroup(newpage);
6711 if (PageCgroupUsed(pc))
6712 return;
6713
6714 /* Re-entrant migration: old page already uncharged? */
6715 pc = lookup_page_cgroup(oldpage);
6716 if (!PageCgroupUsed(pc))
6717 return;
6718
6719 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6720 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6721
0a31bc97
JW
6722 if (lrucare)
6723 lock_page_lru(oldpage, &isolated);
6724
6725 pc->flags = 0;
6726
6727 if (lrucare)
6728 unlock_page_lru(oldpage, isolated);
6729
6abb5a86 6730 commit_charge(newpage, pc->mem_cgroup, lrucare);
0a31bc97
JW
6731}
6732
2d11085e 6733/*
1081312f
MH
6734 * subsys_initcall() for memory controller.
6735 *
6736 * Some parts like hotcpu_notifier() have to be initialized from this context
6737 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6738 * everything that doesn't depend on a specific mem_cgroup structure should
6739 * be initialized from here.
2d11085e
MH
6740 */
6741static int __init mem_cgroup_init(void)
6742{
6743 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6744 enable_swap_cgroup();
bb4cc1a8 6745 mem_cgroup_soft_limit_tree_init();
e4777496 6746 memcg_stock_init();
2d11085e
MH
6747 return 0;
6748}
6749subsys_initcall(mem_cgroup_init);