mm/vmscan: replace zone_nr_lru_pages() with get_lruvec_size()
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 62static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b 75#else
a0db00fc 76#define do_swap_account 0
c077719b
KH
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
d52aa412
KH
92 MEM_CGROUP_STAT_NSTATS,
93};
94
e9f8974f
JW
95enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
101 MEM_CGROUP_EVENTS_NSTATS,
102};
7a159cc9
JW
103/*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 112 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
113 MEM_CGROUP_NTARGETS,
114};
a0db00fc
KS
115#define THRESHOLDS_EVENTS_TARGET 128
116#define SOFTLIMIT_EVENTS_TARGET 1024
117#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 118
d52aa412 119struct mem_cgroup_stat_cpu {
7a159cc9 120 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 122 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
123};
124
527a5ec9
JW
125struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130};
131
6d12e2d8
KH
132/*
133 * per-zone information in memory controller.
134 */
6d12e2d8 135struct mem_cgroup_per_zone {
6290df54 136 struct lruvec lruvec;
1eb49272 137 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 138
527a5ec9
JW
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
f64c3f54
BS
141 struct rb_node tree_node; /* RB tree node */
142 unsigned long long usage_in_excess;/* Set to the value by which */
143 /* the soft limit is exceeded*/
144 bool on_tree;
d79154bb 145 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 146 /* use container_of */
6d12e2d8 147};
6d12e2d8
KH
148
149struct mem_cgroup_per_node {
150 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151};
152
153struct mem_cgroup_lru_info {
154 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155};
156
f64c3f54
BS
157/*
158 * Cgroups above their limits are maintained in a RB-Tree, independent of
159 * their hierarchy representation
160 */
161
162struct mem_cgroup_tree_per_zone {
163 struct rb_root rb_root;
164 spinlock_t lock;
165};
166
167struct mem_cgroup_tree_per_node {
168 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169};
170
171struct mem_cgroup_tree {
172 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173};
174
175static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176
2e72b634
KS
177struct mem_cgroup_threshold {
178 struct eventfd_ctx *eventfd;
179 u64 threshold;
180};
181
9490ff27 182/* For threshold */
2e72b634 183struct mem_cgroup_threshold_ary {
748dad36 184 /* An array index points to threshold just below or equal to usage. */
5407a562 185 int current_threshold;
2e72b634
KS
186 /* Size of entries[] */
187 unsigned int size;
188 /* Array of thresholds */
189 struct mem_cgroup_threshold entries[0];
190};
2c488db2
KS
191
192struct mem_cgroup_thresholds {
193 /* Primary thresholds array */
194 struct mem_cgroup_threshold_ary *primary;
195 /*
196 * Spare threshold array.
197 * This is needed to make mem_cgroup_unregister_event() "never fail".
198 * It must be able to store at least primary->size - 1 entries.
199 */
200 struct mem_cgroup_threshold_ary *spare;
201};
202
9490ff27
KH
203/* for OOM */
204struct mem_cgroup_eventfd_list {
205 struct list_head list;
206 struct eventfd_ctx *eventfd;
207};
2e72b634 208
c0ff4b85
R
209static void mem_cgroup_threshold(struct mem_cgroup *memcg);
210static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 211
8cdea7c0
BS
212/*
213 * The memory controller data structure. The memory controller controls both
214 * page cache and RSS per cgroup. We would eventually like to provide
215 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
216 * to help the administrator determine what knobs to tune.
217 *
218 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
219 * we hit the water mark. May be even add a low water mark, such that
220 * no reclaim occurs from a cgroup at it's low water mark, this is
221 * a feature that will be implemented much later in the future.
8cdea7c0
BS
222 */
223struct mem_cgroup {
224 struct cgroup_subsys_state css;
225 /*
226 * the counter to account for memory usage
227 */
228 struct res_counter res;
59927fb9
HD
229
230 union {
231 /*
232 * the counter to account for mem+swap usage.
233 */
234 struct res_counter memsw;
235
236 /*
237 * rcu_freeing is used only when freeing struct mem_cgroup,
238 * so put it into a union to avoid wasting more memory.
239 * It must be disjoint from the css field. It could be
240 * in a union with the res field, but res plays a much
241 * larger part in mem_cgroup life than memsw, and might
242 * be of interest, even at time of free, when debugging.
243 * So share rcu_head with the less interesting memsw.
244 */
245 struct rcu_head rcu_freeing;
246 /*
247 * But when using vfree(), that cannot be done at
248 * interrupt time, so we must then queue the work.
249 */
250 struct work_struct work_freeing;
251 };
252
78fb7466
PE
253 /*
254 * Per cgroup active and inactive list, similar to the
255 * per zone LRU lists.
78fb7466 256 */
6d12e2d8 257 struct mem_cgroup_lru_info info;
889976db
YH
258 int last_scanned_node;
259#if MAX_NUMNODES > 1
260 nodemask_t scan_nodes;
453a9bf3
KH
261 atomic_t numainfo_events;
262 atomic_t numainfo_updating;
889976db 263#endif
18f59ea7
BS
264 /*
265 * Should the accounting and control be hierarchical, per subtree?
266 */
267 bool use_hierarchy;
79dfdacc
MH
268
269 bool oom_lock;
270 atomic_t under_oom;
271
8c7c6e34 272 atomic_t refcnt;
14797e23 273
1f4c025b 274 int swappiness;
3c11ecf4
KH
275 /* OOM-Killer disable */
276 int oom_kill_disable;
a7885eb8 277
22a668d7
KH
278 /* set when res.limit == memsw.limit */
279 bool memsw_is_minimum;
280
2e72b634
KS
281 /* protect arrays of thresholds */
282 struct mutex thresholds_lock;
283
284 /* thresholds for memory usage. RCU-protected */
2c488db2 285 struct mem_cgroup_thresholds thresholds;
907860ed 286
2e72b634 287 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 288 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 289
9490ff27
KH
290 /* For oom notifier event fd */
291 struct list_head oom_notify;
185efc0f 292
7dc74be0
DN
293 /*
294 * Should we move charges of a task when a task is moved into this
295 * mem_cgroup ? And what type of charges should we move ?
296 */
297 unsigned long move_charge_at_immigrate;
619d094b
KH
298 /*
299 * set > 0 if pages under this cgroup are moving to other cgroup.
300 */
301 atomic_t moving_account;
312734c0
KH
302 /* taken only while moving_account > 0 */
303 spinlock_t move_lock;
d52aa412 304 /*
c62b1a3b 305 * percpu counter.
d52aa412 306 */
3a7951b4 307 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
308 /*
309 * used when a cpu is offlined or other synchronizations
310 * See mem_cgroup_read_stat().
311 */
312 struct mem_cgroup_stat_cpu nocpu_base;
313 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
314
315#ifdef CONFIG_INET
316 struct tcp_memcontrol tcp_mem;
317#endif
8cdea7c0
BS
318};
319
7dc74be0
DN
320/* Stuffs for move charges at task migration. */
321/*
322 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
323 * left-shifted bitmap of these types.
324 */
325enum move_type {
4ffef5fe 326 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 327 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
328 NR_MOVE_TYPE,
329};
330
4ffef5fe
DN
331/* "mc" and its members are protected by cgroup_mutex */
332static struct move_charge_struct {
b1dd693e 333 spinlock_t lock; /* for from, to */
4ffef5fe
DN
334 struct mem_cgroup *from;
335 struct mem_cgroup *to;
336 unsigned long precharge;
854ffa8d 337 unsigned long moved_charge;
483c30b5 338 unsigned long moved_swap;
8033b97c
DN
339 struct task_struct *moving_task; /* a task moving charges */
340 wait_queue_head_t waitq; /* a waitq for other context */
341} mc = {
2bd9bb20 342 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
343 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
344};
4ffef5fe 345
90254a65
DN
346static bool move_anon(void)
347{
348 return test_bit(MOVE_CHARGE_TYPE_ANON,
349 &mc.to->move_charge_at_immigrate);
350}
351
87946a72
DN
352static bool move_file(void)
353{
354 return test_bit(MOVE_CHARGE_TYPE_FILE,
355 &mc.to->move_charge_at_immigrate);
356}
357
4e416953
BS
358/*
359 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
360 * limit reclaim to prevent infinite loops, if they ever occur.
361 */
a0db00fc
KS
362#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
363#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 364
217bc319
KH
365enum charge_type {
366 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
367 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 368 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 369 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 370 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 371 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
372 NR_CHARGE_TYPE,
373};
374
8c7c6e34 375/* for encoding cft->private value on file */
65c64ce8
GC
376#define _MEM (0)
377#define _MEMSWAP (1)
378#define _OOM_TYPE (2)
a0db00fc
KS
379#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
380#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 381#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
382/* Used for OOM nofiier */
383#define OOM_CONTROL (0)
8c7c6e34 384
75822b44
BS
385/*
386 * Reclaim flags for mem_cgroup_hierarchical_reclaim
387 */
388#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
389#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
390#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
391#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
392
c0ff4b85
R
393static void mem_cgroup_get(struct mem_cgroup *memcg);
394static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
395
396/* Writing them here to avoid exposing memcg's inner layout */
397#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 398#include <net/sock.h>
d1a4c0b3 399#include <net/ip.h>
e1aab161
GC
400
401static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
402void sock_update_memcg(struct sock *sk)
403{
376be5ff 404 if (mem_cgroup_sockets_enabled) {
e1aab161
GC
405 struct mem_cgroup *memcg;
406
407 BUG_ON(!sk->sk_prot->proto_cgroup);
408
f3f511e1
GC
409 /* Socket cloning can throw us here with sk_cgrp already
410 * filled. It won't however, necessarily happen from
411 * process context. So the test for root memcg given
412 * the current task's memcg won't help us in this case.
413 *
414 * Respecting the original socket's memcg is a better
415 * decision in this case.
416 */
417 if (sk->sk_cgrp) {
418 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
419 mem_cgroup_get(sk->sk_cgrp->memcg);
420 return;
421 }
422
e1aab161
GC
423 rcu_read_lock();
424 memcg = mem_cgroup_from_task(current);
425 if (!mem_cgroup_is_root(memcg)) {
426 mem_cgroup_get(memcg);
427 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
428 }
429 rcu_read_unlock();
430 }
431}
432EXPORT_SYMBOL(sock_update_memcg);
433
434void sock_release_memcg(struct sock *sk)
435{
376be5ff 436 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
437 struct mem_cgroup *memcg;
438 WARN_ON(!sk->sk_cgrp->memcg);
439 memcg = sk->sk_cgrp->memcg;
440 mem_cgroup_put(memcg);
441 }
442}
d1a4c0b3 443
319d3b9c 444#ifdef CONFIG_INET
d1a4c0b3
GC
445struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
446{
447 if (!memcg || mem_cgroup_is_root(memcg))
448 return NULL;
449
450 return &memcg->tcp_mem.cg_proto;
451}
452EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
453#endif /* CONFIG_INET */
454#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
455
c0ff4b85 456static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 457
f64c3f54 458static struct mem_cgroup_per_zone *
c0ff4b85 459mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 460{
c0ff4b85 461 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
462}
463
c0ff4b85 464struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 465{
c0ff4b85 466 return &memcg->css;
d324236b
WF
467}
468
f64c3f54 469static struct mem_cgroup_per_zone *
c0ff4b85 470page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 471{
97a6c37b
JW
472 int nid = page_to_nid(page);
473 int zid = page_zonenum(page);
f64c3f54 474
c0ff4b85 475 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
476}
477
478static struct mem_cgroup_tree_per_zone *
479soft_limit_tree_node_zone(int nid, int zid)
480{
481 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
482}
483
484static struct mem_cgroup_tree_per_zone *
485soft_limit_tree_from_page(struct page *page)
486{
487 int nid = page_to_nid(page);
488 int zid = page_zonenum(page);
489
490 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
491}
492
493static void
c0ff4b85 494__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 495 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
496 struct mem_cgroup_tree_per_zone *mctz,
497 unsigned long long new_usage_in_excess)
f64c3f54
BS
498{
499 struct rb_node **p = &mctz->rb_root.rb_node;
500 struct rb_node *parent = NULL;
501 struct mem_cgroup_per_zone *mz_node;
502
503 if (mz->on_tree)
504 return;
505
ef8745c1
KH
506 mz->usage_in_excess = new_usage_in_excess;
507 if (!mz->usage_in_excess)
508 return;
f64c3f54
BS
509 while (*p) {
510 parent = *p;
511 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
512 tree_node);
513 if (mz->usage_in_excess < mz_node->usage_in_excess)
514 p = &(*p)->rb_left;
515 /*
516 * We can't avoid mem cgroups that are over their soft
517 * limit by the same amount
518 */
519 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
520 p = &(*p)->rb_right;
521 }
522 rb_link_node(&mz->tree_node, parent, p);
523 rb_insert_color(&mz->tree_node, &mctz->rb_root);
524 mz->on_tree = true;
4e416953
BS
525}
526
527static void
c0ff4b85 528__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
529 struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
531{
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536}
537
f64c3f54 538static void
c0ff4b85 539mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
540 struct mem_cgroup_per_zone *mz,
541 struct mem_cgroup_tree_per_zone *mctz)
542{
543 spin_lock(&mctz->lock);
c0ff4b85 544 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
545 spin_unlock(&mctz->lock);
546}
547
f64c3f54 548
c0ff4b85 549static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 550{
ef8745c1 551 unsigned long long excess;
f64c3f54
BS
552 struct mem_cgroup_per_zone *mz;
553 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
554 int nid = page_to_nid(page);
555 int zid = page_zonenum(page);
f64c3f54
BS
556 mctz = soft_limit_tree_from_page(page);
557
558 /*
4e649152
KH
559 * Necessary to update all ancestors when hierarchy is used.
560 * because their event counter is not touched.
f64c3f54 561 */
c0ff4b85
R
562 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
563 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
564 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
565 /*
566 * We have to update the tree if mz is on RB-tree or
567 * mem is over its softlimit.
568 */
ef8745c1 569 if (excess || mz->on_tree) {
4e649152
KH
570 spin_lock(&mctz->lock);
571 /* if on-tree, remove it */
572 if (mz->on_tree)
c0ff4b85 573 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 574 /*
ef8745c1
KH
575 * Insert again. mz->usage_in_excess will be updated.
576 * If excess is 0, no tree ops.
4e649152 577 */
c0ff4b85 578 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
579 spin_unlock(&mctz->lock);
580 }
f64c3f54
BS
581 }
582}
583
c0ff4b85 584static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
585{
586 int node, zone;
587 struct mem_cgroup_per_zone *mz;
588 struct mem_cgroup_tree_per_zone *mctz;
589
3ed28fa1 590 for_each_node(node) {
f64c3f54 591 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 592 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 593 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 594 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
595 }
596 }
597}
598
4e416953
BS
599static struct mem_cgroup_per_zone *
600__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
601{
602 struct rb_node *rightmost = NULL;
26251eaf 603 struct mem_cgroup_per_zone *mz;
4e416953
BS
604
605retry:
26251eaf 606 mz = NULL;
4e416953
BS
607 rightmost = rb_last(&mctz->rb_root);
608 if (!rightmost)
609 goto done; /* Nothing to reclaim from */
610
611 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
612 /*
613 * Remove the node now but someone else can add it back,
614 * we will to add it back at the end of reclaim to its correct
615 * position in the tree.
616 */
d79154bb
HD
617 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
618 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
619 !css_tryget(&mz->memcg->css))
4e416953
BS
620 goto retry;
621done:
622 return mz;
623}
624
625static struct mem_cgroup_per_zone *
626mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
627{
628 struct mem_cgroup_per_zone *mz;
629
630 spin_lock(&mctz->lock);
631 mz = __mem_cgroup_largest_soft_limit_node(mctz);
632 spin_unlock(&mctz->lock);
633 return mz;
634}
635
711d3d2c
KH
636/*
637 * Implementation Note: reading percpu statistics for memcg.
638 *
639 * Both of vmstat[] and percpu_counter has threshold and do periodic
640 * synchronization to implement "quick" read. There are trade-off between
641 * reading cost and precision of value. Then, we may have a chance to implement
642 * a periodic synchronizion of counter in memcg's counter.
643 *
644 * But this _read() function is used for user interface now. The user accounts
645 * memory usage by memory cgroup and he _always_ requires exact value because
646 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647 * have to visit all online cpus and make sum. So, for now, unnecessary
648 * synchronization is not implemented. (just implemented for cpu hotplug)
649 *
650 * If there are kernel internal actions which can make use of some not-exact
651 * value, and reading all cpu value can be performance bottleneck in some
652 * common workload, threashold and synchonization as vmstat[] should be
653 * implemented.
654 */
c0ff4b85 655static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 656 enum mem_cgroup_stat_index idx)
c62b1a3b 657{
7a159cc9 658 long val = 0;
c62b1a3b 659 int cpu;
c62b1a3b 660
711d3d2c
KH
661 get_online_cpus();
662 for_each_online_cpu(cpu)
c0ff4b85 663 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 664#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
665 spin_lock(&memcg->pcp_counter_lock);
666 val += memcg->nocpu_base.count[idx];
667 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
668#endif
669 put_online_cpus();
c62b1a3b
KH
670 return val;
671}
672
c0ff4b85 673static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
674 bool charge)
675{
676 int val = (charge) ? 1 : -1;
c0ff4b85 677 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
678}
679
c0ff4b85 680static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
681 enum mem_cgroup_events_index idx)
682{
683 unsigned long val = 0;
684 int cpu;
685
686 for_each_online_cpu(cpu)
c0ff4b85 687 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 688#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
689 spin_lock(&memcg->pcp_counter_lock);
690 val += memcg->nocpu_base.events[idx];
691 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
692#endif
693 return val;
694}
695
c0ff4b85 696static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 697 bool anon, int nr_pages)
d52aa412 698{
c62b1a3b
KH
699 preempt_disable();
700
b2402857
KH
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
705 if (anon)
706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 707 nr_pages);
d52aa412 708 else
b2402857 709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 710 nr_pages);
55e462b0 711
e401f176
KH
712 /* pagein of a big page is an event. So, ignore page size */
713 if (nr_pages > 0)
c0ff4b85 714 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 715 else {
c0ff4b85 716 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
717 nr_pages = -nr_pages; /* for event */
718 }
e401f176 719
c0ff4b85 720 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 721
c62b1a3b 722 preempt_enable();
6d12e2d8
KH
723}
724
bb2a0de9 725unsigned long
074291fe
KK
726mem_cgroup_get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
727{
728 struct mem_cgroup_per_zone *mz;
729
730 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
731 return mz->lru_size[lru];
732}
733
734static unsigned long
c0ff4b85 735mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 736 unsigned int lru_mask)
889976db
YH
737{
738 struct mem_cgroup_per_zone *mz;
f156ab93 739 enum lru_list lru;
bb2a0de9
KH
740 unsigned long ret = 0;
741
c0ff4b85 742 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 743
f156ab93
HD
744 for_each_lru(lru) {
745 if (BIT(lru) & lru_mask)
746 ret += mz->lru_size[lru];
bb2a0de9
KH
747 }
748 return ret;
749}
750
751static unsigned long
c0ff4b85 752mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
753 int nid, unsigned int lru_mask)
754{
889976db
YH
755 u64 total = 0;
756 int zid;
757
bb2a0de9 758 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
759 total += mem_cgroup_zone_nr_lru_pages(memcg,
760 nid, zid, lru_mask);
bb2a0de9 761
889976db
YH
762 return total;
763}
bb2a0de9 764
c0ff4b85 765static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 766 unsigned int lru_mask)
6d12e2d8 767{
889976db 768 int nid;
6d12e2d8
KH
769 u64 total = 0;
770
bb2a0de9 771 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 772 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 773 return total;
d52aa412
KH
774}
775
f53d7ce3
JW
776static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
777 enum mem_cgroup_events_target target)
7a159cc9
JW
778{
779 unsigned long val, next;
780
4799401f
SR
781 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
782 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 783 /* from time_after() in jiffies.h */
f53d7ce3
JW
784 if ((long)next - (long)val < 0) {
785 switch (target) {
786 case MEM_CGROUP_TARGET_THRESH:
787 next = val + THRESHOLDS_EVENTS_TARGET;
788 break;
789 case MEM_CGROUP_TARGET_SOFTLIMIT:
790 next = val + SOFTLIMIT_EVENTS_TARGET;
791 break;
792 case MEM_CGROUP_TARGET_NUMAINFO:
793 next = val + NUMAINFO_EVENTS_TARGET;
794 break;
795 default:
796 break;
797 }
798 __this_cpu_write(memcg->stat->targets[target], next);
799 return true;
7a159cc9 800 }
f53d7ce3 801 return false;
d2265e6f
KH
802}
803
804/*
805 * Check events in order.
806 *
807 */
c0ff4b85 808static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 809{
4799401f 810 preempt_disable();
d2265e6f 811 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
812 if (unlikely(mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
814 bool do_softlimit;
815 bool do_numainfo __maybe_unused;
f53d7ce3
JW
816
817 do_softlimit = mem_cgroup_event_ratelimit(memcg,
818 MEM_CGROUP_TARGET_SOFTLIMIT);
819#if MAX_NUMNODES > 1
820 do_numainfo = mem_cgroup_event_ratelimit(memcg,
821 MEM_CGROUP_TARGET_NUMAINFO);
822#endif
823 preempt_enable();
824
c0ff4b85 825 mem_cgroup_threshold(memcg);
f53d7ce3 826 if (unlikely(do_softlimit))
c0ff4b85 827 mem_cgroup_update_tree(memcg, page);
453a9bf3 828#if MAX_NUMNODES > 1
f53d7ce3 829 if (unlikely(do_numainfo))
c0ff4b85 830 atomic_inc(&memcg->numainfo_events);
453a9bf3 831#endif
f53d7ce3
JW
832 } else
833 preempt_enable();
d2265e6f
KH
834}
835
d1a4c0b3 836struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
837{
838 return container_of(cgroup_subsys_state(cont,
839 mem_cgroup_subsys_id), struct mem_cgroup,
840 css);
841}
842
cf475ad2 843struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 844{
31a78f23
BS
845 /*
846 * mm_update_next_owner() may clear mm->owner to NULL
847 * if it races with swapoff, page migration, etc.
848 * So this can be called with p == NULL.
849 */
850 if (unlikely(!p))
851 return NULL;
852
78fb7466
PE
853 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
854 struct mem_cgroup, css);
855}
856
a433658c 857struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 858{
c0ff4b85 859 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
860
861 if (!mm)
862 return NULL;
54595fe2
KH
863 /*
864 * Because we have no locks, mm->owner's may be being moved to other
865 * cgroup. We use css_tryget() here even if this looks
866 * pessimistic (rather than adding locks here).
867 */
868 rcu_read_lock();
869 do {
c0ff4b85
R
870 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
871 if (unlikely(!memcg))
54595fe2 872 break;
c0ff4b85 873 } while (!css_tryget(&memcg->css));
54595fe2 874 rcu_read_unlock();
c0ff4b85 875 return memcg;
54595fe2
KH
876}
877
5660048c
JW
878/**
879 * mem_cgroup_iter - iterate over memory cgroup hierarchy
880 * @root: hierarchy root
881 * @prev: previously returned memcg, NULL on first invocation
882 * @reclaim: cookie for shared reclaim walks, NULL for full walks
883 *
884 * Returns references to children of the hierarchy below @root, or
885 * @root itself, or %NULL after a full round-trip.
886 *
887 * Caller must pass the return value in @prev on subsequent
888 * invocations for reference counting, or use mem_cgroup_iter_break()
889 * to cancel a hierarchy walk before the round-trip is complete.
890 *
891 * Reclaimers can specify a zone and a priority level in @reclaim to
892 * divide up the memcgs in the hierarchy among all concurrent
893 * reclaimers operating on the same zone and priority.
894 */
895struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
896 struct mem_cgroup *prev,
897 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 898{
9f3a0d09
JW
899 struct mem_cgroup *memcg = NULL;
900 int id = 0;
711d3d2c 901
5660048c
JW
902 if (mem_cgroup_disabled())
903 return NULL;
904
9f3a0d09
JW
905 if (!root)
906 root = root_mem_cgroup;
7d74b06f 907
9f3a0d09
JW
908 if (prev && !reclaim)
909 id = css_id(&prev->css);
14067bb3 910
9f3a0d09
JW
911 if (prev && prev != root)
912 css_put(&prev->css);
14067bb3 913
9f3a0d09
JW
914 if (!root->use_hierarchy && root != root_mem_cgroup) {
915 if (prev)
916 return NULL;
917 return root;
918 }
14067bb3 919
9f3a0d09 920 while (!memcg) {
527a5ec9 921 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 922 struct cgroup_subsys_state *css;
711d3d2c 923
527a5ec9
JW
924 if (reclaim) {
925 int nid = zone_to_nid(reclaim->zone);
926 int zid = zone_idx(reclaim->zone);
927 struct mem_cgroup_per_zone *mz;
928
929 mz = mem_cgroup_zoneinfo(root, nid, zid);
930 iter = &mz->reclaim_iter[reclaim->priority];
931 if (prev && reclaim->generation != iter->generation)
932 return NULL;
933 id = iter->position;
934 }
7d74b06f 935
9f3a0d09
JW
936 rcu_read_lock();
937 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
938 if (css) {
939 if (css == &root->css || css_tryget(css))
940 memcg = container_of(css,
941 struct mem_cgroup, css);
942 } else
943 id = 0;
14067bb3 944 rcu_read_unlock();
14067bb3 945
527a5ec9
JW
946 if (reclaim) {
947 iter->position = id;
948 if (!css)
949 iter->generation++;
950 else if (!prev && memcg)
951 reclaim->generation = iter->generation;
952 }
9f3a0d09
JW
953
954 if (prev && !css)
955 return NULL;
956 }
957 return memcg;
14067bb3 958}
7d74b06f 959
5660048c
JW
960/**
961 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
962 * @root: hierarchy root
963 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
964 */
965void mem_cgroup_iter_break(struct mem_cgroup *root,
966 struct mem_cgroup *prev)
9f3a0d09
JW
967{
968 if (!root)
969 root = root_mem_cgroup;
970 if (prev && prev != root)
971 css_put(&prev->css);
972}
7d74b06f 973
9f3a0d09
JW
974/*
975 * Iteration constructs for visiting all cgroups (under a tree). If
976 * loops are exited prematurely (break), mem_cgroup_iter_break() must
977 * be used for reference counting.
978 */
979#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 980 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 981 iter != NULL; \
527a5ec9 982 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 983
9f3a0d09 984#define for_each_mem_cgroup(iter) \
527a5ec9 985 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 986 iter != NULL; \
527a5ec9 987 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 988
c0ff4b85 989static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 990{
c0ff4b85 991 return (memcg == root_mem_cgroup);
4b3bde4c
BS
992}
993
456f998e
YH
994void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
995{
c0ff4b85 996 struct mem_cgroup *memcg;
456f998e
YH
997
998 if (!mm)
999 return;
1000
1001 rcu_read_lock();
c0ff4b85
R
1002 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1003 if (unlikely(!memcg))
456f998e
YH
1004 goto out;
1005
1006 switch (idx) {
456f998e 1007 case PGFAULT:
0e574a93
JW
1008 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1009 break;
1010 case PGMAJFAULT:
1011 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1012 break;
1013 default:
1014 BUG();
1015 }
1016out:
1017 rcu_read_unlock();
1018}
1019EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1020
925b7673
JW
1021/**
1022 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1023 * @zone: zone of the wanted lruvec
1024 * @mem: memcg of the wanted lruvec
1025 *
1026 * Returns the lru list vector holding pages for the given @zone and
1027 * @mem. This can be the global zone lruvec, if the memory controller
1028 * is disabled.
1029 */
1030struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1031 struct mem_cgroup *memcg)
1032{
1033 struct mem_cgroup_per_zone *mz;
1034
1035 if (mem_cgroup_disabled())
1036 return &zone->lruvec;
1037
1038 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1039 return &mz->lruvec;
1040}
1041
08e552c6
KH
1042/*
1043 * Following LRU functions are allowed to be used without PCG_LOCK.
1044 * Operations are called by routine of global LRU independently from memcg.
1045 * What we have to take care of here is validness of pc->mem_cgroup.
1046 *
1047 * Changes to pc->mem_cgroup happens when
1048 * 1. charge
1049 * 2. moving account
1050 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1051 * It is added to LRU before charge.
1052 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1053 * When moving account, the page is not on LRU. It's isolated.
1054 */
4f98a2fe 1055
925b7673
JW
1056/**
1057 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1058 * @zone: zone of the page
1059 * @page: the page
1060 * @lru: current lru
1061 *
1062 * This function accounts for @page being added to @lru, and returns
1063 * the lruvec for the given @zone and the memcg @page is charged to.
1064 *
1065 * The callsite is then responsible for physically linking the page to
1066 * the returned lruvec->lists[@lru].
1067 */
1068struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1069 enum lru_list lru)
08e552c6 1070{
08e552c6 1071 struct mem_cgroup_per_zone *mz;
925b7673
JW
1072 struct mem_cgroup *memcg;
1073 struct page_cgroup *pc;
6d12e2d8 1074
f8d66542 1075 if (mem_cgroup_disabled())
925b7673
JW
1076 return &zone->lruvec;
1077
08e552c6 1078 pc = lookup_page_cgroup(page);
38c5d72f 1079 memcg = pc->mem_cgroup;
7512102c
HD
1080
1081 /*
1082 * Surreptitiously switch any uncharged page to root:
1083 * an uncharged page off lru does nothing to secure
1084 * its former mem_cgroup from sudden removal.
1085 *
1086 * Our caller holds lru_lock, and PageCgroupUsed is updated
1087 * under page_cgroup lock: between them, they make all uses
1088 * of pc->mem_cgroup safe.
1089 */
1090 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1091 pc->mem_cgroup = memcg = root_mem_cgroup;
1092
925b7673
JW
1093 mz = page_cgroup_zoneinfo(memcg, page);
1094 /* compound_order() is stabilized through lru_lock */
1eb49272 1095 mz->lru_size[lru] += 1 << compound_order(page);
925b7673 1096 return &mz->lruvec;
08e552c6 1097}
b69408e8 1098
925b7673
JW
1099/**
1100 * mem_cgroup_lru_del_list - account for removing an lru page
1101 * @page: the page
1102 * @lru: target lru
1103 *
1104 * This function accounts for @page being removed from @lru.
1105 *
1106 * The callsite is then responsible for physically unlinking
1107 * @page->lru.
3f58a829 1108 */
925b7673 1109void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1110{
1111 struct mem_cgroup_per_zone *mz;
925b7673 1112 struct mem_cgroup *memcg;
3f58a829 1113 struct page_cgroup *pc;
3f58a829
MK
1114
1115 if (mem_cgroup_disabled())
1116 return;
1117
1118 pc = lookup_page_cgroup(page);
38c5d72f
KH
1119 memcg = pc->mem_cgroup;
1120 VM_BUG_ON(!memcg);
925b7673
JW
1121 mz = page_cgroup_zoneinfo(memcg, page);
1122 /* huge page split is done under lru_lock. so, we have no races. */
1eb49272
HD
1123 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1124 mz->lru_size[lru] -= 1 << compound_order(page);
3f58a829
MK
1125}
1126
925b7673
JW
1127/**
1128 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1129 * @zone: zone of the page
1130 * @page: the page
1131 * @from: current lru
1132 * @to: target lru
1133 *
1134 * This function accounts for @page being moved between the lrus @from
1135 * and @to, and returns the lruvec for the given @zone and the memcg
1136 * @page is charged to.
1137 *
1138 * The callsite is then responsible for physically relinking
1139 * @page->lru to the returned lruvec->lists[@to].
1140 */
1141struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1142 struct page *page,
1143 enum lru_list from,
1144 enum lru_list to)
66e1707b 1145{
925b7673
JW
1146 /* XXX: Optimize this, especially for @from == @to */
1147 mem_cgroup_lru_del_list(page, from);
1148 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1149}
544122e5 1150
3e92041d 1151/*
c0ff4b85 1152 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1153 * hierarchy subtree
1154 */
c3ac9a8a
JW
1155bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1156 struct mem_cgroup *memcg)
3e92041d 1157{
91c63734
JW
1158 if (root_memcg == memcg)
1159 return true;
1160 if (!root_memcg->use_hierarchy)
1161 return false;
c3ac9a8a
JW
1162 return css_is_ancestor(&memcg->css, &root_memcg->css);
1163}
1164
1165static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1166 struct mem_cgroup *memcg)
1167{
1168 bool ret;
1169
91c63734 1170 rcu_read_lock();
c3ac9a8a 1171 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1172 rcu_read_unlock();
1173 return ret;
3e92041d
MH
1174}
1175
c0ff4b85 1176int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1177{
1178 int ret;
0b7f569e 1179 struct mem_cgroup *curr = NULL;
158e0a2d 1180 struct task_struct *p;
4c4a2214 1181
158e0a2d 1182 p = find_lock_task_mm(task);
de077d22
DR
1183 if (p) {
1184 curr = try_get_mem_cgroup_from_mm(p->mm);
1185 task_unlock(p);
1186 } else {
1187 /*
1188 * All threads may have already detached their mm's, but the oom
1189 * killer still needs to detect if they have already been oom
1190 * killed to prevent needlessly killing additional tasks.
1191 */
1192 task_lock(task);
1193 curr = mem_cgroup_from_task(task);
1194 if (curr)
1195 css_get(&curr->css);
1196 task_unlock(task);
1197 }
0b7f569e
KH
1198 if (!curr)
1199 return 0;
d31f56db 1200 /*
c0ff4b85 1201 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1202 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1203 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1204 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1205 */
c0ff4b85 1206 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1207 css_put(&curr->css);
4c4a2214
DR
1208 return ret;
1209}
1210
9b272977 1211int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1212{
9b272977
JW
1213 unsigned long inactive_ratio;
1214 int nid = zone_to_nid(zone);
1215 int zid = zone_idx(zone);
14797e23 1216 unsigned long inactive;
9b272977 1217 unsigned long active;
c772be93 1218 unsigned long gb;
14797e23 1219
9b272977
JW
1220 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1221 BIT(LRU_INACTIVE_ANON));
1222 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1223 BIT(LRU_ACTIVE_ANON));
14797e23 1224
c772be93
KM
1225 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1226 if (gb)
1227 inactive_ratio = int_sqrt(10 * gb);
1228 else
1229 inactive_ratio = 1;
1230
9b272977 1231 return inactive * inactive_ratio < active;
14797e23
KM
1232}
1233
9b272977 1234int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1235{
1236 unsigned long active;
1237 unsigned long inactive;
9b272977
JW
1238 int zid = zone_idx(zone);
1239 int nid = zone_to_nid(zone);
56e49d21 1240
9b272977
JW
1241 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1242 BIT(LRU_INACTIVE_FILE));
1243 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1244 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1245
1246 return (active > inactive);
1247}
1248
3e2f41f1
KM
1249struct zone_reclaim_stat *
1250mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1251{
1252 struct page_cgroup *pc;
1253 struct mem_cgroup_per_zone *mz;
1254
1255 if (mem_cgroup_disabled())
1256 return NULL;
1257
1258 pc = lookup_page_cgroup(page);
bd112db8
DN
1259 if (!PageCgroupUsed(pc))
1260 return NULL;
713735b4
JW
1261 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1262 smp_rmb();
97a6c37b 1263 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
89abfab1 1264 return &mz->lruvec.reclaim_stat;
3e2f41f1
KM
1265}
1266
6d61ef40
BS
1267#define mem_cgroup_from_res_counter(counter, member) \
1268 container_of(counter, struct mem_cgroup, member)
1269
19942822 1270/**
9d11ea9f
JW
1271 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1272 * @mem: the memory cgroup
19942822 1273 *
9d11ea9f 1274 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1275 * pages.
19942822 1276 */
c0ff4b85 1277static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1278{
9d11ea9f
JW
1279 unsigned long long margin;
1280
c0ff4b85 1281 margin = res_counter_margin(&memcg->res);
9d11ea9f 1282 if (do_swap_account)
c0ff4b85 1283 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1284 return margin >> PAGE_SHIFT;
19942822
JW
1285}
1286
1f4c025b 1287int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1288{
1289 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1290
1291 /* root ? */
1292 if (cgrp->parent == NULL)
1293 return vm_swappiness;
1294
bf1ff263 1295 return memcg->swappiness;
a7885eb8
KM
1296}
1297
619d094b
KH
1298/*
1299 * memcg->moving_account is used for checking possibility that some thread is
1300 * calling move_account(). When a thread on CPU-A starts moving pages under
1301 * a memcg, other threads should check memcg->moving_account under
1302 * rcu_read_lock(), like this:
1303 *
1304 * CPU-A CPU-B
1305 * rcu_read_lock()
1306 * memcg->moving_account+1 if (memcg->mocing_account)
1307 * take heavy locks.
1308 * synchronize_rcu() update something.
1309 * rcu_read_unlock()
1310 * start move here.
1311 */
4331f7d3
KH
1312
1313/* for quick checking without looking up memcg */
1314atomic_t memcg_moving __read_mostly;
1315
c0ff4b85 1316static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1317{
4331f7d3 1318 atomic_inc(&memcg_moving);
619d094b 1319 atomic_inc(&memcg->moving_account);
32047e2a
KH
1320 synchronize_rcu();
1321}
1322
c0ff4b85 1323static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1324{
619d094b
KH
1325 /*
1326 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1327 * We check NULL in callee rather than caller.
1328 */
4331f7d3
KH
1329 if (memcg) {
1330 atomic_dec(&memcg_moving);
619d094b 1331 atomic_dec(&memcg->moving_account);
4331f7d3 1332 }
32047e2a 1333}
619d094b 1334
32047e2a
KH
1335/*
1336 * 2 routines for checking "mem" is under move_account() or not.
1337 *
13fd1dd9
AM
1338 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1339 * is used for avoiding races in accounting. If true,
32047e2a
KH
1340 * pc->mem_cgroup may be overwritten.
1341 *
1342 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1343 * under hierarchy of moving cgroups. This is for
1344 * waiting at hith-memory prressure caused by "move".
1345 */
1346
13fd1dd9 1347static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1348{
1349 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1350 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1351}
4b534334 1352
c0ff4b85 1353static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1354{
2bd9bb20
KH
1355 struct mem_cgroup *from;
1356 struct mem_cgroup *to;
4b534334 1357 bool ret = false;
2bd9bb20
KH
1358 /*
1359 * Unlike task_move routines, we access mc.to, mc.from not under
1360 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1361 */
1362 spin_lock(&mc.lock);
1363 from = mc.from;
1364 to = mc.to;
1365 if (!from)
1366 goto unlock;
3e92041d 1367
c0ff4b85
R
1368 ret = mem_cgroup_same_or_subtree(memcg, from)
1369 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1370unlock:
1371 spin_unlock(&mc.lock);
4b534334
KH
1372 return ret;
1373}
1374
c0ff4b85 1375static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1376{
1377 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1378 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1379 DEFINE_WAIT(wait);
1380 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1381 /* moving charge context might have finished. */
1382 if (mc.moving_task)
1383 schedule();
1384 finish_wait(&mc.waitq, &wait);
1385 return true;
1386 }
1387 }
1388 return false;
1389}
1390
312734c0
KH
1391/*
1392 * Take this lock when
1393 * - a code tries to modify page's memcg while it's USED.
1394 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1395 * see mem_cgroup_stolen(), too.
312734c0
KH
1396 */
1397static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1398 unsigned long *flags)
1399{
1400 spin_lock_irqsave(&memcg->move_lock, *flags);
1401}
1402
1403static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1404 unsigned long *flags)
1405{
1406 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1407}
1408
e222432b 1409/**
6a6135b6 1410 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1411 * @memcg: The memory cgroup that went over limit
1412 * @p: Task that is going to be killed
1413 *
1414 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1415 * enabled
1416 */
1417void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1418{
1419 struct cgroup *task_cgrp;
1420 struct cgroup *mem_cgrp;
1421 /*
1422 * Need a buffer in BSS, can't rely on allocations. The code relies
1423 * on the assumption that OOM is serialized for memory controller.
1424 * If this assumption is broken, revisit this code.
1425 */
1426 static char memcg_name[PATH_MAX];
1427 int ret;
1428
d31f56db 1429 if (!memcg || !p)
e222432b
BS
1430 return;
1431
e222432b
BS
1432 rcu_read_lock();
1433
1434 mem_cgrp = memcg->css.cgroup;
1435 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1436
1437 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1438 if (ret < 0) {
1439 /*
1440 * Unfortunately, we are unable to convert to a useful name
1441 * But we'll still print out the usage information
1442 */
1443 rcu_read_unlock();
1444 goto done;
1445 }
1446 rcu_read_unlock();
1447
1448 printk(KERN_INFO "Task in %s killed", memcg_name);
1449
1450 rcu_read_lock();
1451 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1452 if (ret < 0) {
1453 rcu_read_unlock();
1454 goto done;
1455 }
1456 rcu_read_unlock();
1457
1458 /*
1459 * Continues from above, so we don't need an KERN_ level
1460 */
1461 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1462done:
1463
1464 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1465 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1466 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1467 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1468 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1469 "failcnt %llu\n",
1470 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1471 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1472 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1473}
1474
81d39c20
KH
1475/*
1476 * This function returns the number of memcg under hierarchy tree. Returns
1477 * 1(self count) if no children.
1478 */
c0ff4b85 1479static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1480{
1481 int num = 0;
7d74b06f
KH
1482 struct mem_cgroup *iter;
1483
c0ff4b85 1484 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1485 num++;
81d39c20
KH
1486 return num;
1487}
1488
a63d83f4
DR
1489/*
1490 * Return the memory (and swap, if configured) limit for a memcg.
1491 */
1492u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1493{
1494 u64 limit;
1495 u64 memsw;
1496
f3e8eb70
JW
1497 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1498 limit += total_swap_pages << PAGE_SHIFT;
1499
a63d83f4
DR
1500 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1501 /*
1502 * If memsw is finite and limits the amount of swap space available
1503 * to this memcg, return that limit.
1504 */
1505 return min(limit, memsw);
1506}
1507
5660048c
JW
1508static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1509 gfp_t gfp_mask,
1510 unsigned long flags)
1511{
1512 unsigned long total = 0;
1513 bool noswap = false;
1514 int loop;
1515
1516 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1517 noswap = true;
1518 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1519 noswap = true;
1520
1521 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1522 if (loop)
1523 drain_all_stock_async(memcg);
1524 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1525 /*
1526 * Allow limit shrinkers, which are triggered directly
1527 * by userspace, to catch signals and stop reclaim
1528 * after minimal progress, regardless of the margin.
1529 */
1530 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1531 break;
1532 if (mem_cgroup_margin(memcg))
1533 break;
1534 /*
1535 * If nothing was reclaimed after two attempts, there
1536 * may be no reclaimable pages in this hierarchy.
1537 */
1538 if (loop && !total)
1539 break;
1540 }
1541 return total;
1542}
1543
4d0c066d
KH
1544/**
1545 * test_mem_cgroup_node_reclaimable
1546 * @mem: the target memcg
1547 * @nid: the node ID to be checked.
1548 * @noswap : specify true here if the user wants flle only information.
1549 *
1550 * This function returns whether the specified memcg contains any
1551 * reclaimable pages on a node. Returns true if there are any reclaimable
1552 * pages in the node.
1553 */
c0ff4b85 1554static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1555 int nid, bool noswap)
1556{
c0ff4b85 1557 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1558 return true;
1559 if (noswap || !total_swap_pages)
1560 return false;
c0ff4b85 1561 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1562 return true;
1563 return false;
1564
1565}
889976db
YH
1566#if MAX_NUMNODES > 1
1567
1568/*
1569 * Always updating the nodemask is not very good - even if we have an empty
1570 * list or the wrong list here, we can start from some node and traverse all
1571 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1572 *
1573 */
c0ff4b85 1574static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1575{
1576 int nid;
453a9bf3
KH
1577 /*
1578 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1579 * pagein/pageout changes since the last update.
1580 */
c0ff4b85 1581 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1582 return;
c0ff4b85 1583 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1584 return;
1585
889976db 1586 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1587 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1588
1589 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1590
c0ff4b85
R
1591 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1592 node_clear(nid, memcg->scan_nodes);
889976db 1593 }
453a9bf3 1594
c0ff4b85
R
1595 atomic_set(&memcg->numainfo_events, 0);
1596 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1597}
1598
1599/*
1600 * Selecting a node where we start reclaim from. Because what we need is just
1601 * reducing usage counter, start from anywhere is O,K. Considering
1602 * memory reclaim from current node, there are pros. and cons.
1603 *
1604 * Freeing memory from current node means freeing memory from a node which
1605 * we'll use or we've used. So, it may make LRU bad. And if several threads
1606 * hit limits, it will see a contention on a node. But freeing from remote
1607 * node means more costs for memory reclaim because of memory latency.
1608 *
1609 * Now, we use round-robin. Better algorithm is welcomed.
1610 */
c0ff4b85 1611int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1612{
1613 int node;
1614
c0ff4b85
R
1615 mem_cgroup_may_update_nodemask(memcg);
1616 node = memcg->last_scanned_node;
889976db 1617
c0ff4b85 1618 node = next_node(node, memcg->scan_nodes);
889976db 1619 if (node == MAX_NUMNODES)
c0ff4b85 1620 node = first_node(memcg->scan_nodes);
889976db
YH
1621 /*
1622 * We call this when we hit limit, not when pages are added to LRU.
1623 * No LRU may hold pages because all pages are UNEVICTABLE or
1624 * memcg is too small and all pages are not on LRU. In that case,
1625 * we use curret node.
1626 */
1627 if (unlikely(node == MAX_NUMNODES))
1628 node = numa_node_id();
1629
c0ff4b85 1630 memcg->last_scanned_node = node;
889976db
YH
1631 return node;
1632}
1633
4d0c066d
KH
1634/*
1635 * Check all nodes whether it contains reclaimable pages or not.
1636 * For quick scan, we make use of scan_nodes. This will allow us to skip
1637 * unused nodes. But scan_nodes is lazily updated and may not cotain
1638 * enough new information. We need to do double check.
1639 */
6bbda35c 1640static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1641{
1642 int nid;
1643
1644 /*
1645 * quick check...making use of scan_node.
1646 * We can skip unused nodes.
1647 */
c0ff4b85
R
1648 if (!nodes_empty(memcg->scan_nodes)) {
1649 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1650 nid < MAX_NUMNODES;
c0ff4b85 1651 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1652
c0ff4b85 1653 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1654 return true;
1655 }
1656 }
1657 /*
1658 * Check rest of nodes.
1659 */
1660 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1661 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1662 continue;
c0ff4b85 1663 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1664 return true;
1665 }
1666 return false;
1667}
1668
889976db 1669#else
c0ff4b85 1670int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1671{
1672 return 0;
1673}
4d0c066d 1674
6bbda35c 1675static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1676{
c0ff4b85 1677 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1678}
889976db
YH
1679#endif
1680
5660048c
JW
1681static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1682 struct zone *zone,
1683 gfp_t gfp_mask,
1684 unsigned long *total_scanned)
6d61ef40 1685{
9f3a0d09 1686 struct mem_cgroup *victim = NULL;
5660048c 1687 int total = 0;
04046e1a 1688 int loop = 0;
9d11ea9f 1689 unsigned long excess;
185efc0f 1690 unsigned long nr_scanned;
527a5ec9
JW
1691 struct mem_cgroup_reclaim_cookie reclaim = {
1692 .zone = zone,
1693 .priority = 0,
1694 };
9d11ea9f 1695
c0ff4b85 1696 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1697
4e416953 1698 while (1) {
527a5ec9 1699 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1700 if (!victim) {
04046e1a 1701 loop++;
4e416953
BS
1702 if (loop >= 2) {
1703 /*
1704 * If we have not been able to reclaim
1705 * anything, it might because there are
1706 * no reclaimable pages under this hierarchy
1707 */
5660048c 1708 if (!total)
4e416953 1709 break;
4e416953 1710 /*
25985edc 1711 * We want to do more targeted reclaim.
4e416953
BS
1712 * excess >> 2 is not to excessive so as to
1713 * reclaim too much, nor too less that we keep
1714 * coming back to reclaim from this cgroup
1715 */
1716 if (total >= (excess >> 2) ||
9f3a0d09 1717 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1718 break;
4e416953 1719 }
9f3a0d09 1720 continue;
4e416953 1721 }
5660048c 1722 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1723 continue;
5660048c
JW
1724 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1725 zone, &nr_scanned);
1726 *total_scanned += nr_scanned;
1727 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1728 break;
6d61ef40 1729 }
9f3a0d09 1730 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1731 return total;
6d61ef40
BS
1732}
1733
867578cb
KH
1734/*
1735 * Check OOM-Killer is already running under our hierarchy.
1736 * If someone is running, return false.
1af8efe9 1737 * Has to be called with memcg_oom_lock
867578cb 1738 */
c0ff4b85 1739static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1740{
79dfdacc 1741 struct mem_cgroup *iter, *failed = NULL;
a636b327 1742
9f3a0d09 1743 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1744 if (iter->oom_lock) {
79dfdacc
MH
1745 /*
1746 * this subtree of our hierarchy is already locked
1747 * so we cannot give a lock.
1748 */
79dfdacc 1749 failed = iter;
9f3a0d09
JW
1750 mem_cgroup_iter_break(memcg, iter);
1751 break;
23751be0
JW
1752 } else
1753 iter->oom_lock = true;
7d74b06f 1754 }
867578cb 1755
79dfdacc 1756 if (!failed)
23751be0 1757 return true;
79dfdacc
MH
1758
1759 /*
1760 * OK, we failed to lock the whole subtree so we have to clean up
1761 * what we set up to the failing subtree
1762 */
9f3a0d09 1763 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1764 if (iter == failed) {
9f3a0d09
JW
1765 mem_cgroup_iter_break(memcg, iter);
1766 break;
79dfdacc
MH
1767 }
1768 iter->oom_lock = false;
1769 }
23751be0 1770 return false;
a636b327 1771}
0b7f569e 1772
79dfdacc 1773/*
1af8efe9 1774 * Has to be called with memcg_oom_lock
79dfdacc 1775 */
c0ff4b85 1776static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1777{
7d74b06f
KH
1778 struct mem_cgroup *iter;
1779
c0ff4b85 1780 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1781 iter->oom_lock = false;
1782 return 0;
1783}
1784
c0ff4b85 1785static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1786{
1787 struct mem_cgroup *iter;
1788
c0ff4b85 1789 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1790 atomic_inc(&iter->under_oom);
1791}
1792
c0ff4b85 1793static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1794{
1795 struct mem_cgroup *iter;
1796
867578cb
KH
1797 /*
1798 * When a new child is created while the hierarchy is under oom,
1799 * mem_cgroup_oom_lock() may not be called. We have to use
1800 * atomic_add_unless() here.
1801 */
c0ff4b85 1802 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1803 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1804}
1805
1af8efe9 1806static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1807static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1808
dc98df5a 1809struct oom_wait_info {
d79154bb 1810 struct mem_cgroup *memcg;
dc98df5a
KH
1811 wait_queue_t wait;
1812};
1813
1814static int memcg_oom_wake_function(wait_queue_t *wait,
1815 unsigned mode, int sync, void *arg)
1816{
d79154bb
HD
1817 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1818 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1819 struct oom_wait_info *oom_wait_info;
1820
1821 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1822 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1823
dc98df5a 1824 /*
d79154bb 1825 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1826 * Then we can use css_is_ancestor without taking care of RCU.
1827 */
c0ff4b85
R
1828 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1829 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1830 return 0;
dc98df5a
KH
1831 return autoremove_wake_function(wait, mode, sync, arg);
1832}
1833
c0ff4b85 1834static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1835{
c0ff4b85
R
1836 /* for filtering, pass "memcg" as argument. */
1837 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1838}
1839
c0ff4b85 1840static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1841{
c0ff4b85
R
1842 if (memcg && atomic_read(&memcg->under_oom))
1843 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1844}
1845
867578cb
KH
1846/*
1847 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1848 */
6bbda35c
KS
1849static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1850 int order)
0b7f569e 1851{
dc98df5a 1852 struct oom_wait_info owait;
3c11ecf4 1853 bool locked, need_to_kill;
867578cb 1854
d79154bb 1855 owait.memcg = memcg;
dc98df5a
KH
1856 owait.wait.flags = 0;
1857 owait.wait.func = memcg_oom_wake_function;
1858 owait.wait.private = current;
1859 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1860 need_to_kill = true;
c0ff4b85 1861 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1862
c0ff4b85 1863 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1864 spin_lock(&memcg_oom_lock);
c0ff4b85 1865 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1866 /*
1867 * Even if signal_pending(), we can't quit charge() loop without
1868 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1869 * under OOM is always welcomed, use TASK_KILLABLE here.
1870 */
3c11ecf4 1871 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1872 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1873 need_to_kill = false;
1874 if (locked)
c0ff4b85 1875 mem_cgroup_oom_notify(memcg);
1af8efe9 1876 spin_unlock(&memcg_oom_lock);
867578cb 1877
3c11ecf4
KH
1878 if (need_to_kill) {
1879 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1880 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1881 } else {
867578cb 1882 schedule();
dc98df5a 1883 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1884 }
1af8efe9 1885 spin_lock(&memcg_oom_lock);
79dfdacc 1886 if (locked)
c0ff4b85
R
1887 mem_cgroup_oom_unlock(memcg);
1888 memcg_wakeup_oom(memcg);
1af8efe9 1889 spin_unlock(&memcg_oom_lock);
867578cb 1890
c0ff4b85 1891 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1892
867578cb
KH
1893 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1894 return false;
1895 /* Give chance to dying process */
715a5ee8 1896 schedule_timeout_uninterruptible(1);
867578cb 1897 return true;
0b7f569e
KH
1898}
1899
d69b042f
BS
1900/*
1901 * Currently used to update mapped file statistics, but the routine can be
1902 * generalized to update other statistics as well.
32047e2a
KH
1903 *
1904 * Notes: Race condition
1905 *
1906 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1907 * it tends to be costly. But considering some conditions, we doesn't need
1908 * to do so _always_.
1909 *
1910 * Considering "charge", lock_page_cgroup() is not required because all
1911 * file-stat operations happen after a page is attached to radix-tree. There
1912 * are no race with "charge".
1913 *
1914 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1915 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1916 * if there are race with "uncharge". Statistics itself is properly handled
1917 * by flags.
1918 *
1919 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1920 * small, we check mm->moving_account and detect there are possibility of race
1921 * If there is, we take a lock.
d69b042f 1922 */
26174efd 1923
89c06bd5
KH
1924void __mem_cgroup_begin_update_page_stat(struct page *page,
1925 bool *locked, unsigned long *flags)
1926{
1927 struct mem_cgroup *memcg;
1928 struct page_cgroup *pc;
1929
1930 pc = lookup_page_cgroup(page);
1931again:
1932 memcg = pc->mem_cgroup;
1933 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1934 return;
1935 /*
1936 * If this memory cgroup is not under account moving, we don't
1937 * need to take move_lock_page_cgroup(). Because we already hold
1938 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1939 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1940 */
13fd1dd9 1941 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1942 return;
1943
1944 move_lock_mem_cgroup(memcg, flags);
1945 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1946 move_unlock_mem_cgroup(memcg, flags);
1947 goto again;
1948 }
1949 *locked = true;
1950}
1951
1952void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1953{
1954 struct page_cgroup *pc = lookup_page_cgroup(page);
1955
1956 /*
1957 * It's guaranteed that pc->mem_cgroup never changes while
1958 * lock is held because a routine modifies pc->mem_cgroup
1959 * should take move_lock_page_cgroup().
1960 */
1961 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1962}
1963
2a7106f2
GT
1964void mem_cgroup_update_page_stat(struct page *page,
1965 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1966{
c0ff4b85 1967 struct mem_cgroup *memcg;
32047e2a 1968 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1969 unsigned long uninitialized_var(flags);
d69b042f 1970
cfa44946 1971 if (mem_cgroup_disabled())
d69b042f 1972 return;
89c06bd5 1973
c0ff4b85
R
1974 memcg = pc->mem_cgroup;
1975 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 1976 return;
26174efd 1977
26174efd 1978 switch (idx) {
2a7106f2 1979 case MEMCG_NR_FILE_MAPPED:
2a7106f2 1980 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1981 break;
1982 default:
1983 BUG();
8725d541 1984 }
d69b042f 1985
c0ff4b85 1986 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 1987}
26174efd 1988
cdec2e42
KH
1989/*
1990 * size of first charge trial. "32" comes from vmscan.c's magic value.
1991 * TODO: maybe necessary to use big numbers in big irons.
1992 */
7ec99d62 1993#define CHARGE_BATCH 32U
cdec2e42
KH
1994struct memcg_stock_pcp {
1995 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1996 unsigned int nr_pages;
cdec2e42 1997 struct work_struct work;
26fe6168 1998 unsigned long flags;
a0db00fc 1999#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2000};
2001static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2002static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2003
2004/*
11c9ea4e 2005 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2006 * from local stock and true is returned. If the stock is 0 or charges from a
2007 * cgroup which is not current target, returns false. This stock will be
2008 * refilled.
2009 */
c0ff4b85 2010static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2011{
2012 struct memcg_stock_pcp *stock;
2013 bool ret = true;
2014
2015 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2016 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2017 stock->nr_pages--;
cdec2e42
KH
2018 else /* need to call res_counter_charge */
2019 ret = false;
2020 put_cpu_var(memcg_stock);
2021 return ret;
2022}
2023
2024/*
2025 * Returns stocks cached in percpu to res_counter and reset cached information.
2026 */
2027static void drain_stock(struct memcg_stock_pcp *stock)
2028{
2029 struct mem_cgroup *old = stock->cached;
2030
11c9ea4e
JW
2031 if (stock->nr_pages) {
2032 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2033
2034 res_counter_uncharge(&old->res, bytes);
cdec2e42 2035 if (do_swap_account)
11c9ea4e
JW
2036 res_counter_uncharge(&old->memsw, bytes);
2037 stock->nr_pages = 0;
cdec2e42
KH
2038 }
2039 stock->cached = NULL;
cdec2e42
KH
2040}
2041
2042/*
2043 * This must be called under preempt disabled or must be called by
2044 * a thread which is pinned to local cpu.
2045 */
2046static void drain_local_stock(struct work_struct *dummy)
2047{
2048 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2049 drain_stock(stock);
26fe6168 2050 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2051}
2052
2053/*
2054 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2055 * This will be consumed by consume_stock() function, later.
cdec2e42 2056 */
c0ff4b85 2057static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2058{
2059 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2060
c0ff4b85 2061 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2062 drain_stock(stock);
c0ff4b85 2063 stock->cached = memcg;
cdec2e42 2064 }
11c9ea4e 2065 stock->nr_pages += nr_pages;
cdec2e42
KH
2066 put_cpu_var(memcg_stock);
2067}
2068
2069/*
c0ff4b85 2070 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2071 * of the hierarchy under it. sync flag says whether we should block
2072 * until the work is done.
cdec2e42 2073 */
c0ff4b85 2074static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2075{
26fe6168 2076 int cpu, curcpu;
d38144b7 2077
cdec2e42 2078 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2079 get_online_cpus();
5af12d0e 2080 curcpu = get_cpu();
cdec2e42
KH
2081 for_each_online_cpu(cpu) {
2082 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2083 struct mem_cgroup *memcg;
26fe6168 2084
c0ff4b85
R
2085 memcg = stock->cached;
2086 if (!memcg || !stock->nr_pages)
26fe6168 2087 continue;
c0ff4b85 2088 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2089 continue;
d1a05b69
MH
2090 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2091 if (cpu == curcpu)
2092 drain_local_stock(&stock->work);
2093 else
2094 schedule_work_on(cpu, &stock->work);
2095 }
cdec2e42 2096 }
5af12d0e 2097 put_cpu();
d38144b7
MH
2098
2099 if (!sync)
2100 goto out;
2101
2102 for_each_online_cpu(cpu) {
2103 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2104 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2105 flush_work(&stock->work);
2106 }
2107out:
cdec2e42 2108 put_online_cpus();
d38144b7
MH
2109}
2110
2111/*
2112 * Tries to drain stocked charges in other cpus. This function is asynchronous
2113 * and just put a work per cpu for draining localy on each cpu. Caller can
2114 * expects some charges will be back to res_counter later but cannot wait for
2115 * it.
2116 */
c0ff4b85 2117static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2118{
9f50fad6
MH
2119 /*
2120 * If someone calls draining, avoid adding more kworker runs.
2121 */
2122 if (!mutex_trylock(&percpu_charge_mutex))
2123 return;
c0ff4b85 2124 drain_all_stock(root_memcg, false);
9f50fad6 2125 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2126}
2127
2128/* This is a synchronous drain interface. */
c0ff4b85 2129static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2130{
2131 /* called when force_empty is called */
9f50fad6 2132 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2133 drain_all_stock(root_memcg, true);
9f50fad6 2134 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2135}
2136
711d3d2c
KH
2137/*
2138 * This function drains percpu counter value from DEAD cpu and
2139 * move it to local cpu. Note that this function can be preempted.
2140 */
c0ff4b85 2141static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2142{
2143 int i;
2144
c0ff4b85 2145 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2146 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2147 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2148
c0ff4b85
R
2149 per_cpu(memcg->stat->count[i], cpu) = 0;
2150 memcg->nocpu_base.count[i] += x;
711d3d2c 2151 }
e9f8974f 2152 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2153 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2154
c0ff4b85
R
2155 per_cpu(memcg->stat->events[i], cpu) = 0;
2156 memcg->nocpu_base.events[i] += x;
e9f8974f 2157 }
c0ff4b85 2158 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2159}
2160
2161static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2162 unsigned long action,
2163 void *hcpu)
2164{
2165 int cpu = (unsigned long)hcpu;
2166 struct memcg_stock_pcp *stock;
711d3d2c 2167 struct mem_cgroup *iter;
cdec2e42 2168
619d094b 2169 if (action == CPU_ONLINE)
1489ebad 2170 return NOTIFY_OK;
1489ebad 2171
d833049b 2172 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2173 return NOTIFY_OK;
711d3d2c 2174
9f3a0d09 2175 for_each_mem_cgroup(iter)
711d3d2c
KH
2176 mem_cgroup_drain_pcp_counter(iter, cpu);
2177
cdec2e42
KH
2178 stock = &per_cpu(memcg_stock, cpu);
2179 drain_stock(stock);
2180 return NOTIFY_OK;
2181}
2182
4b534334
KH
2183
2184/* See __mem_cgroup_try_charge() for details */
2185enum {
2186 CHARGE_OK, /* success */
2187 CHARGE_RETRY, /* need to retry but retry is not bad */
2188 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2189 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2190 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2191};
2192
c0ff4b85 2193static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2194 unsigned int nr_pages, bool oom_check)
4b534334 2195{
7ec99d62 2196 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2197 struct mem_cgroup *mem_over_limit;
2198 struct res_counter *fail_res;
2199 unsigned long flags = 0;
2200 int ret;
2201
c0ff4b85 2202 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2203
2204 if (likely(!ret)) {
2205 if (!do_swap_account)
2206 return CHARGE_OK;
c0ff4b85 2207 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2208 if (likely(!ret))
2209 return CHARGE_OK;
2210
c0ff4b85 2211 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2212 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2213 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2214 } else
2215 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2216 /*
7ec99d62
JW
2217 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2218 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2219 *
2220 * Never reclaim on behalf of optional batching, retry with a
2221 * single page instead.
2222 */
7ec99d62 2223 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2224 return CHARGE_RETRY;
2225
2226 if (!(gfp_mask & __GFP_WAIT))
2227 return CHARGE_WOULDBLOCK;
2228
5660048c 2229 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2230 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2231 return CHARGE_RETRY;
4b534334 2232 /*
19942822
JW
2233 * Even though the limit is exceeded at this point, reclaim
2234 * may have been able to free some pages. Retry the charge
2235 * before killing the task.
2236 *
2237 * Only for regular pages, though: huge pages are rather
2238 * unlikely to succeed so close to the limit, and we fall back
2239 * to regular pages anyway in case of failure.
4b534334 2240 */
7ec99d62 2241 if (nr_pages == 1 && ret)
4b534334
KH
2242 return CHARGE_RETRY;
2243
2244 /*
2245 * At task move, charge accounts can be doubly counted. So, it's
2246 * better to wait until the end of task_move if something is going on.
2247 */
2248 if (mem_cgroup_wait_acct_move(mem_over_limit))
2249 return CHARGE_RETRY;
2250
2251 /* If we don't need to call oom-killer at el, return immediately */
2252 if (!oom_check)
2253 return CHARGE_NOMEM;
2254 /* check OOM */
e845e199 2255 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2256 return CHARGE_OOM_DIE;
2257
2258 return CHARGE_RETRY;
2259}
2260
f817ed48 2261/*
38c5d72f
KH
2262 * __mem_cgroup_try_charge() does
2263 * 1. detect memcg to be charged against from passed *mm and *ptr,
2264 * 2. update res_counter
2265 * 3. call memory reclaim if necessary.
2266 *
2267 * In some special case, if the task is fatal, fatal_signal_pending() or
2268 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2269 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2270 * as possible without any hazards. 2: all pages should have a valid
2271 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2272 * pointer, that is treated as a charge to root_mem_cgroup.
2273 *
2274 * So __mem_cgroup_try_charge() will return
2275 * 0 ... on success, filling *ptr with a valid memcg pointer.
2276 * -ENOMEM ... charge failure because of resource limits.
2277 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2278 *
2279 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2280 * the oom-killer can be invoked.
8a9f3ccd 2281 */
f817ed48 2282static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2283 gfp_t gfp_mask,
7ec99d62 2284 unsigned int nr_pages,
c0ff4b85 2285 struct mem_cgroup **ptr,
7ec99d62 2286 bool oom)
8a9f3ccd 2287{
7ec99d62 2288 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2289 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2290 struct mem_cgroup *memcg = NULL;
4b534334 2291 int ret;
a636b327 2292
867578cb
KH
2293 /*
2294 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2295 * in system level. So, allow to go ahead dying process in addition to
2296 * MEMDIE process.
2297 */
2298 if (unlikely(test_thread_flag(TIF_MEMDIE)
2299 || fatal_signal_pending(current)))
2300 goto bypass;
a636b327 2301
8a9f3ccd 2302 /*
3be91277
HD
2303 * We always charge the cgroup the mm_struct belongs to.
2304 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2305 * thread group leader migrates. It's possible that mm is not
2306 * set, if so charge the init_mm (happens for pagecache usage).
2307 */
c0ff4b85 2308 if (!*ptr && !mm)
38c5d72f 2309 *ptr = root_mem_cgroup;
f75ca962 2310again:
c0ff4b85
R
2311 if (*ptr) { /* css should be a valid one */
2312 memcg = *ptr;
2313 VM_BUG_ON(css_is_removed(&memcg->css));
2314 if (mem_cgroup_is_root(memcg))
f75ca962 2315 goto done;
c0ff4b85 2316 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2317 goto done;
c0ff4b85 2318 css_get(&memcg->css);
4b534334 2319 } else {
f75ca962 2320 struct task_struct *p;
54595fe2 2321
f75ca962
KH
2322 rcu_read_lock();
2323 p = rcu_dereference(mm->owner);
f75ca962 2324 /*
ebb76ce1 2325 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2326 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2327 * race with swapoff. Then, we have small risk of mis-accouning.
2328 * But such kind of mis-account by race always happens because
2329 * we don't have cgroup_mutex(). It's overkill and we allo that
2330 * small race, here.
2331 * (*) swapoff at el will charge against mm-struct not against
2332 * task-struct. So, mm->owner can be NULL.
f75ca962 2333 */
c0ff4b85 2334 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2335 if (!memcg)
2336 memcg = root_mem_cgroup;
2337 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2338 rcu_read_unlock();
2339 goto done;
2340 }
c0ff4b85 2341 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2342 /*
2343 * It seems dagerous to access memcg without css_get().
2344 * But considering how consume_stok works, it's not
2345 * necessary. If consume_stock success, some charges
2346 * from this memcg are cached on this cpu. So, we
2347 * don't need to call css_get()/css_tryget() before
2348 * calling consume_stock().
2349 */
2350 rcu_read_unlock();
2351 goto done;
2352 }
2353 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2354 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2355 rcu_read_unlock();
2356 goto again;
2357 }
2358 rcu_read_unlock();
2359 }
8a9f3ccd 2360
4b534334
KH
2361 do {
2362 bool oom_check;
7a81b88c 2363
4b534334 2364 /* If killed, bypass charge */
f75ca962 2365 if (fatal_signal_pending(current)) {
c0ff4b85 2366 css_put(&memcg->css);
4b534334 2367 goto bypass;
f75ca962 2368 }
6d61ef40 2369
4b534334
KH
2370 oom_check = false;
2371 if (oom && !nr_oom_retries) {
2372 oom_check = true;
2373 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2374 }
66e1707b 2375
c0ff4b85 2376 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2377 switch (ret) {
2378 case CHARGE_OK:
2379 break;
2380 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2381 batch = nr_pages;
c0ff4b85
R
2382 css_put(&memcg->css);
2383 memcg = NULL;
f75ca962 2384 goto again;
4b534334 2385 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2386 css_put(&memcg->css);
4b534334
KH
2387 goto nomem;
2388 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2389 if (!oom) {
c0ff4b85 2390 css_put(&memcg->css);
867578cb 2391 goto nomem;
f75ca962 2392 }
4b534334
KH
2393 /* If oom, we never return -ENOMEM */
2394 nr_oom_retries--;
2395 break;
2396 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2397 css_put(&memcg->css);
867578cb 2398 goto bypass;
66e1707b 2399 }
4b534334
KH
2400 } while (ret != CHARGE_OK);
2401
7ec99d62 2402 if (batch > nr_pages)
c0ff4b85
R
2403 refill_stock(memcg, batch - nr_pages);
2404 css_put(&memcg->css);
0c3e73e8 2405done:
c0ff4b85 2406 *ptr = memcg;
7a81b88c
KH
2407 return 0;
2408nomem:
c0ff4b85 2409 *ptr = NULL;
7a81b88c 2410 return -ENOMEM;
867578cb 2411bypass:
38c5d72f
KH
2412 *ptr = root_mem_cgroup;
2413 return -EINTR;
7a81b88c 2414}
8a9f3ccd 2415
a3032a2c
DN
2416/*
2417 * Somemtimes we have to undo a charge we got by try_charge().
2418 * This function is for that and do uncharge, put css's refcnt.
2419 * gotten by try_charge().
2420 */
c0ff4b85 2421static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2422 unsigned int nr_pages)
a3032a2c 2423{
c0ff4b85 2424 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2425 unsigned long bytes = nr_pages * PAGE_SIZE;
2426
c0ff4b85 2427 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2428 if (do_swap_account)
c0ff4b85 2429 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2430 }
854ffa8d
DN
2431}
2432
a3b2d692
KH
2433/*
2434 * A helper function to get mem_cgroup from ID. must be called under
2435 * rcu_read_lock(). The caller must check css_is_removed() or some if
2436 * it's concern. (dropping refcnt from swap can be called against removed
2437 * memcg.)
2438 */
2439static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2440{
2441 struct cgroup_subsys_state *css;
2442
2443 /* ID 0 is unused ID */
2444 if (!id)
2445 return NULL;
2446 css = css_lookup(&mem_cgroup_subsys, id);
2447 if (!css)
2448 return NULL;
2449 return container_of(css, struct mem_cgroup, css);
2450}
2451
e42d9d5d 2452struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2453{
c0ff4b85 2454 struct mem_cgroup *memcg = NULL;
3c776e64 2455 struct page_cgroup *pc;
a3b2d692 2456 unsigned short id;
b5a84319
KH
2457 swp_entry_t ent;
2458
3c776e64
DN
2459 VM_BUG_ON(!PageLocked(page));
2460
3c776e64 2461 pc = lookup_page_cgroup(page);
c0bd3f63 2462 lock_page_cgroup(pc);
a3b2d692 2463 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2464 memcg = pc->mem_cgroup;
2465 if (memcg && !css_tryget(&memcg->css))
2466 memcg = NULL;
e42d9d5d 2467 } else if (PageSwapCache(page)) {
3c776e64 2468 ent.val = page_private(page);
9fb4b7cc 2469 id = lookup_swap_cgroup_id(ent);
a3b2d692 2470 rcu_read_lock();
c0ff4b85
R
2471 memcg = mem_cgroup_lookup(id);
2472 if (memcg && !css_tryget(&memcg->css))
2473 memcg = NULL;
a3b2d692 2474 rcu_read_unlock();
3c776e64 2475 }
c0bd3f63 2476 unlock_page_cgroup(pc);
c0ff4b85 2477 return memcg;
b5a84319
KH
2478}
2479
c0ff4b85 2480static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2481 struct page *page,
7ec99d62 2482 unsigned int nr_pages,
9ce70c02
HD
2483 enum charge_type ctype,
2484 bool lrucare)
7a81b88c 2485{
ce587e65 2486 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02
HD
2487 struct zone *uninitialized_var(zone);
2488 bool was_on_lru = false;
b2402857 2489 bool anon;
9ce70c02 2490
ca3e0214
KH
2491 lock_page_cgroup(pc);
2492 if (unlikely(PageCgroupUsed(pc))) {
2493 unlock_page_cgroup(pc);
c0ff4b85 2494 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2495 return;
2496 }
2497 /*
2498 * we don't need page_cgroup_lock about tail pages, becase they are not
2499 * accessed by any other context at this point.
2500 */
9ce70c02
HD
2501
2502 /*
2503 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2504 * may already be on some other mem_cgroup's LRU. Take care of it.
2505 */
2506 if (lrucare) {
2507 zone = page_zone(page);
2508 spin_lock_irq(&zone->lru_lock);
2509 if (PageLRU(page)) {
2510 ClearPageLRU(page);
2511 del_page_from_lru_list(zone, page, page_lru(page));
2512 was_on_lru = true;
2513 }
2514 }
2515
c0ff4b85 2516 pc->mem_cgroup = memcg;
261fb61a
KH
2517 /*
2518 * We access a page_cgroup asynchronously without lock_page_cgroup().
2519 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2520 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2521 * before USED bit, we need memory barrier here.
2522 * See mem_cgroup_add_lru_list(), etc.
2523 */
08e552c6 2524 smp_wmb();
b2402857 2525 SetPageCgroupUsed(pc);
3be91277 2526
9ce70c02
HD
2527 if (lrucare) {
2528 if (was_on_lru) {
2529 VM_BUG_ON(PageLRU(page));
2530 SetPageLRU(page);
2531 add_page_to_lru_list(zone, page, page_lru(page));
2532 }
2533 spin_unlock_irq(&zone->lru_lock);
2534 }
2535
b2402857
KH
2536 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2537 anon = true;
2538 else
2539 anon = false;
2540
2541 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2542 unlock_page_cgroup(pc);
9ce70c02 2543
430e4863
KH
2544 /*
2545 * "charge_statistics" updated event counter. Then, check it.
2546 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2547 * if they exceeds softlimit.
2548 */
c0ff4b85 2549 memcg_check_events(memcg, page);
7a81b88c 2550}
66e1707b 2551
ca3e0214
KH
2552#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2553
a0db00fc 2554#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2555/*
2556 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2557 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2558 * charge/uncharge will be never happen and move_account() is done under
2559 * compound_lock(), so we don't have to take care of races.
ca3e0214 2560 */
e94c8a9c 2561void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2562{
2563 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2564 struct page_cgroup *pc;
2565 int i;
ca3e0214 2566
3d37c4a9
KH
2567 if (mem_cgroup_disabled())
2568 return;
e94c8a9c
KH
2569 for (i = 1; i < HPAGE_PMD_NR; i++) {
2570 pc = head_pc + i;
2571 pc->mem_cgroup = head_pc->mem_cgroup;
2572 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2573 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2574 }
ca3e0214 2575}
12d27107 2576#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2577
f817ed48 2578/**
de3638d9 2579 * mem_cgroup_move_account - move account of the page
5564e88b 2580 * @page: the page
7ec99d62 2581 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2582 * @pc: page_cgroup of the page.
2583 * @from: mem_cgroup which the page is moved from.
2584 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2585 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2586 *
2587 * The caller must confirm following.
08e552c6 2588 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2589 * - compound_lock is held when nr_pages > 1
f817ed48 2590 *
854ffa8d 2591 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2592 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2593 * true, this function does "uncharge" from old cgroup, but it doesn't if
2594 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2595 */
7ec99d62
JW
2596static int mem_cgroup_move_account(struct page *page,
2597 unsigned int nr_pages,
2598 struct page_cgroup *pc,
2599 struct mem_cgroup *from,
2600 struct mem_cgroup *to,
2601 bool uncharge)
f817ed48 2602{
de3638d9
JW
2603 unsigned long flags;
2604 int ret;
b2402857 2605 bool anon = PageAnon(page);
987eba66 2606
f817ed48 2607 VM_BUG_ON(from == to);
5564e88b 2608 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2609 /*
2610 * The page is isolated from LRU. So, collapse function
2611 * will not handle this page. But page splitting can happen.
2612 * Do this check under compound_page_lock(). The caller should
2613 * hold it.
2614 */
2615 ret = -EBUSY;
7ec99d62 2616 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2617 goto out;
2618
2619 lock_page_cgroup(pc);
2620
2621 ret = -EINVAL;
2622 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2623 goto unlock;
2624
312734c0 2625 move_lock_mem_cgroup(from, &flags);
f817ed48 2626
2ff76f11 2627 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2628 /* Update mapped_file data for mem_cgroup */
2629 preempt_disable();
2630 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2631 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2632 preempt_enable();
d69b042f 2633 }
b2402857 2634 mem_cgroup_charge_statistics(from, anon, -nr_pages);
854ffa8d
DN
2635 if (uncharge)
2636 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2637 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2638
854ffa8d 2639 /* caller should have done css_get */
08e552c6 2640 pc->mem_cgroup = to;
b2402857 2641 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2642 /*
2643 * We charges against "to" which may not have any tasks. Then, "to"
2644 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2645 * this function is just force_empty() and move charge, so it's
25985edc 2646 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2647 * status here.
88703267 2648 */
312734c0 2649 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2650 ret = 0;
2651unlock:
57f9fd7d 2652 unlock_page_cgroup(pc);
d2265e6f
KH
2653 /*
2654 * check events
2655 */
5564e88b
JW
2656 memcg_check_events(to, page);
2657 memcg_check_events(from, page);
de3638d9 2658out:
f817ed48
KH
2659 return ret;
2660}
2661
2662/*
2663 * move charges to its parent.
2664 */
2665
5564e88b
JW
2666static int mem_cgroup_move_parent(struct page *page,
2667 struct page_cgroup *pc,
f817ed48
KH
2668 struct mem_cgroup *child,
2669 gfp_t gfp_mask)
2670{
2671 struct cgroup *cg = child->css.cgroup;
2672 struct cgroup *pcg = cg->parent;
2673 struct mem_cgroup *parent;
7ec99d62 2674 unsigned int nr_pages;
4be4489f 2675 unsigned long uninitialized_var(flags);
f817ed48
KH
2676 int ret;
2677
2678 /* Is ROOT ? */
2679 if (!pcg)
2680 return -EINVAL;
2681
57f9fd7d
DN
2682 ret = -EBUSY;
2683 if (!get_page_unless_zero(page))
2684 goto out;
2685 if (isolate_lru_page(page))
2686 goto put;
52dbb905 2687
7ec99d62 2688 nr_pages = hpage_nr_pages(page);
08e552c6 2689
f817ed48 2690 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2691 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
38c5d72f 2692 if (ret)
57f9fd7d 2693 goto put_back;
f817ed48 2694
7ec99d62 2695 if (nr_pages > 1)
987eba66
KH
2696 flags = compound_lock_irqsave(page);
2697
7ec99d62 2698 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2699 if (ret)
7ec99d62 2700 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2701
7ec99d62 2702 if (nr_pages > 1)
987eba66 2703 compound_unlock_irqrestore(page, flags);
8dba474f 2704put_back:
08e552c6 2705 putback_lru_page(page);
57f9fd7d 2706put:
40d58138 2707 put_page(page);
57f9fd7d 2708out:
f817ed48
KH
2709 return ret;
2710}
2711
7a81b88c
KH
2712/*
2713 * Charge the memory controller for page usage.
2714 * Return
2715 * 0 if the charge was successful
2716 * < 0 if the cgroup is over its limit
2717 */
2718static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2719 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2720{
c0ff4b85 2721 struct mem_cgroup *memcg = NULL;
7ec99d62 2722 unsigned int nr_pages = 1;
8493ae43 2723 bool oom = true;
7a81b88c 2724 int ret;
ec168510 2725
37c2ac78 2726 if (PageTransHuge(page)) {
7ec99d62 2727 nr_pages <<= compound_order(page);
37c2ac78 2728 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2729 /*
2730 * Never OOM-kill a process for a huge page. The
2731 * fault handler will fall back to regular pages.
2732 */
2733 oom = false;
37c2ac78 2734 }
7a81b88c 2735
c0ff4b85 2736 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2737 if (ret == -ENOMEM)
7a81b88c 2738 return ret;
ce587e65 2739 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2740 return 0;
8a9f3ccd
BS
2741}
2742
7a81b88c
KH
2743int mem_cgroup_newpage_charge(struct page *page,
2744 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2745{
f8d66542 2746 if (mem_cgroup_disabled())
cede86ac 2747 return 0;
7a0524cf
JW
2748 VM_BUG_ON(page_mapped(page));
2749 VM_BUG_ON(page->mapping && !PageAnon(page));
2750 VM_BUG_ON(!mm);
217bc319 2751 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2752 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2753}
2754
83aae4c7
DN
2755static void
2756__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2757 enum charge_type ctype);
2758
e1a1cd59
BS
2759int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2760 gfp_t gfp_mask)
8697d331 2761{
c0ff4b85 2762 struct mem_cgroup *memcg = NULL;
dc67d504 2763 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2764 int ret;
2765
f8d66542 2766 if (mem_cgroup_disabled())
cede86ac 2767 return 0;
52d4b9ac
KH
2768 if (PageCompound(page))
2769 return 0;
accf163e 2770
73045c47 2771 if (unlikely(!mm))
8697d331 2772 mm = &init_mm;
dc67d504
KH
2773 if (!page_is_file_cache(page))
2774 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2775
38c5d72f 2776 if (!PageSwapCache(page))
dc67d504 2777 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2778 else { /* page is swapcache/shmem */
c0ff4b85 2779 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2780 if (!ret)
dc67d504
KH
2781 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2782 }
b5a84319 2783 return ret;
e8589cc1
KH
2784}
2785
54595fe2
KH
2786/*
2787 * While swap-in, try_charge -> commit or cancel, the page is locked.
2788 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2789 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2790 * "commit()" or removed by "cancel()"
2791 */
8c7c6e34
KH
2792int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2793 struct page *page,
72835c86 2794 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2795{
c0ff4b85 2796 struct mem_cgroup *memcg;
54595fe2 2797 int ret;
8c7c6e34 2798
72835c86 2799 *memcgp = NULL;
56039efa 2800
f8d66542 2801 if (mem_cgroup_disabled())
8c7c6e34
KH
2802 return 0;
2803
2804 if (!do_swap_account)
2805 goto charge_cur_mm;
8c7c6e34
KH
2806 /*
2807 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2808 * the pte, and even removed page from swap cache: in those cases
2809 * do_swap_page()'s pte_same() test will fail; but there's also a
2810 * KSM case which does need to charge the page.
8c7c6e34
KH
2811 */
2812 if (!PageSwapCache(page))
407f9c8b 2813 goto charge_cur_mm;
c0ff4b85
R
2814 memcg = try_get_mem_cgroup_from_page(page);
2815 if (!memcg)
54595fe2 2816 goto charge_cur_mm;
72835c86
JW
2817 *memcgp = memcg;
2818 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2819 css_put(&memcg->css);
38c5d72f
KH
2820 if (ret == -EINTR)
2821 ret = 0;
54595fe2 2822 return ret;
8c7c6e34
KH
2823charge_cur_mm:
2824 if (unlikely(!mm))
2825 mm = &init_mm;
38c5d72f
KH
2826 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2827 if (ret == -EINTR)
2828 ret = 0;
2829 return ret;
8c7c6e34
KH
2830}
2831
83aae4c7 2832static void
72835c86 2833__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2834 enum charge_type ctype)
7a81b88c 2835{
f8d66542 2836 if (mem_cgroup_disabled())
7a81b88c 2837 return;
72835c86 2838 if (!memcg)
7a81b88c 2839 return;
72835c86 2840 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2841
ce587e65 2842 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2843 /*
2844 * Now swap is on-memory. This means this page may be
2845 * counted both as mem and swap....double count.
03f3c433
KH
2846 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2847 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2848 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2849 */
03f3c433 2850 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2851 swp_entry_t ent = {.val = page_private(page)};
86493009 2852 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2853 }
88703267
KH
2854 /*
2855 * At swapin, we may charge account against cgroup which has no tasks.
2856 * So, rmdir()->pre_destroy() can be called while we do this charge.
2857 * In that case, we need to call pre_destroy() again. check it here.
2858 */
72835c86 2859 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2860}
2861
72835c86
JW
2862void mem_cgroup_commit_charge_swapin(struct page *page,
2863 struct mem_cgroup *memcg)
83aae4c7 2864{
72835c86
JW
2865 __mem_cgroup_commit_charge_swapin(page, memcg,
2866 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2867}
2868
c0ff4b85 2869void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2870{
f8d66542 2871 if (mem_cgroup_disabled())
7a81b88c 2872 return;
c0ff4b85 2873 if (!memcg)
7a81b88c 2874 return;
c0ff4b85 2875 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2876}
2877
c0ff4b85 2878static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2879 unsigned int nr_pages,
2880 const enum charge_type ctype)
569b846d
KH
2881{
2882 struct memcg_batch_info *batch = NULL;
2883 bool uncharge_memsw = true;
7ec99d62 2884
569b846d
KH
2885 /* If swapout, usage of swap doesn't decrease */
2886 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2887 uncharge_memsw = false;
569b846d
KH
2888
2889 batch = &current->memcg_batch;
2890 /*
2891 * In usual, we do css_get() when we remember memcg pointer.
2892 * But in this case, we keep res->usage until end of a series of
2893 * uncharges. Then, it's ok to ignore memcg's refcnt.
2894 */
2895 if (!batch->memcg)
c0ff4b85 2896 batch->memcg = memcg;
3c11ecf4
KH
2897 /*
2898 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2899 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2900 * the same cgroup and we have chance to coalesce uncharges.
2901 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2902 * because we want to do uncharge as soon as possible.
2903 */
2904
2905 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2906 goto direct_uncharge;
2907
7ec99d62 2908 if (nr_pages > 1)
ec168510
AA
2909 goto direct_uncharge;
2910
569b846d
KH
2911 /*
2912 * In typical case, batch->memcg == mem. This means we can
2913 * merge a series of uncharges to an uncharge of res_counter.
2914 * If not, we uncharge res_counter ony by one.
2915 */
c0ff4b85 2916 if (batch->memcg != memcg)
569b846d
KH
2917 goto direct_uncharge;
2918 /* remember freed charge and uncharge it later */
7ffd4ca7 2919 batch->nr_pages++;
569b846d 2920 if (uncharge_memsw)
7ffd4ca7 2921 batch->memsw_nr_pages++;
569b846d
KH
2922 return;
2923direct_uncharge:
c0ff4b85 2924 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2925 if (uncharge_memsw)
c0ff4b85
R
2926 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2927 if (unlikely(batch->memcg != memcg))
2928 memcg_oom_recover(memcg);
569b846d 2929}
7a81b88c 2930
8a9f3ccd 2931/*
69029cd5 2932 * uncharge if !page_mapped(page)
8a9f3ccd 2933 */
8c7c6e34 2934static struct mem_cgroup *
69029cd5 2935__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2936{
c0ff4b85 2937 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2938 unsigned int nr_pages = 1;
2939 struct page_cgroup *pc;
b2402857 2940 bool anon;
8a9f3ccd 2941
f8d66542 2942 if (mem_cgroup_disabled())
8c7c6e34 2943 return NULL;
4077960e 2944
d13d1443 2945 if (PageSwapCache(page))
8c7c6e34 2946 return NULL;
d13d1443 2947
37c2ac78 2948 if (PageTransHuge(page)) {
7ec99d62 2949 nr_pages <<= compound_order(page);
37c2ac78
AA
2950 VM_BUG_ON(!PageTransHuge(page));
2951 }
8697d331 2952 /*
3c541e14 2953 * Check if our page_cgroup is valid
8697d331 2954 */
52d4b9ac 2955 pc = lookup_page_cgroup(page);
cfa44946 2956 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2957 return NULL;
b9c565d5 2958
52d4b9ac 2959 lock_page_cgroup(pc);
d13d1443 2960
c0ff4b85 2961 memcg = pc->mem_cgroup;
8c7c6e34 2962
d13d1443
KH
2963 if (!PageCgroupUsed(pc))
2964 goto unlock_out;
2965
b2402857
KH
2966 anon = PageAnon(page);
2967
d13d1443
KH
2968 switch (ctype) {
2969 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2ff76f11
KH
2970 /*
2971 * Generally PageAnon tells if it's the anon statistics to be
2972 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2973 * used before page reached the stage of being marked PageAnon.
2974 */
b2402857
KH
2975 anon = true;
2976 /* fallthrough */
8a9478ca 2977 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2978 /* See mem_cgroup_prepare_migration() */
2979 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2980 goto unlock_out;
2981 break;
2982 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2983 if (!PageAnon(page)) { /* Shared memory */
2984 if (page->mapping && !page_is_file_cache(page))
2985 goto unlock_out;
2986 } else if (page_mapped(page)) /* Anon */
2987 goto unlock_out;
2988 break;
2989 default:
2990 break;
52d4b9ac 2991 }
d13d1443 2992
b2402857 2993 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 2994
52d4b9ac 2995 ClearPageCgroupUsed(pc);
544122e5
KH
2996 /*
2997 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2998 * freed from LRU. This is safe because uncharged page is expected not
2999 * to be reused (freed soon). Exception is SwapCache, it's handled by
3000 * special functions.
3001 */
b9c565d5 3002
52d4b9ac 3003 unlock_page_cgroup(pc);
f75ca962 3004 /*
c0ff4b85 3005 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3006 * will never be freed.
3007 */
c0ff4b85 3008 memcg_check_events(memcg, page);
f75ca962 3009 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3010 mem_cgroup_swap_statistics(memcg, true);
3011 mem_cgroup_get(memcg);
f75ca962 3012 }
c0ff4b85
R
3013 if (!mem_cgroup_is_root(memcg))
3014 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3015
c0ff4b85 3016 return memcg;
d13d1443
KH
3017
3018unlock_out:
3019 unlock_page_cgroup(pc);
8c7c6e34 3020 return NULL;
3c541e14
BS
3021}
3022
69029cd5
KH
3023void mem_cgroup_uncharge_page(struct page *page)
3024{
52d4b9ac
KH
3025 /* early check. */
3026 if (page_mapped(page))
3027 return;
40f23a21 3028 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
3029 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3030}
3031
3032void mem_cgroup_uncharge_cache_page(struct page *page)
3033{
3034 VM_BUG_ON(page_mapped(page));
b7abea96 3035 VM_BUG_ON(page->mapping);
69029cd5
KH
3036 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3037}
3038
569b846d
KH
3039/*
3040 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3041 * In that cases, pages are freed continuously and we can expect pages
3042 * are in the same memcg. All these calls itself limits the number of
3043 * pages freed at once, then uncharge_start/end() is called properly.
3044 * This may be called prural(2) times in a context,
3045 */
3046
3047void mem_cgroup_uncharge_start(void)
3048{
3049 current->memcg_batch.do_batch++;
3050 /* We can do nest. */
3051 if (current->memcg_batch.do_batch == 1) {
3052 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3053 current->memcg_batch.nr_pages = 0;
3054 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3055 }
3056}
3057
3058void mem_cgroup_uncharge_end(void)
3059{
3060 struct memcg_batch_info *batch = &current->memcg_batch;
3061
3062 if (!batch->do_batch)
3063 return;
3064
3065 batch->do_batch--;
3066 if (batch->do_batch) /* If stacked, do nothing. */
3067 return;
3068
3069 if (!batch->memcg)
3070 return;
3071 /*
3072 * This "batch->memcg" is valid without any css_get/put etc...
3073 * bacause we hide charges behind us.
3074 */
7ffd4ca7
JW
3075 if (batch->nr_pages)
3076 res_counter_uncharge(&batch->memcg->res,
3077 batch->nr_pages * PAGE_SIZE);
3078 if (batch->memsw_nr_pages)
3079 res_counter_uncharge(&batch->memcg->memsw,
3080 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3081 memcg_oom_recover(batch->memcg);
569b846d
KH
3082 /* forget this pointer (for sanity check) */
3083 batch->memcg = NULL;
3084}
3085
e767e056 3086#ifdef CONFIG_SWAP
8c7c6e34 3087/*
e767e056 3088 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3089 * memcg information is recorded to swap_cgroup of "ent"
3090 */
8a9478ca
KH
3091void
3092mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3093{
3094 struct mem_cgroup *memcg;
8a9478ca
KH
3095 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3096
3097 if (!swapout) /* this was a swap cache but the swap is unused ! */
3098 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3099
3100 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3101
f75ca962
KH
3102 /*
3103 * record memcg information, if swapout && memcg != NULL,
3104 * mem_cgroup_get() was called in uncharge().
3105 */
3106 if (do_swap_account && swapout && memcg)
a3b2d692 3107 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3108}
e767e056 3109#endif
8c7c6e34
KH
3110
3111#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3112/*
3113 * called from swap_entry_free(). remove record in swap_cgroup and
3114 * uncharge "memsw" account.
3115 */
3116void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3117{
8c7c6e34 3118 struct mem_cgroup *memcg;
a3b2d692 3119 unsigned short id;
8c7c6e34
KH
3120
3121 if (!do_swap_account)
3122 return;
3123
a3b2d692
KH
3124 id = swap_cgroup_record(ent, 0);
3125 rcu_read_lock();
3126 memcg = mem_cgroup_lookup(id);
8c7c6e34 3127 if (memcg) {
a3b2d692
KH
3128 /*
3129 * We uncharge this because swap is freed.
3130 * This memcg can be obsolete one. We avoid calling css_tryget
3131 */
0c3e73e8 3132 if (!mem_cgroup_is_root(memcg))
4e649152 3133 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3134 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3135 mem_cgroup_put(memcg);
3136 }
a3b2d692 3137 rcu_read_unlock();
d13d1443 3138}
02491447
DN
3139
3140/**
3141 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3142 * @entry: swap entry to be moved
3143 * @from: mem_cgroup which the entry is moved from
3144 * @to: mem_cgroup which the entry is moved to
3145 *
3146 * It succeeds only when the swap_cgroup's record for this entry is the same
3147 * as the mem_cgroup's id of @from.
3148 *
3149 * Returns 0 on success, -EINVAL on failure.
3150 *
3151 * The caller must have charged to @to, IOW, called res_counter_charge() about
3152 * both res and memsw, and called css_get().
3153 */
3154static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3155 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3156{
3157 unsigned short old_id, new_id;
3158
3159 old_id = css_id(&from->css);
3160 new_id = css_id(&to->css);
3161
3162 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3163 mem_cgroup_swap_statistics(from, false);
483c30b5 3164 mem_cgroup_swap_statistics(to, true);
02491447 3165 /*
483c30b5
DN
3166 * This function is only called from task migration context now.
3167 * It postpones res_counter and refcount handling till the end
3168 * of task migration(mem_cgroup_clear_mc()) for performance
3169 * improvement. But we cannot postpone mem_cgroup_get(to)
3170 * because if the process that has been moved to @to does
3171 * swap-in, the refcount of @to might be decreased to 0.
02491447 3172 */
02491447 3173 mem_cgroup_get(to);
02491447
DN
3174 return 0;
3175 }
3176 return -EINVAL;
3177}
3178#else
3179static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3180 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3181{
3182 return -EINVAL;
3183}
8c7c6e34 3184#endif
d13d1443 3185
ae41be37 3186/*
01b1ae63
KH
3187 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3188 * page belongs to.
ae41be37 3189 */
ac39cf8c 3190int mem_cgroup_prepare_migration(struct page *page,
72835c86 3191 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3192{
c0ff4b85 3193 struct mem_cgroup *memcg = NULL;
7ec99d62 3194 struct page_cgroup *pc;
ac39cf8c 3195 enum charge_type ctype;
e8589cc1 3196 int ret = 0;
8869b8f6 3197
72835c86 3198 *memcgp = NULL;
56039efa 3199
ec168510 3200 VM_BUG_ON(PageTransHuge(page));
f8d66542 3201 if (mem_cgroup_disabled())
4077960e
BS
3202 return 0;
3203
52d4b9ac
KH
3204 pc = lookup_page_cgroup(page);
3205 lock_page_cgroup(pc);
3206 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3207 memcg = pc->mem_cgroup;
3208 css_get(&memcg->css);
ac39cf8c 3209 /*
3210 * At migrating an anonymous page, its mapcount goes down
3211 * to 0 and uncharge() will be called. But, even if it's fully
3212 * unmapped, migration may fail and this page has to be
3213 * charged again. We set MIGRATION flag here and delay uncharge
3214 * until end_migration() is called
3215 *
3216 * Corner Case Thinking
3217 * A)
3218 * When the old page was mapped as Anon and it's unmap-and-freed
3219 * while migration was ongoing.
3220 * If unmap finds the old page, uncharge() of it will be delayed
3221 * until end_migration(). If unmap finds a new page, it's
3222 * uncharged when it make mapcount to be 1->0. If unmap code
3223 * finds swap_migration_entry, the new page will not be mapped
3224 * and end_migration() will find it(mapcount==0).
3225 *
3226 * B)
3227 * When the old page was mapped but migraion fails, the kernel
3228 * remaps it. A charge for it is kept by MIGRATION flag even
3229 * if mapcount goes down to 0. We can do remap successfully
3230 * without charging it again.
3231 *
3232 * C)
3233 * The "old" page is under lock_page() until the end of
3234 * migration, so, the old page itself will not be swapped-out.
3235 * If the new page is swapped out before end_migraton, our
3236 * hook to usual swap-out path will catch the event.
3237 */
3238 if (PageAnon(page))
3239 SetPageCgroupMigration(pc);
e8589cc1 3240 }
52d4b9ac 3241 unlock_page_cgroup(pc);
ac39cf8c 3242 /*
3243 * If the page is not charged at this point,
3244 * we return here.
3245 */
c0ff4b85 3246 if (!memcg)
ac39cf8c 3247 return 0;
01b1ae63 3248
72835c86
JW
3249 *memcgp = memcg;
3250 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3251 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3252 if (ret) {
ac39cf8c 3253 if (PageAnon(page)) {
3254 lock_page_cgroup(pc);
3255 ClearPageCgroupMigration(pc);
3256 unlock_page_cgroup(pc);
3257 /*
3258 * The old page may be fully unmapped while we kept it.
3259 */
3260 mem_cgroup_uncharge_page(page);
3261 }
38c5d72f 3262 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3263 return -ENOMEM;
e8589cc1 3264 }
ac39cf8c 3265 /*
3266 * We charge new page before it's used/mapped. So, even if unlock_page()
3267 * is called before end_migration, we can catch all events on this new
3268 * page. In the case new page is migrated but not remapped, new page's
3269 * mapcount will be finally 0 and we call uncharge in end_migration().
3270 */
ac39cf8c 3271 if (PageAnon(page))
3272 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3273 else if (page_is_file_cache(page))
3274 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3275 else
3276 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ce587e65 3277 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
e8589cc1 3278 return ret;
ae41be37 3279}
8869b8f6 3280
69029cd5 3281/* remove redundant charge if migration failed*/
c0ff4b85 3282void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3283 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3284{
ac39cf8c 3285 struct page *used, *unused;
01b1ae63 3286 struct page_cgroup *pc;
b2402857 3287 bool anon;
01b1ae63 3288
c0ff4b85 3289 if (!memcg)
01b1ae63 3290 return;
ac39cf8c 3291 /* blocks rmdir() */
c0ff4b85 3292 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3293 if (!migration_ok) {
ac39cf8c 3294 used = oldpage;
3295 unused = newpage;
01b1ae63 3296 } else {
ac39cf8c 3297 used = newpage;
01b1ae63
KH
3298 unused = oldpage;
3299 }
69029cd5 3300 /*
ac39cf8c 3301 * We disallowed uncharge of pages under migration because mapcount
3302 * of the page goes down to zero, temporarly.
3303 * Clear the flag and check the page should be charged.
01b1ae63 3304 */
ac39cf8c 3305 pc = lookup_page_cgroup(oldpage);
3306 lock_page_cgroup(pc);
3307 ClearPageCgroupMigration(pc);
3308 unlock_page_cgroup(pc);
b2402857
KH
3309 anon = PageAnon(used);
3310 __mem_cgroup_uncharge_common(unused,
3311 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3312 : MEM_CGROUP_CHARGE_TYPE_CACHE);
ac39cf8c 3313
01b1ae63 3314 /*
ac39cf8c 3315 * If a page is a file cache, radix-tree replacement is very atomic
3316 * and we can skip this check. When it was an Anon page, its mapcount
3317 * goes down to 0. But because we added MIGRATION flage, it's not
3318 * uncharged yet. There are several case but page->mapcount check
3319 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3320 * check. (see prepare_charge() also)
69029cd5 3321 */
b2402857 3322 if (anon)
ac39cf8c 3323 mem_cgroup_uncharge_page(used);
88703267 3324 /*
ac39cf8c 3325 * At migration, we may charge account against cgroup which has no
3326 * tasks.
88703267
KH
3327 * So, rmdir()->pre_destroy() can be called while we do this charge.
3328 * In that case, we need to call pre_destroy() again. check it here.
3329 */
c0ff4b85 3330 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3331}
78fb7466 3332
ab936cbc
KH
3333/*
3334 * At replace page cache, newpage is not under any memcg but it's on
3335 * LRU. So, this function doesn't touch res_counter but handles LRU
3336 * in correct way. Both pages are locked so we cannot race with uncharge.
3337 */
3338void mem_cgroup_replace_page_cache(struct page *oldpage,
3339 struct page *newpage)
3340{
bde05d1c 3341 struct mem_cgroup *memcg = NULL;
ab936cbc 3342 struct page_cgroup *pc;
ab936cbc 3343 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3344
3345 if (mem_cgroup_disabled())
3346 return;
3347
3348 pc = lookup_page_cgroup(oldpage);
3349 /* fix accounting on old pages */
3350 lock_page_cgroup(pc);
bde05d1c
HD
3351 if (PageCgroupUsed(pc)) {
3352 memcg = pc->mem_cgroup;
3353 mem_cgroup_charge_statistics(memcg, false, -1);
3354 ClearPageCgroupUsed(pc);
3355 }
ab936cbc
KH
3356 unlock_page_cgroup(pc);
3357
bde05d1c
HD
3358 /*
3359 * When called from shmem_replace_page(), in some cases the
3360 * oldpage has already been charged, and in some cases not.
3361 */
3362 if (!memcg)
3363 return;
3364
ab936cbc
KH
3365 if (PageSwapBacked(oldpage))
3366 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3367
ab936cbc
KH
3368 /*
3369 * Even if newpage->mapping was NULL before starting replacement,
3370 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3371 * LRU while we overwrite pc->mem_cgroup.
3372 */
ce587e65 3373 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3374}
3375
f212ad7c
DN
3376#ifdef CONFIG_DEBUG_VM
3377static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3378{
3379 struct page_cgroup *pc;
3380
3381 pc = lookup_page_cgroup(page);
cfa44946
JW
3382 /*
3383 * Can be NULL while feeding pages into the page allocator for
3384 * the first time, i.e. during boot or memory hotplug;
3385 * or when mem_cgroup_disabled().
3386 */
f212ad7c
DN
3387 if (likely(pc) && PageCgroupUsed(pc))
3388 return pc;
3389 return NULL;
3390}
3391
3392bool mem_cgroup_bad_page_check(struct page *page)
3393{
3394 if (mem_cgroup_disabled())
3395 return false;
3396
3397 return lookup_page_cgroup_used(page) != NULL;
3398}
3399
3400void mem_cgroup_print_bad_page(struct page *page)
3401{
3402 struct page_cgroup *pc;
3403
3404 pc = lookup_page_cgroup_used(page);
3405 if (pc) {
90b3feae 3406 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3407 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3408 }
3409}
3410#endif
3411
8c7c6e34
KH
3412static DEFINE_MUTEX(set_limit_mutex);
3413
d38d2a75 3414static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3415 unsigned long long val)
628f4235 3416{
81d39c20 3417 int retry_count;
3c11ecf4 3418 u64 memswlimit, memlimit;
628f4235 3419 int ret = 0;
81d39c20
KH
3420 int children = mem_cgroup_count_children(memcg);
3421 u64 curusage, oldusage;
3c11ecf4 3422 int enlarge;
81d39c20
KH
3423
3424 /*
3425 * For keeping hierarchical_reclaim simple, how long we should retry
3426 * is depends on callers. We set our retry-count to be function
3427 * of # of children which we should visit in this loop.
3428 */
3429 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3430
3431 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3432
3c11ecf4 3433 enlarge = 0;
8c7c6e34 3434 while (retry_count) {
628f4235
KH
3435 if (signal_pending(current)) {
3436 ret = -EINTR;
3437 break;
3438 }
8c7c6e34
KH
3439 /*
3440 * Rather than hide all in some function, I do this in
3441 * open coded manner. You see what this really does.
c0ff4b85 3442 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3443 */
3444 mutex_lock(&set_limit_mutex);
3445 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3446 if (memswlimit < val) {
3447 ret = -EINVAL;
3448 mutex_unlock(&set_limit_mutex);
628f4235
KH
3449 break;
3450 }
3c11ecf4
KH
3451
3452 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3453 if (memlimit < val)
3454 enlarge = 1;
3455
8c7c6e34 3456 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3457 if (!ret) {
3458 if (memswlimit == val)
3459 memcg->memsw_is_minimum = true;
3460 else
3461 memcg->memsw_is_minimum = false;
3462 }
8c7c6e34
KH
3463 mutex_unlock(&set_limit_mutex);
3464
3465 if (!ret)
3466 break;
3467
5660048c
JW
3468 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3469 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3470 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3471 /* Usage is reduced ? */
3472 if (curusage >= oldusage)
3473 retry_count--;
3474 else
3475 oldusage = curusage;
8c7c6e34 3476 }
3c11ecf4
KH
3477 if (!ret && enlarge)
3478 memcg_oom_recover(memcg);
14797e23 3479
8c7c6e34
KH
3480 return ret;
3481}
3482
338c8431
LZ
3483static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3484 unsigned long long val)
8c7c6e34 3485{
81d39c20 3486 int retry_count;
3c11ecf4 3487 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3488 int children = mem_cgroup_count_children(memcg);
3489 int ret = -EBUSY;
3c11ecf4 3490 int enlarge = 0;
8c7c6e34 3491
81d39c20
KH
3492 /* see mem_cgroup_resize_res_limit */
3493 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3494 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3495 while (retry_count) {
3496 if (signal_pending(current)) {
3497 ret = -EINTR;
3498 break;
3499 }
3500 /*
3501 * Rather than hide all in some function, I do this in
3502 * open coded manner. You see what this really does.
c0ff4b85 3503 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3504 */
3505 mutex_lock(&set_limit_mutex);
3506 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3507 if (memlimit > val) {
3508 ret = -EINVAL;
3509 mutex_unlock(&set_limit_mutex);
3510 break;
3511 }
3c11ecf4
KH
3512 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3513 if (memswlimit < val)
3514 enlarge = 1;
8c7c6e34 3515 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3516 if (!ret) {
3517 if (memlimit == val)
3518 memcg->memsw_is_minimum = true;
3519 else
3520 memcg->memsw_is_minimum = false;
3521 }
8c7c6e34
KH
3522 mutex_unlock(&set_limit_mutex);
3523
3524 if (!ret)
3525 break;
3526
5660048c
JW
3527 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3528 MEM_CGROUP_RECLAIM_NOSWAP |
3529 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3530 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3531 /* Usage is reduced ? */
8c7c6e34 3532 if (curusage >= oldusage)
628f4235 3533 retry_count--;
81d39c20
KH
3534 else
3535 oldusage = curusage;
628f4235 3536 }
3c11ecf4
KH
3537 if (!ret && enlarge)
3538 memcg_oom_recover(memcg);
628f4235
KH
3539 return ret;
3540}
3541
4e416953 3542unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3543 gfp_t gfp_mask,
3544 unsigned long *total_scanned)
4e416953
BS
3545{
3546 unsigned long nr_reclaimed = 0;
3547 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3548 unsigned long reclaimed;
3549 int loop = 0;
3550 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3551 unsigned long long excess;
0ae5e89c 3552 unsigned long nr_scanned;
4e416953
BS
3553
3554 if (order > 0)
3555 return 0;
3556
00918b6a 3557 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3558 /*
3559 * This loop can run a while, specially if mem_cgroup's continuously
3560 * keep exceeding their soft limit and putting the system under
3561 * pressure
3562 */
3563 do {
3564 if (next_mz)
3565 mz = next_mz;
3566 else
3567 mz = mem_cgroup_largest_soft_limit_node(mctz);
3568 if (!mz)
3569 break;
3570
0ae5e89c 3571 nr_scanned = 0;
d79154bb 3572 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3573 gfp_mask, &nr_scanned);
4e416953 3574 nr_reclaimed += reclaimed;
0ae5e89c 3575 *total_scanned += nr_scanned;
4e416953
BS
3576 spin_lock(&mctz->lock);
3577
3578 /*
3579 * If we failed to reclaim anything from this memory cgroup
3580 * it is time to move on to the next cgroup
3581 */
3582 next_mz = NULL;
3583 if (!reclaimed) {
3584 do {
3585 /*
3586 * Loop until we find yet another one.
3587 *
3588 * By the time we get the soft_limit lock
3589 * again, someone might have aded the
3590 * group back on the RB tree. Iterate to
3591 * make sure we get a different mem.
3592 * mem_cgroup_largest_soft_limit_node returns
3593 * NULL if no other cgroup is present on
3594 * the tree
3595 */
3596 next_mz =
3597 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3598 if (next_mz == mz)
d79154bb 3599 css_put(&next_mz->memcg->css);
39cc98f1 3600 else /* next_mz == NULL or other memcg */
4e416953
BS
3601 break;
3602 } while (1);
3603 }
d79154bb
HD
3604 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3605 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3606 /*
3607 * One school of thought says that we should not add
3608 * back the node to the tree if reclaim returns 0.
3609 * But our reclaim could return 0, simply because due
3610 * to priority we are exposing a smaller subset of
3611 * memory to reclaim from. Consider this as a longer
3612 * term TODO.
3613 */
ef8745c1 3614 /* If excess == 0, no tree ops */
d79154bb 3615 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3616 spin_unlock(&mctz->lock);
d79154bb 3617 css_put(&mz->memcg->css);
4e416953
BS
3618 loop++;
3619 /*
3620 * Could not reclaim anything and there are no more
3621 * mem cgroups to try or we seem to be looping without
3622 * reclaiming anything.
3623 */
3624 if (!nr_reclaimed &&
3625 (next_mz == NULL ||
3626 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3627 break;
3628 } while (!nr_reclaimed);
3629 if (next_mz)
d79154bb 3630 css_put(&next_mz->memcg->css);
4e416953
BS
3631 return nr_reclaimed;
3632}
3633
cc847582
KH
3634/*
3635 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3636 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3637 */
c0ff4b85 3638static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3639 int node, int zid, enum lru_list lru)
cc847582 3640{
08e552c6 3641 struct mem_cgroup_per_zone *mz;
08e552c6 3642 unsigned long flags, loop;
072c56c1 3643 struct list_head *list;
925b7673
JW
3644 struct page *busy;
3645 struct zone *zone;
f817ed48 3646 int ret = 0;
072c56c1 3647
08e552c6 3648 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3649 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3650 list = &mz->lruvec.lists[lru];
cc847582 3651
1eb49272 3652 loop = mz->lru_size[lru];
f817ed48
KH
3653 /* give some margin against EBUSY etc...*/
3654 loop += 256;
3655 busy = NULL;
3656 while (loop--) {
925b7673 3657 struct page_cgroup *pc;
5564e88b
JW
3658 struct page *page;
3659
f817ed48 3660 ret = 0;
08e552c6 3661 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3662 if (list_empty(list)) {
08e552c6 3663 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3664 break;
f817ed48 3665 }
925b7673
JW
3666 page = list_entry(list->prev, struct page, lru);
3667 if (busy == page) {
3668 list_move(&page->lru, list);
648bcc77 3669 busy = NULL;
08e552c6 3670 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3671 continue;
3672 }
08e552c6 3673 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3674
925b7673 3675 pc = lookup_page_cgroup(page);
5564e88b 3676
c0ff4b85 3677 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3678 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3679 break;
f817ed48
KH
3680
3681 if (ret == -EBUSY || ret == -EINVAL) {
3682 /* found lock contention or "pc" is obsolete. */
925b7673 3683 busy = page;
f817ed48
KH
3684 cond_resched();
3685 } else
3686 busy = NULL;
cc847582 3687 }
08e552c6 3688
f817ed48
KH
3689 if (!ret && !list_empty(list))
3690 return -EBUSY;
3691 return ret;
cc847582
KH
3692}
3693
3694/*
3695 * make mem_cgroup's charge to be 0 if there is no task.
3696 * This enables deleting this mem_cgroup.
3697 */
c0ff4b85 3698static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3699{
f817ed48
KH
3700 int ret;
3701 int node, zid, shrink;
3702 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3703 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3704
c0ff4b85 3705 css_get(&memcg->css);
f817ed48
KH
3706
3707 shrink = 0;
c1e862c1
KH
3708 /* should free all ? */
3709 if (free_all)
3710 goto try_to_free;
f817ed48 3711move_account:
fce66477 3712 do {
f817ed48 3713 ret = -EBUSY;
c1e862c1
KH
3714 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3715 goto out;
3716 ret = -EINTR;
3717 if (signal_pending(current))
cc847582 3718 goto out;
52d4b9ac
KH
3719 /* This is for making all *used* pages to be on LRU. */
3720 lru_add_drain_all();
c0ff4b85 3721 drain_all_stock_sync(memcg);
f817ed48 3722 ret = 0;
c0ff4b85 3723 mem_cgroup_start_move(memcg);
299b4eaa 3724 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3725 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3726 enum lru_list lru;
3727 for_each_lru(lru) {
c0ff4b85 3728 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3729 node, zid, lru);
f817ed48
KH
3730 if (ret)
3731 break;
3732 }
1ecaab2b 3733 }
f817ed48
KH
3734 if (ret)
3735 break;
3736 }
c0ff4b85
R
3737 mem_cgroup_end_move(memcg);
3738 memcg_oom_recover(memcg);
f817ed48
KH
3739 /* it seems parent cgroup doesn't have enough mem */
3740 if (ret == -ENOMEM)
3741 goto try_to_free;
52d4b9ac 3742 cond_resched();
fce66477 3743 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3744 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3745out:
c0ff4b85 3746 css_put(&memcg->css);
cc847582 3747 return ret;
f817ed48
KH
3748
3749try_to_free:
c1e862c1
KH
3750 /* returns EBUSY if there is a task or if we come here twice. */
3751 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3752 ret = -EBUSY;
3753 goto out;
3754 }
c1e862c1
KH
3755 /* we call try-to-free pages for make this cgroup empty */
3756 lru_add_drain_all();
f817ed48
KH
3757 /* try to free all pages in this cgroup */
3758 shrink = 1;
569530fb 3759 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3760 int progress;
c1e862c1
KH
3761
3762 if (signal_pending(current)) {
3763 ret = -EINTR;
3764 goto out;
3765 }
c0ff4b85 3766 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3767 false);
c1e862c1 3768 if (!progress) {
f817ed48 3769 nr_retries--;
c1e862c1 3770 /* maybe some writeback is necessary */
8aa7e847 3771 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3772 }
f817ed48
KH
3773
3774 }
08e552c6 3775 lru_add_drain();
f817ed48 3776 /* try move_account...there may be some *locked* pages. */
fce66477 3777 goto move_account;
cc847582
KH
3778}
3779
6bbda35c 3780static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1
KH
3781{
3782 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3783}
3784
3785
18f59ea7
BS
3786static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3787{
3788 return mem_cgroup_from_cont(cont)->use_hierarchy;
3789}
3790
3791static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3792 u64 val)
3793{
3794 int retval = 0;
c0ff4b85 3795 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3796 struct cgroup *parent = cont->parent;
c0ff4b85 3797 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3798
3799 if (parent)
c0ff4b85 3800 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3801
3802 cgroup_lock();
3803 /*
af901ca1 3804 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3805 * in the child subtrees. If it is unset, then the change can
3806 * occur, provided the current cgroup has no children.
3807 *
3808 * For the root cgroup, parent_mem is NULL, we allow value to be
3809 * set if there are no children.
3810 */
c0ff4b85 3811 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3812 (val == 1 || val == 0)) {
3813 if (list_empty(&cont->children))
c0ff4b85 3814 memcg->use_hierarchy = val;
18f59ea7
BS
3815 else
3816 retval = -EBUSY;
3817 } else
3818 retval = -EINVAL;
3819 cgroup_unlock();
3820
3821 return retval;
3822}
3823
0c3e73e8 3824
c0ff4b85 3825static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3826 enum mem_cgroup_stat_index idx)
0c3e73e8 3827{
7d74b06f 3828 struct mem_cgroup *iter;
7a159cc9 3829 long val = 0;
0c3e73e8 3830
7a159cc9 3831 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3832 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3833 val += mem_cgroup_read_stat(iter, idx);
3834
3835 if (val < 0) /* race ? */
3836 val = 0;
3837 return val;
0c3e73e8
BS
3838}
3839
c0ff4b85 3840static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3841{
7d74b06f 3842 u64 val;
104f3928 3843
c0ff4b85 3844 if (!mem_cgroup_is_root(memcg)) {
104f3928 3845 if (!swap)
65c64ce8 3846 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3847 else
65c64ce8 3848 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3849 }
3850
c0ff4b85
R
3851 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3852 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3853
7d74b06f 3854 if (swap)
c0ff4b85 3855 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3856
3857 return val << PAGE_SHIFT;
3858}
3859
af36f906
TH
3860static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3861 struct file *file, char __user *buf,
3862 size_t nbytes, loff_t *ppos)
8cdea7c0 3863{
c0ff4b85 3864 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3865 char str[64];
104f3928 3866 u64 val;
af36f906 3867 int type, name, len;
8c7c6e34
KH
3868
3869 type = MEMFILE_TYPE(cft->private);
3870 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3871
3872 if (!do_swap_account && type == _MEMSWAP)
3873 return -EOPNOTSUPP;
3874
8c7c6e34
KH
3875 switch (type) {
3876 case _MEM:
104f3928 3877 if (name == RES_USAGE)
c0ff4b85 3878 val = mem_cgroup_usage(memcg, false);
104f3928 3879 else
c0ff4b85 3880 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3881 break;
3882 case _MEMSWAP:
104f3928 3883 if (name == RES_USAGE)
c0ff4b85 3884 val = mem_cgroup_usage(memcg, true);
104f3928 3885 else
c0ff4b85 3886 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3887 break;
3888 default:
3889 BUG();
8c7c6e34 3890 }
af36f906
TH
3891
3892 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3893 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3894}
628f4235
KH
3895/*
3896 * The user of this function is...
3897 * RES_LIMIT.
3898 */
856c13aa
PM
3899static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3900 const char *buffer)
8cdea7c0 3901{
628f4235 3902 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3903 int type, name;
628f4235
KH
3904 unsigned long long val;
3905 int ret;
3906
8c7c6e34
KH
3907 type = MEMFILE_TYPE(cft->private);
3908 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3909
3910 if (!do_swap_account && type == _MEMSWAP)
3911 return -EOPNOTSUPP;
3912
8c7c6e34 3913 switch (name) {
628f4235 3914 case RES_LIMIT:
4b3bde4c
BS
3915 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3916 ret = -EINVAL;
3917 break;
3918 }
628f4235
KH
3919 /* This function does all necessary parse...reuse it */
3920 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3921 if (ret)
3922 break;
3923 if (type == _MEM)
628f4235 3924 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3925 else
3926 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3927 break;
296c81d8
BS
3928 case RES_SOFT_LIMIT:
3929 ret = res_counter_memparse_write_strategy(buffer, &val);
3930 if (ret)
3931 break;
3932 /*
3933 * For memsw, soft limits are hard to implement in terms
3934 * of semantics, for now, we support soft limits for
3935 * control without swap
3936 */
3937 if (type == _MEM)
3938 ret = res_counter_set_soft_limit(&memcg->res, val);
3939 else
3940 ret = -EINVAL;
3941 break;
628f4235
KH
3942 default:
3943 ret = -EINVAL; /* should be BUG() ? */
3944 break;
3945 }
3946 return ret;
8cdea7c0
BS
3947}
3948
fee7b548
KH
3949static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3950 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3951{
3952 struct cgroup *cgroup;
3953 unsigned long long min_limit, min_memsw_limit, tmp;
3954
3955 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3956 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3957 cgroup = memcg->css.cgroup;
3958 if (!memcg->use_hierarchy)
3959 goto out;
3960
3961 while (cgroup->parent) {
3962 cgroup = cgroup->parent;
3963 memcg = mem_cgroup_from_cont(cgroup);
3964 if (!memcg->use_hierarchy)
3965 break;
3966 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3967 min_limit = min(min_limit, tmp);
3968 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3969 min_memsw_limit = min(min_memsw_limit, tmp);
3970 }
3971out:
3972 *mem_limit = min_limit;
3973 *memsw_limit = min_memsw_limit;
fee7b548
KH
3974}
3975
29f2a4da 3976static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3977{
af36f906 3978 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3979 int type, name;
c84872e1 3980
8c7c6e34
KH
3981 type = MEMFILE_TYPE(event);
3982 name = MEMFILE_ATTR(event);
af36f906
TH
3983
3984 if (!do_swap_account && type == _MEMSWAP)
3985 return -EOPNOTSUPP;
3986
8c7c6e34 3987 switch (name) {
29f2a4da 3988 case RES_MAX_USAGE:
8c7c6e34 3989 if (type == _MEM)
c0ff4b85 3990 res_counter_reset_max(&memcg->res);
8c7c6e34 3991 else
c0ff4b85 3992 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
3993 break;
3994 case RES_FAILCNT:
8c7c6e34 3995 if (type == _MEM)
c0ff4b85 3996 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 3997 else
c0ff4b85 3998 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
3999 break;
4000 }
f64c3f54 4001
85cc59db 4002 return 0;
c84872e1
PE
4003}
4004
7dc74be0
DN
4005static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4006 struct cftype *cft)
4007{
4008 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4009}
4010
02491447 4011#ifdef CONFIG_MMU
7dc74be0
DN
4012static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4013 struct cftype *cft, u64 val)
4014{
c0ff4b85 4015 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4016
4017 if (val >= (1 << NR_MOVE_TYPE))
4018 return -EINVAL;
4019 /*
4020 * We check this value several times in both in can_attach() and
4021 * attach(), so we need cgroup lock to prevent this value from being
4022 * inconsistent.
4023 */
4024 cgroup_lock();
c0ff4b85 4025 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4026 cgroup_unlock();
4027
4028 return 0;
4029}
02491447
DN
4030#else
4031static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4032 struct cftype *cft, u64 val)
4033{
4034 return -ENOSYS;
4035}
4036#endif
7dc74be0 4037
14067bb3
KH
4038
4039/* For read statistics */
4040enum {
4041 MCS_CACHE,
4042 MCS_RSS,
d8046582 4043 MCS_FILE_MAPPED,
14067bb3
KH
4044 MCS_PGPGIN,
4045 MCS_PGPGOUT,
1dd3a273 4046 MCS_SWAP,
456f998e
YH
4047 MCS_PGFAULT,
4048 MCS_PGMAJFAULT,
14067bb3
KH
4049 MCS_INACTIVE_ANON,
4050 MCS_ACTIVE_ANON,
4051 MCS_INACTIVE_FILE,
4052 MCS_ACTIVE_FILE,
4053 MCS_UNEVICTABLE,
4054 NR_MCS_STAT,
4055};
4056
4057struct mcs_total_stat {
4058 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4059};
4060
6bbda35c 4061static struct {
14067bb3
KH
4062 char *local_name;
4063 char *total_name;
4064} memcg_stat_strings[NR_MCS_STAT] = {
4065 {"cache", "total_cache"},
4066 {"rss", "total_rss"},
d69b042f 4067 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4068 {"pgpgin", "total_pgpgin"},
4069 {"pgpgout", "total_pgpgout"},
1dd3a273 4070 {"swap", "total_swap"},
456f998e
YH
4071 {"pgfault", "total_pgfault"},
4072 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4073 {"inactive_anon", "total_inactive_anon"},
4074 {"active_anon", "total_active_anon"},
4075 {"inactive_file", "total_inactive_file"},
4076 {"active_file", "total_active_file"},
4077 {"unevictable", "total_unevictable"}
4078};
4079
4080
7d74b06f 4081static void
c0ff4b85 4082mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4083{
14067bb3
KH
4084 s64 val;
4085
4086 /* per cpu stat */
c0ff4b85 4087 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4088 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4089 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4090 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4091 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4092 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4093 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4094 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4095 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4096 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4097 if (do_swap_account) {
c0ff4b85 4098 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4099 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4100 }
c0ff4b85 4101 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4102 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4103 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4104 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4105
4106 /* per zone stat */
c0ff4b85 4107 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4108 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4109 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4110 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4111 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4112 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4113 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4114 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4115 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4116 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4117}
4118
4119static void
c0ff4b85 4120mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4121{
7d74b06f
KH
4122 struct mem_cgroup *iter;
4123
c0ff4b85 4124 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4125 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4126}
4127
406eb0c9
YH
4128#ifdef CONFIG_NUMA
4129static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4130{
4131 int nid;
4132 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4133 unsigned long node_nr;
4134 struct cgroup *cont = m->private;
d79154bb 4135 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4136
d79154bb 4137 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4138 seq_printf(m, "total=%lu", total_nr);
4139 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4140 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4141 seq_printf(m, " N%d=%lu", nid, node_nr);
4142 }
4143 seq_putc(m, '\n');
4144
d79154bb 4145 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4146 seq_printf(m, "file=%lu", file_nr);
4147 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4148 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4149 LRU_ALL_FILE);
406eb0c9
YH
4150 seq_printf(m, " N%d=%lu", nid, node_nr);
4151 }
4152 seq_putc(m, '\n');
4153
d79154bb 4154 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4155 seq_printf(m, "anon=%lu", anon_nr);
4156 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4157 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4158 LRU_ALL_ANON);
406eb0c9
YH
4159 seq_printf(m, " N%d=%lu", nid, node_nr);
4160 }
4161 seq_putc(m, '\n');
4162
d79154bb 4163 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4164 seq_printf(m, "unevictable=%lu", unevictable_nr);
4165 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4166 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4167 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4168 seq_printf(m, " N%d=%lu", nid, node_nr);
4169 }
4170 seq_putc(m, '\n');
4171 return 0;
4172}
4173#endif /* CONFIG_NUMA */
4174
c64745cf
PM
4175static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4176 struct cgroup_map_cb *cb)
d2ceb9b7 4177{
d79154bb 4178 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
14067bb3 4179 struct mcs_total_stat mystat;
d2ceb9b7
KH
4180 int i;
4181
14067bb3 4182 memset(&mystat, 0, sizeof(mystat));
d79154bb 4183 mem_cgroup_get_local_stat(memcg, &mystat);
d2ceb9b7 4184
406eb0c9 4185
1dd3a273
DN
4186 for (i = 0; i < NR_MCS_STAT; i++) {
4187 if (i == MCS_SWAP && !do_swap_account)
4188 continue;
14067bb3 4189 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4190 }
7b854121 4191
14067bb3 4192 /* Hierarchical information */
fee7b548
KH
4193 {
4194 unsigned long long limit, memsw_limit;
d79154bb 4195 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
fee7b548
KH
4196 cb->fill(cb, "hierarchical_memory_limit", limit);
4197 if (do_swap_account)
4198 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4199 }
7f016ee8 4200
14067bb3 4201 memset(&mystat, 0, sizeof(mystat));
d79154bb 4202 mem_cgroup_get_total_stat(memcg, &mystat);
1dd3a273
DN
4203 for (i = 0; i < NR_MCS_STAT; i++) {
4204 if (i == MCS_SWAP && !do_swap_account)
4205 continue;
14067bb3 4206 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4207 }
14067bb3 4208
7f016ee8 4209#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4210 {
4211 int nid, zid;
4212 struct mem_cgroup_per_zone *mz;
89abfab1 4213 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4214 unsigned long recent_rotated[2] = {0, 0};
4215 unsigned long recent_scanned[2] = {0, 0};
4216
4217 for_each_online_node(nid)
4218 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4219 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4220 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4221
89abfab1
HD
4222 recent_rotated[0] += rstat->recent_rotated[0];
4223 recent_rotated[1] += rstat->recent_rotated[1];
4224 recent_scanned[0] += rstat->recent_scanned[0];
4225 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8
KM
4226 }
4227 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4228 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4229 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4230 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4231 }
4232#endif
4233
d2ceb9b7
KH
4234 return 0;
4235}
4236
a7885eb8
KM
4237static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4238{
4239 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4240
1f4c025b 4241 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4242}
4243
4244static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4245 u64 val)
4246{
4247 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4248 struct mem_cgroup *parent;
068b38c1 4249
a7885eb8
KM
4250 if (val > 100)
4251 return -EINVAL;
4252
4253 if (cgrp->parent == NULL)
4254 return -EINVAL;
4255
4256 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4257
4258 cgroup_lock();
4259
a7885eb8
KM
4260 /* If under hierarchy, only empty-root can set this value */
4261 if ((parent->use_hierarchy) ||
068b38c1
LZ
4262 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4263 cgroup_unlock();
a7885eb8 4264 return -EINVAL;
068b38c1 4265 }
a7885eb8 4266
a7885eb8 4267 memcg->swappiness = val;
a7885eb8 4268
068b38c1
LZ
4269 cgroup_unlock();
4270
a7885eb8
KM
4271 return 0;
4272}
4273
2e72b634
KS
4274static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4275{
4276 struct mem_cgroup_threshold_ary *t;
4277 u64 usage;
4278 int i;
4279
4280 rcu_read_lock();
4281 if (!swap)
2c488db2 4282 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4283 else
2c488db2 4284 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4285
4286 if (!t)
4287 goto unlock;
4288
4289 usage = mem_cgroup_usage(memcg, swap);
4290
4291 /*
748dad36 4292 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4293 * If it's not true, a threshold was crossed after last
4294 * call of __mem_cgroup_threshold().
4295 */
5407a562 4296 i = t->current_threshold;
2e72b634
KS
4297
4298 /*
4299 * Iterate backward over array of thresholds starting from
4300 * current_threshold and check if a threshold is crossed.
4301 * If none of thresholds below usage is crossed, we read
4302 * only one element of the array here.
4303 */
4304 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4305 eventfd_signal(t->entries[i].eventfd, 1);
4306
4307 /* i = current_threshold + 1 */
4308 i++;
4309
4310 /*
4311 * Iterate forward over array of thresholds starting from
4312 * current_threshold+1 and check if a threshold is crossed.
4313 * If none of thresholds above usage is crossed, we read
4314 * only one element of the array here.
4315 */
4316 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4317 eventfd_signal(t->entries[i].eventfd, 1);
4318
4319 /* Update current_threshold */
5407a562 4320 t->current_threshold = i - 1;
2e72b634
KS
4321unlock:
4322 rcu_read_unlock();
4323}
4324
4325static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4326{
ad4ca5f4
KS
4327 while (memcg) {
4328 __mem_cgroup_threshold(memcg, false);
4329 if (do_swap_account)
4330 __mem_cgroup_threshold(memcg, true);
4331
4332 memcg = parent_mem_cgroup(memcg);
4333 }
2e72b634
KS
4334}
4335
4336static int compare_thresholds(const void *a, const void *b)
4337{
4338 const struct mem_cgroup_threshold *_a = a;
4339 const struct mem_cgroup_threshold *_b = b;
4340
4341 return _a->threshold - _b->threshold;
4342}
4343
c0ff4b85 4344static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4345{
4346 struct mem_cgroup_eventfd_list *ev;
4347
c0ff4b85 4348 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4349 eventfd_signal(ev->eventfd, 1);
4350 return 0;
4351}
4352
c0ff4b85 4353static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4354{
7d74b06f
KH
4355 struct mem_cgroup *iter;
4356
c0ff4b85 4357 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4358 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4359}
4360
4361static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4362 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4363{
4364 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4365 struct mem_cgroup_thresholds *thresholds;
4366 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4367 int type = MEMFILE_TYPE(cft->private);
4368 u64 threshold, usage;
2c488db2 4369 int i, size, ret;
2e72b634
KS
4370
4371 ret = res_counter_memparse_write_strategy(args, &threshold);
4372 if (ret)
4373 return ret;
4374
4375 mutex_lock(&memcg->thresholds_lock);
2c488db2 4376
2e72b634 4377 if (type == _MEM)
2c488db2 4378 thresholds = &memcg->thresholds;
2e72b634 4379 else if (type == _MEMSWAP)
2c488db2 4380 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4381 else
4382 BUG();
4383
4384 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4385
4386 /* Check if a threshold crossed before adding a new one */
2c488db2 4387 if (thresholds->primary)
2e72b634
KS
4388 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4389
2c488db2 4390 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4391
4392 /* Allocate memory for new array of thresholds */
2c488db2 4393 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4394 GFP_KERNEL);
2c488db2 4395 if (!new) {
2e72b634
KS
4396 ret = -ENOMEM;
4397 goto unlock;
4398 }
2c488db2 4399 new->size = size;
2e72b634
KS
4400
4401 /* Copy thresholds (if any) to new array */
2c488db2
KS
4402 if (thresholds->primary) {
4403 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4404 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4405 }
4406
2e72b634 4407 /* Add new threshold */
2c488db2
KS
4408 new->entries[size - 1].eventfd = eventfd;
4409 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4410
4411 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4412 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4413 compare_thresholds, NULL);
4414
4415 /* Find current threshold */
2c488db2 4416 new->current_threshold = -1;
2e72b634 4417 for (i = 0; i < size; i++) {
748dad36 4418 if (new->entries[i].threshold <= usage) {
2e72b634 4419 /*
2c488db2
KS
4420 * new->current_threshold will not be used until
4421 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4422 * it here.
4423 */
2c488db2 4424 ++new->current_threshold;
748dad36
SZ
4425 } else
4426 break;
2e72b634
KS
4427 }
4428
2c488db2
KS
4429 /* Free old spare buffer and save old primary buffer as spare */
4430 kfree(thresholds->spare);
4431 thresholds->spare = thresholds->primary;
4432
4433 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4434
907860ed 4435 /* To be sure that nobody uses thresholds */
2e72b634
KS
4436 synchronize_rcu();
4437
2e72b634
KS
4438unlock:
4439 mutex_unlock(&memcg->thresholds_lock);
4440
4441 return ret;
4442}
4443
907860ed 4444static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4445 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4446{
4447 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4448 struct mem_cgroup_thresholds *thresholds;
4449 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4450 int type = MEMFILE_TYPE(cft->private);
4451 u64 usage;
2c488db2 4452 int i, j, size;
2e72b634
KS
4453
4454 mutex_lock(&memcg->thresholds_lock);
4455 if (type == _MEM)
2c488db2 4456 thresholds = &memcg->thresholds;
2e72b634 4457 else if (type == _MEMSWAP)
2c488db2 4458 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4459 else
4460 BUG();
4461
371528ca
AV
4462 if (!thresholds->primary)
4463 goto unlock;
4464
2e72b634
KS
4465 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4466
4467 /* Check if a threshold crossed before removing */
4468 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4469
4470 /* Calculate new number of threshold */
2c488db2
KS
4471 size = 0;
4472 for (i = 0; i < thresholds->primary->size; i++) {
4473 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4474 size++;
4475 }
4476
2c488db2 4477 new = thresholds->spare;
907860ed 4478
2e72b634
KS
4479 /* Set thresholds array to NULL if we don't have thresholds */
4480 if (!size) {
2c488db2
KS
4481 kfree(new);
4482 new = NULL;
907860ed 4483 goto swap_buffers;
2e72b634
KS
4484 }
4485
2c488db2 4486 new->size = size;
2e72b634
KS
4487
4488 /* Copy thresholds and find current threshold */
2c488db2
KS
4489 new->current_threshold = -1;
4490 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4491 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4492 continue;
4493
2c488db2 4494 new->entries[j] = thresholds->primary->entries[i];
748dad36 4495 if (new->entries[j].threshold <= usage) {
2e72b634 4496 /*
2c488db2 4497 * new->current_threshold will not be used
2e72b634
KS
4498 * until rcu_assign_pointer(), so it's safe to increment
4499 * it here.
4500 */
2c488db2 4501 ++new->current_threshold;
2e72b634
KS
4502 }
4503 j++;
4504 }
4505
907860ed 4506swap_buffers:
2c488db2
KS
4507 /* Swap primary and spare array */
4508 thresholds->spare = thresholds->primary;
8c757763
SZ
4509 /* If all events are unregistered, free the spare array */
4510 if (!new) {
4511 kfree(thresholds->spare);
4512 thresholds->spare = NULL;
4513 }
4514
2c488db2 4515 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4516
907860ed 4517 /* To be sure that nobody uses thresholds */
2e72b634 4518 synchronize_rcu();
371528ca 4519unlock:
2e72b634 4520 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4521}
c1e862c1 4522
9490ff27
KH
4523static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4524 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4525{
4526 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4527 struct mem_cgroup_eventfd_list *event;
4528 int type = MEMFILE_TYPE(cft->private);
4529
4530 BUG_ON(type != _OOM_TYPE);
4531 event = kmalloc(sizeof(*event), GFP_KERNEL);
4532 if (!event)
4533 return -ENOMEM;
4534
1af8efe9 4535 spin_lock(&memcg_oom_lock);
9490ff27
KH
4536
4537 event->eventfd = eventfd;
4538 list_add(&event->list, &memcg->oom_notify);
4539
4540 /* already in OOM ? */
79dfdacc 4541 if (atomic_read(&memcg->under_oom))
9490ff27 4542 eventfd_signal(eventfd, 1);
1af8efe9 4543 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4544
4545 return 0;
4546}
4547
907860ed 4548static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4549 struct cftype *cft, struct eventfd_ctx *eventfd)
4550{
c0ff4b85 4551 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4552 struct mem_cgroup_eventfd_list *ev, *tmp;
4553 int type = MEMFILE_TYPE(cft->private);
4554
4555 BUG_ON(type != _OOM_TYPE);
4556
1af8efe9 4557 spin_lock(&memcg_oom_lock);
9490ff27 4558
c0ff4b85 4559 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4560 if (ev->eventfd == eventfd) {
4561 list_del(&ev->list);
4562 kfree(ev);
4563 }
4564 }
4565
1af8efe9 4566 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4567}
4568
3c11ecf4
KH
4569static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4570 struct cftype *cft, struct cgroup_map_cb *cb)
4571{
c0ff4b85 4572 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4573
c0ff4b85 4574 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4575
c0ff4b85 4576 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4577 cb->fill(cb, "under_oom", 1);
4578 else
4579 cb->fill(cb, "under_oom", 0);
4580 return 0;
4581}
4582
3c11ecf4
KH
4583static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4584 struct cftype *cft, u64 val)
4585{
c0ff4b85 4586 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4587 struct mem_cgroup *parent;
4588
4589 /* cannot set to root cgroup and only 0 and 1 are allowed */
4590 if (!cgrp->parent || !((val == 0) || (val == 1)))
4591 return -EINVAL;
4592
4593 parent = mem_cgroup_from_cont(cgrp->parent);
4594
4595 cgroup_lock();
4596 /* oom-kill-disable is a flag for subhierarchy. */
4597 if ((parent->use_hierarchy) ||
c0ff4b85 4598 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4599 cgroup_unlock();
4600 return -EINVAL;
4601 }
c0ff4b85 4602 memcg->oom_kill_disable = val;
4d845ebf 4603 if (!val)
c0ff4b85 4604 memcg_oom_recover(memcg);
3c11ecf4
KH
4605 cgroup_unlock();
4606 return 0;
4607}
4608
406eb0c9
YH
4609#ifdef CONFIG_NUMA
4610static const struct file_operations mem_control_numa_stat_file_operations = {
4611 .read = seq_read,
4612 .llseek = seq_lseek,
4613 .release = single_release,
4614};
4615
4616static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4617{
4618 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4619
4620 file->f_op = &mem_control_numa_stat_file_operations;
4621 return single_open(file, mem_control_numa_stat_show, cont);
4622}
4623#endif /* CONFIG_NUMA */
4624
e5671dfa 4625#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
cbe128e3 4626static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4627{
1d62e436 4628 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4629};
4630
1d62e436 4631static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4632{
1d62e436 4633 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4634}
e5671dfa 4635#else
cbe128e3 4636static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4637{
4638 return 0;
4639}
d1a4c0b3 4640
1d62e436 4641static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4642{
4643}
e5671dfa
GC
4644#endif
4645
8cdea7c0
BS
4646static struct cftype mem_cgroup_files[] = {
4647 {
0eea1030 4648 .name = "usage_in_bytes",
8c7c6e34 4649 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4650 .read = mem_cgroup_read,
9490ff27
KH
4651 .register_event = mem_cgroup_usage_register_event,
4652 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4653 },
c84872e1
PE
4654 {
4655 .name = "max_usage_in_bytes",
8c7c6e34 4656 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4657 .trigger = mem_cgroup_reset,
af36f906 4658 .read = mem_cgroup_read,
c84872e1 4659 },
8cdea7c0 4660 {
0eea1030 4661 .name = "limit_in_bytes",
8c7c6e34 4662 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4663 .write_string = mem_cgroup_write,
af36f906 4664 .read = mem_cgroup_read,
8cdea7c0 4665 },
296c81d8
BS
4666 {
4667 .name = "soft_limit_in_bytes",
4668 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4669 .write_string = mem_cgroup_write,
af36f906 4670 .read = mem_cgroup_read,
296c81d8 4671 },
8cdea7c0
BS
4672 {
4673 .name = "failcnt",
8c7c6e34 4674 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4675 .trigger = mem_cgroup_reset,
af36f906 4676 .read = mem_cgroup_read,
8cdea7c0 4677 },
d2ceb9b7
KH
4678 {
4679 .name = "stat",
c64745cf 4680 .read_map = mem_control_stat_show,
d2ceb9b7 4681 },
c1e862c1
KH
4682 {
4683 .name = "force_empty",
4684 .trigger = mem_cgroup_force_empty_write,
4685 },
18f59ea7
BS
4686 {
4687 .name = "use_hierarchy",
4688 .write_u64 = mem_cgroup_hierarchy_write,
4689 .read_u64 = mem_cgroup_hierarchy_read,
4690 },
a7885eb8
KM
4691 {
4692 .name = "swappiness",
4693 .read_u64 = mem_cgroup_swappiness_read,
4694 .write_u64 = mem_cgroup_swappiness_write,
4695 },
7dc74be0
DN
4696 {
4697 .name = "move_charge_at_immigrate",
4698 .read_u64 = mem_cgroup_move_charge_read,
4699 .write_u64 = mem_cgroup_move_charge_write,
4700 },
9490ff27
KH
4701 {
4702 .name = "oom_control",
3c11ecf4
KH
4703 .read_map = mem_cgroup_oom_control_read,
4704 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4705 .register_event = mem_cgroup_oom_register_event,
4706 .unregister_event = mem_cgroup_oom_unregister_event,
4707 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4708 },
406eb0c9
YH
4709#ifdef CONFIG_NUMA
4710 {
4711 .name = "numa_stat",
4712 .open = mem_control_numa_stat_open,
89577127 4713 .mode = S_IRUGO,
406eb0c9
YH
4714 },
4715#endif
8c7c6e34 4716#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
8c7c6e34
KH
4717 {
4718 .name = "memsw.usage_in_bytes",
4719 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4720 .read = mem_cgroup_read,
9490ff27
KH
4721 .register_event = mem_cgroup_usage_register_event,
4722 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4723 },
4724 {
4725 .name = "memsw.max_usage_in_bytes",
4726 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4727 .trigger = mem_cgroup_reset,
af36f906 4728 .read = mem_cgroup_read,
8c7c6e34
KH
4729 },
4730 {
4731 .name = "memsw.limit_in_bytes",
4732 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4733 .write_string = mem_cgroup_write,
af36f906 4734 .read = mem_cgroup_read,
8c7c6e34
KH
4735 },
4736 {
4737 .name = "memsw.failcnt",
4738 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4739 .trigger = mem_cgroup_reset,
af36f906 4740 .read = mem_cgroup_read,
8c7c6e34 4741 },
8c7c6e34 4742#endif
6bc10349 4743 { }, /* terminate */
af36f906 4744};
8c7c6e34 4745
c0ff4b85 4746static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4747{
4748 struct mem_cgroup_per_node *pn;
1ecaab2b 4749 struct mem_cgroup_per_zone *mz;
41e3355d 4750 int zone, tmp = node;
1ecaab2b
KH
4751 /*
4752 * This routine is called against possible nodes.
4753 * But it's BUG to call kmalloc() against offline node.
4754 *
4755 * TODO: this routine can waste much memory for nodes which will
4756 * never be onlined. It's better to use memory hotplug callback
4757 * function.
4758 */
41e3355d
KH
4759 if (!node_state(node, N_NORMAL_MEMORY))
4760 tmp = -1;
17295c88 4761 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4762 if (!pn)
4763 return 1;
1ecaab2b 4764
1ecaab2b
KH
4765 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4766 mz = &pn->zoneinfo[zone];
7f5e86c2 4767 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
f64c3f54 4768 mz->usage_in_excess = 0;
4e416953 4769 mz->on_tree = false;
d79154bb 4770 mz->memcg = memcg;
1ecaab2b 4771 }
0a619e58 4772 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4773 return 0;
4774}
4775
c0ff4b85 4776static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4777{
c0ff4b85 4778 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4779}
4780
33327948
KH
4781static struct mem_cgroup *mem_cgroup_alloc(void)
4782{
d79154bb 4783 struct mem_cgroup *memcg;
c62b1a3b 4784 int size = sizeof(struct mem_cgroup);
33327948 4785
c62b1a3b 4786 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4787 if (size < PAGE_SIZE)
d79154bb 4788 memcg = kzalloc(size, GFP_KERNEL);
33327948 4789 else
d79154bb 4790 memcg = vzalloc(size);
33327948 4791
d79154bb 4792 if (!memcg)
e7bbcdf3
DC
4793 return NULL;
4794
d79154bb
HD
4795 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4796 if (!memcg->stat)
d2e61b8d 4797 goto out_free;
d79154bb
HD
4798 spin_lock_init(&memcg->pcp_counter_lock);
4799 return memcg;
d2e61b8d
DC
4800
4801out_free:
4802 if (size < PAGE_SIZE)
d79154bb 4803 kfree(memcg);
d2e61b8d 4804 else
d79154bb 4805 vfree(memcg);
d2e61b8d 4806 return NULL;
33327948
KH
4807}
4808
59927fb9
HD
4809/*
4810 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4811 * but in process context. The work_freeing structure is overlaid
4812 * on the rcu_freeing structure, which itself is overlaid on memsw.
4813 */
4814static void vfree_work(struct work_struct *work)
4815{
4816 struct mem_cgroup *memcg;
4817
4818 memcg = container_of(work, struct mem_cgroup, work_freeing);
4819 vfree(memcg);
4820}
4821static void vfree_rcu(struct rcu_head *rcu_head)
4822{
4823 struct mem_cgroup *memcg;
4824
4825 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4826 INIT_WORK(&memcg->work_freeing, vfree_work);
4827 schedule_work(&memcg->work_freeing);
4828}
4829
8c7c6e34
KH
4830/*
4831 * At destroying mem_cgroup, references from swap_cgroup can remain.
4832 * (scanning all at force_empty is too costly...)
4833 *
4834 * Instead of clearing all references at force_empty, we remember
4835 * the number of reference from swap_cgroup and free mem_cgroup when
4836 * it goes down to 0.
4837 *
8c7c6e34
KH
4838 * Removal of cgroup itself succeeds regardless of refs from swap.
4839 */
4840
c0ff4b85 4841static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4842{
08e552c6
KH
4843 int node;
4844
c0ff4b85
R
4845 mem_cgroup_remove_from_trees(memcg);
4846 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4847
3ed28fa1 4848 for_each_node(node)
c0ff4b85 4849 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4850
c0ff4b85 4851 free_percpu(memcg->stat);
c62b1a3b 4852 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
59927fb9 4853 kfree_rcu(memcg, rcu_freeing);
33327948 4854 else
59927fb9 4855 call_rcu(&memcg->rcu_freeing, vfree_rcu);
33327948
KH
4856}
4857
c0ff4b85 4858static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4859{
c0ff4b85 4860 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4861}
4862
c0ff4b85 4863static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4864{
c0ff4b85
R
4865 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4866 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4867 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4868 if (parent)
4869 mem_cgroup_put(parent);
4870 }
8c7c6e34
KH
4871}
4872
c0ff4b85 4873static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4874{
c0ff4b85 4875 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4876}
4877
7bcc1bb1
DN
4878/*
4879 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4880 */
e1aab161 4881struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4882{
c0ff4b85 4883 if (!memcg->res.parent)
7bcc1bb1 4884 return NULL;
c0ff4b85 4885 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4886}
e1aab161 4887EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4888
c077719b
KH
4889#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4890static void __init enable_swap_cgroup(void)
4891{
f8d66542 4892 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4893 do_swap_account = 1;
4894}
4895#else
4896static void __init enable_swap_cgroup(void)
4897{
4898}
4899#endif
4900
f64c3f54
BS
4901static int mem_cgroup_soft_limit_tree_init(void)
4902{
4903 struct mem_cgroup_tree_per_node *rtpn;
4904 struct mem_cgroup_tree_per_zone *rtpz;
4905 int tmp, node, zone;
4906
3ed28fa1 4907 for_each_node(node) {
f64c3f54
BS
4908 tmp = node;
4909 if (!node_state(node, N_NORMAL_MEMORY))
4910 tmp = -1;
4911 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4912 if (!rtpn)
c3cecc68 4913 goto err_cleanup;
f64c3f54
BS
4914
4915 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4916
4917 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4918 rtpz = &rtpn->rb_tree_per_zone[zone];
4919 rtpz->rb_root = RB_ROOT;
4920 spin_lock_init(&rtpz->lock);
4921 }
4922 }
4923 return 0;
c3cecc68
MH
4924
4925err_cleanup:
3ed28fa1 4926 for_each_node(node) {
c3cecc68
MH
4927 if (!soft_limit_tree.rb_tree_per_node[node])
4928 break;
4929 kfree(soft_limit_tree.rb_tree_per_node[node]);
4930 soft_limit_tree.rb_tree_per_node[node] = NULL;
4931 }
4932 return 1;
4933
f64c3f54
BS
4934}
4935
0eb253e2 4936static struct cgroup_subsys_state * __ref
761b3ef5 4937mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4938{
c0ff4b85 4939 struct mem_cgroup *memcg, *parent;
04046e1a 4940 long error = -ENOMEM;
6d12e2d8 4941 int node;
8cdea7c0 4942
c0ff4b85
R
4943 memcg = mem_cgroup_alloc();
4944 if (!memcg)
04046e1a 4945 return ERR_PTR(error);
78fb7466 4946
3ed28fa1 4947 for_each_node(node)
c0ff4b85 4948 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4949 goto free_out;
f64c3f54 4950
c077719b 4951 /* root ? */
28dbc4b6 4952 if (cont->parent == NULL) {
cdec2e42 4953 int cpu;
c077719b 4954 enable_swap_cgroup();
28dbc4b6 4955 parent = NULL;
f64c3f54
BS
4956 if (mem_cgroup_soft_limit_tree_init())
4957 goto free_out;
a41c58a6 4958 root_mem_cgroup = memcg;
cdec2e42
KH
4959 for_each_possible_cpu(cpu) {
4960 struct memcg_stock_pcp *stock =
4961 &per_cpu(memcg_stock, cpu);
4962 INIT_WORK(&stock->work, drain_local_stock);
4963 }
711d3d2c 4964 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4965 } else {
28dbc4b6 4966 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4967 memcg->use_hierarchy = parent->use_hierarchy;
4968 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4969 }
28dbc4b6 4970
18f59ea7 4971 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4972 res_counter_init(&memcg->res, &parent->res);
4973 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4974 /*
4975 * We increment refcnt of the parent to ensure that we can
4976 * safely access it on res_counter_charge/uncharge.
4977 * This refcnt will be decremented when freeing this
4978 * mem_cgroup(see mem_cgroup_put).
4979 */
4980 mem_cgroup_get(parent);
18f59ea7 4981 } else {
c0ff4b85
R
4982 res_counter_init(&memcg->res, NULL);
4983 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4984 }
c0ff4b85
R
4985 memcg->last_scanned_node = MAX_NUMNODES;
4986 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4987
a7885eb8 4988 if (parent)
c0ff4b85
R
4989 memcg->swappiness = mem_cgroup_swappiness(parent);
4990 atomic_set(&memcg->refcnt, 1);
4991 memcg->move_charge_at_immigrate = 0;
4992 mutex_init(&memcg->thresholds_lock);
312734c0 4993 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
4994
4995 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4996 if (error) {
4997 /*
4998 * We call put now because our (and parent's) refcnts
4999 * are already in place. mem_cgroup_put() will internally
5000 * call __mem_cgroup_free, so return directly
5001 */
5002 mem_cgroup_put(memcg);
5003 return ERR_PTR(error);
5004 }
c0ff4b85 5005 return &memcg->css;
6d12e2d8 5006free_out:
c0ff4b85 5007 __mem_cgroup_free(memcg);
04046e1a 5008 return ERR_PTR(error);
8cdea7c0
BS
5009}
5010
761b3ef5 5011static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 5012{
c0ff4b85 5013 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5014
c0ff4b85 5015 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5016}
5017
761b3ef5 5018static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 5019{
c0ff4b85 5020 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5021
1d62e436 5022 kmem_cgroup_destroy(memcg);
d1a4c0b3 5023
c0ff4b85 5024 mem_cgroup_put(memcg);
8cdea7c0
BS
5025}
5026
02491447 5027#ifdef CONFIG_MMU
7dc74be0 5028/* Handlers for move charge at task migration. */
854ffa8d
DN
5029#define PRECHARGE_COUNT_AT_ONCE 256
5030static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5031{
854ffa8d
DN
5032 int ret = 0;
5033 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5034 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5035
c0ff4b85 5036 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5037 mc.precharge += count;
5038 /* we don't need css_get for root */
5039 return ret;
5040 }
5041 /* try to charge at once */
5042 if (count > 1) {
5043 struct res_counter *dummy;
5044 /*
c0ff4b85 5045 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5046 * by cgroup_lock_live_cgroup() that it is not removed and we
5047 * are still under the same cgroup_mutex. So we can postpone
5048 * css_get().
5049 */
c0ff4b85 5050 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5051 goto one_by_one;
c0ff4b85 5052 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5053 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5054 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5055 goto one_by_one;
5056 }
5057 mc.precharge += count;
854ffa8d
DN
5058 return ret;
5059 }
5060one_by_one:
5061 /* fall back to one by one charge */
5062 while (count--) {
5063 if (signal_pending(current)) {
5064 ret = -EINTR;
5065 break;
5066 }
5067 if (!batch_count--) {
5068 batch_count = PRECHARGE_COUNT_AT_ONCE;
5069 cond_resched();
5070 }
c0ff4b85
R
5071 ret = __mem_cgroup_try_charge(NULL,
5072 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5073 if (ret)
854ffa8d 5074 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5075 return ret;
854ffa8d
DN
5076 mc.precharge++;
5077 }
4ffef5fe
DN
5078 return ret;
5079}
5080
5081/**
8d32ff84 5082 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5083 * @vma: the vma the pte to be checked belongs
5084 * @addr: the address corresponding to the pte to be checked
5085 * @ptent: the pte to be checked
02491447 5086 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5087 *
5088 * Returns
5089 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5090 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5091 * move charge. if @target is not NULL, the page is stored in target->page
5092 * with extra refcnt got(Callers should handle it).
02491447
DN
5093 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5094 * target for charge migration. if @target is not NULL, the entry is stored
5095 * in target->ent.
4ffef5fe
DN
5096 *
5097 * Called with pte lock held.
5098 */
4ffef5fe
DN
5099union mc_target {
5100 struct page *page;
02491447 5101 swp_entry_t ent;
4ffef5fe
DN
5102};
5103
4ffef5fe 5104enum mc_target_type {
8d32ff84 5105 MC_TARGET_NONE = 0,
4ffef5fe 5106 MC_TARGET_PAGE,
02491447 5107 MC_TARGET_SWAP,
4ffef5fe
DN
5108};
5109
90254a65
DN
5110static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5111 unsigned long addr, pte_t ptent)
4ffef5fe 5112{
90254a65 5113 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5114
90254a65
DN
5115 if (!page || !page_mapped(page))
5116 return NULL;
5117 if (PageAnon(page)) {
5118 /* we don't move shared anon */
4b91355e 5119 if (!move_anon())
90254a65 5120 return NULL;
87946a72
DN
5121 } else if (!move_file())
5122 /* we ignore mapcount for file pages */
90254a65
DN
5123 return NULL;
5124 if (!get_page_unless_zero(page))
5125 return NULL;
5126
5127 return page;
5128}
5129
4b91355e 5130#ifdef CONFIG_SWAP
90254a65
DN
5131static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5132 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5133{
90254a65
DN
5134 struct page *page = NULL;
5135 swp_entry_t ent = pte_to_swp_entry(ptent);
5136
5137 if (!move_anon() || non_swap_entry(ent))
5138 return NULL;
4b91355e
KH
5139 /*
5140 * Because lookup_swap_cache() updates some statistics counter,
5141 * we call find_get_page() with swapper_space directly.
5142 */
5143 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5144 if (do_swap_account)
5145 entry->val = ent.val;
5146
5147 return page;
5148}
4b91355e
KH
5149#else
5150static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5151 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5152{
5153 return NULL;
5154}
5155#endif
90254a65 5156
87946a72
DN
5157static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5158 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5159{
5160 struct page *page = NULL;
87946a72
DN
5161 struct address_space *mapping;
5162 pgoff_t pgoff;
5163
5164 if (!vma->vm_file) /* anonymous vma */
5165 return NULL;
5166 if (!move_file())
5167 return NULL;
5168
87946a72
DN
5169 mapping = vma->vm_file->f_mapping;
5170 if (pte_none(ptent))
5171 pgoff = linear_page_index(vma, addr);
5172 else /* pte_file(ptent) is true */
5173 pgoff = pte_to_pgoff(ptent);
5174
5175 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5176 page = find_get_page(mapping, pgoff);
5177
5178#ifdef CONFIG_SWAP
5179 /* shmem/tmpfs may report page out on swap: account for that too. */
5180 if (radix_tree_exceptional_entry(page)) {
5181 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5182 if (do_swap_account)
aa3b1895
HD
5183 *entry = swap;
5184 page = find_get_page(&swapper_space, swap.val);
87946a72 5185 }
aa3b1895 5186#endif
87946a72
DN
5187 return page;
5188}
5189
8d32ff84 5190static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5191 unsigned long addr, pte_t ptent, union mc_target *target)
5192{
5193 struct page *page = NULL;
5194 struct page_cgroup *pc;
8d32ff84 5195 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5196 swp_entry_t ent = { .val = 0 };
5197
5198 if (pte_present(ptent))
5199 page = mc_handle_present_pte(vma, addr, ptent);
5200 else if (is_swap_pte(ptent))
5201 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5202 else if (pte_none(ptent) || pte_file(ptent))
5203 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5204
5205 if (!page && !ent.val)
8d32ff84 5206 return ret;
02491447
DN
5207 if (page) {
5208 pc = lookup_page_cgroup(page);
5209 /*
5210 * Do only loose check w/o page_cgroup lock.
5211 * mem_cgroup_move_account() checks the pc is valid or not under
5212 * the lock.
5213 */
5214 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5215 ret = MC_TARGET_PAGE;
5216 if (target)
5217 target->page = page;
5218 }
5219 if (!ret || !target)
5220 put_page(page);
5221 }
90254a65
DN
5222 /* There is a swap entry and a page doesn't exist or isn't charged */
5223 if (ent.val && !ret &&
9fb4b7cc 5224 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5225 ret = MC_TARGET_SWAP;
5226 if (target)
5227 target->ent = ent;
4ffef5fe 5228 }
4ffef5fe
DN
5229 return ret;
5230}
5231
12724850
NH
5232#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5233/*
5234 * We don't consider swapping or file mapped pages because THP does not
5235 * support them for now.
5236 * Caller should make sure that pmd_trans_huge(pmd) is true.
5237 */
5238static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5239 unsigned long addr, pmd_t pmd, union mc_target *target)
5240{
5241 struct page *page = NULL;
5242 struct page_cgroup *pc;
5243 enum mc_target_type ret = MC_TARGET_NONE;
5244
5245 page = pmd_page(pmd);
5246 VM_BUG_ON(!page || !PageHead(page));
5247 if (!move_anon())
5248 return ret;
5249 pc = lookup_page_cgroup(page);
5250 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5251 ret = MC_TARGET_PAGE;
5252 if (target) {
5253 get_page(page);
5254 target->page = page;
5255 }
5256 }
5257 return ret;
5258}
5259#else
5260static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5261 unsigned long addr, pmd_t pmd, union mc_target *target)
5262{
5263 return MC_TARGET_NONE;
5264}
5265#endif
5266
4ffef5fe
DN
5267static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5268 unsigned long addr, unsigned long end,
5269 struct mm_walk *walk)
5270{
5271 struct vm_area_struct *vma = walk->private;
5272 pte_t *pte;
5273 spinlock_t *ptl;
5274
12724850
NH
5275 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5276 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5277 mc.precharge += HPAGE_PMD_NR;
5278 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5279 return 0;
12724850 5280 }
03319327 5281
45f83cef
AA
5282 if (pmd_trans_unstable(pmd))
5283 return 0;
4ffef5fe
DN
5284 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5285 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5286 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5287 mc.precharge++; /* increment precharge temporarily */
5288 pte_unmap_unlock(pte - 1, ptl);
5289 cond_resched();
5290
7dc74be0
DN
5291 return 0;
5292}
5293
4ffef5fe
DN
5294static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5295{
5296 unsigned long precharge;
5297 struct vm_area_struct *vma;
5298
dfe076b0 5299 down_read(&mm->mmap_sem);
4ffef5fe
DN
5300 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5301 struct mm_walk mem_cgroup_count_precharge_walk = {
5302 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5303 .mm = mm,
5304 .private = vma,
5305 };
5306 if (is_vm_hugetlb_page(vma))
5307 continue;
4ffef5fe
DN
5308 walk_page_range(vma->vm_start, vma->vm_end,
5309 &mem_cgroup_count_precharge_walk);
5310 }
dfe076b0 5311 up_read(&mm->mmap_sem);
4ffef5fe
DN
5312
5313 precharge = mc.precharge;
5314 mc.precharge = 0;
5315
5316 return precharge;
5317}
5318
4ffef5fe
DN
5319static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5320{
dfe076b0
DN
5321 unsigned long precharge = mem_cgroup_count_precharge(mm);
5322
5323 VM_BUG_ON(mc.moving_task);
5324 mc.moving_task = current;
5325 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5326}
5327
dfe076b0
DN
5328/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5329static void __mem_cgroup_clear_mc(void)
4ffef5fe 5330{
2bd9bb20
KH
5331 struct mem_cgroup *from = mc.from;
5332 struct mem_cgroup *to = mc.to;
5333
4ffef5fe 5334 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5335 if (mc.precharge) {
5336 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5337 mc.precharge = 0;
5338 }
5339 /*
5340 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5341 * we must uncharge here.
5342 */
5343 if (mc.moved_charge) {
5344 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5345 mc.moved_charge = 0;
4ffef5fe 5346 }
483c30b5
DN
5347 /* we must fixup refcnts and charges */
5348 if (mc.moved_swap) {
483c30b5
DN
5349 /* uncharge swap account from the old cgroup */
5350 if (!mem_cgroup_is_root(mc.from))
5351 res_counter_uncharge(&mc.from->memsw,
5352 PAGE_SIZE * mc.moved_swap);
5353 __mem_cgroup_put(mc.from, mc.moved_swap);
5354
5355 if (!mem_cgroup_is_root(mc.to)) {
5356 /*
5357 * we charged both to->res and to->memsw, so we should
5358 * uncharge to->res.
5359 */
5360 res_counter_uncharge(&mc.to->res,
5361 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5362 }
5363 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5364 mc.moved_swap = 0;
5365 }
dfe076b0
DN
5366 memcg_oom_recover(from);
5367 memcg_oom_recover(to);
5368 wake_up_all(&mc.waitq);
5369}
5370
5371static void mem_cgroup_clear_mc(void)
5372{
5373 struct mem_cgroup *from = mc.from;
5374
5375 /*
5376 * we must clear moving_task before waking up waiters at the end of
5377 * task migration.
5378 */
5379 mc.moving_task = NULL;
5380 __mem_cgroup_clear_mc();
2bd9bb20 5381 spin_lock(&mc.lock);
4ffef5fe
DN
5382 mc.from = NULL;
5383 mc.to = NULL;
2bd9bb20 5384 spin_unlock(&mc.lock);
32047e2a 5385 mem_cgroup_end_move(from);
4ffef5fe
DN
5386}
5387
761b3ef5
LZ
5388static int mem_cgroup_can_attach(struct cgroup *cgroup,
5389 struct cgroup_taskset *tset)
7dc74be0 5390{
2f7ee569 5391 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5392 int ret = 0;
c0ff4b85 5393 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5394
c0ff4b85 5395 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5396 struct mm_struct *mm;
5397 struct mem_cgroup *from = mem_cgroup_from_task(p);
5398
c0ff4b85 5399 VM_BUG_ON(from == memcg);
7dc74be0
DN
5400
5401 mm = get_task_mm(p);
5402 if (!mm)
5403 return 0;
7dc74be0 5404 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5405 if (mm->owner == p) {
5406 VM_BUG_ON(mc.from);
5407 VM_BUG_ON(mc.to);
5408 VM_BUG_ON(mc.precharge);
854ffa8d 5409 VM_BUG_ON(mc.moved_charge);
483c30b5 5410 VM_BUG_ON(mc.moved_swap);
32047e2a 5411 mem_cgroup_start_move(from);
2bd9bb20 5412 spin_lock(&mc.lock);
4ffef5fe 5413 mc.from = from;
c0ff4b85 5414 mc.to = memcg;
2bd9bb20 5415 spin_unlock(&mc.lock);
dfe076b0 5416 /* We set mc.moving_task later */
4ffef5fe
DN
5417
5418 ret = mem_cgroup_precharge_mc(mm);
5419 if (ret)
5420 mem_cgroup_clear_mc();
dfe076b0
DN
5421 }
5422 mmput(mm);
7dc74be0
DN
5423 }
5424 return ret;
5425}
5426
761b3ef5
LZ
5427static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5428 struct cgroup_taskset *tset)
7dc74be0 5429{
4ffef5fe 5430 mem_cgroup_clear_mc();
7dc74be0
DN
5431}
5432
4ffef5fe
DN
5433static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5434 unsigned long addr, unsigned long end,
5435 struct mm_walk *walk)
7dc74be0 5436{
4ffef5fe
DN
5437 int ret = 0;
5438 struct vm_area_struct *vma = walk->private;
5439 pte_t *pte;
5440 spinlock_t *ptl;
12724850
NH
5441 enum mc_target_type target_type;
5442 union mc_target target;
5443 struct page *page;
5444 struct page_cgroup *pc;
4ffef5fe 5445
12724850
NH
5446 /*
5447 * We don't take compound_lock() here but no race with splitting thp
5448 * happens because:
5449 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5450 * under splitting, which means there's no concurrent thp split,
5451 * - if another thread runs into split_huge_page() just after we
5452 * entered this if-block, the thread must wait for page table lock
5453 * to be unlocked in __split_huge_page_splitting(), where the main
5454 * part of thp split is not executed yet.
5455 */
5456 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5457 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5458 spin_unlock(&vma->vm_mm->page_table_lock);
5459 return 0;
5460 }
5461 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5462 if (target_type == MC_TARGET_PAGE) {
5463 page = target.page;
5464 if (!isolate_lru_page(page)) {
5465 pc = lookup_page_cgroup(page);
5466 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5467 pc, mc.from, mc.to,
5468 false)) {
5469 mc.precharge -= HPAGE_PMD_NR;
5470 mc.moved_charge += HPAGE_PMD_NR;
5471 }
5472 putback_lru_page(page);
5473 }
5474 put_page(page);
5475 }
5476 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5477 return 0;
12724850
NH
5478 }
5479
45f83cef
AA
5480 if (pmd_trans_unstable(pmd))
5481 return 0;
4ffef5fe
DN
5482retry:
5483 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5484 for (; addr != end; addr += PAGE_SIZE) {
5485 pte_t ptent = *(pte++);
02491447 5486 swp_entry_t ent;
4ffef5fe
DN
5487
5488 if (!mc.precharge)
5489 break;
5490
8d32ff84 5491 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5492 case MC_TARGET_PAGE:
5493 page = target.page;
5494 if (isolate_lru_page(page))
5495 goto put;
5496 pc = lookup_page_cgroup(page);
7ec99d62
JW
5497 if (!mem_cgroup_move_account(page, 1, pc,
5498 mc.from, mc.to, false)) {
4ffef5fe 5499 mc.precharge--;
854ffa8d
DN
5500 /* we uncharge from mc.from later. */
5501 mc.moved_charge++;
4ffef5fe
DN
5502 }
5503 putback_lru_page(page);
8d32ff84 5504put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5505 put_page(page);
5506 break;
02491447
DN
5507 case MC_TARGET_SWAP:
5508 ent = target.ent;
e91cbb42 5509 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5510 mc.precharge--;
483c30b5
DN
5511 /* we fixup refcnts and charges later. */
5512 mc.moved_swap++;
5513 }
02491447 5514 break;
4ffef5fe
DN
5515 default:
5516 break;
5517 }
5518 }
5519 pte_unmap_unlock(pte - 1, ptl);
5520 cond_resched();
5521
5522 if (addr != end) {
5523 /*
5524 * We have consumed all precharges we got in can_attach().
5525 * We try charge one by one, but don't do any additional
5526 * charges to mc.to if we have failed in charge once in attach()
5527 * phase.
5528 */
854ffa8d 5529 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5530 if (!ret)
5531 goto retry;
5532 }
5533
5534 return ret;
5535}
5536
5537static void mem_cgroup_move_charge(struct mm_struct *mm)
5538{
5539 struct vm_area_struct *vma;
5540
5541 lru_add_drain_all();
dfe076b0
DN
5542retry:
5543 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5544 /*
5545 * Someone who are holding the mmap_sem might be waiting in
5546 * waitq. So we cancel all extra charges, wake up all waiters,
5547 * and retry. Because we cancel precharges, we might not be able
5548 * to move enough charges, but moving charge is a best-effort
5549 * feature anyway, so it wouldn't be a big problem.
5550 */
5551 __mem_cgroup_clear_mc();
5552 cond_resched();
5553 goto retry;
5554 }
4ffef5fe
DN
5555 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5556 int ret;
5557 struct mm_walk mem_cgroup_move_charge_walk = {
5558 .pmd_entry = mem_cgroup_move_charge_pte_range,
5559 .mm = mm,
5560 .private = vma,
5561 };
5562 if (is_vm_hugetlb_page(vma))
5563 continue;
4ffef5fe
DN
5564 ret = walk_page_range(vma->vm_start, vma->vm_end,
5565 &mem_cgroup_move_charge_walk);
5566 if (ret)
5567 /*
5568 * means we have consumed all precharges and failed in
5569 * doing additional charge. Just abandon here.
5570 */
5571 break;
5572 }
dfe076b0 5573 up_read(&mm->mmap_sem);
7dc74be0
DN
5574}
5575
761b3ef5
LZ
5576static void mem_cgroup_move_task(struct cgroup *cont,
5577 struct cgroup_taskset *tset)
67e465a7 5578{
2f7ee569 5579 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5580 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5581
dfe076b0 5582 if (mm) {
a433658c
KM
5583 if (mc.to)
5584 mem_cgroup_move_charge(mm);
dfe076b0
DN
5585 mmput(mm);
5586 }
a433658c
KM
5587 if (mc.to)
5588 mem_cgroup_clear_mc();
67e465a7 5589}
5cfb80a7 5590#else /* !CONFIG_MMU */
761b3ef5
LZ
5591static int mem_cgroup_can_attach(struct cgroup *cgroup,
5592 struct cgroup_taskset *tset)
5cfb80a7
DN
5593{
5594 return 0;
5595}
761b3ef5
LZ
5596static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5597 struct cgroup_taskset *tset)
5cfb80a7
DN
5598{
5599}
761b3ef5
LZ
5600static void mem_cgroup_move_task(struct cgroup *cont,
5601 struct cgroup_taskset *tset)
5cfb80a7
DN
5602{
5603}
5604#endif
67e465a7 5605
8cdea7c0
BS
5606struct cgroup_subsys mem_cgroup_subsys = {
5607 .name = "memory",
5608 .subsys_id = mem_cgroup_subsys_id,
5609 .create = mem_cgroup_create,
df878fb0 5610 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5611 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5612 .can_attach = mem_cgroup_can_attach,
5613 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5614 .attach = mem_cgroup_move_task,
6bc10349 5615 .base_cftypes = mem_cgroup_files,
6d12e2d8 5616 .early_init = 0,
04046e1a 5617 .use_id = 1,
48ddbe19 5618 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5619};
c077719b
KH
5620
5621#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5622static int __init enable_swap_account(char *s)
5623{
5624 /* consider enabled if no parameter or 1 is given */
a2c8990a 5625 if (!strcmp(s, "1"))
a42c390c 5626 really_do_swap_account = 1;
a2c8990a 5627 else if (!strcmp(s, "0"))
a42c390c
MH
5628 really_do_swap_account = 0;
5629 return 1;
5630}
a2c8990a 5631__setup("swapaccount=", enable_swap_account);
c077719b 5632
c077719b 5633#endif