mm: numa: remove migrate_ratelimited
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
d1a4c0b3 68#include <net/tcp_memcontrol.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
a181b0e8 78#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 79static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 80
21afa38e 81/* Whether the swap controller is active */
c255a458 82#ifdef CONFIG_MEMCG_SWAP
c077719b 83int do_swap_account __read_mostly;
c077719b 84#else
a0db00fc 85#define do_swap_account 0
c077719b
KH
86#endif
87
af7c4b0e
JW
88static const char * const mem_cgroup_stat_names[] = {
89 "cache",
90 "rss",
b070e65c 91 "rss_huge",
af7c4b0e 92 "mapped_file",
3ea67d06 93 "writeback",
af7c4b0e
JW
94 "swap",
95};
96
af7c4b0e
JW
97static const char * const mem_cgroup_events_names[] = {
98 "pgpgin",
99 "pgpgout",
100 "pgfault",
101 "pgmajfault",
102};
103
58cf188e
SZ
104static const char * const mem_cgroup_lru_names[] = {
105 "inactive_anon",
106 "active_anon",
107 "inactive_file",
108 "active_file",
109 "unevictable",
110};
111
7a159cc9
JW
112/*
113 * Per memcg event counter is incremented at every pagein/pageout. With THP,
114 * it will be incremated by the number of pages. This counter is used for
115 * for trigger some periodic events. This is straightforward and better
116 * than using jiffies etc. to handle periodic memcg event.
117 */
118enum mem_cgroup_events_target {
119 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 120 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 121 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
122 MEM_CGROUP_NTARGETS,
123};
a0db00fc
KS
124#define THRESHOLDS_EVENTS_TARGET 128
125#define SOFTLIMIT_EVENTS_TARGET 1024
126#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 127
d52aa412 128struct mem_cgroup_stat_cpu {
7a159cc9 129 long count[MEM_CGROUP_STAT_NSTATS];
241994ed 130 unsigned long events[MEMCG_NR_EVENTS];
13114716 131 unsigned long nr_page_events;
7a159cc9 132 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
133};
134
5ac8fb31
JW
135struct reclaim_iter {
136 struct mem_cgroup *position;
527a5ec9
JW
137 /* scan generation, increased every round-trip */
138 unsigned int generation;
139};
140
6d12e2d8
KH
141/*
142 * per-zone information in memory controller.
143 */
6d12e2d8 144struct mem_cgroup_per_zone {
6290df54 145 struct lruvec lruvec;
1eb49272 146 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 147
5ac8fb31 148 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 149
bb4cc1a8 150 struct rb_node tree_node; /* RB tree node */
3e32cb2e 151 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
152 /* the soft limit is exceeded*/
153 bool on_tree;
d79154bb 154 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 155 /* use container_of */
6d12e2d8 156};
6d12e2d8
KH
157
158struct mem_cgroup_per_node {
159 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
160};
161
bb4cc1a8
AM
162/*
163 * Cgroups above their limits are maintained in a RB-Tree, independent of
164 * their hierarchy representation
165 */
166
167struct mem_cgroup_tree_per_zone {
168 struct rb_root rb_root;
169 spinlock_t lock;
170};
171
172struct mem_cgroup_tree_per_node {
173 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
174};
175
176struct mem_cgroup_tree {
177 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
178};
179
180static struct mem_cgroup_tree soft_limit_tree __read_mostly;
181
2e72b634
KS
182struct mem_cgroup_threshold {
183 struct eventfd_ctx *eventfd;
3e32cb2e 184 unsigned long threshold;
2e72b634
KS
185};
186
9490ff27 187/* For threshold */
2e72b634 188struct mem_cgroup_threshold_ary {
748dad36 189 /* An array index points to threshold just below or equal to usage. */
5407a562 190 int current_threshold;
2e72b634
KS
191 /* Size of entries[] */
192 unsigned int size;
193 /* Array of thresholds */
194 struct mem_cgroup_threshold entries[0];
195};
2c488db2
KS
196
197struct mem_cgroup_thresholds {
198 /* Primary thresholds array */
199 struct mem_cgroup_threshold_ary *primary;
200 /*
201 * Spare threshold array.
202 * This is needed to make mem_cgroup_unregister_event() "never fail".
203 * It must be able to store at least primary->size - 1 entries.
204 */
205 struct mem_cgroup_threshold_ary *spare;
206};
207
9490ff27
KH
208/* for OOM */
209struct mem_cgroup_eventfd_list {
210 struct list_head list;
211 struct eventfd_ctx *eventfd;
212};
2e72b634 213
79bd9814
TH
214/*
215 * cgroup_event represents events which userspace want to receive.
216 */
3bc942f3 217struct mem_cgroup_event {
79bd9814 218 /*
59b6f873 219 * memcg which the event belongs to.
79bd9814 220 */
59b6f873 221 struct mem_cgroup *memcg;
79bd9814
TH
222 /*
223 * eventfd to signal userspace about the event.
224 */
225 struct eventfd_ctx *eventfd;
226 /*
227 * Each of these stored in a list by the cgroup.
228 */
229 struct list_head list;
fba94807
TH
230 /*
231 * register_event() callback will be used to add new userspace
232 * waiter for changes related to this event. Use eventfd_signal()
233 * on eventfd to send notification to userspace.
234 */
59b6f873 235 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 236 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
237 /*
238 * unregister_event() callback will be called when userspace closes
239 * the eventfd or on cgroup removing. This callback must be set,
240 * if you want provide notification functionality.
241 */
59b6f873 242 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 243 struct eventfd_ctx *eventfd);
79bd9814
TH
244 /*
245 * All fields below needed to unregister event when
246 * userspace closes eventfd.
247 */
248 poll_table pt;
249 wait_queue_head_t *wqh;
250 wait_queue_t wait;
251 struct work_struct remove;
252};
253
c0ff4b85
R
254static void mem_cgroup_threshold(struct mem_cgroup *memcg);
255static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 256
8cdea7c0
BS
257/*
258 * The memory controller data structure. The memory controller controls both
259 * page cache and RSS per cgroup. We would eventually like to provide
260 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
261 * to help the administrator determine what knobs to tune.
262 *
263 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
264 * we hit the water mark. May be even add a low water mark, such that
265 * no reclaim occurs from a cgroup at it's low water mark, this is
266 * a feature that will be implemented much later in the future.
8cdea7c0
BS
267 */
268struct mem_cgroup {
269 struct cgroup_subsys_state css;
3e32cb2e
JW
270
271 /* Accounted resources */
272 struct page_counter memory;
273 struct page_counter memsw;
274 struct page_counter kmem;
275
241994ed
JW
276 /* Normal memory consumption range */
277 unsigned long low;
278 unsigned long high;
279
3e32cb2e 280 unsigned long soft_limit;
59927fb9 281
70ddf637
AV
282 /* vmpressure notifications */
283 struct vmpressure vmpressure;
284
2f7dd7a4
JW
285 /* css_online() has been completed */
286 int initialized;
287
18f59ea7
BS
288 /*
289 * Should the accounting and control be hierarchical, per subtree?
290 */
291 bool use_hierarchy;
79dfdacc
MH
292
293 bool oom_lock;
294 atomic_t under_oom;
3812c8c8 295 atomic_t oom_wakeups;
79dfdacc 296
1f4c025b 297 int swappiness;
3c11ecf4
KH
298 /* OOM-Killer disable */
299 int oom_kill_disable;
a7885eb8 300
2e72b634
KS
301 /* protect arrays of thresholds */
302 struct mutex thresholds_lock;
303
304 /* thresholds for memory usage. RCU-protected */
2c488db2 305 struct mem_cgroup_thresholds thresholds;
907860ed 306
2e72b634 307 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 308 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 309
9490ff27
KH
310 /* For oom notifier event fd */
311 struct list_head oom_notify;
185efc0f 312
7dc74be0
DN
313 /*
314 * Should we move charges of a task when a task is moved into this
315 * mem_cgroup ? And what type of charges should we move ?
316 */
f894ffa8 317 unsigned long move_charge_at_immigrate;
619d094b
KH
318 /*
319 * set > 0 if pages under this cgroup are moving to other cgroup.
320 */
6de22619 321 atomic_t moving_account;
312734c0 322 /* taken only while moving_account > 0 */
6de22619
JW
323 spinlock_t move_lock;
324 struct task_struct *move_lock_task;
325 unsigned long move_lock_flags;
d52aa412 326 /*
c62b1a3b 327 * percpu counter.
d52aa412 328 */
3a7951b4 329 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
330 /*
331 * used when a cpu is offlined or other synchronizations
332 * See mem_cgroup_read_stat().
333 */
334 struct mem_cgroup_stat_cpu nocpu_base;
335 spinlock_t pcp_counter_lock;
d1a4c0b3 336
4bd2c1ee 337#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 338 struct cg_proto tcp_mem;
d1a4c0b3 339#endif
2633d7a0 340#if defined(CONFIG_MEMCG_KMEM)
f7ce3190 341 /* Index in the kmem_cache->memcg_params.memcg_caches array */
2633d7a0 342 int kmemcg_id;
2788cf0c 343 bool kmem_acct_activated;
2a4db7eb 344 bool kmem_acct_active;
2633d7a0 345#endif
45cf7ebd
GC
346
347 int last_scanned_node;
348#if MAX_NUMNODES > 1
349 nodemask_t scan_nodes;
350 atomic_t numainfo_events;
351 atomic_t numainfo_updating;
352#endif
70ddf637 353
fba94807
TH
354 /* List of events which userspace want to receive */
355 struct list_head event_list;
356 spinlock_t event_list_lock;
357
54f72fe0
JW
358 struct mem_cgroup_per_node *nodeinfo[0];
359 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
360};
361
510fc4e1 362#ifdef CONFIG_MEMCG_KMEM
cb731d6c 363bool memcg_kmem_is_active(struct mem_cgroup *memcg)
7de37682 364{
2a4db7eb 365 return memcg->kmem_acct_active;
7de37682 366}
510fc4e1
GC
367#endif
368
7dc74be0
DN
369/* Stuffs for move charges at task migration. */
370/*
1dfab5ab 371 * Types of charges to be moved.
7dc74be0 372 */
1dfab5ab
JW
373#define MOVE_ANON 0x1U
374#define MOVE_FILE 0x2U
375#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 376
4ffef5fe
DN
377/* "mc" and its members are protected by cgroup_mutex */
378static struct move_charge_struct {
b1dd693e 379 spinlock_t lock; /* for from, to */
4ffef5fe
DN
380 struct mem_cgroup *from;
381 struct mem_cgroup *to;
1dfab5ab 382 unsigned long flags;
4ffef5fe 383 unsigned long precharge;
854ffa8d 384 unsigned long moved_charge;
483c30b5 385 unsigned long moved_swap;
8033b97c
DN
386 struct task_struct *moving_task; /* a task moving charges */
387 wait_queue_head_t waitq; /* a waitq for other context */
388} mc = {
2bd9bb20 389 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
390 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
391};
4ffef5fe 392
4e416953
BS
393/*
394 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
395 * limit reclaim to prevent infinite loops, if they ever occur.
396 */
a0db00fc 397#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 398#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 399
217bc319
KH
400enum charge_type {
401 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 402 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 403 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 404 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
405 NR_CHARGE_TYPE,
406};
407
8c7c6e34 408/* for encoding cft->private value on file */
86ae53e1
GC
409enum res_type {
410 _MEM,
411 _MEMSWAP,
412 _OOM_TYPE,
510fc4e1 413 _KMEM,
86ae53e1
GC
414};
415
a0db00fc
KS
416#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
417#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 418#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
419/* Used for OOM nofiier */
420#define OOM_CONTROL (0)
8c7c6e34 421
0999821b
GC
422/*
423 * The memcg_create_mutex will be held whenever a new cgroup is created.
424 * As a consequence, any change that needs to protect against new child cgroups
425 * appearing has to hold it as well.
426 */
427static DEFINE_MUTEX(memcg_create_mutex);
428
b2145145
WL
429struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
430{
a7c6d554 431 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
432}
433
70ddf637
AV
434/* Some nice accessors for the vmpressure. */
435struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
436{
437 if (!memcg)
438 memcg = root_mem_cgroup;
439 return &memcg->vmpressure;
440}
441
442struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
443{
444 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
445}
446
7ffc0edc
MH
447static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
448{
449 return (memcg == root_mem_cgroup);
450}
451
4219b2da
LZ
452/*
453 * We restrict the id in the range of [1, 65535], so it can fit into
454 * an unsigned short.
455 */
456#define MEM_CGROUP_ID_MAX USHRT_MAX
457
34c00c31
LZ
458static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
459{
15a4c835 460 return memcg->css.id;
34c00c31
LZ
461}
462
463static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
464{
465 struct cgroup_subsys_state *css;
466
7d699ddb 467 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
468 return mem_cgroup_from_css(css);
469}
470
e1aab161 471/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 472#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 473
e1aab161
GC
474void sock_update_memcg(struct sock *sk)
475{
376be5ff 476 if (mem_cgroup_sockets_enabled) {
e1aab161 477 struct mem_cgroup *memcg;
3f134619 478 struct cg_proto *cg_proto;
e1aab161
GC
479
480 BUG_ON(!sk->sk_prot->proto_cgroup);
481
f3f511e1
GC
482 /* Socket cloning can throw us here with sk_cgrp already
483 * filled. It won't however, necessarily happen from
484 * process context. So the test for root memcg given
485 * the current task's memcg won't help us in this case.
486 *
487 * Respecting the original socket's memcg is a better
488 * decision in this case.
489 */
490 if (sk->sk_cgrp) {
491 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 492 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
493 return;
494 }
495
e1aab161
GC
496 rcu_read_lock();
497 memcg = mem_cgroup_from_task(current);
3f134619 498 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 499 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
500 memcg_proto_active(cg_proto) &&
501 css_tryget_online(&memcg->css)) {
3f134619 502 sk->sk_cgrp = cg_proto;
e1aab161
GC
503 }
504 rcu_read_unlock();
505 }
506}
507EXPORT_SYMBOL(sock_update_memcg);
508
509void sock_release_memcg(struct sock *sk)
510{
376be5ff 511 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
512 struct mem_cgroup *memcg;
513 WARN_ON(!sk->sk_cgrp->memcg);
514 memcg = sk->sk_cgrp->memcg;
5347e5ae 515 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
516 }
517}
d1a4c0b3
GC
518
519struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
520{
521 if (!memcg || mem_cgroup_is_root(memcg))
522 return NULL;
523
2e685cad 524 return &memcg->tcp_mem;
d1a4c0b3
GC
525}
526EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 527
3f134619
GC
528#endif
529
a8964b9b 530#ifdef CONFIG_MEMCG_KMEM
55007d84 531/*
f7ce3190 532 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
533 * The main reason for not using cgroup id for this:
534 * this works better in sparse environments, where we have a lot of memcgs,
535 * but only a few kmem-limited. Or also, if we have, for instance, 200
536 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
537 * 200 entry array for that.
55007d84 538 *
dbcf73e2
VD
539 * The current size of the caches array is stored in memcg_nr_cache_ids. It
540 * will double each time we have to increase it.
55007d84 541 */
dbcf73e2
VD
542static DEFINE_IDA(memcg_cache_ida);
543int memcg_nr_cache_ids;
749c5415 544
05257a1a
VD
545/* Protects memcg_nr_cache_ids */
546static DECLARE_RWSEM(memcg_cache_ids_sem);
547
548void memcg_get_cache_ids(void)
549{
550 down_read(&memcg_cache_ids_sem);
551}
552
553void memcg_put_cache_ids(void)
554{
555 up_read(&memcg_cache_ids_sem);
556}
557
55007d84
GC
558/*
559 * MIN_SIZE is different than 1, because we would like to avoid going through
560 * the alloc/free process all the time. In a small machine, 4 kmem-limited
561 * cgroups is a reasonable guess. In the future, it could be a parameter or
562 * tunable, but that is strictly not necessary.
563 *
b8627835 564 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
565 * this constant directly from cgroup, but it is understandable that this is
566 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 567 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
568 * increase ours as well if it increases.
569 */
570#define MEMCG_CACHES_MIN_SIZE 4
b8627835 571#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 572
d7f25f8a
GC
573/*
574 * A lot of the calls to the cache allocation functions are expected to be
575 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
576 * conditional to this static branch, we'll have to allow modules that does
577 * kmem_cache_alloc and the such to see this symbol as well
578 */
a8964b9b 579struct static_key memcg_kmem_enabled_key;
d7f25f8a 580EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 581
a8964b9b
GC
582#endif /* CONFIG_MEMCG_KMEM */
583
f64c3f54 584static struct mem_cgroup_per_zone *
e231875b 585mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 586{
e231875b
JZ
587 int nid = zone_to_nid(zone);
588 int zid = zone_idx(zone);
589
54f72fe0 590 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
591}
592
c0ff4b85 593struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 594{
c0ff4b85 595 return &memcg->css;
d324236b
WF
596}
597
f64c3f54 598static struct mem_cgroup_per_zone *
e231875b 599mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 600{
97a6c37b
JW
601 int nid = page_to_nid(page);
602 int zid = page_zonenum(page);
f64c3f54 603
e231875b 604 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
605}
606
bb4cc1a8
AM
607static struct mem_cgroup_tree_per_zone *
608soft_limit_tree_node_zone(int nid, int zid)
609{
610 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
611}
612
613static struct mem_cgroup_tree_per_zone *
614soft_limit_tree_from_page(struct page *page)
615{
616 int nid = page_to_nid(page);
617 int zid = page_zonenum(page);
618
619 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
620}
621
cf2c8127
JW
622static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
623 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 624 unsigned long new_usage_in_excess)
bb4cc1a8
AM
625{
626 struct rb_node **p = &mctz->rb_root.rb_node;
627 struct rb_node *parent = NULL;
628 struct mem_cgroup_per_zone *mz_node;
629
630 if (mz->on_tree)
631 return;
632
633 mz->usage_in_excess = new_usage_in_excess;
634 if (!mz->usage_in_excess)
635 return;
636 while (*p) {
637 parent = *p;
638 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
639 tree_node);
640 if (mz->usage_in_excess < mz_node->usage_in_excess)
641 p = &(*p)->rb_left;
642 /*
643 * We can't avoid mem cgroups that are over their soft
644 * limit by the same amount
645 */
646 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
647 p = &(*p)->rb_right;
648 }
649 rb_link_node(&mz->tree_node, parent, p);
650 rb_insert_color(&mz->tree_node, &mctz->rb_root);
651 mz->on_tree = true;
652}
653
cf2c8127
JW
654static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
655 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
656{
657 if (!mz->on_tree)
658 return;
659 rb_erase(&mz->tree_node, &mctz->rb_root);
660 mz->on_tree = false;
661}
662
cf2c8127
JW
663static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
664 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 665{
0a31bc97
JW
666 unsigned long flags;
667
668 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 669 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 670 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
671}
672
3e32cb2e
JW
673static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
674{
675 unsigned long nr_pages = page_counter_read(&memcg->memory);
676 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
677 unsigned long excess = 0;
678
679 if (nr_pages > soft_limit)
680 excess = nr_pages - soft_limit;
681
682 return excess;
683}
bb4cc1a8
AM
684
685static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
686{
3e32cb2e 687 unsigned long excess;
bb4cc1a8
AM
688 struct mem_cgroup_per_zone *mz;
689 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 690
e231875b 691 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
692 /*
693 * Necessary to update all ancestors when hierarchy is used.
694 * because their event counter is not touched.
695 */
696 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 697 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 698 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
699 /*
700 * We have to update the tree if mz is on RB-tree or
701 * mem is over its softlimit.
702 */
703 if (excess || mz->on_tree) {
0a31bc97
JW
704 unsigned long flags;
705
706 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
707 /* if on-tree, remove it */
708 if (mz->on_tree)
cf2c8127 709 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
710 /*
711 * Insert again. mz->usage_in_excess will be updated.
712 * If excess is 0, no tree ops.
713 */
cf2c8127 714 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 715 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
716 }
717 }
718}
719
720static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
721{
bb4cc1a8 722 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
723 struct mem_cgroup_per_zone *mz;
724 int nid, zid;
bb4cc1a8 725
e231875b
JZ
726 for_each_node(nid) {
727 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
728 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
729 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 730 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
731 }
732 }
733}
734
735static struct mem_cgroup_per_zone *
736__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
737{
738 struct rb_node *rightmost = NULL;
739 struct mem_cgroup_per_zone *mz;
740
741retry:
742 mz = NULL;
743 rightmost = rb_last(&mctz->rb_root);
744 if (!rightmost)
745 goto done; /* Nothing to reclaim from */
746
747 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
748 /*
749 * Remove the node now but someone else can add it back,
750 * we will to add it back at the end of reclaim to its correct
751 * position in the tree.
752 */
cf2c8127 753 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 754 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 755 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
756 goto retry;
757done:
758 return mz;
759}
760
761static struct mem_cgroup_per_zone *
762mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
763{
764 struct mem_cgroup_per_zone *mz;
765
0a31bc97 766 spin_lock_irq(&mctz->lock);
bb4cc1a8 767 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 768 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
769 return mz;
770}
771
711d3d2c
KH
772/*
773 * Implementation Note: reading percpu statistics for memcg.
774 *
775 * Both of vmstat[] and percpu_counter has threshold and do periodic
776 * synchronization to implement "quick" read. There are trade-off between
777 * reading cost and precision of value. Then, we may have a chance to implement
778 * a periodic synchronizion of counter in memcg's counter.
779 *
780 * But this _read() function is used for user interface now. The user accounts
781 * memory usage by memory cgroup and he _always_ requires exact value because
782 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
783 * have to visit all online cpus and make sum. So, for now, unnecessary
784 * synchronization is not implemented. (just implemented for cpu hotplug)
785 *
786 * If there are kernel internal actions which can make use of some not-exact
787 * value, and reading all cpu value can be performance bottleneck in some
788 * common workload, threashold and synchonization as vmstat[] should be
789 * implemented.
790 */
c0ff4b85 791static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 792 enum mem_cgroup_stat_index idx)
c62b1a3b 793{
7a159cc9 794 long val = 0;
c62b1a3b 795 int cpu;
c62b1a3b 796
711d3d2c
KH
797 get_online_cpus();
798 for_each_online_cpu(cpu)
c0ff4b85 799 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 800#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
801 spin_lock(&memcg->pcp_counter_lock);
802 val += memcg->nocpu_base.count[idx];
803 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
804#endif
805 put_online_cpus();
c62b1a3b
KH
806 return val;
807}
808
c0ff4b85 809static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
810 enum mem_cgroup_events_index idx)
811{
812 unsigned long val = 0;
813 int cpu;
814
9c567512 815 get_online_cpus();
e9f8974f 816 for_each_online_cpu(cpu)
c0ff4b85 817 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 818#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
819 spin_lock(&memcg->pcp_counter_lock);
820 val += memcg->nocpu_base.events[idx];
821 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 822#endif
9c567512 823 put_online_cpus();
e9f8974f
JW
824 return val;
825}
826
c0ff4b85 827static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 828 struct page *page,
0a31bc97 829 int nr_pages)
d52aa412 830{
b2402857
KH
831 /*
832 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
833 * counted as CACHE even if it's on ANON LRU.
834 */
0a31bc97 835 if (PageAnon(page))
b2402857 836 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 837 nr_pages);
d52aa412 838 else
b2402857 839 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 840 nr_pages);
55e462b0 841
b070e65c
DR
842 if (PageTransHuge(page))
843 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
844 nr_pages);
845
e401f176
KH
846 /* pagein of a big page is an event. So, ignore page size */
847 if (nr_pages > 0)
c0ff4b85 848 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 849 else {
c0ff4b85 850 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
851 nr_pages = -nr_pages; /* for event */
852 }
e401f176 853
13114716 854 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
855}
856
e231875b 857unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
858{
859 struct mem_cgroup_per_zone *mz;
860
861 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
862 return mz->lru_size[lru];
863}
864
e231875b
JZ
865static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
866 int nid,
867 unsigned int lru_mask)
bb2a0de9 868{
e231875b 869 unsigned long nr = 0;
889976db
YH
870 int zid;
871
e231875b 872 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 873
e231875b
JZ
874 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
875 struct mem_cgroup_per_zone *mz;
876 enum lru_list lru;
877
878 for_each_lru(lru) {
879 if (!(BIT(lru) & lru_mask))
880 continue;
881 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
882 nr += mz->lru_size[lru];
883 }
884 }
885 return nr;
889976db 886}
bb2a0de9 887
c0ff4b85 888static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 889 unsigned int lru_mask)
6d12e2d8 890{
e231875b 891 unsigned long nr = 0;
889976db 892 int nid;
6d12e2d8 893
31aaea4a 894 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
895 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
896 return nr;
d52aa412
KH
897}
898
f53d7ce3
JW
899static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
900 enum mem_cgroup_events_target target)
7a159cc9
JW
901{
902 unsigned long val, next;
903
13114716 904 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 905 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 906 /* from time_after() in jiffies.h */
f53d7ce3
JW
907 if ((long)next - (long)val < 0) {
908 switch (target) {
909 case MEM_CGROUP_TARGET_THRESH:
910 next = val + THRESHOLDS_EVENTS_TARGET;
911 break;
bb4cc1a8
AM
912 case MEM_CGROUP_TARGET_SOFTLIMIT:
913 next = val + SOFTLIMIT_EVENTS_TARGET;
914 break;
f53d7ce3
JW
915 case MEM_CGROUP_TARGET_NUMAINFO:
916 next = val + NUMAINFO_EVENTS_TARGET;
917 break;
918 default:
919 break;
920 }
921 __this_cpu_write(memcg->stat->targets[target], next);
922 return true;
7a159cc9 923 }
f53d7ce3 924 return false;
d2265e6f
KH
925}
926
927/*
928 * Check events in order.
929 *
930 */
c0ff4b85 931static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
932{
933 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
934 if (unlikely(mem_cgroup_event_ratelimit(memcg,
935 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 936 bool do_softlimit;
82b3f2a7 937 bool do_numainfo __maybe_unused;
f53d7ce3 938
bb4cc1a8
AM
939 do_softlimit = mem_cgroup_event_ratelimit(memcg,
940 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
941#if MAX_NUMNODES > 1
942 do_numainfo = mem_cgroup_event_ratelimit(memcg,
943 MEM_CGROUP_TARGET_NUMAINFO);
944#endif
c0ff4b85 945 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
946 if (unlikely(do_softlimit))
947 mem_cgroup_update_tree(memcg, page);
453a9bf3 948#if MAX_NUMNODES > 1
f53d7ce3 949 if (unlikely(do_numainfo))
c0ff4b85 950 atomic_inc(&memcg->numainfo_events);
453a9bf3 951#endif
0a31bc97 952 }
d2265e6f
KH
953}
954
cf475ad2 955struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 956{
31a78f23
BS
957 /*
958 * mm_update_next_owner() may clear mm->owner to NULL
959 * if it races with swapoff, page migration, etc.
960 * So this can be called with p == NULL.
961 */
962 if (unlikely(!p))
963 return NULL;
964
073219e9 965 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
966}
967
df381975 968static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 969{
c0ff4b85 970 struct mem_cgroup *memcg = NULL;
0b7f569e 971
54595fe2
KH
972 rcu_read_lock();
973 do {
6f6acb00
MH
974 /*
975 * Page cache insertions can happen withou an
976 * actual mm context, e.g. during disk probing
977 * on boot, loopback IO, acct() writes etc.
978 */
979 if (unlikely(!mm))
df381975 980 memcg = root_mem_cgroup;
6f6acb00
MH
981 else {
982 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
983 if (unlikely(!memcg))
984 memcg = root_mem_cgroup;
985 }
ec903c0c 986 } while (!css_tryget_online(&memcg->css));
54595fe2 987 rcu_read_unlock();
c0ff4b85 988 return memcg;
54595fe2
KH
989}
990
5660048c
JW
991/**
992 * mem_cgroup_iter - iterate over memory cgroup hierarchy
993 * @root: hierarchy root
994 * @prev: previously returned memcg, NULL on first invocation
995 * @reclaim: cookie for shared reclaim walks, NULL for full walks
996 *
997 * Returns references to children of the hierarchy below @root, or
998 * @root itself, or %NULL after a full round-trip.
999 *
1000 * Caller must pass the return value in @prev on subsequent
1001 * invocations for reference counting, or use mem_cgroup_iter_break()
1002 * to cancel a hierarchy walk before the round-trip is complete.
1003 *
1004 * Reclaimers can specify a zone and a priority level in @reclaim to
1005 * divide up the memcgs in the hierarchy among all concurrent
1006 * reclaimers operating on the same zone and priority.
1007 */
694fbc0f 1008struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1009 struct mem_cgroup *prev,
694fbc0f 1010 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1011{
5ac8fb31
JW
1012 struct reclaim_iter *uninitialized_var(iter);
1013 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1014 struct mem_cgroup *memcg = NULL;
5ac8fb31 1015 struct mem_cgroup *pos = NULL;
711d3d2c 1016
694fbc0f
AM
1017 if (mem_cgroup_disabled())
1018 return NULL;
5660048c 1019
9f3a0d09
JW
1020 if (!root)
1021 root = root_mem_cgroup;
7d74b06f 1022
9f3a0d09 1023 if (prev && !reclaim)
5ac8fb31 1024 pos = prev;
14067bb3 1025
9f3a0d09
JW
1026 if (!root->use_hierarchy && root != root_mem_cgroup) {
1027 if (prev)
5ac8fb31 1028 goto out;
694fbc0f 1029 return root;
9f3a0d09 1030 }
14067bb3 1031
542f85f9 1032 rcu_read_lock();
5f578161 1033
5ac8fb31
JW
1034 if (reclaim) {
1035 struct mem_cgroup_per_zone *mz;
1036
1037 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1038 iter = &mz->iter[reclaim->priority];
1039
1040 if (prev && reclaim->generation != iter->generation)
1041 goto out_unlock;
1042
1043 do {
1044 pos = ACCESS_ONCE(iter->position);
1045 /*
1046 * A racing update may change the position and
1047 * put the last reference, hence css_tryget(),
1048 * or retry to see the updated position.
1049 */
1050 } while (pos && !css_tryget(&pos->css));
1051 }
1052
1053 if (pos)
1054 css = &pos->css;
1055
1056 for (;;) {
1057 css = css_next_descendant_pre(css, &root->css);
1058 if (!css) {
1059 /*
1060 * Reclaimers share the hierarchy walk, and a
1061 * new one might jump in right at the end of
1062 * the hierarchy - make sure they see at least
1063 * one group and restart from the beginning.
1064 */
1065 if (!prev)
1066 continue;
1067 break;
527a5ec9 1068 }
7d74b06f 1069
5ac8fb31
JW
1070 /*
1071 * Verify the css and acquire a reference. The root
1072 * is provided by the caller, so we know it's alive
1073 * and kicking, and don't take an extra reference.
1074 */
1075 memcg = mem_cgroup_from_css(css);
14067bb3 1076
5ac8fb31
JW
1077 if (css == &root->css)
1078 break;
14067bb3 1079
b2052564 1080 if (css_tryget(css)) {
5ac8fb31
JW
1081 /*
1082 * Make sure the memcg is initialized:
1083 * mem_cgroup_css_online() orders the the
1084 * initialization against setting the flag.
1085 */
1086 if (smp_load_acquire(&memcg->initialized))
1087 break;
542f85f9 1088
5ac8fb31 1089 css_put(css);
527a5ec9 1090 }
9f3a0d09 1091
5ac8fb31 1092 memcg = NULL;
9f3a0d09 1093 }
5ac8fb31
JW
1094
1095 if (reclaim) {
1096 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1097 if (memcg)
1098 css_get(&memcg->css);
1099 if (pos)
1100 css_put(&pos->css);
1101 }
1102
1103 /*
1104 * pairs with css_tryget when dereferencing iter->position
1105 * above.
1106 */
1107 if (pos)
1108 css_put(&pos->css);
1109
1110 if (!memcg)
1111 iter->generation++;
1112 else if (!prev)
1113 reclaim->generation = iter->generation;
9f3a0d09 1114 }
5ac8fb31 1115
542f85f9
MH
1116out_unlock:
1117 rcu_read_unlock();
5ac8fb31 1118out:
c40046f3
MH
1119 if (prev && prev != root)
1120 css_put(&prev->css);
1121
9f3a0d09 1122 return memcg;
14067bb3 1123}
7d74b06f 1124
5660048c
JW
1125/**
1126 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1127 * @root: hierarchy root
1128 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1129 */
1130void mem_cgroup_iter_break(struct mem_cgroup *root,
1131 struct mem_cgroup *prev)
9f3a0d09
JW
1132{
1133 if (!root)
1134 root = root_mem_cgroup;
1135 if (prev && prev != root)
1136 css_put(&prev->css);
1137}
7d74b06f 1138
9f3a0d09
JW
1139/*
1140 * Iteration constructs for visiting all cgroups (under a tree). If
1141 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1142 * be used for reference counting.
1143 */
1144#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1145 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1146 iter != NULL; \
527a5ec9 1147 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1148
9f3a0d09 1149#define for_each_mem_cgroup(iter) \
527a5ec9 1150 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1151 iter != NULL; \
527a5ec9 1152 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1153
68ae564b 1154void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1155{
c0ff4b85 1156 struct mem_cgroup *memcg;
456f998e 1157
456f998e 1158 rcu_read_lock();
c0ff4b85
R
1159 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1160 if (unlikely(!memcg))
456f998e
YH
1161 goto out;
1162
1163 switch (idx) {
456f998e 1164 case PGFAULT:
0e574a93
JW
1165 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1166 break;
1167 case PGMAJFAULT:
1168 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1169 break;
1170 default:
1171 BUG();
1172 }
1173out:
1174 rcu_read_unlock();
1175}
68ae564b 1176EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1177
925b7673
JW
1178/**
1179 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1180 * @zone: zone of the wanted lruvec
fa9add64 1181 * @memcg: memcg of the wanted lruvec
925b7673
JW
1182 *
1183 * Returns the lru list vector holding pages for the given @zone and
1184 * @mem. This can be the global zone lruvec, if the memory controller
1185 * is disabled.
1186 */
1187struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1188 struct mem_cgroup *memcg)
1189{
1190 struct mem_cgroup_per_zone *mz;
bea8c150 1191 struct lruvec *lruvec;
925b7673 1192
bea8c150
HD
1193 if (mem_cgroup_disabled()) {
1194 lruvec = &zone->lruvec;
1195 goto out;
1196 }
925b7673 1197
e231875b 1198 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1199 lruvec = &mz->lruvec;
1200out:
1201 /*
1202 * Since a node can be onlined after the mem_cgroup was created,
1203 * we have to be prepared to initialize lruvec->zone here;
1204 * and if offlined then reonlined, we need to reinitialize it.
1205 */
1206 if (unlikely(lruvec->zone != zone))
1207 lruvec->zone = zone;
1208 return lruvec;
925b7673
JW
1209}
1210
925b7673 1211/**
dfe0e773 1212 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1213 * @page: the page
fa9add64 1214 * @zone: zone of the page
dfe0e773
JW
1215 *
1216 * This function is only safe when following the LRU page isolation
1217 * and putback protocol: the LRU lock must be held, and the page must
1218 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1219 */
fa9add64 1220struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1221{
08e552c6 1222 struct mem_cgroup_per_zone *mz;
925b7673 1223 struct mem_cgroup *memcg;
bea8c150 1224 struct lruvec *lruvec;
6d12e2d8 1225
bea8c150
HD
1226 if (mem_cgroup_disabled()) {
1227 lruvec = &zone->lruvec;
1228 goto out;
1229 }
925b7673 1230
1306a85a 1231 memcg = page->mem_cgroup;
7512102c 1232 /*
dfe0e773 1233 * Swapcache readahead pages are added to the LRU - and
29833315 1234 * possibly migrated - before they are charged.
7512102c 1235 */
29833315
JW
1236 if (!memcg)
1237 memcg = root_mem_cgroup;
7512102c 1238
e231875b 1239 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1240 lruvec = &mz->lruvec;
1241out:
1242 /*
1243 * Since a node can be onlined after the mem_cgroup was created,
1244 * we have to be prepared to initialize lruvec->zone here;
1245 * and if offlined then reonlined, we need to reinitialize it.
1246 */
1247 if (unlikely(lruvec->zone != zone))
1248 lruvec->zone = zone;
1249 return lruvec;
08e552c6 1250}
b69408e8 1251
925b7673 1252/**
fa9add64
HD
1253 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1254 * @lruvec: mem_cgroup per zone lru vector
1255 * @lru: index of lru list the page is sitting on
1256 * @nr_pages: positive when adding or negative when removing
925b7673 1257 *
fa9add64
HD
1258 * This function must be called when a page is added to or removed from an
1259 * lru list.
3f58a829 1260 */
fa9add64
HD
1261void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1262 int nr_pages)
3f58a829
MK
1263{
1264 struct mem_cgroup_per_zone *mz;
fa9add64 1265 unsigned long *lru_size;
3f58a829
MK
1266
1267 if (mem_cgroup_disabled())
1268 return;
1269
fa9add64
HD
1270 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1271 lru_size = mz->lru_size + lru;
1272 *lru_size += nr_pages;
1273 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1274}
544122e5 1275
2314b42d 1276bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1277{
2314b42d 1278 if (root == memcg)
91c63734 1279 return true;
2314b42d 1280 if (!root->use_hierarchy)
91c63734 1281 return false;
2314b42d 1282 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1283}
1284
2314b42d 1285bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1286{
2314b42d 1287 struct mem_cgroup *task_memcg;
158e0a2d 1288 struct task_struct *p;
ffbdccf5 1289 bool ret;
4c4a2214 1290
158e0a2d 1291 p = find_lock_task_mm(task);
de077d22 1292 if (p) {
2314b42d 1293 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1294 task_unlock(p);
1295 } else {
1296 /*
1297 * All threads may have already detached their mm's, but the oom
1298 * killer still needs to detect if they have already been oom
1299 * killed to prevent needlessly killing additional tasks.
1300 */
ffbdccf5 1301 rcu_read_lock();
2314b42d
JW
1302 task_memcg = mem_cgroup_from_task(task);
1303 css_get(&task_memcg->css);
ffbdccf5 1304 rcu_read_unlock();
de077d22 1305 }
2314b42d
JW
1306 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1307 css_put(&task_memcg->css);
4c4a2214
DR
1308 return ret;
1309}
1310
c56d5c7d 1311int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1312{
9b272977 1313 unsigned long inactive_ratio;
14797e23 1314 unsigned long inactive;
9b272977 1315 unsigned long active;
c772be93 1316 unsigned long gb;
14797e23 1317
4d7dcca2
HD
1318 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1319 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1320
c772be93
KM
1321 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1322 if (gb)
1323 inactive_ratio = int_sqrt(10 * gb);
1324 else
1325 inactive_ratio = 1;
1326
9b272977 1327 return inactive * inactive_ratio < active;
14797e23
KM
1328}
1329
90cbc250
VD
1330bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1331{
1332 struct mem_cgroup_per_zone *mz;
1333 struct mem_cgroup *memcg;
1334
1335 if (mem_cgroup_disabled())
1336 return true;
1337
1338 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1339 memcg = mz->memcg;
1340
1341 return !!(memcg->css.flags & CSS_ONLINE);
1342}
1343
3e32cb2e 1344#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1345 container_of(counter, struct mem_cgroup, member)
1346
19942822 1347/**
9d11ea9f 1348 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1349 * @memcg: the memory cgroup
19942822 1350 *
9d11ea9f 1351 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1352 * pages.
19942822 1353 */
c0ff4b85 1354static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1355{
3e32cb2e
JW
1356 unsigned long margin = 0;
1357 unsigned long count;
1358 unsigned long limit;
9d11ea9f 1359
3e32cb2e
JW
1360 count = page_counter_read(&memcg->memory);
1361 limit = ACCESS_ONCE(memcg->memory.limit);
1362 if (count < limit)
1363 margin = limit - count;
1364
1365 if (do_swap_account) {
1366 count = page_counter_read(&memcg->memsw);
1367 limit = ACCESS_ONCE(memcg->memsw.limit);
1368 if (count <= limit)
1369 margin = min(margin, limit - count);
1370 }
1371
1372 return margin;
19942822
JW
1373}
1374
1f4c025b 1375int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1376{
a7885eb8 1377 /* root ? */
14208b0e 1378 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1379 return vm_swappiness;
1380
bf1ff263 1381 return memcg->swappiness;
a7885eb8
KM
1382}
1383
32047e2a 1384/*
bdcbb659 1385 * A routine for checking "mem" is under move_account() or not.
32047e2a 1386 *
bdcbb659
QH
1387 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1388 * moving cgroups. This is for waiting at high-memory pressure
1389 * caused by "move".
32047e2a 1390 */
c0ff4b85 1391static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1392{
2bd9bb20
KH
1393 struct mem_cgroup *from;
1394 struct mem_cgroup *to;
4b534334 1395 bool ret = false;
2bd9bb20
KH
1396 /*
1397 * Unlike task_move routines, we access mc.to, mc.from not under
1398 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1399 */
1400 spin_lock(&mc.lock);
1401 from = mc.from;
1402 to = mc.to;
1403 if (!from)
1404 goto unlock;
3e92041d 1405
2314b42d
JW
1406 ret = mem_cgroup_is_descendant(from, memcg) ||
1407 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1408unlock:
1409 spin_unlock(&mc.lock);
4b534334
KH
1410 return ret;
1411}
1412
c0ff4b85 1413static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1414{
1415 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1416 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1417 DEFINE_WAIT(wait);
1418 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1419 /* moving charge context might have finished. */
1420 if (mc.moving_task)
1421 schedule();
1422 finish_wait(&mc.waitq, &wait);
1423 return true;
1424 }
1425 }
1426 return false;
1427}
1428
58cf188e 1429#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1430/**
58cf188e 1431 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1432 * @memcg: The memory cgroup that went over limit
1433 * @p: Task that is going to be killed
1434 *
1435 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1436 * enabled
1437 */
1438void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1439{
e61734c5 1440 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1441 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1442 struct mem_cgroup *iter;
1443 unsigned int i;
e222432b 1444
58cf188e 1445 if (!p)
e222432b
BS
1446 return;
1447
08088cb9 1448 mutex_lock(&oom_info_lock);
e222432b
BS
1449 rcu_read_lock();
1450
e61734c5
TH
1451 pr_info("Task in ");
1452 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
0346dadb 1453 pr_cont(" killed as a result of limit of ");
e61734c5 1454 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1455 pr_cont("\n");
e222432b 1456
e222432b
BS
1457 rcu_read_unlock();
1458
3e32cb2e
JW
1459 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1460 K((u64)page_counter_read(&memcg->memory)),
1461 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1462 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1463 K((u64)page_counter_read(&memcg->memsw)),
1464 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1465 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1466 K((u64)page_counter_read(&memcg->kmem)),
1467 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1468
1469 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1470 pr_info("Memory cgroup stats for ");
1471 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1472 pr_cont(":");
1473
1474 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1475 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1476 continue;
1477 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1478 K(mem_cgroup_read_stat(iter, i)));
1479 }
1480
1481 for (i = 0; i < NR_LRU_LISTS; i++)
1482 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1483 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1484
1485 pr_cont("\n");
1486 }
08088cb9 1487 mutex_unlock(&oom_info_lock);
e222432b
BS
1488}
1489
81d39c20
KH
1490/*
1491 * This function returns the number of memcg under hierarchy tree. Returns
1492 * 1(self count) if no children.
1493 */
c0ff4b85 1494static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1495{
1496 int num = 0;
7d74b06f
KH
1497 struct mem_cgroup *iter;
1498
c0ff4b85 1499 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1500 num++;
81d39c20
KH
1501 return num;
1502}
1503
a63d83f4
DR
1504/*
1505 * Return the memory (and swap, if configured) limit for a memcg.
1506 */
3e32cb2e 1507static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1508{
3e32cb2e 1509 unsigned long limit;
f3e8eb70 1510
3e32cb2e 1511 limit = memcg->memory.limit;
9a5a8f19 1512 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1513 unsigned long memsw_limit;
9a5a8f19 1514
3e32cb2e
JW
1515 memsw_limit = memcg->memsw.limit;
1516 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1517 }
9a5a8f19 1518 return limit;
a63d83f4
DR
1519}
1520
19965460
DR
1521static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1522 int order)
9cbb78bb
DR
1523{
1524 struct mem_cgroup *iter;
1525 unsigned long chosen_points = 0;
1526 unsigned long totalpages;
1527 unsigned int points = 0;
1528 struct task_struct *chosen = NULL;
1529
876aafbf 1530 /*
465adcf1
DR
1531 * If current has a pending SIGKILL or is exiting, then automatically
1532 * select it. The goal is to allow it to allocate so that it may
1533 * quickly exit and free its memory.
876aafbf 1534 */
d003f371 1535 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
49550b60 1536 mark_tsk_oom_victim(current);
876aafbf
DR
1537 return;
1538 }
1539
1540 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1541 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1542 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1543 struct css_task_iter it;
9cbb78bb
DR
1544 struct task_struct *task;
1545
72ec7029
TH
1546 css_task_iter_start(&iter->css, &it);
1547 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1548 switch (oom_scan_process_thread(task, totalpages, NULL,
1549 false)) {
1550 case OOM_SCAN_SELECT:
1551 if (chosen)
1552 put_task_struct(chosen);
1553 chosen = task;
1554 chosen_points = ULONG_MAX;
1555 get_task_struct(chosen);
1556 /* fall through */
1557 case OOM_SCAN_CONTINUE:
1558 continue;
1559 case OOM_SCAN_ABORT:
72ec7029 1560 css_task_iter_end(&it);
9cbb78bb
DR
1561 mem_cgroup_iter_break(memcg, iter);
1562 if (chosen)
1563 put_task_struct(chosen);
1564 return;
1565 case OOM_SCAN_OK:
1566 break;
1567 };
1568 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1569 if (!points || points < chosen_points)
1570 continue;
1571 /* Prefer thread group leaders for display purposes */
1572 if (points == chosen_points &&
1573 thread_group_leader(chosen))
1574 continue;
1575
1576 if (chosen)
1577 put_task_struct(chosen);
1578 chosen = task;
1579 chosen_points = points;
1580 get_task_struct(chosen);
9cbb78bb 1581 }
72ec7029 1582 css_task_iter_end(&it);
9cbb78bb
DR
1583 }
1584
1585 if (!chosen)
1586 return;
1587 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1588 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1589 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1590}
1591
ae6e71d3
MC
1592#if MAX_NUMNODES > 1
1593
4d0c066d
KH
1594/**
1595 * test_mem_cgroup_node_reclaimable
dad7557e 1596 * @memcg: the target memcg
4d0c066d
KH
1597 * @nid: the node ID to be checked.
1598 * @noswap : specify true here if the user wants flle only information.
1599 *
1600 * This function returns whether the specified memcg contains any
1601 * reclaimable pages on a node. Returns true if there are any reclaimable
1602 * pages in the node.
1603 */
c0ff4b85 1604static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1605 int nid, bool noswap)
1606{
c0ff4b85 1607 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1608 return true;
1609 if (noswap || !total_swap_pages)
1610 return false;
c0ff4b85 1611 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1612 return true;
1613 return false;
1614
1615}
889976db
YH
1616
1617/*
1618 * Always updating the nodemask is not very good - even if we have an empty
1619 * list or the wrong list here, we can start from some node and traverse all
1620 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1621 *
1622 */
c0ff4b85 1623static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1624{
1625 int nid;
453a9bf3
KH
1626 /*
1627 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1628 * pagein/pageout changes since the last update.
1629 */
c0ff4b85 1630 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1631 return;
c0ff4b85 1632 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1633 return;
1634
889976db 1635 /* make a nodemask where this memcg uses memory from */
31aaea4a 1636 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1637
31aaea4a 1638 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1639
c0ff4b85
R
1640 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1641 node_clear(nid, memcg->scan_nodes);
889976db 1642 }
453a9bf3 1643
c0ff4b85
R
1644 atomic_set(&memcg->numainfo_events, 0);
1645 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1646}
1647
1648/*
1649 * Selecting a node where we start reclaim from. Because what we need is just
1650 * reducing usage counter, start from anywhere is O,K. Considering
1651 * memory reclaim from current node, there are pros. and cons.
1652 *
1653 * Freeing memory from current node means freeing memory from a node which
1654 * we'll use or we've used. So, it may make LRU bad. And if several threads
1655 * hit limits, it will see a contention on a node. But freeing from remote
1656 * node means more costs for memory reclaim because of memory latency.
1657 *
1658 * Now, we use round-robin. Better algorithm is welcomed.
1659 */
c0ff4b85 1660int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1661{
1662 int node;
1663
c0ff4b85
R
1664 mem_cgroup_may_update_nodemask(memcg);
1665 node = memcg->last_scanned_node;
889976db 1666
c0ff4b85 1667 node = next_node(node, memcg->scan_nodes);
889976db 1668 if (node == MAX_NUMNODES)
c0ff4b85 1669 node = first_node(memcg->scan_nodes);
889976db
YH
1670 /*
1671 * We call this when we hit limit, not when pages are added to LRU.
1672 * No LRU may hold pages because all pages are UNEVICTABLE or
1673 * memcg is too small and all pages are not on LRU. In that case,
1674 * we use curret node.
1675 */
1676 if (unlikely(node == MAX_NUMNODES))
1677 node = numa_node_id();
1678
c0ff4b85 1679 memcg->last_scanned_node = node;
889976db
YH
1680 return node;
1681}
889976db 1682#else
c0ff4b85 1683int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1684{
1685 return 0;
1686}
1687#endif
1688
0608f43d
AM
1689static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1690 struct zone *zone,
1691 gfp_t gfp_mask,
1692 unsigned long *total_scanned)
1693{
1694 struct mem_cgroup *victim = NULL;
1695 int total = 0;
1696 int loop = 0;
1697 unsigned long excess;
1698 unsigned long nr_scanned;
1699 struct mem_cgroup_reclaim_cookie reclaim = {
1700 .zone = zone,
1701 .priority = 0,
1702 };
1703
3e32cb2e 1704 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1705
1706 while (1) {
1707 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1708 if (!victim) {
1709 loop++;
1710 if (loop >= 2) {
1711 /*
1712 * If we have not been able to reclaim
1713 * anything, it might because there are
1714 * no reclaimable pages under this hierarchy
1715 */
1716 if (!total)
1717 break;
1718 /*
1719 * We want to do more targeted reclaim.
1720 * excess >> 2 is not to excessive so as to
1721 * reclaim too much, nor too less that we keep
1722 * coming back to reclaim from this cgroup
1723 */
1724 if (total >= (excess >> 2) ||
1725 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1726 break;
1727 }
1728 continue;
1729 }
0608f43d
AM
1730 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1731 zone, &nr_scanned);
1732 *total_scanned += nr_scanned;
3e32cb2e 1733 if (!soft_limit_excess(root_memcg))
0608f43d 1734 break;
6d61ef40 1735 }
0608f43d
AM
1736 mem_cgroup_iter_break(root_memcg, victim);
1737 return total;
6d61ef40
BS
1738}
1739
0056f4e6
JW
1740#ifdef CONFIG_LOCKDEP
1741static struct lockdep_map memcg_oom_lock_dep_map = {
1742 .name = "memcg_oom_lock",
1743};
1744#endif
1745
fb2a6fc5
JW
1746static DEFINE_SPINLOCK(memcg_oom_lock);
1747
867578cb
KH
1748/*
1749 * Check OOM-Killer is already running under our hierarchy.
1750 * If someone is running, return false.
1751 */
fb2a6fc5 1752static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1753{
79dfdacc 1754 struct mem_cgroup *iter, *failed = NULL;
a636b327 1755
fb2a6fc5
JW
1756 spin_lock(&memcg_oom_lock);
1757
9f3a0d09 1758 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1759 if (iter->oom_lock) {
79dfdacc
MH
1760 /*
1761 * this subtree of our hierarchy is already locked
1762 * so we cannot give a lock.
1763 */
79dfdacc 1764 failed = iter;
9f3a0d09
JW
1765 mem_cgroup_iter_break(memcg, iter);
1766 break;
23751be0
JW
1767 } else
1768 iter->oom_lock = true;
7d74b06f 1769 }
867578cb 1770
fb2a6fc5
JW
1771 if (failed) {
1772 /*
1773 * OK, we failed to lock the whole subtree so we have
1774 * to clean up what we set up to the failing subtree
1775 */
1776 for_each_mem_cgroup_tree(iter, memcg) {
1777 if (iter == failed) {
1778 mem_cgroup_iter_break(memcg, iter);
1779 break;
1780 }
1781 iter->oom_lock = false;
79dfdacc 1782 }
0056f4e6
JW
1783 } else
1784 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1785
1786 spin_unlock(&memcg_oom_lock);
1787
1788 return !failed;
a636b327 1789}
0b7f569e 1790
fb2a6fc5 1791static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1792{
7d74b06f
KH
1793 struct mem_cgroup *iter;
1794
fb2a6fc5 1795 spin_lock(&memcg_oom_lock);
0056f4e6 1796 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1797 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1798 iter->oom_lock = false;
fb2a6fc5 1799 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1800}
1801
c0ff4b85 1802static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1803{
1804 struct mem_cgroup *iter;
1805
c0ff4b85 1806 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1807 atomic_inc(&iter->under_oom);
1808}
1809
c0ff4b85 1810static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1811{
1812 struct mem_cgroup *iter;
1813
867578cb
KH
1814 /*
1815 * When a new child is created while the hierarchy is under oom,
1816 * mem_cgroup_oom_lock() may not be called. We have to use
1817 * atomic_add_unless() here.
1818 */
c0ff4b85 1819 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1820 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1821}
1822
867578cb
KH
1823static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1824
dc98df5a 1825struct oom_wait_info {
d79154bb 1826 struct mem_cgroup *memcg;
dc98df5a
KH
1827 wait_queue_t wait;
1828};
1829
1830static int memcg_oom_wake_function(wait_queue_t *wait,
1831 unsigned mode, int sync, void *arg)
1832{
d79154bb
HD
1833 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1834 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1835 struct oom_wait_info *oom_wait_info;
1836
1837 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1838 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1839
2314b42d
JW
1840 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1841 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1842 return 0;
dc98df5a
KH
1843 return autoremove_wake_function(wait, mode, sync, arg);
1844}
1845
c0ff4b85 1846static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1847{
3812c8c8 1848 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1849 /* for filtering, pass "memcg" as argument. */
1850 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1851}
1852
c0ff4b85 1853static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1854{
c0ff4b85
R
1855 if (memcg && atomic_read(&memcg->under_oom))
1856 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1857}
1858
3812c8c8 1859static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1860{
3812c8c8
JW
1861 if (!current->memcg_oom.may_oom)
1862 return;
867578cb 1863 /*
49426420
JW
1864 * We are in the middle of the charge context here, so we
1865 * don't want to block when potentially sitting on a callstack
1866 * that holds all kinds of filesystem and mm locks.
1867 *
1868 * Also, the caller may handle a failed allocation gracefully
1869 * (like optional page cache readahead) and so an OOM killer
1870 * invocation might not even be necessary.
1871 *
1872 * That's why we don't do anything here except remember the
1873 * OOM context and then deal with it at the end of the page
1874 * fault when the stack is unwound, the locks are released,
1875 * and when we know whether the fault was overall successful.
867578cb 1876 */
49426420
JW
1877 css_get(&memcg->css);
1878 current->memcg_oom.memcg = memcg;
1879 current->memcg_oom.gfp_mask = mask;
1880 current->memcg_oom.order = order;
3812c8c8
JW
1881}
1882
1883/**
1884 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1885 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1886 *
49426420
JW
1887 * This has to be called at the end of a page fault if the memcg OOM
1888 * handler was enabled.
3812c8c8 1889 *
49426420 1890 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1891 * sleep on a waitqueue until the userspace task resolves the
1892 * situation. Sleeping directly in the charge context with all kinds
1893 * of locks held is not a good idea, instead we remember an OOM state
1894 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1895 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1896 *
1897 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1898 * completed, %false otherwise.
3812c8c8 1899 */
49426420 1900bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1901{
49426420 1902 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1903 struct oom_wait_info owait;
49426420 1904 bool locked;
3812c8c8
JW
1905
1906 /* OOM is global, do not handle */
3812c8c8 1907 if (!memcg)
49426420 1908 return false;
3812c8c8 1909
c32b3cbe 1910 if (!handle || oom_killer_disabled)
49426420 1911 goto cleanup;
3812c8c8
JW
1912
1913 owait.memcg = memcg;
1914 owait.wait.flags = 0;
1915 owait.wait.func = memcg_oom_wake_function;
1916 owait.wait.private = current;
1917 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1918
3812c8c8 1919 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1920 mem_cgroup_mark_under_oom(memcg);
1921
1922 locked = mem_cgroup_oom_trylock(memcg);
1923
1924 if (locked)
1925 mem_cgroup_oom_notify(memcg);
1926
1927 if (locked && !memcg->oom_kill_disable) {
1928 mem_cgroup_unmark_under_oom(memcg);
1929 finish_wait(&memcg_oom_waitq, &owait.wait);
1930 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1931 current->memcg_oom.order);
1932 } else {
3812c8c8 1933 schedule();
49426420
JW
1934 mem_cgroup_unmark_under_oom(memcg);
1935 finish_wait(&memcg_oom_waitq, &owait.wait);
1936 }
1937
1938 if (locked) {
fb2a6fc5
JW
1939 mem_cgroup_oom_unlock(memcg);
1940 /*
1941 * There is no guarantee that an OOM-lock contender
1942 * sees the wakeups triggered by the OOM kill
1943 * uncharges. Wake any sleepers explicitely.
1944 */
1945 memcg_oom_recover(memcg);
1946 }
49426420
JW
1947cleanup:
1948 current->memcg_oom.memcg = NULL;
3812c8c8 1949 css_put(&memcg->css);
867578cb 1950 return true;
0b7f569e
KH
1951}
1952
d7365e78
JW
1953/**
1954 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1955 * @page: page that is going to change accounted state
32047e2a 1956 *
d7365e78
JW
1957 * This function must mark the beginning of an accounted page state
1958 * change to prevent double accounting when the page is concurrently
1959 * being moved to another memcg:
32047e2a 1960 *
6de22619 1961 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1962 * if (TestClearPageState(page))
1963 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1964 * mem_cgroup_end_page_stat(memcg);
d69b042f 1965 */
6de22619 1966struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1967{
1968 struct mem_cgroup *memcg;
6de22619 1969 unsigned long flags;
89c06bd5 1970
6de22619
JW
1971 /*
1972 * The RCU lock is held throughout the transaction. The fast
1973 * path can get away without acquiring the memcg->move_lock
1974 * because page moving starts with an RCU grace period.
1975 *
1976 * The RCU lock also protects the memcg from being freed when
1977 * the page state that is going to change is the only thing
1978 * preventing the page from being uncharged.
1979 * E.g. end-writeback clearing PageWriteback(), which allows
1980 * migration to go ahead and uncharge the page before the
1981 * account transaction might be complete.
1982 */
d7365e78
JW
1983 rcu_read_lock();
1984
1985 if (mem_cgroup_disabled())
1986 return NULL;
89c06bd5 1987again:
1306a85a 1988 memcg = page->mem_cgroup;
29833315 1989 if (unlikely(!memcg))
d7365e78
JW
1990 return NULL;
1991
bdcbb659 1992 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1993 return memcg;
89c06bd5 1994
6de22619 1995 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1996 if (memcg != page->mem_cgroup) {
6de22619 1997 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1998 goto again;
1999 }
6de22619
JW
2000
2001 /*
2002 * When charge migration first begins, we can have locked and
2003 * unlocked page stat updates happening concurrently. Track
2004 * the task who has the lock for mem_cgroup_end_page_stat().
2005 */
2006 memcg->move_lock_task = current;
2007 memcg->move_lock_flags = flags;
d7365e78
JW
2008
2009 return memcg;
89c06bd5
KH
2010}
2011
d7365e78
JW
2012/**
2013 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2014 * @memcg: the memcg that was accounted against
d7365e78 2015 */
6de22619 2016void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 2017{
6de22619
JW
2018 if (memcg && memcg->move_lock_task == current) {
2019 unsigned long flags = memcg->move_lock_flags;
2020
2021 memcg->move_lock_task = NULL;
2022 memcg->move_lock_flags = 0;
2023
2024 spin_unlock_irqrestore(&memcg->move_lock, flags);
2025 }
89c06bd5 2026
d7365e78 2027 rcu_read_unlock();
89c06bd5
KH
2028}
2029
d7365e78
JW
2030/**
2031 * mem_cgroup_update_page_stat - update page state statistics
2032 * @memcg: memcg to account against
2033 * @idx: page state item to account
2034 * @val: number of pages (positive or negative)
2035 *
2036 * See mem_cgroup_begin_page_stat() for locking requirements.
2037 */
2038void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2039 enum mem_cgroup_stat_index idx, int val)
d69b042f 2040{
658b72c5 2041 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2042
d7365e78
JW
2043 if (memcg)
2044 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2045}
26174efd 2046
cdec2e42
KH
2047/*
2048 * size of first charge trial. "32" comes from vmscan.c's magic value.
2049 * TODO: maybe necessary to use big numbers in big irons.
2050 */
7ec99d62 2051#define CHARGE_BATCH 32U
cdec2e42
KH
2052struct memcg_stock_pcp {
2053 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2054 unsigned int nr_pages;
cdec2e42 2055 struct work_struct work;
26fe6168 2056 unsigned long flags;
a0db00fc 2057#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2058};
2059static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2060static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2061
a0956d54
SS
2062/**
2063 * consume_stock: Try to consume stocked charge on this cpu.
2064 * @memcg: memcg to consume from.
2065 * @nr_pages: how many pages to charge.
2066 *
2067 * The charges will only happen if @memcg matches the current cpu's memcg
2068 * stock, and at least @nr_pages are available in that stock. Failure to
2069 * service an allocation will refill the stock.
2070 *
2071 * returns true if successful, false otherwise.
cdec2e42 2072 */
a0956d54 2073static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2074{
2075 struct memcg_stock_pcp *stock;
3e32cb2e 2076 bool ret = false;
cdec2e42 2077
a0956d54 2078 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2079 return ret;
a0956d54 2080
cdec2e42 2081 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2082 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2083 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2084 ret = true;
2085 }
cdec2e42
KH
2086 put_cpu_var(memcg_stock);
2087 return ret;
2088}
2089
2090/*
3e32cb2e 2091 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2092 */
2093static void drain_stock(struct memcg_stock_pcp *stock)
2094{
2095 struct mem_cgroup *old = stock->cached;
2096
11c9ea4e 2097 if (stock->nr_pages) {
3e32cb2e 2098 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2099 if (do_swap_account)
3e32cb2e 2100 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2101 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2102 stock->nr_pages = 0;
cdec2e42
KH
2103 }
2104 stock->cached = NULL;
cdec2e42
KH
2105}
2106
2107/*
2108 * This must be called under preempt disabled or must be called by
2109 * a thread which is pinned to local cpu.
2110 */
2111static void drain_local_stock(struct work_struct *dummy)
2112{
7c8e0181 2113 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2114 drain_stock(stock);
26fe6168 2115 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2116}
2117
2118/*
3e32cb2e 2119 * Cache charges(val) to local per_cpu area.
320cc51d 2120 * This will be consumed by consume_stock() function, later.
cdec2e42 2121 */
c0ff4b85 2122static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2123{
2124 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2125
c0ff4b85 2126 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2127 drain_stock(stock);
c0ff4b85 2128 stock->cached = memcg;
cdec2e42 2129 }
11c9ea4e 2130 stock->nr_pages += nr_pages;
cdec2e42
KH
2131 put_cpu_var(memcg_stock);
2132}
2133
2134/*
c0ff4b85 2135 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2136 * of the hierarchy under it.
cdec2e42 2137 */
6d3d6aa2 2138static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2139{
26fe6168 2140 int cpu, curcpu;
d38144b7 2141
6d3d6aa2
JW
2142 /* If someone's already draining, avoid adding running more workers. */
2143 if (!mutex_trylock(&percpu_charge_mutex))
2144 return;
cdec2e42 2145 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2146 get_online_cpus();
5af12d0e 2147 curcpu = get_cpu();
cdec2e42
KH
2148 for_each_online_cpu(cpu) {
2149 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2150 struct mem_cgroup *memcg;
26fe6168 2151
c0ff4b85
R
2152 memcg = stock->cached;
2153 if (!memcg || !stock->nr_pages)
26fe6168 2154 continue;
2314b42d 2155 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2156 continue;
d1a05b69
MH
2157 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2158 if (cpu == curcpu)
2159 drain_local_stock(&stock->work);
2160 else
2161 schedule_work_on(cpu, &stock->work);
2162 }
cdec2e42 2163 }
5af12d0e 2164 put_cpu();
f894ffa8 2165 put_online_cpus();
9f50fad6 2166 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2167}
2168
711d3d2c
KH
2169/*
2170 * This function drains percpu counter value from DEAD cpu and
2171 * move it to local cpu. Note that this function can be preempted.
2172 */
c0ff4b85 2173static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2174{
2175 int i;
2176
c0ff4b85 2177 spin_lock(&memcg->pcp_counter_lock);
6104621d 2178 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2179 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2180
c0ff4b85
R
2181 per_cpu(memcg->stat->count[i], cpu) = 0;
2182 memcg->nocpu_base.count[i] += x;
711d3d2c 2183 }
e9f8974f 2184 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2185 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2186
c0ff4b85
R
2187 per_cpu(memcg->stat->events[i], cpu) = 0;
2188 memcg->nocpu_base.events[i] += x;
e9f8974f 2189 }
c0ff4b85 2190 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2191}
2192
0db0628d 2193static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2194 unsigned long action,
2195 void *hcpu)
2196{
2197 int cpu = (unsigned long)hcpu;
2198 struct memcg_stock_pcp *stock;
711d3d2c 2199 struct mem_cgroup *iter;
cdec2e42 2200
619d094b 2201 if (action == CPU_ONLINE)
1489ebad 2202 return NOTIFY_OK;
1489ebad 2203
d833049b 2204 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2205 return NOTIFY_OK;
711d3d2c 2206
9f3a0d09 2207 for_each_mem_cgroup(iter)
711d3d2c
KH
2208 mem_cgroup_drain_pcp_counter(iter, cpu);
2209
cdec2e42
KH
2210 stock = &per_cpu(memcg_stock, cpu);
2211 drain_stock(stock);
2212 return NOTIFY_OK;
2213}
2214
00501b53
JW
2215static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2216 unsigned int nr_pages)
8a9f3ccd 2217{
7ec99d62 2218 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2219 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2220 struct mem_cgroup *mem_over_limit;
3e32cb2e 2221 struct page_counter *counter;
6539cc05 2222 unsigned long nr_reclaimed;
b70a2a21
JW
2223 bool may_swap = true;
2224 bool drained = false;
05b84301 2225 int ret = 0;
a636b327 2226
ce00a967
JW
2227 if (mem_cgroup_is_root(memcg))
2228 goto done;
6539cc05 2229retry:
b6b6cc72
MH
2230 if (consume_stock(memcg, nr_pages))
2231 goto done;
8a9f3ccd 2232
3fbe7244 2233 if (!do_swap_account ||
3e32cb2e
JW
2234 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2235 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2236 goto done_restock;
3fbe7244 2237 if (do_swap_account)
3e32cb2e
JW
2238 page_counter_uncharge(&memcg->memsw, batch);
2239 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2240 } else {
3e32cb2e 2241 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2242 may_swap = false;
3fbe7244 2243 }
7a81b88c 2244
6539cc05
JW
2245 if (batch > nr_pages) {
2246 batch = nr_pages;
2247 goto retry;
2248 }
6d61ef40 2249
06b078fc
JW
2250 /*
2251 * Unlike in global OOM situations, memcg is not in a physical
2252 * memory shortage. Allow dying and OOM-killed tasks to
2253 * bypass the last charges so that they can exit quickly and
2254 * free their memory.
2255 */
2256 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2257 fatal_signal_pending(current) ||
2258 current->flags & PF_EXITING))
2259 goto bypass;
2260
2261 if (unlikely(task_in_memcg_oom(current)))
2262 goto nomem;
2263
6539cc05
JW
2264 if (!(gfp_mask & __GFP_WAIT))
2265 goto nomem;
4b534334 2266
241994ed
JW
2267 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2268
b70a2a21
JW
2269 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2270 gfp_mask, may_swap);
6539cc05 2271
61e02c74 2272 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2273 goto retry;
28c34c29 2274
b70a2a21 2275 if (!drained) {
6d3d6aa2 2276 drain_all_stock(mem_over_limit);
b70a2a21
JW
2277 drained = true;
2278 goto retry;
2279 }
2280
28c34c29
JW
2281 if (gfp_mask & __GFP_NORETRY)
2282 goto nomem;
6539cc05
JW
2283 /*
2284 * Even though the limit is exceeded at this point, reclaim
2285 * may have been able to free some pages. Retry the charge
2286 * before killing the task.
2287 *
2288 * Only for regular pages, though: huge pages are rather
2289 * unlikely to succeed so close to the limit, and we fall back
2290 * to regular pages anyway in case of failure.
2291 */
61e02c74 2292 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2293 goto retry;
2294 /*
2295 * At task move, charge accounts can be doubly counted. So, it's
2296 * better to wait until the end of task_move if something is going on.
2297 */
2298 if (mem_cgroup_wait_acct_move(mem_over_limit))
2299 goto retry;
2300
9b130619
JW
2301 if (nr_retries--)
2302 goto retry;
2303
06b078fc
JW
2304 if (gfp_mask & __GFP_NOFAIL)
2305 goto bypass;
2306
6539cc05
JW
2307 if (fatal_signal_pending(current))
2308 goto bypass;
2309
241994ed
JW
2310 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2311
61e02c74 2312 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2313nomem:
6d1fdc48 2314 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2315 return -ENOMEM;
867578cb 2316bypass:
ce00a967 2317 return -EINTR;
6539cc05
JW
2318
2319done_restock:
e8ea14cc 2320 css_get_many(&memcg->css, batch);
6539cc05
JW
2321 if (batch > nr_pages)
2322 refill_stock(memcg, batch - nr_pages);
241994ed
JW
2323 /*
2324 * If the hierarchy is above the normal consumption range,
2325 * make the charging task trim their excess contribution.
2326 */
2327 do {
2328 if (page_counter_read(&memcg->memory) <= memcg->high)
2329 continue;
2330 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2331 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2332 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2333done:
05b84301 2334 return ret;
7a81b88c 2335}
8a9f3ccd 2336
00501b53 2337static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2338{
ce00a967
JW
2339 if (mem_cgroup_is_root(memcg))
2340 return;
2341
3e32cb2e 2342 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2343 if (do_swap_account)
3e32cb2e 2344 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2345
e8ea14cc 2346 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2347}
2348
a3b2d692
KH
2349/*
2350 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2351 * rcu_read_lock(). The caller is responsible for calling
2352 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2353 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2354 */
2355static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2356{
a3b2d692
KH
2357 /* ID 0 is unused ID */
2358 if (!id)
2359 return NULL;
34c00c31 2360 return mem_cgroup_from_id(id);
a3b2d692
KH
2361}
2362
0a31bc97
JW
2363/*
2364 * try_get_mem_cgroup_from_page - look up page's memcg association
2365 * @page: the page
2366 *
2367 * Look up, get a css reference, and return the memcg that owns @page.
2368 *
2369 * The page must be locked to prevent racing with swap-in and page
2370 * cache charges. If coming from an unlocked page table, the caller
2371 * must ensure the page is on the LRU or this can race with charging.
2372 */
e42d9d5d 2373struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2374{
29833315 2375 struct mem_cgroup *memcg;
a3b2d692 2376 unsigned short id;
b5a84319
KH
2377 swp_entry_t ent;
2378
309381fe 2379 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2380
1306a85a 2381 memcg = page->mem_cgroup;
29833315
JW
2382 if (memcg) {
2383 if (!css_tryget_online(&memcg->css))
c0ff4b85 2384 memcg = NULL;
e42d9d5d 2385 } else if (PageSwapCache(page)) {
3c776e64 2386 ent.val = page_private(page);
9fb4b7cc 2387 id = lookup_swap_cgroup_id(ent);
a3b2d692 2388 rcu_read_lock();
c0ff4b85 2389 memcg = mem_cgroup_lookup(id);
ec903c0c 2390 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2391 memcg = NULL;
a3b2d692 2392 rcu_read_unlock();
3c776e64 2393 }
c0ff4b85 2394 return memcg;
b5a84319
KH
2395}
2396
0a31bc97
JW
2397static void lock_page_lru(struct page *page, int *isolated)
2398{
2399 struct zone *zone = page_zone(page);
2400
2401 spin_lock_irq(&zone->lru_lock);
2402 if (PageLRU(page)) {
2403 struct lruvec *lruvec;
2404
2405 lruvec = mem_cgroup_page_lruvec(page, zone);
2406 ClearPageLRU(page);
2407 del_page_from_lru_list(page, lruvec, page_lru(page));
2408 *isolated = 1;
2409 } else
2410 *isolated = 0;
2411}
2412
2413static void unlock_page_lru(struct page *page, int isolated)
2414{
2415 struct zone *zone = page_zone(page);
2416
2417 if (isolated) {
2418 struct lruvec *lruvec;
2419
2420 lruvec = mem_cgroup_page_lruvec(page, zone);
2421 VM_BUG_ON_PAGE(PageLRU(page), page);
2422 SetPageLRU(page);
2423 add_page_to_lru_list(page, lruvec, page_lru(page));
2424 }
2425 spin_unlock_irq(&zone->lru_lock);
2426}
2427
00501b53 2428static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2429 bool lrucare)
7a81b88c 2430{
0a31bc97 2431 int isolated;
9ce70c02 2432
1306a85a 2433 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2434
2435 /*
2436 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2437 * may already be on some other mem_cgroup's LRU. Take care of it.
2438 */
0a31bc97
JW
2439 if (lrucare)
2440 lock_page_lru(page, &isolated);
9ce70c02 2441
0a31bc97
JW
2442 /*
2443 * Nobody should be changing or seriously looking at
1306a85a 2444 * page->mem_cgroup at this point:
0a31bc97
JW
2445 *
2446 * - the page is uncharged
2447 *
2448 * - the page is off-LRU
2449 *
2450 * - an anonymous fault has exclusive page access, except for
2451 * a locked page table
2452 *
2453 * - a page cache insertion, a swapin fault, or a migration
2454 * have the page locked
2455 */
1306a85a 2456 page->mem_cgroup = memcg;
9ce70c02 2457
0a31bc97
JW
2458 if (lrucare)
2459 unlock_page_lru(page, isolated);
7a81b88c 2460}
66e1707b 2461
7ae1e1d0 2462#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2463int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2464 unsigned long nr_pages)
7ae1e1d0 2465{
3e32cb2e 2466 struct page_counter *counter;
7ae1e1d0 2467 int ret = 0;
7ae1e1d0 2468
3e32cb2e
JW
2469 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2470 if (ret < 0)
7ae1e1d0
GC
2471 return ret;
2472
3e32cb2e 2473 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2474 if (ret == -EINTR) {
2475 /*
00501b53
JW
2476 * try_charge() chose to bypass to root due to OOM kill or
2477 * fatal signal. Since our only options are to either fail
2478 * the allocation or charge it to this cgroup, do it as a
2479 * temporary condition. But we can't fail. From a kmem/slab
2480 * perspective, the cache has already been selected, by
2481 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2482 * our minds.
2483 *
2484 * This condition will only trigger if the task entered
00501b53
JW
2485 * memcg_charge_kmem in a sane state, but was OOM-killed
2486 * during try_charge() above. Tasks that were already dying
2487 * when the allocation triggers should have been already
7ae1e1d0
GC
2488 * directed to the root cgroup in memcontrol.h
2489 */
3e32cb2e 2490 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2491 if (do_swap_account)
3e32cb2e 2492 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2493 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2494 ret = 0;
2495 } else if (ret)
3e32cb2e 2496 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2497
2498 return ret;
2499}
2500
dbf22eb6 2501void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2502{
3e32cb2e 2503 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2504 if (do_swap_account)
3e32cb2e 2505 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2506
64f21993 2507 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2508
e8ea14cc 2509 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2510}
2511
2633d7a0
GC
2512/*
2513 * helper for acessing a memcg's index. It will be used as an index in the
2514 * child cache array in kmem_cache, and also to derive its name. This function
2515 * will return -1 when this is not a kmem-limited memcg.
2516 */
2517int memcg_cache_id(struct mem_cgroup *memcg)
2518{
2519 return memcg ? memcg->kmemcg_id : -1;
2520}
2521
f3bb3043 2522static int memcg_alloc_cache_id(void)
55007d84 2523{
f3bb3043
VD
2524 int id, size;
2525 int err;
2526
dbcf73e2 2527 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2528 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2529 if (id < 0)
2530 return id;
55007d84 2531
dbcf73e2 2532 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2533 return id;
2534
2535 /*
2536 * There's no space for the new id in memcg_caches arrays,
2537 * so we have to grow them.
2538 */
05257a1a 2539 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2540
2541 size = 2 * (id + 1);
55007d84
GC
2542 if (size < MEMCG_CACHES_MIN_SIZE)
2543 size = MEMCG_CACHES_MIN_SIZE;
2544 else if (size > MEMCG_CACHES_MAX_SIZE)
2545 size = MEMCG_CACHES_MAX_SIZE;
2546
f3bb3043 2547 err = memcg_update_all_caches(size);
60d3fd32
VD
2548 if (!err)
2549 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2550 if (!err)
2551 memcg_nr_cache_ids = size;
2552
2553 up_write(&memcg_cache_ids_sem);
2554
f3bb3043 2555 if (err) {
dbcf73e2 2556 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2557 return err;
2558 }
2559 return id;
2560}
2561
2562static void memcg_free_cache_id(int id)
2563{
dbcf73e2 2564 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2565}
2566
d5b3cf71 2567struct memcg_kmem_cache_create_work {
5722d094
VD
2568 struct mem_cgroup *memcg;
2569 struct kmem_cache *cachep;
2570 struct work_struct work;
2571};
2572
d5b3cf71 2573static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2574{
d5b3cf71
VD
2575 struct memcg_kmem_cache_create_work *cw =
2576 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2577 struct mem_cgroup *memcg = cw->memcg;
2578 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2579
d5b3cf71 2580 memcg_create_kmem_cache(memcg, cachep);
bd673145 2581
5722d094 2582 css_put(&memcg->css);
d7f25f8a
GC
2583 kfree(cw);
2584}
2585
2586/*
2587 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2588 */
d5b3cf71
VD
2589static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2590 struct kmem_cache *cachep)
d7f25f8a 2591{
d5b3cf71 2592 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2593
776ed0f0 2594 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2595 if (!cw)
d7f25f8a 2596 return;
8135be5a
VD
2597
2598 css_get(&memcg->css);
d7f25f8a
GC
2599
2600 cw->memcg = memcg;
2601 cw->cachep = cachep;
d5b3cf71 2602 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2603
d7f25f8a
GC
2604 schedule_work(&cw->work);
2605}
2606
d5b3cf71
VD
2607static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2608 struct kmem_cache *cachep)
0e9d92f2
GC
2609{
2610 /*
2611 * We need to stop accounting when we kmalloc, because if the
2612 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2613 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2614 *
2615 * However, it is better to enclose the whole function. Depending on
2616 * the debugging options enabled, INIT_WORK(), for instance, can
2617 * trigger an allocation. This too, will make us recurse. Because at
2618 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2619 * the safest choice is to do it like this, wrapping the whole function.
2620 */
6f185c29 2621 current->memcg_kmem_skip_account = 1;
d5b3cf71 2622 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2623 current->memcg_kmem_skip_account = 0;
0e9d92f2 2624}
c67a8a68 2625
d7f25f8a
GC
2626/*
2627 * Return the kmem_cache we're supposed to use for a slab allocation.
2628 * We try to use the current memcg's version of the cache.
2629 *
2630 * If the cache does not exist yet, if we are the first user of it,
2631 * we either create it immediately, if possible, or create it asynchronously
2632 * in a workqueue.
2633 * In the latter case, we will let the current allocation go through with
2634 * the original cache.
2635 *
2636 * Can't be called in interrupt context or from kernel threads.
2637 * This function needs to be called with rcu_read_lock() held.
2638 */
056b7cce 2639struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2640{
2641 struct mem_cgroup *memcg;
959c8963 2642 struct kmem_cache *memcg_cachep;
2a4db7eb 2643 int kmemcg_id;
d7f25f8a 2644
f7ce3190 2645 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2646
9d100c5e 2647 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2648 return cachep;
2649
8135be5a 2650 memcg = get_mem_cgroup_from_mm(current->mm);
2a4db7eb
VD
2651 kmemcg_id = ACCESS_ONCE(memcg->kmemcg_id);
2652 if (kmemcg_id < 0)
ca0dde97 2653 goto out;
d7f25f8a 2654
2a4db7eb 2655 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2656 if (likely(memcg_cachep))
2657 return memcg_cachep;
ca0dde97
LZ
2658
2659 /*
2660 * If we are in a safe context (can wait, and not in interrupt
2661 * context), we could be be predictable and return right away.
2662 * This would guarantee that the allocation being performed
2663 * already belongs in the new cache.
2664 *
2665 * However, there are some clashes that can arrive from locking.
2666 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2667 * memcg_create_kmem_cache, this means no further allocation
2668 * could happen with the slab_mutex held. So it's better to
2669 * defer everything.
ca0dde97 2670 */
d5b3cf71 2671 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2672out:
8135be5a 2673 css_put(&memcg->css);
ca0dde97 2674 return cachep;
d7f25f8a 2675}
d7f25f8a 2676
8135be5a
VD
2677void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2678{
2679 if (!is_root_cache(cachep))
f7ce3190 2680 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2681}
2682
7ae1e1d0
GC
2683/*
2684 * We need to verify if the allocation against current->mm->owner's memcg is
2685 * possible for the given order. But the page is not allocated yet, so we'll
2686 * need a further commit step to do the final arrangements.
2687 *
2688 * It is possible for the task to switch cgroups in this mean time, so at
2689 * commit time, we can't rely on task conversion any longer. We'll then use
2690 * the handle argument to return to the caller which cgroup we should commit
2691 * against. We could also return the memcg directly and avoid the pointer
2692 * passing, but a boolean return value gives better semantics considering
2693 * the compiled-out case as well.
2694 *
2695 * Returning true means the allocation is possible.
2696 */
2697bool
2698__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2699{
2700 struct mem_cgroup *memcg;
2701 int ret;
2702
2703 *_memcg = NULL;
6d42c232 2704
df381975 2705 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2706
cf2b8fbf 2707 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2708 css_put(&memcg->css);
2709 return true;
2710 }
2711
3e32cb2e 2712 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2713 if (!ret)
2714 *_memcg = memcg;
7ae1e1d0
GC
2715
2716 css_put(&memcg->css);
2717 return (ret == 0);
2718}
2719
2720void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2721 int order)
2722{
7ae1e1d0
GC
2723 VM_BUG_ON(mem_cgroup_is_root(memcg));
2724
2725 /* The page allocation failed. Revert */
2726 if (!page) {
3e32cb2e 2727 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2728 return;
2729 }
1306a85a 2730 page->mem_cgroup = memcg;
7ae1e1d0
GC
2731}
2732
2733void __memcg_kmem_uncharge_pages(struct page *page, int order)
2734{
1306a85a 2735 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2736
7ae1e1d0
GC
2737 if (!memcg)
2738 return;
2739
309381fe 2740 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2741
3e32cb2e 2742 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2743 page->mem_cgroup = NULL;
7ae1e1d0 2744}
60d3fd32
VD
2745
2746struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2747{
2748 struct mem_cgroup *memcg = NULL;
2749 struct kmem_cache *cachep;
2750 struct page *page;
2751
2752 page = virt_to_head_page(ptr);
2753 if (PageSlab(page)) {
2754 cachep = page->slab_cache;
2755 if (!is_root_cache(cachep))
f7ce3190 2756 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2757 } else
2758 /* page allocated by alloc_kmem_pages */
2759 memcg = page->mem_cgroup;
2760
2761 return memcg;
2762}
7ae1e1d0
GC
2763#endif /* CONFIG_MEMCG_KMEM */
2764
ca3e0214
KH
2765#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2766
ca3e0214
KH
2767/*
2768 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2769 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2770 * charge/uncharge will be never happen and move_account() is done under
2771 * compound_lock(), so we don't have to take care of races.
ca3e0214 2772 */
e94c8a9c 2773void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2774{
e94c8a9c 2775 int i;
ca3e0214 2776
3d37c4a9
KH
2777 if (mem_cgroup_disabled())
2778 return;
b070e65c 2779
29833315 2780 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2781 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2782
1306a85a 2783 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2784 HPAGE_PMD_NR);
ca3e0214 2785}
12d27107 2786#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2787
c255a458 2788#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2789static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2790 bool charge)
d13d1443 2791{
0a31bc97
JW
2792 int val = (charge) ? 1 : -1;
2793 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2794}
02491447
DN
2795
2796/**
2797 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2798 * @entry: swap entry to be moved
2799 * @from: mem_cgroup which the entry is moved from
2800 * @to: mem_cgroup which the entry is moved to
2801 *
2802 * It succeeds only when the swap_cgroup's record for this entry is the same
2803 * as the mem_cgroup's id of @from.
2804 *
2805 * Returns 0 on success, -EINVAL on failure.
2806 *
3e32cb2e 2807 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2808 * both res and memsw, and called css_get().
2809 */
2810static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2811 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2812{
2813 unsigned short old_id, new_id;
2814
34c00c31
LZ
2815 old_id = mem_cgroup_id(from);
2816 new_id = mem_cgroup_id(to);
02491447
DN
2817
2818 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2819 mem_cgroup_swap_statistics(from, false);
483c30b5 2820 mem_cgroup_swap_statistics(to, true);
02491447
DN
2821 return 0;
2822 }
2823 return -EINVAL;
2824}
2825#else
2826static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2827 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2828{
2829 return -EINVAL;
2830}
8c7c6e34 2831#endif
d13d1443 2832
3e32cb2e 2833static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2834
d38d2a75 2835static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2836 unsigned long limit)
628f4235 2837{
3e32cb2e
JW
2838 unsigned long curusage;
2839 unsigned long oldusage;
2840 bool enlarge = false;
81d39c20 2841 int retry_count;
3e32cb2e 2842 int ret;
81d39c20
KH
2843
2844 /*
2845 * For keeping hierarchical_reclaim simple, how long we should retry
2846 * is depends on callers. We set our retry-count to be function
2847 * of # of children which we should visit in this loop.
2848 */
3e32cb2e
JW
2849 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2850 mem_cgroup_count_children(memcg);
81d39c20 2851
3e32cb2e 2852 oldusage = page_counter_read(&memcg->memory);
628f4235 2853
3e32cb2e 2854 do {
628f4235
KH
2855 if (signal_pending(current)) {
2856 ret = -EINTR;
2857 break;
2858 }
3e32cb2e
JW
2859
2860 mutex_lock(&memcg_limit_mutex);
2861 if (limit > memcg->memsw.limit) {
2862 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2863 ret = -EINVAL;
628f4235
KH
2864 break;
2865 }
3e32cb2e
JW
2866 if (limit > memcg->memory.limit)
2867 enlarge = true;
2868 ret = page_counter_limit(&memcg->memory, limit);
2869 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2870
2871 if (!ret)
2872 break;
2873
b70a2a21
JW
2874 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2875
3e32cb2e 2876 curusage = page_counter_read(&memcg->memory);
81d39c20 2877 /* Usage is reduced ? */
f894ffa8 2878 if (curusage >= oldusage)
81d39c20
KH
2879 retry_count--;
2880 else
2881 oldusage = curusage;
3e32cb2e
JW
2882 } while (retry_count);
2883
3c11ecf4
KH
2884 if (!ret && enlarge)
2885 memcg_oom_recover(memcg);
14797e23 2886
8c7c6e34
KH
2887 return ret;
2888}
2889
338c8431 2890static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2891 unsigned long limit)
8c7c6e34 2892{
3e32cb2e
JW
2893 unsigned long curusage;
2894 unsigned long oldusage;
2895 bool enlarge = false;
81d39c20 2896 int retry_count;
3e32cb2e 2897 int ret;
8c7c6e34 2898
81d39c20 2899 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2900 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2901 mem_cgroup_count_children(memcg);
2902
2903 oldusage = page_counter_read(&memcg->memsw);
2904
2905 do {
8c7c6e34
KH
2906 if (signal_pending(current)) {
2907 ret = -EINTR;
2908 break;
2909 }
3e32cb2e
JW
2910
2911 mutex_lock(&memcg_limit_mutex);
2912 if (limit < memcg->memory.limit) {
2913 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2914 ret = -EINVAL;
8c7c6e34
KH
2915 break;
2916 }
3e32cb2e
JW
2917 if (limit > memcg->memsw.limit)
2918 enlarge = true;
2919 ret = page_counter_limit(&memcg->memsw, limit);
2920 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2921
2922 if (!ret)
2923 break;
2924
b70a2a21
JW
2925 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2926
3e32cb2e 2927 curusage = page_counter_read(&memcg->memsw);
81d39c20 2928 /* Usage is reduced ? */
8c7c6e34 2929 if (curusage >= oldusage)
628f4235 2930 retry_count--;
81d39c20
KH
2931 else
2932 oldusage = curusage;
3e32cb2e
JW
2933 } while (retry_count);
2934
3c11ecf4
KH
2935 if (!ret && enlarge)
2936 memcg_oom_recover(memcg);
3e32cb2e 2937
628f4235
KH
2938 return ret;
2939}
2940
0608f43d
AM
2941unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2942 gfp_t gfp_mask,
2943 unsigned long *total_scanned)
2944{
2945 unsigned long nr_reclaimed = 0;
2946 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2947 unsigned long reclaimed;
2948 int loop = 0;
2949 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2950 unsigned long excess;
0608f43d
AM
2951 unsigned long nr_scanned;
2952
2953 if (order > 0)
2954 return 0;
2955
2956 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2957 /*
2958 * This loop can run a while, specially if mem_cgroup's continuously
2959 * keep exceeding their soft limit and putting the system under
2960 * pressure
2961 */
2962 do {
2963 if (next_mz)
2964 mz = next_mz;
2965 else
2966 mz = mem_cgroup_largest_soft_limit_node(mctz);
2967 if (!mz)
2968 break;
2969
2970 nr_scanned = 0;
2971 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2972 gfp_mask, &nr_scanned);
2973 nr_reclaimed += reclaimed;
2974 *total_scanned += nr_scanned;
0a31bc97 2975 spin_lock_irq(&mctz->lock);
bc2f2e7f 2976 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2977
2978 /*
2979 * If we failed to reclaim anything from this memory cgroup
2980 * it is time to move on to the next cgroup
2981 */
2982 next_mz = NULL;
bc2f2e7f
VD
2983 if (!reclaimed)
2984 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2985
3e32cb2e 2986 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2987 /*
2988 * One school of thought says that we should not add
2989 * back the node to the tree if reclaim returns 0.
2990 * But our reclaim could return 0, simply because due
2991 * to priority we are exposing a smaller subset of
2992 * memory to reclaim from. Consider this as a longer
2993 * term TODO.
2994 */
2995 /* If excess == 0, no tree ops */
cf2c8127 2996 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2997 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2998 css_put(&mz->memcg->css);
2999 loop++;
3000 /*
3001 * Could not reclaim anything and there are no more
3002 * mem cgroups to try or we seem to be looping without
3003 * reclaiming anything.
3004 */
3005 if (!nr_reclaimed &&
3006 (next_mz == NULL ||
3007 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3008 break;
3009 } while (!nr_reclaimed);
3010 if (next_mz)
3011 css_put(&next_mz->memcg->css);
3012 return nr_reclaimed;
3013}
3014
ea280e7b
TH
3015/*
3016 * Test whether @memcg has children, dead or alive. Note that this
3017 * function doesn't care whether @memcg has use_hierarchy enabled and
3018 * returns %true if there are child csses according to the cgroup
3019 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3020 */
b5f99b53
GC
3021static inline bool memcg_has_children(struct mem_cgroup *memcg)
3022{
ea280e7b
TH
3023 bool ret;
3024
696ac172 3025 /*
ea280e7b
TH
3026 * The lock does not prevent addition or deletion of children, but
3027 * it prevents a new child from being initialized based on this
3028 * parent in css_online(), so it's enough to decide whether
3029 * hierarchically inherited attributes can still be changed or not.
696ac172 3030 */
ea280e7b
TH
3031 lockdep_assert_held(&memcg_create_mutex);
3032
3033 rcu_read_lock();
3034 ret = css_next_child(NULL, &memcg->css);
3035 rcu_read_unlock();
3036 return ret;
b5f99b53
GC
3037}
3038
c26251f9
MH
3039/*
3040 * Reclaims as many pages from the given memcg as possible and moves
3041 * the rest to the parent.
3042 *
3043 * Caller is responsible for holding css reference for memcg.
3044 */
3045static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3046{
3047 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3048
c1e862c1
KH
3049 /* we call try-to-free pages for make this cgroup empty */
3050 lru_add_drain_all();
f817ed48 3051 /* try to free all pages in this cgroup */
3e32cb2e 3052 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3053 int progress;
c1e862c1 3054
c26251f9
MH
3055 if (signal_pending(current))
3056 return -EINTR;
3057
b70a2a21
JW
3058 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3059 GFP_KERNEL, true);
c1e862c1 3060 if (!progress) {
f817ed48 3061 nr_retries--;
c1e862c1 3062 /* maybe some writeback is necessary */
8aa7e847 3063 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3064 }
f817ed48
KH
3065
3066 }
ab5196c2
MH
3067
3068 return 0;
cc847582
KH
3069}
3070
6770c64e
TH
3071static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3072 char *buf, size_t nbytes,
3073 loff_t off)
c1e862c1 3074{
6770c64e 3075 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3076
d8423011
MH
3077 if (mem_cgroup_is_root(memcg))
3078 return -EINVAL;
6770c64e 3079 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3080}
3081
182446d0
TH
3082static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3083 struct cftype *cft)
18f59ea7 3084{
182446d0 3085 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3086}
3087
182446d0
TH
3088static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3089 struct cftype *cft, u64 val)
18f59ea7
BS
3090{
3091 int retval = 0;
182446d0 3092 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3093 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3094
0999821b 3095 mutex_lock(&memcg_create_mutex);
567fb435
GC
3096
3097 if (memcg->use_hierarchy == val)
3098 goto out;
3099
18f59ea7 3100 /*
af901ca1 3101 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3102 * in the child subtrees. If it is unset, then the change can
3103 * occur, provided the current cgroup has no children.
3104 *
3105 * For the root cgroup, parent_mem is NULL, we allow value to be
3106 * set if there are no children.
3107 */
c0ff4b85 3108 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3109 (val == 1 || val == 0)) {
ea280e7b 3110 if (!memcg_has_children(memcg))
c0ff4b85 3111 memcg->use_hierarchy = val;
18f59ea7
BS
3112 else
3113 retval = -EBUSY;
3114 } else
3115 retval = -EINVAL;
567fb435
GC
3116
3117out:
0999821b 3118 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3119
3120 return retval;
3121}
3122
3e32cb2e
JW
3123static unsigned long tree_stat(struct mem_cgroup *memcg,
3124 enum mem_cgroup_stat_index idx)
ce00a967
JW
3125{
3126 struct mem_cgroup *iter;
3127 long val = 0;
3128
3129 /* Per-cpu values can be negative, use a signed accumulator */
3130 for_each_mem_cgroup_tree(iter, memcg)
3131 val += mem_cgroup_read_stat(iter, idx);
3132
3133 if (val < 0) /* race ? */
3134 val = 0;
3135 return val;
3136}
3137
3138static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3139{
3140 u64 val;
3141
3e32cb2e
JW
3142 if (mem_cgroup_is_root(memcg)) {
3143 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3144 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3145 if (swap)
3146 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3147 } else {
ce00a967 3148 if (!swap)
3e32cb2e 3149 val = page_counter_read(&memcg->memory);
ce00a967 3150 else
3e32cb2e 3151 val = page_counter_read(&memcg->memsw);
ce00a967 3152 }
ce00a967
JW
3153 return val << PAGE_SHIFT;
3154}
3155
3e32cb2e
JW
3156enum {
3157 RES_USAGE,
3158 RES_LIMIT,
3159 RES_MAX_USAGE,
3160 RES_FAILCNT,
3161 RES_SOFT_LIMIT,
3162};
ce00a967 3163
791badbd 3164static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3165 struct cftype *cft)
8cdea7c0 3166{
182446d0 3167 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3168 struct page_counter *counter;
af36f906 3169
3e32cb2e 3170 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3171 case _MEM:
3e32cb2e
JW
3172 counter = &memcg->memory;
3173 break;
8c7c6e34 3174 case _MEMSWAP:
3e32cb2e
JW
3175 counter = &memcg->memsw;
3176 break;
510fc4e1 3177 case _KMEM:
3e32cb2e 3178 counter = &memcg->kmem;
510fc4e1 3179 break;
8c7c6e34
KH
3180 default:
3181 BUG();
8c7c6e34 3182 }
3e32cb2e
JW
3183
3184 switch (MEMFILE_ATTR(cft->private)) {
3185 case RES_USAGE:
3186 if (counter == &memcg->memory)
3187 return mem_cgroup_usage(memcg, false);
3188 if (counter == &memcg->memsw)
3189 return mem_cgroup_usage(memcg, true);
3190 return (u64)page_counter_read(counter) * PAGE_SIZE;
3191 case RES_LIMIT:
3192 return (u64)counter->limit * PAGE_SIZE;
3193 case RES_MAX_USAGE:
3194 return (u64)counter->watermark * PAGE_SIZE;
3195 case RES_FAILCNT:
3196 return counter->failcnt;
3197 case RES_SOFT_LIMIT:
3198 return (u64)memcg->soft_limit * PAGE_SIZE;
3199 default:
3200 BUG();
3201 }
8cdea7c0 3202}
510fc4e1 3203
510fc4e1 3204#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3205static int memcg_activate_kmem(struct mem_cgroup *memcg,
3206 unsigned long nr_pages)
d6441637
VD
3207{
3208 int err = 0;
3209 int memcg_id;
3210
2a4db7eb 3211 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 3212 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 3213 BUG_ON(memcg->kmem_acct_active);
d6441637 3214
510fc4e1
GC
3215 /*
3216 * For simplicity, we won't allow this to be disabled. It also can't
3217 * be changed if the cgroup has children already, or if tasks had
3218 * already joined.
3219 *
3220 * If tasks join before we set the limit, a person looking at
3221 * kmem.usage_in_bytes will have no way to determine when it took
3222 * place, which makes the value quite meaningless.
3223 *
3224 * After it first became limited, changes in the value of the limit are
3225 * of course permitted.
510fc4e1 3226 */
0999821b 3227 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3228 if (cgroup_has_tasks(memcg->css.cgroup) ||
3229 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3230 err = -EBUSY;
3231 mutex_unlock(&memcg_create_mutex);
3232 if (err)
3233 goto out;
510fc4e1 3234
f3bb3043 3235 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3236 if (memcg_id < 0) {
3237 err = memcg_id;
3238 goto out;
3239 }
3240
d6441637 3241 /*
900a38f0
VD
3242 * We couldn't have accounted to this cgroup, because it hasn't got
3243 * activated yet, so this should succeed.
d6441637 3244 */
3e32cb2e 3245 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3246 VM_BUG_ON(err);
3247
3248 static_key_slow_inc(&memcg_kmem_enabled_key);
3249 /*
900a38f0
VD
3250 * A memory cgroup is considered kmem-active as soon as it gets
3251 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3252 * guarantee no one starts accounting before all call sites are
3253 * patched.
3254 */
900a38f0 3255 memcg->kmemcg_id = memcg_id;
2788cf0c 3256 memcg->kmem_acct_activated = true;
2a4db7eb 3257 memcg->kmem_acct_active = true;
510fc4e1 3258out:
d6441637 3259 return err;
d6441637
VD
3260}
3261
d6441637 3262static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3263 unsigned long limit)
d6441637
VD
3264{
3265 int ret;
3266
3e32cb2e 3267 mutex_lock(&memcg_limit_mutex);
d6441637 3268 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3269 ret = memcg_activate_kmem(memcg, limit);
d6441637 3270 else
3e32cb2e
JW
3271 ret = page_counter_limit(&memcg->kmem, limit);
3272 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3273 return ret;
3274}
3275
55007d84 3276static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3277{
55007d84 3278 int ret = 0;
510fc4e1 3279 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3280
d6441637
VD
3281 if (!parent)
3282 return 0;
55007d84 3283
8c0145b6 3284 mutex_lock(&memcg_limit_mutex);
55007d84 3285 /*
d6441637
VD
3286 * If the parent cgroup is not kmem-active now, it cannot be activated
3287 * after this point, because it has at least one child already.
55007d84 3288 */
d6441637 3289 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3290 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3291 mutex_unlock(&memcg_limit_mutex);
55007d84 3292 return ret;
510fc4e1 3293}
d6441637
VD
3294#else
3295static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3296 unsigned long limit)
d6441637
VD
3297{
3298 return -EINVAL;
3299}
6d043990 3300#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3301
628f4235
KH
3302/*
3303 * The user of this function is...
3304 * RES_LIMIT.
3305 */
451af504
TH
3306static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3307 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3308{
451af504 3309 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3310 unsigned long nr_pages;
628f4235
KH
3311 int ret;
3312
451af504 3313 buf = strstrip(buf);
650c5e56 3314 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3315 if (ret)
3316 return ret;
af36f906 3317
3e32cb2e 3318 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3319 case RES_LIMIT:
4b3bde4c
BS
3320 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3321 ret = -EINVAL;
3322 break;
3323 }
3e32cb2e
JW
3324 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3325 case _MEM:
3326 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3327 break;
3e32cb2e
JW
3328 case _MEMSWAP:
3329 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3330 break;
3e32cb2e
JW
3331 case _KMEM:
3332 ret = memcg_update_kmem_limit(memcg, nr_pages);
3333 break;
3334 }
296c81d8 3335 break;
3e32cb2e
JW
3336 case RES_SOFT_LIMIT:
3337 memcg->soft_limit = nr_pages;
3338 ret = 0;
628f4235
KH
3339 break;
3340 }
451af504 3341 return ret ?: nbytes;
8cdea7c0
BS
3342}
3343
6770c64e
TH
3344static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3345 size_t nbytes, loff_t off)
c84872e1 3346{
6770c64e 3347 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3348 struct page_counter *counter;
c84872e1 3349
3e32cb2e
JW
3350 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3351 case _MEM:
3352 counter = &memcg->memory;
3353 break;
3354 case _MEMSWAP:
3355 counter = &memcg->memsw;
3356 break;
3357 case _KMEM:
3358 counter = &memcg->kmem;
3359 break;
3360 default:
3361 BUG();
3362 }
af36f906 3363
3e32cb2e 3364 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3365 case RES_MAX_USAGE:
3e32cb2e 3366 page_counter_reset_watermark(counter);
29f2a4da
PE
3367 break;
3368 case RES_FAILCNT:
3e32cb2e 3369 counter->failcnt = 0;
29f2a4da 3370 break;
3e32cb2e
JW
3371 default:
3372 BUG();
29f2a4da 3373 }
f64c3f54 3374
6770c64e 3375 return nbytes;
c84872e1
PE
3376}
3377
182446d0 3378static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3379 struct cftype *cft)
3380{
182446d0 3381 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3382}
3383
02491447 3384#ifdef CONFIG_MMU
182446d0 3385static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3386 struct cftype *cft, u64 val)
3387{
182446d0 3388 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3389
1dfab5ab 3390 if (val & ~MOVE_MASK)
7dc74be0 3391 return -EINVAL;
ee5e8472 3392
7dc74be0 3393 /*
ee5e8472
GC
3394 * No kind of locking is needed in here, because ->can_attach() will
3395 * check this value once in the beginning of the process, and then carry
3396 * on with stale data. This means that changes to this value will only
3397 * affect task migrations starting after the change.
7dc74be0 3398 */
c0ff4b85 3399 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3400 return 0;
3401}
02491447 3402#else
182446d0 3403static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3404 struct cftype *cft, u64 val)
3405{
3406 return -ENOSYS;
3407}
3408#endif
7dc74be0 3409
406eb0c9 3410#ifdef CONFIG_NUMA
2da8ca82 3411static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3412{
25485de6
GT
3413 struct numa_stat {
3414 const char *name;
3415 unsigned int lru_mask;
3416 };
3417
3418 static const struct numa_stat stats[] = {
3419 { "total", LRU_ALL },
3420 { "file", LRU_ALL_FILE },
3421 { "anon", LRU_ALL_ANON },
3422 { "unevictable", BIT(LRU_UNEVICTABLE) },
3423 };
3424 const struct numa_stat *stat;
406eb0c9 3425 int nid;
25485de6 3426 unsigned long nr;
2da8ca82 3427 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3428
25485de6
GT
3429 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3430 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3431 seq_printf(m, "%s=%lu", stat->name, nr);
3432 for_each_node_state(nid, N_MEMORY) {
3433 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3434 stat->lru_mask);
3435 seq_printf(m, " N%d=%lu", nid, nr);
3436 }
3437 seq_putc(m, '\n');
406eb0c9 3438 }
406eb0c9 3439
071aee13
YH
3440 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3441 struct mem_cgroup *iter;
3442
3443 nr = 0;
3444 for_each_mem_cgroup_tree(iter, memcg)
3445 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3446 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3447 for_each_node_state(nid, N_MEMORY) {
3448 nr = 0;
3449 for_each_mem_cgroup_tree(iter, memcg)
3450 nr += mem_cgroup_node_nr_lru_pages(
3451 iter, nid, stat->lru_mask);
3452 seq_printf(m, " N%d=%lu", nid, nr);
3453 }
3454 seq_putc(m, '\n');
406eb0c9 3455 }
406eb0c9 3456
406eb0c9
YH
3457 return 0;
3458}
3459#endif /* CONFIG_NUMA */
3460
2da8ca82 3461static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3462{
2da8ca82 3463 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3464 unsigned long memory, memsw;
af7c4b0e
JW
3465 struct mem_cgroup *mi;
3466 unsigned int i;
406eb0c9 3467
0ca44b14
GT
3468 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3469 MEM_CGROUP_STAT_NSTATS);
3470 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3471 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3472 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3473
af7c4b0e 3474 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3475 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3476 continue;
af7c4b0e
JW
3477 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3478 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3479 }
7b854121 3480
af7c4b0e
JW
3481 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3482 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3483 mem_cgroup_read_events(memcg, i));
3484
3485 for (i = 0; i < NR_LRU_LISTS; i++)
3486 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3487 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3488
14067bb3 3489 /* Hierarchical information */
3e32cb2e
JW
3490 memory = memsw = PAGE_COUNTER_MAX;
3491 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3492 memory = min(memory, mi->memory.limit);
3493 memsw = min(memsw, mi->memsw.limit);
fee7b548 3494 }
3e32cb2e
JW
3495 seq_printf(m, "hierarchical_memory_limit %llu\n",
3496 (u64)memory * PAGE_SIZE);
3497 if (do_swap_account)
3498 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3499 (u64)memsw * PAGE_SIZE);
7f016ee8 3500
af7c4b0e
JW
3501 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3502 long long val = 0;
3503
bff6bb83 3504 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3505 continue;
af7c4b0e
JW
3506 for_each_mem_cgroup_tree(mi, memcg)
3507 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3508 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3509 }
3510
3511 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3512 unsigned long long val = 0;
3513
3514 for_each_mem_cgroup_tree(mi, memcg)
3515 val += mem_cgroup_read_events(mi, i);
3516 seq_printf(m, "total_%s %llu\n",
3517 mem_cgroup_events_names[i], val);
3518 }
3519
3520 for (i = 0; i < NR_LRU_LISTS; i++) {
3521 unsigned long long val = 0;
3522
3523 for_each_mem_cgroup_tree(mi, memcg)
3524 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3525 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3526 }
14067bb3 3527
7f016ee8 3528#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3529 {
3530 int nid, zid;
3531 struct mem_cgroup_per_zone *mz;
89abfab1 3532 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3533 unsigned long recent_rotated[2] = {0, 0};
3534 unsigned long recent_scanned[2] = {0, 0};
3535
3536 for_each_online_node(nid)
3537 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3538 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3539 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3540
89abfab1
HD
3541 recent_rotated[0] += rstat->recent_rotated[0];
3542 recent_rotated[1] += rstat->recent_rotated[1];
3543 recent_scanned[0] += rstat->recent_scanned[0];
3544 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3545 }
78ccf5b5
JW
3546 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3547 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3548 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3549 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3550 }
3551#endif
3552
d2ceb9b7
KH
3553 return 0;
3554}
3555
182446d0
TH
3556static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3557 struct cftype *cft)
a7885eb8 3558{
182446d0 3559 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3560
1f4c025b 3561 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3562}
3563
182446d0
TH
3564static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3565 struct cftype *cft, u64 val)
a7885eb8 3566{
182446d0 3567 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3568
3dae7fec 3569 if (val > 100)
a7885eb8
KM
3570 return -EINVAL;
3571
14208b0e 3572 if (css->parent)
3dae7fec
JW
3573 memcg->swappiness = val;
3574 else
3575 vm_swappiness = val;
068b38c1 3576
a7885eb8
KM
3577 return 0;
3578}
3579
2e72b634
KS
3580static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3581{
3582 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3583 unsigned long usage;
2e72b634
KS
3584 int i;
3585
3586 rcu_read_lock();
3587 if (!swap)
2c488db2 3588 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3589 else
2c488db2 3590 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3591
3592 if (!t)
3593 goto unlock;
3594
ce00a967 3595 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3596
3597 /*
748dad36 3598 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3599 * If it's not true, a threshold was crossed after last
3600 * call of __mem_cgroup_threshold().
3601 */
5407a562 3602 i = t->current_threshold;
2e72b634
KS
3603
3604 /*
3605 * Iterate backward over array of thresholds starting from
3606 * current_threshold and check if a threshold is crossed.
3607 * If none of thresholds below usage is crossed, we read
3608 * only one element of the array here.
3609 */
3610 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3611 eventfd_signal(t->entries[i].eventfd, 1);
3612
3613 /* i = current_threshold + 1 */
3614 i++;
3615
3616 /*
3617 * Iterate forward over array of thresholds starting from
3618 * current_threshold+1 and check if a threshold is crossed.
3619 * If none of thresholds above usage is crossed, we read
3620 * only one element of the array here.
3621 */
3622 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3623 eventfd_signal(t->entries[i].eventfd, 1);
3624
3625 /* Update current_threshold */
5407a562 3626 t->current_threshold = i - 1;
2e72b634
KS
3627unlock:
3628 rcu_read_unlock();
3629}
3630
3631static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3632{
ad4ca5f4
KS
3633 while (memcg) {
3634 __mem_cgroup_threshold(memcg, false);
3635 if (do_swap_account)
3636 __mem_cgroup_threshold(memcg, true);
3637
3638 memcg = parent_mem_cgroup(memcg);
3639 }
2e72b634
KS
3640}
3641
3642static int compare_thresholds(const void *a, const void *b)
3643{
3644 const struct mem_cgroup_threshold *_a = a;
3645 const struct mem_cgroup_threshold *_b = b;
3646
2bff24a3
GT
3647 if (_a->threshold > _b->threshold)
3648 return 1;
3649
3650 if (_a->threshold < _b->threshold)
3651 return -1;
3652
3653 return 0;
2e72b634
KS
3654}
3655
c0ff4b85 3656static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3657{
3658 struct mem_cgroup_eventfd_list *ev;
3659
2bcf2e92
MH
3660 spin_lock(&memcg_oom_lock);
3661
c0ff4b85 3662 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3663 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3664
3665 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3666 return 0;
3667}
3668
c0ff4b85 3669static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3670{
7d74b06f
KH
3671 struct mem_cgroup *iter;
3672
c0ff4b85 3673 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3674 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3675}
3676
59b6f873 3677static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3678 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3679{
2c488db2
KS
3680 struct mem_cgroup_thresholds *thresholds;
3681 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3682 unsigned long threshold;
3683 unsigned long usage;
2c488db2 3684 int i, size, ret;
2e72b634 3685
650c5e56 3686 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3687 if (ret)
3688 return ret;
3689
3690 mutex_lock(&memcg->thresholds_lock);
2c488db2 3691
05b84301 3692 if (type == _MEM) {
2c488db2 3693 thresholds = &memcg->thresholds;
ce00a967 3694 usage = mem_cgroup_usage(memcg, false);
05b84301 3695 } else if (type == _MEMSWAP) {
2c488db2 3696 thresholds = &memcg->memsw_thresholds;
ce00a967 3697 usage = mem_cgroup_usage(memcg, true);
05b84301 3698 } else
2e72b634
KS
3699 BUG();
3700
2e72b634 3701 /* Check if a threshold crossed before adding a new one */
2c488db2 3702 if (thresholds->primary)
2e72b634
KS
3703 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3704
2c488db2 3705 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3706
3707 /* Allocate memory for new array of thresholds */
2c488db2 3708 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3709 GFP_KERNEL);
2c488db2 3710 if (!new) {
2e72b634
KS
3711 ret = -ENOMEM;
3712 goto unlock;
3713 }
2c488db2 3714 new->size = size;
2e72b634
KS
3715
3716 /* Copy thresholds (if any) to new array */
2c488db2
KS
3717 if (thresholds->primary) {
3718 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3719 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3720 }
3721
2e72b634 3722 /* Add new threshold */
2c488db2
KS
3723 new->entries[size - 1].eventfd = eventfd;
3724 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3725
3726 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3727 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3728 compare_thresholds, NULL);
3729
3730 /* Find current threshold */
2c488db2 3731 new->current_threshold = -1;
2e72b634 3732 for (i = 0; i < size; i++) {
748dad36 3733 if (new->entries[i].threshold <= usage) {
2e72b634 3734 /*
2c488db2
KS
3735 * new->current_threshold will not be used until
3736 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3737 * it here.
3738 */
2c488db2 3739 ++new->current_threshold;
748dad36
SZ
3740 } else
3741 break;
2e72b634
KS
3742 }
3743
2c488db2
KS
3744 /* Free old spare buffer and save old primary buffer as spare */
3745 kfree(thresholds->spare);
3746 thresholds->spare = thresholds->primary;
3747
3748 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3749
907860ed 3750 /* To be sure that nobody uses thresholds */
2e72b634
KS
3751 synchronize_rcu();
3752
2e72b634
KS
3753unlock:
3754 mutex_unlock(&memcg->thresholds_lock);
3755
3756 return ret;
3757}
3758
59b6f873 3759static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3760 struct eventfd_ctx *eventfd, const char *args)
3761{
59b6f873 3762 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3763}
3764
59b6f873 3765static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3766 struct eventfd_ctx *eventfd, const char *args)
3767{
59b6f873 3768 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3769}
3770
59b6f873 3771static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3772 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3773{
2c488db2
KS
3774 struct mem_cgroup_thresholds *thresholds;
3775 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3776 unsigned long usage;
2c488db2 3777 int i, j, size;
2e72b634
KS
3778
3779 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3780
3781 if (type == _MEM) {
2c488db2 3782 thresholds = &memcg->thresholds;
ce00a967 3783 usage = mem_cgroup_usage(memcg, false);
05b84301 3784 } else if (type == _MEMSWAP) {
2c488db2 3785 thresholds = &memcg->memsw_thresholds;
ce00a967 3786 usage = mem_cgroup_usage(memcg, true);
05b84301 3787 } else
2e72b634
KS
3788 BUG();
3789
371528ca
AV
3790 if (!thresholds->primary)
3791 goto unlock;
3792
2e72b634
KS
3793 /* Check if a threshold crossed before removing */
3794 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3795
3796 /* Calculate new number of threshold */
2c488db2
KS
3797 size = 0;
3798 for (i = 0; i < thresholds->primary->size; i++) {
3799 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3800 size++;
3801 }
3802
2c488db2 3803 new = thresholds->spare;
907860ed 3804
2e72b634
KS
3805 /* Set thresholds array to NULL if we don't have thresholds */
3806 if (!size) {
2c488db2
KS
3807 kfree(new);
3808 new = NULL;
907860ed 3809 goto swap_buffers;
2e72b634
KS
3810 }
3811
2c488db2 3812 new->size = size;
2e72b634
KS
3813
3814 /* Copy thresholds and find current threshold */
2c488db2
KS
3815 new->current_threshold = -1;
3816 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3817 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3818 continue;
3819
2c488db2 3820 new->entries[j] = thresholds->primary->entries[i];
748dad36 3821 if (new->entries[j].threshold <= usage) {
2e72b634 3822 /*
2c488db2 3823 * new->current_threshold will not be used
2e72b634
KS
3824 * until rcu_assign_pointer(), so it's safe to increment
3825 * it here.
3826 */
2c488db2 3827 ++new->current_threshold;
2e72b634
KS
3828 }
3829 j++;
3830 }
3831
907860ed 3832swap_buffers:
2c488db2
KS
3833 /* Swap primary and spare array */
3834 thresholds->spare = thresholds->primary;
8c757763
SZ
3835 /* If all events are unregistered, free the spare array */
3836 if (!new) {
3837 kfree(thresholds->spare);
3838 thresholds->spare = NULL;
3839 }
3840
2c488db2 3841 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3842
907860ed 3843 /* To be sure that nobody uses thresholds */
2e72b634 3844 synchronize_rcu();
371528ca 3845unlock:
2e72b634 3846 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3847}
c1e862c1 3848
59b6f873 3849static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3850 struct eventfd_ctx *eventfd)
3851{
59b6f873 3852 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3853}
3854
59b6f873 3855static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3856 struct eventfd_ctx *eventfd)
3857{
59b6f873 3858 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3859}
3860
59b6f873 3861static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3862 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3863{
9490ff27 3864 struct mem_cgroup_eventfd_list *event;
9490ff27 3865
9490ff27
KH
3866 event = kmalloc(sizeof(*event), GFP_KERNEL);
3867 if (!event)
3868 return -ENOMEM;
3869
1af8efe9 3870 spin_lock(&memcg_oom_lock);
9490ff27
KH
3871
3872 event->eventfd = eventfd;
3873 list_add(&event->list, &memcg->oom_notify);
3874
3875 /* already in OOM ? */
79dfdacc 3876 if (atomic_read(&memcg->under_oom))
9490ff27 3877 eventfd_signal(eventfd, 1);
1af8efe9 3878 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3879
3880 return 0;
3881}
3882
59b6f873 3883static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3884 struct eventfd_ctx *eventfd)
9490ff27 3885{
9490ff27 3886 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3887
1af8efe9 3888 spin_lock(&memcg_oom_lock);
9490ff27 3889
c0ff4b85 3890 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3891 if (ev->eventfd == eventfd) {
3892 list_del(&ev->list);
3893 kfree(ev);
3894 }
3895 }
3896
1af8efe9 3897 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3898}
3899
2da8ca82 3900static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3901{
2da8ca82 3902 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3903
791badbd
TH
3904 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3905 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
3906 return 0;
3907}
3908
182446d0 3909static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3910 struct cftype *cft, u64 val)
3911{
182446d0 3912 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3913
3914 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3915 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3916 return -EINVAL;
3917
c0ff4b85 3918 memcg->oom_kill_disable = val;
4d845ebf 3919 if (!val)
c0ff4b85 3920 memcg_oom_recover(memcg);
3dae7fec 3921
3c11ecf4
KH
3922 return 0;
3923}
3924
c255a458 3925#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3926static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3927{
55007d84
GC
3928 int ret;
3929
55007d84
GC
3930 ret = memcg_propagate_kmem(memcg);
3931 if (ret)
3932 return ret;
2633d7a0 3933
1d62e436 3934 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3935}
e5671dfa 3936
2a4db7eb
VD
3937static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3938{
2788cf0c
VD
3939 struct cgroup_subsys_state *css;
3940 struct mem_cgroup *parent, *child;
3941 int kmemcg_id;
3942
2a4db7eb
VD
3943 if (!memcg->kmem_acct_active)
3944 return;
3945
3946 /*
3947 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3948 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3949 * guarantees no cache will be created for this cgroup after we are
3950 * done (see memcg_create_kmem_cache()).
3951 */
3952 memcg->kmem_acct_active = false;
3953
3954 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3955
3956 kmemcg_id = memcg->kmemcg_id;
3957 BUG_ON(kmemcg_id < 0);
3958
3959 parent = parent_mem_cgroup(memcg);
3960 if (!parent)
3961 parent = root_mem_cgroup;
3962
3963 /*
3964 * Change kmemcg_id of this cgroup and all its descendants to the
3965 * parent's id, and then move all entries from this cgroup's list_lrus
3966 * to ones of the parent. After we have finished, all list_lrus
3967 * corresponding to this cgroup are guaranteed to remain empty. The
3968 * ordering is imposed by list_lru_node->lock taken by
3969 * memcg_drain_all_list_lrus().
3970 */
3971 css_for_each_descendant_pre(css, &memcg->css) {
3972 child = mem_cgroup_from_css(css);
3973 BUG_ON(child->kmemcg_id != kmemcg_id);
3974 child->kmemcg_id = parent->kmemcg_id;
3975 if (!memcg->use_hierarchy)
3976 break;
3977 }
3978 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3979
3980 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3981}
3982
10d5ebf4 3983static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3984{
f48b80a5
VD
3985 if (memcg->kmem_acct_activated) {
3986 memcg_destroy_kmem_caches(memcg);
3987 static_key_slow_dec(&memcg_kmem_enabled_key);
3988 WARN_ON(page_counter_read(&memcg->kmem));
3989 }
1d62e436 3990 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 3991}
e5671dfa 3992#else
cbe128e3 3993static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3994{
3995 return 0;
3996}
d1a4c0b3 3997
2a4db7eb
VD
3998static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3999{
4000}
4001
10d5ebf4
LZ
4002static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4003{
4004}
e5671dfa
GC
4005#endif
4006
3bc942f3
TH
4007/*
4008 * DO NOT USE IN NEW FILES.
4009 *
4010 * "cgroup.event_control" implementation.
4011 *
4012 * This is way over-engineered. It tries to support fully configurable
4013 * events for each user. Such level of flexibility is completely
4014 * unnecessary especially in the light of the planned unified hierarchy.
4015 *
4016 * Please deprecate this and replace with something simpler if at all
4017 * possible.
4018 */
4019
79bd9814
TH
4020/*
4021 * Unregister event and free resources.
4022 *
4023 * Gets called from workqueue.
4024 */
3bc942f3 4025static void memcg_event_remove(struct work_struct *work)
79bd9814 4026{
3bc942f3
TH
4027 struct mem_cgroup_event *event =
4028 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4029 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4030
4031 remove_wait_queue(event->wqh, &event->wait);
4032
59b6f873 4033 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4034
4035 /* Notify userspace the event is going away. */
4036 eventfd_signal(event->eventfd, 1);
4037
4038 eventfd_ctx_put(event->eventfd);
4039 kfree(event);
59b6f873 4040 css_put(&memcg->css);
79bd9814
TH
4041}
4042
4043/*
4044 * Gets called on POLLHUP on eventfd when user closes it.
4045 *
4046 * Called with wqh->lock held and interrupts disabled.
4047 */
3bc942f3
TH
4048static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4049 int sync, void *key)
79bd9814 4050{
3bc942f3
TH
4051 struct mem_cgroup_event *event =
4052 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4053 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4054 unsigned long flags = (unsigned long)key;
4055
4056 if (flags & POLLHUP) {
4057 /*
4058 * If the event has been detached at cgroup removal, we
4059 * can simply return knowing the other side will cleanup
4060 * for us.
4061 *
4062 * We can't race against event freeing since the other
4063 * side will require wqh->lock via remove_wait_queue(),
4064 * which we hold.
4065 */
fba94807 4066 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4067 if (!list_empty(&event->list)) {
4068 list_del_init(&event->list);
4069 /*
4070 * We are in atomic context, but cgroup_event_remove()
4071 * may sleep, so we have to call it in workqueue.
4072 */
4073 schedule_work(&event->remove);
4074 }
fba94807 4075 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4076 }
4077
4078 return 0;
4079}
4080
3bc942f3 4081static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4082 wait_queue_head_t *wqh, poll_table *pt)
4083{
3bc942f3
TH
4084 struct mem_cgroup_event *event =
4085 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4086
4087 event->wqh = wqh;
4088 add_wait_queue(wqh, &event->wait);
4089}
4090
4091/*
3bc942f3
TH
4092 * DO NOT USE IN NEW FILES.
4093 *
79bd9814
TH
4094 * Parse input and register new cgroup event handler.
4095 *
4096 * Input must be in format '<event_fd> <control_fd> <args>'.
4097 * Interpretation of args is defined by control file implementation.
4098 */
451af504
TH
4099static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4100 char *buf, size_t nbytes, loff_t off)
79bd9814 4101{
451af504 4102 struct cgroup_subsys_state *css = of_css(of);
fba94807 4103 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4104 struct mem_cgroup_event *event;
79bd9814
TH
4105 struct cgroup_subsys_state *cfile_css;
4106 unsigned int efd, cfd;
4107 struct fd efile;
4108 struct fd cfile;
fba94807 4109 const char *name;
79bd9814
TH
4110 char *endp;
4111 int ret;
4112
451af504
TH
4113 buf = strstrip(buf);
4114
4115 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4116 if (*endp != ' ')
4117 return -EINVAL;
451af504 4118 buf = endp + 1;
79bd9814 4119
451af504 4120 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4121 if ((*endp != ' ') && (*endp != '\0'))
4122 return -EINVAL;
451af504 4123 buf = endp + 1;
79bd9814
TH
4124
4125 event = kzalloc(sizeof(*event), GFP_KERNEL);
4126 if (!event)
4127 return -ENOMEM;
4128
59b6f873 4129 event->memcg = memcg;
79bd9814 4130 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4131 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4132 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4133 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4134
4135 efile = fdget(efd);
4136 if (!efile.file) {
4137 ret = -EBADF;
4138 goto out_kfree;
4139 }
4140
4141 event->eventfd = eventfd_ctx_fileget(efile.file);
4142 if (IS_ERR(event->eventfd)) {
4143 ret = PTR_ERR(event->eventfd);
4144 goto out_put_efile;
4145 }
4146
4147 cfile = fdget(cfd);
4148 if (!cfile.file) {
4149 ret = -EBADF;
4150 goto out_put_eventfd;
4151 }
4152
4153 /* the process need read permission on control file */
4154 /* AV: shouldn't we check that it's been opened for read instead? */
4155 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4156 if (ret < 0)
4157 goto out_put_cfile;
4158
fba94807
TH
4159 /*
4160 * Determine the event callbacks and set them in @event. This used
4161 * to be done via struct cftype but cgroup core no longer knows
4162 * about these events. The following is crude but the whole thing
4163 * is for compatibility anyway.
3bc942f3
TH
4164 *
4165 * DO NOT ADD NEW FILES.
fba94807 4166 */
b583043e 4167 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4168
4169 if (!strcmp(name, "memory.usage_in_bytes")) {
4170 event->register_event = mem_cgroup_usage_register_event;
4171 event->unregister_event = mem_cgroup_usage_unregister_event;
4172 } else if (!strcmp(name, "memory.oom_control")) {
4173 event->register_event = mem_cgroup_oom_register_event;
4174 event->unregister_event = mem_cgroup_oom_unregister_event;
4175 } else if (!strcmp(name, "memory.pressure_level")) {
4176 event->register_event = vmpressure_register_event;
4177 event->unregister_event = vmpressure_unregister_event;
4178 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4179 event->register_event = memsw_cgroup_usage_register_event;
4180 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4181 } else {
4182 ret = -EINVAL;
4183 goto out_put_cfile;
4184 }
4185
79bd9814 4186 /*
b5557c4c
TH
4187 * Verify @cfile should belong to @css. Also, remaining events are
4188 * automatically removed on cgroup destruction but the removal is
4189 * asynchronous, so take an extra ref on @css.
79bd9814 4190 */
b583043e 4191 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4192 &memory_cgrp_subsys);
79bd9814 4193 ret = -EINVAL;
5a17f543 4194 if (IS_ERR(cfile_css))
79bd9814 4195 goto out_put_cfile;
5a17f543
TH
4196 if (cfile_css != css) {
4197 css_put(cfile_css);
79bd9814 4198 goto out_put_cfile;
5a17f543 4199 }
79bd9814 4200
451af504 4201 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4202 if (ret)
4203 goto out_put_css;
4204
4205 efile.file->f_op->poll(efile.file, &event->pt);
4206
fba94807
TH
4207 spin_lock(&memcg->event_list_lock);
4208 list_add(&event->list, &memcg->event_list);
4209 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4210
4211 fdput(cfile);
4212 fdput(efile);
4213
451af504 4214 return nbytes;
79bd9814
TH
4215
4216out_put_css:
b5557c4c 4217 css_put(css);
79bd9814
TH
4218out_put_cfile:
4219 fdput(cfile);
4220out_put_eventfd:
4221 eventfd_ctx_put(event->eventfd);
4222out_put_efile:
4223 fdput(efile);
4224out_kfree:
4225 kfree(event);
4226
4227 return ret;
4228}
4229
241994ed 4230static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4231 {
0eea1030 4232 .name = "usage_in_bytes",
8c7c6e34 4233 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4234 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4235 },
c84872e1
PE
4236 {
4237 .name = "max_usage_in_bytes",
8c7c6e34 4238 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4239 .write = mem_cgroup_reset,
791badbd 4240 .read_u64 = mem_cgroup_read_u64,
c84872e1 4241 },
8cdea7c0 4242 {
0eea1030 4243 .name = "limit_in_bytes",
8c7c6e34 4244 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4245 .write = mem_cgroup_write,
791badbd 4246 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4247 },
296c81d8
BS
4248 {
4249 .name = "soft_limit_in_bytes",
4250 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4251 .write = mem_cgroup_write,
791badbd 4252 .read_u64 = mem_cgroup_read_u64,
296c81d8 4253 },
8cdea7c0
BS
4254 {
4255 .name = "failcnt",
8c7c6e34 4256 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4257 .write = mem_cgroup_reset,
791badbd 4258 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4259 },
d2ceb9b7
KH
4260 {
4261 .name = "stat",
2da8ca82 4262 .seq_show = memcg_stat_show,
d2ceb9b7 4263 },
c1e862c1
KH
4264 {
4265 .name = "force_empty",
6770c64e 4266 .write = mem_cgroup_force_empty_write,
c1e862c1 4267 },
18f59ea7
BS
4268 {
4269 .name = "use_hierarchy",
4270 .write_u64 = mem_cgroup_hierarchy_write,
4271 .read_u64 = mem_cgroup_hierarchy_read,
4272 },
79bd9814 4273 {
3bc942f3 4274 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4275 .write = memcg_write_event_control,
79bd9814
TH
4276 .flags = CFTYPE_NO_PREFIX,
4277 .mode = S_IWUGO,
4278 },
a7885eb8
KM
4279 {
4280 .name = "swappiness",
4281 .read_u64 = mem_cgroup_swappiness_read,
4282 .write_u64 = mem_cgroup_swappiness_write,
4283 },
7dc74be0
DN
4284 {
4285 .name = "move_charge_at_immigrate",
4286 .read_u64 = mem_cgroup_move_charge_read,
4287 .write_u64 = mem_cgroup_move_charge_write,
4288 },
9490ff27
KH
4289 {
4290 .name = "oom_control",
2da8ca82 4291 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4292 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4293 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4294 },
70ddf637
AV
4295 {
4296 .name = "pressure_level",
70ddf637 4297 },
406eb0c9
YH
4298#ifdef CONFIG_NUMA
4299 {
4300 .name = "numa_stat",
2da8ca82 4301 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4302 },
4303#endif
510fc4e1
GC
4304#ifdef CONFIG_MEMCG_KMEM
4305 {
4306 .name = "kmem.limit_in_bytes",
4307 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4308 .write = mem_cgroup_write,
791badbd 4309 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4310 },
4311 {
4312 .name = "kmem.usage_in_bytes",
4313 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4314 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4315 },
4316 {
4317 .name = "kmem.failcnt",
4318 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4319 .write = mem_cgroup_reset,
791badbd 4320 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4321 },
4322 {
4323 .name = "kmem.max_usage_in_bytes",
4324 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4325 .write = mem_cgroup_reset,
791badbd 4326 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4327 },
749c5415
GC
4328#ifdef CONFIG_SLABINFO
4329 {
4330 .name = "kmem.slabinfo",
b047501c
VD
4331 .seq_start = slab_start,
4332 .seq_next = slab_next,
4333 .seq_stop = slab_stop,
4334 .seq_show = memcg_slab_show,
749c5415
GC
4335 },
4336#endif
8c7c6e34 4337#endif
6bc10349 4338 { }, /* terminate */
af36f906 4339};
8c7c6e34 4340
c0ff4b85 4341static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4342{
4343 struct mem_cgroup_per_node *pn;
1ecaab2b 4344 struct mem_cgroup_per_zone *mz;
41e3355d 4345 int zone, tmp = node;
1ecaab2b
KH
4346 /*
4347 * This routine is called against possible nodes.
4348 * But it's BUG to call kmalloc() against offline node.
4349 *
4350 * TODO: this routine can waste much memory for nodes which will
4351 * never be onlined. It's better to use memory hotplug callback
4352 * function.
4353 */
41e3355d
KH
4354 if (!node_state(node, N_NORMAL_MEMORY))
4355 tmp = -1;
17295c88 4356 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4357 if (!pn)
4358 return 1;
1ecaab2b 4359
1ecaab2b
KH
4360 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4361 mz = &pn->zoneinfo[zone];
bea8c150 4362 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4363 mz->usage_in_excess = 0;
4364 mz->on_tree = false;
d79154bb 4365 mz->memcg = memcg;
1ecaab2b 4366 }
54f72fe0 4367 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4368 return 0;
4369}
4370
c0ff4b85 4371static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4372{
54f72fe0 4373 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4374}
4375
33327948
KH
4376static struct mem_cgroup *mem_cgroup_alloc(void)
4377{
d79154bb 4378 struct mem_cgroup *memcg;
8ff69e2c 4379 size_t size;
33327948 4380
8ff69e2c
VD
4381 size = sizeof(struct mem_cgroup);
4382 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4383
8ff69e2c 4384 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4385 if (!memcg)
e7bbcdf3
DC
4386 return NULL;
4387
d79154bb
HD
4388 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4389 if (!memcg->stat)
d2e61b8d 4390 goto out_free;
d79154bb
HD
4391 spin_lock_init(&memcg->pcp_counter_lock);
4392 return memcg;
d2e61b8d
DC
4393
4394out_free:
8ff69e2c 4395 kfree(memcg);
d2e61b8d 4396 return NULL;
33327948
KH
4397}
4398
59927fb9 4399/*
c8b2a36f
GC
4400 * At destroying mem_cgroup, references from swap_cgroup can remain.
4401 * (scanning all at force_empty is too costly...)
4402 *
4403 * Instead of clearing all references at force_empty, we remember
4404 * the number of reference from swap_cgroup and free mem_cgroup when
4405 * it goes down to 0.
4406 *
4407 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4408 */
c8b2a36f
GC
4409
4410static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4411{
c8b2a36f 4412 int node;
59927fb9 4413
bb4cc1a8 4414 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4415
4416 for_each_node(node)
4417 free_mem_cgroup_per_zone_info(memcg, node);
4418
4419 free_percpu(memcg->stat);
8ff69e2c 4420 kfree(memcg);
59927fb9 4421}
3afe36b1 4422
7bcc1bb1
DN
4423/*
4424 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4425 */
e1aab161 4426struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4427{
3e32cb2e 4428 if (!memcg->memory.parent)
7bcc1bb1 4429 return NULL;
3e32cb2e 4430 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4431}
e1aab161 4432EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4433
0eb253e2 4434static struct cgroup_subsys_state * __ref
eb95419b 4435mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4436{
d142e3e6 4437 struct mem_cgroup *memcg;
04046e1a 4438 long error = -ENOMEM;
6d12e2d8 4439 int node;
8cdea7c0 4440
c0ff4b85
R
4441 memcg = mem_cgroup_alloc();
4442 if (!memcg)
04046e1a 4443 return ERR_PTR(error);
78fb7466 4444
3ed28fa1 4445 for_each_node(node)
c0ff4b85 4446 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4447 goto free_out;
f64c3f54 4448
c077719b 4449 /* root ? */
eb95419b 4450 if (parent_css == NULL) {
a41c58a6 4451 root_mem_cgroup = memcg;
3e32cb2e 4452 page_counter_init(&memcg->memory, NULL);
241994ed 4453 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4454 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4455 page_counter_init(&memcg->memsw, NULL);
4456 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4457 }
28dbc4b6 4458
d142e3e6
GC
4459 memcg->last_scanned_node = MAX_NUMNODES;
4460 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4461 memcg->move_charge_at_immigrate = 0;
4462 mutex_init(&memcg->thresholds_lock);
4463 spin_lock_init(&memcg->move_lock);
70ddf637 4464 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4465 INIT_LIST_HEAD(&memcg->event_list);
4466 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4467#ifdef CONFIG_MEMCG_KMEM
4468 memcg->kmemcg_id = -1;
900a38f0 4469#endif
d142e3e6
GC
4470
4471 return &memcg->css;
4472
4473free_out:
4474 __mem_cgroup_free(memcg);
4475 return ERR_PTR(error);
4476}
4477
4478static int
eb95419b 4479mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4480{
eb95419b 4481 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4482 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4483 int ret;
d142e3e6 4484
15a4c835 4485 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4486 return -ENOSPC;
4487
63876986 4488 if (!parent)
d142e3e6
GC
4489 return 0;
4490
0999821b 4491 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4492
4493 memcg->use_hierarchy = parent->use_hierarchy;
4494 memcg->oom_kill_disable = parent->oom_kill_disable;
4495 memcg->swappiness = mem_cgroup_swappiness(parent);
4496
4497 if (parent->use_hierarchy) {
3e32cb2e 4498 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4499 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4500 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4501 page_counter_init(&memcg->memsw, &parent->memsw);
4502 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4503
7bcc1bb1 4504 /*
8d76a979
LZ
4505 * No need to take a reference to the parent because cgroup
4506 * core guarantees its existence.
7bcc1bb1 4507 */
18f59ea7 4508 } else {
3e32cb2e 4509 page_counter_init(&memcg->memory, NULL);
241994ed 4510 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4511 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4512 page_counter_init(&memcg->memsw, NULL);
4513 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4514 /*
4515 * Deeper hierachy with use_hierarchy == false doesn't make
4516 * much sense so let cgroup subsystem know about this
4517 * unfortunate state in our controller.
4518 */
d142e3e6 4519 if (parent != root_mem_cgroup)
073219e9 4520 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4521 }
0999821b 4522 mutex_unlock(&memcg_create_mutex);
d6441637 4523
2f7dd7a4
JW
4524 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4525 if (ret)
4526 return ret;
4527
4528 /*
4529 * Make sure the memcg is initialized: mem_cgroup_iter()
4530 * orders reading memcg->initialized against its callers
4531 * reading the memcg members.
4532 */
4533 smp_store_release(&memcg->initialized, 1);
4534
4535 return 0;
8cdea7c0
BS
4536}
4537
eb95419b 4538static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4539{
eb95419b 4540 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4541 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4542
4543 /*
4544 * Unregister events and notify userspace.
4545 * Notify userspace about cgroup removing only after rmdir of cgroup
4546 * directory to avoid race between userspace and kernelspace.
4547 */
fba94807
TH
4548 spin_lock(&memcg->event_list_lock);
4549 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4550 list_del_init(&event->list);
4551 schedule_work(&event->remove);
4552 }
fba94807 4553 spin_unlock(&memcg->event_list_lock);
ec64f515 4554
33cb876e 4555 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4556
4557 memcg_deactivate_kmem(memcg);
df878fb0
KH
4558}
4559
eb95419b 4560static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4561{
eb95419b 4562 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4563
10d5ebf4 4564 memcg_destroy_kmem(memcg);
465939a1 4565 __mem_cgroup_free(memcg);
8cdea7c0
BS
4566}
4567
1ced953b
TH
4568/**
4569 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4570 * @css: the target css
4571 *
4572 * Reset the states of the mem_cgroup associated with @css. This is
4573 * invoked when the userland requests disabling on the default hierarchy
4574 * but the memcg is pinned through dependency. The memcg should stop
4575 * applying policies and should revert to the vanilla state as it may be
4576 * made visible again.
4577 *
4578 * The current implementation only resets the essential configurations.
4579 * This needs to be expanded to cover all the visible parts.
4580 */
4581static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4582{
4583 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4584
3e32cb2e
JW
4585 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4586 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4587 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4588 memcg->low = 0;
4589 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4590 memcg->soft_limit = PAGE_COUNTER_MAX;
1ced953b
TH
4591}
4592
02491447 4593#ifdef CONFIG_MMU
7dc74be0 4594/* Handlers for move charge at task migration. */
854ffa8d 4595static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4596{
05b84301 4597 int ret;
9476db97
JW
4598
4599 /* Try a single bulk charge without reclaim first */
00501b53 4600 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4601 if (!ret) {
854ffa8d 4602 mc.precharge += count;
854ffa8d
DN
4603 return ret;
4604 }
692e7c45 4605 if (ret == -EINTR) {
00501b53 4606 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4607 return ret;
4608 }
9476db97
JW
4609
4610 /* Try charges one by one with reclaim */
854ffa8d 4611 while (count--) {
00501b53 4612 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4613 /*
4614 * In case of failure, any residual charges against
4615 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4616 * later on. However, cancel any charges that are
4617 * bypassed to root right away or they'll be lost.
9476db97 4618 */
692e7c45 4619 if (ret == -EINTR)
00501b53 4620 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4621 if (ret)
38c5d72f 4622 return ret;
854ffa8d 4623 mc.precharge++;
9476db97 4624 cond_resched();
854ffa8d 4625 }
9476db97 4626 return 0;
4ffef5fe
DN
4627}
4628
4629/**
8d32ff84 4630 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4631 * @vma: the vma the pte to be checked belongs
4632 * @addr: the address corresponding to the pte to be checked
4633 * @ptent: the pte to be checked
02491447 4634 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4635 *
4636 * Returns
4637 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4638 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4639 * move charge. if @target is not NULL, the page is stored in target->page
4640 * with extra refcnt got(Callers should handle it).
02491447
DN
4641 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4642 * target for charge migration. if @target is not NULL, the entry is stored
4643 * in target->ent.
4ffef5fe
DN
4644 *
4645 * Called with pte lock held.
4646 */
4ffef5fe
DN
4647union mc_target {
4648 struct page *page;
02491447 4649 swp_entry_t ent;
4ffef5fe
DN
4650};
4651
4ffef5fe 4652enum mc_target_type {
8d32ff84 4653 MC_TARGET_NONE = 0,
4ffef5fe 4654 MC_TARGET_PAGE,
02491447 4655 MC_TARGET_SWAP,
4ffef5fe
DN
4656};
4657
90254a65
DN
4658static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4659 unsigned long addr, pte_t ptent)
4ffef5fe 4660{
90254a65 4661 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4662
90254a65
DN
4663 if (!page || !page_mapped(page))
4664 return NULL;
4665 if (PageAnon(page)) {
1dfab5ab 4666 if (!(mc.flags & MOVE_ANON))
90254a65 4667 return NULL;
1dfab5ab
JW
4668 } else {
4669 if (!(mc.flags & MOVE_FILE))
4670 return NULL;
4671 }
90254a65
DN
4672 if (!get_page_unless_zero(page))
4673 return NULL;
4674
4675 return page;
4676}
4677
4b91355e 4678#ifdef CONFIG_SWAP
90254a65
DN
4679static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4680 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4681{
90254a65
DN
4682 struct page *page = NULL;
4683 swp_entry_t ent = pte_to_swp_entry(ptent);
4684
1dfab5ab 4685 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4686 return NULL;
4b91355e
KH
4687 /*
4688 * Because lookup_swap_cache() updates some statistics counter,
4689 * we call find_get_page() with swapper_space directly.
4690 */
33806f06 4691 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4692 if (do_swap_account)
4693 entry->val = ent.val;
4694
4695 return page;
4696}
4b91355e
KH
4697#else
4698static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4699 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4700{
4701 return NULL;
4702}
4703#endif
90254a65 4704
87946a72
DN
4705static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4706 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4707{
4708 struct page *page = NULL;
87946a72
DN
4709 struct address_space *mapping;
4710 pgoff_t pgoff;
4711
4712 if (!vma->vm_file) /* anonymous vma */
4713 return NULL;
1dfab5ab 4714 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4715 return NULL;
4716
87946a72 4717 mapping = vma->vm_file->f_mapping;
0661a336 4718 pgoff = linear_page_index(vma, addr);
87946a72
DN
4719
4720 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4721#ifdef CONFIG_SWAP
4722 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4723 if (shmem_mapping(mapping)) {
4724 page = find_get_entry(mapping, pgoff);
4725 if (radix_tree_exceptional_entry(page)) {
4726 swp_entry_t swp = radix_to_swp_entry(page);
4727 if (do_swap_account)
4728 *entry = swp;
4729 page = find_get_page(swap_address_space(swp), swp.val);
4730 }
4731 } else
4732 page = find_get_page(mapping, pgoff);
4733#else
4734 page = find_get_page(mapping, pgoff);
aa3b1895 4735#endif
87946a72
DN
4736 return page;
4737}
4738
b1b0deab
CG
4739/**
4740 * mem_cgroup_move_account - move account of the page
4741 * @page: the page
4742 * @nr_pages: number of regular pages (>1 for huge pages)
4743 * @from: mem_cgroup which the page is moved from.
4744 * @to: mem_cgroup which the page is moved to. @from != @to.
4745 *
4746 * The caller must confirm following.
4747 * - page is not on LRU (isolate_page() is useful.)
4748 * - compound_lock is held when nr_pages > 1
4749 *
4750 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4751 * from old cgroup.
4752 */
4753static int mem_cgroup_move_account(struct page *page,
4754 unsigned int nr_pages,
4755 struct mem_cgroup *from,
4756 struct mem_cgroup *to)
4757{
4758 unsigned long flags;
4759 int ret;
4760
4761 VM_BUG_ON(from == to);
4762 VM_BUG_ON_PAGE(PageLRU(page), page);
4763 /*
4764 * The page is isolated from LRU. So, collapse function
4765 * will not handle this page. But page splitting can happen.
4766 * Do this check under compound_page_lock(). The caller should
4767 * hold it.
4768 */
4769 ret = -EBUSY;
4770 if (nr_pages > 1 && !PageTransHuge(page))
4771 goto out;
4772
4773 /*
4774 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4775 * of its source page while we change it: page migration takes
4776 * both pages off the LRU, but page cache replacement doesn't.
4777 */
4778 if (!trylock_page(page))
4779 goto out;
4780
4781 ret = -EINVAL;
4782 if (page->mem_cgroup != from)
4783 goto out_unlock;
4784
4785 spin_lock_irqsave(&from->move_lock, flags);
4786
4787 if (!PageAnon(page) && page_mapped(page)) {
4788 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4789 nr_pages);
4790 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4791 nr_pages);
4792 }
4793
4794 if (PageWriteback(page)) {
4795 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4796 nr_pages);
4797 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4798 nr_pages);
4799 }
4800
4801 /*
4802 * It is safe to change page->mem_cgroup here because the page
4803 * is referenced, charged, and isolated - we can't race with
4804 * uncharging, charging, migration, or LRU putback.
4805 */
4806
4807 /* caller should have done css_get */
4808 page->mem_cgroup = to;
4809 spin_unlock_irqrestore(&from->move_lock, flags);
4810
4811 ret = 0;
4812
4813 local_irq_disable();
4814 mem_cgroup_charge_statistics(to, page, nr_pages);
4815 memcg_check_events(to, page);
4816 mem_cgroup_charge_statistics(from, page, -nr_pages);
4817 memcg_check_events(from, page);
4818 local_irq_enable();
4819out_unlock:
4820 unlock_page(page);
4821out:
4822 return ret;
4823}
4824
8d32ff84 4825static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4826 unsigned long addr, pte_t ptent, union mc_target *target)
4827{
4828 struct page *page = NULL;
8d32ff84 4829 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4830 swp_entry_t ent = { .val = 0 };
4831
4832 if (pte_present(ptent))
4833 page = mc_handle_present_pte(vma, addr, ptent);
4834 else if (is_swap_pte(ptent))
4835 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4836 else if (pte_none(ptent))
87946a72 4837 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4838
4839 if (!page && !ent.val)
8d32ff84 4840 return ret;
02491447 4841 if (page) {
02491447 4842 /*
0a31bc97 4843 * Do only loose check w/o serialization.
1306a85a 4844 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4845 * not under LRU exclusion.
02491447 4846 */
1306a85a 4847 if (page->mem_cgroup == mc.from) {
02491447
DN
4848 ret = MC_TARGET_PAGE;
4849 if (target)
4850 target->page = page;
4851 }
4852 if (!ret || !target)
4853 put_page(page);
4854 }
90254a65
DN
4855 /* There is a swap entry and a page doesn't exist or isn't charged */
4856 if (ent.val && !ret &&
34c00c31 4857 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4858 ret = MC_TARGET_SWAP;
4859 if (target)
4860 target->ent = ent;
4ffef5fe 4861 }
4ffef5fe
DN
4862 return ret;
4863}
4864
12724850
NH
4865#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4866/*
4867 * We don't consider swapping or file mapped pages because THP does not
4868 * support them for now.
4869 * Caller should make sure that pmd_trans_huge(pmd) is true.
4870 */
4871static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4872 unsigned long addr, pmd_t pmd, union mc_target *target)
4873{
4874 struct page *page = NULL;
12724850
NH
4875 enum mc_target_type ret = MC_TARGET_NONE;
4876
4877 page = pmd_page(pmd);
309381fe 4878 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4879 if (!(mc.flags & MOVE_ANON))
12724850 4880 return ret;
1306a85a 4881 if (page->mem_cgroup == mc.from) {
12724850
NH
4882 ret = MC_TARGET_PAGE;
4883 if (target) {
4884 get_page(page);
4885 target->page = page;
4886 }
4887 }
4888 return ret;
4889}
4890#else
4891static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4892 unsigned long addr, pmd_t pmd, union mc_target *target)
4893{
4894 return MC_TARGET_NONE;
4895}
4896#endif
4897
4ffef5fe
DN
4898static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4899 unsigned long addr, unsigned long end,
4900 struct mm_walk *walk)
4901{
26bcd64a 4902 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4903 pte_t *pte;
4904 spinlock_t *ptl;
4905
bf929152 4906 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4907 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4908 mc.precharge += HPAGE_PMD_NR;
bf929152 4909 spin_unlock(ptl);
1a5a9906 4910 return 0;
12724850 4911 }
03319327 4912
45f83cef
AA
4913 if (pmd_trans_unstable(pmd))
4914 return 0;
4ffef5fe
DN
4915 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4916 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4917 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4918 mc.precharge++; /* increment precharge temporarily */
4919 pte_unmap_unlock(pte - 1, ptl);
4920 cond_resched();
4921
7dc74be0
DN
4922 return 0;
4923}
4924
4ffef5fe
DN
4925static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4926{
4927 unsigned long precharge;
4ffef5fe 4928
26bcd64a
NH
4929 struct mm_walk mem_cgroup_count_precharge_walk = {
4930 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4931 .mm = mm,
4932 };
dfe076b0 4933 down_read(&mm->mmap_sem);
26bcd64a 4934 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4935 up_read(&mm->mmap_sem);
4ffef5fe
DN
4936
4937 precharge = mc.precharge;
4938 mc.precharge = 0;
4939
4940 return precharge;
4941}
4942
4ffef5fe
DN
4943static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4944{
dfe076b0
DN
4945 unsigned long precharge = mem_cgroup_count_precharge(mm);
4946
4947 VM_BUG_ON(mc.moving_task);
4948 mc.moving_task = current;
4949 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4950}
4951
dfe076b0
DN
4952/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4953static void __mem_cgroup_clear_mc(void)
4ffef5fe 4954{
2bd9bb20
KH
4955 struct mem_cgroup *from = mc.from;
4956 struct mem_cgroup *to = mc.to;
4957
4ffef5fe 4958 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4959 if (mc.precharge) {
00501b53 4960 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4961 mc.precharge = 0;
4962 }
4963 /*
4964 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4965 * we must uncharge here.
4966 */
4967 if (mc.moved_charge) {
00501b53 4968 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4969 mc.moved_charge = 0;
4ffef5fe 4970 }
483c30b5
DN
4971 /* we must fixup refcnts and charges */
4972 if (mc.moved_swap) {
483c30b5 4973 /* uncharge swap account from the old cgroup */
ce00a967 4974 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4975 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4976
05b84301 4977 /*
3e32cb2e
JW
4978 * we charged both to->memory and to->memsw, so we
4979 * should uncharge to->memory.
05b84301 4980 */
ce00a967 4981 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4982 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4983
e8ea14cc 4984 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4985
4050377b 4986 /* we've already done css_get(mc.to) */
483c30b5
DN
4987 mc.moved_swap = 0;
4988 }
dfe076b0
DN
4989 memcg_oom_recover(from);
4990 memcg_oom_recover(to);
4991 wake_up_all(&mc.waitq);
4992}
4993
4994static void mem_cgroup_clear_mc(void)
4995{
dfe076b0
DN
4996 /*
4997 * we must clear moving_task before waking up waiters at the end of
4998 * task migration.
4999 */
5000 mc.moving_task = NULL;
5001 __mem_cgroup_clear_mc();
2bd9bb20 5002 spin_lock(&mc.lock);
4ffef5fe
DN
5003 mc.from = NULL;
5004 mc.to = NULL;
2bd9bb20 5005 spin_unlock(&mc.lock);
4ffef5fe
DN
5006}
5007
eb95419b 5008static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5009 struct cgroup_taskset *tset)
7dc74be0 5010{
2f7ee569 5011 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5012 int ret = 0;
eb95419b 5013 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1dfab5ab 5014 unsigned long move_flags;
7dc74be0 5015
ee5e8472
GC
5016 /*
5017 * We are now commited to this value whatever it is. Changes in this
5018 * tunable will only affect upcoming migrations, not the current one.
5019 * So we need to save it, and keep it going.
5020 */
1dfab5ab
JW
5021 move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
5022 if (move_flags) {
7dc74be0
DN
5023 struct mm_struct *mm;
5024 struct mem_cgroup *from = mem_cgroup_from_task(p);
5025
c0ff4b85 5026 VM_BUG_ON(from == memcg);
7dc74be0
DN
5027
5028 mm = get_task_mm(p);
5029 if (!mm)
5030 return 0;
7dc74be0 5031 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5032 if (mm->owner == p) {
5033 VM_BUG_ON(mc.from);
5034 VM_BUG_ON(mc.to);
5035 VM_BUG_ON(mc.precharge);
854ffa8d 5036 VM_BUG_ON(mc.moved_charge);
483c30b5 5037 VM_BUG_ON(mc.moved_swap);
247b1447 5038
2bd9bb20 5039 spin_lock(&mc.lock);
4ffef5fe 5040 mc.from = from;
c0ff4b85 5041 mc.to = memcg;
1dfab5ab 5042 mc.flags = move_flags;
2bd9bb20 5043 spin_unlock(&mc.lock);
dfe076b0 5044 /* We set mc.moving_task later */
4ffef5fe
DN
5045
5046 ret = mem_cgroup_precharge_mc(mm);
5047 if (ret)
5048 mem_cgroup_clear_mc();
dfe076b0
DN
5049 }
5050 mmput(mm);
7dc74be0
DN
5051 }
5052 return ret;
5053}
5054
eb95419b 5055static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5056 struct cgroup_taskset *tset)
7dc74be0 5057{
4e2f245d
JW
5058 if (mc.to)
5059 mem_cgroup_clear_mc();
7dc74be0
DN
5060}
5061
4ffef5fe
DN
5062static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5063 unsigned long addr, unsigned long end,
5064 struct mm_walk *walk)
7dc74be0 5065{
4ffef5fe 5066 int ret = 0;
26bcd64a 5067 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5068 pte_t *pte;
5069 spinlock_t *ptl;
12724850
NH
5070 enum mc_target_type target_type;
5071 union mc_target target;
5072 struct page *page;
4ffef5fe 5073
12724850
NH
5074 /*
5075 * We don't take compound_lock() here but no race with splitting thp
5076 * happens because:
5077 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5078 * under splitting, which means there's no concurrent thp split,
5079 * - if another thread runs into split_huge_page() just after we
5080 * entered this if-block, the thread must wait for page table lock
5081 * to be unlocked in __split_huge_page_splitting(), where the main
5082 * part of thp split is not executed yet.
5083 */
bf929152 5084 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5085 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5086 spin_unlock(ptl);
12724850
NH
5087 return 0;
5088 }
5089 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5090 if (target_type == MC_TARGET_PAGE) {
5091 page = target.page;
5092 if (!isolate_lru_page(page)) {
12724850 5093 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5094 mc.from, mc.to)) {
12724850
NH
5095 mc.precharge -= HPAGE_PMD_NR;
5096 mc.moved_charge += HPAGE_PMD_NR;
5097 }
5098 putback_lru_page(page);
5099 }
5100 put_page(page);
5101 }
bf929152 5102 spin_unlock(ptl);
1a5a9906 5103 return 0;
12724850
NH
5104 }
5105
45f83cef
AA
5106 if (pmd_trans_unstable(pmd))
5107 return 0;
4ffef5fe
DN
5108retry:
5109 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5110 for (; addr != end; addr += PAGE_SIZE) {
5111 pte_t ptent = *(pte++);
02491447 5112 swp_entry_t ent;
4ffef5fe
DN
5113
5114 if (!mc.precharge)
5115 break;
5116
8d32ff84 5117 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5118 case MC_TARGET_PAGE:
5119 page = target.page;
5120 if (isolate_lru_page(page))
5121 goto put;
1306a85a 5122 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5123 mc.precharge--;
854ffa8d
DN
5124 /* we uncharge from mc.from later. */
5125 mc.moved_charge++;
4ffef5fe
DN
5126 }
5127 putback_lru_page(page);
8d32ff84 5128put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5129 put_page(page);
5130 break;
02491447
DN
5131 case MC_TARGET_SWAP:
5132 ent = target.ent;
e91cbb42 5133 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5134 mc.precharge--;
483c30b5
DN
5135 /* we fixup refcnts and charges later. */
5136 mc.moved_swap++;
5137 }
02491447 5138 break;
4ffef5fe
DN
5139 default:
5140 break;
5141 }
5142 }
5143 pte_unmap_unlock(pte - 1, ptl);
5144 cond_resched();
5145
5146 if (addr != end) {
5147 /*
5148 * We have consumed all precharges we got in can_attach().
5149 * We try charge one by one, but don't do any additional
5150 * charges to mc.to if we have failed in charge once in attach()
5151 * phase.
5152 */
854ffa8d 5153 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5154 if (!ret)
5155 goto retry;
5156 }
5157
5158 return ret;
5159}
5160
5161static void mem_cgroup_move_charge(struct mm_struct *mm)
5162{
26bcd64a
NH
5163 struct mm_walk mem_cgroup_move_charge_walk = {
5164 .pmd_entry = mem_cgroup_move_charge_pte_range,
5165 .mm = mm,
5166 };
4ffef5fe
DN
5167
5168 lru_add_drain_all();
312722cb
JW
5169 /*
5170 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5171 * move_lock while we're moving its pages to another memcg.
5172 * Then wait for already started RCU-only updates to finish.
5173 */
5174 atomic_inc(&mc.from->moving_account);
5175 synchronize_rcu();
dfe076b0
DN
5176retry:
5177 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5178 /*
5179 * Someone who are holding the mmap_sem might be waiting in
5180 * waitq. So we cancel all extra charges, wake up all waiters,
5181 * and retry. Because we cancel precharges, we might not be able
5182 * to move enough charges, but moving charge is a best-effort
5183 * feature anyway, so it wouldn't be a big problem.
5184 */
5185 __mem_cgroup_clear_mc();
5186 cond_resched();
5187 goto retry;
5188 }
26bcd64a
NH
5189 /*
5190 * When we have consumed all precharges and failed in doing
5191 * additional charge, the page walk just aborts.
5192 */
5193 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5194 up_read(&mm->mmap_sem);
312722cb 5195 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5196}
5197
eb95419b 5198static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5199 struct cgroup_taskset *tset)
67e465a7 5200{
2f7ee569 5201 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5202 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5203
dfe076b0 5204 if (mm) {
a433658c
KM
5205 if (mc.to)
5206 mem_cgroup_move_charge(mm);
dfe076b0
DN
5207 mmput(mm);
5208 }
a433658c
KM
5209 if (mc.to)
5210 mem_cgroup_clear_mc();
67e465a7 5211}
5cfb80a7 5212#else /* !CONFIG_MMU */
eb95419b 5213static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5214 struct cgroup_taskset *tset)
5cfb80a7
DN
5215{
5216 return 0;
5217}
eb95419b 5218static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5219 struct cgroup_taskset *tset)
5cfb80a7
DN
5220{
5221}
eb95419b 5222static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5223 struct cgroup_taskset *tset)
5cfb80a7
DN
5224{
5225}
5226#endif
67e465a7 5227
f00baae7
TH
5228/*
5229 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5230 * to verify whether we're attached to the default hierarchy on each mount
5231 * attempt.
f00baae7 5232 */
eb95419b 5233static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5234{
5235 /*
aa6ec29b 5236 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5237 * guarantees that @root doesn't have any children, so turning it
5238 * on for the root memcg is enough.
5239 */
aa6ec29b 5240 if (cgroup_on_dfl(root_css->cgroup))
7feee590
VD
5241 root_mem_cgroup->use_hierarchy = true;
5242 else
5243 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5244}
5245
241994ed
JW
5246static u64 memory_current_read(struct cgroup_subsys_state *css,
5247 struct cftype *cft)
5248{
5249 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5250}
5251
5252static int memory_low_show(struct seq_file *m, void *v)
5253{
5254 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5255 unsigned long low = ACCESS_ONCE(memcg->low);
5256
5257 if (low == PAGE_COUNTER_MAX)
d2973697 5258 seq_puts(m, "max\n");
241994ed
JW
5259 else
5260 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5261
5262 return 0;
5263}
5264
5265static ssize_t memory_low_write(struct kernfs_open_file *of,
5266 char *buf, size_t nbytes, loff_t off)
5267{
5268 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5269 unsigned long low;
5270 int err;
5271
5272 buf = strstrip(buf);
d2973697 5273 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5274 if (err)
5275 return err;
5276
5277 memcg->low = low;
5278
5279 return nbytes;
5280}
5281
5282static int memory_high_show(struct seq_file *m, void *v)
5283{
5284 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5285 unsigned long high = ACCESS_ONCE(memcg->high);
5286
5287 if (high == PAGE_COUNTER_MAX)
d2973697 5288 seq_puts(m, "max\n");
241994ed
JW
5289 else
5290 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5291
5292 return 0;
5293}
5294
5295static ssize_t memory_high_write(struct kernfs_open_file *of,
5296 char *buf, size_t nbytes, loff_t off)
5297{
5298 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5299 unsigned long high;
5300 int err;
5301
5302 buf = strstrip(buf);
d2973697 5303 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5304 if (err)
5305 return err;
5306
5307 memcg->high = high;
5308
5309 return nbytes;
5310}
5311
5312static int memory_max_show(struct seq_file *m, void *v)
5313{
5314 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5315 unsigned long max = ACCESS_ONCE(memcg->memory.limit);
5316
5317 if (max == PAGE_COUNTER_MAX)
d2973697 5318 seq_puts(m, "max\n");
241994ed
JW
5319 else
5320 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5321
5322 return 0;
5323}
5324
5325static ssize_t memory_max_write(struct kernfs_open_file *of,
5326 char *buf, size_t nbytes, loff_t off)
5327{
5328 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5329 unsigned long max;
5330 int err;
5331
5332 buf = strstrip(buf);
d2973697 5333 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5334 if (err)
5335 return err;
5336
5337 err = mem_cgroup_resize_limit(memcg, max);
5338 if (err)
5339 return err;
5340
5341 return nbytes;
5342}
5343
5344static int memory_events_show(struct seq_file *m, void *v)
5345{
5346 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5347
5348 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5349 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5350 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5351 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5352
5353 return 0;
5354}
5355
5356static struct cftype memory_files[] = {
5357 {
5358 .name = "current",
5359 .read_u64 = memory_current_read,
5360 },
5361 {
5362 .name = "low",
5363 .flags = CFTYPE_NOT_ON_ROOT,
5364 .seq_show = memory_low_show,
5365 .write = memory_low_write,
5366 },
5367 {
5368 .name = "high",
5369 .flags = CFTYPE_NOT_ON_ROOT,
5370 .seq_show = memory_high_show,
5371 .write = memory_high_write,
5372 },
5373 {
5374 .name = "max",
5375 .flags = CFTYPE_NOT_ON_ROOT,
5376 .seq_show = memory_max_show,
5377 .write = memory_max_write,
5378 },
5379 {
5380 .name = "events",
5381 .flags = CFTYPE_NOT_ON_ROOT,
5382 .seq_show = memory_events_show,
5383 },
5384 { } /* terminate */
5385};
5386
073219e9 5387struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5388 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5389 .css_online = mem_cgroup_css_online,
92fb9748
TH
5390 .css_offline = mem_cgroup_css_offline,
5391 .css_free = mem_cgroup_css_free,
1ced953b 5392 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5393 .can_attach = mem_cgroup_can_attach,
5394 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5395 .attach = mem_cgroup_move_task,
f00baae7 5396 .bind = mem_cgroup_bind,
241994ed
JW
5397 .dfl_cftypes = memory_files,
5398 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5399 .early_init = 0,
8cdea7c0 5400};
c077719b 5401
241994ed
JW
5402/**
5403 * mem_cgroup_events - count memory events against a cgroup
5404 * @memcg: the memory cgroup
5405 * @idx: the event index
5406 * @nr: the number of events to account for
5407 */
5408void mem_cgroup_events(struct mem_cgroup *memcg,
5409 enum mem_cgroup_events_index idx,
5410 unsigned int nr)
5411{
5412 this_cpu_add(memcg->stat->events[idx], nr);
5413}
5414
5415/**
5416 * mem_cgroup_low - check if memory consumption is below the normal range
5417 * @root: the highest ancestor to consider
5418 * @memcg: the memory cgroup to check
5419 *
5420 * Returns %true if memory consumption of @memcg, and that of all
5421 * configurable ancestors up to @root, is below the normal range.
5422 */
5423bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5424{
5425 if (mem_cgroup_disabled())
5426 return false;
5427
5428 /*
5429 * The toplevel group doesn't have a configurable range, so
5430 * it's never low when looked at directly, and it is not
5431 * considered an ancestor when assessing the hierarchy.
5432 */
5433
5434 if (memcg == root_mem_cgroup)
5435 return false;
5436
4e54dede 5437 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5438 return false;
5439
5440 while (memcg != root) {
5441 memcg = parent_mem_cgroup(memcg);
5442
5443 if (memcg == root_mem_cgroup)
5444 break;
5445
4e54dede 5446 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5447 return false;
5448 }
5449 return true;
5450}
5451
00501b53
JW
5452/**
5453 * mem_cgroup_try_charge - try charging a page
5454 * @page: page to charge
5455 * @mm: mm context of the victim
5456 * @gfp_mask: reclaim mode
5457 * @memcgp: charged memcg return
5458 *
5459 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5460 * pages according to @gfp_mask if necessary.
5461 *
5462 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5463 * Otherwise, an error code is returned.
5464 *
5465 * After page->mapping has been set up, the caller must finalize the
5466 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5467 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5468 */
5469int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5470 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5471{
5472 struct mem_cgroup *memcg = NULL;
5473 unsigned int nr_pages = 1;
5474 int ret = 0;
5475
5476 if (mem_cgroup_disabled())
5477 goto out;
5478
5479 if (PageSwapCache(page)) {
00501b53
JW
5480 /*
5481 * Every swap fault against a single page tries to charge the
5482 * page, bail as early as possible. shmem_unuse() encounters
5483 * already charged pages, too. The USED bit is protected by
5484 * the page lock, which serializes swap cache removal, which
5485 * in turn serializes uncharging.
5486 */
1306a85a 5487 if (page->mem_cgroup)
00501b53
JW
5488 goto out;
5489 }
5490
5491 if (PageTransHuge(page)) {
5492 nr_pages <<= compound_order(page);
5493 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5494 }
5495
5496 if (do_swap_account && PageSwapCache(page))
5497 memcg = try_get_mem_cgroup_from_page(page);
5498 if (!memcg)
5499 memcg = get_mem_cgroup_from_mm(mm);
5500
5501 ret = try_charge(memcg, gfp_mask, nr_pages);
5502
5503 css_put(&memcg->css);
5504
5505 if (ret == -EINTR) {
5506 memcg = root_mem_cgroup;
5507 ret = 0;
5508 }
5509out:
5510 *memcgp = memcg;
5511 return ret;
5512}
5513
5514/**
5515 * mem_cgroup_commit_charge - commit a page charge
5516 * @page: page to charge
5517 * @memcg: memcg to charge the page to
5518 * @lrucare: page might be on LRU already
5519 *
5520 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5521 * after page->mapping has been set up. This must happen atomically
5522 * as part of the page instantiation, i.e. under the page table lock
5523 * for anonymous pages, under the page lock for page and swap cache.
5524 *
5525 * In addition, the page must not be on the LRU during the commit, to
5526 * prevent racing with task migration. If it might be, use @lrucare.
5527 *
5528 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5529 */
5530void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5531 bool lrucare)
5532{
5533 unsigned int nr_pages = 1;
5534
5535 VM_BUG_ON_PAGE(!page->mapping, page);
5536 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5537
5538 if (mem_cgroup_disabled())
5539 return;
5540 /*
5541 * Swap faults will attempt to charge the same page multiple
5542 * times. But reuse_swap_page() might have removed the page
5543 * from swapcache already, so we can't check PageSwapCache().
5544 */
5545 if (!memcg)
5546 return;
5547
6abb5a86
JW
5548 commit_charge(page, memcg, lrucare);
5549
00501b53
JW
5550 if (PageTransHuge(page)) {
5551 nr_pages <<= compound_order(page);
5552 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5553 }
5554
6abb5a86
JW
5555 local_irq_disable();
5556 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5557 memcg_check_events(memcg, page);
5558 local_irq_enable();
00501b53
JW
5559
5560 if (do_swap_account && PageSwapCache(page)) {
5561 swp_entry_t entry = { .val = page_private(page) };
5562 /*
5563 * The swap entry might not get freed for a long time,
5564 * let's not wait for it. The page already received a
5565 * memory+swap charge, drop the swap entry duplicate.
5566 */
5567 mem_cgroup_uncharge_swap(entry);
5568 }
5569}
5570
5571/**
5572 * mem_cgroup_cancel_charge - cancel a page charge
5573 * @page: page to charge
5574 * @memcg: memcg to charge the page to
5575 *
5576 * Cancel a charge transaction started by mem_cgroup_try_charge().
5577 */
5578void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5579{
5580 unsigned int nr_pages = 1;
5581
5582 if (mem_cgroup_disabled())
5583 return;
5584 /*
5585 * Swap faults will attempt to charge the same page multiple
5586 * times. But reuse_swap_page() might have removed the page
5587 * from swapcache already, so we can't check PageSwapCache().
5588 */
5589 if (!memcg)
5590 return;
5591
5592 if (PageTransHuge(page)) {
5593 nr_pages <<= compound_order(page);
5594 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5595 }
5596
5597 cancel_charge(memcg, nr_pages);
5598}
5599
747db954 5600static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5601 unsigned long nr_anon, unsigned long nr_file,
5602 unsigned long nr_huge, struct page *dummy_page)
5603{
18eca2e6 5604 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5605 unsigned long flags;
5606
ce00a967 5607 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5608 page_counter_uncharge(&memcg->memory, nr_pages);
5609 if (do_swap_account)
5610 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5611 memcg_oom_recover(memcg);
5612 }
747db954
JW
5613
5614 local_irq_save(flags);
5615 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5616 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5617 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5618 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5619 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5620 memcg_check_events(memcg, dummy_page);
5621 local_irq_restore(flags);
e8ea14cc
JW
5622
5623 if (!mem_cgroup_is_root(memcg))
18eca2e6 5624 css_put_many(&memcg->css, nr_pages);
747db954
JW
5625}
5626
5627static void uncharge_list(struct list_head *page_list)
5628{
5629 struct mem_cgroup *memcg = NULL;
747db954
JW
5630 unsigned long nr_anon = 0;
5631 unsigned long nr_file = 0;
5632 unsigned long nr_huge = 0;
5633 unsigned long pgpgout = 0;
747db954
JW
5634 struct list_head *next;
5635 struct page *page;
5636
5637 next = page_list->next;
5638 do {
5639 unsigned int nr_pages = 1;
747db954
JW
5640
5641 page = list_entry(next, struct page, lru);
5642 next = page->lru.next;
5643
5644 VM_BUG_ON_PAGE(PageLRU(page), page);
5645 VM_BUG_ON_PAGE(page_count(page), page);
5646
1306a85a 5647 if (!page->mem_cgroup)
747db954
JW
5648 continue;
5649
5650 /*
5651 * Nobody should be changing or seriously looking at
1306a85a 5652 * page->mem_cgroup at this point, we have fully
29833315 5653 * exclusive access to the page.
747db954
JW
5654 */
5655
1306a85a 5656 if (memcg != page->mem_cgroup) {
747db954 5657 if (memcg) {
18eca2e6
JW
5658 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5659 nr_huge, page);
5660 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5661 }
1306a85a 5662 memcg = page->mem_cgroup;
747db954
JW
5663 }
5664
5665 if (PageTransHuge(page)) {
5666 nr_pages <<= compound_order(page);
5667 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5668 nr_huge += nr_pages;
5669 }
5670
5671 if (PageAnon(page))
5672 nr_anon += nr_pages;
5673 else
5674 nr_file += nr_pages;
5675
1306a85a 5676 page->mem_cgroup = NULL;
747db954
JW
5677
5678 pgpgout++;
5679 } while (next != page_list);
5680
5681 if (memcg)
18eca2e6
JW
5682 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5683 nr_huge, page);
747db954
JW
5684}
5685
0a31bc97
JW
5686/**
5687 * mem_cgroup_uncharge - uncharge a page
5688 * @page: page to uncharge
5689 *
5690 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5691 * mem_cgroup_commit_charge().
5692 */
5693void mem_cgroup_uncharge(struct page *page)
5694{
0a31bc97
JW
5695 if (mem_cgroup_disabled())
5696 return;
5697
747db954 5698 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5699 if (!page->mem_cgroup)
0a31bc97
JW
5700 return;
5701
747db954
JW
5702 INIT_LIST_HEAD(&page->lru);
5703 uncharge_list(&page->lru);
5704}
0a31bc97 5705
747db954
JW
5706/**
5707 * mem_cgroup_uncharge_list - uncharge a list of page
5708 * @page_list: list of pages to uncharge
5709 *
5710 * Uncharge a list of pages previously charged with
5711 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5712 */
5713void mem_cgroup_uncharge_list(struct list_head *page_list)
5714{
5715 if (mem_cgroup_disabled())
5716 return;
0a31bc97 5717
747db954
JW
5718 if (!list_empty(page_list))
5719 uncharge_list(page_list);
0a31bc97
JW
5720}
5721
5722/**
5723 * mem_cgroup_migrate - migrate a charge to another page
5724 * @oldpage: currently charged page
5725 * @newpage: page to transfer the charge to
f5e03a49 5726 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5727 *
5728 * Migrate the charge from @oldpage to @newpage.
5729 *
5730 * Both pages must be locked, @newpage->mapping must be set up.
5731 */
5732void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5733 bool lrucare)
5734{
29833315 5735 struct mem_cgroup *memcg;
0a31bc97
JW
5736 int isolated;
5737
5738 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5739 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5740 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5741 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5742 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5743 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5744 newpage);
0a31bc97
JW
5745
5746 if (mem_cgroup_disabled())
5747 return;
5748
5749 /* Page cache replacement: new page already charged? */
1306a85a 5750 if (newpage->mem_cgroup)
0a31bc97
JW
5751 return;
5752
7d5e3245
JW
5753 /*
5754 * Swapcache readahead pages can get migrated before being
5755 * charged, and migration from compaction can happen to an
5756 * uncharged page when the PFN walker finds a page that
5757 * reclaim just put back on the LRU but has not released yet.
5758 */
1306a85a 5759 memcg = oldpage->mem_cgroup;
29833315 5760 if (!memcg)
0a31bc97
JW
5761 return;
5762
0a31bc97
JW
5763 if (lrucare)
5764 lock_page_lru(oldpage, &isolated);
5765
1306a85a 5766 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5767
5768 if (lrucare)
5769 unlock_page_lru(oldpage, isolated);
5770
29833315 5771 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5772}
5773
2d11085e 5774/*
1081312f
MH
5775 * subsys_initcall() for memory controller.
5776 *
5777 * Some parts like hotcpu_notifier() have to be initialized from this context
5778 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5779 * everything that doesn't depend on a specific mem_cgroup structure should
5780 * be initialized from here.
2d11085e
MH
5781 */
5782static int __init mem_cgroup_init(void)
5783{
95a045f6
JW
5784 int cpu, node;
5785
2d11085e 5786 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5787
5788 for_each_possible_cpu(cpu)
5789 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5790 drain_local_stock);
5791
5792 for_each_node(node) {
5793 struct mem_cgroup_tree_per_node *rtpn;
5794 int zone;
5795
5796 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5797 node_online(node) ? node : NUMA_NO_NODE);
5798
5799 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5800 struct mem_cgroup_tree_per_zone *rtpz;
5801
5802 rtpz = &rtpn->rb_tree_per_zone[zone];
5803 rtpz->rb_root = RB_ROOT;
5804 spin_lock_init(&rtpz->lock);
5805 }
5806 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5807 }
5808
2d11085e
MH
5809 return 0;
5810}
5811subsys_initcall(mem_cgroup_init);
21afa38e
JW
5812
5813#ifdef CONFIG_MEMCG_SWAP
5814/**
5815 * mem_cgroup_swapout - transfer a memsw charge to swap
5816 * @page: page whose memsw charge to transfer
5817 * @entry: swap entry to move the charge to
5818 *
5819 * Transfer the memsw charge of @page to @entry.
5820 */
5821void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5822{
5823 struct mem_cgroup *memcg;
5824 unsigned short oldid;
5825
5826 VM_BUG_ON_PAGE(PageLRU(page), page);
5827 VM_BUG_ON_PAGE(page_count(page), page);
5828
5829 if (!do_swap_account)
5830 return;
5831
5832 memcg = page->mem_cgroup;
5833
5834 /* Readahead page, never charged */
5835 if (!memcg)
5836 return;
5837
5838 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5839 VM_BUG_ON_PAGE(oldid, page);
5840 mem_cgroup_swap_statistics(memcg, true);
5841
5842 page->mem_cgroup = NULL;
5843
5844 if (!mem_cgroup_is_root(memcg))
5845 page_counter_uncharge(&memcg->memory, 1);
5846
5847 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5848 VM_BUG_ON(!irqs_disabled());
5849
5850 mem_cgroup_charge_statistics(memcg, page, -1);
5851 memcg_check_events(memcg, page);
5852}
5853
5854/**
5855 * mem_cgroup_uncharge_swap - uncharge a swap entry
5856 * @entry: swap entry to uncharge
5857 *
5858 * Drop the memsw charge associated with @entry.
5859 */
5860void mem_cgroup_uncharge_swap(swp_entry_t entry)
5861{
5862 struct mem_cgroup *memcg;
5863 unsigned short id;
5864
5865 if (!do_swap_account)
5866 return;
5867
5868 id = swap_cgroup_record(entry, 0);
5869 rcu_read_lock();
5870 memcg = mem_cgroup_lookup(id);
5871 if (memcg) {
5872 if (!mem_cgroup_is_root(memcg))
5873 page_counter_uncharge(&memcg->memsw, 1);
5874 mem_cgroup_swap_statistics(memcg, false);
5875 css_put(&memcg->css);
5876 }
5877 rcu_read_unlock();
5878}
5879
5880/* for remember boot option*/
5881#ifdef CONFIG_MEMCG_SWAP_ENABLED
5882static int really_do_swap_account __initdata = 1;
5883#else
5884static int really_do_swap_account __initdata;
5885#endif
5886
5887static int __init enable_swap_account(char *s)
5888{
5889 if (!strcmp(s, "1"))
5890 really_do_swap_account = 1;
5891 else if (!strcmp(s, "0"))
5892 really_do_swap_account = 0;
5893 return 1;
5894}
5895__setup("swapaccount=", enable_swap_account);
5896
5897static struct cftype memsw_cgroup_files[] = {
5898 {
5899 .name = "memsw.usage_in_bytes",
5900 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5901 .read_u64 = mem_cgroup_read_u64,
5902 },
5903 {
5904 .name = "memsw.max_usage_in_bytes",
5905 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5906 .write = mem_cgroup_reset,
5907 .read_u64 = mem_cgroup_read_u64,
5908 },
5909 {
5910 .name = "memsw.limit_in_bytes",
5911 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5912 .write = mem_cgroup_write,
5913 .read_u64 = mem_cgroup_read_u64,
5914 },
5915 {
5916 .name = "memsw.failcnt",
5917 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5918 .write = mem_cgroup_reset,
5919 .read_u64 = mem_cgroup_read_u64,
5920 },
5921 { }, /* terminate */
5922};
5923
5924static int __init mem_cgroup_swap_init(void)
5925{
5926 if (!mem_cgroup_disabled() && really_do_swap_account) {
5927 do_swap_account = 1;
5928 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5929 memsw_cgroup_files));
5930 }
5931 return 0;
5932}
5933subsys_initcall(mem_cgroup_swap_init);
5934
5935#endif /* CONFIG_MEMCG_SWAP */