memcg: refactor mem_control_numa_stat_show()
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
08e552c6 58#include "internal.h"
d1a4c0b3 59#include <net/sock.h>
4bd2c1ee 60#include <net/ip.h>
d1a4c0b3 61#include <net/tcp_memcontrol.h>
8cdea7c0 62
8697d331
BS
63#include <asm/uaccess.h>
64
cc8e970c
KM
65#include <trace/events/vmscan.h>
66
a181b0e8 67struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
68EXPORT_SYMBOL(mem_cgroup_subsys);
69
a181b0e8 70#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 71static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 72
c255a458 73#ifdef CONFIG_MEMCG_SWAP
338c8431 74/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 75int do_swap_account __read_mostly;
a42c390c
MH
76
77/* for remember boot option*/
c255a458 78#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
79static int really_do_swap_account __initdata = 1;
80#else
81static int really_do_swap_account __initdata = 0;
82#endif
83
c077719b 84#else
a0db00fc 85#define do_swap_account 0
c077719b
KH
86#endif
87
88
af7c4b0e
JW
89static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
b070e65c 92 "rss_huge",
af7c4b0e 93 "mapped_file",
3ea67d06 94 "writeback",
af7c4b0e
JW
95 "swap",
96};
97
e9f8974f
JW
98enum mem_cgroup_events_index {
99 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
100 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
101 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
102 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
103 MEM_CGROUP_EVENTS_NSTATS,
104};
af7c4b0e
JW
105
106static const char * const mem_cgroup_events_names[] = {
107 "pgpgin",
108 "pgpgout",
109 "pgfault",
110 "pgmajfault",
111};
112
58cf188e
SZ
113static const char * const mem_cgroup_lru_names[] = {
114 "inactive_anon",
115 "active_anon",
116 "inactive_file",
117 "active_file",
118 "unevictable",
119};
120
7a159cc9
JW
121/*
122 * Per memcg event counter is incremented at every pagein/pageout. With THP,
123 * it will be incremated by the number of pages. This counter is used for
124 * for trigger some periodic events. This is straightforward and better
125 * than using jiffies etc. to handle periodic memcg event.
126 */
127enum mem_cgroup_events_target {
128 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 129 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 130 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
131 MEM_CGROUP_NTARGETS,
132};
a0db00fc
KS
133#define THRESHOLDS_EVENTS_TARGET 128
134#define SOFTLIMIT_EVENTS_TARGET 1024
135#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 136
d52aa412 137struct mem_cgroup_stat_cpu {
7a159cc9 138 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 139 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 140 unsigned long nr_page_events;
7a159cc9 141 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
142};
143
527a5ec9 144struct mem_cgroup_reclaim_iter {
5f578161
MH
145 /*
146 * last scanned hierarchy member. Valid only if last_dead_count
147 * matches memcg->dead_count of the hierarchy root group.
148 */
542f85f9 149 struct mem_cgroup *last_visited;
5f578161
MH
150 unsigned long last_dead_count;
151
527a5ec9
JW
152 /* scan generation, increased every round-trip */
153 unsigned int generation;
154};
155
6d12e2d8
KH
156/*
157 * per-zone information in memory controller.
158 */
6d12e2d8 159struct mem_cgroup_per_zone {
6290df54 160 struct lruvec lruvec;
1eb49272 161 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 162
527a5ec9
JW
163 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
164
bb4cc1a8
AM
165 struct rb_node tree_node; /* RB tree node */
166 unsigned long long usage_in_excess;/* Set to the value by which */
167 /* the soft limit is exceeded*/
168 bool on_tree;
d79154bb 169 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 170 /* use container_of */
6d12e2d8 171};
6d12e2d8
KH
172
173struct mem_cgroup_per_node {
174 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
175};
176
bb4cc1a8
AM
177/*
178 * Cgroups above their limits are maintained in a RB-Tree, independent of
179 * their hierarchy representation
180 */
181
182struct mem_cgroup_tree_per_zone {
183 struct rb_root rb_root;
184 spinlock_t lock;
185};
186
187struct mem_cgroup_tree_per_node {
188 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
189};
190
191struct mem_cgroup_tree {
192 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
193};
194
195static struct mem_cgroup_tree soft_limit_tree __read_mostly;
196
2e72b634
KS
197struct mem_cgroup_threshold {
198 struct eventfd_ctx *eventfd;
199 u64 threshold;
200};
201
9490ff27 202/* For threshold */
2e72b634 203struct mem_cgroup_threshold_ary {
748dad36 204 /* An array index points to threshold just below or equal to usage. */
5407a562 205 int current_threshold;
2e72b634
KS
206 /* Size of entries[] */
207 unsigned int size;
208 /* Array of thresholds */
209 struct mem_cgroup_threshold entries[0];
210};
2c488db2
KS
211
212struct mem_cgroup_thresholds {
213 /* Primary thresholds array */
214 struct mem_cgroup_threshold_ary *primary;
215 /*
216 * Spare threshold array.
217 * This is needed to make mem_cgroup_unregister_event() "never fail".
218 * It must be able to store at least primary->size - 1 entries.
219 */
220 struct mem_cgroup_threshold_ary *spare;
221};
222
9490ff27
KH
223/* for OOM */
224struct mem_cgroup_eventfd_list {
225 struct list_head list;
226 struct eventfd_ctx *eventfd;
227};
2e72b634 228
c0ff4b85
R
229static void mem_cgroup_threshold(struct mem_cgroup *memcg);
230static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 231
8cdea7c0
BS
232/*
233 * The memory controller data structure. The memory controller controls both
234 * page cache and RSS per cgroup. We would eventually like to provide
235 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
236 * to help the administrator determine what knobs to tune.
237 *
238 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
239 * we hit the water mark. May be even add a low water mark, such that
240 * no reclaim occurs from a cgroup at it's low water mark, this is
241 * a feature that will be implemented much later in the future.
8cdea7c0
BS
242 */
243struct mem_cgroup {
244 struct cgroup_subsys_state css;
245 /*
246 * the counter to account for memory usage
247 */
248 struct res_counter res;
59927fb9 249
70ddf637
AV
250 /* vmpressure notifications */
251 struct vmpressure vmpressure;
252
465939a1
LZ
253 /*
254 * the counter to account for mem+swap usage.
255 */
256 struct res_counter memsw;
59927fb9 257
510fc4e1
GC
258 /*
259 * the counter to account for kernel memory usage.
260 */
261 struct res_counter kmem;
18f59ea7
BS
262 /*
263 * Should the accounting and control be hierarchical, per subtree?
264 */
265 bool use_hierarchy;
510fc4e1 266 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
267
268 bool oom_lock;
269 atomic_t under_oom;
3812c8c8 270 atomic_t oom_wakeups;
79dfdacc 271
1f4c025b 272 int swappiness;
3c11ecf4
KH
273 /* OOM-Killer disable */
274 int oom_kill_disable;
a7885eb8 275
22a668d7
KH
276 /* set when res.limit == memsw.limit */
277 bool memsw_is_minimum;
278
2e72b634
KS
279 /* protect arrays of thresholds */
280 struct mutex thresholds_lock;
281
282 /* thresholds for memory usage. RCU-protected */
2c488db2 283 struct mem_cgroup_thresholds thresholds;
907860ed 284
2e72b634 285 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 286 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 287
9490ff27
KH
288 /* For oom notifier event fd */
289 struct list_head oom_notify;
185efc0f 290
7dc74be0
DN
291 /*
292 * Should we move charges of a task when a task is moved into this
293 * mem_cgroup ? And what type of charges should we move ?
294 */
f894ffa8 295 unsigned long move_charge_at_immigrate;
619d094b
KH
296 /*
297 * set > 0 if pages under this cgroup are moving to other cgroup.
298 */
299 atomic_t moving_account;
312734c0
KH
300 /* taken only while moving_account > 0 */
301 spinlock_t move_lock;
d52aa412 302 /*
c62b1a3b 303 * percpu counter.
d52aa412 304 */
3a7951b4 305 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
306 /*
307 * used when a cpu is offlined or other synchronizations
308 * See mem_cgroup_read_stat().
309 */
310 struct mem_cgroup_stat_cpu nocpu_base;
311 spinlock_t pcp_counter_lock;
d1a4c0b3 312
5f578161 313 atomic_t dead_count;
4bd2c1ee 314#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
315 struct tcp_memcontrol tcp_mem;
316#endif
2633d7a0
GC
317#if defined(CONFIG_MEMCG_KMEM)
318 /* analogous to slab_common's slab_caches list. per-memcg */
319 struct list_head memcg_slab_caches;
320 /* Not a spinlock, we can take a lot of time walking the list */
321 struct mutex slab_caches_mutex;
322 /* Index in the kmem_cache->memcg_params->memcg_caches array */
323 int kmemcg_id;
324#endif
45cf7ebd
GC
325
326 int last_scanned_node;
327#if MAX_NUMNODES > 1
328 nodemask_t scan_nodes;
329 atomic_t numainfo_events;
330 atomic_t numainfo_updating;
331#endif
70ddf637 332
54f72fe0
JW
333 struct mem_cgroup_per_node *nodeinfo[0];
334 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
335};
336
45cf7ebd
GC
337static size_t memcg_size(void)
338{
339 return sizeof(struct mem_cgroup) +
340 nr_node_ids * sizeof(struct mem_cgroup_per_node);
341}
342
510fc4e1
GC
343/* internal only representation about the status of kmem accounting. */
344enum {
345 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 346 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 347 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
348};
349
a8964b9b
GC
350/* We account when limit is on, but only after call sites are patched */
351#define KMEM_ACCOUNTED_MASK \
352 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
353
354#ifdef CONFIG_MEMCG_KMEM
355static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
356{
357 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
358}
7de37682
GC
359
360static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
361{
362 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
363}
364
a8964b9b
GC
365static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
366{
367 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
368}
369
55007d84
GC
370static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
371{
372 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
373}
374
7de37682
GC
375static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
376{
10d5ebf4
LZ
377 /*
378 * Our caller must use css_get() first, because memcg_uncharge_kmem()
379 * will call css_put() if it sees the memcg is dead.
380 */
381 smp_wmb();
7de37682
GC
382 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
383 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
384}
385
386static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
387{
388 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
389 &memcg->kmem_account_flags);
390}
510fc4e1
GC
391#endif
392
7dc74be0
DN
393/* Stuffs for move charges at task migration. */
394/*
ee5e8472
GC
395 * Types of charges to be moved. "move_charge_at_immitgrate" and
396 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
397 */
398enum move_type {
4ffef5fe 399 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 400 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
401 NR_MOVE_TYPE,
402};
403
4ffef5fe
DN
404/* "mc" and its members are protected by cgroup_mutex */
405static struct move_charge_struct {
b1dd693e 406 spinlock_t lock; /* for from, to */
4ffef5fe
DN
407 struct mem_cgroup *from;
408 struct mem_cgroup *to;
ee5e8472 409 unsigned long immigrate_flags;
4ffef5fe 410 unsigned long precharge;
854ffa8d 411 unsigned long moved_charge;
483c30b5 412 unsigned long moved_swap;
8033b97c
DN
413 struct task_struct *moving_task; /* a task moving charges */
414 wait_queue_head_t waitq; /* a waitq for other context */
415} mc = {
2bd9bb20 416 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
417 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
418};
4ffef5fe 419
90254a65
DN
420static bool move_anon(void)
421{
ee5e8472 422 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
423}
424
87946a72
DN
425static bool move_file(void)
426{
ee5e8472 427 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
428}
429
4e416953
BS
430/*
431 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
432 * limit reclaim to prevent infinite loops, if they ever occur.
433 */
a0db00fc 434#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 435#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 436
217bc319
KH
437enum charge_type {
438 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 439 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 440 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 441 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
442 NR_CHARGE_TYPE,
443};
444
8c7c6e34 445/* for encoding cft->private value on file */
86ae53e1
GC
446enum res_type {
447 _MEM,
448 _MEMSWAP,
449 _OOM_TYPE,
510fc4e1 450 _KMEM,
86ae53e1
GC
451};
452
a0db00fc
KS
453#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
454#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 455#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
456/* Used for OOM nofiier */
457#define OOM_CONTROL (0)
8c7c6e34 458
75822b44
BS
459/*
460 * Reclaim flags for mem_cgroup_hierarchical_reclaim
461 */
462#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
463#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
464#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
465#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
466
0999821b
GC
467/*
468 * The memcg_create_mutex will be held whenever a new cgroup is created.
469 * As a consequence, any change that needs to protect against new child cgroups
470 * appearing has to hold it as well.
471 */
472static DEFINE_MUTEX(memcg_create_mutex);
473
b2145145
WL
474struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
475{
a7c6d554 476 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
477}
478
70ddf637
AV
479/* Some nice accessors for the vmpressure. */
480struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
481{
482 if (!memcg)
483 memcg = root_mem_cgroup;
484 return &memcg->vmpressure;
485}
486
487struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
488{
489 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
490}
491
492struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
493{
494 return &mem_cgroup_from_css(css)->vmpressure;
495}
496
7ffc0edc
MH
497static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
498{
499 return (memcg == root_mem_cgroup);
500}
501
e1aab161 502/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 503#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 504
e1aab161
GC
505void sock_update_memcg(struct sock *sk)
506{
376be5ff 507 if (mem_cgroup_sockets_enabled) {
e1aab161 508 struct mem_cgroup *memcg;
3f134619 509 struct cg_proto *cg_proto;
e1aab161
GC
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
f3f511e1
GC
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 523 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
524 return;
525 }
526
e1aab161
GC
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
3f134619 529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
530 if (!mem_cgroup_is_root(memcg) &&
531 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 532 sk->sk_cgrp = cg_proto;
e1aab161
GC
533 }
534 rcu_read_unlock();
535 }
536}
537EXPORT_SYMBOL(sock_update_memcg);
538
539void sock_release_memcg(struct sock *sk)
540{
376be5ff 541 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
542 struct mem_cgroup *memcg;
543 WARN_ON(!sk->sk_cgrp->memcg);
544 memcg = sk->sk_cgrp->memcg;
5347e5ae 545 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
546 }
547}
d1a4c0b3
GC
548
549struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
550{
551 if (!memcg || mem_cgroup_is_root(memcg))
552 return NULL;
553
554 return &memcg->tcp_mem.cg_proto;
555}
556EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 557
3f134619
GC
558static void disarm_sock_keys(struct mem_cgroup *memcg)
559{
560 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
561 return;
562 static_key_slow_dec(&memcg_socket_limit_enabled);
563}
564#else
565static void disarm_sock_keys(struct mem_cgroup *memcg)
566{
567}
568#endif
569
a8964b9b 570#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
571/*
572 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
573 * There are two main reasons for not using the css_id for this:
574 * 1) this works better in sparse environments, where we have a lot of memcgs,
575 * but only a few kmem-limited. Or also, if we have, for instance, 200
576 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
577 * 200 entry array for that.
578 *
579 * 2) In order not to violate the cgroup API, we would like to do all memory
580 * allocation in ->create(). At that point, we haven't yet allocated the
581 * css_id. Having a separate index prevents us from messing with the cgroup
582 * core for this
583 *
584 * The current size of the caches array is stored in
585 * memcg_limited_groups_array_size. It will double each time we have to
586 * increase it.
587 */
588static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
589int memcg_limited_groups_array_size;
590
55007d84
GC
591/*
592 * MIN_SIZE is different than 1, because we would like to avoid going through
593 * the alloc/free process all the time. In a small machine, 4 kmem-limited
594 * cgroups is a reasonable guess. In the future, it could be a parameter or
595 * tunable, but that is strictly not necessary.
596 *
597 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
598 * this constant directly from cgroup, but it is understandable that this is
599 * better kept as an internal representation in cgroup.c. In any case, the
600 * css_id space is not getting any smaller, and we don't have to necessarily
601 * increase ours as well if it increases.
602 */
603#define MEMCG_CACHES_MIN_SIZE 4
604#define MEMCG_CACHES_MAX_SIZE 65535
605
d7f25f8a
GC
606/*
607 * A lot of the calls to the cache allocation functions are expected to be
608 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
609 * conditional to this static branch, we'll have to allow modules that does
610 * kmem_cache_alloc and the such to see this symbol as well
611 */
a8964b9b 612struct static_key memcg_kmem_enabled_key;
d7f25f8a 613EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
614
615static void disarm_kmem_keys(struct mem_cgroup *memcg)
616{
55007d84 617 if (memcg_kmem_is_active(memcg)) {
a8964b9b 618 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
619 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
620 }
bea207c8
GC
621 /*
622 * This check can't live in kmem destruction function,
623 * since the charges will outlive the cgroup
624 */
625 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
626}
627#else
628static void disarm_kmem_keys(struct mem_cgroup *memcg)
629{
630}
631#endif /* CONFIG_MEMCG_KMEM */
632
633static void disarm_static_keys(struct mem_cgroup *memcg)
634{
635 disarm_sock_keys(memcg);
636 disarm_kmem_keys(memcg);
637}
638
c0ff4b85 639static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 640
f64c3f54 641static struct mem_cgroup_per_zone *
c0ff4b85 642mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 643{
45cf7ebd 644 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 645 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
646}
647
c0ff4b85 648struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 649{
c0ff4b85 650 return &memcg->css;
d324236b
WF
651}
652
f64c3f54 653static struct mem_cgroup_per_zone *
c0ff4b85 654page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 655{
97a6c37b
JW
656 int nid = page_to_nid(page);
657 int zid = page_zonenum(page);
f64c3f54 658
c0ff4b85 659 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
660}
661
bb4cc1a8
AM
662static struct mem_cgroup_tree_per_zone *
663soft_limit_tree_node_zone(int nid, int zid)
664{
665 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
666}
667
668static struct mem_cgroup_tree_per_zone *
669soft_limit_tree_from_page(struct page *page)
670{
671 int nid = page_to_nid(page);
672 int zid = page_zonenum(page);
673
674 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
675}
676
677static void
678__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
679 struct mem_cgroup_per_zone *mz,
680 struct mem_cgroup_tree_per_zone *mctz,
681 unsigned long long new_usage_in_excess)
682{
683 struct rb_node **p = &mctz->rb_root.rb_node;
684 struct rb_node *parent = NULL;
685 struct mem_cgroup_per_zone *mz_node;
686
687 if (mz->on_tree)
688 return;
689
690 mz->usage_in_excess = new_usage_in_excess;
691 if (!mz->usage_in_excess)
692 return;
693 while (*p) {
694 parent = *p;
695 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
696 tree_node);
697 if (mz->usage_in_excess < mz_node->usage_in_excess)
698 p = &(*p)->rb_left;
699 /*
700 * We can't avoid mem cgroups that are over their soft
701 * limit by the same amount
702 */
703 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
704 p = &(*p)->rb_right;
705 }
706 rb_link_node(&mz->tree_node, parent, p);
707 rb_insert_color(&mz->tree_node, &mctz->rb_root);
708 mz->on_tree = true;
709}
710
711static void
712__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
713 struct mem_cgroup_per_zone *mz,
714 struct mem_cgroup_tree_per_zone *mctz)
715{
716 if (!mz->on_tree)
717 return;
718 rb_erase(&mz->tree_node, &mctz->rb_root);
719 mz->on_tree = false;
720}
721
722static void
723mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
724 struct mem_cgroup_per_zone *mz,
725 struct mem_cgroup_tree_per_zone *mctz)
726{
727 spin_lock(&mctz->lock);
728 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
729 spin_unlock(&mctz->lock);
730}
731
732
733static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
734{
735 unsigned long long excess;
736 struct mem_cgroup_per_zone *mz;
737 struct mem_cgroup_tree_per_zone *mctz;
738 int nid = page_to_nid(page);
739 int zid = page_zonenum(page);
740 mctz = soft_limit_tree_from_page(page);
741
742 /*
743 * Necessary to update all ancestors when hierarchy is used.
744 * because their event counter is not touched.
745 */
746 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
747 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
748 excess = res_counter_soft_limit_excess(&memcg->res);
749 /*
750 * We have to update the tree if mz is on RB-tree or
751 * mem is over its softlimit.
752 */
753 if (excess || mz->on_tree) {
754 spin_lock(&mctz->lock);
755 /* if on-tree, remove it */
756 if (mz->on_tree)
757 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
758 /*
759 * Insert again. mz->usage_in_excess will be updated.
760 * If excess is 0, no tree ops.
761 */
762 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
763 spin_unlock(&mctz->lock);
764 }
765 }
766}
767
768static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
769{
770 int node, zone;
771 struct mem_cgroup_per_zone *mz;
772 struct mem_cgroup_tree_per_zone *mctz;
773
774 for_each_node(node) {
775 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
776 mz = mem_cgroup_zoneinfo(memcg, node, zone);
777 mctz = soft_limit_tree_node_zone(node, zone);
778 mem_cgroup_remove_exceeded(memcg, mz, mctz);
779 }
780 }
781}
782
783static struct mem_cgroup_per_zone *
784__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
785{
786 struct rb_node *rightmost = NULL;
787 struct mem_cgroup_per_zone *mz;
788
789retry:
790 mz = NULL;
791 rightmost = rb_last(&mctz->rb_root);
792 if (!rightmost)
793 goto done; /* Nothing to reclaim from */
794
795 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
796 /*
797 * Remove the node now but someone else can add it back,
798 * we will to add it back at the end of reclaim to its correct
799 * position in the tree.
800 */
801 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
802 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
803 !css_tryget(&mz->memcg->css))
804 goto retry;
805done:
806 return mz;
807}
808
809static struct mem_cgroup_per_zone *
810mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
811{
812 struct mem_cgroup_per_zone *mz;
813
814 spin_lock(&mctz->lock);
815 mz = __mem_cgroup_largest_soft_limit_node(mctz);
816 spin_unlock(&mctz->lock);
817 return mz;
818}
819
711d3d2c
KH
820/*
821 * Implementation Note: reading percpu statistics for memcg.
822 *
823 * Both of vmstat[] and percpu_counter has threshold and do periodic
824 * synchronization to implement "quick" read. There are trade-off between
825 * reading cost and precision of value. Then, we may have a chance to implement
826 * a periodic synchronizion of counter in memcg's counter.
827 *
828 * But this _read() function is used for user interface now. The user accounts
829 * memory usage by memory cgroup and he _always_ requires exact value because
830 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
831 * have to visit all online cpus and make sum. So, for now, unnecessary
832 * synchronization is not implemented. (just implemented for cpu hotplug)
833 *
834 * If there are kernel internal actions which can make use of some not-exact
835 * value, and reading all cpu value can be performance bottleneck in some
836 * common workload, threashold and synchonization as vmstat[] should be
837 * implemented.
838 */
c0ff4b85 839static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 840 enum mem_cgroup_stat_index idx)
c62b1a3b 841{
7a159cc9 842 long val = 0;
c62b1a3b 843 int cpu;
c62b1a3b 844
711d3d2c
KH
845 get_online_cpus();
846 for_each_online_cpu(cpu)
c0ff4b85 847 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 848#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
849 spin_lock(&memcg->pcp_counter_lock);
850 val += memcg->nocpu_base.count[idx];
851 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
852#endif
853 put_online_cpus();
c62b1a3b
KH
854 return val;
855}
856
c0ff4b85 857static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
858 bool charge)
859{
860 int val = (charge) ? 1 : -1;
bff6bb83 861 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
862}
863
c0ff4b85 864static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
865 enum mem_cgroup_events_index idx)
866{
867 unsigned long val = 0;
868 int cpu;
869
9c567512 870 get_online_cpus();
e9f8974f 871 for_each_online_cpu(cpu)
c0ff4b85 872 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 873#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
874 spin_lock(&memcg->pcp_counter_lock);
875 val += memcg->nocpu_base.events[idx];
876 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 877#endif
9c567512 878 put_online_cpus();
e9f8974f
JW
879 return val;
880}
881
c0ff4b85 882static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 883 struct page *page,
b2402857 884 bool anon, int nr_pages)
d52aa412 885{
c62b1a3b
KH
886 preempt_disable();
887
b2402857
KH
888 /*
889 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
890 * counted as CACHE even if it's on ANON LRU.
891 */
892 if (anon)
893 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 894 nr_pages);
d52aa412 895 else
b2402857 896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 897 nr_pages);
55e462b0 898
b070e65c
DR
899 if (PageTransHuge(page))
900 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
901 nr_pages);
902
e401f176
KH
903 /* pagein of a big page is an event. So, ignore page size */
904 if (nr_pages > 0)
c0ff4b85 905 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 906 else {
c0ff4b85 907 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
908 nr_pages = -nr_pages; /* for event */
909 }
e401f176 910
13114716 911 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 912
c62b1a3b 913 preempt_enable();
6d12e2d8
KH
914}
915
bb2a0de9 916unsigned long
4d7dcca2 917mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
918{
919 struct mem_cgroup_per_zone *mz;
920
921 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
922 return mz->lru_size[lru];
923}
924
925static unsigned long
c0ff4b85 926mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 927 unsigned int lru_mask)
889976db
YH
928{
929 struct mem_cgroup_per_zone *mz;
f156ab93 930 enum lru_list lru;
bb2a0de9
KH
931 unsigned long ret = 0;
932
c0ff4b85 933 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 934
f156ab93
HD
935 for_each_lru(lru) {
936 if (BIT(lru) & lru_mask)
937 ret += mz->lru_size[lru];
bb2a0de9
KH
938 }
939 return ret;
940}
941
942static unsigned long
c0ff4b85 943mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
944 int nid, unsigned int lru_mask)
945{
889976db
YH
946 u64 total = 0;
947 int zid;
948
bb2a0de9 949 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
950 total += mem_cgroup_zone_nr_lru_pages(memcg,
951 nid, zid, lru_mask);
bb2a0de9 952
889976db
YH
953 return total;
954}
bb2a0de9 955
c0ff4b85 956static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 957 unsigned int lru_mask)
6d12e2d8 958{
889976db 959 int nid;
6d12e2d8
KH
960 u64 total = 0;
961
31aaea4a 962 for_each_node_state(nid, N_MEMORY)
c0ff4b85 963 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 964 return total;
d52aa412
KH
965}
966
f53d7ce3
JW
967static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
968 enum mem_cgroup_events_target target)
7a159cc9
JW
969{
970 unsigned long val, next;
971
13114716 972 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 973 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 974 /* from time_after() in jiffies.h */
f53d7ce3
JW
975 if ((long)next - (long)val < 0) {
976 switch (target) {
977 case MEM_CGROUP_TARGET_THRESH:
978 next = val + THRESHOLDS_EVENTS_TARGET;
979 break;
bb4cc1a8
AM
980 case MEM_CGROUP_TARGET_SOFTLIMIT:
981 next = val + SOFTLIMIT_EVENTS_TARGET;
982 break;
f53d7ce3
JW
983 case MEM_CGROUP_TARGET_NUMAINFO:
984 next = val + NUMAINFO_EVENTS_TARGET;
985 break;
986 default:
987 break;
988 }
989 __this_cpu_write(memcg->stat->targets[target], next);
990 return true;
7a159cc9 991 }
f53d7ce3 992 return false;
d2265e6f
KH
993}
994
995/*
996 * Check events in order.
997 *
998 */
c0ff4b85 999static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1000{
4799401f 1001 preempt_disable();
d2265e6f 1002 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1003 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1004 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1005 bool do_softlimit;
82b3f2a7 1006 bool do_numainfo __maybe_unused;
f53d7ce3 1007
bb4cc1a8
AM
1008 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1010#if MAX_NUMNODES > 1
1011 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1012 MEM_CGROUP_TARGET_NUMAINFO);
1013#endif
1014 preempt_enable();
1015
c0ff4b85 1016 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1017 if (unlikely(do_softlimit))
1018 mem_cgroup_update_tree(memcg, page);
453a9bf3 1019#if MAX_NUMNODES > 1
f53d7ce3 1020 if (unlikely(do_numainfo))
c0ff4b85 1021 atomic_inc(&memcg->numainfo_events);
453a9bf3 1022#endif
f53d7ce3
JW
1023 } else
1024 preempt_enable();
d2265e6f
KH
1025}
1026
cf475ad2 1027struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1028{
31a78f23
BS
1029 /*
1030 * mm_update_next_owner() may clear mm->owner to NULL
1031 * if it races with swapoff, page migration, etc.
1032 * So this can be called with p == NULL.
1033 */
1034 if (unlikely(!p))
1035 return NULL;
1036
8af01f56 1037 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1038}
1039
a433658c 1040struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1041{
c0ff4b85 1042 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1043
1044 if (!mm)
1045 return NULL;
54595fe2
KH
1046 /*
1047 * Because we have no locks, mm->owner's may be being moved to other
1048 * cgroup. We use css_tryget() here even if this looks
1049 * pessimistic (rather than adding locks here).
1050 */
1051 rcu_read_lock();
1052 do {
c0ff4b85
R
1053 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1054 if (unlikely(!memcg))
54595fe2 1055 break;
c0ff4b85 1056 } while (!css_tryget(&memcg->css));
54595fe2 1057 rcu_read_unlock();
c0ff4b85 1058 return memcg;
54595fe2
KH
1059}
1060
16248d8f
MH
1061/*
1062 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1063 * ref. count) or NULL if the whole root's subtree has been visited.
1064 *
1065 * helper function to be used by mem_cgroup_iter
1066 */
1067static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1068 struct mem_cgroup *last_visited)
16248d8f 1069{
492eb21b 1070 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1071
bd8815a6 1072 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1073skip_node:
492eb21b 1074 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1075
1076 /*
1077 * Even if we found a group we have to make sure it is
1078 * alive. css && !memcg means that the groups should be
1079 * skipped and we should continue the tree walk.
1080 * last_visited css is safe to use because it is
1081 * protected by css_get and the tree walk is rcu safe.
1082 */
492eb21b
TH
1083 if (next_css) {
1084 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1085
694fbc0f
AM
1086 if (css_tryget(&mem->css))
1087 return mem;
1088 else {
492eb21b 1089 prev_css = next_css;
16248d8f
MH
1090 goto skip_node;
1091 }
1092 }
1093
1094 return NULL;
1095}
1096
519ebea3
JW
1097static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1098{
1099 /*
1100 * When a group in the hierarchy below root is destroyed, the
1101 * hierarchy iterator can no longer be trusted since it might
1102 * have pointed to the destroyed group. Invalidate it.
1103 */
1104 atomic_inc(&root->dead_count);
1105}
1106
1107static struct mem_cgroup *
1108mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1109 struct mem_cgroup *root,
1110 int *sequence)
1111{
1112 struct mem_cgroup *position = NULL;
1113 /*
1114 * A cgroup destruction happens in two stages: offlining and
1115 * release. They are separated by a RCU grace period.
1116 *
1117 * If the iterator is valid, we may still race with an
1118 * offlining. The RCU lock ensures the object won't be
1119 * released, tryget will fail if we lost the race.
1120 */
1121 *sequence = atomic_read(&root->dead_count);
1122 if (iter->last_dead_count == *sequence) {
1123 smp_rmb();
1124 position = iter->last_visited;
1125 if (position && !css_tryget(&position->css))
1126 position = NULL;
1127 }
1128 return position;
1129}
1130
1131static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1132 struct mem_cgroup *last_visited,
1133 struct mem_cgroup *new_position,
1134 int sequence)
1135{
1136 if (last_visited)
1137 css_put(&last_visited->css);
1138 /*
1139 * We store the sequence count from the time @last_visited was
1140 * loaded successfully instead of rereading it here so that we
1141 * don't lose destruction events in between. We could have
1142 * raced with the destruction of @new_position after all.
1143 */
1144 iter->last_visited = new_position;
1145 smp_wmb();
1146 iter->last_dead_count = sequence;
1147}
1148
5660048c
JW
1149/**
1150 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1151 * @root: hierarchy root
1152 * @prev: previously returned memcg, NULL on first invocation
1153 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1154 *
1155 * Returns references to children of the hierarchy below @root, or
1156 * @root itself, or %NULL after a full round-trip.
1157 *
1158 * Caller must pass the return value in @prev on subsequent
1159 * invocations for reference counting, or use mem_cgroup_iter_break()
1160 * to cancel a hierarchy walk before the round-trip is complete.
1161 *
1162 * Reclaimers can specify a zone and a priority level in @reclaim to
1163 * divide up the memcgs in the hierarchy among all concurrent
1164 * reclaimers operating on the same zone and priority.
1165 */
694fbc0f 1166struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1167 struct mem_cgroup *prev,
694fbc0f 1168 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1169{
9f3a0d09 1170 struct mem_cgroup *memcg = NULL;
542f85f9 1171 struct mem_cgroup *last_visited = NULL;
711d3d2c 1172
694fbc0f
AM
1173 if (mem_cgroup_disabled())
1174 return NULL;
5660048c 1175
9f3a0d09
JW
1176 if (!root)
1177 root = root_mem_cgroup;
7d74b06f 1178
9f3a0d09 1179 if (prev && !reclaim)
542f85f9 1180 last_visited = prev;
14067bb3 1181
9f3a0d09
JW
1182 if (!root->use_hierarchy && root != root_mem_cgroup) {
1183 if (prev)
c40046f3 1184 goto out_css_put;
694fbc0f 1185 return root;
9f3a0d09 1186 }
14067bb3 1187
542f85f9 1188 rcu_read_lock();
9f3a0d09 1189 while (!memcg) {
527a5ec9 1190 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1191 int uninitialized_var(seq);
711d3d2c 1192
527a5ec9
JW
1193 if (reclaim) {
1194 int nid = zone_to_nid(reclaim->zone);
1195 int zid = zone_idx(reclaim->zone);
1196 struct mem_cgroup_per_zone *mz;
1197
1198 mz = mem_cgroup_zoneinfo(root, nid, zid);
1199 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1200 if (prev && reclaim->generation != iter->generation) {
5f578161 1201 iter->last_visited = NULL;
542f85f9
MH
1202 goto out_unlock;
1203 }
5f578161 1204
519ebea3 1205 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1206 }
7d74b06f 1207
694fbc0f 1208 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1209
527a5ec9 1210 if (reclaim) {
519ebea3 1211 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1212
19f39402 1213 if (!memcg)
527a5ec9
JW
1214 iter->generation++;
1215 else if (!prev && memcg)
1216 reclaim->generation = iter->generation;
1217 }
9f3a0d09 1218
694fbc0f 1219 if (prev && !memcg)
542f85f9 1220 goto out_unlock;
9f3a0d09 1221 }
542f85f9
MH
1222out_unlock:
1223 rcu_read_unlock();
c40046f3
MH
1224out_css_put:
1225 if (prev && prev != root)
1226 css_put(&prev->css);
1227
9f3a0d09 1228 return memcg;
14067bb3 1229}
7d74b06f 1230
5660048c
JW
1231/**
1232 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1233 * @root: hierarchy root
1234 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1235 */
1236void mem_cgroup_iter_break(struct mem_cgroup *root,
1237 struct mem_cgroup *prev)
9f3a0d09
JW
1238{
1239 if (!root)
1240 root = root_mem_cgroup;
1241 if (prev && prev != root)
1242 css_put(&prev->css);
1243}
7d74b06f 1244
9f3a0d09
JW
1245/*
1246 * Iteration constructs for visiting all cgroups (under a tree). If
1247 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1248 * be used for reference counting.
1249 */
1250#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1251 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1252 iter != NULL; \
527a5ec9 1253 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1254
9f3a0d09 1255#define for_each_mem_cgroup(iter) \
527a5ec9 1256 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1257 iter != NULL; \
527a5ec9 1258 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1259
68ae564b 1260void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1261{
c0ff4b85 1262 struct mem_cgroup *memcg;
456f998e 1263
456f998e 1264 rcu_read_lock();
c0ff4b85
R
1265 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1266 if (unlikely(!memcg))
456f998e
YH
1267 goto out;
1268
1269 switch (idx) {
456f998e 1270 case PGFAULT:
0e574a93
JW
1271 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1272 break;
1273 case PGMAJFAULT:
1274 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1275 break;
1276 default:
1277 BUG();
1278 }
1279out:
1280 rcu_read_unlock();
1281}
68ae564b 1282EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1283
925b7673
JW
1284/**
1285 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1286 * @zone: zone of the wanted lruvec
fa9add64 1287 * @memcg: memcg of the wanted lruvec
925b7673
JW
1288 *
1289 * Returns the lru list vector holding pages for the given @zone and
1290 * @mem. This can be the global zone lruvec, if the memory controller
1291 * is disabled.
1292 */
1293struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1294 struct mem_cgroup *memcg)
1295{
1296 struct mem_cgroup_per_zone *mz;
bea8c150 1297 struct lruvec *lruvec;
925b7673 1298
bea8c150
HD
1299 if (mem_cgroup_disabled()) {
1300 lruvec = &zone->lruvec;
1301 goto out;
1302 }
925b7673
JW
1303
1304 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1305 lruvec = &mz->lruvec;
1306out:
1307 /*
1308 * Since a node can be onlined after the mem_cgroup was created,
1309 * we have to be prepared to initialize lruvec->zone here;
1310 * and if offlined then reonlined, we need to reinitialize it.
1311 */
1312 if (unlikely(lruvec->zone != zone))
1313 lruvec->zone = zone;
1314 return lruvec;
925b7673
JW
1315}
1316
08e552c6
KH
1317/*
1318 * Following LRU functions are allowed to be used without PCG_LOCK.
1319 * Operations are called by routine of global LRU independently from memcg.
1320 * What we have to take care of here is validness of pc->mem_cgroup.
1321 *
1322 * Changes to pc->mem_cgroup happens when
1323 * 1. charge
1324 * 2. moving account
1325 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1326 * It is added to LRU before charge.
1327 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1328 * When moving account, the page is not on LRU. It's isolated.
1329 */
4f98a2fe 1330
925b7673 1331/**
fa9add64 1332 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1333 * @page: the page
fa9add64 1334 * @zone: zone of the page
925b7673 1335 */
fa9add64 1336struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1337{
08e552c6 1338 struct mem_cgroup_per_zone *mz;
925b7673
JW
1339 struct mem_cgroup *memcg;
1340 struct page_cgroup *pc;
bea8c150 1341 struct lruvec *lruvec;
6d12e2d8 1342
bea8c150
HD
1343 if (mem_cgroup_disabled()) {
1344 lruvec = &zone->lruvec;
1345 goto out;
1346 }
925b7673 1347
08e552c6 1348 pc = lookup_page_cgroup(page);
38c5d72f 1349 memcg = pc->mem_cgroup;
7512102c
HD
1350
1351 /*
fa9add64 1352 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1353 * an uncharged page off lru does nothing to secure
1354 * its former mem_cgroup from sudden removal.
1355 *
1356 * Our caller holds lru_lock, and PageCgroupUsed is updated
1357 * under page_cgroup lock: between them, they make all uses
1358 * of pc->mem_cgroup safe.
1359 */
fa9add64 1360 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1361 pc->mem_cgroup = memcg = root_mem_cgroup;
1362
925b7673 1363 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1364 lruvec = &mz->lruvec;
1365out:
1366 /*
1367 * Since a node can be onlined after the mem_cgroup was created,
1368 * we have to be prepared to initialize lruvec->zone here;
1369 * and if offlined then reonlined, we need to reinitialize it.
1370 */
1371 if (unlikely(lruvec->zone != zone))
1372 lruvec->zone = zone;
1373 return lruvec;
08e552c6 1374}
b69408e8 1375
925b7673 1376/**
fa9add64
HD
1377 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1378 * @lruvec: mem_cgroup per zone lru vector
1379 * @lru: index of lru list the page is sitting on
1380 * @nr_pages: positive when adding or negative when removing
925b7673 1381 *
fa9add64
HD
1382 * This function must be called when a page is added to or removed from an
1383 * lru list.
3f58a829 1384 */
fa9add64
HD
1385void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1386 int nr_pages)
3f58a829
MK
1387{
1388 struct mem_cgroup_per_zone *mz;
fa9add64 1389 unsigned long *lru_size;
3f58a829
MK
1390
1391 if (mem_cgroup_disabled())
1392 return;
1393
fa9add64
HD
1394 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1395 lru_size = mz->lru_size + lru;
1396 *lru_size += nr_pages;
1397 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1398}
544122e5 1399
3e92041d 1400/*
c0ff4b85 1401 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1402 * hierarchy subtree
1403 */
c3ac9a8a
JW
1404bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1405 struct mem_cgroup *memcg)
3e92041d 1406{
91c63734
JW
1407 if (root_memcg == memcg)
1408 return true;
3a981f48 1409 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1410 return false;
c3ac9a8a
JW
1411 return css_is_ancestor(&memcg->css, &root_memcg->css);
1412}
1413
1414static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1415 struct mem_cgroup *memcg)
1416{
1417 bool ret;
1418
91c63734 1419 rcu_read_lock();
c3ac9a8a 1420 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1421 rcu_read_unlock();
1422 return ret;
3e92041d
MH
1423}
1424
ffbdccf5
DR
1425bool task_in_mem_cgroup(struct task_struct *task,
1426 const struct mem_cgroup *memcg)
4c4a2214 1427{
0b7f569e 1428 struct mem_cgroup *curr = NULL;
158e0a2d 1429 struct task_struct *p;
ffbdccf5 1430 bool ret;
4c4a2214 1431
158e0a2d 1432 p = find_lock_task_mm(task);
de077d22
DR
1433 if (p) {
1434 curr = try_get_mem_cgroup_from_mm(p->mm);
1435 task_unlock(p);
1436 } else {
1437 /*
1438 * All threads may have already detached their mm's, but the oom
1439 * killer still needs to detect if they have already been oom
1440 * killed to prevent needlessly killing additional tasks.
1441 */
ffbdccf5 1442 rcu_read_lock();
de077d22
DR
1443 curr = mem_cgroup_from_task(task);
1444 if (curr)
1445 css_get(&curr->css);
ffbdccf5 1446 rcu_read_unlock();
de077d22 1447 }
0b7f569e 1448 if (!curr)
ffbdccf5 1449 return false;
d31f56db 1450 /*
c0ff4b85 1451 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1452 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1453 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1454 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1455 */
c0ff4b85 1456 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1457 css_put(&curr->css);
4c4a2214
DR
1458 return ret;
1459}
1460
c56d5c7d 1461int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1462{
9b272977 1463 unsigned long inactive_ratio;
14797e23 1464 unsigned long inactive;
9b272977 1465 unsigned long active;
c772be93 1466 unsigned long gb;
14797e23 1467
4d7dcca2
HD
1468 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1469 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1470
c772be93
KM
1471 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1472 if (gb)
1473 inactive_ratio = int_sqrt(10 * gb);
1474 else
1475 inactive_ratio = 1;
1476
9b272977 1477 return inactive * inactive_ratio < active;
14797e23
KM
1478}
1479
6d61ef40
BS
1480#define mem_cgroup_from_res_counter(counter, member) \
1481 container_of(counter, struct mem_cgroup, member)
1482
19942822 1483/**
9d11ea9f 1484 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1485 * @memcg: the memory cgroup
19942822 1486 *
9d11ea9f 1487 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1488 * pages.
19942822 1489 */
c0ff4b85 1490static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1491{
9d11ea9f
JW
1492 unsigned long long margin;
1493
c0ff4b85 1494 margin = res_counter_margin(&memcg->res);
9d11ea9f 1495 if (do_swap_account)
c0ff4b85 1496 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1497 return margin >> PAGE_SHIFT;
19942822
JW
1498}
1499
1f4c025b 1500int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1501{
a7885eb8 1502 /* root ? */
63876986 1503 if (!css_parent(&memcg->css))
a7885eb8
KM
1504 return vm_swappiness;
1505
bf1ff263 1506 return memcg->swappiness;
a7885eb8
KM
1507}
1508
619d094b
KH
1509/*
1510 * memcg->moving_account is used for checking possibility that some thread is
1511 * calling move_account(). When a thread on CPU-A starts moving pages under
1512 * a memcg, other threads should check memcg->moving_account under
1513 * rcu_read_lock(), like this:
1514 *
1515 * CPU-A CPU-B
1516 * rcu_read_lock()
1517 * memcg->moving_account+1 if (memcg->mocing_account)
1518 * take heavy locks.
1519 * synchronize_rcu() update something.
1520 * rcu_read_unlock()
1521 * start move here.
1522 */
4331f7d3
KH
1523
1524/* for quick checking without looking up memcg */
1525atomic_t memcg_moving __read_mostly;
1526
c0ff4b85 1527static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1528{
4331f7d3 1529 atomic_inc(&memcg_moving);
619d094b 1530 atomic_inc(&memcg->moving_account);
32047e2a
KH
1531 synchronize_rcu();
1532}
1533
c0ff4b85 1534static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1535{
619d094b
KH
1536 /*
1537 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1538 * We check NULL in callee rather than caller.
1539 */
4331f7d3
KH
1540 if (memcg) {
1541 atomic_dec(&memcg_moving);
619d094b 1542 atomic_dec(&memcg->moving_account);
4331f7d3 1543 }
32047e2a 1544}
619d094b 1545
32047e2a
KH
1546/*
1547 * 2 routines for checking "mem" is under move_account() or not.
1548 *
13fd1dd9
AM
1549 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1550 * is used for avoiding races in accounting. If true,
32047e2a
KH
1551 * pc->mem_cgroup may be overwritten.
1552 *
1553 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1554 * under hierarchy of moving cgroups. This is for
1555 * waiting at hith-memory prressure caused by "move".
1556 */
1557
13fd1dd9 1558static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1559{
1560 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1561 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1562}
4b534334 1563
c0ff4b85 1564static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1565{
2bd9bb20
KH
1566 struct mem_cgroup *from;
1567 struct mem_cgroup *to;
4b534334 1568 bool ret = false;
2bd9bb20
KH
1569 /*
1570 * Unlike task_move routines, we access mc.to, mc.from not under
1571 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1572 */
1573 spin_lock(&mc.lock);
1574 from = mc.from;
1575 to = mc.to;
1576 if (!from)
1577 goto unlock;
3e92041d 1578
c0ff4b85
R
1579 ret = mem_cgroup_same_or_subtree(memcg, from)
1580 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1581unlock:
1582 spin_unlock(&mc.lock);
4b534334
KH
1583 return ret;
1584}
1585
c0ff4b85 1586static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1587{
1588 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1589 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1590 DEFINE_WAIT(wait);
1591 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1592 /* moving charge context might have finished. */
1593 if (mc.moving_task)
1594 schedule();
1595 finish_wait(&mc.waitq, &wait);
1596 return true;
1597 }
1598 }
1599 return false;
1600}
1601
312734c0
KH
1602/*
1603 * Take this lock when
1604 * - a code tries to modify page's memcg while it's USED.
1605 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1606 * see mem_cgroup_stolen(), too.
312734c0
KH
1607 */
1608static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1609 unsigned long *flags)
1610{
1611 spin_lock_irqsave(&memcg->move_lock, *flags);
1612}
1613
1614static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1615 unsigned long *flags)
1616{
1617 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1618}
1619
58cf188e 1620#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1621/**
58cf188e 1622 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1623 * @memcg: The memory cgroup that went over limit
1624 * @p: Task that is going to be killed
1625 *
1626 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1627 * enabled
1628 */
1629void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1630{
1631 struct cgroup *task_cgrp;
1632 struct cgroup *mem_cgrp;
1633 /*
1634 * Need a buffer in BSS, can't rely on allocations. The code relies
1635 * on the assumption that OOM is serialized for memory controller.
1636 * If this assumption is broken, revisit this code.
1637 */
1638 static char memcg_name[PATH_MAX];
1639 int ret;
58cf188e
SZ
1640 struct mem_cgroup *iter;
1641 unsigned int i;
e222432b 1642
58cf188e 1643 if (!p)
e222432b
BS
1644 return;
1645
e222432b
BS
1646 rcu_read_lock();
1647
1648 mem_cgrp = memcg->css.cgroup;
1649 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1650
1651 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1652 if (ret < 0) {
1653 /*
1654 * Unfortunately, we are unable to convert to a useful name
1655 * But we'll still print out the usage information
1656 */
1657 rcu_read_unlock();
1658 goto done;
1659 }
1660 rcu_read_unlock();
1661
d045197f 1662 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1663
1664 rcu_read_lock();
1665 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1666 if (ret < 0) {
1667 rcu_read_unlock();
1668 goto done;
1669 }
1670 rcu_read_unlock();
1671
1672 /*
1673 * Continues from above, so we don't need an KERN_ level
1674 */
d045197f 1675 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1676done:
1677
d045197f 1678 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1679 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1680 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1681 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1682 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1683 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1684 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1685 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1686 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1687 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1688 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1689 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1690
1691 for_each_mem_cgroup_tree(iter, memcg) {
1692 pr_info("Memory cgroup stats");
1693
1694 rcu_read_lock();
1695 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1696 if (!ret)
1697 pr_cont(" for %s", memcg_name);
1698 rcu_read_unlock();
1699 pr_cont(":");
1700
1701 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1702 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1703 continue;
1704 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1705 K(mem_cgroup_read_stat(iter, i)));
1706 }
1707
1708 for (i = 0; i < NR_LRU_LISTS; i++)
1709 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1710 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1711
1712 pr_cont("\n");
1713 }
e222432b
BS
1714}
1715
81d39c20
KH
1716/*
1717 * This function returns the number of memcg under hierarchy tree. Returns
1718 * 1(self count) if no children.
1719 */
c0ff4b85 1720static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1721{
1722 int num = 0;
7d74b06f
KH
1723 struct mem_cgroup *iter;
1724
c0ff4b85 1725 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1726 num++;
81d39c20
KH
1727 return num;
1728}
1729
a63d83f4
DR
1730/*
1731 * Return the memory (and swap, if configured) limit for a memcg.
1732 */
9cbb78bb 1733static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1734{
1735 u64 limit;
a63d83f4 1736
f3e8eb70 1737 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1738
a63d83f4 1739 /*
9a5a8f19 1740 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1741 */
9a5a8f19
MH
1742 if (mem_cgroup_swappiness(memcg)) {
1743 u64 memsw;
1744
1745 limit += total_swap_pages << PAGE_SHIFT;
1746 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1747
1748 /*
1749 * If memsw is finite and limits the amount of swap space
1750 * available to this memcg, return that limit.
1751 */
1752 limit = min(limit, memsw);
1753 }
1754
1755 return limit;
a63d83f4
DR
1756}
1757
19965460
DR
1758static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1759 int order)
9cbb78bb
DR
1760{
1761 struct mem_cgroup *iter;
1762 unsigned long chosen_points = 0;
1763 unsigned long totalpages;
1764 unsigned int points = 0;
1765 struct task_struct *chosen = NULL;
1766
876aafbf 1767 /*
465adcf1
DR
1768 * If current has a pending SIGKILL or is exiting, then automatically
1769 * select it. The goal is to allow it to allocate so that it may
1770 * quickly exit and free its memory.
876aafbf 1771 */
465adcf1 1772 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1773 set_thread_flag(TIF_MEMDIE);
1774 return;
1775 }
1776
1777 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1778 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1779 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1780 struct css_task_iter it;
9cbb78bb
DR
1781 struct task_struct *task;
1782
72ec7029
TH
1783 css_task_iter_start(&iter->css, &it);
1784 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1785 switch (oom_scan_process_thread(task, totalpages, NULL,
1786 false)) {
1787 case OOM_SCAN_SELECT:
1788 if (chosen)
1789 put_task_struct(chosen);
1790 chosen = task;
1791 chosen_points = ULONG_MAX;
1792 get_task_struct(chosen);
1793 /* fall through */
1794 case OOM_SCAN_CONTINUE:
1795 continue;
1796 case OOM_SCAN_ABORT:
72ec7029 1797 css_task_iter_end(&it);
9cbb78bb
DR
1798 mem_cgroup_iter_break(memcg, iter);
1799 if (chosen)
1800 put_task_struct(chosen);
1801 return;
1802 case OOM_SCAN_OK:
1803 break;
1804 };
1805 points = oom_badness(task, memcg, NULL, totalpages);
1806 if (points > chosen_points) {
1807 if (chosen)
1808 put_task_struct(chosen);
1809 chosen = task;
1810 chosen_points = points;
1811 get_task_struct(chosen);
1812 }
1813 }
72ec7029 1814 css_task_iter_end(&it);
9cbb78bb
DR
1815 }
1816
1817 if (!chosen)
1818 return;
1819 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1820 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1821 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1822}
1823
5660048c
JW
1824static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1825 gfp_t gfp_mask,
1826 unsigned long flags)
1827{
1828 unsigned long total = 0;
1829 bool noswap = false;
1830 int loop;
1831
1832 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1833 noswap = true;
1834 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1835 noswap = true;
1836
1837 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1838 if (loop)
1839 drain_all_stock_async(memcg);
1840 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1841 /*
1842 * Allow limit shrinkers, which are triggered directly
1843 * by userspace, to catch signals and stop reclaim
1844 * after minimal progress, regardless of the margin.
1845 */
1846 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1847 break;
1848 if (mem_cgroup_margin(memcg))
1849 break;
1850 /*
1851 * If nothing was reclaimed after two attempts, there
1852 * may be no reclaimable pages in this hierarchy.
1853 */
1854 if (loop && !total)
1855 break;
1856 }
1857 return total;
1858}
1859
4d0c066d
KH
1860/**
1861 * test_mem_cgroup_node_reclaimable
dad7557e 1862 * @memcg: the target memcg
4d0c066d
KH
1863 * @nid: the node ID to be checked.
1864 * @noswap : specify true here if the user wants flle only information.
1865 *
1866 * This function returns whether the specified memcg contains any
1867 * reclaimable pages on a node. Returns true if there are any reclaimable
1868 * pages in the node.
1869 */
c0ff4b85 1870static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1871 int nid, bool noswap)
1872{
c0ff4b85 1873 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1874 return true;
1875 if (noswap || !total_swap_pages)
1876 return false;
c0ff4b85 1877 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1878 return true;
1879 return false;
1880
1881}
bb4cc1a8 1882#if MAX_NUMNODES > 1
889976db
YH
1883
1884/*
1885 * Always updating the nodemask is not very good - even if we have an empty
1886 * list or the wrong list here, we can start from some node and traverse all
1887 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1888 *
1889 */
c0ff4b85 1890static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1891{
1892 int nid;
453a9bf3
KH
1893 /*
1894 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1895 * pagein/pageout changes since the last update.
1896 */
c0ff4b85 1897 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1898 return;
c0ff4b85 1899 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1900 return;
1901
889976db 1902 /* make a nodemask where this memcg uses memory from */
31aaea4a 1903 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1904
31aaea4a 1905 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1906
c0ff4b85
R
1907 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1908 node_clear(nid, memcg->scan_nodes);
889976db 1909 }
453a9bf3 1910
c0ff4b85
R
1911 atomic_set(&memcg->numainfo_events, 0);
1912 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1913}
1914
1915/*
1916 * Selecting a node where we start reclaim from. Because what we need is just
1917 * reducing usage counter, start from anywhere is O,K. Considering
1918 * memory reclaim from current node, there are pros. and cons.
1919 *
1920 * Freeing memory from current node means freeing memory from a node which
1921 * we'll use or we've used. So, it may make LRU bad. And if several threads
1922 * hit limits, it will see a contention on a node. But freeing from remote
1923 * node means more costs for memory reclaim because of memory latency.
1924 *
1925 * Now, we use round-robin. Better algorithm is welcomed.
1926 */
c0ff4b85 1927int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1928{
1929 int node;
1930
c0ff4b85
R
1931 mem_cgroup_may_update_nodemask(memcg);
1932 node = memcg->last_scanned_node;
889976db 1933
c0ff4b85 1934 node = next_node(node, memcg->scan_nodes);
889976db 1935 if (node == MAX_NUMNODES)
c0ff4b85 1936 node = first_node(memcg->scan_nodes);
889976db
YH
1937 /*
1938 * We call this when we hit limit, not when pages are added to LRU.
1939 * No LRU may hold pages because all pages are UNEVICTABLE or
1940 * memcg is too small and all pages are not on LRU. In that case,
1941 * we use curret node.
1942 */
1943 if (unlikely(node == MAX_NUMNODES))
1944 node = numa_node_id();
1945
c0ff4b85 1946 memcg->last_scanned_node = node;
889976db
YH
1947 return node;
1948}
1949
bb4cc1a8
AM
1950/*
1951 * Check all nodes whether it contains reclaimable pages or not.
1952 * For quick scan, we make use of scan_nodes. This will allow us to skip
1953 * unused nodes. But scan_nodes is lazily updated and may not cotain
1954 * enough new information. We need to do double check.
1955 */
1956static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1957{
1958 int nid;
1959
1960 /*
1961 * quick check...making use of scan_node.
1962 * We can skip unused nodes.
1963 */
1964 if (!nodes_empty(memcg->scan_nodes)) {
1965 for (nid = first_node(memcg->scan_nodes);
1966 nid < MAX_NUMNODES;
1967 nid = next_node(nid, memcg->scan_nodes)) {
1968
1969 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1970 return true;
1971 }
1972 }
1973 /*
1974 * Check rest of nodes.
1975 */
1976 for_each_node_state(nid, N_MEMORY) {
1977 if (node_isset(nid, memcg->scan_nodes))
1978 continue;
1979 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1980 return true;
1981 }
1982 return false;
1983}
1984
889976db 1985#else
c0ff4b85 1986int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1987{
1988 return 0;
1989}
4d0c066d 1990
bb4cc1a8
AM
1991static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1992{
1993 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1994}
889976db
YH
1995#endif
1996
0608f43d
AM
1997static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1998 struct zone *zone,
1999 gfp_t gfp_mask,
2000 unsigned long *total_scanned)
2001{
2002 struct mem_cgroup *victim = NULL;
2003 int total = 0;
2004 int loop = 0;
2005 unsigned long excess;
2006 unsigned long nr_scanned;
2007 struct mem_cgroup_reclaim_cookie reclaim = {
2008 .zone = zone,
2009 .priority = 0,
2010 };
2011
2012 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2013
2014 while (1) {
2015 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2016 if (!victim) {
2017 loop++;
2018 if (loop >= 2) {
2019 /*
2020 * If we have not been able to reclaim
2021 * anything, it might because there are
2022 * no reclaimable pages under this hierarchy
2023 */
2024 if (!total)
2025 break;
2026 /*
2027 * We want to do more targeted reclaim.
2028 * excess >> 2 is not to excessive so as to
2029 * reclaim too much, nor too less that we keep
2030 * coming back to reclaim from this cgroup
2031 */
2032 if (total >= (excess >> 2) ||
2033 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2034 break;
2035 }
2036 continue;
2037 }
2038 if (!mem_cgroup_reclaimable(victim, false))
2039 continue;
2040 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2041 zone, &nr_scanned);
2042 *total_scanned += nr_scanned;
2043 if (!res_counter_soft_limit_excess(&root_memcg->res))
2044 break;
6d61ef40 2045 }
0608f43d
AM
2046 mem_cgroup_iter_break(root_memcg, victim);
2047 return total;
6d61ef40
BS
2048}
2049
0056f4e6
JW
2050#ifdef CONFIG_LOCKDEP
2051static struct lockdep_map memcg_oom_lock_dep_map = {
2052 .name = "memcg_oom_lock",
2053};
2054#endif
2055
fb2a6fc5
JW
2056static DEFINE_SPINLOCK(memcg_oom_lock);
2057
867578cb
KH
2058/*
2059 * Check OOM-Killer is already running under our hierarchy.
2060 * If someone is running, return false.
2061 */
fb2a6fc5 2062static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2063{
79dfdacc 2064 struct mem_cgroup *iter, *failed = NULL;
a636b327 2065
fb2a6fc5
JW
2066 spin_lock(&memcg_oom_lock);
2067
9f3a0d09 2068 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2069 if (iter->oom_lock) {
79dfdacc
MH
2070 /*
2071 * this subtree of our hierarchy is already locked
2072 * so we cannot give a lock.
2073 */
79dfdacc 2074 failed = iter;
9f3a0d09
JW
2075 mem_cgroup_iter_break(memcg, iter);
2076 break;
23751be0
JW
2077 } else
2078 iter->oom_lock = true;
7d74b06f 2079 }
867578cb 2080
fb2a6fc5
JW
2081 if (failed) {
2082 /*
2083 * OK, we failed to lock the whole subtree so we have
2084 * to clean up what we set up to the failing subtree
2085 */
2086 for_each_mem_cgroup_tree(iter, memcg) {
2087 if (iter == failed) {
2088 mem_cgroup_iter_break(memcg, iter);
2089 break;
2090 }
2091 iter->oom_lock = false;
79dfdacc 2092 }
0056f4e6
JW
2093 } else
2094 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2095
2096 spin_unlock(&memcg_oom_lock);
2097
2098 return !failed;
a636b327 2099}
0b7f569e 2100
fb2a6fc5 2101static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2102{
7d74b06f
KH
2103 struct mem_cgroup *iter;
2104
fb2a6fc5 2105 spin_lock(&memcg_oom_lock);
0056f4e6 2106 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2107 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2108 iter->oom_lock = false;
fb2a6fc5 2109 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2110}
2111
c0ff4b85 2112static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2113{
2114 struct mem_cgroup *iter;
2115
c0ff4b85 2116 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2117 atomic_inc(&iter->under_oom);
2118}
2119
c0ff4b85 2120static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2121{
2122 struct mem_cgroup *iter;
2123
867578cb
KH
2124 /*
2125 * When a new child is created while the hierarchy is under oom,
2126 * mem_cgroup_oom_lock() may not be called. We have to use
2127 * atomic_add_unless() here.
2128 */
c0ff4b85 2129 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2130 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2131}
2132
867578cb
KH
2133static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2134
dc98df5a 2135struct oom_wait_info {
d79154bb 2136 struct mem_cgroup *memcg;
dc98df5a
KH
2137 wait_queue_t wait;
2138};
2139
2140static int memcg_oom_wake_function(wait_queue_t *wait,
2141 unsigned mode, int sync, void *arg)
2142{
d79154bb
HD
2143 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2144 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2145 struct oom_wait_info *oom_wait_info;
2146
2147 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2148 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2149
dc98df5a 2150 /*
d79154bb 2151 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2152 * Then we can use css_is_ancestor without taking care of RCU.
2153 */
c0ff4b85
R
2154 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2155 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2156 return 0;
dc98df5a
KH
2157 return autoremove_wake_function(wait, mode, sync, arg);
2158}
2159
c0ff4b85 2160static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2161{
3812c8c8 2162 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2163 /* for filtering, pass "memcg" as argument. */
2164 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2165}
2166
c0ff4b85 2167static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2168{
c0ff4b85
R
2169 if (memcg && atomic_read(&memcg->under_oom))
2170 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2171}
2172
3812c8c8 2173static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2174{
3812c8c8
JW
2175 if (!current->memcg_oom.may_oom)
2176 return;
867578cb 2177 /*
49426420
JW
2178 * We are in the middle of the charge context here, so we
2179 * don't want to block when potentially sitting on a callstack
2180 * that holds all kinds of filesystem and mm locks.
2181 *
2182 * Also, the caller may handle a failed allocation gracefully
2183 * (like optional page cache readahead) and so an OOM killer
2184 * invocation might not even be necessary.
2185 *
2186 * That's why we don't do anything here except remember the
2187 * OOM context and then deal with it at the end of the page
2188 * fault when the stack is unwound, the locks are released,
2189 * and when we know whether the fault was overall successful.
867578cb 2190 */
49426420
JW
2191 css_get(&memcg->css);
2192 current->memcg_oom.memcg = memcg;
2193 current->memcg_oom.gfp_mask = mask;
2194 current->memcg_oom.order = order;
3812c8c8
JW
2195}
2196
2197/**
2198 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2199 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2200 *
49426420
JW
2201 * This has to be called at the end of a page fault if the memcg OOM
2202 * handler was enabled.
3812c8c8 2203 *
49426420 2204 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2205 * sleep on a waitqueue until the userspace task resolves the
2206 * situation. Sleeping directly in the charge context with all kinds
2207 * of locks held is not a good idea, instead we remember an OOM state
2208 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2209 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2210 *
2211 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2212 * completed, %false otherwise.
3812c8c8 2213 */
49426420 2214bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2215{
49426420 2216 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2217 struct oom_wait_info owait;
49426420 2218 bool locked;
3812c8c8
JW
2219
2220 /* OOM is global, do not handle */
3812c8c8 2221 if (!memcg)
49426420 2222 return false;
3812c8c8 2223
49426420
JW
2224 if (!handle)
2225 goto cleanup;
3812c8c8
JW
2226
2227 owait.memcg = memcg;
2228 owait.wait.flags = 0;
2229 owait.wait.func = memcg_oom_wake_function;
2230 owait.wait.private = current;
2231 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2232
3812c8c8 2233 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2234 mem_cgroup_mark_under_oom(memcg);
2235
2236 locked = mem_cgroup_oom_trylock(memcg);
2237
2238 if (locked)
2239 mem_cgroup_oom_notify(memcg);
2240
2241 if (locked && !memcg->oom_kill_disable) {
2242 mem_cgroup_unmark_under_oom(memcg);
2243 finish_wait(&memcg_oom_waitq, &owait.wait);
2244 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2245 current->memcg_oom.order);
2246 } else {
3812c8c8 2247 schedule();
49426420
JW
2248 mem_cgroup_unmark_under_oom(memcg);
2249 finish_wait(&memcg_oom_waitq, &owait.wait);
2250 }
2251
2252 if (locked) {
fb2a6fc5
JW
2253 mem_cgroup_oom_unlock(memcg);
2254 /*
2255 * There is no guarantee that an OOM-lock contender
2256 * sees the wakeups triggered by the OOM kill
2257 * uncharges. Wake any sleepers explicitely.
2258 */
2259 memcg_oom_recover(memcg);
2260 }
49426420
JW
2261cleanup:
2262 current->memcg_oom.memcg = NULL;
3812c8c8 2263 css_put(&memcg->css);
867578cb 2264 return true;
0b7f569e
KH
2265}
2266
d69b042f
BS
2267/*
2268 * Currently used to update mapped file statistics, but the routine can be
2269 * generalized to update other statistics as well.
32047e2a
KH
2270 *
2271 * Notes: Race condition
2272 *
2273 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2274 * it tends to be costly. But considering some conditions, we doesn't need
2275 * to do so _always_.
2276 *
2277 * Considering "charge", lock_page_cgroup() is not required because all
2278 * file-stat operations happen after a page is attached to radix-tree. There
2279 * are no race with "charge".
2280 *
2281 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2282 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2283 * if there are race with "uncharge". Statistics itself is properly handled
2284 * by flags.
2285 *
2286 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2287 * small, we check mm->moving_account and detect there are possibility of race
2288 * If there is, we take a lock.
d69b042f 2289 */
26174efd 2290
89c06bd5
KH
2291void __mem_cgroup_begin_update_page_stat(struct page *page,
2292 bool *locked, unsigned long *flags)
2293{
2294 struct mem_cgroup *memcg;
2295 struct page_cgroup *pc;
2296
2297 pc = lookup_page_cgroup(page);
2298again:
2299 memcg = pc->mem_cgroup;
2300 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2301 return;
2302 /*
2303 * If this memory cgroup is not under account moving, we don't
da92c47d 2304 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2305 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2306 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2307 */
13fd1dd9 2308 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2309 return;
2310
2311 move_lock_mem_cgroup(memcg, flags);
2312 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2313 move_unlock_mem_cgroup(memcg, flags);
2314 goto again;
2315 }
2316 *locked = true;
2317}
2318
2319void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2320{
2321 struct page_cgroup *pc = lookup_page_cgroup(page);
2322
2323 /*
2324 * It's guaranteed that pc->mem_cgroup never changes while
2325 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2326 * should take move_lock_mem_cgroup().
89c06bd5
KH
2327 */
2328 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2329}
2330
2a7106f2 2331void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2332 enum mem_cgroup_stat_index idx, int val)
d69b042f 2333{
c0ff4b85 2334 struct mem_cgroup *memcg;
32047e2a 2335 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2336 unsigned long uninitialized_var(flags);
d69b042f 2337
cfa44946 2338 if (mem_cgroup_disabled())
d69b042f 2339 return;
89c06bd5 2340
658b72c5 2341 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2342 memcg = pc->mem_cgroup;
2343 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2344 return;
26174efd 2345
c0ff4b85 2346 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2347}
26174efd 2348
cdec2e42
KH
2349/*
2350 * size of first charge trial. "32" comes from vmscan.c's magic value.
2351 * TODO: maybe necessary to use big numbers in big irons.
2352 */
7ec99d62 2353#define CHARGE_BATCH 32U
cdec2e42
KH
2354struct memcg_stock_pcp {
2355 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2356 unsigned int nr_pages;
cdec2e42 2357 struct work_struct work;
26fe6168 2358 unsigned long flags;
a0db00fc 2359#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2360};
2361static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2362static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2363
a0956d54
SS
2364/**
2365 * consume_stock: Try to consume stocked charge on this cpu.
2366 * @memcg: memcg to consume from.
2367 * @nr_pages: how many pages to charge.
2368 *
2369 * The charges will only happen if @memcg matches the current cpu's memcg
2370 * stock, and at least @nr_pages are available in that stock. Failure to
2371 * service an allocation will refill the stock.
2372 *
2373 * returns true if successful, false otherwise.
cdec2e42 2374 */
a0956d54 2375static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2376{
2377 struct memcg_stock_pcp *stock;
2378 bool ret = true;
2379
a0956d54
SS
2380 if (nr_pages > CHARGE_BATCH)
2381 return false;
2382
cdec2e42 2383 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2384 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2385 stock->nr_pages -= nr_pages;
cdec2e42
KH
2386 else /* need to call res_counter_charge */
2387 ret = false;
2388 put_cpu_var(memcg_stock);
2389 return ret;
2390}
2391
2392/*
2393 * Returns stocks cached in percpu to res_counter and reset cached information.
2394 */
2395static void drain_stock(struct memcg_stock_pcp *stock)
2396{
2397 struct mem_cgroup *old = stock->cached;
2398
11c9ea4e
JW
2399 if (stock->nr_pages) {
2400 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2401
2402 res_counter_uncharge(&old->res, bytes);
cdec2e42 2403 if (do_swap_account)
11c9ea4e
JW
2404 res_counter_uncharge(&old->memsw, bytes);
2405 stock->nr_pages = 0;
cdec2e42
KH
2406 }
2407 stock->cached = NULL;
cdec2e42
KH
2408}
2409
2410/*
2411 * This must be called under preempt disabled or must be called by
2412 * a thread which is pinned to local cpu.
2413 */
2414static void drain_local_stock(struct work_struct *dummy)
2415{
2416 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2417 drain_stock(stock);
26fe6168 2418 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2419}
2420
e4777496
MH
2421static void __init memcg_stock_init(void)
2422{
2423 int cpu;
2424
2425 for_each_possible_cpu(cpu) {
2426 struct memcg_stock_pcp *stock =
2427 &per_cpu(memcg_stock, cpu);
2428 INIT_WORK(&stock->work, drain_local_stock);
2429 }
2430}
2431
cdec2e42
KH
2432/*
2433 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2434 * This will be consumed by consume_stock() function, later.
cdec2e42 2435 */
c0ff4b85 2436static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2437{
2438 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2439
c0ff4b85 2440 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2441 drain_stock(stock);
c0ff4b85 2442 stock->cached = memcg;
cdec2e42 2443 }
11c9ea4e 2444 stock->nr_pages += nr_pages;
cdec2e42
KH
2445 put_cpu_var(memcg_stock);
2446}
2447
2448/*
c0ff4b85 2449 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2450 * of the hierarchy under it. sync flag says whether we should block
2451 * until the work is done.
cdec2e42 2452 */
c0ff4b85 2453static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2454{
26fe6168 2455 int cpu, curcpu;
d38144b7 2456
cdec2e42 2457 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2458 get_online_cpus();
5af12d0e 2459 curcpu = get_cpu();
cdec2e42
KH
2460 for_each_online_cpu(cpu) {
2461 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2462 struct mem_cgroup *memcg;
26fe6168 2463
c0ff4b85
R
2464 memcg = stock->cached;
2465 if (!memcg || !stock->nr_pages)
26fe6168 2466 continue;
c0ff4b85 2467 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2468 continue;
d1a05b69
MH
2469 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2470 if (cpu == curcpu)
2471 drain_local_stock(&stock->work);
2472 else
2473 schedule_work_on(cpu, &stock->work);
2474 }
cdec2e42 2475 }
5af12d0e 2476 put_cpu();
d38144b7
MH
2477
2478 if (!sync)
2479 goto out;
2480
2481 for_each_online_cpu(cpu) {
2482 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2483 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2484 flush_work(&stock->work);
2485 }
2486out:
f894ffa8 2487 put_online_cpus();
d38144b7
MH
2488}
2489
2490/*
2491 * Tries to drain stocked charges in other cpus. This function is asynchronous
2492 * and just put a work per cpu for draining localy on each cpu. Caller can
2493 * expects some charges will be back to res_counter later but cannot wait for
2494 * it.
2495 */
c0ff4b85 2496static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2497{
9f50fad6
MH
2498 /*
2499 * If someone calls draining, avoid adding more kworker runs.
2500 */
2501 if (!mutex_trylock(&percpu_charge_mutex))
2502 return;
c0ff4b85 2503 drain_all_stock(root_memcg, false);
9f50fad6 2504 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2505}
2506
2507/* This is a synchronous drain interface. */
c0ff4b85 2508static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2509{
2510 /* called when force_empty is called */
9f50fad6 2511 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2512 drain_all_stock(root_memcg, true);
9f50fad6 2513 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2514}
2515
711d3d2c
KH
2516/*
2517 * This function drains percpu counter value from DEAD cpu and
2518 * move it to local cpu. Note that this function can be preempted.
2519 */
c0ff4b85 2520static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2521{
2522 int i;
2523
c0ff4b85 2524 spin_lock(&memcg->pcp_counter_lock);
6104621d 2525 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2526 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2527
c0ff4b85
R
2528 per_cpu(memcg->stat->count[i], cpu) = 0;
2529 memcg->nocpu_base.count[i] += x;
711d3d2c 2530 }
e9f8974f 2531 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2532 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2533
c0ff4b85
R
2534 per_cpu(memcg->stat->events[i], cpu) = 0;
2535 memcg->nocpu_base.events[i] += x;
e9f8974f 2536 }
c0ff4b85 2537 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2538}
2539
0db0628d 2540static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2541 unsigned long action,
2542 void *hcpu)
2543{
2544 int cpu = (unsigned long)hcpu;
2545 struct memcg_stock_pcp *stock;
711d3d2c 2546 struct mem_cgroup *iter;
cdec2e42 2547
619d094b 2548 if (action == CPU_ONLINE)
1489ebad 2549 return NOTIFY_OK;
1489ebad 2550
d833049b 2551 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2552 return NOTIFY_OK;
711d3d2c 2553
9f3a0d09 2554 for_each_mem_cgroup(iter)
711d3d2c
KH
2555 mem_cgroup_drain_pcp_counter(iter, cpu);
2556
cdec2e42
KH
2557 stock = &per_cpu(memcg_stock, cpu);
2558 drain_stock(stock);
2559 return NOTIFY_OK;
2560}
2561
4b534334
KH
2562
2563/* See __mem_cgroup_try_charge() for details */
2564enum {
2565 CHARGE_OK, /* success */
2566 CHARGE_RETRY, /* need to retry but retry is not bad */
2567 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2568 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2569};
2570
c0ff4b85 2571static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2572 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2573 bool invoke_oom)
4b534334 2574{
7ec99d62 2575 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2576 struct mem_cgroup *mem_over_limit;
2577 struct res_counter *fail_res;
2578 unsigned long flags = 0;
2579 int ret;
2580
c0ff4b85 2581 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2582
2583 if (likely(!ret)) {
2584 if (!do_swap_account)
2585 return CHARGE_OK;
c0ff4b85 2586 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2587 if (likely(!ret))
2588 return CHARGE_OK;
2589
c0ff4b85 2590 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2591 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2592 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2593 } else
2594 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2595 /*
9221edb7
JW
2596 * Never reclaim on behalf of optional batching, retry with a
2597 * single page instead.
2598 */
4c9c5359 2599 if (nr_pages > min_pages)
4b534334
KH
2600 return CHARGE_RETRY;
2601
2602 if (!(gfp_mask & __GFP_WAIT))
2603 return CHARGE_WOULDBLOCK;
2604
4c9c5359
SS
2605 if (gfp_mask & __GFP_NORETRY)
2606 return CHARGE_NOMEM;
2607
5660048c 2608 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2609 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2610 return CHARGE_RETRY;
4b534334 2611 /*
19942822
JW
2612 * Even though the limit is exceeded at this point, reclaim
2613 * may have been able to free some pages. Retry the charge
2614 * before killing the task.
2615 *
2616 * Only for regular pages, though: huge pages are rather
2617 * unlikely to succeed so close to the limit, and we fall back
2618 * to regular pages anyway in case of failure.
4b534334 2619 */
4c9c5359 2620 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2621 return CHARGE_RETRY;
2622
2623 /*
2624 * At task move, charge accounts can be doubly counted. So, it's
2625 * better to wait until the end of task_move if something is going on.
2626 */
2627 if (mem_cgroup_wait_acct_move(mem_over_limit))
2628 return CHARGE_RETRY;
2629
3812c8c8
JW
2630 if (invoke_oom)
2631 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2632
3812c8c8 2633 return CHARGE_NOMEM;
4b534334
KH
2634}
2635
f817ed48 2636/*
38c5d72f
KH
2637 * __mem_cgroup_try_charge() does
2638 * 1. detect memcg to be charged against from passed *mm and *ptr,
2639 * 2. update res_counter
2640 * 3. call memory reclaim if necessary.
2641 *
2642 * In some special case, if the task is fatal, fatal_signal_pending() or
2643 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2644 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2645 * as possible without any hazards. 2: all pages should have a valid
2646 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2647 * pointer, that is treated as a charge to root_mem_cgroup.
2648 *
2649 * So __mem_cgroup_try_charge() will return
2650 * 0 ... on success, filling *ptr with a valid memcg pointer.
2651 * -ENOMEM ... charge failure because of resource limits.
2652 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2653 *
2654 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2655 * the oom-killer can be invoked.
8a9f3ccd 2656 */
f817ed48 2657static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2658 gfp_t gfp_mask,
7ec99d62 2659 unsigned int nr_pages,
c0ff4b85 2660 struct mem_cgroup **ptr,
7ec99d62 2661 bool oom)
8a9f3ccd 2662{
7ec99d62 2663 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2664 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2665 struct mem_cgroup *memcg = NULL;
4b534334 2666 int ret;
a636b327 2667
867578cb
KH
2668 /*
2669 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2670 * in system level. So, allow to go ahead dying process in addition to
2671 * MEMDIE process.
2672 */
2673 if (unlikely(test_thread_flag(TIF_MEMDIE)
2674 || fatal_signal_pending(current)))
2675 goto bypass;
a636b327 2676
49426420
JW
2677 if (unlikely(task_in_memcg_oom(current)))
2678 goto bypass;
2679
8a9f3ccd 2680 /*
3be91277
HD
2681 * We always charge the cgroup the mm_struct belongs to.
2682 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2683 * thread group leader migrates. It's possible that mm is not
24467cac 2684 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2685 */
c0ff4b85 2686 if (!*ptr && !mm)
38c5d72f 2687 *ptr = root_mem_cgroup;
f75ca962 2688again:
c0ff4b85
R
2689 if (*ptr) { /* css should be a valid one */
2690 memcg = *ptr;
c0ff4b85 2691 if (mem_cgroup_is_root(memcg))
f75ca962 2692 goto done;
a0956d54 2693 if (consume_stock(memcg, nr_pages))
f75ca962 2694 goto done;
c0ff4b85 2695 css_get(&memcg->css);
4b534334 2696 } else {
f75ca962 2697 struct task_struct *p;
54595fe2 2698
f75ca962
KH
2699 rcu_read_lock();
2700 p = rcu_dereference(mm->owner);
f75ca962 2701 /*
ebb76ce1 2702 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2703 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2704 * race with swapoff. Then, we have small risk of mis-accouning.
2705 * But such kind of mis-account by race always happens because
2706 * we don't have cgroup_mutex(). It's overkill and we allo that
2707 * small race, here.
2708 * (*) swapoff at el will charge against mm-struct not against
2709 * task-struct. So, mm->owner can be NULL.
f75ca962 2710 */
c0ff4b85 2711 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2712 if (!memcg)
2713 memcg = root_mem_cgroup;
2714 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2715 rcu_read_unlock();
2716 goto done;
2717 }
a0956d54 2718 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2719 /*
2720 * It seems dagerous to access memcg without css_get().
2721 * But considering how consume_stok works, it's not
2722 * necessary. If consume_stock success, some charges
2723 * from this memcg are cached on this cpu. So, we
2724 * don't need to call css_get()/css_tryget() before
2725 * calling consume_stock().
2726 */
2727 rcu_read_unlock();
2728 goto done;
2729 }
2730 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2731 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2732 rcu_read_unlock();
2733 goto again;
2734 }
2735 rcu_read_unlock();
2736 }
8a9f3ccd 2737
4b534334 2738 do {
3812c8c8 2739 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2740
4b534334 2741 /* If killed, bypass charge */
f75ca962 2742 if (fatal_signal_pending(current)) {
c0ff4b85 2743 css_put(&memcg->css);
4b534334 2744 goto bypass;
f75ca962 2745 }
6d61ef40 2746
3812c8c8
JW
2747 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2748 nr_pages, invoke_oom);
4b534334
KH
2749 switch (ret) {
2750 case CHARGE_OK:
2751 break;
2752 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2753 batch = nr_pages;
c0ff4b85
R
2754 css_put(&memcg->css);
2755 memcg = NULL;
f75ca962 2756 goto again;
4b534334 2757 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2758 css_put(&memcg->css);
4b534334
KH
2759 goto nomem;
2760 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2761 if (!oom || invoke_oom) {
c0ff4b85 2762 css_put(&memcg->css);
867578cb 2763 goto nomem;
f75ca962 2764 }
4b534334
KH
2765 nr_oom_retries--;
2766 break;
66e1707b 2767 }
4b534334
KH
2768 } while (ret != CHARGE_OK);
2769
7ec99d62 2770 if (batch > nr_pages)
c0ff4b85
R
2771 refill_stock(memcg, batch - nr_pages);
2772 css_put(&memcg->css);
0c3e73e8 2773done:
c0ff4b85 2774 *ptr = memcg;
7a81b88c
KH
2775 return 0;
2776nomem:
3168ecbe
JW
2777 if (!(gfp_mask & __GFP_NOFAIL)) {
2778 *ptr = NULL;
2779 return -ENOMEM;
2780 }
867578cb 2781bypass:
38c5d72f
KH
2782 *ptr = root_mem_cgroup;
2783 return -EINTR;
7a81b88c 2784}
8a9f3ccd 2785
a3032a2c
DN
2786/*
2787 * Somemtimes we have to undo a charge we got by try_charge().
2788 * This function is for that and do uncharge, put css's refcnt.
2789 * gotten by try_charge().
2790 */
c0ff4b85 2791static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2792 unsigned int nr_pages)
a3032a2c 2793{
c0ff4b85 2794 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2795 unsigned long bytes = nr_pages * PAGE_SIZE;
2796
c0ff4b85 2797 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2798 if (do_swap_account)
c0ff4b85 2799 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2800 }
854ffa8d
DN
2801}
2802
d01dd17f
KH
2803/*
2804 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2805 * This is useful when moving usage to parent cgroup.
2806 */
2807static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2808 unsigned int nr_pages)
2809{
2810 unsigned long bytes = nr_pages * PAGE_SIZE;
2811
2812 if (mem_cgroup_is_root(memcg))
2813 return;
2814
2815 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2816 if (do_swap_account)
2817 res_counter_uncharge_until(&memcg->memsw,
2818 memcg->memsw.parent, bytes);
2819}
2820
a3b2d692
KH
2821/*
2822 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2823 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2824 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2825 * called against removed memcg.)
a3b2d692
KH
2826 */
2827static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2828{
2829 struct cgroup_subsys_state *css;
2830
2831 /* ID 0 is unused ID */
2832 if (!id)
2833 return NULL;
2834 css = css_lookup(&mem_cgroup_subsys, id);
2835 if (!css)
2836 return NULL;
b2145145 2837 return mem_cgroup_from_css(css);
a3b2d692
KH
2838}
2839
e42d9d5d 2840struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2841{
c0ff4b85 2842 struct mem_cgroup *memcg = NULL;
3c776e64 2843 struct page_cgroup *pc;
a3b2d692 2844 unsigned short id;
b5a84319
KH
2845 swp_entry_t ent;
2846
3c776e64
DN
2847 VM_BUG_ON(!PageLocked(page));
2848
3c776e64 2849 pc = lookup_page_cgroup(page);
c0bd3f63 2850 lock_page_cgroup(pc);
a3b2d692 2851 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2852 memcg = pc->mem_cgroup;
2853 if (memcg && !css_tryget(&memcg->css))
2854 memcg = NULL;
e42d9d5d 2855 } else if (PageSwapCache(page)) {
3c776e64 2856 ent.val = page_private(page);
9fb4b7cc 2857 id = lookup_swap_cgroup_id(ent);
a3b2d692 2858 rcu_read_lock();
c0ff4b85
R
2859 memcg = mem_cgroup_lookup(id);
2860 if (memcg && !css_tryget(&memcg->css))
2861 memcg = NULL;
a3b2d692 2862 rcu_read_unlock();
3c776e64 2863 }
c0bd3f63 2864 unlock_page_cgroup(pc);
c0ff4b85 2865 return memcg;
b5a84319
KH
2866}
2867
c0ff4b85 2868static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2869 struct page *page,
7ec99d62 2870 unsigned int nr_pages,
9ce70c02
HD
2871 enum charge_type ctype,
2872 bool lrucare)
7a81b88c 2873{
ce587e65 2874 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2875 struct zone *uninitialized_var(zone);
fa9add64 2876 struct lruvec *lruvec;
9ce70c02 2877 bool was_on_lru = false;
b2402857 2878 bool anon;
9ce70c02 2879
ca3e0214 2880 lock_page_cgroup(pc);
90deb788 2881 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2882 /*
2883 * we don't need page_cgroup_lock about tail pages, becase they are not
2884 * accessed by any other context at this point.
2885 */
9ce70c02
HD
2886
2887 /*
2888 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2889 * may already be on some other mem_cgroup's LRU. Take care of it.
2890 */
2891 if (lrucare) {
2892 zone = page_zone(page);
2893 spin_lock_irq(&zone->lru_lock);
2894 if (PageLRU(page)) {
fa9add64 2895 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2896 ClearPageLRU(page);
fa9add64 2897 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2898 was_on_lru = true;
2899 }
2900 }
2901
c0ff4b85 2902 pc->mem_cgroup = memcg;
261fb61a
KH
2903 /*
2904 * We access a page_cgroup asynchronously without lock_page_cgroup().
2905 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2906 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2907 * before USED bit, we need memory barrier here.
2908 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2909 */
08e552c6 2910 smp_wmb();
b2402857 2911 SetPageCgroupUsed(pc);
3be91277 2912
9ce70c02
HD
2913 if (lrucare) {
2914 if (was_on_lru) {
fa9add64 2915 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2916 VM_BUG_ON(PageLRU(page));
2917 SetPageLRU(page);
fa9add64 2918 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2919 }
2920 spin_unlock_irq(&zone->lru_lock);
2921 }
2922
41326c17 2923 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2924 anon = true;
2925 else
2926 anon = false;
2927
b070e65c 2928 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2929 unlock_page_cgroup(pc);
9ce70c02 2930
430e4863 2931 /*
bb4cc1a8
AM
2932 * "charge_statistics" updated event counter. Then, check it.
2933 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2934 * if they exceeds softlimit.
430e4863 2935 */
c0ff4b85 2936 memcg_check_events(memcg, page);
7a81b88c 2937}
66e1707b 2938
7cf27982
GC
2939static DEFINE_MUTEX(set_limit_mutex);
2940
7ae1e1d0
GC
2941#ifdef CONFIG_MEMCG_KMEM
2942static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2943{
2944 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2945 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2946}
2947
1f458cbf
GC
2948/*
2949 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2950 * in the memcg_cache_params struct.
2951 */
2952static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2953{
2954 struct kmem_cache *cachep;
2955
2956 VM_BUG_ON(p->is_root_cache);
2957 cachep = p->root_cache;
2958 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2959}
2960
749c5415 2961#ifdef CONFIG_SLABINFO
182446d0
TH
2962static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2963 struct cftype *cft, struct seq_file *m)
749c5415 2964{
182446d0 2965 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
2966 struct memcg_cache_params *params;
2967
2968 if (!memcg_can_account_kmem(memcg))
2969 return -EIO;
2970
2971 print_slabinfo_header(m);
2972
2973 mutex_lock(&memcg->slab_caches_mutex);
2974 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2975 cache_show(memcg_params_to_cache(params), m);
2976 mutex_unlock(&memcg->slab_caches_mutex);
2977
2978 return 0;
2979}
2980#endif
2981
7ae1e1d0
GC
2982static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2983{
2984 struct res_counter *fail_res;
2985 struct mem_cgroup *_memcg;
2986 int ret = 0;
7ae1e1d0
GC
2987
2988 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2989 if (ret)
2990 return ret;
2991
7ae1e1d0
GC
2992 _memcg = memcg;
2993 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
b9921ecd 2994 &_memcg, oom_gfp_allowed(gfp));
7ae1e1d0
GC
2995
2996 if (ret == -EINTR) {
2997 /*
2998 * __mem_cgroup_try_charge() chosed to bypass to root due to
2999 * OOM kill or fatal signal. Since our only options are to
3000 * either fail the allocation or charge it to this cgroup, do
3001 * it as a temporary condition. But we can't fail. From a
3002 * kmem/slab perspective, the cache has already been selected,
3003 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3004 * our minds.
3005 *
3006 * This condition will only trigger if the task entered
3007 * memcg_charge_kmem in a sane state, but was OOM-killed during
3008 * __mem_cgroup_try_charge() above. Tasks that were already
3009 * dying when the allocation triggers should have been already
3010 * directed to the root cgroup in memcontrol.h
3011 */
3012 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3013 if (do_swap_account)
3014 res_counter_charge_nofail(&memcg->memsw, size,
3015 &fail_res);
3016 ret = 0;
3017 } else if (ret)
3018 res_counter_uncharge(&memcg->kmem, size);
3019
3020 return ret;
3021}
3022
3023static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3024{
7ae1e1d0
GC
3025 res_counter_uncharge(&memcg->res, size);
3026 if (do_swap_account)
3027 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3028
3029 /* Not down to 0 */
3030 if (res_counter_uncharge(&memcg->kmem, size))
3031 return;
3032
10d5ebf4
LZ
3033 /*
3034 * Releases a reference taken in kmem_cgroup_css_offline in case
3035 * this last uncharge is racing with the offlining code or it is
3036 * outliving the memcg existence.
3037 *
3038 * The memory barrier imposed by test&clear is paired with the
3039 * explicit one in memcg_kmem_mark_dead().
3040 */
7de37682 3041 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3042 css_put(&memcg->css);
7ae1e1d0
GC
3043}
3044
2633d7a0
GC
3045void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3046{
3047 if (!memcg)
3048 return;
3049
3050 mutex_lock(&memcg->slab_caches_mutex);
3051 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3052 mutex_unlock(&memcg->slab_caches_mutex);
3053}
3054
3055/*
3056 * helper for acessing a memcg's index. It will be used as an index in the
3057 * child cache array in kmem_cache, and also to derive its name. This function
3058 * will return -1 when this is not a kmem-limited memcg.
3059 */
3060int memcg_cache_id(struct mem_cgroup *memcg)
3061{
3062 return memcg ? memcg->kmemcg_id : -1;
3063}
3064
55007d84
GC
3065/*
3066 * This ends up being protected by the set_limit mutex, during normal
3067 * operation, because that is its main call site.
3068 *
3069 * But when we create a new cache, we can call this as well if its parent
3070 * is kmem-limited. That will have to hold set_limit_mutex as well.
3071 */
3072int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3073{
3074 int num, ret;
3075
3076 num = ida_simple_get(&kmem_limited_groups,
3077 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3078 if (num < 0)
3079 return num;
3080 /*
3081 * After this point, kmem_accounted (that we test atomically in
3082 * the beginning of this conditional), is no longer 0. This
3083 * guarantees only one process will set the following boolean
3084 * to true. We don't need test_and_set because we're protected
3085 * by the set_limit_mutex anyway.
3086 */
3087 memcg_kmem_set_activated(memcg);
3088
3089 ret = memcg_update_all_caches(num+1);
3090 if (ret) {
3091 ida_simple_remove(&kmem_limited_groups, num);
3092 memcg_kmem_clear_activated(memcg);
3093 return ret;
3094 }
3095
3096 memcg->kmemcg_id = num;
3097 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3098 mutex_init(&memcg->slab_caches_mutex);
3099 return 0;
3100}
3101
3102static size_t memcg_caches_array_size(int num_groups)
3103{
3104 ssize_t size;
3105 if (num_groups <= 0)
3106 return 0;
3107
3108 size = 2 * num_groups;
3109 if (size < MEMCG_CACHES_MIN_SIZE)
3110 size = MEMCG_CACHES_MIN_SIZE;
3111 else if (size > MEMCG_CACHES_MAX_SIZE)
3112 size = MEMCG_CACHES_MAX_SIZE;
3113
3114 return size;
3115}
3116
3117/*
3118 * We should update the current array size iff all caches updates succeed. This
3119 * can only be done from the slab side. The slab mutex needs to be held when
3120 * calling this.
3121 */
3122void memcg_update_array_size(int num)
3123{
3124 if (num > memcg_limited_groups_array_size)
3125 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3126}
3127
15cf17d2
KK
3128static void kmem_cache_destroy_work_func(struct work_struct *w);
3129
55007d84
GC
3130int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3131{
3132 struct memcg_cache_params *cur_params = s->memcg_params;
3133
3134 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3135
3136 if (num_groups > memcg_limited_groups_array_size) {
3137 int i;
3138 ssize_t size = memcg_caches_array_size(num_groups);
3139
3140 size *= sizeof(void *);
90c7a79c 3141 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84
GC
3142
3143 s->memcg_params = kzalloc(size, GFP_KERNEL);
3144 if (!s->memcg_params) {
3145 s->memcg_params = cur_params;
3146 return -ENOMEM;
3147 }
3148
3149 s->memcg_params->is_root_cache = true;
3150
3151 /*
3152 * There is the chance it will be bigger than
3153 * memcg_limited_groups_array_size, if we failed an allocation
3154 * in a cache, in which case all caches updated before it, will
3155 * have a bigger array.
3156 *
3157 * But if that is the case, the data after
3158 * memcg_limited_groups_array_size is certainly unused
3159 */
3160 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3161 if (!cur_params->memcg_caches[i])
3162 continue;
3163 s->memcg_params->memcg_caches[i] =
3164 cur_params->memcg_caches[i];
3165 }
3166
3167 /*
3168 * Ideally, we would wait until all caches succeed, and only
3169 * then free the old one. But this is not worth the extra
3170 * pointer per-cache we'd have to have for this.
3171 *
3172 * It is not a big deal if some caches are left with a size
3173 * bigger than the others. And all updates will reset this
3174 * anyway.
3175 */
3176 kfree(cur_params);
3177 }
3178 return 0;
3179}
3180
943a451a
GC
3181int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3182 struct kmem_cache *root_cache)
2633d7a0 3183{
90c7a79c 3184 size_t size;
2633d7a0
GC
3185
3186 if (!memcg_kmem_enabled())
3187 return 0;
3188
90c7a79c
AV
3189 if (!memcg) {
3190 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3191 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3192 } else
3193 size = sizeof(struct memcg_cache_params);
55007d84 3194
2633d7a0
GC
3195 s->memcg_params = kzalloc(size, GFP_KERNEL);
3196 if (!s->memcg_params)
3197 return -ENOMEM;
3198
943a451a 3199 if (memcg) {
2633d7a0 3200 s->memcg_params->memcg = memcg;
943a451a 3201 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3202 INIT_WORK(&s->memcg_params->destroy,
3203 kmem_cache_destroy_work_func);
4ba902b5
GC
3204 } else
3205 s->memcg_params->is_root_cache = true;
3206
2633d7a0
GC
3207 return 0;
3208}
3209
3210void memcg_release_cache(struct kmem_cache *s)
3211{
d7f25f8a
GC
3212 struct kmem_cache *root;
3213 struct mem_cgroup *memcg;
3214 int id;
3215
3216 /*
3217 * This happens, for instance, when a root cache goes away before we
3218 * add any memcg.
3219 */
3220 if (!s->memcg_params)
3221 return;
3222
3223 if (s->memcg_params->is_root_cache)
3224 goto out;
3225
3226 memcg = s->memcg_params->memcg;
3227 id = memcg_cache_id(memcg);
3228
3229 root = s->memcg_params->root_cache;
3230 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3231
3232 mutex_lock(&memcg->slab_caches_mutex);
3233 list_del(&s->memcg_params->list);
3234 mutex_unlock(&memcg->slab_caches_mutex);
3235
20f05310 3236 css_put(&memcg->css);
d7f25f8a 3237out:
2633d7a0
GC
3238 kfree(s->memcg_params);
3239}
3240
0e9d92f2
GC
3241/*
3242 * During the creation a new cache, we need to disable our accounting mechanism
3243 * altogether. This is true even if we are not creating, but rather just
3244 * enqueing new caches to be created.
3245 *
3246 * This is because that process will trigger allocations; some visible, like
3247 * explicit kmallocs to auxiliary data structures, name strings and internal
3248 * cache structures; some well concealed, like INIT_WORK() that can allocate
3249 * objects during debug.
3250 *
3251 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3252 * to it. This may not be a bounded recursion: since the first cache creation
3253 * failed to complete (waiting on the allocation), we'll just try to create the
3254 * cache again, failing at the same point.
3255 *
3256 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3257 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3258 * inside the following two functions.
3259 */
3260static inline void memcg_stop_kmem_account(void)
3261{
3262 VM_BUG_ON(!current->mm);
3263 current->memcg_kmem_skip_account++;
3264}
3265
3266static inline void memcg_resume_kmem_account(void)
3267{
3268 VM_BUG_ON(!current->mm);
3269 current->memcg_kmem_skip_account--;
3270}
3271
1f458cbf
GC
3272static void kmem_cache_destroy_work_func(struct work_struct *w)
3273{
3274 struct kmem_cache *cachep;
3275 struct memcg_cache_params *p;
3276
3277 p = container_of(w, struct memcg_cache_params, destroy);
3278
3279 cachep = memcg_params_to_cache(p);
3280
22933152
GC
3281 /*
3282 * If we get down to 0 after shrink, we could delete right away.
3283 * However, memcg_release_pages() already puts us back in the workqueue
3284 * in that case. If we proceed deleting, we'll get a dangling
3285 * reference, and removing the object from the workqueue in that case
3286 * is unnecessary complication. We are not a fast path.
3287 *
3288 * Note that this case is fundamentally different from racing with
3289 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3290 * kmem_cache_shrink, not only we would be reinserting a dead cache
3291 * into the queue, but doing so from inside the worker racing to
3292 * destroy it.
3293 *
3294 * So if we aren't down to zero, we'll just schedule a worker and try
3295 * again
3296 */
3297 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3298 kmem_cache_shrink(cachep);
3299 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3300 return;
3301 } else
1f458cbf
GC
3302 kmem_cache_destroy(cachep);
3303}
3304
3305void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3306{
3307 if (!cachep->memcg_params->dead)
3308 return;
3309
22933152
GC
3310 /*
3311 * There are many ways in which we can get here.
3312 *
3313 * We can get to a memory-pressure situation while the delayed work is
3314 * still pending to run. The vmscan shrinkers can then release all
3315 * cache memory and get us to destruction. If this is the case, we'll
3316 * be executed twice, which is a bug (the second time will execute over
3317 * bogus data). In this case, cancelling the work should be fine.
3318 *
3319 * But we can also get here from the worker itself, if
3320 * kmem_cache_shrink is enough to shake all the remaining objects and
3321 * get the page count to 0. In this case, we'll deadlock if we try to
3322 * cancel the work (the worker runs with an internal lock held, which
3323 * is the same lock we would hold for cancel_work_sync().)
3324 *
3325 * Since we can't possibly know who got us here, just refrain from
3326 * running if there is already work pending
3327 */
3328 if (work_pending(&cachep->memcg_params->destroy))
3329 return;
1f458cbf
GC
3330 /*
3331 * We have to defer the actual destroying to a workqueue, because
3332 * we might currently be in a context that cannot sleep.
3333 */
3334 schedule_work(&cachep->memcg_params->destroy);
3335}
3336
d9c10ddd
MH
3337/*
3338 * This lock protects updaters, not readers. We want readers to be as fast as
3339 * they can, and they will either see NULL or a valid cache value. Our model
3340 * allow them to see NULL, in which case the root memcg will be selected.
3341 *
3342 * We need this lock because multiple allocations to the same cache from a non
3343 * will span more than one worker. Only one of them can create the cache.
3344 */
3345static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3346
d9c10ddd
MH
3347/*
3348 * Called with memcg_cache_mutex held
3349 */
d7f25f8a
GC
3350static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3351 struct kmem_cache *s)
3352{
d7f25f8a 3353 struct kmem_cache *new;
d9c10ddd 3354 static char *tmp_name = NULL;
d7f25f8a 3355
d9c10ddd
MH
3356 lockdep_assert_held(&memcg_cache_mutex);
3357
3358 /*
3359 * kmem_cache_create_memcg duplicates the given name and
3360 * cgroup_name for this name requires RCU context.
3361 * This static temporary buffer is used to prevent from
3362 * pointless shortliving allocation.
3363 */
3364 if (!tmp_name) {
3365 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3366 if (!tmp_name)
3367 return NULL;
3368 }
3369
3370 rcu_read_lock();
3371 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3372 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3373 rcu_read_unlock();
d7f25f8a 3374
d9c10ddd 3375 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3376 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3377
d79923fa
GC
3378 if (new)
3379 new->allocflags |= __GFP_KMEMCG;
3380
d7f25f8a
GC
3381 return new;
3382}
3383
d7f25f8a
GC
3384static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3385 struct kmem_cache *cachep)
3386{
3387 struct kmem_cache *new_cachep;
3388 int idx;
3389
3390 BUG_ON(!memcg_can_account_kmem(memcg));
3391
3392 idx = memcg_cache_id(memcg);
3393
3394 mutex_lock(&memcg_cache_mutex);
3395 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3396 if (new_cachep) {
3397 css_put(&memcg->css);
d7f25f8a 3398 goto out;
20f05310 3399 }
d7f25f8a
GC
3400
3401 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3402 if (new_cachep == NULL) {
3403 new_cachep = cachep;
20f05310 3404 css_put(&memcg->css);
d7f25f8a
GC
3405 goto out;
3406 }
3407
1f458cbf 3408 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3409
3410 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3411 /*
3412 * the readers won't lock, make sure everybody sees the updated value,
3413 * so they won't put stuff in the queue again for no reason
3414 */
3415 wmb();
3416out:
3417 mutex_unlock(&memcg_cache_mutex);
3418 return new_cachep;
3419}
3420
7cf27982
GC
3421void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3422{
3423 struct kmem_cache *c;
3424 int i;
3425
3426 if (!s->memcg_params)
3427 return;
3428 if (!s->memcg_params->is_root_cache)
3429 return;
3430
3431 /*
3432 * If the cache is being destroyed, we trust that there is no one else
3433 * requesting objects from it. Even if there are, the sanity checks in
3434 * kmem_cache_destroy should caught this ill-case.
3435 *
3436 * Still, we don't want anyone else freeing memcg_caches under our
3437 * noses, which can happen if a new memcg comes to life. As usual,
3438 * we'll take the set_limit_mutex to protect ourselves against this.
3439 */
3440 mutex_lock(&set_limit_mutex);
3441 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3442 c = s->memcg_params->memcg_caches[i];
3443 if (!c)
3444 continue;
3445
3446 /*
3447 * We will now manually delete the caches, so to avoid races
3448 * we need to cancel all pending destruction workers and
3449 * proceed with destruction ourselves.
3450 *
3451 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3452 * and that could spawn the workers again: it is likely that
3453 * the cache still have active pages until this very moment.
3454 * This would lead us back to mem_cgroup_destroy_cache.
3455 *
3456 * But that will not execute at all if the "dead" flag is not
3457 * set, so flip it down to guarantee we are in control.
3458 */
3459 c->memcg_params->dead = false;
22933152 3460 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3461 kmem_cache_destroy(c);
3462 }
3463 mutex_unlock(&set_limit_mutex);
3464}
3465
d7f25f8a
GC
3466struct create_work {
3467 struct mem_cgroup *memcg;
3468 struct kmem_cache *cachep;
3469 struct work_struct work;
3470};
3471
1f458cbf
GC
3472static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3473{
3474 struct kmem_cache *cachep;
3475 struct memcg_cache_params *params;
3476
3477 if (!memcg_kmem_is_active(memcg))
3478 return;
3479
3480 mutex_lock(&memcg->slab_caches_mutex);
3481 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3482 cachep = memcg_params_to_cache(params);
3483 cachep->memcg_params->dead = true;
1f458cbf
GC
3484 schedule_work(&cachep->memcg_params->destroy);
3485 }
3486 mutex_unlock(&memcg->slab_caches_mutex);
3487}
3488
d7f25f8a
GC
3489static void memcg_create_cache_work_func(struct work_struct *w)
3490{
3491 struct create_work *cw;
3492
3493 cw = container_of(w, struct create_work, work);
3494 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3495 kfree(cw);
3496}
3497
3498/*
3499 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3500 */
0e9d92f2
GC
3501static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3502 struct kmem_cache *cachep)
d7f25f8a
GC
3503{
3504 struct create_work *cw;
3505
3506 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3507 if (cw == NULL) {
3508 css_put(&memcg->css);
d7f25f8a
GC
3509 return;
3510 }
3511
3512 cw->memcg = memcg;
3513 cw->cachep = cachep;
3514
3515 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3516 schedule_work(&cw->work);
3517}
3518
0e9d92f2
GC
3519static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3520 struct kmem_cache *cachep)
3521{
3522 /*
3523 * We need to stop accounting when we kmalloc, because if the
3524 * corresponding kmalloc cache is not yet created, the first allocation
3525 * in __memcg_create_cache_enqueue will recurse.
3526 *
3527 * However, it is better to enclose the whole function. Depending on
3528 * the debugging options enabled, INIT_WORK(), for instance, can
3529 * trigger an allocation. This too, will make us recurse. Because at
3530 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3531 * the safest choice is to do it like this, wrapping the whole function.
3532 */
3533 memcg_stop_kmem_account();
3534 __memcg_create_cache_enqueue(memcg, cachep);
3535 memcg_resume_kmem_account();
3536}
d7f25f8a
GC
3537/*
3538 * Return the kmem_cache we're supposed to use for a slab allocation.
3539 * We try to use the current memcg's version of the cache.
3540 *
3541 * If the cache does not exist yet, if we are the first user of it,
3542 * we either create it immediately, if possible, or create it asynchronously
3543 * in a workqueue.
3544 * In the latter case, we will let the current allocation go through with
3545 * the original cache.
3546 *
3547 * Can't be called in interrupt context or from kernel threads.
3548 * This function needs to be called with rcu_read_lock() held.
3549 */
3550struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3551 gfp_t gfp)
3552{
3553 struct mem_cgroup *memcg;
3554 int idx;
3555
3556 VM_BUG_ON(!cachep->memcg_params);
3557 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3558
0e9d92f2
GC
3559 if (!current->mm || current->memcg_kmem_skip_account)
3560 return cachep;
3561
d7f25f8a
GC
3562 rcu_read_lock();
3563 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3564
3565 if (!memcg_can_account_kmem(memcg))
ca0dde97 3566 goto out;
d7f25f8a
GC
3567
3568 idx = memcg_cache_id(memcg);
3569
3570 /*
3571 * barrier to mare sure we're always seeing the up to date value. The
3572 * code updating memcg_caches will issue a write barrier to match this.
3573 */
3574 read_barrier_depends();
ca0dde97
LZ
3575 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3576 cachep = cachep->memcg_params->memcg_caches[idx];
3577 goto out;
d7f25f8a
GC
3578 }
3579
ca0dde97
LZ
3580 /* The corresponding put will be done in the workqueue. */
3581 if (!css_tryget(&memcg->css))
3582 goto out;
3583 rcu_read_unlock();
3584
3585 /*
3586 * If we are in a safe context (can wait, and not in interrupt
3587 * context), we could be be predictable and return right away.
3588 * This would guarantee that the allocation being performed
3589 * already belongs in the new cache.
3590 *
3591 * However, there are some clashes that can arrive from locking.
3592 * For instance, because we acquire the slab_mutex while doing
3593 * kmem_cache_dup, this means no further allocation could happen
3594 * with the slab_mutex held.
3595 *
3596 * Also, because cache creation issue get_online_cpus(), this
3597 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3598 * that ends up reversed during cpu hotplug. (cpuset allocates
3599 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3600 * better to defer everything.
3601 */
3602 memcg_create_cache_enqueue(memcg, cachep);
3603 return cachep;
3604out:
3605 rcu_read_unlock();
3606 return cachep;
d7f25f8a
GC
3607}
3608EXPORT_SYMBOL(__memcg_kmem_get_cache);
3609
7ae1e1d0
GC
3610/*
3611 * We need to verify if the allocation against current->mm->owner's memcg is
3612 * possible for the given order. But the page is not allocated yet, so we'll
3613 * need a further commit step to do the final arrangements.
3614 *
3615 * It is possible for the task to switch cgroups in this mean time, so at
3616 * commit time, we can't rely on task conversion any longer. We'll then use
3617 * the handle argument to return to the caller which cgroup we should commit
3618 * against. We could also return the memcg directly and avoid the pointer
3619 * passing, but a boolean return value gives better semantics considering
3620 * the compiled-out case as well.
3621 *
3622 * Returning true means the allocation is possible.
3623 */
3624bool
3625__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3626{
3627 struct mem_cgroup *memcg;
3628 int ret;
3629
3630 *_memcg = NULL;
6d42c232
GC
3631
3632 /*
3633 * Disabling accounting is only relevant for some specific memcg
3634 * internal allocations. Therefore we would initially not have such
3635 * check here, since direct calls to the page allocator that are marked
3636 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3637 * concerned with cache allocations, and by having this test at
3638 * memcg_kmem_get_cache, we are already able to relay the allocation to
3639 * the root cache and bypass the memcg cache altogether.
3640 *
3641 * There is one exception, though: the SLUB allocator does not create
3642 * large order caches, but rather service large kmallocs directly from
3643 * the page allocator. Therefore, the following sequence when backed by
3644 * the SLUB allocator:
3645 *
f894ffa8
AM
3646 * memcg_stop_kmem_account();
3647 * kmalloc(<large_number>)
3648 * memcg_resume_kmem_account();
6d42c232
GC
3649 *
3650 * would effectively ignore the fact that we should skip accounting,
3651 * since it will drive us directly to this function without passing
3652 * through the cache selector memcg_kmem_get_cache. Such large
3653 * allocations are extremely rare but can happen, for instance, for the
3654 * cache arrays. We bring this test here.
3655 */
3656 if (!current->mm || current->memcg_kmem_skip_account)
3657 return true;
3658
7ae1e1d0
GC
3659 memcg = try_get_mem_cgroup_from_mm(current->mm);
3660
3661 /*
3662 * very rare case described in mem_cgroup_from_task. Unfortunately there
3663 * isn't much we can do without complicating this too much, and it would
3664 * be gfp-dependent anyway. Just let it go
3665 */
3666 if (unlikely(!memcg))
3667 return true;
3668
3669 if (!memcg_can_account_kmem(memcg)) {
3670 css_put(&memcg->css);
3671 return true;
3672 }
3673
7ae1e1d0
GC
3674 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3675 if (!ret)
3676 *_memcg = memcg;
7ae1e1d0
GC
3677
3678 css_put(&memcg->css);
3679 return (ret == 0);
3680}
3681
3682void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3683 int order)
3684{
3685 struct page_cgroup *pc;
3686
3687 VM_BUG_ON(mem_cgroup_is_root(memcg));
3688
3689 /* The page allocation failed. Revert */
3690 if (!page) {
3691 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3692 return;
3693 }
3694
3695 pc = lookup_page_cgroup(page);
3696 lock_page_cgroup(pc);
3697 pc->mem_cgroup = memcg;
3698 SetPageCgroupUsed(pc);
3699 unlock_page_cgroup(pc);
3700}
3701
3702void __memcg_kmem_uncharge_pages(struct page *page, int order)
3703{
3704 struct mem_cgroup *memcg = NULL;
3705 struct page_cgroup *pc;
3706
3707
3708 pc = lookup_page_cgroup(page);
3709 /*
3710 * Fast unlocked return. Theoretically might have changed, have to
3711 * check again after locking.
3712 */
3713 if (!PageCgroupUsed(pc))
3714 return;
3715
3716 lock_page_cgroup(pc);
3717 if (PageCgroupUsed(pc)) {
3718 memcg = pc->mem_cgroup;
3719 ClearPageCgroupUsed(pc);
3720 }
3721 unlock_page_cgroup(pc);
3722
3723 /*
3724 * We trust that only if there is a memcg associated with the page, it
3725 * is a valid allocation
3726 */
3727 if (!memcg)
3728 return;
3729
3730 VM_BUG_ON(mem_cgroup_is_root(memcg));
3731 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3732}
1f458cbf
GC
3733#else
3734static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3735{
3736}
7ae1e1d0
GC
3737#endif /* CONFIG_MEMCG_KMEM */
3738
ca3e0214
KH
3739#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3740
a0db00fc 3741#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3742/*
3743 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3744 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3745 * charge/uncharge will be never happen and move_account() is done under
3746 * compound_lock(), so we don't have to take care of races.
ca3e0214 3747 */
e94c8a9c 3748void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3749{
3750 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3751 struct page_cgroup *pc;
b070e65c 3752 struct mem_cgroup *memcg;
e94c8a9c 3753 int i;
ca3e0214 3754
3d37c4a9
KH
3755 if (mem_cgroup_disabled())
3756 return;
b070e65c
DR
3757
3758 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3759 for (i = 1; i < HPAGE_PMD_NR; i++) {
3760 pc = head_pc + i;
b070e65c 3761 pc->mem_cgroup = memcg;
e94c8a9c 3762 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3763 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3764 }
b070e65c
DR
3765 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3766 HPAGE_PMD_NR);
ca3e0214 3767}
12d27107 3768#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3769
3ea67d06
SZ
3770static inline
3771void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3772 struct mem_cgroup *to,
3773 unsigned int nr_pages,
3774 enum mem_cgroup_stat_index idx)
3775{
3776 /* Update stat data for mem_cgroup */
3777 preempt_disable();
5e8cfc3c 3778 __this_cpu_sub(from->stat->count[idx], nr_pages);
3ea67d06
SZ
3779 __this_cpu_add(to->stat->count[idx], nr_pages);
3780 preempt_enable();
3781}
3782
f817ed48 3783/**
de3638d9 3784 * mem_cgroup_move_account - move account of the page
5564e88b 3785 * @page: the page
7ec99d62 3786 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3787 * @pc: page_cgroup of the page.
3788 * @from: mem_cgroup which the page is moved from.
3789 * @to: mem_cgroup which the page is moved to. @from != @to.
3790 *
3791 * The caller must confirm following.
08e552c6 3792 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3793 * - compound_lock is held when nr_pages > 1
f817ed48 3794 *
2f3479b1
KH
3795 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3796 * from old cgroup.
f817ed48 3797 */
7ec99d62
JW
3798static int mem_cgroup_move_account(struct page *page,
3799 unsigned int nr_pages,
3800 struct page_cgroup *pc,
3801 struct mem_cgroup *from,
2f3479b1 3802 struct mem_cgroup *to)
f817ed48 3803{
de3638d9
JW
3804 unsigned long flags;
3805 int ret;
b2402857 3806 bool anon = PageAnon(page);
987eba66 3807
f817ed48 3808 VM_BUG_ON(from == to);
5564e88b 3809 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3810 /*
3811 * The page is isolated from LRU. So, collapse function
3812 * will not handle this page. But page splitting can happen.
3813 * Do this check under compound_page_lock(). The caller should
3814 * hold it.
3815 */
3816 ret = -EBUSY;
7ec99d62 3817 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3818 goto out;
3819
3820 lock_page_cgroup(pc);
3821
3822 ret = -EINVAL;
3823 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3824 goto unlock;
3825
312734c0 3826 move_lock_mem_cgroup(from, &flags);
f817ed48 3827
3ea67d06
SZ
3828 if (!anon && page_mapped(page))
3829 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3830 MEM_CGROUP_STAT_FILE_MAPPED);
3831
3832 if (PageWriteback(page))
3833 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3834 MEM_CGROUP_STAT_WRITEBACK);
3835
b070e65c 3836 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3837
854ffa8d 3838 /* caller should have done css_get */
08e552c6 3839 pc->mem_cgroup = to;
b070e65c 3840 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3841 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3842 ret = 0;
3843unlock:
57f9fd7d 3844 unlock_page_cgroup(pc);
d2265e6f
KH
3845 /*
3846 * check events
3847 */
5564e88b
JW
3848 memcg_check_events(to, page);
3849 memcg_check_events(from, page);
de3638d9 3850out:
f817ed48
KH
3851 return ret;
3852}
3853
2ef37d3f
MH
3854/**
3855 * mem_cgroup_move_parent - moves page to the parent group
3856 * @page: the page to move
3857 * @pc: page_cgroup of the page
3858 * @child: page's cgroup
3859 *
3860 * move charges to its parent or the root cgroup if the group has no
3861 * parent (aka use_hierarchy==0).
3862 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3863 * mem_cgroup_move_account fails) the failure is always temporary and
3864 * it signals a race with a page removal/uncharge or migration. In the
3865 * first case the page is on the way out and it will vanish from the LRU
3866 * on the next attempt and the call should be retried later.
3867 * Isolation from the LRU fails only if page has been isolated from
3868 * the LRU since we looked at it and that usually means either global
3869 * reclaim or migration going on. The page will either get back to the
3870 * LRU or vanish.
3871 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3872 * (!PageCgroupUsed) or moved to a different group. The page will
3873 * disappear in the next attempt.
f817ed48 3874 */
5564e88b
JW
3875static int mem_cgroup_move_parent(struct page *page,
3876 struct page_cgroup *pc,
6068bf01 3877 struct mem_cgroup *child)
f817ed48 3878{
f817ed48 3879 struct mem_cgroup *parent;
7ec99d62 3880 unsigned int nr_pages;
4be4489f 3881 unsigned long uninitialized_var(flags);
f817ed48
KH
3882 int ret;
3883
d8423011 3884 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3885
57f9fd7d
DN
3886 ret = -EBUSY;
3887 if (!get_page_unless_zero(page))
3888 goto out;
3889 if (isolate_lru_page(page))
3890 goto put;
52dbb905 3891
7ec99d62 3892 nr_pages = hpage_nr_pages(page);
08e552c6 3893
cc926f78
KH
3894 parent = parent_mem_cgroup(child);
3895 /*
3896 * If no parent, move charges to root cgroup.
3897 */
3898 if (!parent)
3899 parent = root_mem_cgroup;
f817ed48 3900
2ef37d3f
MH
3901 if (nr_pages > 1) {
3902 VM_BUG_ON(!PageTransHuge(page));
987eba66 3903 flags = compound_lock_irqsave(page);
2ef37d3f 3904 }
987eba66 3905
cc926f78 3906 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3907 pc, child, parent);
cc926f78
KH
3908 if (!ret)
3909 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3910
7ec99d62 3911 if (nr_pages > 1)
987eba66 3912 compound_unlock_irqrestore(page, flags);
08e552c6 3913 putback_lru_page(page);
57f9fd7d 3914put:
40d58138 3915 put_page(page);
57f9fd7d 3916out:
f817ed48
KH
3917 return ret;
3918}
3919
7a81b88c
KH
3920/*
3921 * Charge the memory controller for page usage.
3922 * Return
3923 * 0 if the charge was successful
3924 * < 0 if the cgroup is over its limit
3925 */
3926static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3927 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3928{
c0ff4b85 3929 struct mem_cgroup *memcg = NULL;
7ec99d62 3930 unsigned int nr_pages = 1;
8493ae43 3931 bool oom = true;
7a81b88c 3932 int ret;
ec168510 3933
37c2ac78 3934 if (PageTransHuge(page)) {
7ec99d62 3935 nr_pages <<= compound_order(page);
37c2ac78 3936 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3937 /*
3938 * Never OOM-kill a process for a huge page. The
3939 * fault handler will fall back to regular pages.
3940 */
3941 oom = false;
37c2ac78 3942 }
7a81b88c 3943
c0ff4b85 3944 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3945 if (ret == -ENOMEM)
7a81b88c 3946 return ret;
ce587e65 3947 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3948 return 0;
8a9f3ccd
BS
3949}
3950
7a81b88c
KH
3951int mem_cgroup_newpage_charge(struct page *page,
3952 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3953{
f8d66542 3954 if (mem_cgroup_disabled())
cede86ac 3955 return 0;
7a0524cf
JW
3956 VM_BUG_ON(page_mapped(page));
3957 VM_BUG_ON(page->mapping && !PageAnon(page));
3958 VM_BUG_ON(!mm);
217bc319 3959 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3960 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3961}
3962
54595fe2
KH
3963/*
3964 * While swap-in, try_charge -> commit or cancel, the page is locked.
3965 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3966 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3967 * "commit()" or removed by "cancel()"
3968 */
0435a2fd
JW
3969static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3970 struct page *page,
3971 gfp_t mask,
3972 struct mem_cgroup **memcgp)
8c7c6e34 3973{
c0ff4b85 3974 struct mem_cgroup *memcg;
90deb788 3975 struct page_cgroup *pc;
54595fe2 3976 int ret;
8c7c6e34 3977
90deb788
JW
3978 pc = lookup_page_cgroup(page);
3979 /*
3980 * Every swap fault against a single page tries to charge the
3981 * page, bail as early as possible. shmem_unuse() encounters
3982 * already charged pages, too. The USED bit is protected by
3983 * the page lock, which serializes swap cache removal, which
3984 * in turn serializes uncharging.
3985 */
3986 if (PageCgroupUsed(pc))
3987 return 0;
8c7c6e34
KH
3988 if (!do_swap_account)
3989 goto charge_cur_mm;
c0ff4b85
R
3990 memcg = try_get_mem_cgroup_from_page(page);
3991 if (!memcg)
54595fe2 3992 goto charge_cur_mm;
72835c86
JW
3993 *memcgp = memcg;
3994 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3995 css_put(&memcg->css);
38c5d72f
KH
3996 if (ret == -EINTR)
3997 ret = 0;
54595fe2 3998 return ret;
8c7c6e34 3999charge_cur_mm:
38c5d72f
KH
4000 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4001 if (ret == -EINTR)
4002 ret = 0;
4003 return ret;
8c7c6e34
KH
4004}
4005
0435a2fd
JW
4006int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4007 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4008{
4009 *memcgp = NULL;
4010 if (mem_cgroup_disabled())
4011 return 0;
bdf4f4d2
JW
4012 /*
4013 * A racing thread's fault, or swapoff, may have already
4014 * updated the pte, and even removed page from swap cache: in
4015 * those cases unuse_pte()'s pte_same() test will fail; but
4016 * there's also a KSM case which does need to charge the page.
4017 */
4018 if (!PageSwapCache(page)) {
4019 int ret;
4020
4021 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4022 if (ret == -EINTR)
4023 ret = 0;
4024 return ret;
4025 }
0435a2fd
JW
4026 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4027}
4028
827a03d2
JW
4029void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4030{
4031 if (mem_cgroup_disabled())
4032 return;
4033 if (!memcg)
4034 return;
4035 __mem_cgroup_cancel_charge(memcg, 1);
4036}
4037
83aae4c7 4038static void
72835c86 4039__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4040 enum charge_type ctype)
7a81b88c 4041{
f8d66542 4042 if (mem_cgroup_disabled())
7a81b88c 4043 return;
72835c86 4044 if (!memcg)
7a81b88c 4045 return;
5a6475a4 4046
ce587e65 4047 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4048 /*
4049 * Now swap is on-memory. This means this page may be
4050 * counted both as mem and swap....double count.
03f3c433
KH
4051 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4052 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4053 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4054 */
03f3c433 4055 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4056 swp_entry_t ent = {.val = page_private(page)};
86493009 4057 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4058 }
7a81b88c
KH
4059}
4060
72835c86
JW
4061void mem_cgroup_commit_charge_swapin(struct page *page,
4062 struct mem_cgroup *memcg)
83aae4c7 4063{
72835c86 4064 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4065 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4066}
4067
827a03d2
JW
4068int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4069 gfp_t gfp_mask)
7a81b88c 4070{
827a03d2
JW
4071 struct mem_cgroup *memcg = NULL;
4072 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4073 int ret;
4074
f8d66542 4075 if (mem_cgroup_disabled())
827a03d2
JW
4076 return 0;
4077 if (PageCompound(page))
4078 return 0;
4079
827a03d2
JW
4080 if (!PageSwapCache(page))
4081 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4082 else { /* page is swapcache/shmem */
0435a2fd
JW
4083 ret = __mem_cgroup_try_charge_swapin(mm, page,
4084 gfp_mask, &memcg);
827a03d2
JW
4085 if (!ret)
4086 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4087 }
4088 return ret;
7a81b88c
KH
4089}
4090
c0ff4b85 4091static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4092 unsigned int nr_pages,
4093 const enum charge_type ctype)
569b846d
KH
4094{
4095 struct memcg_batch_info *batch = NULL;
4096 bool uncharge_memsw = true;
7ec99d62 4097
569b846d
KH
4098 /* If swapout, usage of swap doesn't decrease */
4099 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4100 uncharge_memsw = false;
569b846d
KH
4101
4102 batch = &current->memcg_batch;
4103 /*
4104 * In usual, we do css_get() when we remember memcg pointer.
4105 * But in this case, we keep res->usage until end of a series of
4106 * uncharges. Then, it's ok to ignore memcg's refcnt.
4107 */
4108 if (!batch->memcg)
c0ff4b85 4109 batch->memcg = memcg;
3c11ecf4
KH
4110 /*
4111 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4112 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4113 * the same cgroup and we have chance to coalesce uncharges.
4114 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4115 * because we want to do uncharge as soon as possible.
4116 */
4117
4118 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4119 goto direct_uncharge;
4120
7ec99d62 4121 if (nr_pages > 1)
ec168510
AA
4122 goto direct_uncharge;
4123
569b846d
KH
4124 /*
4125 * In typical case, batch->memcg == mem. This means we can
4126 * merge a series of uncharges to an uncharge of res_counter.
4127 * If not, we uncharge res_counter ony by one.
4128 */
c0ff4b85 4129 if (batch->memcg != memcg)
569b846d
KH
4130 goto direct_uncharge;
4131 /* remember freed charge and uncharge it later */
7ffd4ca7 4132 batch->nr_pages++;
569b846d 4133 if (uncharge_memsw)
7ffd4ca7 4134 batch->memsw_nr_pages++;
569b846d
KH
4135 return;
4136direct_uncharge:
c0ff4b85 4137 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4138 if (uncharge_memsw)
c0ff4b85
R
4139 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4140 if (unlikely(batch->memcg != memcg))
4141 memcg_oom_recover(memcg);
569b846d 4142}
7a81b88c 4143
8a9f3ccd 4144/*
69029cd5 4145 * uncharge if !page_mapped(page)
8a9f3ccd 4146 */
8c7c6e34 4147static struct mem_cgroup *
0030f535
JW
4148__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4149 bool end_migration)
8a9f3ccd 4150{
c0ff4b85 4151 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4152 unsigned int nr_pages = 1;
4153 struct page_cgroup *pc;
b2402857 4154 bool anon;
8a9f3ccd 4155
f8d66542 4156 if (mem_cgroup_disabled())
8c7c6e34 4157 return NULL;
4077960e 4158
37c2ac78 4159 if (PageTransHuge(page)) {
7ec99d62 4160 nr_pages <<= compound_order(page);
37c2ac78
AA
4161 VM_BUG_ON(!PageTransHuge(page));
4162 }
8697d331 4163 /*
3c541e14 4164 * Check if our page_cgroup is valid
8697d331 4165 */
52d4b9ac 4166 pc = lookup_page_cgroup(page);
cfa44946 4167 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4168 return NULL;
b9c565d5 4169
52d4b9ac 4170 lock_page_cgroup(pc);
d13d1443 4171
c0ff4b85 4172 memcg = pc->mem_cgroup;
8c7c6e34 4173
d13d1443
KH
4174 if (!PageCgroupUsed(pc))
4175 goto unlock_out;
4176
b2402857
KH
4177 anon = PageAnon(page);
4178
d13d1443 4179 switch (ctype) {
41326c17 4180 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4181 /*
4182 * Generally PageAnon tells if it's the anon statistics to be
4183 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4184 * used before page reached the stage of being marked PageAnon.
4185 */
b2402857
KH
4186 anon = true;
4187 /* fallthrough */
8a9478ca 4188 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4189 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4190 if (page_mapped(page))
4191 goto unlock_out;
4192 /*
4193 * Pages under migration may not be uncharged. But
4194 * end_migration() /must/ be the one uncharging the
4195 * unused post-migration page and so it has to call
4196 * here with the migration bit still set. See the
4197 * res_counter handling below.
4198 */
4199 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4200 goto unlock_out;
4201 break;
4202 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4203 if (!PageAnon(page)) { /* Shared memory */
4204 if (page->mapping && !page_is_file_cache(page))
4205 goto unlock_out;
4206 } else if (page_mapped(page)) /* Anon */
4207 goto unlock_out;
4208 break;
4209 default:
4210 break;
52d4b9ac 4211 }
d13d1443 4212
b070e65c 4213 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4214
52d4b9ac 4215 ClearPageCgroupUsed(pc);
544122e5
KH
4216 /*
4217 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4218 * freed from LRU. This is safe because uncharged page is expected not
4219 * to be reused (freed soon). Exception is SwapCache, it's handled by
4220 * special functions.
4221 */
b9c565d5 4222
52d4b9ac 4223 unlock_page_cgroup(pc);
f75ca962 4224 /*
c0ff4b85 4225 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4226 * will never be freed, so it's safe to call css_get().
f75ca962 4227 */
c0ff4b85 4228 memcg_check_events(memcg, page);
f75ca962 4229 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4230 mem_cgroup_swap_statistics(memcg, true);
4050377b 4231 css_get(&memcg->css);
f75ca962 4232 }
0030f535
JW
4233 /*
4234 * Migration does not charge the res_counter for the
4235 * replacement page, so leave it alone when phasing out the
4236 * page that is unused after the migration.
4237 */
4238 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4239 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4240
c0ff4b85 4241 return memcg;
d13d1443
KH
4242
4243unlock_out:
4244 unlock_page_cgroup(pc);
8c7c6e34 4245 return NULL;
3c541e14
BS
4246}
4247
69029cd5
KH
4248void mem_cgroup_uncharge_page(struct page *page)
4249{
52d4b9ac
KH
4250 /* early check. */
4251 if (page_mapped(page))
4252 return;
40f23a21 4253 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4254 /*
4255 * If the page is in swap cache, uncharge should be deferred
4256 * to the swap path, which also properly accounts swap usage
4257 * and handles memcg lifetime.
4258 *
4259 * Note that this check is not stable and reclaim may add the
4260 * page to swap cache at any time after this. However, if the
4261 * page is not in swap cache by the time page->mapcount hits
4262 * 0, there won't be any page table references to the swap
4263 * slot, and reclaim will free it and not actually write the
4264 * page to disk.
4265 */
0c59b89c
JW
4266 if (PageSwapCache(page))
4267 return;
0030f535 4268 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4269}
4270
4271void mem_cgroup_uncharge_cache_page(struct page *page)
4272{
4273 VM_BUG_ON(page_mapped(page));
b7abea96 4274 VM_BUG_ON(page->mapping);
0030f535 4275 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4276}
4277
569b846d
KH
4278/*
4279 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4280 * In that cases, pages are freed continuously and we can expect pages
4281 * are in the same memcg. All these calls itself limits the number of
4282 * pages freed at once, then uncharge_start/end() is called properly.
4283 * This may be called prural(2) times in a context,
4284 */
4285
4286void mem_cgroup_uncharge_start(void)
4287{
4288 current->memcg_batch.do_batch++;
4289 /* We can do nest. */
4290 if (current->memcg_batch.do_batch == 1) {
4291 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4292 current->memcg_batch.nr_pages = 0;
4293 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4294 }
4295}
4296
4297void mem_cgroup_uncharge_end(void)
4298{
4299 struct memcg_batch_info *batch = &current->memcg_batch;
4300
4301 if (!batch->do_batch)
4302 return;
4303
4304 batch->do_batch--;
4305 if (batch->do_batch) /* If stacked, do nothing. */
4306 return;
4307
4308 if (!batch->memcg)
4309 return;
4310 /*
4311 * This "batch->memcg" is valid without any css_get/put etc...
4312 * bacause we hide charges behind us.
4313 */
7ffd4ca7
JW
4314 if (batch->nr_pages)
4315 res_counter_uncharge(&batch->memcg->res,
4316 batch->nr_pages * PAGE_SIZE);
4317 if (batch->memsw_nr_pages)
4318 res_counter_uncharge(&batch->memcg->memsw,
4319 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4320 memcg_oom_recover(batch->memcg);
569b846d
KH
4321 /* forget this pointer (for sanity check) */
4322 batch->memcg = NULL;
4323}
4324
e767e056 4325#ifdef CONFIG_SWAP
8c7c6e34 4326/*
e767e056 4327 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4328 * memcg information is recorded to swap_cgroup of "ent"
4329 */
8a9478ca
KH
4330void
4331mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4332{
4333 struct mem_cgroup *memcg;
8a9478ca
KH
4334 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4335
4336 if (!swapout) /* this was a swap cache but the swap is unused ! */
4337 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4338
0030f535 4339 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4340
f75ca962
KH
4341 /*
4342 * record memcg information, if swapout && memcg != NULL,
4050377b 4343 * css_get() was called in uncharge().
f75ca962
KH
4344 */
4345 if (do_swap_account && swapout && memcg)
a3b2d692 4346 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4347}
e767e056 4348#endif
8c7c6e34 4349
c255a458 4350#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4351/*
4352 * called from swap_entry_free(). remove record in swap_cgroup and
4353 * uncharge "memsw" account.
4354 */
4355void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4356{
8c7c6e34 4357 struct mem_cgroup *memcg;
a3b2d692 4358 unsigned short id;
8c7c6e34
KH
4359
4360 if (!do_swap_account)
4361 return;
4362
a3b2d692
KH
4363 id = swap_cgroup_record(ent, 0);
4364 rcu_read_lock();
4365 memcg = mem_cgroup_lookup(id);
8c7c6e34 4366 if (memcg) {
a3b2d692
KH
4367 /*
4368 * We uncharge this because swap is freed.
4369 * This memcg can be obsolete one. We avoid calling css_tryget
4370 */
0c3e73e8 4371 if (!mem_cgroup_is_root(memcg))
4e649152 4372 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4373 mem_cgroup_swap_statistics(memcg, false);
4050377b 4374 css_put(&memcg->css);
8c7c6e34 4375 }
a3b2d692 4376 rcu_read_unlock();
d13d1443 4377}
02491447
DN
4378
4379/**
4380 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4381 * @entry: swap entry to be moved
4382 * @from: mem_cgroup which the entry is moved from
4383 * @to: mem_cgroup which the entry is moved to
4384 *
4385 * It succeeds only when the swap_cgroup's record for this entry is the same
4386 * as the mem_cgroup's id of @from.
4387 *
4388 * Returns 0 on success, -EINVAL on failure.
4389 *
4390 * The caller must have charged to @to, IOW, called res_counter_charge() about
4391 * both res and memsw, and called css_get().
4392 */
4393static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4394 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4395{
4396 unsigned short old_id, new_id;
4397
4398 old_id = css_id(&from->css);
4399 new_id = css_id(&to->css);
4400
4401 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4402 mem_cgroup_swap_statistics(from, false);
483c30b5 4403 mem_cgroup_swap_statistics(to, true);
02491447 4404 /*
483c30b5
DN
4405 * This function is only called from task migration context now.
4406 * It postpones res_counter and refcount handling till the end
4407 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4408 * improvement. But we cannot postpone css_get(to) because if
4409 * the process that has been moved to @to does swap-in, the
4410 * refcount of @to might be decreased to 0.
4411 *
4412 * We are in attach() phase, so the cgroup is guaranteed to be
4413 * alive, so we can just call css_get().
02491447 4414 */
4050377b 4415 css_get(&to->css);
02491447
DN
4416 return 0;
4417 }
4418 return -EINVAL;
4419}
4420#else
4421static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4422 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4423{
4424 return -EINVAL;
4425}
8c7c6e34 4426#endif
d13d1443 4427
ae41be37 4428/*
01b1ae63
KH
4429 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4430 * page belongs to.
ae41be37 4431 */
0030f535
JW
4432void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4433 struct mem_cgroup **memcgp)
ae41be37 4434{
c0ff4b85 4435 struct mem_cgroup *memcg = NULL;
b32967ff 4436 unsigned int nr_pages = 1;
7ec99d62 4437 struct page_cgroup *pc;
ac39cf8c 4438 enum charge_type ctype;
8869b8f6 4439
72835c86 4440 *memcgp = NULL;
56039efa 4441
f8d66542 4442 if (mem_cgroup_disabled())
0030f535 4443 return;
4077960e 4444
b32967ff
MG
4445 if (PageTransHuge(page))
4446 nr_pages <<= compound_order(page);
4447
52d4b9ac
KH
4448 pc = lookup_page_cgroup(page);
4449 lock_page_cgroup(pc);
4450 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4451 memcg = pc->mem_cgroup;
4452 css_get(&memcg->css);
ac39cf8c 4453 /*
4454 * At migrating an anonymous page, its mapcount goes down
4455 * to 0 and uncharge() will be called. But, even if it's fully
4456 * unmapped, migration may fail and this page has to be
4457 * charged again. We set MIGRATION flag here and delay uncharge
4458 * until end_migration() is called
4459 *
4460 * Corner Case Thinking
4461 * A)
4462 * When the old page was mapped as Anon and it's unmap-and-freed
4463 * while migration was ongoing.
4464 * If unmap finds the old page, uncharge() of it will be delayed
4465 * until end_migration(). If unmap finds a new page, it's
4466 * uncharged when it make mapcount to be 1->0. If unmap code
4467 * finds swap_migration_entry, the new page will not be mapped
4468 * and end_migration() will find it(mapcount==0).
4469 *
4470 * B)
4471 * When the old page was mapped but migraion fails, the kernel
4472 * remaps it. A charge for it is kept by MIGRATION flag even
4473 * if mapcount goes down to 0. We can do remap successfully
4474 * without charging it again.
4475 *
4476 * C)
4477 * The "old" page is under lock_page() until the end of
4478 * migration, so, the old page itself will not be swapped-out.
4479 * If the new page is swapped out before end_migraton, our
4480 * hook to usual swap-out path will catch the event.
4481 */
4482 if (PageAnon(page))
4483 SetPageCgroupMigration(pc);
e8589cc1 4484 }
52d4b9ac 4485 unlock_page_cgroup(pc);
ac39cf8c 4486 /*
4487 * If the page is not charged at this point,
4488 * we return here.
4489 */
c0ff4b85 4490 if (!memcg)
0030f535 4491 return;
01b1ae63 4492
72835c86 4493 *memcgp = memcg;
ac39cf8c 4494 /*
4495 * We charge new page before it's used/mapped. So, even if unlock_page()
4496 * is called before end_migration, we can catch all events on this new
4497 * page. In the case new page is migrated but not remapped, new page's
4498 * mapcount will be finally 0 and we call uncharge in end_migration().
4499 */
ac39cf8c 4500 if (PageAnon(page))
41326c17 4501 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4502 else
62ba7442 4503 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4504 /*
4505 * The page is committed to the memcg, but it's not actually
4506 * charged to the res_counter since we plan on replacing the
4507 * old one and only one page is going to be left afterwards.
4508 */
b32967ff 4509 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4510}
8869b8f6 4511
69029cd5 4512/* remove redundant charge if migration failed*/
c0ff4b85 4513void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4514 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4515{
ac39cf8c 4516 struct page *used, *unused;
01b1ae63 4517 struct page_cgroup *pc;
b2402857 4518 bool anon;
01b1ae63 4519
c0ff4b85 4520 if (!memcg)
01b1ae63 4521 return;
b25ed609 4522
50de1dd9 4523 if (!migration_ok) {
ac39cf8c 4524 used = oldpage;
4525 unused = newpage;
01b1ae63 4526 } else {
ac39cf8c 4527 used = newpage;
01b1ae63
KH
4528 unused = oldpage;
4529 }
0030f535 4530 anon = PageAnon(used);
7d188958
JW
4531 __mem_cgroup_uncharge_common(unused,
4532 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4533 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4534 true);
0030f535 4535 css_put(&memcg->css);
69029cd5 4536 /*
ac39cf8c 4537 * We disallowed uncharge of pages under migration because mapcount
4538 * of the page goes down to zero, temporarly.
4539 * Clear the flag and check the page should be charged.
01b1ae63 4540 */
ac39cf8c 4541 pc = lookup_page_cgroup(oldpage);
4542 lock_page_cgroup(pc);
4543 ClearPageCgroupMigration(pc);
4544 unlock_page_cgroup(pc);
ac39cf8c 4545
01b1ae63 4546 /*
ac39cf8c 4547 * If a page is a file cache, radix-tree replacement is very atomic
4548 * and we can skip this check. When it was an Anon page, its mapcount
4549 * goes down to 0. But because we added MIGRATION flage, it's not
4550 * uncharged yet. There are several case but page->mapcount check
4551 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4552 * check. (see prepare_charge() also)
69029cd5 4553 */
b2402857 4554 if (anon)
ac39cf8c 4555 mem_cgroup_uncharge_page(used);
ae41be37 4556}
78fb7466 4557
ab936cbc
KH
4558/*
4559 * At replace page cache, newpage is not under any memcg but it's on
4560 * LRU. So, this function doesn't touch res_counter but handles LRU
4561 * in correct way. Both pages are locked so we cannot race with uncharge.
4562 */
4563void mem_cgroup_replace_page_cache(struct page *oldpage,
4564 struct page *newpage)
4565{
bde05d1c 4566 struct mem_cgroup *memcg = NULL;
ab936cbc 4567 struct page_cgroup *pc;
ab936cbc 4568 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4569
4570 if (mem_cgroup_disabled())
4571 return;
4572
4573 pc = lookup_page_cgroup(oldpage);
4574 /* fix accounting on old pages */
4575 lock_page_cgroup(pc);
bde05d1c
HD
4576 if (PageCgroupUsed(pc)) {
4577 memcg = pc->mem_cgroup;
b070e65c 4578 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4579 ClearPageCgroupUsed(pc);
4580 }
ab936cbc
KH
4581 unlock_page_cgroup(pc);
4582
bde05d1c
HD
4583 /*
4584 * When called from shmem_replace_page(), in some cases the
4585 * oldpage has already been charged, and in some cases not.
4586 */
4587 if (!memcg)
4588 return;
ab936cbc
KH
4589 /*
4590 * Even if newpage->mapping was NULL before starting replacement,
4591 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4592 * LRU while we overwrite pc->mem_cgroup.
4593 */
ce587e65 4594 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4595}
4596
f212ad7c
DN
4597#ifdef CONFIG_DEBUG_VM
4598static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4599{
4600 struct page_cgroup *pc;
4601
4602 pc = lookup_page_cgroup(page);
cfa44946
JW
4603 /*
4604 * Can be NULL while feeding pages into the page allocator for
4605 * the first time, i.e. during boot or memory hotplug;
4606 * or when mem_cgroup_disabled().
4607 */
f212ad7c
DN
4608 if (likely(pc) && PageCgroupUsed(pc))
4609 return pc;
4610 return NULL;
4611}
4612
4613bool mem_cgroup_bad_page_check(struct page *page)
4614{
4615 if (mem_cgroup_disabled())
4616 return false;
4617
4618 return lookup_page_cgroup_used(page) != NULL;
4619}
4620
4621void mem_cgroup_print_bad_page(struct page *page)
4622{
4623 struct page_cgroup *pc;
4624
4625 pc = lookup_page_cgroup_used(page);
4626 if (pc) {
d045197f
AM
4627 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4628 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4629 }
4630}
4631#endif
4632
d38d2a75 4633static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4634 unsigned long long val)
628f4235 4635{
81d39c20 4636 int retry_count;
3c11ecf4 4637 u64 memswlimit, memlimit;
628f4235 4638 int ret = 0;
81d39c20
KH
4639 int children = mem_cgroup_count_children(memcg);
4640 u64 curusage, oldusage;
3c11ecf4 4641 int enlarge;
81d39c20
KH
4642
4643 /*
4644 * For keeping hierarchical_reclaim simple, how long we should retry
4645 * is depends on callers. We set our retry-count to be function
4646 * of # of children which we should visit in this loop.
4647 */
4648 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4649
4650 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4651
3c11ecf4 4652 enlarge = 0;
8c7c6e34 4653 while (retry_count) {
628f4235
KH
4654 if (signal_pending(current)) {
4655 ret = -EINTR;
4656 break;
4657 }
8c7c6e34
KH
4658 /*
4659 * Rather than hide all in some function, I do this in
4660 * open coded manner. You see what this really does.
aaad153e 4661 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4662 */
4663 mutex_lock(&set_limit_mutex);
4664 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4665 if (memswlimit < val) {
4666 ret = -EINVAL;
4667 mutex_unlock(&set_limit_mutex);
628f4235
KH
4668 break;
4669 }
3c11ecf4
KH
4670
4671 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4672 if (memlimit < val)
4673 enlarge = 1;
4674
8c7c6e34 4675 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4676 if (!ret) {
4677 if (memswlimit == val)
4678 memcg->memsw_is_minimum = true;
4679 else
4680 memcg->memsw_is_minimum = false;
4681 }
8c7c6e34
KH
4682 mutex_unlock(&set_limit_mutex);
4683
4684 if (!ret)
4685 break;
4686
5660048c
JW
4687 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4688 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4689 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4690 /* Usage is reduced ? */
f894ffa8 4691 if (curusage >= oldusage)
81d39c20
KH
4692 retry_count--;
4693 else
4694 oldusage = curusage;
8c7c6e34 4695 }
3c11ecf4
KH
4696 if (!ret && enlarge)
4697 memcg_oom_recover(memcg);
14797e23 4698
8c7c6e34
KH
4699 return ret;
4700}
4701
338c8431
LZ
4702static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4703 unsigned long long val)
8c7c6e34 4704{
81d39c20 4705 int retry_count;
3c11ecf4 4706 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4707 int children = mem_cgroup_count_children(memcg);
4708 int ret = -EBUSY;
3c11ecf4 4709 int enlarge = 0;
8c7c6e34 4710
81d39c20 4711 /* see mem_cgroup_resize_res_limit */
f894ffa8 4712 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4713 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4714 while (retry_count) {
4715 if (signal_pending(current)) {
4716 ret = -EINTR;
4717 break;
4718 }
4719 /*
4720 * Rather than hide all in some function, I do this in
4721 * open coded manner. You see what this really does.
aaad153e 4722 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4723 */
4724 mutex_lock(&set_limit_mutex);
4725 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4726 if (memlimit > val) {
4727 ret = -EINVAL;
4728 mutex_unlock(&set_limit_mutex);
4729 break;
4730 }
3c11ecf4
KH
4731 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4732 if (memswlimit < val)
4733 enlarge = 1;
8c7c6e34 4734 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4735 if (!ret) {
4736 if (memlimit == val)
4737 memcg->memsw_is_minimum = true;
4738 else
4739 memcg->memsw_is_minimum = false;
4740 }
8c7c6e34
KH
4741 mutex_unlock(&set_limit_mutex);
4742
4743 if (!ret)
4744 break;
4745
5660048c
JW
4746 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4747 MEM_CGROUP_RECLAIM_NOSWAP |
4748 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4749 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4750 /* Usage is reduced ? */
8c7c6e34 4751 if (curusage >= oldusage)
628f4235 4752 retry_count--;
81d39c20
KH
4753 else
4754 oldusage = curusage;
628f4235 4755 }
3c11ecf4
KH
4756 if (!ret && enlarge)
4757 memcg_oom_recover(memcg);
628f4235
KH
4758 return ret;
4759}
4760
0608f43d
AM
4761unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4762 gfp_t gfp_mask,
4763 unsigned long *total_scanned)
4764{
4765 unsigned long nr_reclaimed = 0;
4766 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4767 unsigned long reclaimed;
4768 int loop = 0;
4769 struct mem_cgroup_tree_per_zone *mctz;
4770 unsigned long long excess;
4771 unsigned long nr_scanned;
4772
4773 if (order > 0)
4774 return 0;
4775
4776 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4777 /*
4778 * This loop can run a while, specially if mem_cgroup's continuously
4779 * keep exceeding their soft limit and putting the system under
4780 * pressure
4781 */
4782 do {
4783 if (next_mz)
4784 mz = next_mz;
4785 else
4786 mz = mem_cgroup_largest_soft_limit_node(mctz);
4787 if (!mz)
4788 break;
4789
4790 nr_scanned = 0;
4791 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4792 gfp_mask, &nr_scanned);
4793 nr_reclaimed += reclaimed;
4794 *total_scanned += nr_scanned;
4795 spin_lock(&mctz->lock);
4796
4797 /*
4798 * If we failed to reclaim anything from this memory cgroup
4799 * it is time to move on to the next cgroup
4800 */
4801 next_mz = NULL;
4802 if (!reclaimed) {
4803 do {
4804 /*
4805 * Loop until we find yet another one.
4806 *
4807 * By the time we get the soft_limit lock
4808 * again, someone might have aded the
4809 * group back on the RB tree. Iterate to
4810 * make sure we get a different mem.
4811 * mem_cgroup_largest_soft_limit_node returns
4812 * NULL if no other cgroup is present on
4813 * the tree
4814 */
4815 next_mz =
4816 __mem_cgroup_largest_soft_limit_node(mctz);
4817 if (next_mz == mz)
4818 css_put(&next_mz->memcg->css);
4819 else /* next_mz == NULL or other memcg */
4820 break;
4821 } while (1);
4822 }
4823 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4824 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4825 /*
4826 * One school of thought says that we should not add
4827 * back the node to the tree if reclaim returns 0.
4828 * But our reclaim could return 0, simply because due
4829 * to priority we are exposing a smaller subset of
4830 * memory to reclaim from. Consider this as a longer
4831 * term TODO.
4832 */
4833 /* If excess == 0, no tree ops */
4834 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4835 spin_unlock(&mctz->lock);
4836 css_put(&mz->memcg->css);
4837 loop++;
4838 /*
4839 * Could not reclaim anything and there are no more
4840 * mem cgroups to try or we seem to be looping without
4841 * reclaiming anything.
4842 */
4843 if (!nr_reclaimed &&
4844 (next_mz == NULL ||
4845 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4846 break;
4847 } while (!nr_reclaimed);
4848 if (next_mz)
4849 css_put(&next_mz->memcg->css);
4850 return nr_reclaimed;
4851}
4852
2ef37d3f
MH
4853/**
4854 * mem_cgroup_force_empty_list - clears LRU of a group
4855 * @memcg: group to clear
4856 * @node: NUMA node
4857 * @zid: zone id
4858 * @lru: lru to to clear
4859 *
3c935d18 4860 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4861 * reclaim the pages page themselves - pages are moved to the parent (or root)
4862 * group.
cc847582 4863 */
2ef37d3f 4864static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4865 int node, int zid, enum lru_list lru)
cc847582 4866{
bea8c150 4867 struct lruvec *lruvec;
2ef37d3f 4868 unsigned long flags;
072c56c1 4869 struct list_head *list;
925b7673
JW
4870 struct page *busy;
4871 struct zone *zone;
072c56c1 4872
08e552c6 4873 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4874 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4875 list = &lruvec->lists[lru];
cc847582 4876
f817ed48 4877 busy = NULL;
2ef37d3f 4878 do {
925b7673 4879 struct page_cgroup *pc;
5564e88b
JW
4880 struct page *page;
4881
08e552c6 4882 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4883 if (list_empty(list)) {
08e552c6 4884 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4885 break;
f817ed48 4886 }
925b7673
JW
4887 page = list_entry(list->prev, struct page, lru);
4888 if (busy == page) {
4889 list_move(&page->lru, list);
648bcc77 4890 busy = NULL;
08e552c6 4891 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4892 continue;
4893 }
08e552c6 4894 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4895
925b7673 4896 pc = lookup_page_cgroup(page);
5564e88b 4897
3c935d18 4898 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4899 /* found lock contention or "pc" is obsolete. */
925b7673 4900 busy = page;
f817ed48
KH
4901 cond_resched();
4902 } else
4903 busy = NULL;
2ef37d3f 4904 } while (!list_empty(list));
cc847582
KH
4905}
4906
4907/*
c26251f9
MH
4908 * make mem_cgroup's charge to be 0 if there is no task by moving
4909 * all the charges and pages to the parent.
cc847582 4910 * This enables deleting this mem_cgroup.
c26251f9
MH
4911 *
4912 * Caller is responsible for holding css reference on the memcg.
cc847582 4913 */
ab5196c2 4914static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4915{
c26251f9 4916 int node, zid;
bea207c8 4917 u64 usage;
f817ed48 4918
fce66477 4919 do {
52d4b9ac
KH
4920 /* This is for making all *used* pages to be on LRU. */
4921 lru_add_drain_all();
c0ff4b85 4922 drain_all_stock_sync(memcg);
c0ff4b85 4923 mem_cgroup_start_move(memcg);
31aaea4a 4924 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4925 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4926 enum lru_list lru;
4927 for_each_lru(lru) {
2ef37d3f 4928 mem_cgroup_force_empty_list(memcg,
f156ab93 4929 node, zid, lru);
f817ed48 4930 }
1ecaab2b 4931 }
f817ed48 4932 }
c0ff4b85
R
4933 mem_cgroup_end_move(memcg);
4934 memcg_oom_recover(memcg);
52d4b9ac 4935 cond_resched();
f817ed48 4936
2ef37d3f 4937 /*
bea207c8
GC
4938 * Kernel memory may not necessarily be trackable to a specific
4939 * process. So they are not migrated, and therefore we can't
4940 * expect their value to drop to 0 here.
4941 * Having res filled up with kmem only is enough.
4942 *
2ef37d3f
MH
4943 * This is a safety check because mem_cgroup_force_empty_list
4944 * could have raced with mem_cgroup_replace_page_cache callers
4945 * so the lru seemed empty but the page could have been added
4946 * right after the check. RES_USAGE should be safe as we always
4947 * charge before adding to the LRU.
4948 */
bea207c8
GC
4949 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4950 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4951 } while (usage > 0);
c26251f9
MH
4952}
4953
b5f99b53
GC
4954static inline bool memcg_has_children(struct mem_cgroup *memcg)
4955{
696ac172
JW
4956 lockdep_assert_held(&memcg_create_mutex);
4957 /*
4958 * The lock does not prevent addition or deletion to the list
4959 * of children, but it prevents a new child from being
4960 * initialized based on this parent in css_online(), so it's
4961 * enough to decide whether hierarchically inherited
4962 * attributes can still be changed or not.
4963 */
4964 return memcg->use_hierarchy &&
4965 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
4966}
4967
c26251f9
MH
4968/*
4969 * Reclaims as many pages from the given memcg as possible and moves
4970 * the rest to the parent.
4971 *
4972 * Caller is responsible for holding css reference for memcg.
4973 */
4974static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4975{
4976 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4977 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4978
c1e862c1 4979 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4980 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4981 return -EBUSY;
4982
c1e862c1
KH
4983 /* we call try-to-free pages for make this cgroup empty */
4984 lru_add_drain_all();
f817ed48 4985 /* try to free all pages in this cgroup */
569530fb 4986 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4987 int progress;
c1e862c1 4988
c26251f9
MH
4989 if (signal_pending(current))
4990 return -EINTR;
4991
c0ff4b85 4992 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4993 false);
c1e862c1 4994 if (!progress) {
f817ed48 4995 nr_retries--;
c1e862c1 4996 /* maybe some writeback is necessary */
8aa7e847 4997 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4998 }
f817ed48
KH
4999
5000 }
08e552c6 5001 lru_add_drain();
ab5196c2
MH
5002 mem_cgroup_reparent_charges(memcg);
5003
5004 return 0;
cc847582
KH
5005}
5006
182446d0
TH
5007static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5008 unsigned int event)
c1e862c1 5009{
182446d0 5010 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 5011
d8423011
MH
5012 if (mem_cgroup_is_root(memcg))
5013 return -EINVAL;
c33bd835 5014 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
5015}
5016
182446d0
TH
5017static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5018 struct cftype *cft)
18f59ea7 5019{
182446d0 5020 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5021}
5022
182446d0
TH
5023static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5024 struct cftype *cft, u64 val)
18f59ea7
BS
5025{
5026 int retval = 0;
182446d0 5027 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5028 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5029
0999821b 5030 mutex_lock(&memcg_create_mutex);
567fb435
GC
5031
5032 if (memcg->use_hierarchy == val)
5033 goto out;
5034
18f59ea7 5035 /*
af901ca1 5036 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5037 * in the child subtrees. If it is unset, then the change can
5038 * occur, provided the current cgroup has no children.
5039 *
5040 * For the root cgroup, parent_mem is NULL, we allow value to be
5041 * set if there are no children.
5042 */
c0ff4b85 5043 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5044 (val == 1 || val == 0)) {
696ac172 5045 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 5046 memcg->use_hierarchy = val;
18f59ea7
BS
5047 else
5048 retval = -EBUSY;
5049 } else
5050 retval = -EINVAL;
567fb435
GC
5051
5052out:
0999821b 5053 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5054
5055 return retval;
5056}
5057
0c3e73e8 5058
c0ff4b85 5059static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5060 enum mem_cgroup_stat_index idx)
0c3e73e8 5061{
7d74b06f 5062 struct mem_cgroup *iter;
7a159cc9 5063 long val = 0;
0c3e73e8 5064
7a159cc9 5065 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5066 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5067 val += mem_cgroup_read_stat(iter, idx);
5068
5069 if (val < 0) /* race ? */
5070 val = 0;
5071 return val;
0c3e73e8
BS
5072}
5073
c0ff4b85 5074static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5075{
7d74b06f 5076 u64 val;
104f3928 5077
c0ff4b85 5078 if (!mem_cgroup_is_root(memcg)) {
104f3928 5079 if (!swap)
65c64ce8 5080 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5081 else
65c64ce8 5082 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5083 }
5084
b070e65c
DR
5085 /*
5086 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5087 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5088 */
c0ff4b85
R
5089 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5090 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5091
7d74b06f 5092 if (swap)
bff6bb83 5093 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5094
5095 return val << PAGE_SHIFT;
5096}
5097
182446d0
TH
5098static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5099 struct cftype *cft, struct file *file,
5100 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 5101{
182446d0 5102 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 5103 char str[64];
104f3928 5104 u64 val;
86ae53e1
GC
5105 int name, len;
5106 enum res_type type;
8c7c6e34
KH
5107
5108 type = MEMFILE_TYPE(cft->private);
5109 name = MEMFILE_ATTR(cft->private);
af36f906 5110
8c7c6e34
KH
5111 switch (type) {
5112 case _MEM:
104f3928 5113 if (name == RES_USAGE)
c0ff4b85 5114 val = mem_cgroup_usage(memcg, false);
104f3928 5115 else
c0ff4b85 5116 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5117 break;
5118 case _MEMSWAP:
104f3928 5119 if (name == RES_USAGE)
c0ff4b85 5120 val = mem_cgroup_usage(memcg, true);
104f3928 5121 else
c0ff4b85 5122 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5123 break;
510fc4e1
GC
5124 case _KMEM:
5125 val = res_counter_read_u64(&memcg->kmem, name);
5126 break;
8c7c6e34
KH
5127 default:
5128 BUG();
8c7c6e34 5129 }
af36f906
TH
5130
5131 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5132 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5133}
510fc4e1 5134
182446d0 5135static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5136{
5137 int ret = -EINVAL;
5138#ifdef CONFIG_MEMCG_KMEM
182446d0 5139 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5140 /*
5141 * For simplicity, we won't allow this to be disabled. It also can't
5142 * be changed if the cgroup has children already, or if tasks had
5143 * already joined.
5144 *
5145 * If tasks join before we set the limit, a person looking at
5146 * kmem.usage_in_bytes will have no way to determine when it took
5147 * place, which makes the value quite meaningless.
5148 *
5149 * After it first became limited, changes in the value of the limit are
5150 * of course permitted.
510fc4e1 5151 */
0999821b 5152 mutex_lock(&memcg_create_mutex);
510fc4e1 5153 mutex_lock(&set_limit_mutex);
6de5a8bf 5154 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 5155 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5156 ret = -EBUSY;
5157 goto out;
5158 }
5159 ret = res_counter_set_limit(&memcg->kmem, val);
5160 VM_BUG_ON(ret);
5161
55007d84
GC
5162 ret = memcg_update_cache_sizes(memcg);
5163 if (ret) {
6de5a8bf 5164 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
5165 goto out;
5166 }
692e89ab
GC
5167 static_key_slow_inc(&memcg_kmem_enabled_key);
5168 /*
5169 * setting the active bit after the inc will guarantee no one
5170 * starts accounting before all call sites are patched
5171 */
5172 memcg_kmem_set_active(memcg);
510fc4e1
GC
5173 } else
5174 ret = res_counter_set_limit(&memcg->kmem, val);
5175out:
5176 mutex_unlock(&set_limit_mutex);
0999821b 5177 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5178#endif
5179 return ret;
5180}
5181
6d043990 5182#ifdef CONFIG_MEMCG_KMEM
55007d84 5183static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5184{
55007d84 5185 int ret = 0;
510fc4e1
GC
5186 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5187 if (!parent)
55007d84
GC
5188 goto out;
5189
510fc4e1 5190 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5191 /*
5192 * When that happen, we need to disable the static branch only on those
5193 * memcgs that enabled it. To achieve this, we would be forced to
5194 * complicate the code by keeping track of which memcgs were the ones
5195 * that actually enabled limits, and which ones got it from its
5196 * parents.
5197 *
5198 * It is a lot simpler just to do static_key_slow_inc() on every child
5199 * that is accounted.
5200 */
55007d84
GC
5201 if (!memcg_kmem_is_active(memcg))
5202 goto out;
5203
5204 /*
10d5ebf4
LZ
5205 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5206 * memcg is active already. If the later initialization fails then the
5207 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5208 */
55007d84
GC
5209 static_key_slow_inc(&memcg_kmem_enabled_key);
5210
5211 mutex_lock(&set_limit_mutex);
425c598d 5212 memcg_stop_kmem_account();
55007d84 5213 ret = memcg_update_cache_sizes(memcg);
425c598d 5214 memcg_resume_kmem_account();
55007d84 5215 mutex_unlock(&set_limit_mutex);
55007d84
GC
5216out:
5217 return ret;
510fc4e1 5218}
6d043990 5219#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5220
628f4235
KH
5221/*
5222 * The user of this function is...
5223 * RES_LIMIT.
5224 */
182446d0 5225static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5226 const char *buffer)
8cdea7c0 5227{
182446d0 5228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5229 enum res_type type;
5230 int name;
628f4235
KH
5231 unsigned long long val;
5232 int ret;
5233
8c7c6e34
KH
5234 type = MEMFILE_TYPE(cft->private);
5235 name = MEMFILE_ATTR(cft->private);
af36f906 5236
8c7c6e34 5237 switch (name) {
628f4235 5238 case RES_LIMIT:
4b3bde4c
BS
5239 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5240 ret = -EINVAL;
5241 break;
5242 }
628f4235
KH
5243 /* This function does all necessary parse...reuse it */
5244 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5245 if (ret)
5246 break;
5247 if (type == _MEM)
628f4235 5248 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5249 else if (type == _MEMSWAP)
8c7c6e34 5250 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5251 else if (type == _KMEM)
182446d0 5252 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5253 else
5254 return -EINVAL;
628f4235 5255 break;
296c81d8
BS
5256 case RES_SOFT_LIMIT:
5257 ret = res_counter_memparse_write_strategy(buffer, &val);
5258 if (ret)
5259 break;
5260 /*
5261 * For memsw, soft limits are hard to implement in terms
5262 * of semantics, for now, we support soft limits for
5263 * control without swap
5264 */
5265 if (type == _MEM)
5266 ret = res_counter_set_soft_limit(&memcg->res, val);
5267 else
5268 ret = -EINVAL;
5269 break;
628f4235
KH
5270 default:
5271 ret = -EINVAL; /* should be BUG() ? */
5272 break;
5273 }
5274 return ret;
8cdea7c0
BS
5275}
5276
fee7b548
KH
5277static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5278 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5279{
fee7b548
KH
5280 unsigned long long min_limit, min_memsw_limit, tmp;
5281
5282 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5283 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5284 if (!memcg->use_hierarchy)
5285 goto out;
5286
63876986
TH
5287 while (css_parent(&memcg->css)) {
5288 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5289 if (!memcg->use_hierarchy)
5290 break;
5291 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5292 min_limit = min(min_limit, tmp);
5293 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5294 min_memsw_limit = min(min_memsw_limit, tmp);
5295 }
5296out:
5297 *mem_limit = min_limit;
5298 *memsw_limit = min_memsw_limit;
fee7b548
KH
5299}
5300
182446d0 5301static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5302{
182446d0 5303 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5304 int name;
5305 enum res_type type;
c84872e1 5306
8c7c6e34
KH
5307 type = MEMFILE_TYPE(event);
5308 name = MEMFILE_ATTR(event);
af36f906 5309
8c7c6e34 5310 switch (name) {
29f2a4da 5311 case RES_MAX_USAGE:
8c7c6e34 5312 if (type == _MEM)
c0ff4b85 5313 res_counter_reset_max(&memcg->res);
510fc4e1 5314 else if (type == _MEMSWAP)
c0ff4b85 5315 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5316 else if (type == _KMEM)
5317 res_counter_reset_max(&memcg->kmem);
5318 else
5319 return -EINVAL;
29f2a4da
PE
5320 break;
5321 case RES_FAILCNT:
8c7c6e34 5322 if (type == _MEM)
c0ff4b85 5323 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5324 else if (type == _MEMSWAP)
c0ff4b85 5325 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5326 else if (type == _KMEM)
5327 res_counter_reset_failcnt(&memcg->kmem);
5328 else
5329 return -EINVAL;
29f2a4da
PE
5330 break;
5331 }
f64c3f54 5332
85cc59db 5333 return 0;
c84872e1
PE
5334}
5335
182446d0 5336static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5337 struct cftype *cft)
5338{
182446d0 5339 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5340}
5341
02491447 5342#ifdef CONFIG_MMU
182446d0 5343static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5344 struct cftype *cft, u64 val)
5345{
182446d0 5346 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5347
5348 if (val >= (1 << NR_MOVE_TYPE))
5349 return -EINVAL;
ee5e8472 5350
7dc74be0 5351 /*
ee5e8472
GC
5352 * No kind of locking is needed in here, because ->can_attach() will
5353 * check this value once in the beginning of the process, and then carry
5354 * on with stale data. This means that changes to this value will only
5355 * affect task migrations starting after the change.
7dc74be0 5356 */
c0ff4b85 5357 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5358 return 0;
5359}
02491447 5360#else
182446d0 5361static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5362 struct cftype *cft, u64 val)
5363{
5364 return -ENOSYS;
5365}
5366#endif
7dc74be0 5367
406eb0c9 5368#ifdef CONFIG_NUMA
182446d0
TH
5369static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5370 struct cftype *cft, struct seq_file *m)
406eb0c9 5371{
25485de6
GT
5372 struct numa_stat {
5373 const char *name;
5374 unsigned int lru_mask;
5375 };
5376
5377 static const struct numa_stat stats[] = {
5378 { "total", LRU_ALL },
5379 { "file", LRU_ALL_FILE },
5380 { "anon", LRU_ALL_ANON },
5381 { "unevictable", BIT(LRU_UNEVICTABLE) },
5382 };
5383 const struct numa_stat *stat;
406eb0c9 5384 int nid;
25485de6 5385 unsigned long nr;
182446d0 5386 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5387
25485de6
GT
5388 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5389 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5390 seq_printf(m, "%s=%lu", stat->name, nr);
5391 for_each_node_state(nid, N_MEMORY) {
5392 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5393 stat->lru_mask);
5394 seq_printf(m, " N%d=%lu", nid, nr);
5395 }
5396 seq_putc(m, '\n');
406eb0c9 5397 }
406eb0c9 5398
406eb0c9
YH
5399 return 0;
5400}
5401#endif /* CONFIG_NUMA */
5402
af7c4b0e
JW
5403static inline void mem_cgroup_lru_names_not_uptodate(void)
5404{
5405 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5406}
5407
182446d0 5408static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5409 struct seq_file *m)
d2ceb9b7 5410{
182446d0 5411 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5412 struct mem_cgroup *mi;
5413 unsigned int i;
406eb0c9 5414
af7c4b0e 5415 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5416 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5417 continue;
af7c4b0e
JW
5418 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5419 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5420 }
7b854121 5421
af7c4b0e
JW
5422 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5423 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5424 mem_cgroup_read_events(memcg, i));
5425
5426 for (i = 0; i < NR_LRU_LISTS; i++)
5427 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5428 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5429
14067bb3 5430 /* Hierarchical information */
fee7b548
KH
5431 {
5432 unsigned long long limit, memsw_limit;
d79154bb 5433 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5434 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5435 if (do_swap_account)
78ccf5b5
JW
5436 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5437 memsw_limit);
fee7b548 5438 }
7f016ee8 5439
af7c4b0e
JW
5440 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5441 long long val = 0;
5442
bff6bb83 5443 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5444 continue;
af7c4b0e
JW
5445 for_each_mem_cgroup_tree(mi, memcg)
5446 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5447 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5448 }
5449
5450 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5451 unsigned long long val = 0;
5452
5453 for_each_mem_cgroup_tree(mi, memcg)
5454 val += mem_cgroup_read_events(mi, i);
5455 seq_printf(m, "total_%s %llu\n",
5456 mem_cgroup_events_names[i], val);
5457 }
5458
5459 for (i = 0; i < NR_LRU_LISTS; i++) {
5460 unsigned long long val = 0;
5461
5462 for_each_mem_cgroup_tree(mi, memcg)
5463 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5464 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5465 }
14067bb3 5466
7f016ee8 5467#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5468 {
5469 int nid, zid;
5470 struct mem_cgroup_per_zone *mz;
89abfab1 5471 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5472 unsigned long recent_rotated[2] = {0, 0};
5473 unsigned long recent_scanned[2] = {0, 0};
5474
5475 for_each_online_node(nid)
5476 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5477 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5478 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5479
89abfab1
HD
5480 recent_rotated[0] += rstat->recent_rotated[0];
5481 recent_rotated[1] += rstat->recent_rotated[1];
5482 recent_scanned[0] += rstat->recent_scanned[0];
5483 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5484 }
78ccf5b5
JW
5485 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5486 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5487 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5488 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5489 }
5490#endif
5491
d2ceb9b7
KH
5492 return 0;
5493}
5494
182446d0
TH
5495static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5496 struct cftype *cft)
a7885eb8 5497{
182446d0 5498 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5499
1f4c025b 5500 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5501}
5502
182446d0
TH
5503static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5504 struct cftype *cft, u64 val)
a7885eb8 5505{
182446d0 5506 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5507 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5508
63876986 5509 if (val > 100 || !parent)
a7885eb8
KM
5510 return -EINVAL;
5511
0999821b 5512 mutex_lock(&memcg_create_mutex);
068b38c1 5513
a7885eb8 5514 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5515 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5516 mutex_unlock(&memcg_create_mutex);
a7885eb8 5517 return -EINVAL;
068b38c1 5518 }
a7885eb8 5519
a7885eb8 5520 memcg->swappiness = val;
a7885eb8 5521
0999821b 5522 mutex_unlock(&memcg_create_mutex);
068b38c1 5523
a7885eb8
KM
5524 return 0;
5525}
5526
2e72b634
KS
5527static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5528{
5529 struct mem_cgroup_threshold_ary *t;
5530 u64 usage;
5531 int i;
5532
5533 rcu_read_lock();
5534 if (!swap)
2c488db2 5535 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5536 else
2c488db2 5537 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5538
5539 if (!t)
5540 goto unlock;
5541
5542 usage = mem_cgroup_usage(memcg, swap);
5543
5544 /*
748dad36 5545 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5546 * If it's not true, a threshold was crossed after last
5547 * call of __mem_cgroup_threshold().
5548 */
5407a562 5549 i = t->current_threshold;
2e72b634
KS
5550
5551 /*
5552 * Iterate backward over array of thresholds starting from
5553 * current_threshold and check if a threshold is crossed.
5554 * If none of thresholds below usage is crossed, we read
5555 * only one element of the array here.
5556 */
5557 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5558 eventfd_signal(t->entries[i].eventfd, 1);
5559
5560 /* i = current_threshold + 1 */
5561 i++;
5562
5563 /*
5564 * Iterate forward over array of thresholds starting from
5565 * current_threshold+1 and check if a threshold is crossed.
5566 * If none of thresholds above usage is crossed, we read
5567 * only one element of the array here.
5568 */
5569 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5570 eventfd_signal(t->entries[i].eventfd, 1);
5571
5572 /* Update current_threshold */
5407a562 5573 t->current_threshold = i - 1;
2e72b634
KS
5574unlock:
5575 rcu_read_unlock();
5576}
5577
5578static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5579{
ad4ca5f4
KS
5580 while (memcg) {
5581 __mem_cgroup_threshold(memcg, false);
5582 if (do_swap_account)
5583 __mem_cgroup_threshold(memcg, true);
5584
5585 memcg = parent_mem_cgroup(memcg);
5586 }
2e72b634
KS
5587}
5588
5589static int compare_thresholds(const void *a, const void *b)
5590{
5591 const struct mem_cgroup_threshold *_a = a;
5592 const struct mem_cgroup_threshold *_b = b;
5593
2bff24a3
GT
5594 if (_a->threshold > _b->threshold)
5595 return 1;
5596
5597 if (_a->threshold < _b->threshold)
5598 return -1;
5599
5600 return 0;
2e72b634
KS
5601}
5602
c0ff4b85 5603static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5604{
5605 struct mem_cgroup_eventfd_list *ev;
5606
c0ff4b85 5607 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5608 eventfd_signal(ev->eventfd, 1);
5609 return 0;
5610}
5611
c0ff4b85 5612static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5613{
7d74b06f
KH
5614 struct mem_cgroup *iter;
5615
c0ff4b85 5616 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5617 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5618}
5619
81eeaf04 5620static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
9490ff27 5621 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634 5622{
81eeaf04 5623 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5624 struct mem_cgroup_thresholds *thresholds;
5625 struct mem_cgroup_threshold_ary *new;
86ae53e1 5626 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5627 u64 threshold, usage;
2c488db2 5628 int i, size, ret;
2e72b634
KS
5629
5630 ret = res_counter_memparse_write_strategy(args, &threshold);
5631 if (ret)
5632 return ret;
5633
5634 mutex_lock(&memcg->thresholds_lock);
2c488db2 5635
2e72b634 5636 if (type == _MEM)
2c488db2 5637 thresholds = &memcg->thresholds;
2e72b634 5638 else if (type == _MEMSWAP)
2c488db2 5639 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5640 else
5641 BUG();
5642
5643 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5644
5645 /* Check if a threshold crossed before adding a new one */
2c488db2 5646 if (thresholds->primary)
2e72b634
KS
5647 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5648
2c488db2 5649 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5650
5651 /* Allocate memory for new array of thresholds */
2c488db2 5652 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5653 GFP_KERNEL);
2c488db2 5654 if (!new) {
2e72b634
KS
5655 ret = -ENOMEM;
5656 goto unlock;
5657 }
2c488db2 5658 new->size = size;
2e72b634
KS
5659
5660 /* Copy thresholds (if any) to new array */
2c488db2
KS
5661 if (thresholds->primary) {
5662 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5663 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5664 }
5665
2e72b634 5666 /* Add new threshold */
2c488db2
KS
5667 new->entries[size - 1].eventfd = eventfd;
5668 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5669
5670 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5671 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5672 compare_thresholds, NULL);
5673
5674 /* Find current threshold */
2c488db2 5675 new->current_threshold = -1;
2e72b634 5676 for (i = 0; i < size; i++) {
748dad36 5677 if (new->entries[i].threshold <= usage) {
2e72b634 5678 /*
2c488db2
KS
5679 * new->current_threshold will not be used until
5680 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5681 * it here.
5682 */
2c488db2 5683 ++new->current_threshold;
748dad36
SZ
5684 } else
5685 break;
2e72b634
KS
5686 }
5687
2c488db2
KS
5688 /* Free old spare buffer and save old primary buffer as spare */
5689 kfree(thresholds->spare);
5690 thresholds->spare = thresholds->primary;
5691
5692 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5693
907860ed 5694 /* To be sure that nobody uses thresholds */
2e72b634
KS
5695 synchronize_rcu();
5696
2e72b634
KS
5697unlock:
5698 mutex_unlock(&memcg->thresholds_lock);
5699
5700 return ret;
5701}
5702
81eeaf04 5703static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
9490ff27 5704 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634 5705{
81eeaf04 5706 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5707 struct mem_cgroup_thresholds *thresholds;
5708 struct mem_cgroup_threshold_ary *new;
86ae53e1 5709 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5710 u64 usage;
2c488db2 5711 int i, j, size;
2e72b634
KS
5712
5713 mutex_lock(&memcg->thresholds_lock);
5714 if (type == _MEM)
2c488db2 5715 thresholds = &memcg->thresholds;
2e72b634 5716 else if (type == _MEMSWAP)
2c488db2 5717 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5718 else
5719 BUG();
5720
371528ca
AV
5721 if (!thresholds->primary)
5722 goto unlock;
5723
2e72b634
KS
5724 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5725
5726 /* Check if a threshold crossed before removing */
5727 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5728
5729 /* Calculate new number of threshold */
2c488db2
KS
5730 size = 0;
5731 for (i = 0; i < thresholds->primary->size; i++) {
5732 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5733 size++;
5734 }
5735
2c488db2 5736 new = thresholds->spare;
907860ed 5737
2e72b634
KS
5738 /* Set thresholds array to NULL if we don't have thresholds */
5739 if (!size) {
2c488db2
KS
5740 kfree(new);
5741 new = NULL;
907860ed 5742 goto swap_buffers;
2e72b634
KS
5743 }
5744
2c488db2 5745 new->size = size;
2e72b634
KS
5746
5747 /* Copy thresholds and find current threshold */
2c488db2
KS
5748 new->current_threshold = -1;
5749 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5750 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5751 continue;
5752
2c488db2 5753 new->entries[j] = thresholds->primary->entries[i];
748dad36 5754 if (new->entries[j].threshold <= usage) {
2e72b634 5755 /*
2c488db2 5756 * new->current_threshold will not be used
2e72b634
KS
5757 * until rcu_assign_pointer(), so it's safe to increment
5758 * it here.
5759 */
2c488db2 5760 ++new->current_threshold;
2e72b634
KS
5761 }
5762 j++;
5763 }
5764
907860ed 5765swap_buffers:
2c488db2
KS
5766 /* Swap primary and spare array */
5767 thresholds->spare = thresholds->primary;
8c757763
SZ
5768 /* If all events are unregistered, free the spare array */
5769 if (!new) {
5770 kfree(thresholds->spare);
5771 thresholds->spare = NULL;
5772 }
5773
2c488db2 5774 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5775
907860ed 5776 /* To be sure that nobody uses thresholds */
2e72b634 5777 synchronize_rcu();
371528ca 5778unlock:
2e72b634 5779 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5780}
c1e862c1 5781
81eeaf04 5782static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
9490ff27
KH
5783 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5784{
81eeaf04 5785 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5786 struct mem_cgroup_eventfd_list *event;
86ae53e1 5787 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5788
5789 BUG_ON(type != _OOM_TYPE);
5790 event = kmalloc(sizeof(*event), GFP_KERNEL);
5791 if (!event)
5792 return -ENOMEM;
5793
1af8efe9 5794 spin_lock(&memcg_oom_lock);
9490ff27
KH
5795
5796 event->eventfd = eventfd;
5797 list_add(&event->list, &memcg->oom_notify);
5798
5799 /* already in OOM ? */
79dfdacc 5800 if (atomic_read(&memcg->under_oom))
9490ff27 5801 eventfd_signal(eventfd, 1);
1af8efe9 5802 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5803
5804 return 0;
5805}
5806
81eeaf04 5807static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
9490ff27
KH
5808 struct cftype *cft, struct eventfd_ctx *eventfd)
5809{
81eeaf04 5810 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5811 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5812 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5813
5814 BUG_ON(type != _OOM_TYPE);
5815
1af8efe9 5816 spin_lock(&memcg_oom_lock);
9490ff27 5817
c0ff4b85 5818 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5819 if (ev->eventfd == eventfd) {
5820 list_del(&ev->list);
5821 kfree(ev);
5822 }
5823 }
5824
1af8efe9 5825 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5826}
5827
182446d0 5828static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5829 struct cftype *cft, struct cgroup_map_cb *cb)
5830{
182446d0 5831 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5832
c0ff4b85 5833 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5834
c0ff4b85 5835 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5836 cb->fill(cb, "under_oom", 1);
5837 else
5838 cb->fill(cb, "under_oom", 0);
5839 return 0;
5840}
5841
182446d0 5842static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5843 struct cftype *cft, u64 val)
5844{
182446d0 5845 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5846 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5847
5848 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5849 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5850 return -EINVAL;
5851
0999821b 5852 mutex_lock(&memcg_create_mutex);
3c11ecf4 5853 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5854 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5855 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5856 return -EINVAL;
5857 }
c0ff4b85 5858 memcg->oom_kill_disable = val;
4d845ebf 5859 if (!val)
c0ff4b85 5860 memcg_oom_recover(memcg);
0999821b 5861 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5862 return 0;
5863}
5864
c255a458 5865#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5866static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5867{
55007d84
GC
5868 int ret;
5869
2633d7a0 5870 memcg->kmemcg_id = -1;
55007d84
GC
5871 ret = memcg_propagate_kmem(memcg);
5872 if (ret)
5873 return ret;
2633d7a0 5874
1d62e436 5875 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5876}
e5671dfa 5877
10d5ebf4 5878static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5879{
1d62e436 5880 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5881}
5882
5883static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5884{
5885 if (!memcg_kmem_is_active(memcg))
5886 return;
5887
5888 /*
5889 * kmem charges can outlive the cgroup. In the case of slab
5890 * pages, for instance, a page contain objects from various
5891 * processes. As we prevent from taking a reference for every
5892 * such allocation we have to be careful when doing uncharge
5893 * (see memcg_uncharge_kmem) and here during offlining.
5894 *
5895 * The idea is that that only the _last_ uncharge which sees
5896 * the dead memcg will drop the last reference. An additional
5897 * reference is taken here before the group is marked dead
5898 * which is then paired with css_put during uncharge resp. here.
5899 *
5900 * Although this might sound strange as this path is called from
5901 * css_offline() when the referencemight have dropped down to 0
5902 * and shouldn't be incremented anymore (css_tryget would fail)
5903 * we do not have other options because of the kmem allocations
5904 * lifetime.
5905 */
5906 css_get(&memcg->css);
7de37682
GC
5907
5908 memcg_kmem_mark_dead(memcg);
5909
5910 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5911 return;
5912
7de37682 5913 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5914 css_put(&memcg->css);
d1a4c0b3 5915}
e5671dfa 5916#else
cbe128e3 5917static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5918{
5919 return 0;
5920}
d1a4c0b3 5921
10d5ebf4
LZ
5922static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5923{
5924}
5925
5926static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5927{
5928}
e5671dfa
GC
5929#endif
5930
8cdea7c0
BS
5931static struct cftype mem_cgroup_files[] = {
5932 {
0eea1030 5933 .name = "usage_in_bytes",
8c7c6e34 5934 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5935 .read = mem_cgroup_read,
9490ff27
KH
5936 .register_event = mem_cgroup_usage_register_event,
5937 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5938 },
c84872e1
PE
5939 {
5940 .name = "max_usage_in_bytes",
8c7c6e34 5941 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5942 .trigger = mem_cgroup_reset,
af36f906 5943 .read = mem_cgroup_read,
c84872e1 5944 },
8cdea7c0 5945 {
0eea1030 5946 .name = "limit_in_bytes",
8c7c6e34 5947 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5948 .write_string = mem_cgroup_write,
af36f906 5949 .read = mem_cgroup_read,
8cdea7c0 5950 },
296c81d8
BS
5951 {
5952 .name = "soft_limit_in_bytes",
5953 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5954 .write_string = mem_cgroup_write,
af36f906 5955 .read = mem_cgroup_read,
296c81d8 5956 },
8cdea7c0
BS
5957 {
5958 .name = "failcnt",
8c7c6e34 5959 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5960 .trigger = mem_cgroup_reset,
af36f906 5961 .read = mem_cgroup_read,
8cdea7c0 5962 },
d2ceb9b7
KH
5963 {
5964 .name = "stat",
ab215884 5965 .read_seq_string = memcg_stat_show,
d2ceb9b7 5966 },
c1e862c1
KH
5967 {
5968 .name = "force_empty",
5969 .trigger = mem_cgroup_force_empty_write,
5970 },
18f59ea7
BS
5971 {
5972 .name = "use_hierarchy",
f00baae7 5973 .flags = CFTYPE_INSANE,
18f59ea7
BS
5974 .write_u64 = mem_cgroup_hierarchy_write,
5975 .read_u64 = mem_cgroup_hierarchy_read,
5976 },
a7885eb8
KM
5977 {
5978 .name = "swappiness",
5979 .read_u64 = mem_cgroup_swappiness_read,
5980 .write_u64 = mem_cgroup_swappiness_write,
5981 },
7dc74be0
DN
5982 {
5983 .name = "move_charge_at_immigrate",
5984 .read_u64 = mem_cgroup_move_charge_read,
5985 .write_u64 = mem_cgroup_move_charge_write,
5986 },
9490ff27
KH
5987 {
5988 .name = "oom_control",
3c11ecf4
KH
5989 .read_map = mem_cgroup_oom_control_read,
5990 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5991 .register_event = mem_cgroup_oom_register_event,
5992 .unregister_event = mem_cgroup_oom_unregister_event,
5993 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5994 },
70ddf637
AV
5995 {
5996 .name = "pressure_level",
5997 .register_event = vmpressure_register_event,
5998 .unregister_event = vmpressure_unregister_event,
5999 },
406eb0c9
YH
6000#ifdef CONFIG_NUMA
6001 {
6002 .name = "numa_stat",
ab215884 6003 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
6004 },
6005#endif
510fc4e1
GC
6006#ifdef CONFIG_MEMCG_KMEM
6007 {
6008 .name = "kmem.limit_in_bytes",
6009 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6010 .write_string = mem_cgroup_write,
6011 .read = mem_cgroup_read,
6012 },
6013 {
6014 .name = "kmem.usage_in_bytes",
6015 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6016 .read = mem_cgroup_read,
6017 },
6018 {
6019 .name = "kmem.failcnt",
6020 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6021 .trigger = mem_cgroup_reset,
6022 .read = mem_cgroup_read,
6023 },
6024 {
6025 .name = "kmem.max_usage_in_bytes",
6026 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6027 .trigger = mem_cgroup_reset,
6028 .read = mem_cgroup_read,
6029 },
749c5415
GC
6030#ifdef CONFIG_SLABINFO
6031 {
6032 .name = "kmem.slabinfo",
6033 .read_seq_string = mem_cgroup_slabinfo_read,
6034 },
6035#endif
8c7c6e34 6036#endif
6bc10349 6037 { }, /* terminate */
af36f906 6038};
8c7c6e34 6039
2d11085e
MH
6040#ifdef CONFIG_MEMCG_SWAP
6041static struct cftype memsw_cgroup_files[] = {
6042 {
6043 .name = "memsw.usage_in_bytes",
6044 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6045 .read = mem_cgroup_read,
6046 .register_event = mem_cgroup_usage_register_event,
6047 .unregister_event = mem_cgroup_usage_unregister_event,
6048 },
6049 {
6050 .name = "memsw.max_usage_in_bytes",
6051 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6052 .trigger = mem_cgroup_reset,
6053 .read = mem_cgroup_read,
6054 },
6055 {
6056 .name = "memsw.limit_in_bytes",
6057 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6058 .write_string = mem_cgroup_write,
6059 .read = mem_cgroup_read,
6060 },
6061 {
6062 .name = "memsw.failcnt",
6063 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6064 .trigger = mem_cgroup_reset,
6065 .read = mem_cgroup_read,
6066 },
6067 { }, /* terminate */
6068};
6069#endif
c0ff4b85 6070static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6071{
6072 struct mem_cgroup_per_node *pn;
1ecaab2b 6073 struct mem_cgroup_per_zone *mz;
41e3355d 6074 int zone, tmp = node;
1ecaab2b
KH
6075 /*
6076 * This routine is called against possible nodes.
6077 * But it's BUG to call kmalloc() against offline node.
6078 *
6079 * TODO: this routine can waste much memory for nodes which will
6080 * never be onlined. It's better to use memory hotplug callback
6081 * function.
6082 */
41e3355d
KH
6083 if (!node_state(node, N_NORMAL_MEMORY))
6084 tmp = -1;
17295c88 6085 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6086 if (!pn)
6087 return 1;
1ecaab2b 6088
1ecaab2b
KH
6089 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6090 mz = &pn->zoneinfo[zone];
bea8c150 6091 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6092 mz->usage_in_excess = 0;
6093 mz->on_tree = false;
d79154bb 6094 mz->memcg = memcg;
1ecaab2b 6095 }
54f72fe0 6096 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6097 return 0;
6098}
6099
c0ff4b85 6100static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6101{
54f72fe0 6102 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6103}
6104
33327948
KH
6105static struct mem_cgroup *mem_cgroup_alloc(void)
6106{
d79154bb 6107 struct mem_cgroup *memcg;
45cf7ebd 6108 size_t size = memcg_size();
33327948 6109
45cf7ebd 6110 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6111 if (size < PAGE_SIZE)
d79154bb 6112 memcg = kzalloc(size, GFP_KERNEL);
33327948 6113 else
d79154bb 6114 memcg = vzalloc(size);
33327948 6115
d79154bb 6116 if (!memcg)
e7bbcdf3
DC
6117 return NULL;
6118
d79154bb
HD
6119 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6120 if (!memcg->stat)
d2e61b8d 6121 goto out_free;
d79154bb
HD
6122 spin_lock_init(&memcg->pcp_counter_lock);
6123 return memcg;
d2e61b8d
DC
6124
6125out_free:
6126 if (size < PAGE_SIZE)
d79154bb 6127 kfree(memcg);
d2e61b8d 6128 else
d79154bb 6129 vfree(memcg);
d2e61b8d 6130 return NULL;
33327948
KH
6131}
6132
59927fb9 6133/*
c8b2a36f
GC
6134 * At destroying mem_cgroup, references from swap_cgroup can remain.
6135 * (scanning all at force_empty is too costly...)
6136 *
6137 * Instead of clearing all references at force_empty, we remember
6138 * the number of reference from swap_cgroup and free mem_cgroup when
6139 * it goes down to 0.
6140 *
6141 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6142 */
c8b2a36f
GC
6143
6144static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6145{
c8b2a36f 6146 int node;
45cf7ebd 6147 size_t size = memcg_size();
59927fb9 6148
bb4cc1a8 6149 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6150 free_css_id(&mem_cgroup_subsys, &memcg->css);
6151
6152 for_each_node(node)
6153 free_mem_cgroup_per_zone_info(memcg, node);
6154
6155 free_percpu(memcg->stat);
6156
3f134619
GC
6157 /*
6158 * We need to make sure that (at least for now), the jump label
6159 * destruction code runs outside of the cgroup lock. This is because
6160 * get_online_cpus(), which is called from the static_branch update,
6161 * can't be called inside the cgroup_lock. cpusets are the ones
6162 * enforcing this dependency, so if they ever change, we might as well.
6163 *
6164 * schedule_work() will guarantee this happens. Be careful if you need
6165 * to move this code around, and make sure it is outside
6166 * the cgroup_lock.
6167 */
a8964b9b 6168 disarm_static_keys(memcg);
3afe36b1
GC
6169 if (size < PAGE_SIZE)
6170 kfree(memcg);
6171 else
6172 vfree(memcg);
59927fb9 6173}
3afe36b1 6174
7bcc1bb1
DN
6175/*
6176 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6177 */
e1aab161 6178struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6179{
c0ff4b85 6180 if (!memcg->res.parent)
7bcc1bb1 6181 return NULL;
c0ff4b85 6182 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6183}
e1aab161 6184EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6185
bb4cc1a8
AM
6186static void __init mem_cgroup_soft_limit_tree_init(void)
6187{
6188 struct mem_cgroup_tree_per_node *rtpn;
6189 struct mem_cgroup_tree_per_zone *rtpz;
6190 int tmp, node, zone;
6191
6192 for_each_node(node) {
6193 tmp = node;
6194 if (!node_state(node, N_NORMAL_MEMORY))
6195 tmp = -1;
6196 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6197 BUG_ON(!rtpn);
6198
6199 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6200
6201 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6202 rtpz = &rtpn->rb_tree_per_zone[zone];
6203 rtpz->rb_root = RB_ROOT;
6204 spin_lock_init(&rtpz->lock);
6205 }
6206 }
6207}
6208
0eb253e2 6209static struct cgroup_subsys_state * __ref
eb95419b 6210mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6211{
d142e3e6 6212 struct mem_cgroup *memcg;
04046e1a 6213 long error = -ENOMEM;
6d12e2d8 6214 int node;
8cdea7c0 6215
c0ff4b85
R
6216 memcg = mem_cgroup_alloc();
6217 if (!memcg)
04046e1a 6218 return ERR_PTR(error);
78fb7466 6219
3ed28fa1 6220 for_each_node(node)
c0ff4b85 6221 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6222 goto free_out;
f64c3f54 6223
c077719b 6224 /* root ? */
eb95419b 6225 if (parent_css == NULL) {
a41c58a6 6226 root_mem_cgroup = memcg;
d142e3e6
GC
6227 res_counter_init(&memcg->res, NULL);
6228 res_counter_init(&memcg->memsw, NULL);
6229 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6230 }
28dbc4b6 6231
d142e3e6
GC
6232 memcg->last_scanned_node = MAX_NUMNODES;
6233 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6234 memcg->move_charge_at_immigrate = 0;
6235 mutex_init(&memcg->thresholds_lock);
6236 spin_lock_init(&memcg->move_lock);
70ddf637 6237 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6238
6239 return &memcg->css;
6240
6241free_out:
6242 __mem_cgroup_free(memcg);
6243 return ERR_PTR(error);
6244}
6245
6246static int
eb95419b 6247mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6248{
eb95419b
TH
6249 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6250 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6251 int error = 0;
6252
63876986 6253 if (!parent)
d142e3e6
GC
6254 return 0;
6255
0999821b 6256 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6257
6258 memcg->use_hierarchy = parent->use_hierarchy;
6259 memcg->oom_kill_disable = parent->oom_kill_disable;
6260 memcg->swappiness = mem_cgroup_swappiness(parent);
6261
6262 if (parent->use_hierarchy) {
c0ff4b85
R
6263 res_counter_init(&memcg->res, &parent->res);
6264 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6265 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6266
7bcc1bb1 6267 /*
8d76a979
LZ
6268 * No need to take a reference to the parent because cgroup
6269 * core guarantees its existence.
7bcc1bb1 6270 */
18f59ea7 6271 } else {
c0ff4b85
R
6272 res_counter_init(&memcg->res, NULL);
6273 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6274 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6275 /*
6276 * Deeper hierachy with use_hierarchy == false doesn't make
6277 * much sense so let cgroup subsystem know about this
6278 * unfortunate state in our controller.
6279 */
d142e3e6 6280 if (parent != root_mem_cgroup)
8c7f6edb 6281 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6282 }
cbe128e3
GC
6283
6284 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6285 mutex_unlock(&memcg_create_mutex);
d142e3e6 6286 return error;
8cdea7c0
BS
6287}
6288
5f578161
MH
6289/*
6290 * Announce all parents that a group from their hierarchy is gone.
6291 */
6292static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6293{
6294 struct mem_cgroup *parent = memcg;
6295
6296 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6297 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6298
6299 /*
6300 * if the root memcg is not hierarchical we have to check it
6301 * explicitely.
6302 */
6303 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6304 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6305}
6306
eb95419b 6307static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6308{
eb95419b 6309 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ec64f515 6310
10d5ebf4
LZ
6311 kmem_cgroup_css_offline(memcg);
6312
5f578161 6313 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6314 mem_cgroup_reparent_charges(memcg);
1f458cbf 6315 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6316 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6317}
6318
eb95419b 6319static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6320{
eb95419b 6321 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6322
10d5ebf4 6323 memcg_destroy_kmem(memcg);
465939a1 6324 __mem_cgroup_free(memcg);
8cdea7c0
BS
6325}
6326
02491447 6327#ifdef CONFIG_MMU
7dc74be0 6328/* Handlers for move charge at task migration. */
854ffa8d
DN
6329#define PRECHARGE_COUNT_AT_ONCE 256
6330static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6331{
854ffa8d
DN
6332 int ret = 0;
6333 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6334 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6335
c0ff4b85 6336 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6337 mc.precharge += count;
6338 /* we don't need css_get for root */
6339 return ret;
6340 }
6341 /* try to charge at once */
6342 if (count > 1) {
6343 struct res_counter *dummy;
6344 /*
c0ff4b85 6345 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6346 * by cgroup_lock_live_cgroup() that it is not removed and we
6347 * are still under the same cgroup_mutex. So we can postpone
6348 * css_get().
6349 */
c0ff4b85 6350 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6351 goto one_by_one;
c0ff4b85 6352 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6353 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6354 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6355 goto one_by_one;
6356 }
6357 mc.precharge += count;
854ffa8d
DN
6358 return ret;
6359 }
6360one_by_one:
6361 /* fall back to one by one charge */
6362 while (count--) {
6363 if (signal_pending(current)) {
6364 ret = -EINTR;
6365 break;
6366 }
6367 if (!batch_count--) {
6368 batch_count = PRECHARGE_COUNT_AT_ONCE;
6369 cond_resched();
6370 }
c0ff4b85
R
6371 ret = __mem_cgroup_try_charge(NULL,
6372 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6373 if (ret)
854ffa8d 6374 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6375 return ret;
854ffa8d
DN
6376 mc.precharge++;
6377 }
4ffef5fe
DN
6378 return ret;
6379}
6380
6381/**
8d32ff84 6382 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6383 * @vma: the vma the pte to be checked belongs
6384 * @addr: the address corresponding to the pte to be checked
6385 * @ptent: the pte to be checked
02491447 6386 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6387 *
6388 * Returns
6389 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6390 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6391 * move charge. if @target is not NULL, the page is stored in target->page
6392 * with extra refcnt got(Callers should handle it).
02491447
DN
6393 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6394 * target for charge migration. if @target is not NULL, the entry is stored
6395 * in target->ent.
4ffef5fe
DN
6396 *
6397 * Called with pte lock held.
6398 */
4ffef5fe
DN
6399union mc_target {
6400 struct page *page;
02491447 6401 swp_entry_t ent;
4ffef5fe
DN
6402};
6403
4ffef5fe 6404enum mc_target_type {
8d32ff84 6405 MC_TARGET_NONE = 0,
4ffef5fe 6406 MC_TARGET_PAGE,
02491447 6407 MC_TARGET_SWAP,
4ffef5fe
DN
6408};
6409
90254a65
DN
6410static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6411 unsigned long addr, pte_t ptent)
4ffef5fe 6412{
90254a65 6413 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6414
90254a65
DN
6415 if (!page || !page_mapped(page))
6416 return NULL;
6417 if (PageAnon(page)) {
6418 /* we don't move shared anon */
4b91355e 6419 if (!move_anon())
90254a65 6420 return NULL;
87946a72
DN
6421 } else if (!move_file())
6422 /* we ignore mapcount for file pages */
90254a65
DN
6423 return NULL;
6424 if (!get_page_unless_zero(page))
6425 return NULL;
6426
6427 return page;
6428}
6429
4b91355e 6430#ifdef CONFIG_SWAP
90254a65
DN
6431static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6432 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6433{
90254a65
DN
6434 struct page *page = NULL;
6435 swp_entry_t ent = pte_to_swp_entry(ptent);
6436
6437 if (!move_anon() || non_swap_entry(ent))
6438 return NULL;
4b91355e
KH
6439 /*
6440 * Because lookup_swap_cache() updates some statistics counter,
6441 * we call find_get_page() with swapper_space directly.
6442 */
33806f06 6443 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6444 if (do_swap_account)
6445 entry->val = ent.val;
6446
6447 return page;
6448}
4b91355e
KH
6449#else
6450static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6451 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6452{
6453 return NULL;
6454}
6455#endif
90254a65 6456
87946a72
DN
6457static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6458 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6459{
6460 struct page *page = NULL;
87946a72
DN
6461 struct address_space *mapping;
6462 pgoff_t pgoff;
6463
6464 if (!vma->vm_file) /* anonymous vma */
6465 return NULL;
6466 if (!move_file())
6467 return NULL;
6468
87946a72
DN
6469 mapping = vma->vm_file->f_mapping;
6470 if (pte_none(ptent))
6471 pgoff = linear_page_index(vma, addr);
6472 else /* pte_file(ptent) is true */
6473 pgoff = pte_to_pgoff(ptent);
6474
6475 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6476 page = find_get_page(mapping, pgoff);
6477
6478#ifdef CONFIG_SWAP
6479 /* shmem/tmpfs may report page out on swap: account for that too. */
6480 if (radix_tree_exceptional_entry(page)) {
6481 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6482 if (do_swap_account)
aa3b1895 6483 *entry = swap;
33806f06 6484 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6485 }
aa3b1895 6486#endif
87946a72
DN
6487 return page;
6488}
6489
8d32ff84 6490static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6491 unsigned long addr, pte_t ptent, union mc_target *target)
6492{
6493 struct page *page = NULL;
6494 struct page_cgroup *pc;
8d32ff84 6495 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6496 swp_entry_t ent = { .val = 0 };
6497
6498 if (pte_present(ptent))
6499 page = mc_handle_present_pte(vma, addr, ptent);
6500 else if (is_swap_pte(ptent))
6501 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6502 else if (pte_none(ptent) || pte_file(ptent))
6503 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6504
6505 if (!page && !ent.val)
8d32ff84 6506 return ret;
02491447
DN
6507 if (page) {
6508 pc = lookup_page_cgroup(page);
6509 /*
6510 * Do only loose check w/o page_cgroup lock.
6511 * mem_cgroup_move_account() checks the pc is valid or not under
6512 * the lock.
6513 */
6514 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6515 ret = MC_TARGET_PAGE;
6516 if (target)
6517 target->page = page;
6518 }
6519 if (!ret || !target)
6520 put_page(page);
6521 }
90254a65
DN
6522 /* There is a swap entry and a page doesn't exist or isn't charged */
6523 if (ent.val && !ret &&
9fb4b7cc 6524 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6525 ret = MC_TARGET_SWAP;
6526 if (target)
6527 target->ent = ent;
4ffef5fe 6528 }
4ffef5fe
DN
6529 return ret;
6530}
6531
12724850
NH
6532#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6533/*
6534 * We don't consider swapping or file mapped pages because THP does not
6535 * support them for now.
6536 * Caller should make sure that pmd_trans_huge(pmd) is true.
6537 */
6538static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6539 unsigned long addr, pmd_t pmd, union mc_target *target)
6540{
6541 struct page *page = NULL;
6542 struct page_cgroup *pc;
6543 enum mc_target_type ret = MC_TARGET_NONE;
6544
6545 page = pmd_page(pmd);
6546 VM_BUG_ON(!page || !PageHead(page));
6547 if (!move_anon())
6548 return ret;
6549 pc = lookup_page_cgroup(page);
6550 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6551 ret = MC_TARGET_PAGE;
6552 if (target) {
6553 get_page(page);
6554 target->page = page;
6555 }
6556 }
6557 return ret;
6558}
6559#else
6560static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6561 unsigned long addr, pmd_t pmd, union mc_target *target)
6562{
6563 return MC_TARGET_NONE;
6564}
6565#endif
6566
4ffef5fe
DN
6567static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6568 unsigned long addr, unsigned long end,
6569 struct mm_walk *walk)
6570{
6571 struct vm_area_struct *vma = walk->private;
6572 pte_t *pte;
6573 spinlock_t *ptl;
6574
12724850
NH
6575 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6576 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6577 mc.precharge += HPAGE_PMD_NR;
6578 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6579 return 0;
12724850 6580 }
03319327 6581
45f83cef
AA
6582 if (pmd_trans_unstable(pmd))
6583 return 0;
4ffef5fe
DN
6584 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6585 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6586 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6587 mc.precharge++; /* increment precharge temporarily */
6588 pte_unmap_unlock(pte - 1, ptl);
6589 cond_resched();
6590
7dc74be0
DN
6591 return 0;
6592}
6593
4ffef5fe
DN
6594static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6595{
6596 unsigned long precharge;
6597 struct vm_area_struct *vma;
6598
dfe076b0 6599 down_read(&mm->mmap_sem);
4ffef5fe
DN
6600 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6601 struct mm_walk mem_cgroup_count_precharge_walk = {
6602 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6603 .mm = mm,
6604 .private = vma,
6605 };
6606 if (is_vm_hugetlb_page(vma))
6607 continue;
4ffef5fe
DN
6608 walk_page_range(vma->vm_start, vma->vm_end,
6609 &mem_cgroup_count_precharge_walk);
6610 }
dfe076b0 6611 up_read(&mm->mmap_sem);
4ffef5fe
DN
6612
6613 precharge = mc.precharge;
6614 mc.precharge = 0;
6615
6616 return precharge;
6617}
6618
4ffef5fe
DN
6619static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6620{
dfe076b0
DN
6621 unsigned long precharge = mem_cgroup_count_precharge(mm);
6622
6623 VM_BUG_ON(mc.moving_task);
6624 mc.moving_task = current;
6625 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6626}
6627
dfe076b0
DN
6628/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6629static void __mem_cgroup_clear_mc(void)
4ffef5fe 6630{
2bd9bb20
KH
6631 struct mem_cgroup *from = mc.from;
6632 struct mem_cgroup *to = mc.to;
4050377b 6633 int i;
2bd9bb20 6634
4ffef5fe 6635 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6636 if (mc.precharge) {
6637 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6638 mc.precharge = 0;
6639 }
6640 /*
6641 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6642 * we must uncharge here.
6643 */
6644 if (mc.moved_charge) {
6645 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6646 mc.moved_charge = 0;
4ffef5fe 6647 }
483c30b5
DN
6648 /* we must fixup refcnts and charges */
6649 if (mc.moved_swap) {
483c30b5
DN
6650 /* uncharge swap account from the old cgroup */
6651 if (!mem_cgroup_is_root(mc.from))
6652 res_counter_uncharge(&mc.from->memsw,
6653 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6654
6655 for (i = 0; i < mc.moved_swap; i++)
6656 css_put(&mc.from->css);
483c30b5
DN
6657
6658 if (!mem_cgroup_is_root(mc.to)) {
6659 /*
6660 * we charged both to->res and to->memsw, so we should
6661 * uncharge to->res.
6662 */
6663 res_counter_uncharge(&mc.to->res,
6664 PAGE_SIZE * mc.moved_swap);
483c30b5 6665 }
4050377b 6666 /* we've already done css_get(mc.to) */
483c30b5
DN
6667 mc.moved_swap = 0;
6668 }
dfe076b0
DN
6669 memcg_oom_recover(from);
6670 memcg_oom_recover(to);
6671 wake_up_all(&mc.waitq);
6672}
6673
6674static void mem_cgroup_clear_mc(void)
6675{
6676 struct mem_cgroup *from = mc.from;
6677
6678 /*
6679 * we must clear moving_task before waking up waiters at the end of
6680 * task migration.
6681 */
6682 mc.moving_task = NULL;
6683 __mem_cgroup_clear_mc();
2bd9bb20 6684 spin_lock(&mc.lock);
4ffef5fe
DN
6685 mc.from = NULL;
6686 mc.to = NULL;
2bd9bb20 6687 spin_unlock(&mc.lock);
32047e2a 6688 mem_cgroup_end_move(from);
4ffef5fe
DN
6689}
6690
eb95419b 6691static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6692 struct cgroup_taskset *tset)
7dc74be0 6693{
2f7ee569 6694 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6695 int ret = 0;
eb95419b 6696 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6697 unsigned long move_charge_at_immigrate;
7dc74be0 6698
ee5e8472
GC
6699 /*
6700 * We are now commited to this value whatever it is. Changes in this
6701 * tunable will only affect upcoming migrations, not the current one.
6702 * So we need to save it, and keep it going.
6703 */
6704 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6705 if (move_charge_at_immigrate) {
7dc74be0
DN
6706 struct mm_struct *mm;
6707 struct mem_cgroup *from = mem_cgroup_from_task(p);
6708
c0ff4b85 6709 VM_BUG_ON(from == memcg);
7dc74be0
DN
6710
6711 mm = get_task_mm(p);
6712 if (!mm)
6713 return 0;
7dc74be0 6714 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6715 if (mm->owner == p) {
6716 VM_BUG_ON(mc.from);
6717 VM_BUG_ON(mc.to);
6718 VM_BUG_ON(mc.precharge);
854ffa8d 6719 VM_BUG_ON(mc.moved_charge);
483c30b5 6720 VM_BUG_ON(mc.moved_swap);
32047e2a 6721 mem_cgroup_start_move(from);
2bd9bb20 6722 spin_lock(&mc.lock);
4ffef5fe 6723 mc.from = from;
c0ff4b85 6724 mc.to = memcg;
ee5e8472 6725 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6726 spin_unlock(&mc.lock);
dfe076b0 6727 /* We set mc.moving_task later */
4ffef5fe
DN
6728
6729 ret = mem_cgroup_precharge_mc(mm);
6730 if (ret)
6731 mem_cgroup_clear_mc();
dfe076b0
DN
6732 }
6733 mmput(mm);
7dc74be0
DN
6734 }
6735 return ret;
6736}
6737
eb95419b 6738static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6739 struct cgroup_taskset *tset)
7dc74be0 6740{
4ffef5fe 6741 mem_cgroup_clear_mc();
7dc74be0
DN
6742}
6743
4ffef5fe
DN
6744static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6745 unsigned long addr, unsigned long end,
6746 struct mm_walk *walk)
7dc74be0 6747{
4ffef5fe
DN
6748 int ret = 0;
6749 struct vm_area_struct *vma = walk->private;
6750 pte_t *pte;
6751 spinlock_t *ptl;
12724850
NH
6752 enum mc_target_type target_type;
6753 union mc_target target;
6754 struct page *page;
6755 struct page_cgroup *pc;
4ffef5fe 6756
12724850
NH
6757 /*
6758 * We don't take compound_lock() here but no race with splitting thp
6759 * happens because:
6760 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6761 * under splitting, which means there's no concurrent thp split,
6762 * - if another thread runs into split_huge_page() just after we
6763 * entered this if-block, the thread must wait for page table lock
6764 * to be unlocked in __split_huge_page_splitting(), where the main
6765 * part of thp split is not executed yet.
6766 */
6767 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6768 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6769 spin_unlock(&vma->vm_mm->page_table_lock);
6770 return 0;
6771 }
6772 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6773 if (target_type == MC_TARGET_PAGE) {
6774 page = target.page;
6775 if (!isolate_lru_page(page)) {
6776 pc = lookup_page_cgroup(page);
6777 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6778 pc, mc.from, mc.to)) {
12724850
NH
6779 mc.precharge -= HPAGE_PMD_NR;
6780 mc.moved_charge += HPAGE_PMD_NR;
6781 }
6782 putback_lru_page(page);
6783 }
6784 put_page(page);
6785 }
6786 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6787 return 0;
12724850
NH
6788 }
6789
45f83cef
AA
6790 if (pmd_trans_unstable(pmd))
6791 return 0;
4ffef5fe
DN
6792retry:
6793 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6794 for (; addr != end; addr += PAGE_SIZE) {
6795 pte_t ptent = *(pte++);
02491447 6796 swp_entry_t ent;
4ffef5fe
DN
6797
6798 if (!mc.precharge)
6799 break;
6800
8d32ff84 6801 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6802 case MC_TARGET_PAGE:
6803 page = target.page;
6804 if (isolate_lru_page(page))
6805 goto put;
6806 pc = lookup_page_cgroup(page);
7ec99d62 6807 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6808 mc.from, mc.to)) {
4ffef5fe 6809 mc.precharge--;
854ffa8d
DN
6810 /* we uncharge from mc.from later. */
6811 mc.moved_charge++;
4ffef5fe
DN
6812 }
6813 putback_lru_page(page);
8d32ff84 6814put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6815 put_page(page);
6816 break;
02491447
DN
6817 case MC_TARGET_SWAP:
6818 ent = target.ent;
e91cbb42 6819 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6820 mc.precharge--;
483c30b5
DN
6821 /* we fixup refcnts and charges later. */
6822 mc.moved_swap++;
6823 }
02491447 6824 break;
4ffef5fe
DN
6825 default:
6826 break;
6827 }
6828 }
6829 pte_unmap_unlock(pte - 1, ptl);
6830 cond_resched();
6831
6832 if (addr != end) {
6833 /*
6834 * We have consumed all precharges we got in can_attach().
6835 * We try charge one by one, but don't do any additional
6836 * charges to mc.to if we have failed in charge once in attach()
6837 * phase.
6838 */
854ffa8d 6839 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6840 if (!ret)
6841 goto retry;
6842 }
6843
6844 return ret;
6845}
6846
6847static void mem_cgroup_move_charge(struct mm_struct *mm)
6848{
6849 struct vm_area_struct *vma;
6850
6851 lru_add_drain_all();
dfe076b0
DN
6852retry:
6853 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6854 /*
6855 * Someone who are holding the mmap_sem might be waiting in
6856 * waitq. So we cancel all extra charges, wake up all waiters,
6857 * and retry. Because we cancel precharges, we might not be able
6858 * to move enough charges, but moving charge is a best-effort
6859 * feature anyway, so it wouldn't be a big problem.
6860 */
6861 __mem_cgroup_clear_mc();
6862 cond_resched();
6863 goto retry;
6864 }
4ffef5fe
DN
6865 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6866 int ret;
6867 struct mm_walk mem_cgroup_move_charge_walk = {
6868 .pmd_entry = mem_cgroup_move_charge_pte_range,
6869 .mm = mm,
6870 .private = vma,
6871 };
6872 if (is_vm_hugetlb_page(vma))
6873 continue;
4ffef5fe
DN
6874 ret = walk_page_range(vma->vm_start, vma->vm_end,
6875 &mem_cgroup_move_charge_walk);
6876 if (ret)
6877 /*
6878 * means we have consumed all precharges and failed in
6879 * doing additional charge. Just abandon here.
6880 */
6881 break;
6882 }
dfe076b0 6883 up_read(&mm->mmap_sem);
7dc74be0
DN
6884}
6885
eb95419b 6886static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6887 struct cgroup_taskset *tset)
67e465a7 6888{
2f7ee569 6889 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6890 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6891
dfe076b0 6892 if (mm) {
a433658c
KM
6893 if (mc.to)
6894 mem_cgroup_move_charge(mm);
dfe076b0
DN
6895 mmput(mm);
6896 }
a433658c
KM
6897 if (mc.to)
6898 mem_cgroup_clear_mc();
67e465a7 6899}
5cfb80a7 6900#else /* !CONFIG_MMU */
eb95419b 6901static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6902 struct cgroup_taskset *tset)
5cfb80a7
DN
6903{
6904 return 0;
6905}
eb95419b 6906static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6907 struct cgroup_taskset *tset)
5cfb80a7
DN
6908{
6909}
eb95419b 6910static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6911 struct cgroup_taskset *tset)
5cfb80a7
DN
6912{
6913}
6914#endif
67e465a7 6915
f00baae7
TH
6916/*
6917 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6918 * to verify sane_behavior flag on each mount attempt.
6919 */
eb95419b 6920static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6921{
6922 /*
6923 * use_hierarchy is forced with sane_behavior. cgroup core
6924 * guarantees that @root doesn't have any children, so turning it
6925 * on for the root memcg is enough.
6926 */
eb95419b
TH
6927 if (cgroup_sane_behavior(root_css->cgroup))
6928 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6929}
6930
8cdea7c0
BS
6931struct cgroup_subsys mem_cgroup_subsys = {
6932 .name = "memory",
6933 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6934 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6935 .css_online = mem_cgroup_css_online,
92fb9748
TH
6936 .css_offline = mem_cgroup_css_offline,
6937 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6938 .can_attach = mem_cgroup_can_attach,
6939 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6940 .attach = mem_cgroup_move_task,
f00baae7 6941 .bind = mem_cgroup_bind,
6bc10349 6942 .base_cftypes = mem_cgroup_files,
6d12e2d8 6943 .early_init = 0,
04046e1a 6944 .use_id = 1,
8cdea7c0 6945};
c077719b 6946
c255a458 6947#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6948static int __init enable_swap_account(char *s)
6949{
a2c8990a 6950 if (!strcmp(s, "1"))
a42c390c 6951 really_do_swap_account = 1;
a2c8990a 6952 else if (!strcmp(s, "0"))
a42c390c
MH
6953 really_do_swap_account = 0;
6954 return 1;
6955}
a2c8990a 6956__setup("swapaccount=", enable_swap_account);
c077719b 6957
2d11085e
MH
6958static void __init memsw_file_init(void)
6959{
6acc8b02
MH
6960 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6961}
6962
6963static void __init enable_swap_cgroup(void)
6964{
6965 if (!mem_cgroup_disabled() && really_do_swap_account) {
6966 do_swap_account = 1;
6967 memsw_file_init();
6968 }
2d11085e 6969}
6acc8b02 6970
2d11085e 6971#else
6acc8b02 6972static void __init enable_swap_cgroup(void)
2d11085e
MH
6973{
6974}
c077719b 6975#endif
2d11085e
MH
6976
6977/*
1081312f
MH
6978 * subsys_initcall() for memory controller.
6979 *
6980 * Some parts like hotcpu_notifier() have to be initialized from this context
6981 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6982 * everything that doesn't depend on a specific mem_cgroup structure should
6983 * be initialized from here.
2d11085e
MH
6984 */
6985static int __init mem_cgroup_init(void)
6986{
6987 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6988 enable_swap_cgroup();
bb4cc1a8 6989 mem_cgroup_soft_limit_tree_init();
e4777496 6990 memcg_stock_init();
2d11085e
MH
6991 return 0;
6992}
6993subsys_initcall(mem_cgroup_init);