mm: memcontrol: fix possible css ref leak on oom
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
264a0ae1 210 struct mm_struct *mm;
4ffef5fe
DN
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
1dfab5ab 213 unsigned long flags;
4ffef5fe 214 unsigned long precharge;
854ffa8d 215 unsigned long moved_charge;
483c30b5 216 unsigned long moved_swap;
8033b97c
DN
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
2bd9bb20 220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
4ffef5fe 223
4e416953
BS
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
a0db00fc 228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 230
217bc319
KH
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 233 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
236 NR_CHARGE_TYPE,
237};
238
8c7c6e34 239/* for encoding cft->private value on file */
86ae53e1
GC
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
510fc4e1 244 _KMEM,
d55f90bf 245 _TCP,
86ae53e1
GC
246};
247
a0db00fc
KS
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 250#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
8c7c6e34 253
70ddf637
AV
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
7ffc0edc
MH
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
127424c8 272#ifndef CONFIG_SLOB
55007d84 273/*
f7ce3190 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
55007d84 280 *
dbcf73e2
VD
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
55007d84 283 */
dbcf73e2
VD
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
749c5415 286
05257a1a
VD
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
55007d84
GC
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
b8627835 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
b8627835 313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 314
d7f25f8a
GC
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
ef12947c 321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 322EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 323
127424c8 324#endif /* !CONFIG_SLOB */
a8964b9b 325
f64c3f54 326static struct mem_cgroup_per_zone *
e231875b 327mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 328{
e231875b
JZ
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
54f72fe0 332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
333}
334
ad7fa852
TH
335/**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
ad7fa852
TH
345 */
346struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347{
348 struct mem_cgroup *memcg;
349
ad7fa852
TH
350 memcg = page->mem_cgroup;
351
9e10a130 352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
353 memcg = root_mem_cgroup;
354
ad7fa852
TH
355 return &memcg->css;
356}
357
2fc04524
VD
358/**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371ino_t page_cgroup_ino(struct page *page)
372{
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384}
385
f64c3f54 386static struct mem_cgroup_per_zone *
e231875b 387mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 388{
97a6c37b
JW
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
f64c3f54 391
e231875b 392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
393}
394
bb4cc1a8
AM
395static struct mem_cgroup_tree_per_zone *
396soft_limit_tree_node_zone(int nid, int zid)
397{
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static struct mem_cgroup_tree_per_zone *
402soft_limit_tree_from_page(struct page *page)
403{
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408}
409
cf2c8127
JW
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 412 unsigned long new_usage_in_excess)
bb4cc1a8
AM
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440}
441
cf2c8127
JW
442static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
444{
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449}
450
cf2c8127
JW
451static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 453{
0a31bc97
JW
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 457 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 458 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
459}
460
3e32cb2e
JW
461static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462{
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471}
bb4cc1a8
AM
472
473static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474{
3e32cb2e 475 unsigned long excess;
bb4cc1a8
AM
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 478
e231875b 479 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 485 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 486 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
0a31bc97
JW
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
495 /* if on-tree, remove it */
496 if (mz->on_tree)
cf2c8127 497 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
cf2c8127 502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 503 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
504 }
505 }
506}
507
508static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509{
bb4cc1a8 510 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
bb4cc1a8 513
e231875b
JZ
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 518 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
519 }
520 }
521}
522
523static struct mem_cgroup_per_zone *
524__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
cf2c8127 541 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 542 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 543 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
544 goto retry;
545done:
546 return mz;
547}
548
549static struct mem_cgroup_per_zone *
550mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551{
552 struct mem_cgroup_per_zone *mz;
553
0a31bc97 554 spin_lock_irq(&mctz->lock);
bb4cc1a8 555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 556 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
557 return mz;
558}
559
711d3d2c 560/*
484ebb3b
GT
561 * Return page count for single (non recursive) @memcg.
562 *
711d3d2c
KH
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 568 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 578 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
579 * implemented.
580 */
484ebb3b
GT
581static unsigned long
582mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 583{
7a159cc9 584 long val = 0;
c62b1a3b 585 int cpu;
c62b1a3b 586
484ebb3b 587 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
c62b1a3b
KH
596 return val;
597}
598
c0ff4b85 599static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
600 enum mem_cgroup_events_index idx)
601{
602 unsigned long val = 0;
603 int cpu;
604
733a572e 605 for_each_possible_cpu(cpu)
c0ff4b85 606 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
607 return val;
608}
609
c0ff4b85 610static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 611 struct page *page,
f627c2f5 612 bool compound, int nr_pages)
d52aa412 613{
b2402857
KH
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
0a31bc97 618 if (PageAnon(page))
b2402857 619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 620 nr_pages);
d52aa412 621 else
b2402857 622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 623 nr_pages);
55e462b0 624
f627c2f5
KS
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
f627c2f5 629 }
b070e65c 630
e401f176
KH
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
c0ff4b85 633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 634 else {
c0ff4b85 635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
636 nr_pages = -nr_pages; /* for event */
637 }
e401f176 638
13114716 639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
640}
641
0a6b76dd
VD
642unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
bb2a0de9 644{
e231875b 645 unsigned long nr = 0;
889976db
YH
646 int zid;
647
e231875b 648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 649
e231875b
JZ
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
889976db 662}
bb2a0de9 663
c0ff4b85 664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 665 unsigned int lru_mask)
6d12e2d8 666{
e231875b 667 unsigned long nr = 0;
889976db 668 int nid;
6d12e2d8 669
31aaea4a 670 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
d52aa412
KH
673}
674
f53d7ce3
JW
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
7a159cc9
JW
677{
678 unsigned long val, next;
679
13114716 680 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 681 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 682 /* from time_after() in jiffies.h */
f53d7ce3
JW
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
bb4cc1a8
AM
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
f53d7ce3
JW
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
7a159cc9 699 }
f53d7ce3 700 return false;
d2265e6f
KH
701}
702
703/*
704 * Check events in order.
705 *
706 */
c0ff4b85 707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
708{
709 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 712 bool do_softlimit;
82b3f2a7 713 bool do_numainfo __maybe_unused;
f53d7ce3 714
bb4cc1a8
AM
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
c0ff4b85 721 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
453a9bf3 724#if MAX_NUMNODES > 1
f53d7ce3 725 if (unlikely(do_numainfo))
c0ff4b85 726 atomic_inc(&memcg->numainfo_events);
453a9bf3 727#endif
0a31bc97 728 }
d2265e6f
KH
729}
730
cf475ad2 731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 732{
31a78f23
BS
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
073219e9 741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 742}
33398cf2 743EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 744
df381975 745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 746{
c0ff4b85 747 struct mem_cgroup *memcg = NULL;
0b7f569e 748
54595fe2
KH
749 rcu_read_lock();
750 do {
6f6acb00
MH
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
df381975 757 memcg = root_mem_cgroup;
6f6acb00
MH
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
ec903c0c 763 } while (!css_tryget_online(&memcg->css));
54595fe2 764 rcu_read_unlock();
c0ff4b85 765 return memcg;
54595fe2
KH
766}
767
5660048c
JW
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
694fbc0f 785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 786 struct mem_cgroup *prev,
694fbc0f 787 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 788{
33398cf2 789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 790 struct cgroup_subsys_state *css = NULL;
9f3a0d09 791 struct mem_cgroup *memcg = NULL;
5ac8fb31 792 struct mem_cgroup *pos = NULL;
711d3d2c 793
694fbc0f
AM
794 if (mem_cgroup_disabled())
795 return NULL;
5660048c 796
9f3a0d09
JW
797 if (!root)
798 root = root_mem_cgroup;
7d74b06f 799
9f3a0d09 800 if (prev && !reclaim)
5ac8fb31 801 pos = prev;
14067bb3 802
9f3a0d09
JW
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
5ac8fb31 805 goto out;
694fbc0f 806 return root;
9f3a0d09 807 }
14067bb3 808
542f85f9 809 rcu_read_lock();
5f578161 810
5ac8fb31
JW
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
6df38689 820 while (1) {
4db0c3c2 821 pos = READ_ONCE(iter->position);
6df38689
VD
822 if (!pos || css_tryget(&pos->css))
823 break;
5ac8fb31 824 /*
6df38689
VD
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
5ac8fb31 831 */
6df38689
VD
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
5ac8fb31
JW
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
527a5ec9 851 }
7d74b06f 852
5ac8fb31
JW
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
14067bb3 859
5ac8fb31
JW
860 if (css == &root->css)
861 break;
14067bb3 862
0b8f73e1
JW
863 if (css_tryget(css))
864 break;
9f3a0d09 865
5ac8fb31 866 memcg = NULL;
9f3a0d09 867 }
5ac8fb31
JW
868
869 if (reclaim) {
5ac8fb31 870 /*
6df38689
VD
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 874 */
6df38689
VD
875 (void)cmpxchg(&iter->position, pos, memcg);
876
5ac8fb31
JW
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
9f3a0d09 884 }
5ac8fb31 885
542f85f9
MH
886out_unlock:
887 rcu_read_unlock();
5ac8fb31 888out:
c40046f3
MH
889 if (prev && prev != root)
890 css_put(&prev->css);
891
9f3a0d09 892 return memcg;
14067bb3 893}
7d74b06f 894
5660048c
JW
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
9f3a0d09
JW
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
7d74b06f 908
6df38689
VD
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
9f3a0d09
JW
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 938 iter != NULL; \
527a5ec9 939 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 940
9f3a0d09 941#define for_each_mem_cgroup(iter) \
527a5ec9 942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 943 iter != NULL; \
527a5ec9 944 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 945
925b7673
JW
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
fa9add64 949 * @memcg: memcg of the wanted lruvec
925b7673
JW
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
bea8c150 959 struct lruvec *lruvec;
925b7673 960
bea8c150
HD
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
925b7673 965
e231875b 966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
925b7673
JW
977}
978
925b7673 979/**
dfe0e773 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 981 * @page: the page
fa9add64 982 * @zone: zone of the page
dfe0e773
JW
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 987 */
fa9add64 988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 989{
08e552c6 990 struct mem_cgroup_per_zone *mz;
925b7673 991 struct mem_cgroup *memcg;
bea8c150 992 struct lruvec *lruvec;
6d12e2d8 993
bea8c150
HD
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
925b7673 998
1306a85a 999 memcg = page->mem_cgroup;
7512102c 1000 /*
dfe0e773 1001 * Swapcache readahead pages are added to the LRU - and
29833315 1002 * possibly migrated - before they are charged.
7512102c 1003 */
29833315
JW
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
7512102c 1006
e231875b 1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
08e552c6 1018}
b69408e8 1019
925b7673 1020/**
fa9add64
HD
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
925b7673 1025 *
ca707239
HD
1026 * This function must be called under lru_lock, just before a page is added
1027 * to or just after a page is removed from an lru list (that ordering being
1028 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1029 */
fa9add64
HD
1030void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031 int nr_pages)
3f58a829
MK
1032{
1033 struct mem_cgroup_per_zone *mz;
fa9add64 1034 unsigned long *lru_size;
ca707239
HD
1035 long size;
1036 bool empty;
3f58a829 1037
9d5e6a9f
HD
1038 __update_lru_size(lruvec, lru, nr_pages);
1039
3f58a829
MK
1040 if (mem_cgroup_disabled())
1041 return;
1042
fa9add64
HD
1043 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044 lru_size = mz->lru_size + lru;
ca707239
HD
1045 empty = list_empty(lruvec->lists + lru);
1046
1047 if (nr_pages < 0)
1048 *lru_size += nr_pages;
1049
1050 size = *lru_size;
1051 if (WARN_ONCE(size < 0 || empty != !size,
1052 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054 VM_BUG_ON(1);
1055 *lru_size = 0;
1056 }
1057
1058 if (nr_pages > 0)
1059 *lru_size += nr_pages;
08e552c6 1060}
544122e5 1061
2314b42d 1062bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1063{
2314b42d 1064 struct mem_cgroup *task_memcg;
158e0a2d 1065 struct task_struct *p;
ffbdccf5 1066 bool ret;
4c4a2214 1067
158e0a2d 1068 p = find_lock_task_mm(task);
de077d22 1069 if (p) {
2314b42d 1070 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1071 task_unlock(p);
1072 } else {
1073 /*
1074 * All threads may have already detached their mm's, but the oom
1075 * killer still needs to detect if they have already been oom
1076 * killed to prevent needlessly killing additional tasks.
1077 */
ffbdccf5 1078 rcu_read_lock();
2314b42d
JW
1079 task_memcg = mem_cgroup_from_task(task);
1080 css_get(&task_memcg->css);
ffbdccf5 1081 rcu_read_unlock();
de077d22 1082 }
2314b42d
JW
1083 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084 css_put(&task_memcg->css);
4c4a2214
DR
1085 return ret;
1086}
1087
19942822 1088/**
9d11ea9f 1089 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1090 * @memcg: the memory cgroup
19942822 1091 *
9d11ea9f 1092 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1093 * pages.
19942822 1094 */
c0ff4b85 1095static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1096{
3e32cb2e
JW
1097 unsigned long margin = 0;
1098 unsigned long count;
1099 unsigned long limit;
9d11ea9f 1100
3e32cb2e 1101 count = page_counter_read(&memcg->memory);
4db0c3c2 1102 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1103 if (count < limit)
1104 margin = limit - count;
1105
7941d214 1106 if (do_memsw_account()) {
3e32cb2e 1107 count = page_counter_read(&memcg->memsw);
4db0c3c2 1108 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1109 if (count <= limit)
1110 margin = min(margin, limit - count);
1111 }
1112
1113 return margin;
19942822
JW
1114}
1115
32047e2a 1116/*
bdcbb659 1117 * A routine for checking "mem" is under move_account() or not.
32047e2a 1118 *
bdcbb659
QH
1119 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1120 * moving cgroups. This is for waiting at high-memory pressure
1121 * caused by "move".
32047e2a 1122 */
c0ff4b85 1123static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1124{
2bd9bb20
KH
1125 struct mem_cgroup *from;
1126 struct mem_cgroup *to;
4b534334 1127 bool ret = false;
2bd9bb20
KH
1128 /*
1129 * Unlike task_move routines, we access mc.to, mc.from not under
1130 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1131 */
1132 spin_lock(&mc.lock);
1133 from = mc.from;
1134 to = mc.to;
1135 if (!from)
1136 goto unlock;
3e92041d 1137
2314b42d
JW
1138 ret = mem_cgroup_is_descendant(from, memcg) ||
1139 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1140unlock:
1141 spin_unlock(&mc.lock);
4b534334
KH
1142 return ret;
1143}
1144
c0ff4b85 1145static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1146{
1147 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1148 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1149 DEFINE_WAIT(wait);
1150 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1151 /* moving charge context might have finished. */
1152 if (mc.moving_task)
1153 schedule();
1154 finish_wait(&mc.waitq, &wait);
1155 return true;
1156 }
1157 }
1158 return false;
1159}
1160
58cf188e 1161#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1162/**
58cf188e 1163 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1164 * @memcg: The memory cgroup that went over limit
1165 * @p: Task that is going to be killed
1166 *
1167 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1168 * enabled
1169 */
1170void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1171{
58cf188e
SZ
1172 struct mem_cgroup *iter;
1173 unsigned int i;
e222432b 1174
e222432b
BS
1175 rcu_read_lock();
1176
2415b9f5
BV
1177 if (p) {
1178 pr_info("Task in ");
1179 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1180 pr_cont(" killed as a result of limit of ");
1181 } else {
1182 pr_info("Memory limit reached of cgroup ");
1183 }
1184
e61734c5 1185 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1186 pr_cont("\n");
e222432b 1187
e222432b
BS
1188 rcu_read_unlock();
1189
3e32cb2e
JW
1190 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1191 K((u64)page_counter_read(&memcg->memory)),
1192 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1193 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1194 K((u64)page_counter_read(&memcg->memsw)),
1195 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1196 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1197 K((u64)page_counter_read(&memcg->kmem)),
1198 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1199
1200 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1201 pr_info("Memory cgroup stats for ");
1202 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1203 pr_cont(":");
1204
1205 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1206 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1207 continue;
484ebb3b 1208 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1209 K(mem_cgroup_read_stat(iter, i)));
1210 }
1211
1212 for (i = 0; i < NR_LRU_LISTS; i++)
1213 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1214 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1215
1216 pr_cont("\n");
1217 }
e222432b
BS
1218}
1219
81d39c20
KH
1220/*
1221 * This function returns the number of memcg under hierarchy tree. Returns
1222 * 1(self count) if no children.
1223 */
c0ff4b85 1224static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1225{
1226 int num = 0;
7d74b06f
KH
1227 struct mem_cgroup *iter;
1228
c0ff4b85 1229 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1230 num++;
81d39c20
KH
1231 return num;
1232}
1233
a63d83f4
DR
1234/*
1235 * Return the memory (and swap, if configured) limit for a memcg.
1236 */
3e32cb2e 1237static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1238{
3e32cb2e 1239 unsigned long limit;
f3e8eb70 1240
3e32cb2e 1241 limit = memcg->memory.limit;
9a5a8f19 1242 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1243 unsigned long memsw_limit;
37e84351 1244 unsigned long swap_limit;
9a5a8f19 1245
3e32cb2e 1246 memsw_limit = memcg->memsw.limit;
37e84351
VD
1247 swap_limit = memcg->swap.limit;
1248 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1249 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1250 }
9a5a8f19 1251 return limit;
a63d83f4
DR
1252}
1253
b6e6edcf 1254static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1255 int order)
9cbb78bb 1256{
6e0fc46d
DR
1257 struct oom_control oc = {
1258 .zonelist = NULL,
1259 .nodemask = NULL,
1260 .gfp_mask = gfp_mask,
1261 .order = order,
6e0fc46d 1262 };
9cbb78bb
DR
1263 struct mem_cgroup *iter;
1264 unsigned long chosen_points = 0;
1265 unsigned long totalpages;
1266 unsigned int points = 0;
1267 struct task_struct *chosen = NULL;
1268
dc56401f
JW
1269 mutex_lock(&oom_lock);
1270
876aafbf 1271 /*
465adcf1
DR
1272 * If current has a pending SIGKILL or is exiting, then automatically
1273 * select it. The goal is to allow it to allocate so that it may
1274 * quickly exit and free its memory.
876aafbf 1275 */
d003f371 1276 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1277 mark_oom_victim(current);
3ef22dff 1278 try_oom_reaper(current);
dc56401f 1279 goto unlock;
876aafbf
DR
1280 }
1281
6e0fc46d 1282 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1283 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1284 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1285 struct css_task_iter it;
9cbb78bb
DR
1286 struct task_struct *task;
1287
72ec7029
TH
1288 css_task_iter_start(&iter->css, &it);
1289 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1290 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1291 case OOM_SCAN_SELECT:
1292 if (chosen)
1293 put_task_struct(chosen);
1294 chosen = task;
1295 chosen_points = ULONG_MAX;
1296 get_task_struct(chosen);
1297 /* fall through */
1298 case OOM_SCAN_CONTINUE:
1299 continue;
1300 case OOM_SCAN_ABORT:
72ec7029 1301 css_task_iter_end(&it);
9cbb78bb
DR
1302 mem_cgroup_iter_break(memcg, iter);
1303 if (chosen)
1304 put_task_struct(chosen);
dc56401f 1305 goto unlock;
9cbb78bb
DR
1306 case OOM_SCAN_OK:
1307 break;
1308 };
1309 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1310 if (!points || points < chosen_points)
1311 continue;
1312 /* Prefer thread group leaders for display purposes */
1313 if (points == chosen_points &&
1314 thread_group_leader(chosen))
1315 continue;
1316
1317 if (chosen)
1318 put_task_struct(chosen);
1319 chosen = task;
1320 chosen_points = points;
1321 get_task_struct(chosen);
9cbb78bb 1322 }
72ec7029 1323 css_task_iter_end(&it);
9cbb78bb
DR
1324 }
1325
dc56401f
JW
1326 if (chosen) {
1327 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1328 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1329 "Memory cgroup out of memory");
dc56401f
JW
1330 }
1331unlock:
1332 mutex_unlock(&oom_lock);
b6e6edcf 1333 return chosen;
9cbb78bb
DR
1334}
1335
ae6e71d3
MC
1336#if MAX_NUMNODES > 1
1337
4d0c066d
KH
1338/**
1339 * test_mem_cgroup_node_reclaimable
dad7557e 1340 * @memcg: the target memcg
4d0c066d
KH
1341 * @nid: the node ID to be checked.
1342 * @noswap : specify true here if the user wants flle only information.
1343 *
1344 * This function returns whether the specified memcg contains any
1345 * reclaimable pages on a node. Returns true if there are any reclaimable
1346 * pages in the node.
1347 */
c0ff4b85 1348static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1349 int nid, bool noswap)
1350{
c0ff4b85 1351 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1352 return true;
1353 if (noswap || !total_swap_pages)
1354 return false;
c0ff4b85 1355 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1356 return true;
1357 return false;
1358
1359}
889976db
YH
1360
1361/*
1362 * Always updating the nodemask is not very good - even if we have an empty
1363 * list or the wrong list here, we can start from some node and traverse all
1364 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1365 *
1366 */
c0ff4b85 1367static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1368{
1369 int nid;
453a9bf3
KH
1370 /*
1371 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1372 * pagein/pageout changes since the last update.
1373 */
c0ff4b85 1374 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1375 return;
c0ff4b85 1376 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1377 return;
1378
889976db 1379 /* make a nodemask where this memcg uses memory from */
31aaea4a 1380 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1381
31aaea4a 1382 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1383
c0ff4b85
R
1384 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1385 node_clear(nid, memcg->scan_nodes);
889976db 1386 }
453a9bf3 1387
c0ff4b85
R
1388 atomic_set(&memcg->numainfo_events, 0);
1389 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1390}
1391
1392/*
1393 * Selecting a node where we start reclaim from. Because what we need is just
1394 * reducing usage counter, start from anywhere is O,K. Considering
1395 * memory reclaim from current node, there are pros. and cons.
1396 *
1397 * Freeing memory from current node means freeing memory from a node which
1398 * we'll use or we've used. So, it may make LRU bad. And if several threads
1399 * hit limits, it will see a contention on a node. But freeing from remote
1400 * node means more costs for memory reclaim because of memory latency.
1401 *
1402 * Now, we use round-robin. Better algorithm is welcomed.
1403 */
c0ff4b85 1404int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1405{
1406 int node;
1407
c0ff4b85
R
1408 mem_cgroup_may_update_nodemask(memcg);
1409 node = memcg->last_scanned_node;
889976db 1410
0edaf86c 1411 node = next_node_in(node, memcg->scan_nodes);
889976db 1412 /*
fda3d69b
MH
1413 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1414 * last time it really checked all the LRUs due to rate limiting.
1415 * Fallback to the current node in that case for simplicity.
889976db
YH
1416 */
1417 if (unlikely(node == MAX_NUMNODES))
1418 node = numa_node_id();
1419
c0ff4b85 1420 memcg->last_scanned_node = node;
889976db
YH
1421 return node;
1422}
889976db 1423#else
c0ff4b85 1424int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1425{
1426 return 0;
1427}
1428#endif
1429
0608f43d
AM
1430static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1431 struct zone *zone,
1432 gfp_t gfp_mask,
1433 unsigned long *total_scanned)
1434{
1435 struct mem_cgroup *victim = NULL;
1436 int total = 0;
1437 int loop = 0;
1438 unsigned long excess;
1439 unsigned long nr_scanned;
1440 struct mem_cgroup_reclaim_cookie reclaim = {
1441 .zone = zone,
1442 .priority = 0,
1443 };
1444
3e32cb2e 1445 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1446
1447 while (1) {
1448 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1449 if (!victim) {
1450 loop++;
1451 if (loop >= 2) {
1452 /*
1453 * If we have not been able to reclaim
1454 * anything, it might because there are
1455 * no reclaimable pages under this hierarchy
1456 */
1457 if (!total)
1458 break;
1459 /*
1460 * We want to do more targeted reclaim.
1461 * excess >> 2 is not to excessive so as to
1462 * reclaim too much, nor too less that we keep
1463 * coming back to reclaim from this cgroup
1464 */
1465 if (total >= (excess >> 2) ||
1466 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1467 break;
1468 }
1469 continue;
1470 }
0608f43d
AM
1471 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1472 zone, &nr_scanned);
1473 *total_scanned += nr_scanned;
3e32cb2e 1474 if (!soft_limit_excess(root_memcg))
0608f43d 1475 break;
6d61ef40 1476 }
0608f43d
AM
1477 mem_cgroup_iter_break(root_memcg, victim);
1478 return total;
6d61ef40
BS
1479}
1480
0056f4e6
JW
1481#ifdef CONFIG_LOCKDEP
1482static struct lockdep_map memcg_oom_lock_dep_map = {
1483 .name = "memcg_oom_lock",
1484};
1485#endif
1486
fb2a6fc5
JW
1487static DEFINE_SPINLOCK(memcg_oom_lock);
1488
867578cb
KH
1489/*
1490 * Check OOM-Killer is already running under our hierarchy.
1491 * If someone is running, return false.
1492 */
fb2a6fc5 1493static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1494{
79dfdacc 1495 struct mem_cgroup *iter, *failed = NULL;
a636b327 1496
fb2a6fc5
JW
1497 spin_lock(&memcg_oom_lock);
1498
9f3a0d09 1499 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1500 if (iter->oom_lock) {
79dfdacc
MH
1501 /*
1502 * this subtree of our hierarchy is already locked
1503 * so we cannot give a lock.
1504 */
79dfdacc 1505 failed = iter;
9f3a0d09
JW
1506 mem_cgroup_iter_break(memcg, iter);
1507 break;
23751be0
JW
1508 } else
1509 iter->oom_lock = true;
7d74b06f 1510 }
867578cb 1511
fb2a6fc5
JW
1512 if (failed) {
1513 /*
1514 * OK, we failed to lock the whole subtree so we have
1515 * to clean up what we set up to the failing subtree
1516 */
1517 for_each_mem_cgroup_tree(iter, memcg) {
1518 if (iter == failed) {
1519 mem_cgroup_iter_break(memcg, iter);
1520 break;
1521 }
1522 iter->oom_lock = false;
79dfdacc 1523 }
0056f4e6
JW
1524 } else
1525 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1526
1527 spin_unlock(&memcg_oom_lock);
1528
1529 return !failed;
a636b327 1530}
0b7f569e 1531
fb2a6fc5 1532static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1533{
7d74b06f
KH
1534 struct mem_cgroup *iter;
1535
fb2a6fc5 1536 spin_lock(&memcg_oom_lock);
0056f4e6 1537 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1538 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1539 iter->oom_lock = false;
fb2a6fc5 1540 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1541}
1542
c0ff4b85 1543static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1544{
1545 struct mem_cgroup *iter;
1546
c2b42d3c 1547 spin_lock(&memcg_oom_lock);
c0ff4b85 1548 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1549 iter->under_oom++;
1550 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1551}
1552
c0ff4b85 1553static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1554{
1555 struct mem_cgroup *iter;
1556
867578cb
KH
1557 /*
1558 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1559 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1560 */
c2b42d3c 1561 spin_lock(&memcg_oom_lock);
c0ff4b85 1562 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1563 if (iter->under_oom > 0)
1564 iter->under_oom--;
1565 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1566}
1567
867578cb
KH
1568static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1569
dc98df5a 1570struct oom_wait_info {
d79154bb 1571 struct mem_cgroup *memcg;
dc98df5a
KH
1572 wait_queue_t wait;
1573};
1574
1575static int memcg_oom_wake_function(wait_queue_t *wait,
1576 unsigned mode, int sync, void *arg)
1577{
d79154bb
HD
1578 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1579 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1580 struct oom_wait_info *oom_wait_info;
1581
1582 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1583 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1584
2314b42d
JW
1585 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1586 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1587 return 0;
dc98df5a
KH
1588 return autoremove_wake_function(wait, mode, sync, arg);
1589}
1590
c0ff4b85 1591static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1592{
c2b42d3c
TH
1593 /*
1594 * For the following lockless ->under_oom test, the only required
1595 * guarantee is that it must see the state asserted by an OOM when
1596 * this function is called as a result of userland actions
1597 * triggered by the notification of the OOM. This is trivially
1598 * achieved by invoking mem_cgroup_mark_under_oom() before
1599 * triggering notification.
1600 */
1601 if (memcg && memcg->under_oom)
f4b90b70 1602 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1603}
1604
3812c8c8 1605static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1606{
1383399d 1607 if (!current->memcg_may_oom || current->memcg_in_oom)
3812c8c8 1608 return;
867578cb 1609 /*
49426420
JW
1610 * We are in the middle of the charge context here, so we
1611 * don't want to block when potentially sitting on a callstack
1612 * that holds all kinds of filesystem and mm locks.
1613 *
1614 * Also, the caller may handle a failed allocation gracefully
1615 * (like optional page cache readahead) and so an OOM killer
1616 * invocation might not even be necessary.
1617 *
1618 * That's why we don't do anything here except remember the
1619 * OOM context and then deal with it at the end of the page
1620 * fault when the stack is unwound, the locks are released,
1621 * and when we know whether the fault was overall successful.
867578cb 1622 */
49426420 1623 css_get(&memcg->css);
626ebc41
TH
1624 current->memcg_in_oom = memcg;
1625 current->memcg_oom_gfp_mask = mask;
1626 current->memcg_oom_order = order;
3812c8c8
JW
1627}
1628
1629/**
1630 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1631 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1632 *
49426420
JW
1633 * This has to be called at the end of a page fault if the memcg OOM
1634 * handler was enabled.
3812c8c8 1635 *
49426420 1636 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1637 * sleep on a waitqueue until the userspace task resolves the
1638 * situation. Sleeping directly in the charge context with all kinds
1639 * of locks held is not a good idea, instead we remember an OOM state
1640 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1641 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1642 *
1643 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1644 * completed, %false otherwise.
3812c8c8 1645 */
49426420 1646bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1647{
626ebc41 1648 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1649 struct oom_wait_info owait;
49426420 1650 bool locked;
3812c8c8
JW
1651
1652 /* OOM is global, do not handle */
3812c8c8 1653 if (!memcg)
49426420 1654 return false;
3812c8c8 1655
c32b3cbe 1656 if (!handle || oom_killer_disabled)
49426420 1657 goto cleanup;
3812c8c8
JW
1658
1659 owait.memcg = memcg;
1660 owait.wait.flags = 0;
1661 owait.wait.func = memcg_oom_wake_function;
1662 owait.wait.private = current;
1663 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1664
3812c8c8 1665 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1666 mem_cgroup_mark_under_oom(memcg);
1667
1668 locked = mem_cgroup_oom_trylock(memcg);
1669
1670 if (locked)
1671 mem_cgroup_oom_notify(memcg);
1672
1673 if (locked && !memcg->oom_kill_disable) {
1674 mem_cgroup_unmark_under_oom(memcg);
1675 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1676 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1677 current->memcg_oom_order);
49426420 1678 } else {
3812c8c8 1679 schedule();
49426420
JW
1680 mem_cgroup_unmark_under_oom(memcg);
1681 finish_wait(&memcg_oom_waitq, &owait.wait);
1682 }
1683
1684 if (locked) {
fb2a6fc5
JW
1685 mem_cgroup_oom_unlock(memcg);
1686 /*
1687 * There is no guarantee that an OOM-lock contender
1688 * sees the wakeups triggered by the OOM kill
1689 * uncharges. Wake any sleepers explicitely.
1690 */
1691 memcg_oom_recover(memcg);
1692 }
49426420 1693cleanup:
626ebc41 1694 current->memcg_in_oom = NULL;
3812c8c8 1695 css_put(&memcg->css);
867578cb 1696 return true;
0b7f569e
KH
1697}
1698
d7365e78 1699/**
81f8c3a4
JW
1700 * lock_page_memcg - lock a page->mem_cgroup binding
1701 * @page: the page
32047e2a 1702 *
81f8c3a4
JW
1703 * This function protects unlocked LRU pages from being moved to
1704 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1705 */
62cccb8c 1706void lock_page_memcg(struct page *page)
89c06bd5
KH
1707{
1708 struct mem_cgroup *memcg;
6de22619 1709 unsigned long flags;
89c06bd5 1710
6de22619
JW
1711 /*
1712 * The RCU lock is held throughout the transaction. The fast
1713 * path can get away without acquiring the memcg->move_lock
1714 * because page moving starts with an RCU grace period.
6de22619 1715 */
d7365e78
JW
1716 rcu_read_lock();
1717
1718 if (mem_cgroup_disabled())
62cccb8c 1719 return;
89c06bd5 1720again:
1306a85a 1721 memcg = page->mem_cgroup;
29833315 1722 if (unlikely(!memcg))
62cccb8c 1723 return;
d7365e78 1724
bdcbb659 1725 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1726 return;
89c06bd5 1727
6de22619 1728 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1729 if (memcg != page->mem_cgroup) {
6de22619 1730 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1731 goto again;
1732 }
6de22619
JW
1733
1734 /*
1735 * When charge migration first begins, we can have locked and
1736 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1737 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1738 */
1739 memcg->move_lock_task = current;
1740 memcg->move_lock_flags = flags;
d7365e78 1741
62cccb8c 1742 return;
89c06bd5 1743}
81f8c3a4 1744EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1745
d7365e78 1746/**
81f8c3a4 1747 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1748 * @page: the page
d7365e78 1749 */
62cccb8c 1750void unlock_page_memcg(struct page *page)
89c06bd5 1751{
62cccb8c
JW
1752 struct mem_cgroup *memcg = page->mem_cgroup;
1753
6de22619
JW
1754 if (memcg && memcg->move_lock_task == current) {
1755 unsigned long flags = memcg->move_lock_flags;
1756
1757 memcg->move_lock_task = NULL;
1758 memcg->move_lock_flags = 0;
1759
1760 spin_unlock_irqrestore(&memcg->move_lock, flags);
1761 }
89c06bd5 1762
d7365e78 1763 rcu_read_unlock();
89c06bd5 1764}
81f8c3a4 1765EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1766
cdec2e42
KH
1767/*
1768 * size of first charge trial. "32" comes from vmscan.c's magic value.
1769 * TODO: maybe necessary to use big numbers in big irons.
1770 */
7ec99d62 1771#define CHARGE_BATCH 32U
cdec2e42
KH
1772struct memcg_stock_pcp {
1773 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1774 unsigned int nr_pages;
cdec2e42 1775 struct work_struct work;
26fe6168 1776 unsigned long flags;
a0db00fc 1777#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1778};
1779static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1780static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1781
a0956d54
SS
1782/**
1783 * consume_stock: Try to consume stocked charge on this cpu.
1784 * @memcg: memcg to consume from.
1785 * @nr_pages: how many pages to charge.
1786 *
1787 * The charges will only happen if @memcg matches the current cpu's memcg
1788 * stock, and at least @nr_pages are available in that stock. Failure to
1789 * service an allocation will refill the stock.
1790 *
1791 * returns true if successful, false otherwise.
cdec2e42 1792 */
a0956d54 1793static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1794{
1795 struct memcg_stock_pcp *stock;
3e32cb2e 1796 bool ret = false;
cdec2e42 1797
a0956d54 1798 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1799 return ret;
a0956d54 1800
cdec2e42 1801 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1802 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1803 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1804 ret = true;
1805 }
cdec2e42
KH
1806 put_cpu_var(memcg_stock);
1807 return ret;
1808}
1809
1810/*
3e32cb2e 1811 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1812 */
1813static void drain_stock(struct memcg_stock_pcp *stock)
1814{
1815 struct mem_cgroup *old = stock->cached;
1816
11c9ea4e 1817 if (stock->nr_pages) {
3e32cb2e 1818 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1819 if (do_memsw_account())
3e32cb2e 1820 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1821 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1822 stock->nr_pages = 0;
cdec2e42
KH
1823 }
1824 stock->cached = NULL;
cdec2e42
KH
1825}
1826
1827/*
1828 * This must be called under preempt disabled or must be called by
1829 * a thread which is pinned to local cpu.
1830 */
1831static void drain_local_stock(struct work_struct *dummy)
1832{
7c8e0181 1833 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1834 drain_stock(stock);
26fe6168 1835 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1836}
1837
1838/*
3e32cb2e 1839 * Cache charges(val) to local per_cpu area.
320cc51d 1840 * This will be consumed by consume_stock() function, later.
cdec2e42 1841 */
c0ff4b85 1842static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1843{
1844 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1845
c0ff4b85 1846 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1847 drain_stock(stock);
c0ff4b85 1848 stock->cached = memcg;
cdec2e42 1849 }
11c9ea4e 1850 stock->nr_pages += nr_pages;
cdec2e42
KH
1851 put_cpu_var(memcg_stock);
1852}
1853
1854/*
c0ff4b85 1855 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1856 * of the hierarchy under it.
cdec2e42 1857 */
6d3d6aa2 1858static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1859{
26fe6168 1860 int cpu, curcpu;
d38144b7 1861
6d3d6aa2
JW
1862 /* If someone's already draining, avoid adding running more workers. */
1863 if (!mutex_trylock(&percpu_charge_mutex))
1864 return;
cdec2e42 1865 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1866 get_online_cpus();
5af12d0e 1867 curcpu = get_cpu();
cdec2e42
KH
1868 for_each_online_cpu(cpu) {
1869 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1870 struct mem_cgroup *memcg;
26fe6168 1871
c0ff4b85
R
1872 memcg = stock->cached;
1873 if (!memcg || !stock->nr_pages)
26fe6168 1874 continue;
2314b42d 1875 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1876 continue;
d1a05b69
MH
1877 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1878 if (cpu == curcpu)
1879 drain_local_stock(&stock->work);
1880 else
1881 schedule_work_on(cpu, &stock->work);
1882 }
cdec2e42 1883 }
5af12d0e 1884 put_cpu();
f894ffa8 1885 put_online_cpus();
9f50fad6 1886 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1887}
1888
0db0628d 1889static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1890 unsigned long action,
1891 void *hcpu)
1892{
1893 int cpu = (unsigned long)hcpu;
1894 struct memcg_stock_pcp *stock;
1895
619d094b 1896 if (action == CPU_ONLINE)
1489ebad 1897 return NOTIFY_OK;
1489ebad 1898
d833049b 1899 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1900 return NOTIFY_OK;
711d3d2c 1901
cdec2e42
KH
1902 stock = &per_cpu(memcg_stock, cpu);
1903 drain_stock(stock);
1904 return NOTIFY_OK;
1905}
1906
f7e1cb6e
JW
1907static void reclaim_high(struct mem_cgroup *memcg,
1908 unsigned int nr_pages,
1909 gfp_t gfp_mask)
1910{
1911 do {
1912 if (page_counter_read(&memcg->memory) <= memcg->high)
1913 continue;
1914 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1915 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1916 } while ((memcg = parent_mem_cgroup(memcg)));
1917}
1918
1919static void high_work_func(struct work_struct *work)
1920{
1921 struct mem_cgroup *memcg;
1922
1923 memcg = container_of(work, struct mem_cgroup, high_work);
1924 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1925}
1926
b23afb93
TH
1927/*
1928 * Scheduled by try_charge() to be executed from the userland return path
1929 * and reclaims memory over the high limit.
1930 */
1931void mem_cgroup_handle_over_high(void)
1932{
1933 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1934 struct mem_cgroup *memcg;
b23afb93
TH
1935
1936 if (likely(!nr_pages))
1937 return;
1938
f7e1cb6e
JW
1939 memcg = get_mem_cgroup_from_mm(current->mm);
1940 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1941 css_put(&memcg->css);
1942 current->memcg_nr_pages_over_high = 0;
1943}
1944
00501b53
JW
1945static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1946 unsigned int nr_pages)
8a9f3ccd 1947{
7ec99d62 1948 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1949 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1950 struct mem_cgroup *mem_over_limit;
3e32cb2e 1951 struct page_counter *counter;
6539cc05 1952 unsigned long nr_reclaimed;
b70a2a21
JW
1953 bool may_swap = true;
1954 bool drained = false;
a636b327 1955
ce00a967 1956 if (mem_cgroup_is_root(memcg))
10d53c74 1957 return 0;
6539cc05 1958retry:
b6b6cc72 1959 if (consume_stock(memcg, nr_pages))
10d53c74 1960 return 0;
8a9f3ccd 1961
7941d214 1962 if (!do_memsw_account() ||
6071ca52
JW
1963 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1964 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1965 goto done_restock;
7941d214 1966 if (do_memsw_account())
3e32cb2e
JW
1967 page_counter_uncharge(&memcg->memsw, batch);
1968 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1969 } else {
3e32cb2e 1970 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1971 may_swap = false;
3fbe7244 1972 }
7a81b88c 1973
6539cc05
JW
1974 if (batch > nr_pages) {
1975 batch = nr_pages;
1976 goto retry;
1977 }
6d61ef40 1978
06b078fc
JW
1979 /*
1980 * Unlike in global OOM situations, memcg is not in a physical
1981 * memory shortage. Allow dying and OOM-killed tasks to
1982 * bypass the last charges so that they can exit quickly and
1983 * free their memory.
1984 */
1985 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1986 fatal_signal_pending(current) ||
1987 current->flags & PF_EXITING))
10d53c74 1988 goto force;
06b078fc
JW
1989
1990 if (unlikely(task_in_memcg_oom(current)))
1991 goto nomem;
1992
d0164adc 1993 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1994 goto nomem;
4b534334 1995
241994ed
JW
1996 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1997
b70a2a21
JW
1998 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1999 gfp_mask, may_swap);
6539cc05 2000
61e02c74 2001 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2002 goto retry;
28c34c29 2003
b70a2a21 2004 if (!drained) {
6d3d6aa2 2005 drain_all_stock(mem_over_limit);
b70a2a21
JW
2006 drained = true;
2007 goto retry;
2008 }
2009
28c34c29
JW
2010 if (gfp_mask & __GFP_NORETRY)
2011 goto nomem;
6539cc05
JW
2012 /*
2013 * Even though the limit is exceeded at this point, reclaim
2014 * may have been able to free some pages. Retry the charge
2015 * before killing the task.
2016 *
2017 * Only for regular pages, though: huge pages are rather
2018 * unlikely to succeed so close to the limit, and we fall back
2019 * to regular pages anyway in case of failure.
2020 */
61e02c74 2021 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2022 goto retry;
2023 /*
2024 * At task move, charge accounts can be doubly counted. So, it's
2025 * better to wait until the end of task_move if something is going on.
2026 */
2027 if (mem_cgroup_wait_acct_move(mem_over_limit))
2028 goto retry;
2029
9b130619
JW
2030 if (nr_retries--)
2031 goto retry;
2032
06b078fc 2033 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2034 goto force;
06b078fc 2035
6539cc05 2036 if (fatal_signal_pending(current))
10d53c74 2037 goto force;
6539cc05 2038
241994ed
JW
2039 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2040
3608de07
JM
2041 mem_cgroup_oom(mem_over_limit, gfp_mask,
2042 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2043nomem:
6d1fdc48 2044 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2045 return -ENOMEM;
10d53c74
TH
2046force:
2047 /*
2048 * The allocation either can't fail or will lead to more memory
2049 * being freed very soon. Allow memory usage go over the limit
2050 * temporarily by force charging it.
2051 */
2052 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2053 if (do_memsw_account())
10d53c74
TH
2054 page_counter_charge(&memcg->memsw, nr_pages);
2055 css_get_many(&memcg->css, nr_pages);
2056
2057 return 0;
6539cc05
JW
2058
2059done_restock:
e8ea14cc 2060 css_get_many(&memcg->css, batch);
6539cc05
JW
2061 if (batch > nr_pages)
2062 refill_stock(memcg, batch - nr_pages);
b23afb93 2063
241994ed 2064 /*
b23afb93
TH
2065 * If the hierarchy is above the normal consumption range, schedule
2066 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2067 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2068 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2069 * not recorded as it most likely matches current's and won't
2070 * change in the meantime. As high limit is checked again before
2071 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2072 */
2073 do {
b23afb93 2074 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2075 /* Don't bother a random interrupted task */
2076 if (in_interrupt()) {
2077 schedule_work(&memcg->high_work);
2078 break;
2079 }
9516a18a 2080 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2081 set_notify_resume(current);
2082 break;
2083 }
241994ed 2084 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2085
2086 return 0;
7a81b88c 2087}
8a9f3ccd 2088
00501b53 2089static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2090{
ce00a967
JW
2091 if (mem_cgroup_is_root(memcg))
2092 return;
2093
3e32cb2e 2094 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2095 if (do_memsw_account())
3e32cb2e 2096 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2097
e8ea14cc 2098 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2099}
2100
0a31bc97
JW
2101static void lock_page_lru(struct page *page, int *isolated)
2102{
2103 struct zone *zone = page_zone(page);
2104
2105 spin_lock_irq(&zone->lru_lock);
2106 if (PageLRU(page)) {
2107 struct lruvec *lruvec;
2108
2109 lruvec = mem_cgroup_page_lruvec(page, zone);
2110 ClearPageLRU(page);
2111 del_page_from_lru_list(page, lruvec, page_lru(page));
2112 *isolated = 1;
2113 } else
2114 *isolated = 0;
2115}
2116
2117static void unlock_page_lru(struct page *page, int isolated)
2118{
2119 struct zone *zone = page_zone(page);
2120
2121 if (isolated) {
2122 struct lruvec *lruvec;
2123
2124 lruvec = mem_cgroup_page_lruvec(page, zone);
2125 VM_BUG_ON_PAGE(PageLRU(page), page);
2126 SetPageLRU(page);
2127 add_page_to_lru_list(page, lruvec, page_lru(page));
2128 }
2129 spin_unlock_irq(&zone->lru_lock);
2130}
2131
00501b53 2132static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2133 bool lrucare)
7a81b88c 2134{
0a31bc97 2135 int isolated;
9ce70c02 2136
1306a85a 2137 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2138
2139 /*
2140 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2141 * may already be on some other mem_cgroup's LRU. Take care of it.
2142 */
0a31bc97
JW
2143 if (lrucare)
2144 lock_page_lru(page, &isolated);
9ce70c02 2145
0a31bc97
JW
2146 /*
2147 * Nobody should be changing or seriously looking at
1306a85a 2148 * page->mem_cgroup at this point:
0a31bc97
JW
2149 *
2150 * - the page is uncharged
2151 *
2152 * - the page is off-LRU
2153 *
2154 * - an anonymous fault has exclusive page access, except for
2155 * a locked page table
2156 *
2157 * - a page cache insertion, a swapin fault, or a migration
2158 * have the page locked
2159 */
1306a85a 2160 page->mem_cgroup = memcg;
9ce70c02 2161
0a31bc97
JW
2162 if (lrucare)
2163 unlock_page_lru(page, isolated);
7a81b88c 2164}
66e1707b 2165
127424c8 2166#ifndef CONFIG_SLOB
f3bb3043 2167static int memcg_alloc_cache_id(void)
55007d84 2168{
f3bb3043
VD
2169 int id, size;
2170 int err;
2171
dbcf73e2 2172 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2173 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2174 if (id < 0)
2175 return id;
55007d84 2176
dbcf73e2 2177 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2178 return id;
2179
2180 /*
2181 * There's no space for the new id in memcg_caches arrays,
2182 * so we have to grow them.
2183 */
05257a1a 2184 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2185
2186 size = 2 * (id + 1);
55007d84
GC
2187 if (size < MEMCG_CACHES_MIN_SIZE)
2188 size = MEMCG_CACHES_MIN_SIZE;
2189 else if (size > MEMCG_CACHES_MAX_SIZE)
2190 size = MEMCG_CACHES_MAX_SIZE;
2191
f3bb3043 2192 err = memcg_update_all_caches(size);
60d3fd32
VD
2193 if (!err)
2194 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2195 if (!err)
2196 memcg_nr_cache_ids = size;
2197
2198 up_write(&memcg_cache_ids_sem);
2199
f3bb3043 2200 if (err) {
dbcf73e2 2201 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2202 return err;
2203 }
2204 return id;
2205}
2206
2207static void memcg_free_cache_id(int id)
2208{
dbcf73e2 2209 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2210}
2211
d5b3cf71 2212struct memcg_kmem_cache_create_work {
5722d094
VD
2213 struct mem_cgroup *memcg;
2214 struct kmem_cache *cachep;
2215 struct work_struct work;
2216};
2217
d5b3cf71 2218static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2219{
d5b3cf71
VD
2220 struct memcg_kmem_cache_create_work *cw =
2221 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2222 struct mem_cgroup *memcg = cw->memcg;
2223 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2224
d5b3cf71 2225 memcg_create_kmem_cache(memcg, cachep);
bd673145 2226
5722d094 2227 css_put(&memcg->css);
d7f25f8a
GC
2228 kfree(cw);
2229}
2230
2231/*
2232 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2233 */
d5b3cf71
VD
2234static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2235 struct kmem_cache *cachep)
d7f25f8a 2236{
d5b3cf71 2237 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2238
776ed0f0 2239 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2240 if (!cw)
d7f25f8a 2241 return;
8135be5a
VD
2242
2243 css_get(&memcg->css);
d7f25f8a
GC
2244
2245 cw->memcg = memcg;
2246 cw->cachep = cachep;
d5b3cf71 2247 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2248
d7f25f8a
GC
2249 schedule_work(&cw->work);
2250}
2251
d5b3cf71
VD
2252static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2253 struct kmem_cache *cachep)
0e9d92f2
GC
2254{
2255 /*
2256 * We need to stop accounting when we kmalloc, because if the
2257 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2258 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2259 *
2260 * However, it is better to enclose the whole function. Depending on
2261 * the debugging options enabled, INIT_WORK(), for instance, can
2262 * trigger an allocation. This too, will make us recurse. Because at
2263 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2264 * the safest choice is to do it like this, wrapping the whole function.
2265 */
6f185c29 2266 current->memcg_kmem_skip_account = 1;
d5b3cf71 2267 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2268 current->memcg_kmem_skip_account = 0;
0e9d92f2 2269}
c67a8a68 2270
d7f25f8a
GC
2271/*
2272 * Return the kmem_cache we're supposed to use for a slab allocation.
2273 * We try to use the current memcg's version of the cache.
2274 *
2275 * If the cache does not exist yet, if we are the first user of it,
2276 * we either create it immediately, if possible, or create it asynchronously
2277 * in a workqueue.
2278 * In the latter case, we will let the current allocation go through with
2279 * the original cache.
2280 *
2281 * Can't be called in interrupt context or from kernel threads.
2282 * This function needs to be called with rcu_read_lock() held.
2283 */
230e9fc2 2284struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2285{
2286 struct mem_cgroup *memcg;
959c8963 2287 struct kmem_cache *memcg_cachep;
2a4db7eb 2288 int kmemcg_id;
d7f25f8a 2289
f7ce3190 2290 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2291
230e9fc2
VD
2292 if (cachep->flags & SLAB_ACCOUNT)
2293 gfp |= __GFP_ACCOUNT;
2294
2295 if (!(gfp & __GFP_ACCOUNT))
2296 return cachep;
2297
9d100c5e 2298 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2299 return cachep;
2300
8135be5a 2301 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2302 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2303 if (kmemcg_id < 0)
ca0dde97 2304 goto out;
d7f25f8a 2305
2a4db7eb 2306 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2307 if (likely(memcg_cachep))
2308 return memcg_cachep;
ca0dde97
LZ
2309
2310 /*
2311 * If we are in a safe context (can wait, and not in interrupt
2312 * context), we could be be predictable and return right away.
2313 * This would guarantee that the allocation being performed
2314 * already belongs in the new cache.
2315 *
2316 * However, there are some clashes that can arrive from locking.
2317 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2318 * memcg_create_kmem_cache, this means no further allocation
2319 * could happen with the slab_mutex held. So it's better to
2320 * defer everything.
ca0dde97 2321 */
d5b3cf71 2322 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2323out:
8135be5a 2324 css_put(&memcg->css);
ca0dde97 2325 return cachep;
d7f25f8a 2326}
d7f25f8a 2327
8135be5a
VD
2328void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2329{
2330 if (!is_root_cache(cachep))
f7ce3190 2331 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2332}
2333
f3ccb2c4
VD
2334int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2335 struct mem_cgroup *memcg)
7ae1e1d0 2336{
f3ccb2c4
VD
2337 unsigned int nr_pages = 1 << order;
2338 struct page_counter *counter;
7ae1e1d0
GC
2339 int ret;
2340
f3ccb2c4 2341 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2342 if (ret)
f3ccb2c4 2343 return ret;
52c29b04
JW
2344
2345 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2346 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2347 cancel_charge(memcg, nr_pages);
2348 return -ENOMEM;
7ae1e1d0
GC
2349 }
2350
f3ccb2c4 2351 page->mem_cgroup = memcg;
7ae1e1d0 2352
f3ccb2c4 2353 return 0;
7ae1e1d0
GC
2354}
2355
f3ccb2c4 2356int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2357{
f3ccb2c4 2358 struct mem_cgroup *memcg;
fcff7d7e 2359 int ret = 0;
7ae1e1d0 2360
f3ccb2c4 2361 memcg = get_mem_cgroup_from_mm(current->mm);
b6ecd2de 2362 if (!mem_cgroup_is_root(memcg))
fcff7d7e 2363 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2364 css_put(&memcg->css);
d05e83a6 2365 return ret;
7ae1e1d0
GC
2366}
2367
d05e83a6 2368void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2369{
1306a85a 2370 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2371 unsigned int nr_pages = 1 << order;
7ae1e1d0 2372
7ae1e1d0
GC
2373 if (!memcg)
2374 return;
2375
309381fe 2376 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2377
52c29b04
JW
2378 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2379 page_counter_uncharge(&memcg->kmem, nr_pages);
2380
f3ccb2c4 2381 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2382 if (do_memsw_account())
f3ccb2c4 2383 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2384
1306a85a 2385 page->mem_cgroup = NULL;
f3ccb2c4 2386 css_put_many(&memcg->css, nr_pages);
60d3fd32 2387}
127424c8 2388#endif /* !CONFIG_SLOB */
7ae1e1d0 2389
ca3e0214
KH
2390#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2391
ca3e0214
KH
2392/*
2393 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2394 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2395 */
e94c8a9c 2396void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2397{
e94c8a9c 2398 int i;
ca3e0214 2399
3d37c4a9
KH
2400 if (mem_cgroup_disabled())
2401 return;
b070e65c 2402
29833315 2403 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2404 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2405
1306a85a 2406 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2407 HPAGE_PMD_NR);
ca3e0214 2408}
12d27107 2409#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2410
c255a458 2411#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2412static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2413 bool charge)
d13d1443 2414{
0a31bc97
JW
2415 int val = (charge) ? 1 : -1;
2416 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2417}
02491447
DN
2418
2419/**
2420 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2421 * @entry: swap entry to be moved
2422 * @from: mem_cgroup which the entry is moved from
2423 * @to: mem_cgroup which the entry is moved to
2424 *
2425 * It succeeds only when the swap_cgroup's record for this entry is the same
2426 * as the mem_cgroup's id of @from.
2427 *
2428 * Returns 0 on success, -EINVAL on failure.
2429 *
3e32cb2e 2430 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2431 * both res and memsw, and called css_get().
2432 */
2433static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2434 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2435{
2436 unsigned short old_id, new_id;
2437
34c00c31
LZ
2438 old_id = mem_cgroup_id(from);
2439 new_id = mem_cgroup_id(to);
02491447
DN
2440
2441 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2442 mem_cgroup_swap_statistics(from, false);
483c30b5 2443 mem_cgroup_swap_statistics(to, true);
02491447
DN
2444 return 0;
2445 }
2446 return -EINVAL;
2447}
2448#else
2449static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2450 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2451{
2452 return -EINVAL;
2453}
8c7c6e34 2454#endif
d13d1443 2455
3e32cb2e 2456static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2457
d38d2a75 2458static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2459 unsigned long limit)
628f4235 2460{
3e32cb2e
JW
2461 unsigned long curusage;
2462 unsigned long oldusage;
2463 bool enlarge = false;
81d39c20 2464 int retry_count;
3e32cb2e 2465 int ret;
81d39c20
KH
2466
2467 /*
2468 * For keeping hierarchical_reclaim simple, how long we should retry
2469 * is depends on callers. We set our retry-count to be function
2470 * of # of children which we should visit in this loop.
2471 */
3e32cb2e
JW
2472 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2473 mem_cgroup_count_children(memcg);
81d39c20 2474
3e32cb2e 2475 oldusage = page_counter_read(&memcg->memory);
628f4235 2476
3e32cb2e 2477 do {
628f4235
KH
2478 if (signal_pending(current)) {
2479 ret = -EINTR;
2480 break;
2481 }
3e32cb2e
JW
2482
2483 mutex_lock(&memcg_limit_mutex);
2484 if (limit > memcg->memsw.limit) {
2485 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2486 ret = -EINVAL;
628f4235
KH
2487 break;
2488 }
3e32cb2e
JW
2489 if (limit > memcg->memory.limit)
2490 enlarge = true;
2491 ret = page_counter_limit(&memcg->memory, limit);
2492 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2493
2494 if (!ret)
2495 break;
2496
b70a2a21
JW
2497 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2498
3e32cb2e 2499 curusage = page_counter_read(&memcg->memory);
81d39c20 2500 /* Usage is reduced ? */
f894ffa8 2501 if (curusage >= oldusage)
81d39c20
KH
2502 retry_count--;
2503 else
2504 oldusage = curusage;
3e32cb2e
JW
2505 } while (retry_count);
2506
3c11ecf4
KH
2507 if (!ret && enlarge)
2508 memcg_oom_recover(memcg);
14797e23 2509
8c7c6e34
KH
2510 return ret;
2511}
2512
338c8431 2513static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2514 unsigned long limit)
8c7c6e34 2515{
3e32cb2e
JW
2516 unsigned long curusage;
2517 unsigned long oldusage;
2518 bool enlarge = false;
81d39c20 2519 int retry_count;
3e32cb2e 2520 int ret;
8c7c6e34 2521
81d39c20 2522 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2523 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2524 mem_cgroup_count_children(memcg);
2525
2526 oldusage = page_counter_read(&memcg->memsw);
2527
2528 do {
8c7c6e34
KH
2529 if (signal_pending(current)) {
2530 ret = -EINTR;
2531 break;
2532 }
3e32cb2e
JW
2533
2534 mutex_lock(&memcg_limit_mutex);
2535 if (limit < memcg->memory.limit) {
2536 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2537 ret = -EINVAL;
8c7c6e34
KH
2538 break;
2539 }
3e32cb2e
JW
2540 if (limit > memcg->memsw.limit)
2541 enlarge = true;
2542 ret = page_counter_limit(&memcg->memsw, limit);
2543 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2544
2545 if (!ret)
2546 break;
2547
b70a2a21
JW
2548 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2549
3e32cb2e 2550 curusage = page_counter_read(&memcg->memsw);
81d39c20 2551 /* Usage is reduced ? */
8c7c6e34 2552 if (curusage >= oldusage)
628f4235 2553 retry_count--;
81d39c20
KH
2554 else
2555 oldusage = curusage;
3e32cb2e
JW
2556 } while (retry_count);
2557
3c11ecf4
KH
2558 if (!ret && enlarge)
2559 memcg_oom_recover(memcg);
3e32cb2e 2560
628f4235
KH
2561 return ret;
2562}
2563
0608f43d
AM
2564unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2565 gfp_t gfp_mask,
2566 unsigned long *total_scanned)
2567{
2568 unsigned long nr_reclaimed = 0;
2569 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2570 unsigned long reclaimed;
2571 int loop = 0;
2572 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2573 unsigned long excess;
0608f43d
AM
2574 unsigned long nr_scanned;
2575
2576 if (order > 0)
2577 return 0;
2578
2579 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2580 /*
2581 * This loop can run a while, specially if mem_cgroup's continuously
2582 * keep exceeding their soft limit and putting the system under
2583 * pressure
2584 */
2585 do {
2586 if (next_mz)
2587 mz = next_mz;
2588 else
2589 mz = mem_cgroup_largest_soft_limit_node(mctz);
2590 if (!mz)
2591 break;
2592
2593 nr_scanned = 0;
2594 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2595 gfp_mask, &nr_scanned);
2596 nr_reclaimed += reclaimed;
2597 *total_scanned += nr_scanned;
0a31bc97 2598 spin_lock_irq(&mctz->lock);
bc2f2e7f 2599 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2600
2601 /*
2602 * If we failed to reclaim anything from this memory cgroup
2603 * it is time to move on to the next cgroup
2604 */
2605 next_mz = NULL;
bc2f2e7f
VD
2606 if (!reclaimed)
2607 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2608
3e32cb2e 2609 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2610 /*
2611 * One school of thought says that we should not add
2612 * back the node to the tree if reclaim returns 0.
2613 * But our reclaim could return 0, simply because due
2614 * to priority we are exposing a smaller subset of
2615 * memory to reclaim from. Consider this as a longer
2616 * term TODO.
2617 */
2618 /* If excess == 0, no tree ops */
cf2c8127 2619 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2620 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2621 css_put(&mz->memcg->css);
2622 loop++;
2623 /*
2624 * Could not reclaim anything and there are no more
2625 * mem cgroups to try or we seem to be looping without
2626 * reclaiming anything.
2627 */
2628 if (!nr_reclaimed &&
2629 (next_mz == NULL ||
2630 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2631 break;
2632 } while (!nr_reclaimed);
2633 if (next_mz)
2634 css_put(&next_mz->memcg->css);
2635 return nr_reclaimed;
2636}
2637
ea280e7b
TH
2638/*
2639 * Test whether @memcg has children, dead or alive. Note that this
2640 * function doesn't care whether @memcg has use_hierarchy enabled and
2641 * returns %true if there are child csses according to the cgroup
2642 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2643 */
b5f99b53
GC
2644static inline bool memcg_has_children(struct mem_cgroup *memcg)
2645{
ea280e7b
TH
2646 bool ret;
2647
ea280e7b
TH
2648 rcu_read_lock();
2649 ret = css_next_child(NULL, &memcg->css);
2650 rcu_read_unlock();
2651 return ret;
b5f99b53
GC
2652}
2653
c26251f9 2654/*
51038171 2655 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2656 *
2657 * Caller is responsible for holding css reference for memcg.
2658 */
2659static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2660{
2661 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2662
c1e862c1
KH
2663 /* we call try-to-free pages for make this cgroup empty */
2664 lru_add_drain_all();
f817ed48 2665 /* try to free all pages in this cgroup */
3e32cb2e 2666 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2667 int progress;
c1e862c1 2668
c26251f9
MH
2669 if (signal_pending(current))
2670 return -EINTR;
2671
b70a2a21
JW
2672 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2673 GFP_KERNEL, true);
c1e862c1 2674 if (!progress) {
f817ed48 2675 nr_retries--;
c1e862c1 2676 /* maybe some writeback is necessary */
8aa7e847 2677 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2678 }
f817ed48
KH
2679
2680 }
ab5196c2
MH
2681
2682 return 0;
cc847582
KH
2683}
2684
6770c64e
TH
2685static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2686 char *buf, size_t nbytes,
2687 loff_t off)
c1e862c1 2688{
6770c64e 2689 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2690
d8423011
MH
2691 if (mem_cgroup_is_root(memcg))
2692 return -EINVAL;
6770c64e 2693 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2694}
2695
182446d0
TH
2696static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2697 struct cftype *cft)
18f59ea7 2698{
182446d0 2699 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2700}
2701
182446d0
TH
2702static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2703 struct cftype *cft, u64 val)
18f59ea7
BS
2704{
2705 int retval = 0;
182446d0 2706 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2707 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2708
567fb435 2709 if (memcg->use_hierarchy == val)
0b8f73e1 2710 return 0;
567fb435 2711
18f59ea7 2712 /*
af901ca1 2713 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2714 * in the child subtrees. If it is unset, then the change can
2715 * occur, provided the current cgroup has no children.
2716 *
2717 * For the root cgroup, parent_mem is NULL, we allow value to be
2718 * set if there are no children.
2719 */
c0ff4b85 2720 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2721 (val == 1 || val == 0)) {
ea280e7b 2722 if (!memcg_has_children(memcg))
c0ff4b85 2723 memcg->use_hierarchy = val;
18f59ea7
BS
2724 else
2725 retval = -EBUSY;
2726 } else
2727 retval = -EINVAL;
567fb435 2728
18f59ea7
BS
2729 return retval;
2730}
2731
72b54e73 2732static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2733{
2734 struct mem_cgroup *iter;
72b54e73 2735 int i;
ce00a967 2736
72b54e73 2737 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2738
72b54e73
VD
2739 for_each_mem_cgroup_tree(iter, memcg) {
2740 for (i = 0; i < MEMCG_NR_STAT; i++)
2741 stat[i] += mem_cgroup_read_stat(iter, i);
2742 }
ce00a967
JW
2743}
2744
72b54e73 2745static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2746{
2747 struct mem_cgroup *iter;
72b54e73 2748 int i;
587d9f72 2749
72b54e73 2750 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2751
72b54e73
VD
2752 for_each_mem_cgroup_tree(iter, memcg) {
2753 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2754 events[i] += mem_cgroup_read_events(iter, i);
2755 }
587d9f72
JW
2756}
2757
6f646156 2758static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2759{
72b54e73 2760 unsigned long val = 0;
ce00a967 2761
3e32cb2e 2762 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2763 struct mem_cgroup *iter;
2764
2765 for_each_mem_cgroup_tree(iter, memcg) {
2766 val += mem_cgroup_read_stat(iter,
2767 MEM_CGROUP_STAT_CACHE);
2768 val += mem_cgroup_read_stat(iter,
2769 MEM_CGROUP_STAT_RSS);
2770 if (swap)
2771 val += mem_cgroup_read_stat(iter,
2772 MEM_CGROUP_STAT_SWAP);
2773 }
3e32cb2e 2774 } else {
ce00a967 2775 if (!swap)
3e32cb2e 2776 val = page_counter_read(&memcg->memory);
ce00a967 2777 else
3e32cb2e 2778 val = page_counter_read(&memcg->memsw);
ce00a967 2779 }
c12176d3 2780 return val;
ce00a967
JW
2781}
2782
3e32cb2e
JW
2783enum {
2784 RES_USAGE,
2785 RES_LIMIT,
2786 RES_MAX_USAGE,
2787 RES_FAILCNT,
2788 RES_SOFT_LIMIT,
2789};
ce00a967 2790
791badbd 2791static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2792 struct cftype *cft)
8cdea7c0 2793{
182446d0 2794 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2795 struct page_counter *counter;
af36f906 2796
3e32cb2e 2797 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2798 case _MEM:
3e32cb2e
JW
2799 counter = &memcg->memory;
2800 break;
8c7c6e34 2801 case _MEMSWAP:
3e32cb2e
JW
2802 counter = &memcg->memsw;
2803 break;
510fc4e1 2804 case _KMEM:
3e32cb2e 2805 counter = &memcg->kmem;
510fc4e1 2806 break;
d55f90bf 2807 case _TCP:
0db15298 2808 counter = &memcg->tcpmem;
d55f90bf 2809 break;
8c7c6e34
KH
2810 default:
2811 BUG();
8c7c6e34 2812 }
3e32cb2e
JW
2813
2814 switch (MEMFILE_ATTR(cft->private)) {
2815 case RES_USAGE:
2816 if (counter == &memcg->memory)
c12176d3 2817 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2818 if (counter == &memcg->memsw)
c12176d3 2819 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2820 return (u64)page_counter_read(counter) * PAGE_SIZE;
2821 case RES_LIMIT:
2822 return (u64)counter->limit * PAGE_SIZE;
2823 case RES_MAX_USAGE:
2824 return (u64)counter->watermark * PAGE_SIZE;
2825 case RES_FAILCNT:
2826 return counter->failcnt;
2827 case RES_SOFT_LIMIT:
2828 return (u64)memcg->soft_limit * PAGE_SIZE;
2829 default:
2830 BUG();
2831 }
8cdea7c0 2832}
510fc4e1 2833
127424c8 2834#ifndef CONFIG_SLOB
567e9ab2 2835static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2836{
d6441637
VD
2837 int memcg_id;
2838
b313aeee
VD
2839 if (cgroup_memory_nokmem)
2840 return 0;
2841
2a4db7eb 2842 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2843 BUG_ON(memcg->kmem_state);
d6441637 2844
f3bb3043 2845 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2846 if (memcg_id < 0)
2847 return memcg_id;
d6441637 2848
ef12947c 2849 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2850 /*
567e9ab2 2851 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2852 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2853 * guarantee no one starts accounting before all call sites are
2854 * patched.
2855 */
900a38f0 2856 memcg->kmemcg_id = memcg_id;
567e9ab2 2857 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2858
2859 return 0;
d6441637
VD
2860}
2861
8e0a8912
JW
2862static void memcg_offline_kmem(struct mem_cgroup *memcg)
2863{
2864 struct cgroup_subsys_state *css;
2865 struct mem_cgroup *parent, *child;
2866 int kmemcg_id;
2867
2868 if (memcg->kmem_state != KMEM_ONLINE)
2869 return;
2870 /*
2871 * Clear the online state before clearing memcg_caches array
2872 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2873 * guarantees that no cache will be created for this cgroup
2874 * after we are done (see memcg_create_kmem_cache()).
2875 */
2876 memcg->kmem_state = KMEM_ALLOCATED;
2877
2878 memcg_deactivate_kmem_caches(memcg);
2879
2880 kmemcg_id = memcg->kmemcg_id;
2881 BUG_ON(kmemcg_id < 0);
2882
2883 parent = parent_mem_cgroup(memcg);
2884 if (!parent)
2885 parent = root_mem_cgroup;
2886
2887 /*
2888 * Change kmemcg_id of this cgroup and all its descendants to the
2889 * parent's id, and then move all entries from this cgroup's list_lrus
2890 * to ones of the parent. After we have finished, all list_lrus
2891 * corresponding to this cgroup are guaranteed to remain empty. The
2892 * ordering is imposed by list_lru_node->lock taken by
2893 * memcg_drain_all_list_lrus().
2894 */
2895 css_for_each_descendant_pre(css, &memcg->css) {
2896 child = mem_cgroup_from_css(css);
2897 BUG_ON(child->kmemcg_id != kmemcg_id);
2898 child->kmemcg_id = parent->kmemcg_id;
2899 if (!memcg->use_hierarchy)
2900 break;
2901 }
2902 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2903
2904 memcg_free_cache_id(kmemcg_id);
2905}
2906
2907static void memcg_free_kmem(struct mem_cgroup *memcg)
2908{
0b8f73e1
JW
2909 /* css_alloc() failed, offlining didn't happen */
2910 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2911 memcg_offline_kmem(memcg);
2912
8e0a8912
JW
2913 if (memcg->kmem_state == KMEM_ALLOCATED) {
2914 memcg_destroy_kmem_caches(memcg);
2915 static_branch_dec(&memcg_kmem_enabled_key);
2916 WARN_ON(page_counter_read(&memcg->kmem));
2917 }
8e0a8912 2918}
d6441637 2919#else
0b8f73e1 2920static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2921{
2922 return 0;
2923}
2924static void memcg_offline_kmem(struct mem_cgroup *memcg)
2925{
2926}
2927static void memcg_free_kmem(struct mem_cgroup *memcg)
2928{
2929}
2930#endif /* !CONFIG_SLOB */
2931
d6441637 2932static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2933 unsigned long limit)
d6441637 2934{
b313aeee 2935 int ret;
127424c8
JW
2936
2937 mutex_lock(&memcg_limit_mutex);
127424c8 2938 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2939 mutex_unlock(&memcg_limit_mutex);
2940 return ret;
d6441637 2941}
510fc4e1 2942
d55f90bf
VD
2943static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2944{
2945 int ret;
2946
2947 mutex_lock(&memcg_limit_mutex);
2948
0db15298 2949 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2950 if (ret)
2951 goto out;
2952
0db15298 2953 if (!memcg->tcpmem_active) {
d55f90bf
VD
2954 /*
2955 * The active flag needs to be written after the static_key
2956 * update. This is what guarantees that the socket activation
2957 * function is the last one to run. See sock_update_memcg() for
2958 * details, and note that we don't mark any socket as belonging
2959 * to this memcg until that flag is up.
2960 *
2961 * We need to do this, because static_keys will span multiple
2962 * sites, but we can't control their order. If we mark a socket
2963 * as accounted, but the accounting functions are not patched in
2964 * yet, we'll lose accounting.
2965 *
2966 * We never race with the readers in sock_update_memcg(),
2967 * because when this value change, the code to process it is not
2968 * patched in yet.
2969 */
2970 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2971 memcg->tcpmem_active = true;
d55f90bf
VD
2972 }
2973out:
2974 mutex_unlock(&memcg_limit_mutex);
2975 return ret;
2976}
d55f90bf 2977
628f4235
KH
2978/*
2979 * The user of this function is...
2980 * RES_LIMIT.
2981 */
451af504
TH
2982static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2983 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2984{
451af504 2985 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2986 unsigned long nr_pages;
628f4235
KH
2987 int ret;
2988
451af504 2989 buf = strstrip(buf);
650c5e56 2990 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2991 if (ret)
2992 return ret;
af36f906 2993
3e32cb2e 2994 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2995 case RES_LIMIT:
4b3bde4c
BS
2996 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2997 ret = -EINVAL;
2998 break;
2999 }
3e32cb2e
JW
3000 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3001 case _MEM:
3002 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3003 break;
3e32cb2e
JW
3004 case _MEMSWAP:
3005 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3006 break;
3e32cb2e
JW
3007 case _KMEM:
3008 ret = memcg_update_kmem_limit(memcg, nr_pages);
3009 break;
d55f90bf
VD
3010 case _TCP:
3011 ret = memcg_update_tcp_limit(memcg, nr_pages);
3012 break;
3e32cb2e 3013 }
296c81d8 3014 break;
3e32cb2e
JW
3015 case RES_SOFT_LIMIT:
3016 memcg->soft_limit = nr_pages;
3017 ret = 0;
628f4235
KH
3018 break;
3019 }
451af504 3020 return ret ?: nbytes;
8cdea7c0
BS
3021}
3022
6770c64e
TH
3023static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3024 size_t nbytes, loff_t off)
c84872e1 3025{
6770c64e 3026 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3027 struct page_counter *counter;
c84872e1 3028
3e32cb2e
JW
3029 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3030 case _MEM:
3031 counter = &memcg->memory;
3032 break;
3033 case _MEMSWAP:
3034 counter = &memcg->memsw;
3035 break;
3036 case _KMEM:
3037 counter = &memcg->kmem;
3038 break;
d55f90bf 3039 case _TCP:
0db15298 3040 counter = &memcg->tcpmem;
d55f90bf 3041 break;
3e32cb2e
JW
3042 default:
3043 BUG();
3044 }
af36f906 3045
3e32cb2e 3046 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3047 case RES_MAX_USAGE:
3e32cb2e 3048 page_counter_reset_watermark(counter);
29f2a4da
PE
3049 break;
3050 case RES_FAILCNT:
3e32cb2e 3051 counter->failcnt = 0;
29f2a4da 3052 break;
3e32cb2e
JW
3053 default:
3054 BUG();
29f2a4da 3055 }
f64c3f54 3056
6770c64e 3057 return nbytes;
c84872e1
PE
3058}
3059
182446d0 3060static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3061 struct cftype *cft)
3062{
182446d0 3063 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3064}
3065
02491447 3066#ifdef CONFIG_MMU
182446d0 3067static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3068 struct cftype *cft, u64 val)
3069{
182446d0 3070 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3071
1dfab5ab 3072 if (val & ~MOVE_MASK)
7dc74be0 3073 return -EINVAL;
ee5e8472 3074
7dc74be0 3075 /*
ee5e8472
GC
3076 * No kind of locking is needed in here, because ->can_attach() will
3077 * check this value once in the beginning of the process, and then carry
3078 * on with stale data. This means that changes to this value will only
3079 * affect task migrations starting after the change.
7dc74be0 3080 */
c0ff4b85 3081 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3082 return 0;
3083}
02491447 3084#else
182446d0 3085static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3086 struct cftype *cft, u64 val)
3087{
3088 return -ENOSYS;
3089}
3090#endif
7dc74be0 3091
406eb0c9 3092#ifdef CONFIG_NUMA
2da8ca82 3093static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3094{
25485de6
GT
3095 struct numa_stat {
3096 const char *name;
3097 unsigned int lru_mask;
3098 };
3099
3100 static const struct numa_stat stats[] = {
3101 { "total", LRU_ALL },
3102 { "file", LRU_ALL_FILE },
3103 { "anon", LRU_ALL_ANON },
3104 { "unevictable", BIT(LRU_UNEVICTABLE) },
3105 };
3106 const struct numa_stat *stat;
406eb0c9 3107 int nid;
25485de6 3108 unsigned long nr;
2da8ca82 3109 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3110
25485de6
GT
3111 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3112 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3113 seq_printf(m, "%s=%lu", stat->name, nr);
3114 for_each_node_state(nid, N_MEMORY) {
3115 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3116 stat->lru_mask);
3117 seq_printf(m, " N%d=%lu", nid, nr);
3118 }
3119 seq_putc(m, '\n');
406eb0c9 3120 }
406eb0c9 3121
071aee13
YH
3122 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3123 struct mem_cgroup *iter;
3124
3125 nr = 0;
3126 for_each_mem_cgroup_tree(iter, memcg)
3127 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3128 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3129 for_each_node_state(nid, N_MEMORY) {
3130 nr = 0;
3131 for_each_mem_cgroup_tree(iter, memcg)
3132 nr += mem_cgroup_node_nr_lru_pages(
3133 iter, nid, stat->lru_mask);
3134 seq_printf(m, " N%d=%lu", nid, nr);
3135 }
3136 seq_putc(m, '\n');
406eb0c9 3137 }
406eb0c9 3138
406eb0c9
YH
3139 return 0;
3140}
3141#endif /* CONFIG_NUMA */
3142
2da8ca82 3143static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3144{
2da8ca82 3145 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3146 unsigned long memory, memsw;
af7c4b0e
JW
3147 struct mem_cgroup *mi;
3148 unsigned int i;
406eb0c9 3149
0ca44b14
GT
3150 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3151 MEM_CGROUP_STAT_NSTATS);
3152 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3153 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3154 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3155
af7c4b0e 3156 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3157 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3158 continue;
484ebb3b 3159 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3160 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3161 }
7b854121 3162
af7c4b0e
JW
3163 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3164 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3165 mem_cgroup_read_events(memcg, i));
3166
3167 for (i = 0; i < NR_LRU_LISTS; i++)
3168 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3169 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3170
14067bb3 3171 /* Hierarchical information */
3e32cb2e
JW
3172 memory = memsw = PAGE_COUNTER_MAX;
3173 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3174 memory = min(memory, mi->memory.limit);
3175 memsw = min(memsw, mi->memsw.limit);
fee7b548 3176 }
3e32cb2e
JW
3177 seq_printf(m, "hierarchical_memory_limit %llu\n",
3178 (u64)memory * PAGE_SIZE);
7941d214 3179 if (do_memsw_account())
3e32cb2e
JW
3180 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3181 (u64)memsw * PAGE_SIZE);
7f016ee8 3182
af7c4b0e 3183 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3184 unsigned long long val = 0;
af7c4b0e 3185
7941d214 3186 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3187 continue;
af7c4b0e
JW
3188 for_each_mem_cgroup_tree(mi, memcg)
3189 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3190 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3191 }
3192
3193 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3194 unsigned long long val = 0;
3195
3196 for_each_mem_cgroup_tree(mi, memcg)
3197 val += mem_cgroup_read_events(mi, i);
3198 seq_printf(m, "total_%s %llu\n",
3199 mem_cgroup_events_names[i], val);
3200 }
3201
3202 for (i = 0; i < NR_LRU_LISTS; i++) {
3203 unsigned long long val = 0;
3204
3205 for_each_mem_cgroup_tree(mi, memcg)
3206 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3207 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3208 }
14067bb3 3209
7f016ee8 3210#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3211 {
3212 int nid, zid;
3213 struct mem_cgroup_per_zone *mz;
89abfab1 3214 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3215 unsigned long recent_rotated[2] = {0, 0};
3216 unsigned long recent_scanned[2] = {0, 0};
3217
3218 for_each_online_node(nid)
3219 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3220 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3221 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3222
89abfab1
HD
3223 recent_rotated[0] += rstat->recent_rotated[0];
3224 recent_rotated[1] += rstat->recent_rotated[1];
3225 recent_scanned[0] += rstat->recent_scanned[0];
3226 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3227 }
78ccf5b5
JW
3228 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3229 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3230 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3231 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3232 }
3233#endif
3234
d2ceb9b7
KH
3235 return 0;
3236}
3237
182446d0
TH
3238static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3239 struct cftype *cft)
a7885eb8 3240{
182446d0 3241 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3242
1f4c025b 3243 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3244}
3245
182446d0
TH
3246static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3247 struct cftype *cft, u64 val)
a7885eb8 3248{
182446d0 3249 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3250
3dae7fec 3251 if (val > 100)
a7885eb8
KM
3252 return -EINVAL;
3253
14208b0e 3254 if (css->parent)
3dae7fec
JW
3255 memcg->swappiness = val;
3256 else
3257 vm_swappiness = val;
068b38c1 3258
a7885eb8
KM
3259 return 0;
3260}
3261
2e72b634
KS
3262static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3263{
3264 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3265 unsigned long usage;
2e72b634
KS
3266 int i;
3267
3268 rcu_read_lock();
3269 if (!swap)
2c488db2 3270 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3271 else
2c488db2 3272 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3273
3274 if (!t)
3275 goto unlock;
3276
ce00a967 3277 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3278
3279 /*
748dad36 3280 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3281 * If it's not true, a threshold was crossed after last
3282 * call of __mem_cgroup_threshold().
3283 */
5407a562 3284 i = t->current_threshold;
2e72b634
KS
3285
3286 /*
3287 * Iterate backward over array of thresholds starting from
3288 * current_threshold and check if a threshold is crossed.
3289 * If none of thresholds below usage is crossed, we read
3290 * only one element of the array here.
3291 */
3292 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3293 eventfd_signal(t->entries[i].eventfd, 1);
3294
3295 /* i = current_threshold + 1 */
3296 i++;
3297
3298 /*
3299 * Iterate forward over array of thresholds starting from
3300 * current_threshold+1 and check if a threshold is crossed.
3301 * If none of thresholds above usage is crossed, we read
3302 * only one element of the array here.
3303 */
3304 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3305 eventfd_signal(t->entries[i].eventfd, 1);
3306
3307 /* Update current_threshold */
5407a562 3308 t->current_threshold = i - 1;
2e72b634
KS
3309unlock:
3310 rcu_read_unlock();
3311}
3312
3313static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3314{
ad4ca5f4
KS
3315 while (memcg) {
3316 __mem_cgroup_threshold(memcg, false);
7941d214 3317 if (do_memsw_account())
ad4ca5f4
KS
3318 __mem_cgroup_threshold(memcg, true);
3319
3320 memcg = parent_mem_cgroup(memcg);
3321 }
2e72b634
KS
3322}
3323
3324static int compare_thresholds(const void *a, const void *b)
3325{
3326 const struct mem_cgroup_threshold *_a = a;
3327 const struct mem_cgroup_threshold *_b = b;
3328
2bff24a3
GT
3329 if (_a->threshold > _b->threshold)
3330 return 1;
3331
3332 if (_a->threshold < _b->threshold)
3333 return -1;
3334
3335 return 0;
2e72b634
KS
3336}
3337
c0ff4b85 3338static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3339{
3340 struct mem_cgroup_eventfd_list *ev;
3341
2bcf2e92
MH
3342 spin_lock(&memcg_oom_lock);
3343
c0ff4b85 3344 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3345 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3346
3347 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3348 return 0;
3349}
3350
c0ff4b85 3351static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3352{
7d74b06f
KH
3353 struct mem_cgroup *iter;
3354
c0ff4b85 3355 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3356 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3357}
3358
59b6f873 3359static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3360 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3361{
2c488db2
KS
3362 struct mem_cgroup_thresholds *thresholds;
3363 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3364 unsigned long threshold;
3365 unsigned long usage;
2c488db2 3366 int i, size, ret;
2e72b634 3367
650c5e56 3368 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3369 if (ret)
3370 return ret;
3371
3372 mutex_lock(&memcg->thresholds_lock);
2c488db2 3373
05b84301 3374 if (type == _MEM) {
2c488db2 3375 thresholds = &memcg->thresholds;
ce00a967 3376 usage = mem_cgroup_usage(memcg, false);
05b84301 3377 } else if (type == _MEMSWAP) {
2c488db2 3378 thresholds = &memcg->memsw_thresholds;
ce00a967 3379 usage = mem_cgroup_usage(memcg, true);
05b84301 3380 } else
2e72b634
KS
3381 BUG();
3382
2e72b634 3383 /* Check if a threshold crossed before adding a new one */
2c488db2 3384 if (thresholds->primary)
2e72b634
KS
3385 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3386
2c488db2 3387 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3388
3389 /* Allocate memory for new array of thresholds */
2c488db2 3390 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3391 GFP_KERNEL);
2c488db2 3392 if (!new) {
2e72b634
KS
3393 ret = -ENOMEM;
3394 goto unlock;
3395 }
2c488db2 3396 new->size = size;
2e72b634
KS
3397
3398 /* Copy thresholds (if any) to new array */
2c488db2
KS
3399 if (thresholds->primary) {
3400 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3401 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3402 }
3403
2e72b634 3404 /* Add new threshold */
2c488db2
KS
3405 new->entries[size - 1].eventfd = eventfd;
3406 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3407
3408 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3409 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3410 compare_thresholds, NULL);
3411
3412 /* Find current threshold */
2c488db2 3413 new->current_threshold = -1;
2e72b634 3414 for (i = 0; i < size; i++) {
748dad36 3415 if (new->entries[i].threshold <= usage) {
2e72b634 3416 /*
2c488db2
KS
3417 * new->current_threshold will not be used until
3418 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3419 * it here.
3420 */
2c488db2 3421 ++new->current_threshold;
748dad36
SZ
3422 } else
3423 break;
2e72b634
KS
3424 }
3425
2c488db2
KS
3426 /* Free old spare buffer and save old primary buffer as spare */
3427 kfree(thresholds->spare);
3428 thresholds->spare = thresholds->primary;
3429
3430 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3431
907860ed 3432 /* To be sure that nobody uses thresholds */
2e72b634
KS
3433 synchronize_rcu();
3434
2e72b634
KS
3435unlock:
3436 mutex_unlock(&memcg->thresholds_lock);
3437
3438 return ret;
3439}
3440
59b6f873 3441static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3442 struct eventfd_ctx *eventfd, const char *args)
3443{
59b6f873 3444 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3445}
3446
59b6f873 3447static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3448 struct eventfd_ctx *eventfd, const char *args)
3449{
59b6f873 3450 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3451}
3452
59b6f873 3453static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3454 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3455{
2c488db2
KS
3456 struct mem_cgroup_thresholds *thresholds;
3457 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3458 unsigned long usage;
2c488db2 3459 int i, j, size;
2e72b634
KS
3460
3461 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3462
3463 if (type == _MEM) {
2c488db2 3464 thresholds = &memcg->thresholds;
ce00a967 3465 usage = mem_cgroup_usage(memcg, false);
05b84301 3466 } else if (type == _MEMSWAP) {
2c488db2 3467 thresholds = &memcg->memsw_thresholds;
ce00a967 3468 usage = mem_cgroup_usage(memcg, true);
05b84301 3469 } else
2e72b634
KS
3470 BUG();
3471
371528ca
AV
3472 if (!thresholds->primary)
3473 goto unlock;
3474
2e72b634
KS
3475 /* Check if a threshold crossed before removing */
3476 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3477
3478 /* Calculate new number of threshold */
2c488db2
KS
3479 size = 0;
3480 for (i = 0; i < thresholds->primary->size; i++) {
3481 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3482 size++;
3483 }
3484
2c488db2 3485 new = thresholds->spare;
907860ed 3486
2e72b634
KS
3487 /* Set thresholds array to NULL if we don't have thresholds */
3488 if (!size) {
2c488db2
KS
3489 kfree(new);
3490 new = NULL;
907860ed 3491 goto swap_buffers;
2e72b634
KS
3492 }
3493
2c488db2 3494 new->size = size;
2e72b634
KS
3495
3496 /* Copy thresholds and find current threshold */
2c488db2
KS
3497 new->current_threshold = -1;
3498 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3499 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3500 continue;
3501
2c488db2 3502 new->entries[j] = thresholds->primary->entries[i];
748dad36 3503 if (new->entries[j].threshold <= usage) {
2e72b634 3504 /*
2c488db2 3505 * new->current_threshold will not be used
2e72b634
KS
3506 * until rcu_assign_pointer(), so it's safe to increment
3507 * it here.
3508 */
2c488db2 3509 ++new->current_threshold;
2e72b634
KS
3510 }
3511 j++;
3512 }
3513
907860ed 3514swap_buffers:
2c488db2
KS
3515 /* Swap primary and spare array */
3516 thresholds->spare = thresholds->primary;
8c757763 3517
2c488db2 3518 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3519
907860ed 3520 /* To be sure that nobody uses thresholds */
2e72b634 3521 synchronize_rcu();
6611d8d7
MC
3522
3523 /* If all events are unregistered, free the spare array */
3524 if (!new) {
3525 kfree(thresholds->spare);
3526 thresholds->spare = NULL;
3527 }
371528ca 3528unlock:
2e72b634 3529 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3530}
c1e862c1 3531
59b6f873 3532static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3533 struct eventfd_ctx *eventfd)
3534{
59b6f873 3535 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3536}
3537
59b6f873 3538static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3539 struct eventfd_ctx *eventfd)
3540{
59b6f873 3541 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3542}
3543
59b6f873 3544static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3545 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3546{
9490ff27 3547 struct mem_cgroup_eventfd_list *event;
9490ff27 3548
9490ff27
KH
3549 event = kmalloc(sizeof(*event), GFP_KERNEL);
3550 if (!event)
3551 return -ENOMEM;
3552
1af8efe9 3553 spin_lock(&memcg_oom_lock);
9490ff27
KH
3554
3555 event->eventfd = eventfd;
3556 list_add(&event->list, &memcg->oom_notify);
3557
3558 /* already in OOM ? */
c2b42d3c 3559 if (memcg->under_oom)
9490ff27 3560 eventfd_signal(eventfd, 1);
1af8efe9 3561 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3562
3563 return 0;
3564}
3565
59b6f873 3566static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3567 struct eventfd_ctx *eventfd)
9490ff27 3568{
9490ff27 3569 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3570
1af8efe9 3571 spin_lock(&memcg_oom_lock);
9490ff27 3572
c0ff4b85 3573 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3574 if (ev->eventfd == eventfd) {
3575 list_del(&ev->list);
3576 kfree(ev);
3577 }
3578 }
3579
1af8efe9 3580 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3581}
3582
2da8ca82 3583static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3584{
2da8ca82 3585 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3586
791badbd 3587 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3588 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3589 return 0;
3590}
3591
182446d0 3592static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3593 struct cftype *cft, u64 val)
3594{
182446d0 3595 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3596
3597 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3598 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3599 return -EINVAL;
3600
c0ff4b85 3601 memcg->oom_kill_disable = val;
4d845ebf 3602 if (!val)
c0ff4b85 3603 memcg_oom_recover(memcg);
3dae7fec 3604
3c11ecf4
KH
3605 return 0;
3606}
3607
52ebea74
TH
3608#ifdef CONFIG_CGROUP_WRITEBACK
3609
3610struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3611{
3612 return &memcg->cgwb_list;
3613}
3614
841710aa
TH
3615static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3616{
3617 return wb_domain_init(&memcg->cgwb_domain, gfp);
3618}
3619
3620static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3621{
3622 wb_domain_exit(&memcg->cgwb_domain);
3623}
3624
2529bb3a
TH
3625static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3626{
3627 wb_domain_size_changed(&memcg->cgwb_domain);
3628}
3629
841710aa
TH
3630struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3631{
3632 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3633
3634 if (!memcg->css.parent)
3635 return NULL;
3636
3637 return &memcg->cgwb_domain;
3638}
3639
c2aa723a
TH
3640/**
3641 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3642 * @wb: bdi_writeback in question
c5edf9cd
TH
3643 * @pfilepages: out parameter for number of file pages
3644 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3645 * @pdirty: out parameter for number of dirty pages
3646 * @pwriteback: out parameter for number of pages under writeback
3647 *
c5edf9cd
TH
3648 * Determine the numbers of file, headroom, dirty, and writeback pages in
3649 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3650 * is a bit more involved.
c2aa723a 3651 *
c5edf9cd
TH
3652 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3653 * headroom is calculated as the lowest headroom of itself and the
3654 * ancestors. Note that this doesn't consider the actual amount of
3655 * available memory in the system. The caller should further cap
3656 * *@pheadroom accordingly.
c2aa723a 3657 */
c5edf9cd
TH
3658void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3659 unsigned long *pheadroom, unsigned long *pdirty,
3660 unsigned long *pwriteback)
c2aa723a
TH
3661{
3662 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3663 struct mem_cgroup *parent;
c2aa723a
TH
3664
3665 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3666
3667 /* this should eventually include NR_UNSTABLE_NFS */
3668 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3669 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3670 (1 << LRU_ACTIVE_FILE));
3671 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3672
c2aa723a
TH
3673 while ((parent = parent_mem_cgroup(memcg))) {
3674 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3675 unsigned long used = page_counter_read(&memcg->memory);
3676
c5edf9cd 3677 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3678 memcg = parent;
3679 }
c2aa723a
TH
3680}
3681
841710aa
TH
3682#else /* CONFIG_CGROUP_WRITEBACK */
3683
3684static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3685{
3686 return 0;
3687}
3688
3689static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3690{
3691}
3692
2529bb3a
TH
3693static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3694{
3695}
3696
52ebea74
TH
3697#endif /* CONFIG_CGROUP_WRITEBACK */
3698
3bc942f3
TH
3699/*
3700 * DO NOT USE IN NEW FILES.
3701 *
3702 * "cgroup.event_control" implementation.
3703 *
3704 * This is way over-engineered. It tries to support fully configurable
3705 * events for each user. Such level of flexibility is completely
3706 * unnecessary especially in the light of the planned unified hierarchy.
3707 *
3708 * Please deprecate this and replace with something simpler if at all
3709 * possible.
3710 */
3711
79bd9814
TH
3712/*
3713 * Unregister event and free resources.
3714 *
3715 * Gets called from workqueue.
3716 */
3bc942f3 3717static void memcg_event_remove(struct work_struct *work)
79bd9814 3718{
3bc942f3
TH
3719 struct mem_cgroup_event *event =
3720 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3721 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3722
3723 remove_wait_queue(event->wqh, &event->wait);
3724
59b6f873 3725 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3726
3727 /* Notify userspace the event is going away. */
3728 eventfd_signal(event->eventfd, 1);
3729
3730 eventfd_ctx_put(event->eventfd);
3731 kfree(event);
59b6f873 3732 css_put(&memcg->css);
79bd9814
TH
3733}
3734
3735/*
3736 * Gets called on POLLHUP on eventfd when user closes it.
3737 *
3738 * Called with wqh->lock held and interrupts disabled.
3739 */
3bc942f3
TH
3740static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3741 int sync, void *key)
79bd9814 3742{
3bc942f3
TH
3743 struct mem_cgroup_event *event =
3744 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3745 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3746 unsigned long flags = (unsigned long)key;
3747
3748 if (flags & POLLHUP) {
3749 /*
3750 * If the event has been detached at cgroup removal, we
3751 * can simply return knowing the other side will cleanup
3752 * for us.
3753 *
3754 * We can't race against event freeing since the other
3755 * side will require wqh->lock via remove_wait_queue(),
3756 * which we hold.
3757 */
fba94807 3758 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3759 if (!list_empty(&event->list)) {
3760 list_del_init(&event->list);
3761 /*
3762 * We are in atomic context, but cgroup_event_remove()
3763 * may sleep, so we have to call it in workqueue.
3764 */
3765 schedule_work(&event->remove);
3766 }
fba94807 3767 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3768 }
3769
3770 return 0;
3771}
3772
3bc942f3 3773static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3774 wait_queue_head_t *wqh, poll_table *pt)
3775{
3bc942f3
TH
3776 struct mem_cgroup_event *event =
3777 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3778
3779 event->wqh = wqh;
3780 add_wait_queue(wqh, &event->wait);
3781}
3782
3783/*
3bc942f3
TH
3784 * DO NOT USE IN NEW FILES.
3785 *
79bd9814
TH
3786 * Parse input and register new cgroup event handler.
3787 *
3788 * Input must be in format '<event_fd> <control_fd> <args>'.
3789 * Interpretation of args is defined by control file implementation.
3790 */
451af504
TH
3791static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3792 char *buf, size_t nbytes, loff_t off)
79bd9814 3793{
451af504 3794 struct cgroup_subsys_state *css = of_css(of);
fba94807 3795 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3796 struct mem_cgroup_event *event;
79bd9814
TH
3797 struct cgroup_subsys_state *cfile_css;
3798 unsigned int efd, cfd;
3799 struct fd efile;
3800 struct fd cfile;
fba94807 3801 const char *name;
79bd9814
TH
3802 char *endp;
3803 int ret;
3804
451af504
TH
3805 buf = strstrip(buf);
3806
3807 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3808 if (*endp != ' ')
3809 return -EINVAL;
451af504 3810 buf = endp + 1;
79bd9814 3811
451af504 3812 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3813 if ((*endp != ' ') && (*endp != '\0'))
3814 return -EINVAL;
451af504 3815 buf = endp + 1;
79bd9814
TH
3816
3817 event = kzalloc(sizeof(*event), GFP_KERNEL);
3818 if (!event)
3819 return -ENOMEM;
3820
59b6f873 3821 event->memcg = memcg;
79bd9814 3822 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3823 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3824 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3825 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3826
3827 efile = fdget(efd);
3828 if (!efile.file) {
3829 ret = -EBADF;
3830 goto out_kfree;
3831 }
3832
3833 event->eventfd = eventfd_ctx_fileget(efile.file);
3834 if (IS_ERR(event->eventfd)) {
3835 ret = PTR_ERR(event->eventfd);
3836 goto out_put_efile;
3837 }
3838
3839 cfile = fdget(cfd);
3840 if (!cfile.file) {
3841 ret = -EBADF;
3842 goto out_put_eventfd;
3843 }
3844
3845 /* the process need read permission on control file */
3846 /* AV: shouldn't we check that it's been opened for read instead? */
3847 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3848 if (ret < 0)
3849 goto out_put_cfile;
3850
fba94807
TH
3851 /*
3852 * Determine the event callbacks and set them in @event. This used
3853 * to be done via struct cftype but cgroup core no longer knows
3854 * about these events. The following is crude but the whole thing
3855 * is for compatibility anyway.
3bc942f3
TH
3856 *
3857 * DO NOT ADD NEW FILES.
fba94807 3858 */
b583043e 3859 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3860
3861 if (!strcmp(name, "memory.usage_in_bytes")) {
3862 event->register_event = mem_cgroup_usage_register_event;
3863 event->unregister_event = mem_cgroup_usage_unregister_event;
3864 } else if (!strcmp(name, "memory.oom_control")) {
3865 event->register_event = mem_cgroup_oom_register_event;
3866 event->unregister_event = mem_cgroup_oom_unregister_event;
3867 } else if (!strcmp(name, "memory.pressure_level")) {
3868 event->register_event = vmpressure_register_event;
3869 event->unregister_event = vmpressure_unregister_event;
3870 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3871 event->register_event = memsw_cgroup_usage_register_event;
3872 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3873 } else {
3874 ret = -EINVAL;
3875 goto out_put_cfile;
3876 }
3877
79bd9814 3878 /*
b5557c4c
TH
3879 * Verify @cfile should belong to @css. Also, remaining events are
3880 * automatically removed on cgroup destruction but the removal is
3881 * asynchronous, so take an extra ref on @css.
79bd9814 3882 */
b583043e 3883 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3884 &memory_cgrp_subsys);
79bd9814 3885 ret = -EINVAL;
5a17f543 3886 if (IS_ERR(cfile_css))
79bd9814 3887 goto out_put_cfile;
5a17f543
TH
3888 if (cfile_css != css) {
3889 css_put(cfile_css);
79bd9814 3890 goto out_put_cfile;
5a17f543 3891 }
79bd9814 3892
451af504 3893 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3894 if (ret)
3895 goto out_put_css;
3896
3897 efile.file->f_op->poll(efile.file, &event->pt);
3898
fba94807
TH
3899 spin_lock(&memcg->event_list_lock);
3900 list_add(&event->list, &memcg->event_list);
3901 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3902
3903 fdput(cfile);
3904 fdput(efile);
3905
451af504 3906 return nbytes;
79bd9814
TH
3907
3908out_put_css:
b5557c4c 3909 css_put(css);
79bd9814
TH
3910out_put_cfile:
3911 fdput(cfile);
3912out_put_eventfd:
3913 eventfd_ctx_put(event->eventfd);
3914out_put_efile:
3915 fdput(efile);
3916out_kfree:
3917 kfree(event);
3918
3919 return ret;
3920}
3921
241994ed 3922static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3923 {
0eea1030 3924 .name = "usage_in_bytes",
8c7c6e34 3925 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3926 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3927 },
c84872e1
PE
3928 {
3929 .name = "max_usage_in_bytes",
8c7c6e34 3930 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3931 .write = mem_cgroup_reset,
791badbd 3932 .read_u64 = mem_cgroup_read_u64,
c84872e1 3933 },
8cdea7c0 3934 {
0eea1030 3935 .name = "limit_in_bytes",
8c7c6e34 3936 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3937 .write = mem_cgroup_write,
791badbd 3938 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3939 },
296c81d8
BS
3940 {
3941 .name = "soft_limit_in_bytes",
3942 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3943 .write = mem_cgroup_write,
791badbd 3944 .read_u64 = mem_cgroup_read_u64,
296c81d8 3945 },
8cdea7c0
BS
3946 {
3947 .name = "failcnt",
8c7c6e34 3948 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3949 .write = mem_cgroup_reset,
791badbd 3950 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3951 },
d2ceb9b7
KH
3952 {
3953 .name = "stat",
2da8ca82 3954 .seq_show = memcg_stat_show,
d2ceb9b7 3955 },
c1e862c1
KH
3956 {
3957 .name = "force_empty",
6770c64e 3958 .write = mem_cgroup_force_empty_write,
c1e862c1 3959 },
18f59ea7
BS
3960 {
3961 .name = "use_hierarchy",
3962 .write_u64 = mem_cgroup_hierarchy_write,
3963 .read_u64 = mem_cgroup_hierarchy_read,
3964 },
79bd9814 3965 {
3bc942f3 3966 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3967 .write = memcg_write_event_control,
7dbdb199 3968 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3969 },
a7885eb8
KM
3970 {
3971 .name = "swappiness",
3972 .read_u64 = mem_cgroup_swappiness_read,
3973 .write_u64 = mem_cgroup_swappiness_write,
3974 },
7dc74be0
DN
3975 {
3976 .name = "move_charge_at_immigrate",
3977 .read_u64 = mem_cgroup_move_charge_read,
3978 .write_u64 = mem_cgroup_move_charge_write,
3979 },
9490ff27
KH
3980 {
3981 .name = "oom_control",
2da8ca82 3982 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3983 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3984 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3985 },
70ddf637
AV
3986 {
3987 .name = "pressure_level",
70ddf637 3988 },
406eb0c9
YH
3989#ifdef CONFIG_NUMA
3990 {
3991 .name = "numa_stat",
2da8ca82 3992 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3993 },
3994#endif
510fc4e1
GC
3995 {
3996 .name = "kmem.limit_in_bytes",
3997 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3998 .write = mem_cgroup_write,
791badbd 3999 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4000 },
4001 {
4002 .name = "kmem.usage_in_bytes",
4003 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4004 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4005 },
4006 {
4007 .name = "kmem.failcnt",
4008 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4009 .write = mem_cgroup_reset,
791badbd 4010 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4011 },
4012 {
4013 .name = "kmem.max_usage_in_bytes",
4014 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4015 .write = mem_cgroup_reset,
791badbd 4016 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4017 },
749c5415
GC
4018#ifdef CONFIG_SLABINFO
4019 {
4020 .name = "kmem.slabinfo",
b047501c
VD
4021 .seq_start = slab_start,
4022 .seq_next = slab_next,
4023 .seq_stop = slab_stop,
4024 .seq_show = memcg_slab_show,
749c5415
GC
4025 },
4026#endif
d55f90bf
VD
4027 {
4028 .name = "kmem.tcp.limit_in_bytes",
4029 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4030 .write = mem_cgroup_write,
4031 .read_u64 = mem_cgroup_read_u64,
4032 },
4033 {
4034 .name = "kmem.tcp.usage_in_bytes",
4035 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4036 .read_u64 = mem_cgroup_read_u64,
4037 },
4038 {
4039 .name = "kmem.tcp.failcnt",
4040 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4041 .write = mem_cgroup_reset,
4042 .read_u64 = mem_cgroup_read_u64,
4043 },
4044 {
4045 .name = "kmem.tcp.max_usage_in_bytes",
4046 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4047 .write = mem_cgroup_reset,
4048 .read_u64 = mem_cgroup_read_u64,
4049 },
6bc10349 4050 { }, /* terminate */
af36f906 4051};
8c7c6e34 4052
c0ff4b85 4053static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4054{
4055 struct mem_cgroup_per_node *pn;
1ecaab2b 4056 struct mem_cgroup_per_zone *mz;
41e3355d 4057 int zone, tmp = node;
1ecaab2b
KH
4058 /*
4059 * This routine is called against possible nodes.
4060 * But it's BUG to call kmalloc() against offline node.
4061 *
4062 * TODO: this routine can waste much memory for nodes which will
4063 * never be onlined. It's better to use memory hotplug callback
4064 * function.
4065 */
41e3355d
KH
4066 if (!node_state(node, N_NORMAL_MEMORY))
4067 tmp = -1;
17295c88 4068 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4069 if (!pn)
4070 return 1;
1ecaab2b 4071
1ecaab2b
KH
4072 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4073 mz = &pn->zoneinfo[zone];
bea8c150 4074 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4075 mz->usage_in_excess = 0;
4076 mz->on_tree = false;
d79154bb 4077 mz->memcg = memcg;
1ecaab2b 4078 }
54f72fe0 4079 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4080 return 0;
4081}
4082
c0ff4b85 4083static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4084{
54f72fe0 4085 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4086}
4087
0b8f73e1 4088static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4089{
c8b2a36f 4090 int node;
59927fb9 4091
0b8f73e1 4092 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4093 for_each_node(node)
4094 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4095 free_percpu(memcg->stat);
8ff69e2c 4096 kfree(memcg);
59927fb9 4097}
3afe36b1 4098
0b8f73e1 4099static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4100{
d142e3e6 4101 struct mem_cgroup *memcg;
0b8f73e1 4102 size_t size;
6d12e2d8 4103 int node;
8cdea7c0 4104
0b8f73e1
JW
4105 size = sizeof(struct mem_cgroup);
4106 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4107
4108 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4109 if (!memcg)
0b8f73e1
JW
4110 return NULL;
4111
4112 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4113 if (!memcg->stat)
4114 goto fail;
78fb7466 4115
3ed28fa1 4116 for_each_node(node)
c0ff4b85 4117 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4118 goto fail;
f64c3f54 4119
0b8f73e1
JW
4120 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4121 goto fail;
28dbc4b6 4122
f7e1cb6e 4123 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4124 memcg->last_scanned_node = MAX_NUMNODES;
4125 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4126 mutex_init(&memcg->thresholds_lock);
4127 spin_lock_init(&memcg->move_lock);
70ddf637 4128 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4129 INIT_LIST_HEAD(&memcg->event_list);
4130 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4131 memcg->socket_pressure = jiffies;
127424c8 4132#ifndef CONFIG_SLOB
900a38f0 4133 memcg->kmemcg_id = -1;
900a38f0 4134#endif
52ebea74
TH
4135#ifdef CONFIG_CGROUP_WRITEBACK
4136 INIT_LIST_HEAD(&memcg->cgwb_list);
4137#endif
0b8f73e1
JW
4138 return memcg;
4139fail:
4140 mem_cgroup_free(memcg);
4141 return NULL;
d142e3e6
GC
4142}
4143
0b8f73e1
JW
4144static struct cgroup_subsys_state * __ref
4145mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4146{
0b8f73e1
JW
4147 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4148 struct mem_cgroup *memcg;
4149 long error = -ENOMEM;
d142e3e6 4150
0b8f73e1
JW
4151 memcg = mem_cgroup_alloc();
4152 if (!memcg)
4153 return ERR_PTR(error);
d142e3e6 4154
0b8f73e1
JW
4155 memcg->high = PAGE_COUNTER_MAX;
4156 memcg->soft_limit = PAGE_COUNTER_MAX;
4157 if (parent) {
4158 memcg->swappiness = mem_cgroup_swappiness(parent);
4159 memcg->oom_kill_disable = parent->oom_kill_disable;
4160 }
4161 if (parent && parent->use_hierarchy) {
4162 memcg->use_hierarchy = true;
3e32cb2e 4163 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4164 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4165 page_counter_init(&memcg->memsw, &parent->memsw);
4166 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4167 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4168 } else {
3e32cb2e 4169 page_counter_init(&memcg->memory, NULL);
37e84351 4170 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4171 page_counter_init(&memcg->memsw, NULL);
4172 page_counter_init(&memcg->kmem, NULL);
0db15298 4173 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4174 /*
4175 * Deeper hierachy with use_hierarchy == false doesn't make
4176 * much sense so let cgroup subsystem know about this
4177 * unfortunate state in our controller.
4178 */
d142e3e6 4179 if (parent != root_mem_cgroup)
073219e9 4180 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4181 }
d6441637 4182
0b8f73e1
JW
4183 /* The following stuff does not apply to the root */
4184 if (!parent) {
4185 root_mem_cgroup = memcg;
4186 return &memcg->css;
4187 }
4188
b313aeee 4189 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4190 if (error)
4191 goto fail;
127424c8 4192
f7e1cb6e 4193 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4194 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4195
0b8f73e1
JW
4196 return &memcg->css;
4197fail:
4198 mem_cgroup_free(memcg);
4199 return NULL;
4200}
4201
4202static int
4203mem_cgroup_css_online(struct cgroup_subsys_state *css)
4204{
4205 if (css->id > MEM_CGROUP_ID_MAX)
4206 return -ENOSPC;
2f7dd7a4
JW
4207
4208 return 0;
8cdea7c0
BS
4209}
4210
eb95419b 4211static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4212{
eb95419b 4213 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4214 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4215
4216 /*
4217 * Unregister events and notify userspace.
4218 * Notify userspace about cgroup removing only after rmdir of cgroup
4219 * directory to avoid race between userspace and kernelspace.
4220 */
fba94807
TH
4221 spin_lock(&memcg->event_list_lock);
4222 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4223 list_del_init(&event->list);
4224 schedule_work(&event->remove);
4225 }
fba94807 4226 spin_unlock(&memcg->event_list_lock);
ec64f515 4227
567e9ab2 4228 memcg_offline_kmem(memcg);
52ebea74 4229 wb_memcg_offline(memcg);
df878fb0
KH
4230}
4231
6df38689
VD
4232static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4233{
4234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4235
4236 invalidate_reclaim_iterators(memcg);
4237}
4238
eb95419b 4239static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4240{
eb95419b 4241 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4242
f7e1cb6e 4243 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4244 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4245
0db15298 4246 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4247 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4248
0b8f73e1
JW
4249 vmpressure_cleanup(&memcg->vmpressure);
4250 cancel_work_sync(&memcg->high_work);
4251 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4252 memcg_free_kmem(memcg);
0b8f73e1 4253 mem_cgroup_free(memcg);
8cdea7c0
BS
4254}
4255
1ced953b
TH
4256/**
4257 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4258 * @css: the target css
4259 *
4260 * Reset the states of the mem_cgroup associated with @css. This is
4261 * invoked when the userland requests disabling on the default hierarchy
4262 * but the memcg is pinned through dependency. The memcg should stop
4263 * applying policies and should revert to the vanilla state as it may be
4264 * made visible again.
4265 *
4266 * The current implementation only resets the essential configurations.
4267 * This needs to be expanded to cover all the visible parts.
4268 */
4269static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4270{
4271 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4272
d334c9bc
VD
4273 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4274 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4275 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4276 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4277 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4278 memcg->low = 0;
4279 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4280 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4281 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4282}
4283
02491447 4284#ifdef CONFIG_MMU
7dc74be0 4285/* Handlers for move charge at task migration. */
854ffa8d 4286static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4287{
05b84301 4288 int ret;
9476db97 4289
d0164adc
MG
4290 /* Try a single bulk charge without reclaim first, kswapd may wake */
4291 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4292 if (!ret) {
854ffa8d 4293 mc.precharge += count;
854ffa8d
DN
4294 return ret;
4295 }
9476db97
JW
4296
4297 /* Try charges one by one with reclaim */
854ffa8d 4298 while (count--) {
00501b53 4299 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4300 if (ret)
38c5d72f 4301 return ret;
854ffa8d 4302 mc.precharge++;
9476db97 4303 cond_resched();
854ffa8d 4304 }
9476db97 4305 return 0;
4ffef5fe
DN
4306}
4307
4308/**
8d32ff84 4309 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4310 * @vma: the vma the pte to be checked belongs
4311 * @addr: the address corresponding to the pte to be checked
4312 * @ptent: the pte to be checked
02491447 4313 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4314 *
4315 * Returns
4316 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4317 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4318 * move charge. if @target is not NULL, the page is stored in target->page
4319 * with extra refcnt got(Callers should handle it).
02491447
DN
4320 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4321 * target for charge migration. if @target is not NULL, the entry is stored
4322 * in target->ent.
4ffef5fe
DN
4323 *
4324 * Called with pte lock held.
4325 */
4ffef5fe
DN
4326union mc_target {
4327 struct page *page;
02491447 4328 swp_entry_t ent;
4ffef5fe
DN
4329};
4330
4ffef5fe 4331enum mc_target_type {
8d32ff84 4332 MC_TARGET_NONE = 0,
4ffef5fe 4333 MC_TARGET_PAGE,
02491447 4334 MC_TARGET_SWAP,
4ffef5fe
DN
4335};
4336
90254a65
DN
4337static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4338 unsigned long addr, pte_t ptent)
4ffef5fe 4339{
90254a65 4340 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4341
90254a65
DN
4342 if (!page || !page_mapped(page))
4343 return NULL;
4344 if (PageAnon(page)) {
1dfab5ab 4345 if (!(mc.flags & MOVE_ANON))
90254a65 4346 return NULL;
1dfab5ab
JW
4347 } else {
4348 if (!(mc.flags & MOVE_FILE))
4349 return NULL;
4350 }
90254a65
DN
4351 if (!get_page_unless_zero(page))
4352 return NULL;
4353
4354 return page;
4355}
4356
4b91355e 4357#ifdef CONFIG_SWAP
90254a65
DN
4358static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4359 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4360{
90254a65
DN
4361 struct page *page = NULL;
4362 swp_entry_t ent = pte_to_swp_entry(ptent);
4363
1dfab5ab 4364 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4365 return NULL;
4b91355e
KH
4366 /*
4367 * Because lookup_swap_cache() updates some statistics counter,
4368 * we call find_get_page() with swapper_space directly.
4369 */
33806f06 4370 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4371 if (do_memsw_account())
90254a65
DN
4372 entry->val = ent.val;
4373
4374 return page;
4375}
4b91355e
KH
4376#else
4377static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4378 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4379{
4380 return NULL;
4381}
4382#endif
90254a65 4383
87946a72
DN
4384static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4385 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4386{
4387 struct page *page = NULL;
87946a72
DN
4388 struct address_space *mapping;
4389 pgoff_t pgoff;
4390
4391 if (!vma->vm_file) /* anonymous vma */
4392 return NULL;
1dfab5ab 4393 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4394 return NULL;
4395
87946a72 4396 mapping = vma->vm_file->f_mapping;
0661a336 4397 pgoff = linear_page_index(vma, addr);
87946a72
DN
4398
4399 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4400#ifdef CONFIG_SWAP
4401 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4402 if (shmem_mapping(mapping)) {
4403 page = find_get_entry(mapping, pgoff);
4404 if (radix_tree_exceptional_entry(page)) {
4405 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4406 if (do_memsw_account())
139b6a6f
JW
4407 *entry = swp;
4408 page = find_get_page(swap_address_space(swp), swp.val);
4409 }
4410 } else
4411 page = find_get_page(mapping, pgoff);
4412#else
4413 page = find_get_page(mapping, pgoff);
aa3b1895 4414#endif
87946a72
DN
4415 return page;
4416}
4417
b1b0deab
CG
4418/**
4419 * mem_cgroup_move_account - move account of the page
4420 * @page: the page
4421 * @nr_pages: number of regular pages (>1 for huge pages)
4422 * @from: mem_cgroup which the page is moved from.
4423 * @to: mem_cgroup which the page is moved to. @from != @to.
4424 *
3ac808fd 4425 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4426 *
4427 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4428 * from old cgroup.
4429 */
4430static int mem_cgroup_move_account(struct page *page,
f627c2f5 4431 bool compound,
b1b0deab
CG
4432 struct mem_cgroup *from,
4433 struct mem_cgroup *to)
4434{
4435 unsigned long flags;
f627c2f5 4436 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4437 int ret;
c4843a75 4438 bool anon;
b1b0deab
CG
4439
4440 VM_BUG_ON(from == to);
4441 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4442 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4443
4444 /*
6a93ca8f 4445 * Prevent mem_cgroup_migrate() from looking at
45637bab 4446 * page->mem_cgroup of its source page while we change it.
b1b0deab 4447 */
f627c2f5 4448 ret = -EBUSY;
b1b0deab
CG
4449 if (!trylock_page(page))
4450 goto out;
4451
4452 ret = -EINVAL;
4453 if (page->mem_cgroup != from)
4454 goto out_unlock;
4455
c4843a75
GT
4456 anon = PageAnon(page);
4457
b1b0deab
CG
4458 spin_lock_irqsave(&from->move_lock, flags);
4459
c4843a75 4460 if (!anon && page_mapped(page)) {
b1b0deab
CG
4461 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4462 nr_pages);
4463 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4464 nr_pages);
4465 }
4466
c4843a75
GT
4467 /*
4468 * move_lock grabbed above and caller set from->moving_account, so
4469 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4470 * So mapping should be stable for dirty pages.
4471 */
4472 if (!anon && PageDirty(page)) {
4473 struct address_space *mapping = page_mapping(page);
4474
4475 if (mapping_cap_account_dirty(mapping)) {
4476 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4477 nr_pages);
4478 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4479 nr_pages);
4480 }
4481 }
4482
b1b0deab
CG
4483 if (PageWriteback(page)) {
4484 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4485 nr_pages);
4486 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4487 nr_pages);
4488 }
4489
4490 /*
4491 * It is safe to change page->mem_cgroup here because the page
4492 * is referenced, charged, and isolated - we can't race with
4493 * uncharging, charging, migration, or LRU putback.
4494 */
4495
4496 /* caller should have done css_get */
4497 page->mem_cgroup = to;
4498 spin_unlock_irqrestore(&from->move_lock, flags);
4499
4500 ret = 0;
4501
4502 local_irq_disable();
f627c2f5 4503 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4504 memcg_check_events(to, page);
f627c2f5 4505 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4506 memcg_check_events(from, page);
4507 local_irq_enable();
4508out_unlock:
4509 unlock_page(page);
4510out:
4511 return ret;
4512}
4513
8d32ff84 4514static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4515 unsigned long addr, pte_t ptent, union mc_target *target)
4516{
4517 struct page *page = NULL;
8d32ff84 4518 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4519 swp_entry_t ent = { .val = 0 };
4520
4521 if (pte_present(ptent))
4522 page = mc_handle_present_pte(vma, addr, ptent);
4523 else if (is_swap_pte(ptent))
4524 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4525 else if (pte_none(ptent))
87946a72 4526 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4527
4528 if (!page && !ent.val)
8d32ff84 4529 return ret;
02491447 4530 if (page) {
02491447 4531 /*
0a31bc97 4532 * Do only loose check w/o serialization.
1306a85a 4533 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4534 * not under LRU exclusion.
02491447 4535 */
1306a85a 4536 if (page->mem_cgroup == mc.from) {
02491447
DN
4537 ret = MC_TARGET_PAGE;
4538 if (target)
4539 target->page = page;
4540 }
4541 if (!ret || !target)
4542 put_page(page);
4543 }
90254a65
DN
4544 /* There is a swap entry and a page doesn't exist or isn't charged */
4545 if (ent.val && !ret &&
34c00c31 4546 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4547 ret = MC_TARGET_SWAP;
4548 if (target)
4549 target->ent = ent;
4ffef5fe 4550 }
4ffef5fe
DN
4551 return ret;
4552}
4553
12724850
NH
4554#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4555/*
4556 * We don't consider swapping or file mapped pages because THP does not
4557 * support them for now.
4558 * Caller should make sure that pmd_trans_huge(pmd) is true.
4559 */
4560static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4561 unsigned long addr, pmd_t pmd, union mc_target *target)
4562{
4563 struct page *page = NULL;
12724850
NH
4564 enum mc_target_type ret = MC_TARGET_NONE;
4565
4566 page = pmd_page(pmd);
309381fe 4567 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4568 if (!(mc.flags & MOVE_ANON))
12724850 4569 return ret;
1306a85a 4570 if (page->mem_cgroup == mc.from) {
12724850
NH
4571 ret = MC_TARGET_PAGE;
4572 if (target) {
4573 get_page(page);
4574 target->page = page;
4575 }
4576 }
4577 return ret;
4578}
4579#else
4580static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4581 unsigned long addr, pmd_t pmd, union mc_target *target)
4582{
4583 return MC_TARGET_NONE;
4584}
4585#endif
4586
4ffef5fe
DN
4587static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4588 unsigned long addr, unsigned long end,
4589 struct mm_walk *walk)
4590{
26bcd64a 4591 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4592 pte_t *pte;
4593 spinlock_t *ptl;
4594
b6ec57f4
KS
4595 ptl = pmd_trans_huge_lock(pmd, vma);
4596 if (ptl) {
12724850
NH
4597 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4598 mc.precharge += HPAGE_PMD_NR;
bf929152 4599 spin_unlock(ptl);
1a5a9906 4600 return 0;
12724850 4601 }
03319327 4602
45f83cef
AA
4603 if (pmd_trans_unstable(pmd))
4604 return 0;
4ffef5fe
DN
4605 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4606 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4607 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4608 mc.precharge++; /* increment precharge temporarily */
4609 pte_unmap_unlock(pte - 1, ptl);
4610 cond_resched();
4611
7dc74be0
DN
4612 return 0;
4613}
4614
4ffef5fe
DN
4615static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4616{
4617 unsigned long precharge;
4ffef5fe 4618
26bcd64a
NH
4619 struct mm_walk mem_cgroup_count_precharge_walk = {
4620 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4621 .mm = mm,
4622 };
dfe076b0 4623 down_read(&mm->mmap_sem);
26bcd64a 4624 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4625 up_read(&mm->mmap_sem);
4ffef5fe
DN
4626
4627 precharge = mc.precharge;
4628 mc.precharge = 0;
4629
4630 return precharge;
4631}
4632
4ffef5fe
DN
4633static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4634{
dfe076b0
DN
4635 unsigned long precharge = mem_cgroup_count_precharge(mm);
4636
4637 VM_BUG_ON(mc.moving_task);
4638 mc.moving_task = current;
4639 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4640}
4641
dfe076b0
DN
4642/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4643static void __mem_cgroup_clear_mc(void)
4ffef5fe 4644{
2bd9bb20
KH
4645 struct mem_cgroup *from = mc.from;
4646 struct mem_cgroup *to = mc.to;
4647
4ffef5fe 4648 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4649 if (mc.precharge) {
00501b53 4650 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4651 mc.precharge = 0;
4652 }
4653 /*
4654 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4655 * we must uncharge here.
4656 */
4657 if (mc.moved_charge) {
00501b53 4658 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4659 mc.moved_charge = 0;
4ffef5fe 4660 }
483c30b5
DN
4661 /* we must fixup refcnts and charges */
4662 if (mc.moved_swap) {
483c30b5 4663 /* uncharge swap account from the old cgroup */
ce00a967 4664 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4665 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4666
05b84301 4667 /*
3e32cb2e
JW
4668 * we charged both to->memory and to->memsw, so we
4669 * should uncharge to->memory.
05b84301 4670 */
ce00a967 4671 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4672 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4673
e8ea14cc 4674 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4675
4050377b 4676 /* we've already done css_get(mc.to) */
483c30b5
DN
4677 mc.moved_swap = 0;
4678 }
dfe076b0
DN
4679 memcg_oom_recover(from);
4680 memcg_oom_recover(to);
4681 wake_up_all(&mc.waitq);
4682}
4683
4684static void mem_cgroup_clear_mc(void)
4685{
264a0ae1
TH
4686 struct mm_struct *mm = mc.mm;
4687
dfe076b0
DN
4688 /*
4689 * we must clear moving_task before waking up waiters at the end of
4690 * task migration.
4691 */
4692 mc.moving_task = NULL;
4693 __mem_cgroup_clear_mc();
2bd9bb20 4694 spin_lock(&mc.lock);
4ffef5fe
DN
4695 mc.from = NULL;
4696 mc.to = NULL;
264a0ae1 4697 mc.mm = NULL;
2bd9bb20 4698 spin_unlock(&mc.lock);
264a0ae1
TH
4699
4700 mmput(mm);
4ffef5fe
DN
4701}
4702
1f7dd3e5 4703static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4704{
1f7dd3e5 4705 struct cgroup_subsys_state *css;
eed67d75 4706 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4707 struct mem_cgroup *from;
4530eddb 4708 struct task_struct *leader, *p;
9f2115f9 4709 struct mm_struct *mm;
1dfab5ab 4710 unsigned long move_flags;
9f2115f9 4711 int ret = 0;
7dc74be0 4712
1f7dd3e5
TH
4713 /* charge immigration isn't supported on the default hierarchy */
4714 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4715 return 0;
4716
4530eddb
TH
4717 /*
4718 * Multi-process migrations only happen on the default hierarchy
4719 * where charge immigration is not used. Perform charge
4720 * immigration if @tset contains a leader and whine if there are
4721 * multiple.
4722 */
4723 p = NULL;
1f7dd3e5 4724 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4725 WARN_ON_ONCE(p);
4726 p = leader;
1f7dd3e5 4727 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4728 }
4729 if (!p)
4730 return 0;
4731
1f7dd3e5
TH
4732 /*
4733 * We are now commited to this value whatever it is. Changes in this
4734 * tunable will only affect upcoming migrations, not the current one.
4735 * So we need to save it, and keep it going.
4736 */
4737 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4738 if (!move_flags)
4739 return 0;
4740
9f2115f9
TH
4741 from = mem_cgroup_from_task(p);
4742
4743 VM_BUG_ON(from == memcg);
4744
4745 mm = get_task_mm(p);
4746 if (!mm)
4747 return 0;
4748 /* We move charges only when we move a owner of the mm */
4749 if (mm->owner == p) {
4750 VM_BUG_ON(mc.from);
4751 VM_BUG_ON(mc.to);
4752 VM_BUG_ON(mc.precharge);
4753 VM_BUG_ON(mc.moved_charge);
4754 VM_BUG_ON(mc.moved_swap);
4755
4756 spin_lock(&mc.lock);
264a0ae1 4757 mc.mm = mm;
9f2115f9
TH
4758 mc.from = from;
4759 mc.to = memcg;
4760 mc.flags = move_flags;
4761 spin_unlock(&mc.lock);
4762 /* We set mc.moving_task later */
4763
4764 ret = mem_cgroup_precharge_mc(mm);
4765 if (ret)
4766 mem_cgroup_clear_mc();
264a0ae1
TH
4767 } else {
4768 mmput(mm);
7dc74be0
DN
4769 }
4770 return ret;
4771}
4772
1f7dd3e5 4773static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4774{
4e2f245d
JW
4775 if (mc.to)
4776 mem_cgroup_clear_mc();
7dc74be0
DN
4777}
4778
4ffef5fe
DN
4779static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4780 unsigned long addr, unsigned long end,
4781 struct mm_walk *walk)
7dc74be0 4782{
4ffef5fe 4783 int ret = 0;
26bcd64a 4784 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4785 pte_t *pte;
4786 spinlock_t *ptl;
12724850
NH
4787 enum mc_target_type target_type;
4788 union mc_target target;
4789 struct page *page;
4ffef5fe 4790
b6ec57f4
KS
4791 ptl = pmd_trans_huge_lock(pmd, vma);
4792 if (ptl) {
62ade86a 4793 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4794 spin_unlock(ptl);
12724850
NH
4795 return 0;
4796 }
4797 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4798 if (target_type == MC_TARGET_PAGE) {
4799 page = target.page;
4800 if (!isolate_lru_page(page)) {
f627c2f5 4801 if (!mem_cgroup_move_account(page, true,
1306a85a 4802 mc.from, mc.to)) {
12724850
NH
4803 mc.precharge -= HPAGE_PMD_NR;
4804 mc.moved_charge += HPAGE_PMD_NR;
4805 }
4806 putback_lru_page(page);
4807 }
4808 put_page(page);
4809 }
bf929152 4810 spin_unlock(ptl);
1a5a9906 4811 return 0;
12724850
NH
4812 }
4813
45f83cef
AA
4814 if (pmd_trans_unstable(pmd))
4815 return 0;
4ffef5fe
DN
4816retry:
4817 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4818 for (; addr != end; addr += PAGE_SIZE) {
4819 pte_t ptent = *(pte++);
02491447 4820 swp_entry_t ent;
4ffef5fe
DN
4821
4822 if (!mc.precharge)
4823 break;
4824
8d32ff84 4825 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4826 case MC_TARGET_PAGE:
4827 page = target.page;
53f9263b
KS
4828 /*
4829 * We can have a part of the split pmd here. Moving it
4830 * can be done but it would be too convoluted so simply
4831 * ignore such a partial THP and keep it in original
4832 * memcg. There should be somebody mapping the head.
4833 */
4834 if (PageTransCompound(page))
4835 goto put;
4ffef5fe
DN
4836 if (isolate_lru_page(page))
4837 goto put;
f627c2f5
KS
4838 if (!mem_cgroup_move_account(page, false,
4839 mc.from, mc.to)) {
4ffef5fe 4840 mc.precharge--;
854ffa8d
DN
4841 /* we uncharge from mc.from later. */
4842 mc.moved_charge++;
4ffef5fe
DN
4843 }
4844 putback_lru_page(page);
8d32ff84 4845put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4846 put_page(page);
4847 break;
02491447
DN
4848 case MC_TARGET_SWAP:
4849 ent = target.ent;
e91cbb42 4850 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4851 mc.precharge--;
483c30b5
DN
4852 /* we fixup refcnts and charges later. */
4853 mc.moved_swap++;
4854 }
02491447 4855 break;
4ffef5fe
DN
4856 default:
4857 break;
4858 }
4859 }
4860 pte_unmap_unlock(pte - 1, ptl);
4861 cond_resched();
4862
4863 if (addr != end) {
4864 /*
4865 * We have consumed all precharges we got in can_attach().
4866 * We try charge one by one, but don't do any additional
4867 * charges to mc.to if we have failed in charge once in attach()
4868 * phase.
4869 */
854ffa8d 4870 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4871 if (!ret)
4872 goto retry;
4873 }
4874
4875 return ret;
4876}
4877
264a0ae1 4878static void mem_cgroup_move_charge(void)
4ffef5fe 4879{
26bcd64a
NH
4880 struct mm_walk mem_cgroup_move_charge_walk = {
4881 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4882 .mm = mc.mm,
26bcd64a 4883 };
4ffef5fe
DN
4884
4885 lru_add_drain_all();
312722cb 4886 /*
81f8c3a4
JW
4887 * Signal lock_page_memcg() to take the memcg's move_lock
4888 * while we're moving its pages to another memcg. Then wait
4889 * for already started RCU-only updates to finish.
312722cb
JW
4890 */
4891 atomic_inc(&mc.from->moving_account);
4892 synchronize_rcu();
dfe076b0 4893retry:
264a0ae1 4894 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4895 /*
4896 * Someone who are holding the mmap_sem might be waiting in
4897 * waitq. So we cancel all extra charges, wake up all waiters,
4898 * and retry. Because we cancel precharges, we might not be able
4899 * to move enough charges, but moving charge is a best-effort
4900 * feature anyway, so it wouldn't be a big problem.
4901 */
4902 __mem_cgroup_clear_mc();
4903 cond_resched();
4904 goto retry;
4905 }
26bcd64a
NH
4906 /*
4907 * When we have consumed all precharges and failed in doing
4908 * additional charge, the page walk just aborts.
4909 */
4910 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
264a0ae1 4911 up_read(&mc.mm->mmap_sem);
312722cb 4912 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4913}
4914
264a0ae1 4915static void mem_cgroup_move_task(void)
67e465a7 4916{
264a0ae1
TH
4917 if (mc.to) {
4918 mem_cgroup_move_charge();
a433658c 4919 mem_cgroup_clear_mc();
264a0ae1 4920 }
67e465a7 4921}
5cfb80a7 4922#else /* !CONFIG_MMU */
1f7dd3e5 4923static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4924{
4925 return 0;
4926}
1f7dd3e5 4927static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4928{
4929}
264a0ae1 4930static void mem_cgroup_move_task(void)
5cfb80a7
DN
4931{
4932}
4933#endif
67e465a7 4934
f00baae7
TH
4935/*
4936 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4937 * to verify whether we're attached to the default hierarchy on each mount
4938 * attempt.
f00baae7 4939 */
eb95419b 4940static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4941{
4942 /*
aa6ec29b 4943 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4944 * guarantees that @root doesn't have any children, so turning it
4945 * on for the root memcg is enough.
4946 */
9e10a130 4947 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4948 root_mem_cgroup->use_hierarchy = true;
4949 else
4950 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
4951}
4952
241994ed
JW
4953static u64 memory_current_read(struct cgroup_subsys_state *css,
4954 struct cftype *cft)
4955{
f5fc3c5d
JW
4956 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4957
4958 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
4959}
4960
4961static int memory_low_show(struct seq_file *m, void *v)
4962{
4963 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4964 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
4965
4966 if (low == PAGE_COUNTER_MAX)
d2973697 4967 seq_puts(m, "max\n");
241994ed
JW
4968 else
4969 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4970
4971 return 0;
4972}
4973
4974static ssize_t memory_low_write(struct kernfs_open_file *of,
4975 char *buf, size_t nbytes, loff_t off)
4976{
4977 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4978 unsigned long low;
4979 int err;
4980
4981 buf = strstrip(buf);
d2973697 4982 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
4983 if (err)
4984 return err;
4985
4986 memcg->low = low;
4987
4988 return nbytes;
4989}
4990
4991static int memory_high_show(struct seq_file *m, void *v)
4992{
4993 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4994 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
4995
4996 if (high == PAGE_COUNTER_MAX)
d2973697 4997 seq_puts(m, "max\n");
241994ed
JW
4998 else
4999 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5000
5001 return 0;
5002}
5003
5004static ssize_t memory_high_write(struct kernfs_open_file *of,
5005 char *buf, size_t nbytes, loff_t off)
5006{
5007 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5008 unsigned long nr_pages;
241994ed
JW
5009 unsigned long high;
5010 int err;
5011
5012 buf = strstrip(buf);
d2973697 5013 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5014 if (err)
5015 return err;
5016
5017 memcg->high = high;
5018
588083bb
JW
5019 nr_pages = page_counter_read(&memcg->memory);
5020 if (nr_pages > high)
5021 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5022 GFP_KERNEL, true);
5023
2529bb3a 5024 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5025 return nbytes;
5026}
5027
5028static int memory_max_show(struct seq_file *m, void *v)
5029{
5030 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5031 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5032
5033 if (max == PAGE_COUNTER_MAX)
d2973697 5034 seq_puts(m, "max\n");
241994ed
JW
5035 else
5036 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5037
5038 return 0;
5039}
5040
5041static ssize_t memory_max_write(struct kernfs_open_file *of,
5042 char *buf, size_t nbytes, loff_t off)
5043{
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5045 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5046 bool drained = false;
241994ed
JW
5047 unsigned long max;
5048 int err;
5049
5050 buf = strstrip(buf);
d2973697 5051 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5052 if (err)
5053 return err;
5054
b6e6edcf
JW
5055 xchg(&memcg->memory.limit, max);
5056
5057 for (;;) {
5058 unsigned long nr_pages = page_counter_read(&memcg->memory);
5059
5060 if (nr_pages <= max)
5061 break;
5062
5063 if (signal_pending(current)) {
5064 err = -EINTR;
5065 break;
5066 }
5067
5068 if (!drained) {
5069 drain_all_stock(memcg);
5070 drained = true;
5071 continue;
5072 }
5073
5074 if (nr_reclaims) {
5075 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5076 GFP_KERNEL, true))
5077 nr_reclaims--;
5078 continue;
5079 }
5080
5081 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5082 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5083 break;
5084 }
241994ed 5085
2529bb3a 5086 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5087 return nbytes;
5088}
5089
5090static int memory_events_show(struct seq_file *m, void *v)
5091{
5092 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5093
5094 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5095 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5096 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5097 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5098
5099 return 0;
5100}
5101
587d9f72
JW
5102static int memory_stat_show(struct seq_file *m, void *v)
5103{
5104 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5105 unsigned long stat[MEMCG_NR_STAT];
5106 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5107 int i;
5108
5109 /*
5110 * Provide statistics on the state of the memory subsystem as
5111 * well as cumulative event counters that show past behavior.
5112 *
5113 * This list is ordered following a combination of these gradients:
5114 * 1) generic big picture -> specifics and details
5115 * 2) reflecting userspace activity -> reflecting kernel heuristics
5116 *
5117 * Current memory state:
5118 */
5119
72b54e73
VD
5120 tree_stat(memcg, stat);
5121 tree_events(memcg, events);
5122
587d9f72 5123 seq_printf(m, "anon %llu\n",
72b54e73 5124 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5125 seq_printf(m, "file %llu\n",
72b54e73 5126 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b
VD
5127 seq_printf(m, "kernel_stack %llu\n",
5128 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
27ee57c9
VD
5129 seq_printf(m, "slab %llu\n",
5130 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5131 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5132 seq_printf(m, "sock %llu\n",
72b54e73 5133 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5134
5135 seq_printf(m, "file_mapped %llu\n",
72b54e73 5136 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5137 seq_printf(m, "file_dirty %llu\n",
72b54e73 5138 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5139 seq_printf(m, "file_writeback %llu\n",
72b54e73 5140 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5141
5142 for (i = 0; i < NR_LRU_LISTS; i++) {
5143 struct mem_cgroup *mi;
5144 unsigned long val = 0;
5145
5146 for_each_mem_cgroup_tree(mi, memcg)
5147 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5148 seq_printf(m, "%s %llu\n",
5149 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5150 }
5151
27ee57c9
VD
5152 seq_printf(m, "slab_reclaimable %llu\n",
5153 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5154 seq_printf(m, "slab_unreclaimable %llu\n",
5155 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5156
587d9f72
JW
5157 /* Accumulated memory events */
5158
5159 seq_printf(m, "pgfault %lu\n",
72b54e73 5160 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5161 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5162 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5163
5164 return 0;
5165}
5166
241994ed
JW
5167static struct cftype memory_files[] = {
5168 {
5169 .name = "current",
f5fc3c5d 5170 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5171 .read_u64 = memory_current_read,
5172 },
5173 {
5174 .name = "low",
5175 .flags = CFTYPE_NOT_ON_ROOT,
5176 .seq_show = memory_low_show,
5177 .write = memory_low_write,
5178 },
5179 {
5180 .name = "high",
5181 .flags = CFTYPE_NOT_ON_ROOT,
5182 .seq_show = memory_high_show,
5183 .write = memory_high_write,
5184 },
5185 {
5186 .name = "max",
5187 .flags = CFTYPE_NOT_ON_ROOT,
5188 .seq_show = memory_max_show,
5189 .write = memory_max_write,
5190 },
5191 {
5192 .name = "events",
5193 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5194 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5195 .seq_show = memory_events_show,
5196 },
587d9f72
JW
5197 {
5198 .name = "stat",
5199 .flags = CFTYPE_NOT_ON_ROOT,
5200 .seq_show = memory_stat_show,
5201 },
241994ed
JW
5202 { } /* terminate */
5203};
5204
073219e9 5205struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5206 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5207 .css_online = mem_cgroup_css_online,
92fb9748 5208 .css_offline = mem_cgroup_css_offline,
6df38689 5209 .css_released = mem_cgroup_css_released,
92fb9748 5210 .css_free = mem_cgroup_css_free,
1ced953b 5211 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5212 .can_attach = mem_cgroup_can_attach,
5213 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5214 .post_attach = mem_cgroup_move_task,
f00baae7 5215 .bind = mem_cgroup_bind,
241994ed
JW
5216 .dfl_cftypes = memory_files,
5217 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5218 .early_init = 0,
8cdea7c0 5219};
c077719b 5220
241994ed
JW
5221/**
5222 * mem_cgroup_low - check if memory consumption is below the normal range
5223 * @root: the highest ancestor to consider
5224 * @memcg: the memory cgroup to check
5225 *
5226 * Returns %true if memory consumption of @memcg, and that of all
5227 * configurable ancestors up to @root, is below the normal range.
5228 */
5229bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5230{
5231 if (mem_cgroup_disabled())
5232 return false;
5233
5234 /*
5235 * The toplevel group doesn't have a configurable range, so
5236 * it's never low when looked at directly, and it is not
5237 * considered an ancestor when assessing the hierarchy.
5238 */
5239
5240 if (memcg == root_mem_cgroup)
5241 return false;
5242
4e54dede 5243 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5244 return false;
5245
5246 while (memcg != root) {
5247 memcg = parent_mem_cgroup(memcg);
5248
5249 if (memcg == root_mem_cgroup)
5250 break;
5251
4e54dede 5252 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5253 return false;
5254 }
5255 return true;
5256}
5257
00501b53
JW
5258/**
5259 * mem_cgroup_try_charge - try charging a page
5260 * @page: page to charge
5261 * @mm: mm context of the victim
5262 * @gfp_mask: reclaim mode
5263 * @memcgp: charged memcg return
5264 *
5265 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5266 * pages according to @gfp_mask if necessary.
5267 *
5268 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5269 * Otherwise, an error code is returned.
5270 *
5271 * After page->mapping has been set up, the caller must finalize the
5272 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5273 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5274 */
5275int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5276 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5277 bool compound)
00501b53
JW
5278{
5279 struct mem_cgroup *memcg = NULL;
f627c2f5 5280 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5281 int ret = 0;
5282
5283 if (mem_cgroup_disabled())
5284 goto out;
5285
5286 if (PageSwapCache(page)) {
00501b53
JW
5287 /*
5288 * Every swap fault against a single page tries to charge the
5289 * page, bail as early as possible. shmem_unuse() encounters
5290 * already charged pages, too. The USED bit is protected by
5291 * the page lock, which serializes swap cache removal, which
5292 * in turn serializes uncharging.
5293 */
e993d905 5294 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5295 if (page->mem_cgroup)
00501b53 5296 goto out;
e993d905 5297
37e84351 5298 if (do_swap_account) {
e993d905
VD
5299 swp_entry_t ent = { .val = page_private(page), };
5300 unsigned short id = lookup_swap_cgroup_id(ent);
5301
5302 rcu_read_lock();
5303 memcg = mem_cgroup_from_id(id);
5304 if (memcg && !css_tryget_online(&memcg->css))
5305 memcg = NULL;
5306 rcu_read_unlock();
5307 }
00501b53
JW
5308 }
5309
00501b53
JW
5310 if (!memcg)
5311 memcg = get_mem_cgroup_from_mm(mm);
5312
5313 ret = try_charge(memcg, gfp_mask, nr_pages);
5314
5315 css_put(&memcg->css);
00501b53
JW
5316out:
5317 *memcgp = memcg;
5318 return ret;
5319}
5320
5321/**
5322 * mem_cgroup_commit_charge - commit a page charge
5323 * @page: page to charge
5324 * @memcg: memcg to charge the page to
5325 * @lrucare: page might be on LRU already
5326 *
5327 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5328 * after page->mapping has been set up. This must happen atomically
5329 * as part of the page instantiation, i.e. under the page table lock
5330 * for anonymous pages, under the page lock for page and swap cache.
5331 *
5332 * In addition, the page must not be on the LRU during the commit, to
5333 * prevent racing with task migration. If it might be, use @lrucare.
5334 *
5335 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5336 */
5337void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5338 bool lrucare, bool compound)
00501b53 5339{
f627c2f5 5340 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5341
5342 VM_BUG_ON_PAGE(!page->mapping, page);
5343 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5344
5345 if (mem_cgroup_disabled())
5346 return;
5347 /*
5348 * Swap faults will attempt to charge the same page multiple
5349 * times. But reuse_swap_page() might have removed the page
5350 * from swapcache already, so we can't check PageSwapCache().
5351 */
5352 if (!memcg)
5353 return;
5354
6abb5a86
JW
5355 commit_charge(page, memcg, lrucare);
5356
6abb5a86 5357 local_irq_disable();
f627c2f5 5358 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5359 memcg_check_events(memcg, page);
5360 local_irq_enable();
00501b53 5361
7941d214 5362 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5363 swp_entry_t entry = { .val = page_private(page) };
5364 /*
5365 * The swap entry might not get freed for a long time,
5366 * let's not wait for it. The page already received a
5367 * memory+swap charge, drop the swap entry duplicate.
5368 */
5369 mem_cgroup_uncharge_swap(entry);
5370 }
5371}
5372
5373/**
5374 * mem_cgroup_cancel_charge - cancel a page charge
5375 * @page: page to charge
5376 * @memcg: memcg to charge the page to
5377 *
5378 * Cancel a charge transaction started by mem_cgroup_try_charge().
5379 */
f627c2f5
KS
5380void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5381 bool compound)
00501b53 5382{
f627c2f5 5383 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5384
5385 if (mem_cgroup_disabled())
5386 return;
5387 /*
5388 * Swap faults will attempt to charge the same page multiple
5389 * times. But reuse_swap_page() might have removed the page
5390 * from swapcache already, so we can't check PageSwapCache().
5391 */
5392 if (!memcg)
5393 return;
5394
00501b53
JW
5395 cancel_charge(memcg, nr_pages);
5396}
5397
747db954 5398static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5399 unsigned long nr_anon, unsigned long nr_file,
5400 unsigned long nr_huge, struct page *dummy_page)
5401{
18eca2e6 5402 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5403 unsigned long flags;
5404
ce00a967 5405 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5406 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5407 if (do_memsw_account())
18eca2e6 5408 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5409 memcg_oom_recover(memcg);
5410 }
747db954
JW
5411
5412 local_irq_save(flags);
5413 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5414 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5415 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5416 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5417 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5418 memcg_check_events(memcg, dummy_page);
5419 local_irq_restore(flags);
e8ea14cc
JW
5420
5421 if (!mem_cgroup_is_root(memcg))
18eca2e6 5422 css_put_many(&memcg->css, nr_pages);
747db954
JW
5423}
5424
5425static void uncharge_list(struct list_head *page_list)
5426{
5427 struct mem_cgroup *memcg = NULL;
747db954
JW
5428 unsigned long nr_anon = 0;
5429 unsigned long nr_file = 0;
5430 unsigned long nr_huge = 0;
5431 unsigned long pgpgout = 0;
747db954
JW
5432 struct list_head *next;
5433 struct page *page;
5434
8b592656
JW
5435 /*
5436 * Note that the list can be a single page->lru; hence the
5437 * do-while loop instead of a simple list_for_each_entry().
5438 */
747db954
JW
5439 next = page_list->next;
5440 do {
5441 unsigned int nr_pages = 1;
747db954
JW
5442
5443 page = list_entry(next, struct page, lru);
5444 next = page->lru.next;
5445
5446 VM_BUG_ON_PAGE(PageLRU(page), page);
5447 VM_BUG_ON_PAGE(page_count(page), page);
5448
1306a85a 5449 if (!page->mem_cgroup)
747db954
JW
5450 continue;
5451
5452 /*
5453 * Nobody should be changing or seriously looking at
1306a85a 5454 * page->mem_cgroup at this point, we have fully
29833315 5455 * exclusive access to the page.
747db954
JW
5456 */
5457
1306a85a 5458 if (memcg != page->mem_cgroup) {
747db954 5459 if (memcg) {
18eca2e6
JW
5460 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5461 nr_huge, page);
5462 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5463 }
1306a85a 5464 memcg = page->mem_cgroup;
747db954
JW
5465 }
5466
5467 if (PageTransHuge(page)) {
5468 nr_pages <<= compound_order(page);
5469 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5470 nr_huge += nr_pages;
5471 }
5472
5473 if (PageAnon(page))
5474 nr_anon += nr_pages;
5475 else
5476 nr_file += nr_pages;
5477
1306a85a 5478 page->mem_cgroup = NULL;
747db954
JW
5479
5480 pgpgout++;
5481 } while (next != page_list);
5482
5483 if (memcg)
18eca2e6
JW
5484 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5485 nr_huge, page);
747db954
JW
5486}
5487
0a31bc97
JW
5488/**
5489 * mem_cgroup_uncharge - uncharge a page
5490 * @page: page to uncharge
5491 *
5492 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5493 * mem_cgroup_commit_charge().
5494 */
5495void mem_cgroup_uncharge(struct page *page)
5496{
0a31bc97
JW
5497 if (mem_cgroup_disabled())
5498 return;
5499
747db954 5500 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5501 if (!page->mem_cgroup)
0a31bc97
JW
5502 return;
5503
747db954
JW
5504 INIT_LIST_HEAD(&page->lru);
5505 uncharge_list(&page->lru);
5506}
0a31bc97 5507
747db954
JW
5508/**
5509 * mem_cgroup_uncharge_list - uncharge a list of page
5510 * @page_list: list of pages to uncharge
5511 *
5512 * Uncharge a list of pages previously charged with
5513 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5514 */
5515void mem_cgroup_uncharge_list(struct list_head *page_list)
5516{
5517 if (mem_cgroup_disabled())
5518 return;
0a31bc97 5519
747db954
JW
5520 if (!list_empty(page_list))
5521 uncharge_list(page_list);
0a31bc97
JW
5522}
5523
5524/**
6a93ca8f
JW
5525 * mem_cgroup_migrate - charge a page's replacement
5526 * @oldpage: currently circulating page
5527 * @newpage: replacement page
0a31bc97 5528 *
6a93ca8f
JW
5529 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5530 * be uncharged upon free.
0a31bc97
JW
5531 *
5532 * Both pages must be locked, @newpage->mapping must be set up.
5533 */
6a93ca8f 5534void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5535{
29833315 5536 struct mem_cgroup *memcg;
44b7a8d3
JW
5537 unsigned int nr_pages;
5538 bool compound;
0a31bc97
JW
5539
5540 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5541 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5542 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5543 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5544 newpage);
0a31bc97
JW
5545
5546 if (mem_cgroup_disabled())
5547 return;
5548
5549 /* Page cache replacement: new page already charged? */
1306a85a 5550 if (newpage->mem_cgroup)
0a31bc97
JW
5551 return;
5552
45637bab 5553 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5554 memcg = oldpage->mem_cgroup;
29833315 5555 if (!memcg)
0a31bc97
JW
5556 return;
5557
44b7a8d3
JW
5558 /* Force-charge the new page. The old one will be freed soon */
5559 compound = PageTransHuge(newpage);
5560 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5561
5562 page_counter_charge(&memcg->memory, nr_pages);
5563 if (do_memsw_account())
5564 page_counter_charge(&memcg->memsw, nr_pages);
5565 css_get_many(&memcg->css, nr_pages);
0a31bc97 5566
9cf7666a 5567 commit_charge(newpage, memcg, false);
44b7a8d3
JW
5568
5569 local_irq_disable();
5570 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5571 memcg_check_events(memcg, newpage);
5572 local_irq_enable();
0a31bc97
JW
5573}
5574
ef12947c 5575DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5576EXPORT_SYMBOL(memcg_sockets_enabled_key);
5577
5578void sock_update_memcg(struct sock *sk)
5579{
5580 struct mem_cgroup *memcg;
5581
5582 /* Socket cloning can throw us here with sk_cgrp already
5583 * filled. It won't however, necessarily happen from
5584 * process context. So the test for root memcg given
5585 * the current task's memcg won't help us in this case.
5586 *
5587 * Respecting the original socket's memcg is a better
5588 * decision in this case.
5589 */
5590 if (sk->sk_memcg) {
5591 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5592 css_get(&sk->sk_memcg->css);
5593 return;
5594 }
5595
5596 rcu_read_lock();
5597 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5598 if (memcg == root_mem_cgroup)
5599 goto out;
0db15298 5600 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5601 goto out;
f7e1cb6e 5602 if (css_tryget_online(&memcg->css))
11092087 5603 sk->sk_memcg = memcg;
f7e1cb6e 5604out:
11092087
JW
5605 rcu_read_unlock();
5606}
5607EXPORT_SYMBOL(sock_update_memcg);
5608
5609void sock_release_memcg(struct sock *sk)
5610{
5611 WARN_ON(!sk->sk_memcg);
5612 css_put(&sk->sk_memcg->css);
5613}
5614
5615/**
5616 * mem_cgroup_charge_skmem - charge socket memory
5617 * @memcg: memcg to charge
5618 * @nr_pages: number of pages to charge
5619 *
5620 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5621 * @memcg's configured limit, %false if the charge had to be forced.
5622 */
5623bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5624{
f7e1cb6e 5625 gfp_t gfp_mask = GFP_KERNEL;
11092087 5626
f7e1cb6e 5627 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5628 struct page_counter *fail;
f7e1cb6e 5629
0db15298
JW
5630 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5631 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5632 return true;
5633 }
0db15298
JW
5634 page_counter_charge(&memcg->tcpmem, nr_pages);
5635 memcg->tcpmem_pressure = 1;
f7e1cb6e 5636 return false;
11092087 5637 }
d886f4e4 5638
f7e1cb6e
JW
5639 /* Don't block in the packet receive path */
5640 if (in_softirq())
5641 gfp_mask = GFP_NOWAIT;
5642
b2807f07
JW
5643 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5644
f7e1cb6e
JW
5645 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5646 return true;
5647
5648 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5649 return false;
5650}
5651
5652/**
5653 * mem_cgroup_uncharge_skmem - uncharge socket memory
5654 * @memcg - memcg to uncharge
5655 * @nr_pages - number of pages to uncharge
5656 */
5657void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5658{
f7e1cb6e 5659 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5660 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5661 return;
5662 }
d886f4e4 5663
b2807f07
JW
5664 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5665
f7e1cb6e
JW
5666 page_counter_uncharge(&memcg->memory, nr_pages);
5667 css_put_many(&memcg->css, nr_pages);
11092087
JW
5668}
5669
f7e1cb6e
JW
5670static int __init cgroup_memory(char *s)
5671{
5672 char *token;
5673
5674 while ((token = strsep(&s, ",")) != NULL) {
5675 if (!*token)
5676 continue;
5677 if (!strcmp(token, "nosocket"))
5678 cgroup_memory_nosocket = true;
04823c83
VD
5679 if (!strcmp(token, "nokmem"))
5680 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5681 }
5682 return 0;
5683}
5684__setup("cgroup.memory=", cgroup_memory);
11092087 5685
2d11085e 5686/*
1081312f
MH
5687 * subsys_initcall() for memory controller.
5688 *
5689 * Some parts like hotcpu_notifier() have to be initialized from this context
5690 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5691 * everything that doesn't depend on a specific mem_cgroup structure should
5692 * be initialized from here.
2d11085e
MH
5693 */
5694static int __init mem_cgroup_init(void)
5695{
95a045f6
JW
5696 int cpu, node;
5697
2d11085e 5698 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5699
5700 for_each_possible_cpu(cpu)
5701 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5702 drain_local_stock);
5703
5704 for_each_node(node) {
5705 struct mem_cgroup_tree_per_node *rtpn;
5706 int zone;
5707
5708 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5709 node_online(node) ? node : NUMA_NO_NODE);
5710
5711 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5712 struct mem_cgroup_tree_per_zone *rtpz;
5713
5714 rtpz = &rtpn->rb_tree_per_zone[zone];
5715 rtpz->rb_root = RB_ROOT;
5716 spin_lock_init(&rtpz->lock);
5717 }
5718 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5719 }
5720
2d11085e
MH
5721 return 0;
5722}
5723subsys_initcall(mem_cgroup_init);
21afa38e
JW
5724
5725#ifdef CONFIG_MEMCG_SWAP
5726/**
5727 * mem_cgroup_swapout - transfer a memsw charge to swap
5728 * @page: page whose memsw charge to transfer
5729 * @entry: swap entry to move the charge to
5730 *
5731 * Transfer the memsw charge of @page to @entry.
5732 */
5733void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5734{
5735 struct mem_cgroup *memcg;
5736 unsigned short oldid;
5737
5738 VM_BUG_ON_PAGE(PageLRU(page), page);
5739 VM_BUG_ON_PAGE(page_count(page), page);
5740
7941d214 5741 if (!do_memsw_account())
21afa38e
JW
5742 return;
5743
5744 memcg = page->mem_cgroup;
5745
5746 /* Readahead page, never charged */
5747 if (!memcg)
5748 return;
5749
5750 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5751 VM_BUG_ON_PAGE(oldid, page);
5752 mem_cgroup_swap_statistics(memcg, true);
5753
5754 page->mem_cgroup = NULL;
5755
5756 if (!mem_cgroup_is_root(memcg))
5757 page_counter_uncharge(&memcg->memory, 1);
5758
ce9ce665
SAS
5759 /*
5760 * Interrupts should be disabled here because the caller holds the
5761 * mapping->tree_lock lock which is taken with interrupts-off. It is
5762 * important here to have the interrupts disabled because it is the
5763 * only synchronisation we have for udpating the per-CPU variables.
5764 */
5765 VM_BUG_ON(!irqs_disabled());
f627c2f5 5766 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5767 memcg_check_events(memcg, page);
5768}
5769
37e84351
VD
5770/*
5771 * mem_cgroup_try_charge_swap - try charging a swap entry
5772 * @page: page being added to swap
5773 * @entry: swap entry to charge
5774 *
5775 * Try to charge @entry to the memcg that @page belongs to.
5776 *
5777 * Returns 0 on success, -ENOMEM on failure.
5778 */
5779int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5780{
5781 struct mem_cgroup *memcg;
5782 struct page_counter *counter;
5783 unsigned short oldid;
5784
5785 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5786 return 0;
5787
5788 memcg = page->mem_cgroup;
5789
5790 /* Readahead page, never charged */
5791 if (!memcg)
5792 return 0;
5793
5794 if (!mem_cgroup_is_root(memcg) &&
5795 !page_counter_try_charge(&memcg->swap, 1, &counter))
5796 return -ENOMEM;
5797
5798 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5799 VM_BUG_ON_PAGE(oldid, page);
5800 mem_cgroup_swap_statistics(memcg, true);
5801
5802 css_get(&memcg->css);
5803 return 0;
5804}
5805
21afa38e
JW
5806/**
5807 * mem_cgroup_uncharge_swap - uncharge a swap entry
5808 * @entry: swap entry to uncharge
5809 *
37e84351 5810 * Drop the swap charge associated with @entry.
21afa38e
JW
5811 */
5812void mem_cgroup_uncharge_swap(swp_entry_t entry)
5813{
5814 struct mem_cgroup *memcg;
5815 unsigned short id;
5816
37e84351 5817 if (!do_swap_account)
21afa38e
JW
5818 return;
5819
5820 id = swap_cgroup_record(entry, 0);
5821 rcu_read_lock();
adbe427b 5822 memcg = mem_cgroup_from_id(id);
21afa38e 5823 if (memcg) {
37e84351
VD
5824 if (!mem_cgroup_is_root(memcg)) {
5825 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826 page_counter_uncharge(&memcg->swap, 1);
5827 else
5828 page_counter_uncharge(&memcg->memsw, 1);
5829 }
21afa38e
JW
5830 mem_cgroup_swap_statistics(memcg, false);
5831 css_put(&memcg->css);
5832 }
5833 rcu_read_unlock();
5834}
5835
d8b38438
VD
5836long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5837{
5838 long nr_swap_pages = get_nr_swap_pages();
5839
5840 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5841 return nr_swap_pages;
5842 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5843 nr_swap_pages = min_t(long, nr_swap_pages,
5844 READ_ONCE(memcg->swap.limit) -
5845 page_counter_read(&memcg->swap));
5846 return nr_swap_pages;
5847}
5848
5ccc5aba
VD
5849bool mem_cgroup_swap_full(struct page *page)
5850{
5851 struct mem_cgroup *memcg;
5852
5853 VM_BUG_ON_PAGE(!PageLocked(page), page);
5854
5855 if (vm_swap_full())
5856 return true;
5857 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5858 return false;
5859
5860 memcg = page->mem_cgroup;
5861 if (!memcg)
5862 return false;
5863
5864 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5865 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5866 return true;
5867
5868 return false;
5869}
5870
21afa38e
JW
5871/* for remember boot option*/
5872#ifdef CONFIG_MEMCG_SWAP_ENABLED
5873static int really_do_swap_account __initdata = 1;
5874#else
5875static int really_do_swap_account __initdata;
5876#endif
5877
5878static int __init enable_swap_account(char *s)
5879{
5880 if (!strcmp(s, "1"))
5881 really_do_swap_account = 1;
5882 else if (!strcmp(s, "0"))
5883 really_do_swap_account = 0;
5884 return 1;
5885}
5886__setup("swapaccount=", enable_swap_account);
5887
37e84351
VD
5888static u64 swap_current_read(struct cgroup_subsys_state *css,
5889 struct cftype *cft)
5890{
5891 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5892
5893 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5894}
5895
5896static int swap_max_show(struct seq_file *m, void *v)
5897{
5898 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5899 unsigned long max = READ_ONCE(memcg->swap.limit);
5900
5901 if (max == PAGE_COUNTER_MAX)
5902 seq_puts(m, "max\n");
5903 else
5904 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5905
5906 return 0;
5907}
5908
5909static ssize_t swap_max_write(struct kernfs_open_file *of,
5910 char *buf, size_t nbytes, loff_t off)
5911{
5912 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5913 unsigned long max;
5914 int err;
5915
5916 buf = strstrip(buf);
5917 err = page_counter_memparse(buf, "max", &max);
5918 if (err)
5919 return err;
5920
5921 mutex_lock(&memcg_limit_mutex);
5922 err = page_counter_limit(&memcg->swap, max);
5923 mutex_unlock(&memcg_limit_mutex);
5924 if (err)
5925 return err;
5926
5927 return nbytes;
5928}
5929
5930static struct cftype swap_files[] = {
5931 {
5932 .name = "swap.current",
5933 .flags = CFTYPE_NOT_ON_ROOT,
5934 .read_u64 = swap_current_read,
5935 },
5936 {
5937 .name = "swap.max",
5938 .flags = CFTYPE_NOT_ON_ROOT,
5939 .seq_show = swap_max_show,
5940 .write = swap_max_write,
5941 },
5942 { } /* terminate */
5943};
5944
21afa38e
JW
5945static struct cftype memsw_cgroup_files[] = {
5946 {
5947 .name = "memsw.usage_in_bytes",
5948 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5949 .read_u64 = mem_cgroup_read_u64,
5950 },
5951 {
5952 .name = "memsw.max_usage_in_bytes",
5953 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5954 .write = mem_cgroup_reset,
5955 .read_u64 = mem_cgroup_read_u64,
5956 },
5957 {
5958 .name = "memsw.limit_in_bytes",
5959 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5960 .write = mem_cgroup_write,
5961 .read_u64 = mem_cgroup_read_u64,
5962 },
5963 {
5964 .name = "memsw.failcnt",
5965 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5966 .write = mem_cgroup_reset,
5967 .read_u64 = mem_cgroup_read_u64,
5968 },
5969 { }, /* terminate */
5970};
5971
5972static int __init mem_cgroup_swap_init(void)
5973{
5974 if (!mem_cgroup_disabled() && really_do_swap_account) {
5975 do_swap_account = 1;
37e84351
VD
5976 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5977 swap_files));
21afa38e
JW
5978 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5979 memsw_cgroup_files));
5980 }
5981 return 0;
5982}
5983subsys_initcall(mem_cgroup_swap_init);
5984
5985#endif /* CONFIG_MEMCG_SWAP */