drm/amdgpu/powerplay: use local renoir array sizes for clock fetching
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
78fb7466 28#include <linux/mm.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
c8713d0b 60#include <linux/seq_buf.h>
08e552c6 61#include "internal.h"
d1a4c0b3 62#include <net/sock.h>
4bd2c1ee 63#include <net/ip.h>
f35c3a8e 64#include "slab.h"
8cdea7c0 65
7c0f6ba6 66#include <linux/uaccess.h>
8697d331 67
cc8e970c
KM
68#include <trace/events/vmscan.h>
69
073219e9
TH
70struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 72
7d828602
JW
73struct mem_cgroup *root_mem_cgroup __read_mostly;
74
a181b0e8 75#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 76
f7e1cb6e
JW
77/* Socket memory accounting disabled? */
78static bool cgroup_memory_nosocket;
79
04823c83
VD
80/* Kernel memory accounting disabled? */
81static bool cgroup_memory_nokmem;
82
21afa38e 83/* Whether the swap controller is active */
c255a458 84#ifdef CONFIG_MEMCG_SWAP
c077719b 85int do_swap_account __read_mostly;
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
7941d214
JW
90/* Whether legacy memory+swap accounting is active */
91static bool do_memsw_account(void)
92{
93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94}
95
71cd3113 96static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
97 "inactive_anon",
98 "active_anon",
99 "inactive_file",
100 "active_file",
101 "unevictable",
102};
103
a0db00fc
KS
104#define THRESHOLDS_EVENTS_TARGET 128
105#define SOFTLIMIT_EVENTS_TARGET 1024
106#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
217bc319
KH
206enum charge_type {
207 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 208 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 210 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
211 NR_CHARGE_TYPE,
212};
213
8c7c6e34 214/* for encoding cft->private value on file */
86ae53e1
GC
215enum res_type {
216 _MEM,
217 _MEMSWAP,
218 _OOM_TYPE,
510fc4e1 219 _KMEM,
d55f90bf 220 _TCP,
86ae53e1
GC
221};
222
a0db00fc
KS
223#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
224#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 225#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
226/* Used for OOM nofiier */
227#define OOM_CONTROL (0)
8c7c6e34 228
b05706f1
KT
229/*
230 * Iteration constructs for visiting all cgroups (under a tree). If
231 * loops are exited prematurely (break), mem_cgroup_iter_break() must
232 * be used for reference counting.
233 */
234#define for_each_mem_cgroup_tree(iter, root) \
235 for (iter = mem_cgroup_iter(root, NULL, NULL); \
236 iter != NULL; \
237 iter = mem_cgroup_iter(root, iter, NULL))
238
239#define for_each_mem_cgroup(iter) \
240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(NULL, iter, NULL))
243
7775face
TH
244static inline bool should_force_charge(void)
245{
246 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
247 (current->flags & PF_EXITING);
248}
249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
84c07d11 263#ifdef CONFIG_MEMCG_KMEM
55007d84 264/*
f7ce3190 265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
266 * The main reason for not using cgroup id for this:
267 * this works better in sparse environments, where we have a lot of memcgs,
268 * but only a few kmem-limited. Or also, if we have, for instance, 200
269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
270 * 200 entry array for that.
55007d84 271 *
dbcf73e2
VD
272 * The current size of the caches array is stored in memcg_nr_cache_ids. It
273 * will double each time we have to increase it.
55007d84 274 */
dbcf73e2
VD
275static DEFINE_IDA(memcg_cache_ida);
276int memcg_nr_cache_ids;
749c5415 277
05257a1a
VD
278/* Protects memcg_nr_cache_ids */
279static DECLARE_RWSEM(memcg_cache_ids_sem);
280
281void memcg_get_cache_ids(void)
282{
283 down_read(&memcg_cache_ids_sem);
284}
285
286void memcg_put_cache_ids(void)
287{
288 up_read(&memcg_cache_ids_sem);
289}
290
55007d84
GC
291/*
292 * MIN_SIZE is different than 1, because we would like to avoid going through
293 * the alloc/free process all the time. In a small machine, 4 kmem-limited
294 * cgroups is a reasonable guess. In the future, it could be a parameter or
295 * tunable, but that is strictly not necessary.
296 *
b8627835 297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
298 * this constant directly from cgroup, but it is understandable that this is
299 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 300 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
301 * increase ours as well if it increases.
302 */
303#define MEMCG_CACHES_MIN_SIZE 4
b8627835 304#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 305
d7f25f8a
GC
306/*
307 * A lot of the calls to the cache allocation functions are expected to be
308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309 * conditional to this static branch, we'll have to allow modules that does
310 * kmem_cache_alloc and the such to see this symbol as well
311 */
ef12947c 312DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 313EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 314
17cc4dfe
TH
315struct workqueue_struct *memcg_kmem_cache_wq;
316
0a4465d3
KT
317static int memcg_shrinker_map_size;
318static DEFINE_MUTEX(memcg_shrinker_map_mutex);
319
320static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
321{
322 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
323}
324
325static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
326 int size, int old_size)
327{
328 struct memcg_shrinker_map *new, *old;
329 int nid;
330
331 lockdep_assert_held(&memcg_shrinker_map_mutex);
332
333 for_each_node(nid) {
334 old = rcu_dereference_protected(
335 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
336 /* Not yet online memcg */
337 if (!old)
338 return 0;
339
340 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 if (!new)
342 return -ENOMEM;
343
344 /* Set all old bits, clear all new bits */
345 memset(new->map, (int)0xff, old_size);
346 memset((void *)new->map + old_size, 0, size - old_size);
347
348 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
349 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
350 }
351
352 return 0;
353}
354
355static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
356{
357 struct mem_cgroup_per_node *pn;
358 struct memcg_shrinker_map *map;
359 int nid;
360
361 if (mem_cgroup_is_root(memcg))
362 return;
363
364 for_each_node(nid) {
365 pn = mem_cgroup_nodeinfo(memcg, nid);
366 map = rcu_dereference_protected(pn->shrinker_map, true);
367 if (map)
368 kvfree(map);
369 rcu_assign_pointer(pn->shrinker_map, NULL);
370 }
371}
372
373static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
374{
375 struct memcg_shrinker_map *map;
376 int nid, size, ret = 0;
377
378 if (mem_cgroup_is_root(memcg))
379 return 0;
380
381 mutex_lock(&memcg_shrinker_map_mutex);
382 size = memcg_shrinker_map_size;
383 for_each_node(nid) {
384 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
385 if (!map) {
386 memcg_free_shrinker_maps(memcg);
387 ret = -ENOMEM;
388 break;
389 }
390 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
391 }
392 mutex_unlock(&memcg_shrinker_map_mutex);
393
394 return ret;
395}
396
397int memcg_expand_shrinker_maps(int new_id)
398{
399 int size, old_size, ret = 0;
400 struct mem_cgroup *memcg;
401
402 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
403 old_size = memcg_shrinker_map_size;
404 if (size <= old_size)
405 return 0;
406
407 mutex_lock(&memcg_shrinker_map_mutex);
408 if (!root_mem_cgroup)
409 goto unlock;
410
411 for_each_mem_cgroup(memcg) {
412 if (mem_cgroup_is_root(memcg))
413 continue;
414 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
415 if (ret)
416 goto unlock;
417 }
418unlock:
419 if (!ret)
420 memcg_shrinker_map_size = size;
421 mutex_unlock(&memcg_shrinker_map_mutex);
422 return ret;
423}
fae91d6d
KT
424
425void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426{
427 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
428 struct memcg_shrinker_map *map;
429
430 rcu_read_lock();
431 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
432 /* Pairs with smp mb in shrink_slab() */
433 smp_mb__before_atomic();
fae91d6d
KT
434 set_bit(shrinker_id, map->map);
435 rcu_read_unlock();
436 }
437}
438
0a4465d3
KT
439#else /* CONFIG_MEMCG_KMEM */
440static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
441{
442 return 0;
443}
444static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 445#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 446
ad7fa852
TH
447/**
448 * mem_cgroup_css_from_page - css of the memcg associated with a page
449 * @page: page of interest
450 *
451 * If memcg is bound to the default hierarchy, css of the memcg associated
452 * with @page is returned. The returned css remains associated with @page
453 * until it is released.
454 *
455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456 * is returned.
ad7fa852
TH
457 */
458struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459{
460 struct mem_cgroup *memcg;
461
ad7fa852
TH
462 memcg = page->mem_cgroup;
463
9e10a130 464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
465 memcg = root_mem_cgroup;
466
ad7fa852
TH
467 return &memcg->css;
468}
469
2fc04524
VD
470/**
471 * page_cgroup_ino - return inode number of the memcg a page is charged to
472 * @page: the page
473 *
474 * Look up the closest online ancestor of the memory cgroup @page is charged to
475 * and return its inode number or 0 if @page is not charged to any cgroup. It
476 * is safe to call this function without holding a reference to @page.
477 *
478 * Note, this function is inherently racy, because there is nothing to prevent
479 * the cgroup inode from getting torn down and potentially reallocated a moment
480 * after page_cgroup_ino() returns, so it only should be used by callers that
481 * do not care (such as procfs interfaces).
482 */
483ino_t page_cgroup_ino(struct page *page)
484{
485 struct mem_cgroup *memcg;
486 unsigned long ino = 0;
487
488 rcu_read_lock();
4d96ba35
RG
489 if (PageHead(page) && PageSlab(page))
490 memcg = memcg_from_slab_page(page);
491 else
492 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
493 while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 memcg = parent_mem_cgroup(memcg);
495 if (memcg)
496 ino = cgroup_ino(memcg->css.cgroup);
497 rcu_read_unlock();
498 return ino;
499}
500
ef8f2327
MG
501static struct mem_cgroup_per_node *
502mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 503{
97a6c37b 504 int nid = page_to_nid(page);
f64c3f54 505
ef8f2327 506 return memcg->nodeinfo[nid];
f64c3f54
BS
507}
508
ef8f2327
MG
509static struct mem_cgroup_tree_per_node *
510soft_limit_tree_node(int nid)
bb4cc1a8 511{
ef8f2327 512 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
513}
514
ef8f2327 515static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
516soft_limit_tree_from_page(struct page *page)
517{
518 int nid = page_to_nid(page);
bb4cc1a8 519
ef8f2327 520 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
521}
522
ef8f2327
MG
523static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 525 unsigned long new_usage_in_excess)
bb4cc1a8
AM
526{
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
ef8f2327 529 struct mem_cgroup_per_node *mz_node;
fa90b2fd 530 bool rightmost = true;
bb4cc1a8
AM
531
532 if (mz->on_tree)
533 return;
534
535 mz->usage_in_excess = new_usage_in_excess;
536 if (!mz->usage_in_excess)
537 return;
538 while (*p) {
539 parent = *p;
ef8f2327 540 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 541 tree_node);
fa90b2fd 542 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 543 p = &(*p)->rb_left;
fa90b2fd
DB
544 rightmost = false;
545 }
546
bb4cc1a8
AM
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
fa90b2fd
DB
554
555 if (rightmost)
556 mctz->rb_rightmost = &mz->tree_node;
557
bb4cc1a8
AM
558 rb_link_node(&mz->tree_node, parent, p);
559 rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 mz->on_tree = true;
561}
562
ef8f2327
MG
563static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
565{
566 if (!mz->on_tree)
567 return;
fa90b2fd
DB
568
569 if (&mz->tree_node == mctz->rb_rightmost)
570 mctz->rb_rightmost = rb_prev(&mz->tree_node);
571
bb4cc1a8
AM
572 rb_erase(&mz->tree_node, &mctz->rb_root);
573 mz->on_tree = false;
574}
575
ef8f2327
MG
576static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 578{
0a31bc97
JW
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 582 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 583 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
584}
585
3e32cb2e
JW
586static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587{
588 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
590 unsigned long excess = 0;
591
592 if (nr_pages > soft_limit)
593 excess = nr_pages - soft_limit;
594
595 return excess;
596}
bb4cc1a8
AM
597
598static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599{
3e32cb2e 600 unsigned long excess;
ef8f2327
MG
601 struct mem_cgroup_per_node *mz;
602 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 603
e231875b 604 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
605 if (!mctz)
606 return;
bb4cc1a8
AM
607 /*
608 * Necessary to update all ancestors when hierarchy is used.
609 * because their event counter is not touched.
610 */
611 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 612 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 613 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
614 /*
615 * We have to update the tree if mz is on RB-tree or
616 * mem is over its softlimit.
617 */
618 if (excess || mz->on_tree) {
0a31bc97
JW
619 unsigned long flags;
620
621 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
622 /* if on-tree, remove it */
623 if (mz->on_tree)
cf2c8127 624 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
625 /*
626 * Insert again. mz->usage_in_excess will be updated.
627 * If excess is 0, no tree ops.
628 */
cf2c8127 629 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 630 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
631 }
632 }
633}
634
635static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636{
ef8f2327
MG
637 struct mem_cgroup_tree_per_node *mctz;
638 struct mem_cgroup_per_node *mz;
639 int nid;
bb4cc1a8 640
e231875b 641 for_each_node(nid) {
ef8f2327
MG
642 mz = mem_cgroup_nodeinfo(memcg, nid);
643 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
644 if (mctz)
645 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
646 }
647}
648
ef8f2327
MG
649static struct mem_cgroup_per_node *
650__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 651{
ef8f2327 652 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
653
654retry:
655 mz = NULL;
fa90b2fd 656 if (!mctz->rb_rightmost)
bb4cc1a8
AM
657 goto done; /* Nothing to reclaim from */
658
fa90b2fd
DB
659 mz = rb_entry(mctz->rb_rightmost,
660 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
661 /*
662 * Remove the node now but someone else can add it back,
663 * we will to add it back at the end of reclaim to its correct
664 * position in the tree.
665 */
cf2c8127 666 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 667 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 668 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
669 goto retry;
670done:
671 return mz;
672}
673
ef8f2327
MG
674static struct mem_cgroup_per_node *
675mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 676{
ef8f2327 677 struct mem_cgroup_per_node *mz;
bb4cc1a8 678
0a31bc97 679 spin_lock_irq(&mctz->lock);
bb4cc1a8 680 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 681 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
682 return mz;
683}
684
db9adbcb
JW
685/**
686 * __mod_memcg_state - update cgroup memory statistics
687 * @memcg: the memory cgroup
688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689 * @val: delta to add to the counter, can be negative
690 */
691void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692{
693 long x;
694
695 if (mem_cgroup_disabled())
696 return;
697
698 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
699 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
700 struct mem_cgroup *mi;
701
766a4c19
YS
702 /*
703 * Batch local counters to keep them in sync with
704 * the hierarchical ones.
705 */
706 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
707 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
708 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
709 x = 0;
710 }
711 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
712}
713
42a30035
JW
714static struct mem_cgroup_per_node *
715parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
716{
717 struct mem_cgroup *parent;
718
719 parent = parent_mem_cgroup(pn->memcg);
720 if (!parent)
721 return NULL;
722 return mem_cgroup_nodeinfo(parent, nid);
723}
724
db9adbcb
JW
725/**
726 * __mod_lruvec_state - update lruvec memory statistics
727 * @lruvec: the lruvec
728 * @idx: the stat item
729 * @val: delta to add to the counter, can be negative
730 *
731 * The lruvec is the intersection of the NUMA node and a cgroup. This
732 * function updates the all three counters that are affected by a
733 * change of state at this level: per-node, per-cgroup, per-lruvec.
734 */
735void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
736 int val)
737{
42a30035 738 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 739 struct mem_cgroup_per_node *pn;
42a30035 740 struct mem_cgroup *memcg;
db9adbcb
JW
741 long x;
742
743 /* Update node */
42a30035 744 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
745
746 if (mem_cgroup_disabled())
747 return;
748
749 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 750 memcg = pn->memcg;
db9adbcb
JW
751
752 /* Update memcg */
42a30035 753 __mod_memcg_state(memcg, idx, val);
db9adbcb 754
db9adbcb
JW
755 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
756 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
757 struct mem_cgroup_per_node *pi;
758
766a4c19
YS
759 /*
760 * Batch local counters to keep them in sync with
761 * the hierarchical ones.
762 */
763 __this_cpu_add(pn->lruvec_stat_local->count[idx], x);
42a30035
JW
764 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
765 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
766 x = 0;
767 }
768 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
769}
770
771/**
772 * __count_memcg_events - account VM events in a cgroup
773 * @memcg: the memory cgroup
774 * @idx: the event item
775 * @count: the number of events that occured
776 */
777void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
778 unsigned long count)
779{
780 unsigned long x;
781
782 if (mem_cgroup_disabled())
783 return;
784
785 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
786 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
787 struct mem_cgroup *mi;
788
766a4c19
YS
789 /*
790 * Batch local counters to keep them in sync with
791 * the hierarchical ones.
792 */
793 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
794 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
795 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
796 x = 0;
797 }
798 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
799}
800
42a30035 801static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 802{
871789d4 803 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
804}
805
42a30035
JW
806static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
807{
815744d7
JW
808 long x = 0;
809 int cpu;
810
811 for_each_possible_cpu(cpu)
812 x += per_cpu(memcg->vmstats_local->events[event], cpu);
813 return x;
42a30035
JW
814}
815
c0ff4b85 816static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 817 struct page *page,
f627c2f5 818 bool compound, int nr_pages)
d52aa412 819{
b2402857
KH
820 /*
821 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
822 * counted as CACHE even if it's on ANON LRU.
823 */
0a31bc97 824 if (PageAnon(page))
c9019e9b 825 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 826 else {
c9019e9b 827 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 828 if (PageSwapBacked(page))
c9019e9b 829 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 830 }
55e462b0 831
f627c2f5
KS
832 if (compound) {
833 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 834 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 835 }
b070e65c 836
e401f176
KH
837 /* pagein of a big page is an event. So, ignore page size */
838 if (nr_pages > 0)
c9019e9b 839 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 840 else {
c9019e9b 841 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
842 nr_pages = -nr_pages; /* for event */
843 }
e401f176 844
871789d4 845 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
846}
847
f53d7ce3
JW
848static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
849 enum mem_cgroup_events_target target)
7a159cc9
JW
850{
851 unsigned long val, next;
852
871789d4
CD
853 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
854 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 855 /* from time_after() in jiffies.h */
6a1a8b80 856 if ((long)(next - val) < 0) {
f53d7ce3
JW
857 switch (target) {
858 case MEM_CGROUP_TARGET_THRESH:
859 next = val + THRESHOLDS_EVENTS_TARGET;
860 break;
bb4cc1a8
AM
861 case MEM_CGROUP_TARGET_SOFTLIMIT:
862 next = val + SOFTLIMIT_EVENTS_TARGET;
863 break;
f53d7ce3
JW
864 case MEM_CGROUP_TARGET_NUMAINFO:
865 next = val + NUMAINFO_EVENTS_TARGET;
866 break;
867 default:
868 break;
869 }
871789d4 870 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 871 return true;
7a159cc9 872 }
f53d7ce3 873 return false;
d2265e6f
KH
874}
875
876/*
877 * Check events in order.
878 *
879 */
c0ff4b85 880static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
881{
882 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
883 if (unlikely(mem_cgroup_event_ratelimit(memcg,
884 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 885 bool do_softlimit;
82b3f2a7 886 bool do_numainfo __maybe_unused;
f53d7ce3 887
bb4cc1a8
AM
888 do_softlimit = mem_cgroup_event_ratelimit(memcg,
889 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
890#if MAX_NUMNODES > 1
891 do_numainfo = mem_cgroup_event_ratelimit(memcg,
892 MEM_CGROUP_TARGET_NUMAINFO);
893#endif
c0ff4b85 894 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
895 if (unlikely(do_softlimit))
896 mem_cgroup_update_tree(memcg, page);
453a9bf3 897#if MAX_NUMNODES > 1
f53d7ce3 898 if (unlikely(do_numainfo))
c0ff4b85 899 atomic_inc(&memcg->numainfo_events);
453a9bf3 900#endif
0a31bc97 901 }
d2265e6f
KH
902}
903
cf475ad2 904struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 905{
31a78f23
BS
906 /*
907 * mm_update_next_owner() may clear mm->owner to NULL
908 * if it races with swapoff, page migration, etc.
909 * So this can be called with p == NULL.
910 */
911 if (unlikely(!p))
912 return NULL;
913
073219e9 914 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 915}
33398cf2 916EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 917
d46eb14b
SB
918/**
919 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
920 * @mm: mm from which memcg should be extracted. It can be NULL.
921 *
922 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
923 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
924 * returned.
925 */
926struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 927{
d46eb14b
SB
928 struct mem_cgroup *memcg;
929
930 if (mem_cgroup_disabled())
931 return NULL;
0b7f569e 932
54595fe2
KH
933 rcu_read_lock();
934 do {
6f6acb00
MH
935 /*
936 * Page cache insertions can happen withou an
937 * actual mm context, e.g. during disk probing
938 * on boot, loopback IO, acct() writes etc.
939 */
940 if (unlikely(!mm))
df381975 941 memcg = root_mem_cgroup;
6f6acb00
MH
942 else {
943 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
944 if (unlikely(!memcg))
945 memcg = root_mem_cgroup;
946 }
ec903c0c 947 } while (!css_tryget_online(&memcg->css));
54595fe2 948 rcu_read_unlock();
c0ff4b85 949 return memcg;
54595fe2 950}
d46eb14b
SB
951EXPORT_SYMBOL(get_mem_cgroup_from_mm);
952
f745c6f5
SB
953/**
954 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
955 * @page: page from which memcg should be extracted.
956 *
957 * Obtain a reference on page->memcg and returns it if successful. Otherwise
958 * root_mem_cgroup is returned.
959 */
960struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
961{
962 struct mem_cgroup *memcg = page->mem_cgroup;
963
964 if (mem_cgroup_disabled())
965 return NULL;
966
967 rcu_read_lock();
968 if (!memcg || !css_tryget_online(&memcg->css))
969 memcg = root_mem_cgroup;
970 rcu_read_unlock();
971 return memcg;
972}
973EXPORT_SYMBOL(get_mem_cgroup_from_page);
974
d46eb14b
SB
975/**
976 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
977 */
978static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
979{
980 if (unlikely(current->active_memcg)) {
981 struct mem_cgroup *memcg = root_mem_cgroup;
982
983 rcu_read_lock();
984 if (css_tryget_online(&current->active_memcg->css))
985 memcg = current->active_memcg;
986 rcu_read_unlock();
987 return memcg;
988 }
989 return get_mem_cgroup_from_mm(current->mm);
990}
54595fe2 991
5660048c
JW
992/**
993 * mem_cgroup_iter - iterate over memory cgroup hierarchy
994 * @root: hierarchy root
995 * @prev: previously returned memcg, NULL on first invocation
996 * @reclaim: cookie for shared reclaim walks, NULL for full walks
997 *
998 * Returns references to children of the hierarchy below @root, or
999 * @root itself, or %NULL after a full round-trip.
1000 *
1001 * Caller must pass the return value in @prev on subsequent
1002 * invocations for reference counting, or use mem_cgroup_iter_break()
1003 * to cancel a hierarchy walk before the round-trip is complete.
1004 *
b213b54f 1005 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1006 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1007 * reclaimers operating on the same node and priority.
5660048c 1008 */
694fbc0f 1009struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1010 struct mem_cgroup *prev,
694fbc0f 1011 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1012{
33398cf2 1013 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1014 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1015 struct mem_cgroup *memcg = NULL;
5ac8fb31 1016 struct mem_cgroup *pos = NULL;
711d3d2c 1017
694fbc0f
AM
1018 if (mem_cgroup_disabled())
1019 return NULL;
5660048c 1020
9f3a0d09
JW
1021 if (!root)
1022 root = root_mem_cgroup;
7d74b06f 1023
9f3a0d09 1024 if (prev && !reclaim)
5ac8fb31 1025 pos = prev;
14067bb3 1026
9f3a0d09
JW
1027 if (!root->use_hierarchy && root != root_mem_cgroup) {
1028 if (prev)
5ac8fb31 1029 goto out;
694fbc0f 1030 return root;
9f3a0d09 1031 }
14067bb3 1032
542f85f9 1033 rcu_read_lock();
5f578161 1034
5ac8fb31 1035 if (reclaim) {
ef8f2327 1036 struct mem_cgroup_per_node *mz;
5ac8fb31 1037
ef8f2327 1038 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
1039 iter = &mz->iter[reclaim->priority];
1040
1041 if (prev && reclaim->generation != iter->generation)
1042 goto out_unlock;
1043
6df38689 1044 while (1) {
4db0c3c2 1045 pos = READ_ONCE(iter->position);
6df38689
VD
1046 if (!pos || css_tryget(&pos->css))
1047 break;
5ac8fb31 1048 /*
6df38689
VD
1049 * css reference reached zero, so iter->position will
1050 * be cleared by ->css_released. However, we should not
1051 * rely on this happening soon, because ->css_released
1052 * is called from a work queue, and by busy-waiting we
1053 * might block it. So we clear iter->position right
1054 * away.
5ac8fb31 1055 */
6df38689
VD
1056 (void)cmpxchg(&iter->position, pos, NULL);
1057 }
5ac8fb31
JW
1058 }
1059
1060 if (pos)
1061 css = &pos->css;
1062
1063 for (;;) {
1064 css = css_next_descendant_pre(css, &root->css);
1065 if (!css) {
1066 /*
1067 * Reclaimers share the hierarchy walk, and a
1068 * new one might jump in right at the end of
1069 * the hierarchy - make sure they see at least
1070 * one group and restart from the beginning.
1071 */
1072 if (!prev)
1073 continue;
1074 break;
527a5ec9 1075 }
7d74b06f 1076
5ac8fb31
JW
1077 /*
1078 * Verify the css and acquire a reference. The root
1079 * is provided by the caller, so we know it's alive
1080 * and kicking, and don't take an extra reference.
1081 */
1082 memcg = mem_cgroup_from_css(css);
14067bb3 1083
5ac8fb31
JW
1084 if (css == &root->css)
1085 break;
14067bb3 1086
0b8f73e1
JW
1087 if (css_tryget(css))
1088 break;
9f3a0d09 1089
5ac8fb31 1090 memcg = NULL;
9f3a0d09 1091 }
5ac8fb31
JW
1092
1093 if (reclaim) {
5ac8fb31 1094 /*
6df38689
VD
1095 * The position could have already been updated by a competing
1096 * thread, so check that the value hasn't changed since we read
1097 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1098 */
6df38689
VD
1099 (void)cmpxchg(&iter->position, pos, memcg);
1100
5ac8fb31
JW
1101 if (pos)
1102 css_put(&pos->css);
1103
1104 if (!memcg)
1105 iter->generation++;
1106 else if (!prev)
1107 reclaim->generation = iter->generation;
9f3a0d09 1108 }
5ac8fb31 1109
542f85f9
MH
1110out_unlock:
1111 rcu_read_unlock();
5ac8fb31 1112out:
c40046f3
MH
1113 if (prev && prev != root)
1114 css_put(&prev->css);
1115
9f3a0d09 1116 return memcg;
14067bb3 1117}
7d74b06f 1118
5660048c
JW
1119/**
1120 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1121 * @root: hierarchy root
1122 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1123 */
1124void mem_cgroup_iter_break(struct mem_cgroup *root,
1125 struct mem_cgroup *prev)
9f3a0d09
JW
1126{
1127 if (!root)
1128 root = root_mem_cgroup;
1129 if (prev && prev != root)
1130 css_put(&prev->css);
1131}
7d74b06f 1132
6df38689
VD
1133static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1134{
1135 struct mem_cgroup *memcg = dead_memcg;
1136 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1137 struct mem_cgroup_per_node *mz;
1138 int nid;
6df38689
VD
1139 int i;
1140
9f15bde6 1141 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 1142 for_each_node(nid) {
ef8f2327
MG
1143 mz = mem_cgroup_nodeinfo(memcg, nid);
1144 for (i = 0; i <= DEF_PRIORITY; i++) {
1145 iter = &mz->iter[i];
1146 cmpxchg(&iter->position,
1147 dead_memcg, NULL);
6df38689
VD
1148 }
1149 }
1150 }
1151}
1152
7c5f64f8
VD
1153/**
1154 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1155 * @memcg: hierarchy root
1156 * @fn: function to call for each task
1157 * @arg: argument passed to @fn
1158 *
1159 * This function iterates over tasks attached to @memcg or to any of its
1160 * descendants and calls @fn for each task. If @fn returns a non-zero
1161 * value, the function breaks the iteration loop and returns the value.
1162 * Otherwise, it will iterate over all tasks and return 0.
1163 *
1164 * This function must not be called for the root memory cgroup.
1165 */
1166int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1167 int (*fn)(struct task_struct *, void *), void *arg)
1168{
1169 struct mem_cgroup *iter;
1170 int ret = 0;
1171
1172 BUG_ON(memcg == root_mem_cgroup);
1173
1174 for_each_mem_cgroup_tree(iter, memcg) {
1175 struct css_task_iter it;
1176 struct task_struct *task;
1177
f168a9a5 1178 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1179 while (!ret && (task = css_task_iter_next(&it)))
1180 ret = fn(task, arg);
1181 css_task_iter_end(&it);
1182 if (ret) {
1183 mem_cgroup_iter_break(memcg, iter);
1184 break;
1185 }
1186 }
1187 return ret;
1188}
1189
925b7673 1190/**
dfe0e773 1191 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1192 * @page: the page
f144c390 1193 * @pgdat: pgdat of the page
dfe0e773
JW
1194 *
1195 * This function is only safe when following the LRU page isolation
1196 * and putback protocol: the LRU lock must be held, and the page must
1197 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1198 */
599d0c95 1199struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1200{
ef8f2327 1201 struct mem_cgroup_per_node *mz;
925b7673 1202 struct mem_cgroup *memcg;
bea8c150 1203 struct lruvec *lruvec;
6d12e2d8 1204
bea8c150 1205 if (mem_cgroup_disabled()) {
599d0c95 1206 lruvec = &pgdat->lruvec;
bea8c150
HD
1207 goto out;
1208 }
925b7673 1209
1306a85a 1210 memcg = page->mem_cgroup;
7512102c 1211 /*
dfe0e773 1212 * Swapcache readahead pages are added to the LRU - and
29833315 1213 * possibly migrated - before they are charged.
7512102c 1214 */
29833315
JW
1215 if (!memcg)
1216 memcg = root_mem_cgroup;
7512102c 1217
ef8f2327 1218 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1219 lruvec = &mz->lruvec;
1220out:
1221 /*
1222 * Since a node can be onlined after the mem_cgroup was created,
1223 * we have to be prepared to initialize lruvec->zone here;
1224 * and if offlined then reonlined, we need to reinitialize it.
1225 */
599d0c95
MG
1226 if (unlikely(lruvec->pgdat != pgdat))
1227 lruvec->pgdat = pgdat;
bea8c150 1228 return lruvec;
08e552c6 1229}
b69408e8 1230
925b7673 1231/**
fa9add64
HD
1232 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1233 * @lruvec: mem_cgroup per zone lru vector
1234 * @lru: index of lru list the page is sitting on
b4536f0c 1235 * @zid: zone id of the accounted pages
fa9add64 1236 * @nr_pages: positive when adding or negative when removing
925b7673 1237 *
ca707239
HD
1238 * This function must be called under lru_lock, just before a page is added
1239 * to or just after a page is removed from an lru list (that ordering being
1240 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1241 */
fa9add64 1242void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1243 int zid, int nr_pages)
3f58a829 1244{
ef8f2327 1245 struct mem_cgroup_per_node *mz;
fa9add64 1246 unsigned long *lru_size;
ca707239 1247 long size;
3f58a829
MK
1248
1249 if (mem_cgroup_disabled())
1250 return;
1251
ef8f2327 1252 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1253 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1254
1255 if (nr_pages < 0)
1256 *lru_size += nr_pages;
1257
1258 size = *lru_size;
b4536f0c
MH
1259 if (WARN_ONCE(size < 0,
1260 "%s(%p, %d, %d): lru_size %ld\n",
1261 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1262 VM_BUG_ON(1);
1263 *lru_size = 0;
1264 }
1265
1266 if (nr_pages > 0)
1267 *lru_size += nr_pages;
08e552c6 1268}
544122e5 1269
19942822 1270/**
9d11ea9f 1271 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1272 * @memcg: the memory cgroup
19942822 1273 *
9d11ea9f 1274 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1275 * pages.
19942822 1276 */
c0ff4b85 1277static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1278{
3e32cb2e
JW
1279 unsigned long margin = 0;
1280 unsigned long count;
1281 unsigned long limit;
9d11ea9f 1282
3e32cb2e 1283 count = page_counter_read(&memcg->memory);
bbec2e15 1284 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1285 if (count < limit)
1286 margin = limit - count;
1287
7941d214 1288 if (do_memsw_account()) {
3e32cb2e 1289 count = page_counter_read(&memcg->memsw);
bbec2e15 1290 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1291 if (count <= limit)
1292 margin = min(margin, limit - count);
cbedbac3
LR
1293 else
1294 margin = 0;
3e32cb2e
JW
1295 }
1296
1297 return margin;
19942822
JW
1298}
1299
32047e2a 1300/*
bdcbb659 1301 * A routine for checking "mem" is under move_account() or not.
32047e2a 1302 *
bdcbb659
QH
1303 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1304 * moving cgroups. This is for waiting at high-memory pressure
1305 * caused by "move".
32047e2a 1306 */
c0ff4b85 1307static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1308{
2bd9bb20
KH
1309 struct mem_cgroup *from;
1310 struct mem_cgroup *to;
4b534334 1311 bool ret = false;
2bd9bb20
KH
1312 /*
1313 * Unlike task_move routines, we access mc.to, mc.from not under
1314 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1315 */
1316 spin_lock(&mc.lock);
1317 from = mc.from;
1318 to = mc.to;
1319 if (!from)
1320 goto unlock;
3e92041d 1321
2314b42d
JW
1322 ret = mem_cgroup_is_descendant(from, memcg) ||
1323 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1324unlock:
1325 spin_unlock(&mc.lock);
4b534334
KH
1326 return ret;
1327}
1328
c0ff4b85 1329static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1330{
1331 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1332 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1333 DEFINE_WAIT(wait);
1334 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1335 /* moving charge context might have finished. */
1336 if (mc.moving_task)
1337 schedule();
1338 finish_wait(&mc.waitq, &wait);
1339 return true;
1340 }
1341 }
1342 return false;
1343}
1344
c8713d0b
JW
1345static char *memory_stat_format(struct mem_cgroup *memcg)
1346{
1347 struct seq_buf s;
1348 int i;
71cd3113 1349
c8713d0b
JW
1350 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1351 if (!s.buffer)
1352 return NULL;
1353
1354 /*
1355 * Provide statistics on the state of the memory subsystem as
1356 * well as cumulative event counters that show past behavior.
1357 *
1358 * This list is ordered following a combination of these gradients:
1359 * 1) generic big picture -> specifics and details
1360 * 2) reflecting userspace activity -> reflecting kernel heuristics
1361 *
1362 * Current memory state:
1363 */
1364
1365 seq_buf_printf(&s, "anon %llu\n",
1366 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1367 PAGE_SIZE);
1368 seq_buf_printf(&s, "file %llu\n",
1369 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1370 PAGE_SIZE);
1371 seq_buf_printf(&s, "kernel_stack %llu\n",
1372 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1373 1024);
1374 seq_buf_printf(&s, "slab %llu\n",
1375 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1376 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1377 PAGE_SIZE);
1378 seq_buf_printf(&s, "sock %llu\n",
1379 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1380 PAGE_SIZE);
1381
1382 seq_buf_printf(&s, "shmem %llu\n",
1383 (u64)memcg_page_state(memcg, NR_SHMEM) *
1384 PAGE_SIZE);
1385 seq_buf_printf(&s, "file_mapped %llu\n",
1386 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1387 PAGE_SIZE);
1388 seq_buf_printf(&s, "file_dirty %llu\n",
1389 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1390 PAGE_SIZE);
1391 seq_buf_printf(&s, "file_writeback %llu\n",
1392 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1393 PAGE_SIZE);
1394
1395 /*
1396 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1397 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1398 * arse because it requires migrating the work out of rmap to a place
1399 * where the page->mem_cgroup is set up and stable.
1400 */
1401 seq_buf_printf(&s, "anon_thp %llu\n",
1402 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1403 PAGE_SIZE);
1404
1405 for (i = 0; i < NR_LRU_LISTS; i++)
1406 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1407 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1408 PAGE_SIZE);
1409
1410 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1411 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1412 PAGE_SIZE);
1413 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1414 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1415 PAGE_SIZE);
1416
1417 /* Accumulated memory events */
1418
1419 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1420 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1421
1422 seq_buf_printf(&s, "workingset_refault %lu\n",
1423 memcg_page_state(memcg, WORKINGSET_REFAULT));
1424 seq_buf_printf(&s, "workingset_activate %lu\n",
1425 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1426 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1427 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1428
1429 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1430 seq_buf_printf(&s, "pgscan %lu\n",
1431 memcg_events(memcg, PGSCAN_KSWAPD) +
1432 memcg_events(memcg, PGSCAN_DIRECT));
1433 seq_buf_printf(&s, "pgsteal %lu\n",
1434 memcg_events(memcg, PGSTEAL_KSWAPD) +
1435 memcg_events(memcg, PGSTEAL_DIRECT));
1436 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1437 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1438 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1439 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1440
1441#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1442 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1443 memcg_events(memcg, THP_FAULT_ALLOC));
1444 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1445 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1446#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1447
1448 /* The above should easily fit into one page */
1449 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1450
1451 return s.buffer;
1452}
71cd3113 1453
58cf188e 1454#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1455/**
f0c867d9 1456 * mem_cgroup_print_oom_context: Print OOM information relevant to
1457 * memory controller.
e222432b
BS
1458 * @memcg: The memory cgroup that went over limit
1459 * @p: Task that is going to be killed
1460 *
1461 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1462 * enabled
1463 */
f0c867d9 1464void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1465{
e222432b
BS
1466 rcu_read_lock();
1467
f0c867d9 1468 if (memcg) {
1469 pr_cont(",oom_memcg=");
1470 pr_cont_cgroup_path(memcg->css.cgroup);
1471 } else
1472 pr_cont(",global_oom");
2415b9f5 1473 if (p) {
f0c867d9 1474 pr_cont(",task_memcg=");
2415b9f5 1475 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1476 }
e222432b 1477 rcu_read_unlock();
f0c867d9 1478}
1479
1480/**
1481 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1482 * memory controller.
1483 * @memcg: The memory cgroup that went over limit
1484 */
1485void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1486{
c8713d0b 1487 char *buf;
e222432b 1488
3e32cb2e
JW
1489 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1491 K((u64)memcg->memory.max), memcg->memory.failcnt);
c8713d0b
JW
1492 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1493 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1494 K((u64)page_counter_read(&memcg->swap)),
1495 K((u64)memcg->swap.max), memcg->swap.failcnt);
1496 else {
1497 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1498 K((u64)page_counter_read(&memcg->memsw)),
1499 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1500 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1501 K((u64)page_counter_read(&memcg->kmem)),
1502 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1503 }
c8713d0b
JW
1504
1505 pr_info("Memory cgroup stats for ");
1506 pr_cont_cgroup_path(memcg->css.cgroup);
1507 pr_cont(":");
1508 buf = memory_stat_format(memcg);
1509 if (!buf)
1510 return;
1511 pr_info("%s", buf);
1512 kfree(buf);
e222432b
BS
1513}
1514
a63d83f4
DR
1515/*
1516 * Return the memory (and swap, if configured) limit for a memcg.
1517 */
bbec2e15 1518unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1519{
bbec2e15 1520 unsigned long max;
f3e8eb70 1521
bbec2e15 1522 max = memcg->memory.max;
9a5a8f19 1523 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1524 unsigned long memsw_max;
1525 unsigned long swap_max;
9a5a8f19 1526
bbec2e15
RG
1527 memsw_max = memcg->memsw.max;
1528 swap_max = memcg->swap.max;
1529 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1530 max = min(max + swap_max, memsw_max);
9a5a8f19 1531 }
bbec2e15 1532 return max;
a63d83f4
DR
1533}
1534
b6e6edcf 1535static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1536 int order)
9cbb78bb 1537{
6e0fc46d
DR
1538 struct oom_control oc = {
1539 .zonelist = NULL,
1540 .nodemask = NULL,
2a966b77 1541 .memcg = memcg,
6e0fc46d
DR
1542 .gfp_mask = gfp_mask,
1543 .order = order,
6e0fc46d 1544 };
7c5f64f8 1545 bool ret;
9cbb78bb 1546
7775face
TH
1547 if (mutex_lock_killable(&oom_lock))
1548 return true;
1549 /*
1550 * A few threads which were not waiting at mutex_lock_killable() can
1551 * fail to bail out. Therefore, check again after holding oom_lock.
1552 */
1553 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1554 mutex_unlock(&oom_lock);
7c5f64f8 1555 return ret;
9cbb78bb
DR
1556}
1557
ae6e71d3
MC
1558#if MAX_NUMNODES > 1
1559
4d0c066d
KH
1560/**
1561 * test_mem_cgroup_node_reclaimable
dad7557e 1562 * @memcg: the target memcg
4d0c066d
KH
1563 * @nid: the node ID to be checked.
1564 * @noswap : specify true here if the user wants flle only information.
1565 *
1566 * This function returns whether the specified memcg contains any
1567 * reclaimable pages on a node. Returns true if there are any reclaimable
1568 * pages in the node.
1569 */
c0ff4b85 1570static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1571 int nid, bool noswap)
1572{
2b487e59
JW
1573 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1574
def0fdae
JW
1575 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1576 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
4d0c066d
KH
1577 return true;
1578 if (noswap || !total_swap_pages)
1579 return false;
def0fdae
JW
1580 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1581 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
4d0c066d
KH
1582 return true;
1583 return false;
1584
1585}
889976db
YH
1586
1587/*
1588 * Always updating the nodemask is not very good - even if we have an empty
1589 * list or the wrong list here, we can start from some node and traverse all
1590 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1591 *
1592 */
c0ff4b85 1593static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1594{
1595 int nid;
453a9bf3
KH
1596 /*
1597 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1598 * pagein/pageout changes since the last update.
1599 */
c0ff4b85 1600 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1601 return;
c0ff4b85 1602 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1603 return;
1604
889976db 1605 /* make a nodemask where this memcg uses memory from */
31aaea4a 1606 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1607
31aaea4a 1608 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1609
c0ff4b85
R
1610 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1611 node_clear(nid, memcg->scan_nodes);
889976db 1612 }
453a9bf3 1613
c0ff4b85
R
1614 atomic_set(&memcg->numainfo_events, 0);
1615 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1616}
1617
1618/*
1619 * Selecting a node where we start reclaim from. Because what we need is just
1620 * reducing usage counter, start from anywhere is O,K. Considering
1621 * memory reclaim from current node, there are pros. and cons.
1622 *
1623 * Freeing memory from current node means freeing memory from a node which
1624 * we'll use or we've used. So, it may make LRU bad. And if several threads
1625 * hit limits, it will see a contention on a node. But freeing from remote
1626 * node means more costs for memory reclaim because of memory latency.
1627 *
1628 * Now, we use round-robin. Better algorithm is welcomed.
1629 */
c0ff4b85 1630int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1631{
1632 int node;
1633
c0ff4b85
R
1634 mem_cgroup_may_update_nodemask(memcg);
1635 node = memcg->last_scanned_node;
889976db 1636
0edaf86c 1637 node = next_node_in(node, memcg->scan_nodes);
889976db 1638 /*
fda3d69b
MH
1639 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1640 * last time it really checked all the LRUs due to rate limiting.
1641 * Fallback to the current node in that case for simplicity.
889976db
YH
1642 */
1643 if (unlikely(node == MAX_NUMNODES))
1644 node = numa_node_id();
1645
c0ff4b85 1646 memcg->last_scanned_node = node;
889976db
YH
1647 return node;
1648}
889976db 1649#else
c0ff4b85 1650int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1651{
1652 return 0;
1653}
1654#endif
1655
0608f43d 1656static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1657 pg_data_t *pgdat,
0608f43d
AM
1658 gfp_t gfp_mask,
1659 unsigned long *total_scanned)
1660{
1661 struct mem_cgroup *victim = NULL;
1662 int total = 0;
1663 int loop = 0;
1664 unsigned long excess;
1665 unsigned long nr_scanned;
1666 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1667 .pgdat = pgdat,
0608f43d
AM
1668 .priority = 0,
1669 };
1670
3e32cb2e 1671 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1672
1673 while (1) {
1674 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1675 if (!victim) {
1676 loop++;
1677 if (loop >= 2) {
1678 /*
1679 * If we have not been able to reclaim
1680 * anything, it might because there are
1681 * no reclaimable pages under this hierarchy
1682 */
1683 if (!total)
1684 break;
1685 /*
1686 * We want to do more targeted reclaim.
1687 * excess >> 2 is not to excessive so as to
1688 * reclaim too much, nor too less that we keep
1689 * coming back to reclaim from this cgroup
1690 */
1691 if (total >= (excess >> 2) ||
1692 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1693 break;
1694 }
1695 continue;
1696 }
a9dd0a83 1697 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1698 pgdat, &nr_scanned);
0608f43d 1699 *total_scanned += nr_scanned;
3e32cb2e 1700 if (!soft_limit_excess(root_memcg))
0608f43d 1701 break;
6d61ef40 1702 }
0608f43d
AM
1703 mem_cgroup_iter_break(root_memcg, victim);
1704 return total;
6d61ef40
BS
1705}
1706
0056f4e6
JW
1707#ifdef CONFIG_LOCKDEP
1708static struct lockdep_map memcg_oom_lock_dep_map = {
1709 .name = "memcg_oom_lock",
1710};
1711#endif
1712
fb2a6fc5
JW
1713static DEFINE_SPINLOCK(memcg_oom_lock);
1714
867578cb
KH
1715/*
1716 * Check OOM-Killer is already running under our hierarchy.
1717 * If someone is running, return false.
1718 */
fb2a6fc5 1719static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1720{
79dfdacc 1721 struct mem_cgroup *iter, *failed = NULL;
a636b327 1722
fb2a6fc5
JW
1723 spin_lock(&memcg_oom_lock);
1724
9f3a0d09 1725 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1726 if (iter->oom_lock) {
79dfdacc
MH
1727 /*
1728 * this subtree of our hierarchy is already locked
1729 * so we cannot give a lock.
1730 */
79dfdacc 1731 failed = iter;
9f3a0d09
JW
1732 mem_cgroup_iter_break(memcg, iter);
1733 break;
23751be0
JW
1734 } else
1735 iter->oom_lock = true;
7d74b06f 1736 }
867578cb 1737
fb2a6fc5
JW
1738 if (failed) {
1739 /*
1740 * OK, we failed to lock the whole subtree so we have
1741 * to clean up what we set up to the failing subtree
1742 */
1743 for_each_mem_cgroup_tree(iter, memcg) {
1744 if (iter == failed) {
1745 mem_cgroup_iter_break(memcg, iter);
1746 break;
1747 }
1748 iter->oom_lock = false;
79dfdacc 1749 }
0056f4e6
JW
1750 } else
1751 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1752
1753 spin_unlock(&memcg_oom_lock);
1754
1755 return !failed;
a636b327 1756}
0b7f569e 1757
fb2a6fc5 1758static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1759{
7d74b06f
KH
1760 struct mem_cgroup *iter;
1761
fb2a6fc5 1762 spin_lock(&memcg_oom_lock);
0056f4e6 1763 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1764 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1765 iter->oom_lock = false;
fb2a6fc5 1766 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1767}
1768
c0ff4b85 1769static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1770{
1771 struct mem_cgroup *iter;
1772
c2b42d3c 1773 spin_lock(&memcg_oom_lock);
c0ff4b85 1774 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1775 iter->under_oom++;
1776 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1777}
1778
c0ff4b85 1779static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1780{
1781 struct mem_cgroup *iter;
1782
867578cb
KH
1783 /*
1784 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1785 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1786 */
c2b42d3c 1787 spin_lock(&memcg_oom_lock);
c0ff4b85 1788 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1789 if (iter->under_oom > 0)
1790 iter->under_oom--;
1791 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1792}
1793
867578cb
KH
1794static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1795
dc98df5a 1796struct oom_wait_info {
d79154bb 1797 struct mem_cgroup *memcg;
ac6424b9 1798 wait_queue_entry_t wait;
dc98df5a
KH
1799};
1800
ac6424b9 1801static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1802 unsigned mode, int sync, void *arg)
1803{
d79154bb
HD
1804 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1805 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1806 struct oom_wait_info *oom_wait_info;
1807
1808 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1809 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1810
2314b42d
JW
1811 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1812 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1813 return 0;
dc98df5a
KH
1814 return autoremove_wake_function(wait, mode, sync, arg);
1815}
1816
c0ff4b85 1817static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1818{
c2b42d3c
TH
1819 /*
1820 * For the following lockless ->under_oom test, the only required
1821 * guarantee is that it must see the state asserted by an OOM when
1822 * this function is called as a result of userland actions
1823 * triggered by the notification of the OOM. This is trivially
1824 * achieved by invoking mem_cgroup_mark_under_oom() before
1825 * triggering notification.
1826 */
1827 if (memcg && memcg->under_oom)
f4b90b70 1828 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1829}
1830
29ef680a
MH
1831enum oom_status {
1832 OOM_SUCCESS,
1833 OOM_FAILED,
1834 OOM_ASYNC,
1835 OOM_SKIPPED
1836};
1837
1838static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1839{
7056d3a3
MH
1840 enum oom_status ret;
1841 bool locked;
1842
29ef680a
MH
1843 if (order > PAGE_ALLOC_COSTLY_ORDER)
1844 return OOM_SKIPPED;
1845
7a1adfdd
RG
1846 memcg_memory_event(memcg, MEMCG_OOM);
1847
867578cb 1848 /*
49426420
JW
1849 * We are in the middle of the charge context here, so we
1850 * don't want to block when potentially sitting on a callstack
1851 * that holds all kinds of filesystem and mm locks.
1852 *
29ef680a
MH
1853 * cgroup1 allows disabling the OOM killer and waiting for outside
1854 * handling until the charge can succeed; remember the context and put
1855 * the task to sleep at the end of the page fault when all locks are
1856 * released.
49426420 1857 *
29ef680a
MH
1858 * On the other hand, in-kernel OOM killer allows for an async victim
1859 * memory reclaim (oom_reaper) and that means that we are not solely
1860 * relying on the oom victim to make a forward progress and we can
1861 * invoke the oom killer here.
1862 *
1863 * Please note that mem_cgroup_out_of_memory might fail to find a
1864 * victim and then we have to bail out from the charge path.
867578cb 1865 */
29ef680a
MH
1866 if (memcg->oom_kill_disable) {
1867 if (!current->in_user_fault)
1868 return OOM_SKIPPED;
1869 css_get(&memcg->css);
1870 current->memcg_in_oom = memcg;
1871 current->memcg_oom_gfp_mask = mask;
1872 current->memcg_oom_order = order;
1873
1874 return OOM_ASYNC;
1875 }
1876
7056d3a3
MH
1877 mem_cgroup_mark_under_oom(memcg);
1878
1879 locked = mem_cgroup_oom_trylock(memcg);
1880
1881 if (locked)
1882 mem_cgroup_oom_notify(memcg);
1883
1884 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1885 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1886 ret = OOM_SUCCESS;
1887 else
1888 ret = OOM_FAILED;
1889
1890 if (locked)
1891 mem_cgroup_oom_unlock(memcg);
29ef680a 1892
7056d3a3 1893 return ret;
3812c8c8
JW
1894}
1895
1896/**
1897 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1898 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1899 *
49426420
JW
1900 * This has to be called at the end of a page fault if the memcg OOM
1901 * handler was enabled.
3812c8c8 1902 *
49426420 1903 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1904 * sleep on a waitqueue until the userspace task resolves the
1905 * situation. Sleeping directly in the charge context with all kinds
1906 * of locks held is not a good idea, instead we remember an OOM state
1907 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1908 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1909 *
1910 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1911 * completed, %false otherwise.
3812c8c8 1912 */
49426420 1913bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1914{
626ebc41 1915 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1916 struct oom_wait_info owait;
49426420 1917 bool locked;
3812c8c8
JW
1918
1919 /* OOM is global, do not handle */
3812c8c8 1920 if (!memcg)
49426420 1921 return false;
3812c8c8 1922
7c5f64f8 1923 if (!handle)
49426420 1924 goto cleanup;
3812c8c8
JW
1925
1926 owait.memcg = memcg;
1927 owait.wait.flags = 0;
1928 owait.wait.func = memcg_oom_wake_function;
1929 owait.wait.private = current;
2055da97 1930 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1931
3812c8c8 1932 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1933 mem_cgroup_mark_under_oom(memcg);
1934
1935 locked = mem_cgroup_oom_trylock(memcg);
1936
1937 if (locked)
1938 mem_cgroup_oom_notify(memcg);
1939
1940 if (locked && !memcg->oom_kill_disable) {
1941 mem_cgroup_unmark_under_oom(memcg);
1942 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1943 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1944 current->memcg_oom_order);
49426420 1945 } else {
3812c8c8 1946 schedule();
49426420
JW
1947 mem_cgroup_unmark_under_oom(memcg);
1948 finish_wait(&memcg_oom_waitq, &owait.wait);
1949 }
1950
1951 if (locked) {
fb2a6fc5
JW
1952 mem_cgroup_oom_unlock(memcg);
1953 /*
1954 * There is no guarantee that an OOM-lock contender
1955 * sees the wakeups triggered by the OOM kill
1956 * uncharges. Wake any sleepers explicitely.
1957 */
1958 memcg_oom_recover(memcg);
1959 }
49426420 1960cleanup:
626ebc41 1961 current->memcg_in_oom = NULL;
3812c8c8 1962 css_put(&memcg->css);
867578cb 1963 return true;
0b7f569e
KH
1964}
1965
3d8b38eb
RG
1966/**
1967 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1968 * @victim: task to be killed by the OOM killer
1969 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1970 *
1971 * Returns a pointer to a memory cgroup, which has to be cleaned up
1972 * by killing all belonging OOM-killable tasks.
1973 *
1974 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1975 */
1976struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1977 struct mem_cgroup *oom_domain)
1978{
1979 struct mem_cgroup *oom_group = NULL;
1980 struct mem_cgroup *memcg;
1981
1982 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1983 return NULL;
1984
1985 if (!oom_domain)
1986 oom_domain = root_mem_cgroup;
1987
1988 rcu_read_lock();
1989
1990 memcg = mem_cgroup_from_task(victim);
1991 if (memcg == root_mem_cgroup)
1992 goto out;
1993
1994 /*
1995 * Traverse the memory cgroup hierarchy from the victim task's
1996 * cgroup up to the OOMing cgroup (or root) to find the
1997 * highest-level memory cgroup with oom.group set.
1998 */
1999 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2000 if (memcg->oom_group)
2001 oom_group = memcg;
2002
2003 if (memcg == oom_domain)
2004 break;
2005 }
2006
2007 if (oom_group)
2008 css_get(&oom_group->css);
2009out:
2010 rcu_read_unlock();
2011
2012 return oom_group;
2013}
2014
2015void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2016{
2017 pr_info("Tasks in ");
2018 pr_cont_cgroup_path(memcg->css.cgroup);
2019 pr_cont(" are going to be killed due to memory.oom.group set\n");
2020}
2021
d7365e78 2022/**
81f8c3a4
JW
2023 * lock_page_memcg - lock a page->mem_cgroup binding
2024 * @page: the page
32047e2a 2025 *
81f8c3a4 2026 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2027 * another cgroup.
2028 *
2029 * It ensures lifetime of the returned memcg. Caller is responsible
2030 * for the lifetime of the page; __unlock_page_memcg() is available
2031 * when @page might get freed inside the locked section.
d69b042f 2032 */
739f79fc 2033struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
2034{
2035 struct mem_cgroup *memcg;
6de22619 2036 unsigned long flags;
89c06bd5 2037
6de22619
JW
2038 /*
2039 * The RCU lock is held throughout the transaction. The fast
2040 * path can get away without acquiring the memcg->move_lock
2041 * because page moving starts with an RCU grace period.
739f79fc
JW
2042 *
2043 * The RCU lock also protects the memcg from being freed when
2044 * the page state that is going to change is the only thing
2045 * preventing the page itself from being freed. E.g. writeback
2046 * doesn't hold a page reference and relies on PG_writeback to
2047 * keep off truncation, migration and so forth.
2048 */
d7365e78
JW
2049 rcu_read_lock();
2050
2051 if (mem_cgroup_disabled())
739f79fc 2052 return NULL;
89c06bd5 2053again:
1306a85a 2054 memcg = page->mem_cgroup;
29833315 2055 if (unlikely(!memcg))
739f79fc 2056 return NULL;
d7365e78 2057
bdcbb659 2058 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2059 return memcg;
89c06bd5 2060
6de22619 2061 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2062 if (memcg != page->mem_cgroup) {
6de22619 2063 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2064 goto again;
2065 }
6de22619
JW
2066
2067 /*
2068 * When charge migration first begins, we can have locked and
2069 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2070 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2071 */
2072 memcg->move_lock_task = current;
2073 memcg->move_lock_flags = flags;
d7365e78 2074
739f79fc 2075 return memcg;
89c06bd5 2076}
81f8c3a4 2077EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2078
d7365e78 2079/**
739f79fc
JW
2080 * __unlock_page_memcg - unlock and unpin a memcg
2081 * @memcg: the memcg
2082 *
2083 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2084 */
739f79fc 2085void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2086{
6de22619
JW
2087 if (memcg && memcg->move_lock_task == current) {
2088 unsigned long flags = memcg->move_lock_flags;
2089
2090 memcg->move_lock_task = NULL;
2091 memcg->move_lock_flags = 0;
2092
2093 spin_unlock_irqrestore(&memcg->move_lock, flags);
2094 }
89c06bd5 2095
d7365e78 2096 rcu_read_unlock();
89c06bd5 2097}
739f79fc
JW
2098
2099/**
2100 * unlock_page_memcg - unlock a page->mem_cgroup binding
2101 * @page: the page
2102 */
2103void unlock_page_memcg(struct page *page)
2104{
2105 __unlock_page_memcg(page->mem_cgroup);
2106}
81f8c3a4 2107EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2108
cdec2e42
KH
2109struct memcg_stock_pcp {
2110 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2111 unsigned int nr_pages;
cdec2e42 2112 struct work_struct work;
26fe6168 2113 unsigned long flags;
a0db00fc 2114#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2115};
2116static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2117static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2118
a0956d54
SS
2119/**
2120 * consume_stock: Try to consume stocked charge on this cpu.
2121 * @memcg: memcg to consume from.
2122 * @nr_pages: how many pages to charge.
2123 *
2124 * The charges will only happen if @memcg matches the current cpu's memcg
2125 * stock, and at least @nr_pages are available in that stock. Failure to
2126 * service an allocation will refill the stock.
2127 *
2128 * returns true if successful, false otherwise.
cdec2e42 2129 */
a0956d54 2130static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2131{
2132 struct memcg_stock_pcp *stock;
db2ba40c 2133 unsigned long flags;
3e32cb2e 2134 bool ret = false;
cdec2e42 2135
a983b5eb 2136 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2137 return ret;
a0956d54 2138
db2ba40c
JW
2139 local_irq_save(flags);
2140
2141 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2142 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2143 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2144 ret = true;
2145 }
db2ba40c
JW
2146
2147 local_irq_restore(flags);
2148
cdec2e42
KH
2149 return ret;
2150}
2151
2152/*
3e32cb2e 2153 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2154 */
2155static void drain_stock(struct memcg_stock_pcp *stock)
2156{
2157 struct mem_cgroup *old = stock->cached;
2158
11c9ea4e 2159 if (stock->nr_pages) {
3e32cb2e 2160 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2161 if (do_memsw_account())
3e32cb2e 2162 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2163 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2164 stock->nr_pages = 0;
cdec2e42
KH
2165 }
2166 stock->cached = NULL;
cdec2e42
KH
2167}
2168
cdec2e42
KH
2169static void drain_local_stock(struct work_struct *dummy)
2170{
db2ba40c
JW
2171 struct memcg_stock_pcp *stock;
2172 unsigned long flags;
2173
72f0184c
MH
2174 /*
2175 * The only protection from memory hotplug vs. drain_stock races is
2176 * that we always operate on local CPU stock here with IRQ disabled
2177 */
db2ba40c
JW
2178 local_irq_save(flags);
2179
2180 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2181 drain_stock(stock);
26fe6168 2182 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2183
2184 local_irq_restore(flags);
cdec2e42
KH
2185}
2186
2187/*
3e32cb2e 2188 * Cache charges(val) to local per_cpu area.
320cc51d 2189 * This will be consumed by consume_stock() function, later.
cdec2e42 2190 */
c0ff4b85 2191static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2192{
db2ba40c
JW
2193 struct memcg_stock_pcp *stock;
2194 unsigned long flags;
2195
2196 local_irq_save(flags);
cdec2e42 2197
db2ba40c 2198 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2199 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2200 drain_stock(stock);
c0ff4b85 2201 stock->cached = memcg;
cdec2e42 2202 }
11c9ea4e 2203 stock->nr_pages += nr_pages;
db2ba40c 2204
a983b5eb 2205 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2206 drain_stock(stock);
2207
db2ba40c 2208 local_irq_restore(flags);
cdec2e42
KH
2209}
2210
2211/*
c0ff4b85 2212 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2213 * of the hierarchy under it.
cdec2e42 2214 */
6d3d6aa2 2215static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2216{
26fe6168 2217 int cpu, curcpu;
d38144b7 2218
6d3d6aa2
JW
2219 /* If someone's already draining, avoid adding running more workers. */
2220 if (!mutex_trylock(&percpu_charge_mutex))
2221 return;
72f0184c
MH
2222 /*
2223 * Notify other cpus that system-wide "drain" is running
2224 * We do not care about races with the cpu hotplug because cpu down
2225 * as well as workers from this path always operate on the local
2226 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2227 */
5af12d0e 2228 curcpu = get_cpu();
cdec2e42
KH
2229 for_each_online_cpu(cpu) {
2230 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2231 struct mem_cgroup *memcg;
26fe6168 2232
c0ff4b85 2233 memcg = stock->cached;
72f0184c 2234 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 2235 continue;
72f0184c
MH
2236 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2237 css_put(&memcg->css);
3e92041d 2238 continue;
72f0184c 2239 }
d1a05b69
MH
2240 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2241 if (cpu == curcpu)
2242 drain_local_stock(&stock->work);
2243 else
2244 schedule_work_on(cpu, &stock->work);
2245 }
72f0184c 2246 css_put(&memcg->css);
cdec2e42 2247 }
5af12d0e 2248 put_cpu();
9f50fad6 2249 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2250}
2251
308167fc 2252static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2253{
cdec2e42 2254 struct memcg_stock_pcp *stock;
42a30035 2255 struct mem_cgroup *memcg, *mi;
cdec2e42 2256
cdec2e42
KH
2257 stock = &per_cpu(memcg_stock, cpu);
2258 drain_stock(stock);
a983b5eb
JW
2259
2260 for_each_mem_cgroup(memcg) {
2261 int i;
2262
2263 for (i = 0; i < MEMCG_NR_STAT; i++) {
2264 int nid;
2265 long x;
2266
871789d4 2267 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2268 if (x)
42a30035
JW
2269 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2270 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2271
2272 if (i >= NR_VM_NODE_STAT_ITEMS)
2273 continue;
2274
2275 for_each_node(nid) {
2276 struct mem_cgroup_per_node *pn;
2277
2278 pn = mem_cgroup_nodeinfo(memcg, nid);
2279 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2280 if (x)
42a30035
JW
2281 do {
2282 atomic_long_add(x, &pn->lruvec_stat[i]);
2283 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2284 }
2285 }
2286
e27be240 2287 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2288 long x;
2289
871789d4 2290 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2291 if (x)
42a30035
JW
2292 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2293 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2294 }
2295 }
2296
308167fc 2297 return 0;
cdec2e42
KH
2298}
2299
f7e1cb6e
JW
2300static void reclaim_high(struct mem_cgroup *memcg,
2301 unsigned int nr_pages,
2302 gfp_t gfp_mask)
2303{
2304 do {
2305 if (page_counter_read(&memcg->memory) <= memcg->high)
2306 continue;
e27be240 2307 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2308 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2309 } while ((memcg = parent_mem_cgroup(memcg)));
2310}
2311
2312static void high_work_func(struct work_struct *work)
2313{
2314 struct mem_cgroup *memcg;
2315
2316 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2317 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2318}
2319
b23afb93
TH
2320/*
2321 * Scheduled by try_charge() to be executed from the userland return path
2322 * and reclaims memory over the high limit.
2323 */
2324void mem_cgroup_handle_over_high(void)
2325{
2326 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2327 struct mem_cgroup *memcg;
b23afb93
TH
2328
2329 if (likely(!nr_pages))
2330 return;
2331
f7e1cb6e
JW
2332 memcg = get_mem_cgroup_from_mm(current->mm);
2333 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2334 css_put(&memcg->css);
2335 current->memcg_nr_pages_over_high = 0;
2336}
2337
00501b53
JW
2338static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2339 unsigned int nr_pages)
8a9f3ccd 2340{
a983b5eb 2341 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2342 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2343 struct mem_cgroup *mem_over_limit;
3e32cb2e 2344 struct page_counter *counter;
6539cc05 2345 unsigned long nr_reclaimed;
b70a2a21
JW
2346 bool may_swap = true;
2347 bool drained = false;
29ef680a 2348 enum oom_status oom_status;
a636b327 2349
ce00a967 2350 if (mem_cgroup_is_root(memcg))
10d53c74 2351 return 0;
6539cc05 2352retry:
b6b6cc72 2353 if (consume_stock(memcg, nr_pages))
10d53c74 2354 return 0;
8a9f3ccd 2355
7941d214 2356 if (!do_memsw_account() ||
6071ca52
JW
2357 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2358 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2359 goto done_restock;
7941d214 2360 if (do_memsw_account())
3e32cb2e
JW
2361 page_counter_uncharge(&memcg->memsw, batch);
2362 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2363 } else {
3e32cb2e 2364 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2365 may_swap = false;
3fbe7244 2366 }
7a81b88c 2367
6539cc05
JW
2368 if (batch > nr_pages) {
2369 batch = nr_pages;
2370 goto retry;
2371 }
6d61ef40 2372
06b078fc
JW
2373 /*
2374 * Unlike in global OOM situations, memcg is not in a physical
2375 * memory shortage. Allow dying and OOM-killed tasks to
2376 * bypass the last charges so that they can exit quickly and
2377 * free their memory.
2378 */
7775face 2379 if (unlikely(should_force_charge()))
10d53c74 2380 goto force;
06b078fc 2381
89a28483
JW
2382 /*
2383 * Prevent unbounded recursion when reclaim operations need to
2384 * allocate memory. This might exceed the limits temporarily,
2385 * but we prefer facilitating memory reclaim and getting back
2386 * under the limit over triggering OOM kills in these cases.
2387 */
2388 if (unlikely(current->flags & PF_MEMALLOC))
2389 goto force;
2390
06b078fc
JW
2391 if (unlikely(task_in_memcg_oom(current)))
2392 goto nomem;
2393
d0164adc 2394 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2395 goto nomem;
4b534334 2396
e27be240 2397 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2398
b70a2a21
JW
2399 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2400 gfp_mask, may_swap);
6539cc05 2401
61e02c74 2402 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2403 goto retry;
28c34c29 2404
b70a2a21 2405 if (!drained) {
6d3d6aa2 2406 drain_all_stock(mem_over_limit);
b70a2a21
JW
2407 drained = true;
2408 goto retry;
2409 }
2410
28c34c29
JW
2411 if (gfp_mask & __GFP_NORETRY)
2412 goto nomem;
6539cc05
JW
2413 /*
2414 * Even though the limit is exceeded at this point, reclaim
2415 * may have been able to free some pages. Retry the charge
2416 * before killing the task.
2417 *
2418 * Only for regular pages, though: huge pages are rather
2419 * unlikely to succeed so close to the limit, and we fall back
2420 * to regular pages anyway in case of failure.
2421 */
61e02c74 2422 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2423 goto retry;
2424 /*
2425 * At task move, charge accounts can be doubly counted. So, it's
2426 * better to wait until the end of task_move if something is going on.
2427 */
2428 if (mem_cgroup_wait_acct_move(mem_over_limit))
2429 goto retry;
2430
9b130619
JW
2431 if (nr_retries--)
2432 goto retry;
2433
38d38493 2434 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2435 goto nomem;
2436
06b078fc 2437 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2438 goto force;
06b078fc 2439
6539cc05 2440 if (fatal_signal_pending(current))
10d53c74 2441 goto force;
6539cc05 2442
29ef680a
MH
2443 /*
2444 * keep retrying as long as the memcg oom killer is able to make
2445 * a forward progress or bypass the charge if the oom killer
2446 * couldn't make any progress.
2447 */
2448 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2449 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2450 switch (oom_status) {
2451 case OOM_SUCCESS:
2452 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2453 goto retry;
2454 case OOM_FAILED:
2455 goto force;
2456 default:
2457 goto nomem;
2458 }
7a81b88c 2459nomem:
6d1fdc48 2460 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2461 return -ENOMEM;
10d53c74
TH
2462force:
2463 /*
2464 * The allocation either can't fail or will lead to more memory
2465 * being freed very soon. Allow memory usage go over the limit
2466 * temporarily by force charging it.
2467 */
2468 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2469 if (do_memsw_account())
10d53c74
TH
2470 page_counter_charge(&memcg->memsw, nr_pages);
2471 css_get_many(&memcg->css, nr_pages);
2472
2473 return 0;
6539cc05
JW
2474
2475done_restock:
e8ea14cc 2476 css_get_many(&memcg->css, batch);
6539cc05
JW
2477 if (batch > nr_pages)
2478 refill_stock(memcg, batch - nr_pages);
b23afb93 2479
241994ed 2480 /*
b23afb93
TH
2481 * If the hierarchy is above the normal consumption range, schedule
2482 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2483 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2484 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2485 * not recorded as it most likely matches current's and won't
2486 * change in the meantime. As high limit is checked again before
2487 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2488 */
2489 do {
b23afb93 2490 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2491 /* Don't bother a random interrupted task */
2492 if (in_interrupt()) {
2493 schedule_work(&memcg->high_work);
2494 break;
2495 }
9516a18a 2496 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2497 set_notify_resume(current);
2498 break;
2499 }
241994ed 2500 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2501
2502 return 0;
7a81b88c 2503}
8a9f3ccd 2504
00501b53 2505static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2506{
ce00a967
JW
2507 if (mem_cgroup_is_root(memcg))
2508 return;
2509
3e32cb2e 2510 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2511 if (do_memsw_account())
3e32cb2e 2512 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2513
e8ea14cc 2514 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2515}
2516
0a31bc97
JW
2517static void lock_page_lru(struct page *page, int *isolated)
2518{
f4b7e272 2519 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2520
f4b7e272 2521 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2522 if (PageLRU(page)) {
2523 struct lruvec *lruvec;
2524
f4b7e272 2525 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2526 ClearPageLRU(page);
2527 del_page_from_lru_list(page, lruvec, page_lru(page));
2528 *isolated = 1;
2529 } else
2530 *isolated = 0;
2531}
2532
2533static void unlock_page_lru(struct page *page, int isolated)
2534{
f4b7e272 2535 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2536
2537 if (isolated) {
2538 struct lruvec *lruvec;
2539
f4b7e272 2540 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2541 VM_BUG_ON_PAGE(PageLRU(page), page);
2542 SetPageLRU(page);
2543 add_page_to_lru_list(page, lruvec, page_lru(page));
2544 }
f4b7e272 2545 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2546}
2547
00501b53 2548static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2549 bool lrucare)
7a81b88c 2550{
0a31bc97 2551 int isolated;
9ce70c02 2552
1306a85a 2553 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2554
2555 /*
2556 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2557 * may already be on some other mem_cgroup's LRU. Take care of it.
2558 */
0a31bc97
JW
2559 if (lrucare)
2560 lock_page_lru(page, &isolated);
9ce70c02 2561
0a31bc97
JW
2562 /*
2563 * Nobody should be changing or seriously looking at
1306a85a 2564 * page->mem_cgroup at this point:
0a31bc97
JW
2565 *
2566 * - the page is uncharged
2567 *
2568 * - the page is off-LRU
2569 *
2570 * - an anonymous fault has exclusive page access, except for
2571 * a locked page table
2572 *
2573 * - a page cache insertion, a swapin fault, or a migration
2574 * have the page locked
2575 */
1306a85a 2576 page->mem_cgroup = memcg;
9ce70c02 2577
0a31bc97
JW
2578 if (lrucare)
2579 unlock_page_lru(page, isolated);
7a81b88c 2580}
66e1707b 2581
84c07d11 2582#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2583static int memcg_alloc_cache_id(void)
55007d84 2584{
f3bb3043
VD
2585 int id, size;
2586 int err;
2587
dbcf73e2 2588 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2589 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2590 if (id < 0)
2591 return id;
55007d84 2592
dbcf73e2 2593 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2594 return id;
2595
2596 /*
2597 * There's no space for the new id in memcg_caches arrays,
2598 * so we have to grow them.
2599 */
05257a1a 2600 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2601
2602 size = 2 * (id + 1);
55007d84
GC
2603 if (size < MEMCG_CACHES_MIN_SIZE)
2604 size = MEMCG_CACHES_MIN_SIZE;
2605 else if (size > MEMCG_CACHES_MAX_SIZE)
2606 size = MEMCG_CACHES_MAX_SIZE;
2607
f3bb3043 2608 err = memcg_update_all_caches(size);
60d3fd32
VD
2609 if (!err)
2610 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2611 if (!err)
2612 memcg_nr_cache_ids = size;
2613
2614 up_write(&memcg_cache_ids_sem);
2615
f3bb3043 2616 if (err) {
dbcf73e2 2617 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2618 return err;
2619 }
2620 return id;
2621}
2622
2623static void memcg_free_cache_id(int id)
2624{
dbcf73e2 2625 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2626}
2627
d5b3cf71 2628struct memcg_kmem_cache_create_work {
5722d094
VD
2629 struct mem_cgroup *memcg;
2630 struct kmem_cache *cachep;
2631 struct work_struct work;
2632};
2633
d5b3cf71 2634static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2635{
d5b3cf71
VD
2636 struct memcg_kmem_cache_create_work *cw =
2637 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2638 struct mem_cgroup *memcg = cw->memcg;
2639 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2640
d5b3cf71 2641 memcg_create_kmem_cache(memcg, cachep);
bd673145 2642
5722d094 2643 css_put(&memcg->css);
d7f25f8a
GC
2644 kfree(cw);
2645}
2646
2647/*
2648 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2649 */
85cfb245 2650static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2651 struct kmem_cache *cachep)
d7f25f8a 2652{
d5b3cf71 2653 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2654
f0a3a24b
RG
2655 if (!css_tryget_online(&memcg->css))
2656 return;
2657
c892fd82 2658 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2659 if (!cw)
d7f25f8a 2660 return;
8135be5a 2661
d7f25f8a
GC
2662 cw->memcg = memcg;
2663 cw->cachep = cachep;
d5b3cf71 2664 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2665
17cc4dfe 2666 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2667}
2668
45264778
VD
2669static inline bool memcg_kmem_bypass(void)
2670{
2671 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2672 return true;
2673 return false;
2674}
2675
2676/**
2677 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2678 * @cachep: the original global kmem cache
2679 *
d7f25f8a
GC
2680 * Return the kmem_cache we're supposed to use for a slab allocation.
2681 * We try to use the current memcg's version of the cache.
2682 *
45264778
VD
2683 * If the cache does not exist yet, if we are the first user of it, we
2684 * create it asynchronously in a workqueue and let the current allocation
2685 * go through with the original cache.
d7f25f8a 2686 *
45264778
VD
2687 * This function takes a reference to the cache it returns to assure it
2688 * won't get destroyed while we are working with it. Once the caller is
2689 * done with it, memcg_kmem_put_cache() must be called to release the
2690 * reference.
d7f25f8a 2691 */
45264778 2692struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2693{
2694 struct mem_cgroup *memcg;
959c8963 2695 struct kmem_cache *memcg_cachep;
f0a3a24b 2696 struct memcg_cache_array *arr;
2a4db7eb 2697 int kmemcg_id;
d7f25f8a 2698
f7ce3190 2699 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2700
45264778 2701 if (memcg_kmem_bypass())
230e9fc2
VD
2702 return cachep;
2703
f0a3a24b
RG
2704 rcu_read_lock();
2705
2706 if (unlikely(current->active_memcg))
2707 memcg = current->active_memcg;
2708 else
2709 memcg = mem_cgroup_from_task(current);
2710
2711 if (!memcg || memcg == root_mem_cgroup)
2712 goto out_unlock;
2713
4db0c3c2 2714 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2715 if (kmemcg_id < 0)
f0a3a24b 2716 goto out_unlock;
d7f25f8a 2717
f0a3a24b
RG
2718 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2719
2720 /*
2721 * Make sure we will access the up-to-date value. The code updating
2722 * memcg_caches issues a write barrier to match the data dependency
2723 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2724 */
2725 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2726
2727 /*
2728 * If we are in a safe context (can wait, and not in interrupt
2729 * context), we could be be predictable and return right away.
2730 * This would guarantee that the allocation being performed
2731 * already belongs in the new cache.
2732 *
2733 * However, there are some clashes that can arrive from locking.
2734 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2735 * memcg_create_kmem_cache, this means no further allocation
2736 * could happen with the slab_mutex held. So it's better to
2737 * defer everything.
f0a3a24b
RG
2738 *
2739 * If the memcg is dying or memcg_cache is about to be released,
2740 * don't bother creating new kmem_caches. Because memcg_cachep
2741 * is ZEROed as the fist step of kmem offlining, we don't need
2742 * percpu_ref_tryget_live() here. css_tryget_online() check in
2743 * memcg_schedule_kmem_cache_create() will prevent us from
2744 * creation of a new kmem_cache.
ca0dde97 2745 */
f0a3a24b
RG
2746 if (unlikely(!memcg_cachep))
2747 memcg_schedule_kmem_cache_create(memcg, cachep);
2748 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2749 cachep = memcg_cachep;
2750out_unlock:
2751 rcu_read_unlock();
ca0dde97 2752 return cachep;
d7f25f8a 2753}
d7f25f8a 2754
45264778
VD
2755/**
2756 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2757 * @cachep: the cache returned by memcg_kmem_get_cache
2758 */
2759void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2760{
2761 if (!is_root_cache(cachep))
f0a3a24b 2762 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2763}
2764
45264778 2765/**
60cd4bcd 2766 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2767 * @page: page to charge
2768 * @gfp: reclaim mode
2769 * @order: allocation order
2770 * @memcg: memory cgroup to charge
2771 *
2772 * Returns 0 on success, an error code on failure.
2773 */
60cd4bcd 2774int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2775 struct mem_cgroup *memcg)
7ae1e1d0 2776{
f3ccb2c4
VD
2777 unsigned int nr_pages = 1 << order;
2778 struct page_counter *counter;
7ae1e1d0
GC
2779 int ret;
2780
f3ccb2c4 2781 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2782 if (ret)
f3ccb2c4 2783 return ret;
52c29b04
JW
2784
2785 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2786 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2787 cancel_charge(memcg, nr_pages);
2788 return -ENOMEM;
7ae1e1d0 2789 }
f3ccb2c4 2790 return 0;
7ae1e1d0
GC
2791}
2792
45264778 2793/**
60cd4bcd 2794 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2795 * @page: page to charge
2796 * @gfp: reclaim mode
2797 * @order: allocation order
2798 *
2799 * Returns 0 on success, an error code on failure.
2800 */
60cd4bcd 2801int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2802{
f3ccb2c4 2803 struct mem_cgroup *memcg;
fcff7d7e 2804 int ret = 0;
7ae1e1d0 2805
60cd4bcd 2806 if (memcg_kmem_bypass())
45264778
VD
2807 return 0;
2808
d46eb14b 2809 memcg = get_mem_cgroup_from_current();
c4159a75 2810 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2811 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
4d96ba35
RG
2812 if (!ret) {
2813 page->mem_cgroup = memcg;
c4159a75 2814 __SetPageKmemcg(page);
4d96ba35 2815 }
c4159a75 2816 }
7ae1e1d0 2817 css_put(&memcg->css);
d05e83a6 2818 return ret;
7ae1e1d0 2819}
49a18eae
RG
2820
2821/**
2822 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2823 * @memcg: memcg to uncharge
2824 * @nr_pages: number of pages to uncharge
2825 */
2826void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2827 unsigned int nr_pages)
2828{
2829 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2830 page_counter_uncharge(&memcg->kmem, nr_pages);
2831
2832 page_counter_uncharge(&memcg->memory, nr_pages);
2833 if (do_memsw_account())
2834 page_counter_uncharge(&memcg->memsw, nr_pages);
2835}
45264778 2836/**
60cd4bcd 2837 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
2838 * @page: page to uncharge
2839 * @order: allocation order
2840 */
60cd4bcd 2841void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2842{
1306a85a 2843 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2844 unsigned int nr_pages = 1 << order;
7ae1e1d0 2845
7ae1e1d0
GC
2846 if (!memcg)
2847 return;
2848
309381fe 2849 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
49a18eae 2850 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
1306a85a 2851 page->mem_cgroup = NULL;
c4159a75
VD
2852
2853 /* slab pages do not have PageKmemcg flag set */
2854 if (PageKmemcg(page))
2855 __ClearPageKmemcg(page);
2856
f3ccb2c4 2857 css_put_many(&memcg->css, nr_pages);
60d3fd32 2858}
84c07d11 2859#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2860
ca3e0214
KH
2861#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2862
ca3e0214
KH
2863/*
2864 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 2865 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 2866 */
e94c8a9c 2867void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2868{
e94c8a9c 2869 int i;
ca3e0214 2870
3d37c4a9
KH
2871 if (mem_cgroup_disabled())
2872 return;
b070e65c 2873
29833315 2874 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2875 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2876
c9019e9b 2877 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2878}
12d27107 2879#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2880
c255a458 2881#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2882/**
2883 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2884 * @entry: swap entry to be moved
2885 * @from: mem_cgroup which the entry is moved from
2886 * @to: mem_cgroup which the entry is moved to
2887 *
2888 * It succeeds only when the swap_cgroup's record for this entry is the same
2889 * as the mem_cgroup's id of @from.
2890 *
2891 * Returns 0 on success, -EINVAL on failure.
2892 *
3e32cb2e 2893 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2894 * both res and memsw, and called css_get().
2895 */
2896static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2897 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2898{
2899 unsigned short old_id, new_id;
2900
34c00c31
LZ
2901 old_id = mem_cgroup_id(from);
2902 new_id = mem_cgroup_id(to);
02491447
DN
2903
2904 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2905 mod_memcg_state(from, MEMCG_SWAP, -1);
2906 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2907 return 0;
2908 }
2909 return -EINVAL;
2910}
2911#else
2912static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2913 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2914{
2915 return -EINVAL;
2916}
8c7c6e34 2917#endif
d13d1443 2918
bbec2e15 2919static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2920
bbec2e15
RG
2921static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2922 unsigned long max, bool memsw)
628f4235 2923{
3e32cb2e 2924 bool enlarge = false;
bb4a7ea2 2925 bool drained = false;
3e32cb2e 2926 int ret;
c054a78c
YZ
2927 bool limits_invariant;
2928 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2929
3e32cb2e 2930 do {
628f4235
KH
2931 if (signal_pending(current)) {
2932 ret = -EINTR;
2933 break;
2934 }
3e32cb2e 2935
bbec2e15 2936 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2937 /*
2938 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2939 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2940 */
bbec2e15
RG
2941 limits_invariant = memsw ? max >= memcg->memory.max :
2942 max <= memcg->memsw.max;
c054a78c 2943 if (!limits_invariant) {
bbec2e15 2944 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2945 ret = -EINVAL;
8c7c6e34
KH
2946 break;
2947 }
bbec2e15 2948 if (max > counter->max)
3e32cb2e 2949 enlarge = true;
bbec2e15
RG
2950 ret = page_counter_set_max(counter, max);
2951 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2952
2953 if (!ret)
2954 break;
2955
bb4a7ea2
SB
2956 if (!drained) {
2957 drain_all_stock(memcg);
2958 drained = true;
2959 continue;
2960 }
2961
1ab5c056
AR
2962 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2963 GFP_KERNEL, !memsw)) {
2964 ret = -EBUSY;
2965 break;
2966 }
2967 } while (true);
3e32cb2e 2968
3c11ecf4
KH
2969 if (!ret && enlarge)
2970 memcg_oom_recover(memcg);
3e32cb2e 2971
628f4235
KH
2972 return ret;
2973}
2974
ef8f2327 2975unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2976 gfp_t gfp_mask,
2977 unsigned long *total_scanned)
2978{
2979 unsigned long nr_reclaimed = 0;
ef8f2327 2980 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2981 unsigned long reclaimed;
2982 int loop = 0;
ef8f2327 2983 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2984 unsigned long excess;
0608f43d
AM
2985 unsigned long nr_scanned;
2986
2987 if (order > 0)
2988 return 0;
2989
ef8f2327 2990 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2991
2992 /*
2993 * Do not even bother to check the largest node if the root
2994 * is empty. Do it lockless to prevent lock bouncing. Races
2995 * are acceptable as soft limit is best effort anyway.
2996 */
bfc7228b 2997 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2998 return 0;
2999
0608f43d
AM
3000 /*
3001 * This loop can run a while, specially if mem_cgroup's continuously
3002 * keep exceeding their soft limit and putting the system under
3003 * pressure
3004 */
3005 do {
3006 if (next_mz)
3007 mz = next_mz;
3008 else
3009 mz = mem_cgroup_largest_soft_limit_node(mctz);
3010 if (!mz)
3011 break;
3012
3013 nr_scanned = 0;
ef8f2327 3014 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3015 gfp_mask, &nr_scanned);
3016 nr_reclaimed += reclaimed;
3017 *total_scanned += nr_scanned;
0a31bc97 3018 spin_lock_irq(&mctz->lock);
bc2f2e7f 3019 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3020
3021 /*
3022 * If we failed to reclaim anything from this memory cgroup
3023 * it is time to move on to the next cgroup
3024 */
3025 next_mz = NULL;
bc2f2e7f
VD
3026 if (!reclaimed)
3027 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3028
3e32cb2e 3029 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3030 /*
3031 * One school of thought says that we should not add
3032 * back the node to the tree if reclaim returns 0.
3033 * But our reclaim could return 0, simply because due
3034 * to priority we are exposing a smaller subset of
3035 * memory to reclaim from. Consider this as a longer
3036 * term TODO.
3037 */
3038 /* If excess == 0, no tree ops */
cf2c8127 3039 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3040 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3041 css_put(&mz->memcg->css);
3042 loop++;
3043 /*
3044 * Could not reclaim anything and there are no more
3045 * mem cgroups to try or we seem to be looping without
3046 * reclaiming anything.
3047 */
3048 if (!nr_reclaimed &&
3049 (next_mz == NULL ||
3050 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3051 break;
3052 } while (!nr_reclaimed);
3053 if (next_mz)
3054 css_put(&next_mz->memcg->css);
3055 return nr_reclaimed;
3056}
3057
ea280e7b
TH
3058/*
3059 * Test whether @memcg has children, dead or alive. Note that this
3060 * function doesn't care whether @memcg has use_hierarchy enabled and
3061 * returns %true if there are child csses according to the cgroup
3062 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3063 */
b5f99b53
GC
3064static inline bool memcg_has_children(struct mem_cgroup *memcg)
3065{
ea280e7b
TH
3066 bool ret;
3067
ea280e7b
TH
3068 rcu_read_lock();
3069 ret = css_next_child(NULL, &memcg->css);
3070 rcu_read_unlock();
3071 return ret;
b5f99b53
GC
3072}
3073
c26251f9 3074/*
51038171 3075 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3076 *
3077 * Caller is responsible for holding css reference for memcg.
3078 */
3079static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3080{
3081 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3082
c1e862c1
KH
3083 /* we call try-to-free pages for make this cgroup empty */
3084 lru_add_drain_all();
d12c60f6
JS
3085
3086 drain_all_stock(memcg);
3087
f817ed48 3088 /* try to free all pages in this cgroup */
3e32cb2e 3089 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3090 int progress;
c1e862c1 3091
c26251f9
MH
3092 if (signal_pending(current))
3093 return -EINTR;
3094
b70a2a21
JW
3095 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3096 GFP_KERNEL, true);
c1e862c1 3097 if (!progress) {
f817ed48 3098 nr_retries--;
c1e862c1 3099 /* maybe some writeback is necessary */
8aa7e847 3100 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3101 }
f817ed48
KH
3102
3103 }
ab5196c2
MH
3104
3105 return 0;
cc847582
KH
3106}
3107
6770c64e
TH
3108static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3109 char *buf, size_t nbytes,
3110 loff_t off)
c1e862c1 3111{
6770c64e 3112 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3113
d8423011
MH
3114 if (mem_cgroup_is_root(memcg))
3115 return -EINVAL;
6770c64e 3116 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3117}
3118
182446d0
TH
3119static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3120 struct cftype *cft)
18f59ea7 3121{
182446d0 3122 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3123}
3124
182446d0
TH
3125static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3126 struct cftype *cft, u64 val)
18f59ea7
BS
3127{
3128 int retval = 0;
182446d0 3129 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3130 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3131
567fb435 3132 if (memcg->use_hierarchy == val)
0b8f73e1 3133 return 0;
567fb435 3134
18f59ea7 3135 /*
af901ca1 3136 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3137 * in the child subtrees. If it is unset, then the change can
3138 * occur, provided the current cgroup has no children.
3139 *
3140 * For the root cgroup, parent_mem is NULL, we allow value to be
3141 * set if there are no children.
3142 */
c0ff4b85 3143 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3144 (val == 1 || val == 0)) {
ea280e7b 3145 if (!memcg_has_children(memcg))
c0ff4b85 3146 memcg->use_hierarchy = val;
18f59ea7
BS
3147 else
3148 retval = -EBUSY;
3149 } else
3150 retval = -EINVAL;
567fb435 3151
18f59ea7
BS
3152 return retval;
3153}
3154
6f646156 3155static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3156{
42a30035 3157 unsigned long val;
ce00a967 3158
3e32cb2e 3159 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3160 val = memcg_page_state(memcg, MEMCG_CACHE) +
3161 memcg_page_state(memcg, MEMCG_RSS);
3162 if (swap)
3163 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3164 } else {
ce00a967 3165 if (!swap)
3e32cb2e 3166 val = page_counter_read(&memcg->memory);
ce00a967 3167 else
3e32cb2e 3168 val = page_counter_read(&memcg->memsw);
ce00a967 3169 }
c12176d3 3170 return val;
ce00a967
JW
3171}
3172
3e32cb2e
JW
3173enum {
3174 RES_USAGE,
3175 RES_LIMIT,
3176 RES_MAX_USAGE,
3177 RES_FAILCNT,
3178 RES_SOFT_LIMIT,
3179};
ce00a967 3180
791badbd 3181static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3182 struct cftype *cft)
8cdea7c0 3183{
182446d0 3184 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3185 struct page_counter *counter;
af36f906 3186
3e32cb2e 3187 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3188 case _MEM:
3e32cb2e
JW
3189 counter = &memcg->memory;
3190 break;
8c7c6e34 3191 case _MEMSWAP:
3e32cb2e
JW
3192 counter = &memcg->memsw;
3193 break;
510fc4e1 3194 case _KMEM:
3e32cb2e 3195 counter = &memcg->kmem;
510fc4e1 3196 break;
d55f90bf 3197 case _TCP:
0db15298 3198 counter = &memcg->tcpmem;
d55f90bf 3199 break;
8c7c6e34
KH
3200 default:
3201 BUG();
8c7c6e34 3202 }
3e32cb2e
JW
3203
3204 switch (MEMFILE_ATTR(cft->private)) {
3205 case RES_USAGE:
3206 if (counter == &memcg->memory)
c12176d3 3207 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3208 if (counter == &memcg->memsw)
c12176d3 3209 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3210 return (u64)page_counter_read(counter) * PAGE_SIZE;
3211 case RES_LIMIT:
bbec2e15 3212 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3213 case RES_MAX_USAGE:
3214 return (u64)counter->watermark * PAGE_SIZE;
3215 case RES_FAILCNT:
3216 return counter->failcnt;
3217 case RES_SOFT_LIMIT:
3218 return (u64)memcg->soft_limit * PAGE_SIZE;
3219 default:
3220 BUG();
3221 }
8cdea7c0 3222}
510fc4e1 3223
84c07d11 3224#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3225static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3226{
d6441637
VD
3227 int memcg_id;
3228
b313aeee
VD
3229 if (cgroup_memory_nokmem)
3230 return 0;
3231
2a4db7eb 3232 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3233 BUG_ON(memcg->kmem_state);
d6441637 3234
f3bb3043 3235 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3236 if (memcg_id < 0)
3237 return memcg_id;
d6441637 3238
ef12947c 3239 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3240 /*
567e9ab2 3241 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3242 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3243 * guarantee no one starts accounting before all call sites are
3244 * patched.
3245 */
900a38f0 3246 memcg->kmemcg_id = memcg_id;
567e9ab2 3247 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3248 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3249
3250 return 0;
d6441637
VD
3251}
3252
8e0a8912
JW
3253static void memcg_offline_kmem(struct mem_cgroup *memcg)
3254{
3255 struct cgroup_subsys_state *css;
3256 struct mem_cgroup *parent, *child;
3257 int kmemcg_id;
3258
3259 if (memcg->kmem_state != KMEM_ONLINE)
3260 return;
3261 /*
3262 * Clear the online state before clearing memcg_caches array
3263 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3264 * guarantees that no cache will be created for this cgroup
3265 * after we are done (see memcg_create_kmem_cache()).
3266 */
3267 memcg->kmem_state = KMEM_ALLOCATED;
3268
8e0a8912
JW
3269 parent = parent_mem_cgroup(memcg);
3270 if (!parent)
3271 parent = root_mem_cgroup;
3272
fb2f2b0a
RG
3273 memcg_deactivate_kmem_caches(memcg, parent);
3274
3275 kmemcg_id = memcg->kmemcg_id;
3276 BUG_ON(kmemcg_id < 0);
3277
8e0a8912
JW
3278 /*
3279 * Change kmemcg_id of this cgroup and all its descendants to the
3280 * parent's id, and then move all entries from this cgroup's list_lrus
3281 * to ones of the parent. After we have finished, all list_lrus
3282 * corresponding to this cgroup are guaranteed to remain empty. The
3283 * ordering is imposed by list_lru_node->lock taken by
3284 * memcg_drain_all_list_lrus().
3285 */
3a06bb78 3286 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3287 css_for_each_descendant_pre(css, &memcg->css) {
3288 child = mem_cgroup_from_css(css);
3289 BUG_ON(child->kmemcg_id != kmemcg_id);
3290 child->kmemcg_id = parent->kmemcg_id;
3291 if (!memcg->use_hierarchy)
3292 break;
3293 }
3a06bb78
TH
3294 rcu_read_unlock();
3295
9bec5c35 3296 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3297
3298 memcg_free_cache_id(kmemcg_id);
3299}
3300
3301static void memcg_free_kmem(struct mem_cgroup *memcg)
3302{
0b8f73e1
JW
3303 /* css_alloc() failed, offlining didn't happen */
3304 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3305 memcg_offline_kmem(memcg);
3306
8e0a8912 3307 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3308 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3309 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3310 }
8e0a8912 3311}
d6441637 3312#else
0b8f73e1 3313static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3314{
3315 return 0;
3316}
3317static void memcg_offline_kmem(struct mem_cgroup *memcg)
3318{
3319}
3320static void memcg_free_kmem(struct mem_cgroup *memcg)
3321{
3322}
84c07d11 3323#endif /* CONFIG_MEMCG_KMEM */
127424c8 3324
bbec2e15
RG
3325static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3326 unsigned long max)
d6441637 3327{
b313aeee 3328 int ret;
127424c8 3329
bbec2e15
RG
3330 mutex_lock(&memcg_max_mutex);
3331 ret = page_counter_set_max(&memcg->kmem, max);
3332 mutex_unlock(&memcg_max_mutex);
127424c8 3333 return ret;
d6441637 3334}
510fc4e1 3335
bbec2e15 3336static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3337{
3338 int ret;
3339
bbec2e15 3340 mutex_lock(&memcg_max_mutex);
d55f90bf 3341
bbec2e15 3342 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3343 if (ret)
3344 goto out;
3345
0db15298 3346 if (!memcg->tcpmem_active) {
d55f90bf
VD
3347 /*
3348 * The active flag needs to be written after the static_key
3349 * update. This is what guarantees that the socket activation
2d758073
JW
3350 * function is the last one to run. See mem_cgroup_sk_alloc()
3351 * for details, and note that we don't mark any socket as
3352 * belonging to this memcg until that flag is up.
d55f90bf
VD
3353 *
3354 * We need to do this, because static_keys will span multiple
3355 * sites, but we can't control their order. If we mark a socket
3356 * as accounted, but the accounting functions are not patched in
3357 * yet, we'll lose accounting.
3358 *
2d758073 3359 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3360 * because when this value change, the code to process it is not
3361 * patched in yet.
3362 */
3363 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3364 memcg->tcpmem_active = true;
d55f90bf
VD
3365 }
3366out:
bbec2e15 3367 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3368 return ret;
3369}
d55f90bf 3370
628f4235
KH
3371/*
3372 * The user of this function is...
3373 * RES_LIMIT.
3374 */
451af504
TH
3375static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3376 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3377{
451af504 3378 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3379 unsigned long nr_pages;
628f4235
KH
3380 int ret;
3381
451af504 3382 buf = strstrip(buf);
650c5e56 3383 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3384 if (ret)
3385 return ret;
af36f906 3386
3e32cb2e 3387 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3388 case RES_LIMIT:
4b3bde4c
BS
3389 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3390 ret = -EINVAL;
3391 break;
3392 }
3e32cb2e
JW
3393 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3394 case _MEM:
bbec2e15 3395 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3396 break;
3e32cb2e 3397 case _MEMSWAP:
bbec2e15 3398 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3399 break;
3e32cb2e 3400 case _KMEM:
bbec2e15 3401 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3402 break;
d55f90bf 3403 case _TCP:
bbec2e15 3404 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3405 break;
3e32cb2e 3406 }
296c81d8 3407 break;
3e32cb2e
JW
3408 case RES_SOFT_LIMIT:
3409 memcg->soft_limit = nr_pages;
3410 ret = 0;
628f4235
KH
3411 break;
3412 }
451af504 3413 return ret ?: nbytes;
8cdea7c0
BS
3414}
3415
6770c64e
TH
3416static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3417 size_t nbytes, loff_t off)
c84872e1 3418{
6770c64e 3419 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3420 struct page_counter *counter;
c84872e1 3421
3e32cb2e
JW
3422 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3423 case _MEM:
3424 counter = &memcg->memory;
3425 break;
3426 case _MEMSWAP:
3427 counter = &memcg->memsw;
3428 break;
3429 case _KMEM:
3430 counter = &memcg->kmem;
3431 break;
d55f90bf 3432 case _TCP:
0db15298 3433 counter = &memcg->tcpmem;
d55f90bf 3434 break;
3e32cb2e
JW
3435 default:
3436 BUG();
3437 }
af36f906 3438
3e32cb2e 3439 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3440 case RES_MAX_USAGE:
3e32cb2e 3441 page_counter_reset_watermark(counter);
29f2a4da
PE
3442 break;
3443 case RES_FAILCNT:
3e32cb2e 3444 counter->failcnt = 0;
29f2a4da 3445 break;
3e32cb2e
JW
3446 default:
3447 BUG();
29f2a4da 3448 }
f64c3f54 3449
6770c64e 3450 return nbytes;
c84872e1
PE
3451}
3452
182446d0 3453static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3454 struct cftype *cft)
3455{
182446d0 3456 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3457}
3458
02491447 3459#ifdef CONFIG_MMU
182446d0 3460static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3461 struct cftype *cft, u64 val)
3462{
182446d0 3463 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3464
1dfab5ab 3465 if (val & ~MOVE_MASK)
7dc74be0 3466 return -EINVAL;
ee5e8472 3467
7dc74be0 3468 /*
ee5e8472
GC
3469 * No kind of locking is needed in here, because ->can_attach() will
3470 * check this value once in the beginning of the process, and then carry
3471 * on with stale data. This means that changes to this value will only
3472 * affect task migrations starting after the change.
7dc74be0 3473 */
c0ff4b85 3474 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3475 return 0;
3476}
02491447 3477#else
182446d0 3478static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3479 struct cftype *cft, u64 val)
3480{
3481 return -ENOSYS;
3482}
3483#endif
7dc74be0 3484
406eb0c9 3485#ifdef CONFIG_NUMA
113b7dfd
JW
3486
3487#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3488#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3489#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3490
3491static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3492 int nid, unsigned int lru_mask)
3493{
3494 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3495 unsigned long nr = 0;
3496 enum lru_list lru;
3497
3498 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3499
3500 for_each_lru(lru) {
3501 if (!(BIT(lru) & lru_mask))
3502 continue;
205b20cc 3503 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3504 }
3505 return nr;
3506}
3507
3508static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3509 unsigned int lru_mask)
3510{
3511 unsigned long nr = 0;
3512 enum lru_list lru;
3513
3514 for_each_lru(lru) {
3515 if (!(BIT(lru) & lru_mask))
3516 continue;
205b20cc 3517 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3518 }
3519 return nr;
3520}
3521
2da8ca82 3522static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3523{
25485de6
GT
3524 struct numa_stat {
3525 const char *name;
3526 unsigned int lru_mask;
3527 };
3528
3529 static const struct numa_stat stats[] = {
3530 { "total", LRU_ALL },
3531 { "file", LRU_ALL_FILE },
3532 { "anon", LRU_ALL_ANON },
3533 { "unevictable", BIT(LRU_UNEVICTABLE) },
3534 };
3535 const struct numa_stat *stat;
406eb0c9 3536 int nid;
25485de6 3537 unsigned long nr;
aa9694bb 3538 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3539
25485de6
GT
3540 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3541 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3542 seq_printf(m, "%s=%lu", stat->name, nr);
3543 for_each_node_state(nid, N_MEMORY) {
3544 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3545 stat->lru_mask);
3546 seq_printf(m, " N%d=%lu", nid, nr);
3547 }
3548 seq_putc(m, '\n');
406eb0c9 3549 }
406eb0c9 3550
071aee13
YH
3551 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3552 struct mem_cgroup *iter;
3553
3554 nr = 0;
3555 for_each_mem_cgroup_tree(iter, memcg)
3556 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3557 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3558 for_each_node_state(nid, N_MEMORY) {
3559 nr = 0;
3560 for_each_mem_cgroup_tree(iter, memcg)
3561 nr += mem_cgroup_node_nr_lru_pages(
3562 iter, nid, stat->lru_mask);
3563 seq_printf(m, " N%d=%lu", nid, nr);
3564 }
3565 seq_putc(m, '\n');
406eb0c9 3566 }
406eb0c9 3567
406eb0c9
YH
3568 return 0;
3569}
3570#endif /* CONFIG_NUMA */
3571
c8713d0b
JW
3572static const unsigned int memcg1_stats[] = {
3573 MEMCG_CACHE,
3574 MEMCG_RSS,
3575 MEMCG_RSS_HUGE,
3576 NR_SHMEM,
3577 NR_FILE_MAPPED,
3578 NR_FILE_DIRTY,
3579 NR_WRITEBACK,
3580 MEMCG_SWAP,
3581};
3582
3583static const char *const memcg1_stat_names[] = {
3584 "cache",
3585 "rss",
3586 "rss_huge",
3587 "shmem",
3588 "mapped_file",
3589 "dirty",
3590 "writeback",
3591 "swap",
3592};
3593
df0e53d0 3594/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3595static const unsigned int memcg1_events[] = {
df0e53d0
JW
3596 PGPGIN,
3597 PGPGOUT,
3598 PGFAULT,
3599 PGMAJFAULT,
3600};
3601
3602static const char *const memcg1_event_names[] = {
3603 "pgpgin",
3604 "pgpgout",
3605 "pgfault",
3606 "pgmajfault",
3607};
3608
2da8ca82 3609static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3610{
aa9694bb 3611 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3612 unsigned long memory, memsw;
af7c4b0e
JW
3613 struct mem_cgroup *mi;
3614 unsigned int i;
406eb0c9 3615
71cd3113 3616 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3617 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3618
71cd3113
JW
3619 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3620 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3621 continue;
71cd3113 3622 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3623 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3624 PAGE_SIZE);
1dd3a273 3625 }
7b854121 3626
df0e53d0
JW
3627 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3628 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
205b20cc 3629 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3630
3631 for (i = 0; i < NR_LRU_LISTS; i++)
3632 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
205b20cc 3633 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3634 PAGE_SIZE);
af7c4b0e 3635
14067bb3 3636 /* Hierarchical information */
3e32cb2e
JW
3637 memory = memsw = PAGE_COUNTER_MAX;
3638 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3639 memory = min(memory, mi->memory.max);
3640 memsw = min(memsw, mi->memsw.max);
fee7b548 3641 }
3e32cb2e
JW
3642 seq_printf(m, "hierarchical_memory_limit %llu\n",
3643 (u64)memory * PAGE_SIZE);
7941d214 3644 if (do_memsw_account())
3e32cb2e
JW
3645 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3646 (u64)memsw * PAGE_SIZE);
7f016ee8 3647
8de7ecc6 3648 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3649 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3650 continue;
8de7ecc6 3651 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3652 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3653 PAGE_SIZE);
af7c4b0e
JW
3654 }
3655
8de7ecc6
SB
3656 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3657 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
dd923990 3658 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3659
8de7ecc6
SB
3660 for (i = 0; i < NR_LRU_LISTS; i++)
3661 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
42a30035
JW
3662 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3663 PAGE_SIZE);
14067bb3 3664
7f016ee8 3665#ifdef CONFIG_DEBUG_VM
7f016ee8 3666 {
ef8f2327
MG
3667 pg_data_t *pgdat;
3668 struct mem_cgroup_per_node *mz;
89abfab1 3669 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3670 unsigned long recent_rotated[2] = {0, 0};
3671 unsigned long recent_scanned[2] = {0, 0};
3672
ef8f2327
MG
3673 for_each_online_pgdat(pgdat) {
3674 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3675 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3676
ef8f2327
MG
3677 recent_rotated[0] += rstat->recent_rotated[0];
3678 recent_rotated[1] += rstat->recent_rotated[1];
3679 recent_scanned[0] += rstat->recent_scanned[0];
3680 recent_scanned[1] += rstat->recent_scanned[1];
3681 }
78ccf5b5
JW
3682 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3683 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3684 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3685 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3686 }
3687#endif
3688
d2ceb9b7
KH
3689 return 0;
3690}
3691
182446d0
TH
3692static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3693 struct cftype *cft)
a7885eb8 3694{
182446d0 3695 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3696
1f4c025b 3697 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3698}
3699
182446d0
TH
3700static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3701 struct cftype *cft, u64 val)
a7885eb8 3702{
182446d0 3703 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3704
3dae7fec 3705 if (val > 100)
a7885eb8
KM
3706 return -EINVAL;
3707
14208b0e 3708 if (css->parent)
3dae7fec
JW
3709 memcg->swappiness = val;
3710 else
3711 vm_swappiness = val;
068b38c1 3712
a7885eb8
KM
3713 return 0;
3714}
3715
2e72b634
KS
3716static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3717{
3718 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3719 unsigned long usage;
2e72b634
KS
3720 int i;
3721
3722 rcu_read_lock();
3723 if (!swap)
2c488db2 3724 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3725 else
2c488db2 3726 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3727
3728 if (!t)
3729 goto unlock;
3730
ce00a967 3731 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3732
3733 /*
748dad36 3734 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3735 * If it's not true, a threshold was crossed after last
3736 * call of __mem_cgroup_threshold().
3737 */
5407a562 3738 i = t->current_threshold;
2e72b634
KS
3739
3740 /*
3741 * Iterate backward over array of thresholds starting from
3742 * current_threshold and check if a threshold is crossed.
3743 * If none of thresholds below usage is crossed, we read
3744 * only one element of the array here.
3745 */
3746 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3747 eventfd_signal(t->entries[i].eventfd, 1);
3748
3749 /* i = current_threshold + 1 */
3750 i++;
3751
3752 /*
3753 * Iterate forward over array of thresholds starting from
3754 * current_threshold+1 and check if a threshold is crossed.
3755 * If none of thresholds above usage is crossed, we read
3756 * only one element of the array here.
3757 */
3758 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3759 eventfd_signal(t->entries[i].eventfd, 1);
3760
3761 /* Update current_threshold */
5407a562 3762 t->current_threshold = i - 1;
2e72b634
KS
3763unlock:
3764 rcu_read_unlock();
3765}
3766
3767static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3768{
ad4ca5f4
KS
3769 while (memcg) {
3770 __mem_cgroup_threshold(memcg, false);
7941d214 3771 if (do_memsw_account())
ad4ca5f4
KS
3772 __mem_cgroup_threshold(memcg, true);
3773
3774 memcg = parent_mem_cgroup(memcg);
3775 }
2e72b634
KS
3776}
3777
3778static int compare_thresholds(const void *a, const void *b)
3779{
3780 const struct mem_cgroup_threshold *_a = a;
3781 const struct mem_cgroup_threshold *_b = b;
3782
2bff24a3
GT
3783 if (_a->threshold > _b->threshold)
3784 return 1;
3785
3786 if (_a->threshold < _b->threshold)
3787 return -1;
3788
3789 return 0;
2e72b634
KS
3790}
3791
c0ff4b85 3792static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3793{
3794 struct mem_cgroup_eventfd_list *ev;
3795
2bcf2e92
MH
3796 spin_lock(&memcg_oom_lock);
3797
c0ff4b85 3798 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3799 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3800
3801 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3802 return 0;
3803}
3804
c0ff4b85 3805static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3806{
7d74b06f
KH
3807 struct mem_cgroup *iter;
3808
c0ff4b85 3809 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3810 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3811}
3812
59b6f873 3813static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3814 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3815{
2c488db2
KS
3816 struct mem_cgroup_thresholds *thresholds;
3817 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3818 unsigned long threshold;
3819 unsigned long usage;
2c488db2 3820 int i, size, ret;
2e72b634 3821
650c5e56 3822 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3823 if (ret)
3824 return ret;
3825
3826 mutex_lock(&memcg->thresholds_lock);
2c488db2 3827
05b84301 3828 if (type == _MEM) {
2c488db2 3829 thresholds = &memcg->thresholds;
ce00a967 3830 usage = mem_cgroup_usage(memcg, false);
05b84301 3831 } else if (type == _MEMSWAP) {
2c488db2 3832 thresholds = &memcg->memsw_thresholds;
ce00a967 3833 usage = mem_cgroup_usage(memcg, true);
05b84301 3834 } else
2e72b634
KS
3835 BUG();
3836
2e72b634 3837 /* Check if a threshold crossed before adding a new one */
2c488db2 3838 if (thresholds->primary)
2e72b634
KS
3839 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3840
2c488db2 3841 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3842
3843 /* Allocate memory for new array of thresholds */
67b8046f 3844 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 3845 if (!new) {
2e72b634
KS
3846 ret = -ENOMEM;
3847 goto unlock;
3848 }
2c488db2 3849 new->size = size;
2e72b634
KS
3850
3851 /* Copy thresholds (if any) to new array */
2c488db2
KS
3852 if (thresholds->primary) {
3853 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3854 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3855 }
3856
2e72b634 3857 /* Add new threshold */
2c488db2
KS
3858 new->entries[size - 1].eventfd = eventfd;
3859 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3860
3861 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3862 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3863 compare_thresholds, NULL);
3864
3865 /* Find current threshold */
2c488db2 3866 new->current_threshold = -1;
2e72b634 3867 for (i = 0; i < size; i++) {
748dad36 3868 if (new->entries[i].threshold <= usage) {
2e72b634 3869 /*
2c488db2
KS
3870 * new->current_threshold will not be used until
3871 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3872 * it here.
3873 */
2c488db2 3874 ++new->current_threshold;
748dad36
SZ
3875 } else
3876 break;
2e72b634
KS
3877 }
3878
2c488db2
KS
3879 /* Free old spare buffer and save old primary buffer as spare */
3880 kfree(thresholds->spare);
3881 thresholds->spare = thresholds->primary;
3882
3883 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3884
907860ed 3885 /* To be sure that nobody uses thresholds */
2e72b634
KS
3886 synchronize_rcu();
3887
2e72b634
KS
3888unlock:
3889 mutex_unlock(&memcg->thresholds_lock);
3890
3891 return ret;
3892}
3893
59b6f873 3894static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3895 struct eventfd_ctx *eventfd, const char *args)
3896{
59b6f873 3897 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3898}
3899
59b6f873 3900static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3901 struct eventfd_ctx *eventfd, const char *args)
3902{
59b6f873 3903 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3904}
3905
59b6f873 3906static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3907 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3908{
2c488db2
KS
3909 struct mem_cgroup_thresholds *thresholds;
3910 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3911 unsigned long usage;
2c488db2 3912 int i, j, size;
2e72b634
KS
3913
3914 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3915
3916 if (type == _MEM) {
2c488db2 3917 thresholds = &memcg->thresholds;
ce00a967 3918 usage = mem_cgroup_usage(memcg, false);
05b84301 3919 } else if (type == _MEMSWAP) {
2c488db2 3920 thresholds = &memcg->memsw_thresholds;
ce00a967 3921 usage = mem_cgroup_usage(memcg, true);
05b84301 3922 } else
2e72b634
KS
3923 BUG();
3924
371528ca
AV
3925 if (!thresholds->primary)
3926 goto unlock;
3927
2e72b634
KS
3928 /* Check if a threshold crossed before removing */
3929 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3930
3931 /* Calculate new number of threshold */
2c488db2
KS
3932 size = 0;
3933 for (i = 0; i < thresholds->primary->size; i++) {
3934 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3935 size++;
3936 }
3937
2c488db2 3938 new = thresholds->spare;
907860ed 3939
2e72b634
KS
3940 /* Set thresholds array to NULL if we don't have thresholds */
3941 if (!size) {
2c488db2
KS
3942 kfree(new);
3943 new = NULL;
907860ed 3944 goto swap_buffers;
2e72b634
KS
3945 }
3946
2c488db2 3947 new->size = size;
2e72b634
KS
3948
3949 /* Copy thresholds and find current threshold */
2c488db2
KS
3950 new->current_threshold = -1;
3951 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3952 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3953 continue;
3954
2c488db2 3955 new->entries[j] = thresholds->primary->entries[i];
748dad36 3956 if (new->entries[j].threshold <= usage) {
2e72b634 3957 /*
2c488db2 3958 * new->current_threshold will not be used
2e72b634
KS
3959 * until rcu_assign_pointer(), so it's safe to increment
3960 * it here.
3961 */
2c488db2 3962 ++new->current_threshold;
2e72b634
KS
3963 }
3964 j++;
3965 }
3966
907860ed 3967swap_buffers:
2c488db2
KS
3968 /* Swap primary and spare array */
3969 thresholds->spare = thresholds->primary;
8c757763 3970
2c488db2 3971 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3972
907860ed 3973 /* To be sure that nobody uses thresholds */
2e72b634 3974 synchronize_rcu();
6611d8d7
MC
3975
3976 /* If all events are unregistered, free the spare array */
3977 if (!new) {
3978 kfree(thresholds->spare);
3979 thresholds->spare = NULL;
3980 }
371528ca 3981unlock:
2e72b634 3982 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3983}
c1e862c1 3984
59b6f873 3985static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3986 struct eventfd_ctx *eventfd)
3987{
59b6f873 3988 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3989}
3990
59b6f873 3991static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3992 struct eventfd_ctx *eventfd)
3993{
59b6f873 3994 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3995}
3996
59b6f873 3997static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3998 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3999{
9490ff27 4000 struct mem_cgroup_eventfd_list *event;
9490ff27 4001
9490ff27
KH
4002 event = kmalloc(sizeof(*event), GFP_KERNEL);
4003 if (!event)
4004 return -ENOMEM;
4005
1af8efe9 4006 spin_lock(&memcg_oom_lock);
9490ff27
KH
4007
4008 event->eventfd = eventfd;
4009 list_add(&event->list, &memcg->oom_notify);
4010
4011 /* already in OOM ? */
c2b42d3c 4012 if (memcg->under_oom)
9490ff27 4013 eventfd_signal(eventfd, 1);
1af8efe9 4014 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4015
4016 return 0;
4017}
4018
59b6f873 4019static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4020 struct eventfd_ctx *eventfd)
9490ff27 4021{
9490ff27 4022 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4023
1af8efe9 4024 spin_lock(&memcg_oom_lock);
9490ff27 4025
c0ff4b85 4026 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4027 if (ev->eventfd == eventfd) {
4028 list_del(&ev->list);
4029 kfree(ev);
4030 }
4031 }
4032
1af8efe9 4033 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4034}
4035
2da8ca82 4036static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4037{
aa9694bb 4038 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4039
791badbd 4040 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4041 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4042 seq_printf(sf, "oom_kill %lu\n",
4043 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4044 return 0;
4045}
4046
182446d0 4047static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4048 struct cftype *cft, u64 val)
4049{
182446d0 4050 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4051
4052 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4053 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4054 return -EINVAL;
4055
c0ff4b85 4056 memcg->oom_kill_disable = val;
4d845ebf 4057 if (!val)
c0ff4b85 4058 memcg_oom_recover(memcg);
3dae7fec 4059
3c11ecf4
KH
4060 return 0;
4061}
4062
52ebea74
TH
4063#ifdef CONFIG_CGROUP_WRITEBACK
4064
841710aa
TH
4065static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4066{
4067 return wb_domain_init(&memcg->cgwb_domain, gfp);
4068}
4069
4070static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4071{
4072 wb_domain_exit(&memcg->cgwb_domain);
4073}
4074
2529bb3a
TH
4075static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4076{
4077 wb_domain_size_changed(&memcg->cgwb_domain);
4078}
4079
841710aa
TH
4080struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4081{
4082 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4083
4084 if (!memcg->css.parent)
4085 return NULL;
4086
4087 return &memcg->cgwb_domain;
4088}
4089
0b3d6e6f
GT
4090/*
4091 * idx can be of type enum memcg_stat_item or node_stat_item.
4092 * Keep in sync with memcg_exact_page().
4093 */
4094static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4095{
871789d4 4096 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4097 int cpu;
4098
4099 for_each_online_cpu(cpu)
871789d4 4100 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4101 if (x < 0)
4102 x = 0;
4103 return x;
4104}
4105
c2aa723a
TH
4106/**
4107 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4108 * @wb: bdi_writeback in question
c5edf9cd
TH
4109 * @pfilepages: out parameter for number of file pages
4110 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4111 * @pdirty: out parameter for number of dirty pages
4112 * @pwriteback: out parameter for number of pages under writeback
4113 *
c5edf9cd
TH
4114 * Determine the numbers of file, headroom, dirty, and writeback pages in
4115 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4116 * is a bit more involved.
c2aa723a 4117 *
c5edf9cd
TH
4118 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4119 * headroom is calculated as the lowest headroom of itself and the
4120 * ancestors. Note that this doesn't consider the actual amount of
4121 * available memory in the system. The caller should further cap
4122 * *@pheadroom accordingly.
c2aa723a 4123 */
c5edf9cd
TH
4124void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4125 unsigned long *pheadroom, unsigned long *pdirty,
4126 unsigned long *pwriteback)
c2aa723a
TH
4127{
4128 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4129 struct mem_cgroup *parent;
c2aa723a 4130
0b3d6e6f 4131 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4132
4133 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4134 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4135 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4136 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4137 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4138
c2aa723a 4139 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4140 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4141 unsigned long used = page_counter_read(&memcg->memory);
4142
c5edf9cd 4143 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4144 memcg = parent;
4145 }
c2aa723a
TH
4146}
4147
841710aa
TH
4148#else /* CONFIG_CGROUP_WRITEBACK */
4149
4150static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4151{
4152 return 0;
4153}
4154
4155static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4156{
4157}
4158
2529bb3a
TH
4159static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4160{
4161}
4162
52ebea74
TH
4163#endif /* CONFIG_CGROUP_WRITEBACK */
4164
3bc942f3
TH
4165/*
4166 * DO NOT USE IN NEW FILES.
4167 *
4168 * "cgroup.event_control" implementation.
4169 *
4170 * This is way over-engineered. It tries to support fully configurable
4171 * events for each user. Such level of flexibility is completely
4172 * unnecessary especially in the light of the planned unified hierarchy.
4173 *
4174 * Please deprecate this and replace with something simpler if at all
4175 * possible.
4176 */
4177
79bd9814
TH
4178/*
4179 * Unregister event and free resources.
4180 *
4181 * Gets called from workqueue.
4182 */
3bc942f3 4183static void memcg_event_remove(struct work_struct *work)
79bd9814 4184{
3bc942f3
TH
4185 struct mem_cgroup_event *event =
4186 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4187 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4188
4189 remove_wait_queue(event->wqh, &event->wait);
4190
59b6f873 4191 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4192
4193 /* Notify userspace the event is going away. */
4194 eventfd_signal(event->eventfd, 1);
4195
4196 eventfd_ctx_put(event->eventfd);
4197 kfree(event);
59b6f873 4198 css_put(&memcg->css);
79bd9814
TH
4199}
4200
4201/*
a9a08845 4202 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4203 *
4204 * Called with wqh->lock held and interrupts disabled.
4205 */
ac6424b9 4206static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4207 int sync, void *key)
79bd9814 4208{
3bc942f3
TH
4209 struct mem_cgroup_event *event =
4210 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4211 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4212 __poll_t flags = key_to_poll(key);
79bd9814 4213
a9a08845 4214 if (flags & EPOLLHUP) {
79bd9814
TH
4215 /*
4216 * If the event has been detached at cgroup removal, we
4217 * can simply return knowing the other side will cleanup
4218 * for us.
4219 *
4220 * We can't race against event freeing since the other
4221 * side will require wqh->lock via remove_wait_queue(),
4222 * which we hold.
4223 */
fba94807 4224 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4225 if (!list_empty(&event->list)) {
4226 list_del_init(&event->list);
4227 /*
4228 * We are in atomic context, but cgroup_event_remove()
4229 * may sleep, so we have to call it in workqueue.
4230 */
4231 schedule_work(&event->remove);
4232 }
fba94807 4233 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4234 }
4235
4236 return 0;
4237}
4238
3bc942f3 4239static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4240 wait_queue_head_t *wqh, poll_table *pt)
4241{
3bc942f3
TH
4242 struct mem_cgroup_event *event =
4243 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4244
4245 event->wqh = wqh;
4246 add_wait_queue(wqh, &event->wait);
4247}
4248
4249/*
3bc942f3
TH
4250 * DO NOT USE IN NEW FILES.
4251 *
79bd9814
TH
4252 * Parse input and register new cgroup event handler.
4253 *
4254 * Input must be in format '<event_fd> <control_fd> <args>'.
4255 * Interpretation of args is defined by control file implementation.
4256 */
451af504
TH
4257static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4258 char *buf, size_t nbytes, loff_t off)
79bd9814 4259{
451af504 4260 struct cgroup_subsys_state *css = of_css(of);
fba94807 4261 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4262 struct mem_cgroup_event *event;
79bd9814
TH
4263 struct cgroup_subsys_state *cfile_css;
4264 unsigned int efd, cfd;
4265 struct fd efile;
4266 struct fd cfile;
fba94807 4267 const char *name;
79bd9814
TH
4268 char *endp;
4269 int ret;
4270
451af504
TH
4271 buf = strstrip(buf);
4272
4273 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4274 if (*endp != ' ')
4275 return -EINVAL;
451af504 4276 buf = endp + 1;
79bd9814 4277
451af504 4278 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4279 if ((*endp != ' ') && (*endp != '\0'))
4280 return -EINVAL;
451af504 4281 buf = endp + 1;
79bd9814
TH
4282
4283 event = kzalloc(sizeof(*event), GFP_KERNEL);
4284 if (!event)
4285 return -ENOMEM;
4286
59b6f873 4287 event->memcg = memcg;
79bd9814 4288 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4289 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4290 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4291 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4292
4293 efile = fdget(efd);
4294 if (!efile.file) {
4295 ret = -EBADF;
4296 goto out_kfree;
4297 }
4298
4299 event->eventfd = eventfd_ctx_fileget(efile.file);
4300 if (IS_ERR(event->eventfd)) {
4301 ret = PTR_ERR(event->eventfd);
4302 goto out_put_efile;
4303 }
4304
4305 cfile = fdget(cfd);
4306 if (!cfile.file) {
4307 ret = -EBADF;
4308 goto out_put_eventfd;
4309 }
4310
4311 /* the process need read permission on control file */
4312 /* AV: shouldn't we check that it's been opened for read instead? */
4313 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4314 if (ret < 0)
4315 goto out_put_cfile;
4316
fba94807
TH
4317 /*
4318 * Determine the event callbacks and set them in @event. This used
4319 * to be done via struct cftype but cgroup core no longer knows
4320 * about these events. The following is crude but the whole thing
4321 * is for compatibility anyway.
3bc942f3
TH
4322 *
4323 * DO NOT ADD NEW FILES.
fba94807 4324 */
b583043e 4325 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4326
4327 if (!strcmp(name, "memory.usage_in_bytes")) {
4328 event->register_event = mem_cgroup_usage_register_event;
4329 event->unregister_event = mem_cgroup_usage_unregister_event;
4330 } else if (!strcmp(name, "memory.oom_control")) {
4331 event->register_event = mem_cgroup_oom_register_event;
4332 event->unregister_event = mem_cgroup_oom_unregister_event;
4333 } else if (!strcmp(name, "memory.pressure_level")) {
4334 event->register_event = vmpressure_register_event;
4335 event->unregister_event = vmpressure_unregister_event;
4336 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4337 event->register_event = memsw_cgroup_usage_register_event;
4338 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4339 } else {
4340 ret = -EINVAL;
4341 goto out_put_cfile;
4342 }
4343
79bd9814 4344 /*
b5557c4c
TH
4345 * Verify @cfile should belong to @css. Also, remaining events are
4346 * automatically removed on cgroup destruction but the removal is
4347 * asynchronous, so take an extra ref on @css.
79bd9814 4348 */
b583043e 4349 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4350 &memory_cgrp_subsys);
79bd9814 4351 ret = -EINVAL;
5a17f543 4352 if (IS_ERR(cfile_css))
79bd9814 4353 goto out_put_cfile;
5a17f543
TH
4354 if (cfile_css != css) {
4355 css_put(cfile_css);
79bd9814 4356 goto out_put_cfile;
5a17f543 4357 }
79bd9814 4358
451af504 4359 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4360 if (ret)
4361 goto out_put_css;
4362
9965ed17 4363 vfs_poll(efile.file, &event->pt);
79bd9814 4364
fba94807
TH
4365 spin_lock(&memcg->event_list_lock);
4366 list_add(&event->list, &memcg->event_list);
4367 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4368
4369 fdput(cfile);
4370 fdput(efile);
4371
451af504 4372 return nbytes;
79bd9814
TH
4373
4374out_put_css:
b5557c4c 4375 css_put(css);
79bd9814
TH
4376out_put_cfile:
4377 fdput(cfile);
4378out_put_eventfd:
4379 eventfd_ctx_put(event->eventfd);
4380out_put_efile:
4381 fdput(efile);
4382out_kfree:
4383 kfree(event);
4384
4385 return ret;
4386}
4387
241994ed 4388static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4389 {
0eea1030 4390 .name = "usage_in_bytes",
8c7c6e34 4391 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4392 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4393 },
c84872e1
PE
4394 {
4395 .name = "max_usage_in_bytes",
8c7c6e34 4396 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4397 .write = mem_cgroup_reset,
791badbd 4398 .read_u64 = mem_cgroup_read_u64,
c84872e1 4399 },
8cdea7c0 4400 {
0eea1030 4401 .name = "limit_in_bytes",
8c7c6e34 4402 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4403 .write = mem_cgroup_write,
791badbd 4404 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4405 },
296c81d8
BS
4406 {
4407 .name = "soft_limit_in_bytes",
4408 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4409 .write = mem_cgroup_write,
791badbd 4410 .read_u64 = mem_cgroup_read_u64,
296c81d8 4411 },
8cdea7c0
BS
4412 {
4413 .name = "failcnt",
8c7c6e34 4414 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4415 .write = mem_cgroup_reset,
791badbd 4416 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4417 },
d2ceb9b7
KH
4418 {
4419 .name = "stat",
2da8ca82 4420 .seq_show = memcg_stat_show,
d2ceb9b7 4421 },
c1e862c1
KH
4422 {
4423 .name = "force_empty",
6770c64e 4424 .write = mem_cgroup_force_empty_write,
c1e862c1 4425 },
18f59ea7
BS
4426 {
4427 .name = "use_hierarchy",
4428 .write_u64 = mem_cgroup_hierarchy_write,
4429 .read_u64 = mem_cgroup_hierarchy_read,
4430 },
79bd9814 4431 {
3bc942f3 4432 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4433 .write = memcg_write_event_control,
7dbdb199 4434 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4435 },
a7885eb8
KM
4436 {
4437 .name = "swappiness",
4438 .read_u64 = mem_cgroup_swappiness_read,
4439 .write_u64 = mem_cgroup_swappiness_write,
4440 },
7dc74be0
DN
4441 {
4442 .name = "move_charge_at_immigrate",
4443 .read_u64 = mem_cgroup_move_charge_read,
4444 .write_u64 = mem_cgroup_move_charge_write,
4445 },
9490ff27
KH
4446 {
4447 .name = "oom_control",
2da8ca82 4448 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4449 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4450 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4451 },
70ddf637
AV
4452 {
4453 .name = "pressure_level",
70ddf637 4454 },
406eb0c9
YH
4455#ifdef CONFIG_NUMA
4456 {
4457 .name = "numa_stat",
2da8ca82 4458 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4459 },
4460#endif
510fc4e1
GC
4461 {
4462 .name = "kmem.limit_in_bytes",
4463 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4464 .write = mem_cgroup_write,
791badbd 4465 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4466 },
4467 {
4468 .name = "kmem.usage_in_bytes",
4469 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4470 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4471 },
4472 {
4473 .name = "kmem.failcnt",
4474 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4475 .write = mem_cgroup_reset,
791badbd 4476 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4477 },
4478 {
4479 .name = "kmem.max_usage_in_bytes",
4480 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4481 .write = mem_cgroup_reset,
791badbd 4482 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4483 },
5b365771 4484#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4485 {
4486 .name = "kmem.slabinfo",
bc2791f8
TH
4487 .seq_start = memcg_slab_start,
4488 .seq_next = memcg_slab_next,
4489 .seq_stop = memcg_slab_stop,
b047501c 4490 .seq_show = memcg_slab_show,
749c5415
GC
4491 },
4492#endif
d55f90bf
VD
4493 {
4494 .name = "kmem.tcp.limit_in_bytes",
4495 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4496 .write = mem_cgroup_write,
4497 .read_u64 = mem_cgroup_read_u64,
4498 },
4499 {
4500 .name = "kmem.tcp.usage_in_bytes",
4501 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4502 .read_u64 = mem_cgroup_read_u64,
4503 },
4504 {
4505 .name = "kmem.tcp.failcnt",
4506 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4507 .write = mem_cgroup_reset,
4508 .read_u64 = mem_cgroup_read_u64,
4509 },
4510 {
4511 .name = "kmem.tcp.max_usage_in_bytes",
4512 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4513 .write = mem_cgroup_reset,
4514 .read_u64 = mem_cgroup_read_u64,
4515 },
6bc10349 4516 { }, /* terminate */
af36f906 4517};
8c7c6e34 4518
73f576c0
JW
4519/*
4520 * Private memory cgroup IDR
4521 *
4522 * Swap-out records and page cache shadow entries need to store memcg
4523 * references in constrained space, so we maintain an ID space that is
4524 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4525 * memory-controlled cgroups to 64k.
4526 *
4527 * However, there usually are many references to the oflline CSS after
4528 * the cgroup has been destroyed, such as page cache or reclaimable
4529 * slab objects, that don't need to hang on to the ID. We want to keep
4530 * those dead CSS from occupying IDs, or we might quickly exhaust the
4531 * relatively small ID space and prevent the creation of new cgroups
4532 * even when there are much fewer than 64k cgroups - possibly none.
4533 *
4534 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4535 * be freed and recycled when it's no longer needed, which is usually
4536 * when the CSS is offlined.
4537 *
4538 * The only exception to that are records of swapped out tmpfs/shmem
4539 * pages that need to be attributed to live ancestors on swapin. But
4540 * those references are manageable from userspace.
4541 */
4542
4543static DEFINE_IDR(mem_cgroup_idr);
4544
7e97de0b
KT
4545static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4546{
4547 if (memcg->id.id > 0) {
4548 idr_remove(&mem_cgroup_idr, memcg->id.id);
4549 memcg->id.id = 0;
4550 }
4551}
4552
615d66c3 4553static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4554{
1c2d479a 4555 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4556}
4557
615d66c3 4558static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4559{
1c2d479a 4560 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4561 mem_cgroup_id_remove(memcg);
73f576c0
JW
4562
4563 /* Memcg ID pins CSS */
4564 css_put(&memcg->css);
4565 }
4566}
4567
615d66c3
VD
4568static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4569{
4570 mem_cgroup_id_get_many(memcg, 1);
4571}
4572
4573static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4574{
4575 mem_cgroup_id_put_many(memcg, 1);
4576}
4577
73f576c0
JW
4578/**
4579 * mem_cgroup_from_id - look up a memcg from a memcg id
4580 * @id: the memcg id to look up
4581 *
4582 * Caller must hold rcu_read_lock().
4583 */
4584struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4585{
4586 WARN_ON_ONCE(!rcu_read_lock_held());
4587 return idr_find(&mem_cgroup_idr, id);
4588}
4589
ef8f2327 4590static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4591{
4592 struct mem_cgroup_per_node *pn;
ef8f2327 4593 int tmp = node;
1ecaab2b
KH
4594 /*
4595 * This routine is called against possible nodes.
4596 * But it's BUG to call kmalloc() against offline node.
4597 *
4598 * TODO: this routine can waste much memory for nodes which will
4599 * never be onlined. It's better to use memory hotplug callback
4600 * function.
4601 */
41e3355d
KH
4602 if (!node_state(node, N_NORMAL_MEMORY))
4603 tmp = -1;
17295c88 4604 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4605 if (!pn)
4606 return 1;
1ecaab2b 4607
815744d7
JW
4608 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4609 if (!pn->lruvec_stat_local) {
4610 kfree(pn);
4611 return 1;
4612 }
4613
a983b5eb
JW
4614 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4615 if (!pn->lruvec_stat_cpu) {
815744d7 4616 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4617 kfree(pn);
4618 return 1;
4619 }
4620
ef8f2327
MG
4621 lruvec_init(&pn->lruvec);
4622 pn->usage_in_excess = 0;
4623 pn->on_tree = false;
4624 pn->memcg = memcg;
4625
54f72fe0 4626 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4627 return 0;
4628}
4629
ef8f2327 4630static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4631{
00f3ca2c
JW
4632 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4633
4eaf431f
MH
4634 if (!pn)
4635 return;
4636
a983b5eb 4637 free_percpu(pn->lruvec_stat_cpu);
815744d7 4638 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4639 kfree(pn);
1ecaab2b
KH
4640}
4641
40e952f9 4642static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4643{
c8b2a36f 4644 int node;
59927fb9 4645
c8b2a36f 4646 for_each_node(node)
ef8f2327 4647 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4648 free_percpu(memcg->vmstats_percpu);
815744d7 4649 free_percpu(memcg->vmstats_local);
8ff69e2c 4650 kfree(memcg);
59927fb9 4651}
3afe36b1 4652
40e952f9
TE
4653static void mem_cgroup_free(struct mem_cgroup *memcg)
4654{
4655 memcg_wb_domain_exit(memcg);
4656 __mem_cgroup_free(memcg);
4657}
4658
0b8f73e1 4659static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4660{
d142e3e6 4661 struct mem_cgroup *memcg;
b9726c26 4662 unsigned int size;
6d12e2d8 4663 int node;
8cdea7c0 4664
0b8f73e1
JW
4665 size = sizeof(struct mem_cgroup);
4666 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4667
4668 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4669 if (!memcg)
0b8f73e1
JW
4670 return NULL;
4671
73f576c0
JW
4672 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4673 1, MEM_CGROUP_ID_MAX,
4674 GFP_KERNEL);
4675 if (memcg->id.id < 0)
4676 goto fail;
4677
815744d7
JW
4678 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4679 if (!memcg->vmstats_local)
4680 goto fail;
4681
871789d4
CD
4682 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4683 if (!memcg->vmstats_percpu)
0b8f73e1 4684 goto fail;
78fb7466 4685
3ed28fa1 4686 for_each_node(node)
ef8f2327 4687 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4688 goto fail;
f64c3f54 4689
0b8f73e1
JW
4690 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4691 goto fail;
28dbc4b6 4692
f7e1cb6e 4693 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4694 memcg->last_scanned_node = MAX_NUMNODES;
4695 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4696 mutex_init(&memcg->thresholds_lock);
4697 spin_lock_init(&memcg->move_lock);
70ddf637 4698 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4699 INIT_LIST_HEAD(&memcg->event_list);
4700 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4701 memcg->socket_pressure = jiffies;
84c07d11 4702#ifdef CONFIG_MEMCG_KMEM
900a38f0 4703 memcg->kmemcg_id = -1;
900a38f0 4704#endif
52ebea74
TH
4705#ifdef CONFIG_CGROUP_WRITEBACK
4706 INIT_LIST_HEAD(&memcg->cgwb_list);
4707#endif
73f576c0 4708 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4709 return memcg;
4710fail:
7e97de0b 4711 mem_cgroup_id_remove(memcg);
40e952f9 4712 __mem_cgroup_free(memcg);
0b8f73e1 4713 return NULL;
d142e3e6
GC
4714}
4715
0b8f73e1
JW
4716static struct cgroup_subsys_state * __ref
4717mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4718{
0b8f73e1
JW
4719 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4720 struct mem_cgroup *memcg;
4721 long error = -ENOMEM;
d142e3e6 4722
0b8f73e1
JW
4723 memcg = mem_cgroup_alloc();
4724 if (!memcg)
4725 return ERR_PTR(error);
d142e3e6 4726
0b8f73e1
JW
4727 memcg->high = PAGE_COUNTER_MAX;
4728 memcg->soft_limit = PAGE_COUNTER_MAX;
4729 if (parent) {
4730 memcg->swappiness = mem_cgroup_swappiness(parent);
4731 memcg->oom_kill_disable = parent->oom_kill_disable;
4732 }
4733 if (parent && parent->use_hierarchy) {
4734 memcg->use_hierarchy = true;
3e32cb2e 4735 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4736 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4737 page_counter_init(&memcg->memsw, &parent->memsw);
4738 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4739 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4740 } else {
3e32cb2e 4741 page_counter_init(&memcg->memory, NULL);
37e84351 4742 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4743 page_counter_init(&memcg->memsw, NULL);
4744 page_counter_init(&memcg->kmem, NULL);
0db15298 4745 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4746 /*
4747 * Deeper hierachy with use_hierarchy == false doesn't make
4748 * much sense so let cgroup subsystem know about this
4749 * unfortunate state in our controller.
4750 */
d142e3e6 4751 if (parent != root_mem_cgroup)
073219e9 4752 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4753 }
d6441637 4754
0b8f73e1
JW
4755 /* The following stuff does not apply to the root */
4756 if (!parent) {
fb2f2b0a
RG
4757#ifdef CONFIG_MEMCG_KMEM
4758 INIT_LIST_HEAD(&memcg->kmem_caches);
4759#endif
0b8f73e1
JW
4760 root_mem_cgroup = memcg;
4761 return &memcg->css;
4762 }
4763
b313aeee 4764 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4765 if (error)
4766 goto fail;
127424c8 4767
f7e1cb6e 4768 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4769 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4770
0b8f73e1
JW
4771 return &memcg->css;
4772fail:
7e97de0b 4773 mem_cgroup_id_remove(memcg);
0b8f73e1 4774 mem_cgroup_free(memcg);
ea3a9645 4775 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4776}
4777
73f576c0 4778static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4779{
58fa2a55
VD
4780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4781
0a4465d3
KT
4782 /*
4783 * A memcg must be visible for memcg_expand_shrinker_maps()
4784 * by the time the maps are allocated. So, we allocate maps
4785 * here, when for_each_mem_cgroup() can't skip it.
4786 */
4787 if (memcg_alloc_shrinker_maps(memcg)) {
4788 mem_cgroup_id_remove(memcg);
4789 return -ENOMEM;
4790 }
4791
73f576c0 4792 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 4793 refcount_set(&memcg->id.ref, 1);
73f576c0 4794 css_get(css);
2f7dd7a4 4795 return 0;
8cdea7c0
BS
4796}
4797
eb95419b 4798static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4799{
eb95419b 4800 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4801 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4802
4803 /*
4804 * Unregister events and notify userspace.
4805 * Notify userspace about cgroup removing only after rmdir of cgroup
4806 * directory to avoid race between userspace and kernelspace.
4807 */
fba94807
TH
4808 spin_lock(&memcg->event_list_lock);
4809 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4810 list_del_init(&event->list);
4811 schedule_work(&event->remove);
4812 }
fba94807 4813 spin_unlock(&memcg->event_list_lock);
ec64f515 4814
bf8d5d52 4815 page_counter_set_min(&memcg->memory, 0);
23067153 4816 page_counter_set_low(&memcg->memory, 0);
63677c74 4817
567e9ab2 4818 memcg_offline_kmem(memcg);
52ebea74 4819 wb_memcg_offline(memcg);
73f576c0 4820
591edfb1
RG
4821 drain_all_stock(memcg);
4822
73f576c0 4823 mem_cgroup_id_put(memcg);
df878fb0
KH
4824}
4825
6df38689
VD
4826static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4827{
4828 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4829
4830 invalidate_reclaim_iterators(memcg);
4831}
4832
eb95419b 4833static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4834{
eb95419b 4835 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4836
f7e1cb6e 4837 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4838 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4839
0db15298 4840 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4841 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4842
0b8f73e1
JW
4843 vmpressure_cleanup(&memcg->vmpressure);
4844 cancel_work_sync(&memcg->high_work);
4845 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4846 memcg_free_shrinker_maps(memcg);
d886f4e4 4847 memcg_free_kmem(memcg);
0b8f73e1 4848 mem_cgroup_free(memcg);
8cdea7c0
BS
4849}
4850
1ced953b
TH
4851/**
4852 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4853 * @css: the target css
4854 *
4855 * Reset the states of the mem_cgroup associated with @css. This is
4856 * invoked when the userland requests disabling on the default hierarchy
4857 * but the memcg is pinned through dependency. The memcg should stop
4858 * applying policies and should revert to the vanilla state as it may be
4859 * made visible again.
4860 *
4861 * The current implementation only resets the essential configurations.
4862 * This needs to be expanded to cover all the visible parts.
4863 */
4864static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4865{
4866 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4867
bbec2e15
RG
4868 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4869 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4870 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4871 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4872 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4873 page_counter_set_min(&memcg->memory, 0);
23067153 4874 page_counter_set_low(&memcg->memory, 0);
241994ed 4875 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4876 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4877 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4878}
4879
02491447 4880#ifdef CONFIG_MMU
7dc74be0 4881/* Handlers for move charge at task migration. */
854ffa8d 4882static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4883{
05b84301 4884 int ret;
9476db97 4885
d0164adc
MG
4886 /* Try a single bulk charge without reclaim first, kswapd may wake */
4887 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4888 if (!ret) {
854ffa8d 4889 mc.precharge += count;
854ffa8d
DN
4890 return ret;
4891 }
9476db97 4892
3674534b 4893 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4894 while (count--) {
3674534b 4895 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4896 if (ret)
38c5d72f 4897 return ret;
854ffa8d 4898 mc.precharge++;
9476db97 4899 cond_resched();
854ffa8d 4900 }
9476db97 4901 return 0;
4ffef5fe
DN
4902}
4903
4ffef5fe
DN
4904union mc_target {
4905 struct page *page;
02491447 4906 swp_entry_t ent;
4ffef5fe
DN
4907};
4908
4ffef5fe 4909enum mc_target_type {
8d32ff84 4910 MC_TARGET_NONE = 0,
4ffef5fe 4911 MC_TARGET_PAGE,
02491447 4912 MC_TARGET_SWAP,
c733a828 4913 MC_TARGET_DEVICE,
4ffef5fe
DN
4914};
4915
90254a65
DN
4916static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4917 unsigned long addr, pte_t ptent)
4ffef5fe 4918{
25b2995a 4919 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4920
90254a65
DN
4921 if (!page || !page_mapped(page))
4922 return NULL;
4923 if (PageAnon(page)) {
1dfab5ab 4924 if (!(mc.flags & MOVE_ANON))
90254a65 4925 return NULL;
1dfab5ab
JW
4926 } else {
4927 if (!(mc.flags & MOVE_FILE))
4928 return NULL;
4929 }
90254a65
DN
4930 if (!get_page_unless_zero(page))
4931 return NULL;
4932
4933 return page;
4934}
4935
c733a828 4936#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4937static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4938 pte_t ptent, swp_entry_t *entry)
90254a65 4939{
90254a65
DN
4940 struct page *page = NULL;
4941 swp_entry_t ent = pte_to_swp_entry(ptent);
4942
1dfab5ab 4943 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4944 return NULL;
c733a828
JG
4945
4946 /*
4947 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4948 * a device and because they are not accessible by CPU they are store
4949 * as special swap entry in the CPU page table.
4950 */
4951 if (is_device_private_entry(ent)) {
4952 page = device_private_entry_to_page(ent);
4953 /*
4954 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4955 * a refcount of 1 when free (unlike normal page)
4956 */
4957 if (!page_ref_add_unless(page, 1, 1))
4958 return NULL;
4959 return page;
4960 }
4961
4b91355e
KH
4962 /*
4963 * Because lookup_swap_cache() updates some statistics counter,
4964 * we call find_get_page() with swapper_space directly.
4965 */
f6ab1f7f 4966 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4967 if (do_memsw_account())
90254a65
DN
4968 entry->val = ent.val;
4969
4970 return page;
4971}
4b91355e
KH
4972#else
4973static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4974 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4975{
4976 return NULL;
4977}
4978#endif
90254a65 4979
87946a72
DN
4980static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4981 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4982{
4983 struct page *page = NULL;
87946a72
DN
4984 struct address_space *mapping;
4985 pgoff_t pgoff;
4986
4987 if (!vma->vm_file) /* anonymous vma */
4988 return NULL;
1dfab5ab 4989 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4990 return NULL;
4991
87946a72 4992 mapping = vma->vm_file->f_mapping;
0661a336 4993 pgoff = linear_page_index(vma, addr);
87946a72
DN
4994
4995 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4996#ifdef CONFIG_SWAP
4997 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4998 if (shmem_mapping(mapping)) {
4999 page = find_get_entry(mapping, pgoff);
3159f943 5000 if (xa_is_value(page)) {
139b6a6f 5001 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5002 if (do_memsw_account())
139b6a6f 5003 *entry = swp;
f6ab1f7f
HY
5004 page = find_get_page(swap_address_space(swp),
5005 swp_offset(swp));
139b6a6f
JW
5006 }
5007 } else
5008 page = find_get_page(mapping, pgoff);
5009#else
5010 page = find_get_page(mapping, pgoff);
aa3b1895 5011#endif
87946a72
DN
5012 return page;
5013}
5014
b1b0deab
CG
5015/**
5016 * mem_cgroup_move_account - move account of the page
5017 * @page: the page
25843c2b 5018 * @compound: charge the page as compound or small page
b1b0deab
CG
5019 * @from: mem_cgroup which the page is moved from.
5020 * @to: mem_cgroup which the page is moved to. @from != @to.
5021 *
3ac808fd 5022 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5023 *
5024 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5025 * from old cgroup.
5026 */
5027static int mem_cgroup_move_account(struct page *page,
f627c2f5 5028 bool compound,
b1b0deab
CG
5029 struct mem_cgroup *from,
5030 struct mem_cgroup *to)
5031{
5032 unsigned long flags;
f627c2f5 5033 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5034 int ret;
c4843a75 5035 bool anon;
b1b0deab
CG
5036
5037 VM_BUG_ON(from == to);
5038 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5039 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5040
5041 /*
6a93ca8f 5042 * Prevent mem_cgroup_migrate() from looking at
45637bab 5043 * page->mem_cgroup of its source page while we change it.
b1b0deab 5044 */
f627c2f5 5045 ret = -EBUSY;
b1b0deab
CG
5046 if (!trylock_page(page))
5047 goto out;
5048
5049 ret = -EINVAL;
5050 if (page->mem_cgroup != from)
5051 goto out_unlock;
5052
c4843a75
GT
5053 anon = PageAnon(page);
5054
b1b0deab
CG
5055 spin_lock_irqsave(&from->move_lock, flags);
5056
c4843a75 5057 if (!anon && page_mapped(page)) {
c9019e9b
JW
5058 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5059 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5060 }
5061
c4843a75
GT
5062 /*
5063 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5064 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5065 * So mapping should be stable for dirty pages.
5066 */
5067 if (!anon && PageDirty(page)) {
5068 struct address_space *mapping = page_mapping(page);
5069
5070 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
5071 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5072 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5073 }
5074 }
5075
b1b0deab 5076 if (PageWriteback(page)) {
c9019e9b
JW
5077 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5078 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5079 }
5080
5081 /*
5082 * It is safe to change page->mem_cgroup here because the page
5083 * is referenced, charged, and isolated - we can't race with
5084 * uncharging, charging, migration, or LRU putback.
5085 */
5086
5087 /* caller should have done css_get */
5088 page->mem_cgroup = to;
5089 spin_unlock_irqrestore(&from->move_lock, flags);
5090
5091 ret = 0;
5092
5093 local_irq_disable();
f627c2f5 5094 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5095 memcg_check_events(to, page);
f627c2f5 5096 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5097 memcg_check_events(from, page);
5098 local_irq_enable();
5099out_unlock:
5100 unlock_page(page);
5101out:
5102 return ret;
5103}
5104
7cf7806c
LR
5105/**
5106 * get_mctgt_type - get target type of moving charge
5107 * @vma: the vma the pte to be checked belongs
5108 * @addr: the address corresponding to the pte to be checked
5109 * @ptent: the pte to be checked
5110 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5111 *
5112 * Returns
5113 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5114 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5115 * move charge. if @target is not NULL, the page is stored in target->page
5116 * with extra refcnt got(Callers should handle it).
5117 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5118 * target for charge migration. if @target is not NULL, the entry is stored
5119 * in target->ent.
25b2995a
CH
5120 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5121 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5122 * For now we such page is charge like a regular page would be as for all
5123 * intent and purposes it is just special memory taking the place of a
5124 * regular page.
c733a828
JG
5125 *
5126 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5127 *
5128 * Called with pte lock held.
5129 */
5130
8d32ff84 5131static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5132 unsigned long addr, pte_t ptent, union mc_target *target)
5133{
5134 struct page *page = NULL;
8d32ff84 5135 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5136 swp_entry_t ent = { .val = 0 };
5137
5138 if (pte_present(ptent))
5139 page = mc_handle_present_pte(vma, addr, ptent);
5140 else if (is_swap_pte(ptent))
48406ef8 5141 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5142 else if (pte_none(ptent))
87946a72 5143 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5144
5145 if (!page && !ent.val)
8d32ff84 5146 return ret;
02491447 5147 if (page) {
02491447 5148 /*
0a31bc97 5149 * Do only loose check w/o serialization.
1306a85a 5150 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5151 * not under LRU exclusion.
02491447 5152 */
1306a85a 5153 if (page->mem_cgroup == mc.from) {
02491447 5154 ret = MC_TARGET_PAGE;
25b2995a 5155 if (is_device_private_page(page))
c733a828 5156 ret = MC_TARGET_DEVICE;
02491447
DN
5157 if (target)
5158 target->page = page;
5159 }
5160 if (!ret || !target)
5161 put_page(page);
5162 }
3e14a57b
HY
5163 /*
5164 * There is a swap entry and a page doesn't exist or isn't charged.
5165 * But we cannot move a tail-page in a THP.
5166 */
5167 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5168 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5169 ret = MC_TARGET_SWAP;
5170 if (target)
5171 target->ent = ent;
4ffef5fe 5172 }
4ffef5fe
DN
5173 return ret;
5174}
5175
12724850
NH
5176#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5177/*
d6810d73
HY
5178 * We don't consider PMD mapped swapping or file mapped pages because THP does
5179 * not support them for now.
12724850
NH
5180 * Caller should make sure that pmd_trans_huge(pmd) is true.
5181 */
5182static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5183 unsigned long addr, pmd_t pmd, union mc_target *target)
5184{
5185 struct page *page = NULL;
12724850
NH
5186 enum mc_target_type ret = MC_TARGET_NONE;
5187
84c3fc4e
ZY
5188 if (unlikely(is_swap_pmd(pmd))) {
5189 VM_BUG_ON(thp_migration_supported() &&
5190 !is_pmd_migration_entry(pmd));
5191 return ret;
5192 }
12724850 5193 page = pmd_page(pmd);
309381fe 5194 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5195 if (!(mc.flags & MOVE_ANON))
12724850 5196 return ret;
1306a85a 5197 if (page->mem_cgroup == mc.from) {
12724850
NH
5198 ret = MC_TARGET_PAGE;
5199 if (target) {
5200 get_page(page);
5201 target->page = page;
5202 }
5203 }
5204 return ret;
5205}
5206#else
5207static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5208 unsigned long addr, pmd_t pmd, union mc_target *target)
5209{
5210 return MC_TARGET_NONE;
5211}
5212#endif
5213
4ffef5fe
DN
5214static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5215 unsigned long addr, unsigned long end,
5216 struct mm_walk *walk)
5217{
26bcd64a 5218 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5219 pte_t *pte;
5220 spinlock_t *ptl;
5221
b6ec57f4
KS
5222 ptl = pmd_trans_huge_lock(pmd, vma);
5223 if (ptl) {
c733a828
JG
5224 /*
5225 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5226 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5227 * this might change.
c733a828 5228 */
12724850
NH
5229 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5230 mc.precharge += HPAGE_PMD_NR;
bf929152 5231 spin_unlock(ptl);
1a5a9906 5232 return 0;
12724850 5233 }
03319327 5234
45f83cef
AA
5235 if (pmd_trans_unstable(pmd))
5236 return 0;
4ffef5fe
DN
5237 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5238 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5239 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5240 mc.precharge++; /* increment precharge temporarily */
5241 pte_unmap_unlock(pte - 1, ptl);
5242 cond_resched();
5243
7dc74be0
DN
5244 return 0;
5245}
5246
4ffef5fe
DN
5247static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5248{
5249 unsigned long precharge;
4ffef5fe 5250
26bcd64a
NH
5251 struct mm_walk mem_cgroup_count_precharge_walk = {
5252 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5253 .mm = mm,
5254 };
dfe076b0 5255 down_read(&mm->mmap_sem);
0247f3f4
JM
5256 walk_page_range(0, mm->highest_vm_end,
5257 &mem_cgroup_count_precharge_walk);
dfe076b0 5258 up_read(&mm->mmap_sem);
4ffef5fe
DN
5259
5260 precharge = mc.precharge;
5261 mc.precharge = 0;
5262
5263 return precharge;
5264}
5265
4ffef5fe
DN
5266static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5267{
dfe076b0
DN
5268 unsigned long precharge = mem_cgroup_count_precharge(mm);
5269
5270 VM_BUG_ON(mc.moving_task);
5271 mc.moving_task = current;
5272 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5273}
5274
dfe076b0
DN
5275/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5276static void __mem_cgroup_clear_mc(void)
4ffef5fe 5277{
2bd9bb20
KH
5278 struct mem_cgroup *from = mc.from;
5279 struct mem_cgroup *to = mc.to;
5280
4ffef5fe 5281 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5282 if (mc.precharge) {
00501b53 5283 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5284 mc.precharge = 0;
5285 }
5286 /*
5287 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5288 * we must uncharge here.
5289 */
5290 if (mc.moved_charge) {
00501b53 5291 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5292 mc.moved_charge = 0;
4ffef5fe 5293 }
483c30b5
DN
5294 /* we must fixup refcnts and charges */
5295 if (mc.moved_swap) {
483c30b5 5296 /* uncharge swap account from the old cgroup */
ce00a967 5297 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5298 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5299
615d66c3
VD
5300 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5301
05b84301 5302 /*
3e32cb2e
JW
5303 * we charged both to->memory and to->memsw, so we
5304 * should uncharge to->memory.
05b84301 5305 */
ce00a967 5306 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5307 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5308
615d66c3
VD
5309 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5310 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5311
483c30b5
DN
5312 mc.moved_swap = 0;
5313 }
dfe076b0
DN
5314 memcg_oom_recover(from);
5315 memcg_oom_recover(to);
5316 wake_up_all(&mc.waitq);
5317}
5318
5319static void mem_cgroup_clear_mc(void)
5320{
264a0ae1
TH
5321 struct mm_struct *mm = mc.mm;
5322
dfe076b0
DN
5323 /*
5324 * we must clear moving_task before waking up waiters at the end of
5325 * task migration.
5326 */
5327 mc.moving_task = NULL;
5328 __mem_cgroup_clear_mc();
2bd9bb20 5329 spin_lock(&mc.lock);
4ffef5fe
DN
5330 mc.from = NULL;
5331 mc.to = NULL;
264a0ae1 5332 mc.mm = NULL;
2bd9bb20 5333 spin_unlock(&mc.lock);
264a0ae1
TH
5334
5335 mmput(mm);
4ffef5fe
DN
5336}
5337
1f7dd3e5 5338static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5339{
1f7dd3e5 5340 struct cgroup_subsys_state *css;
eed67d75 5341 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5342 struct mem_cgroup *from;
4530eddb 5343 struct task_struct *leader, *p;
9f2115f9 5344 struct mm_struct *mm;
1dfab5ab 5345 unsigned long move_flags;
9f2115f9 5346 int ret = 0;
7dc74be0 5347
1f7dd3e5
TH
5348 /* charge immigration isn't supported on the default hierarchy */
5349 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5350 return 0;
5351
4530eddb
TH
5352 /*
5353 * Multi-process migrations only happen on the default hierarchy
5354 * where charge immigration is not used. Perform charge
5355 * immigration if @tset contains a leader and whine if there are
5356 * multiple.
5357 */
5358 p = NULL;
1f7dd3e5 5359 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5360 WARN_ON_ONCE(p);
5361 p = leader;
1f7dd3e5 5362 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5363 }
5364 if (!p)
5365 return 0;
5366
1f7dd3e5
TH
5367 /*
5368 * We are now commited to this value whatever it is. Changes in this
5369 * tunable will only affect upcoming migrations, not the current one.
5370 * So we need to save it, and keep it going.
5371 */
5372 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5373 if (!move_flags)
5374 return 0;
5375
9f2115f9
TH
5376 from = mem_cgroup_from_task(p);
5377
5378 VM_BUG_ON(from == memcg);
5379
5380 mm = get_task_mm(p);
5381 if (!mm)
5382 return 0;
5383 /* We move charges only when we move a owner of the mm */
5384 if (mm->owner == p) {
5385 VM_BUG_ON(mc.from);
5386 VM_BUG_ON(mc.to);
5387 VM_BUG_ON(mc.precharge);
5388 VM_BUG_ON(mc.moved_charge);
5389 VM_BUG_ON(mc.moved_swap);
5390
5391 spin_lock(&mc.lock);
264a0ae1 5392 mc.mm = mm;
9f2115f9
TH
5393 mc.from = from;
5394 mc.to = memcg;
5395 mc.flags = move_flags;
5396 spin_unlock(&mc.lock);
5397 /* We set mc.moving_task later */
5398
5399 ret = mem_cgroup_precharge_mc(mm);
5400 if (ret)
5401 mem_cgroup_clear_mc();
264a0ae1
TH
5402 } else {
5403 mmput(mm);
7dc74be0
DN
5404 }
5405 return ret;
5406}
5407
1f7dd3e5 5408static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5409{
4e2f245d
JW
5410 if (mc.to)
5411 mem_cgroup_clear_mc();
7dc74be0
DN
5412}
5413
4ffef5fe
DN
5414static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5415 unsigned long addr, unsigned long end,
5416 struct mm_walk *walk)
7dc74be0 5417{
4ffef5fe 5418 int ret = 0;
26bcd64a 5419 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5420 pte_t *pte;
5421 spinlock_t *ptl;
12724850
NH
5422 enum mc_target_type target_type;
5423 union mc_target target;
5424 struct page *page;
4ffef5fe 5425
b6ec57f4
KS
5426 ptl = pmd_trans_huge_lock(pmd, vma);
5427 if (ptl) {
62ade86a 5428 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5429 spin_unlock(ptl);
12724850
NH
5430 return 0;
5431 }
5432 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5433 if (target_type == MC_TARGET_PAGE) {
5434 page = target.page;
5435 if (!isolate_lru_page(page)) {
f627c2f5 5436 if (!mem_cgroup_move_account(page, true,
1306a85a 5437 mc.from, mc.to)) {
12724850
NH
5438 mc.precharge -= HPAGE_PMD_NR;
5439 mc.moved_charge += HPAGE_PMD_NR;
5440 }
5441 putback_lru_page(page);
5442 }
5443 put_page(page);
c733a828
JG
5444 } else if (target_type == MC_TARGET_DEVICE) {
5445 page = target.page;
5446 if (!mem_cgroup_move_account(page, true,
5447 mc.from, mc.to)) {
5448 mc.precharge -= HPAGE_PMD_NR;
5449 mc.moved_charge += HPAGE_PMD_NR;
5450 }
5451 put_page(page);
12724850 5452 }
bf929152 5453 spin_unlock(ptl);
1a5a9906 5454 return 0;
12724850
NH
5455 }
5456
45f83cef
AA
5457 if (pmd_trans_unstable(pmd))
5458 return 0;
4ffef5fe
DN
5459retry:
5460 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5461 for (; addr != end; addr += PAGE_SIZE) {
5462 pte_t ptent = *(pte++);
c733a828 5463 bool device = false;
02491447 5464 swp_entry_t ent;
4ffef5fe
DN
5465
5466 if (!mc.precharge)
5467 break;
5468
8d32ff84 5469 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5470 case MC_TARGET_DEVICE:
5471 device = true;
5472 /* fall through */
4ffef5fe
DN
5473 case MC_TARGET_PAGE:
5474 page = target.page;
53f9263b
KS
5475 /*
5476 * We can have a part of the split pmd here. Moving it
5477 * can be done but it would be too convoluted so simply
5478 * ignore such a partial THP and keep it in original
5479 * memcg. There should be somebody mapping the head.
5480 */
5481 if (PageTransCompound(page))
5482 goto put;
c733a828 5483 if (!device && isolate_lru_page(page))
4ffef5fe 5484 goto put;
f627c2f5
KS
5485 if (!mem_cgroup_move_account(page, false,
5486 mc.from, mc.to)) {
4ffef5fe 5487 mc.precharge--;
854ffa8d
DN
5488 /* we uncharge from mc.from later. */
5489 mc.moved_charge++;
4ffef5fe 5490 }
c733a828
JG
5491 if (!device)
5492 putback_lru_page(page);
8d32ff84 5493put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5494 put_page(page);
5495 break;
02491447
DN
5496 case MC_TARGET_SWAP:
5497 ent = target.ent;
e91cbb42 5498 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5499 mc.precharge--;
483c30b5
DN
5500 /* we fixup refcnts and charges later. */
5501 mc.moved_swap++;
5502 }
02491447 5503 break;
4ffef5fe
DN
5504 default:
5505 break;
5506 }
5507 }
5508 pte_unmap_unlock(pte - 1, ptl);
5509 cond_resched();
5510
5511 if (addr != end) {
5512 /*
5513 * We have consumed all precharges we got in can_attach().
5514 * We try charge one by one, but don't do any additional
5515 * charges to mc.to if we have failed in charge once in attach()
5516 * phase.
5517 */
854ffa8d 5518 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5519 if (!ret)
5520 goto retry;
5521 }
5522
5523 return ret;
5524}
5525
264a0ae1 5526static void mem_cgroup_move_charge(void)
4ffef5fe 5527{
26bcd64a
NH
5528 struct mm_walk mem_cgroup_move_charge_walk = {
5529 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5530 .mm = mc.mm,
26bcd64a 5531 };
4ffef5fe
DN
5532
5533 lru_add_drain_all();
312722cb 5534 /*
81f8c3a4
JW
5535 * Signal lock_page_memcg() to take the memcg's move_lock
5536 * while we're moving its pages to another memcg. Then wait
5537 * for already started RCU-only updates to finish.
312722cb
JW
5538 */
5539 atomic_inc(&mc.from->moving_account);
5540 synchronize_rcu();
dfe076b0 5541retry:
264a0ae1 5542 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5543 /*
5544 * Someone who are holding the mmap_sem might be waiting in
5545 * waitq. So we cancel all extra charges, wake up all waiters,
5546 * and retry. Because we cancel precharges, we might not be able
5547 * to move enough charges, but moving charge is a best-effort
5548 * feature anyway, so it wouldn't be a big problem.
5549 */
5550 __mem_cgroup_clear_mc();
5551 cond_resched();
5552 goto retry;
5553 }
26bcd64a
NH
5554 /*
5555 * When we have consumed all precharges and failed in doing
5556 * additional charge, the page walk just aborts.
5557 */
0247f3f4
JM
5558 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5559
264a0ae1 5560 up_read(&mc.mm->mmap_sem);
312722cb 5561 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5562}
5563
264a0ae1 5564static void mem_cgroup_move_task(void)
67e465a7 5565{
264a0ae1
TH
5566 if (mc.to) {
5567 mem_cgroup_move_charge();
a433658c 5568 mem_cgroup_clear_mc();
264a0ae1 5569 }
67e465a7 5570}
5cfb80a7 5571#else /* !CONFIG_MMU */
1f7dd3e5 5572static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5573{
5574 return 0;
5575}
1f7dd3e5 5576static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5577{
5578}
264a0ae1 5579static void mem_cgroup_move_task(void)
5cfb80a7
DN
5580{
5581}
5582#endif
67e465a7 5583
f00baae7
TH
5584/*
5585 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5586 * to verify whether we're attached to the default hierarchy on each mount
5587 * attempt.
f00baae7 5588 */
eb95419b 5589static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5590{
5591 /*
aa6ec29b 5592 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5593 * guarantees that @root doesn't have any children, so turning it
5594 * on for the root memcg is enough.
5595 */
9e10a130 5596 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5597 root_mem_cgroup->use_hierarchy = true;
5598 else
5599 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5600}
5601
677dc973
CD
5602static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5603{
5604 if (value == PAGE_COUNTER_MAX)
5605 seq_puts(m, "max\n");
5606 else
5607 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5608
5609 return 0;
5610}
5611
241994ed
JW
5612static u64 memory_current_read(struct cgroup_subsys_state *css,
5613 struct cftype *cft)
5614{
f5fc3c5d
JW
5615 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5616
5617 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5618}
5619
bf8d5d52
RG
5620static int memory_min_show(struct seq_file *m, void *v)
5621{
677dc973
CD
5622 return seq_puts_memcg_tunable(m,
5623 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5624}
5625
5626static ssize_t memory_min_write(struct kernfs_open_file *of,
5627 char *buf, size_t nbytes, loff_t off)
5628{
5629 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5630 unsigned long min;
5631 int err;
5632
5633 buf = strstrip(buf);
5634 err = page_counter_memparse(buf, "max", &min);
5635 if (err)
5636 return err;
5637
5638 page_counter_set_min(&memcg->memory, min);
5639
5640 return nbytes;
5641}
5642
241994ed
JW
5643static int memory_low_show(struct seq_file *m, void *v)
5644{
677dc973
CD
5645 return seq_puts_memcg_tunable(m,
5646 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5647}
5648
5649static ssize_t memory_low_write(struct kernfs_open_file *of,
5650 char *buf, size_t nbytes, loff_t off)
5651{
5652 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5653 unsigned long low;
5654 int err;
5655
5656 buf = strstrip(buf);
d2973697 5657 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5658 if (err)
5659 return err;
5660
23067153 5661 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5662
5663 return nbytes;
5664}
5665
5666static int memory_high_show(struct seq_file *m, void *v)
5667{
677dc973 5668 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
5669}
5670
5671static ssize_t memory_high_write(struct kernfs_open_file *of,
5672 char *buf, size_t nbytes, loff_t off)
5673{
5674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5675 unsigned long nr_pages;
241994ed
JW
5676 unsigned long high;
5677 int err;
5678
5679 buf = strstrip(buf);
d2973697 5680 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5681 if (err)
5682 return err;
5683
5684 memcg->high = high;
5685
588083bb
JW
5686 nr_pages = page_counter_read(&memcg->memory);
5687 if (nr_pages > high)
5688 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5689 GFP_KERNEL, true);
5690
2529bb3a 5691 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5692 return nbytes;
5693}
5694
5695static int memory_max_show(struct seq_file *m, void *v)
5696{
677dc973
CD
5697 return seq_puts_memcg_tunable(m,
5698 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
5699}
5700
5701static ssize_t memory_max_write(struct kernfs_open_file *of,
5702 char *buf, size_t nbytes, loff_t off)
5703{
5704 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5705 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5706 bool drained = false;
241994ed
JW
5707 unsigned long max;
5708 int err;
5709
5710 buf = strstrip(buf);
d2973697 5711 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5712 if (err)
5713 return err;
5714
bbec2e15 5715 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5716
5717 for (;;) {
5718 unsigned long nr_pages = page_counter_read(&memcg->memory);
5719
5720 if (nr_pages <= max)
5721 break;
5722
5723 if (signal_pending(current)) {
5724 err = -EINTR;
5725 break;
5726 }
5727
5728 if (!drained) {
5729 drain_all_stock(memcg);
5730 drained = true;
5731 continue;
5732 }
5733
5734 if (nr_reclaims) {
5735 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5736 GFP_KERNEL, true))
5737 nr_reclaims--;
5738 continue;
5739 }
5740
e27be240 5741 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5742 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5743 break;
5744 }
241994ed 5745
2529bb3a 5746 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5747 return nbytes;
5748}
5749
1e577f97
SB
5750static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5751{
5752 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5753 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5754 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5755 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5756 seq_printf(m, "oom_kill %lu\n",
5757 atomic_long_read(&events[MEMCG_OOM_KILL]));
5758}
5759
241994ed
JW
5760static int memory_events_show(struct seq_file *m, void *v)
5761{
aa9694bb 5762 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5763
1e577f97
SB
5764 __memory_events_show(m, memcg->memory_events);
5765 return 0;
5766}
5767
5768static int memory_events_local_show(struct seq_file *m, void *v)
5769{
5770 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5771
1e577f97 5772 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
5773 return 0;
5774}
5775
587d9f72
JW
5776static int memory_stat_show(struct seq_file *m, void *v)
5777{
aa9694bb 5778 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 5779 char *buf;
1ff9e6e1 5780
c8713d0b
JW
5781 buf = memory_stat_format(memcg);
5782 if (!buf)
5783 return -ENOMEM;
5784 seq_puts(m, buf);
5785 kfree(buf);
587d9f72
JW
5786 return 0;
5787}
5788
3d8b38eb
RG
5789static int memory_oom_group_show(struct seq_file *m, void *v)
5790{
aa9694bb 5791 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
5792
5793 seq_printf(m, "%d\n", memcg->oom_group);
5794
5795 return 0;
5796}
5797
5798static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5799 char *buf, size_t nbytes, loff_t off)
5800{
5801 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5802 int ret, oom_group;
5803
5804 buf = strstrip(buf);
5805 if (!buf)
5806 return -EINVAL;
5807
5808 ret = kstrtoint(buf, 0, &oom_group);
5809 if (ret)
5810 return ret;
5811
5812 if (oom_group != 0 && oom_group != 1)
5813 return -EINVAL;
5814
5815 memcg->oom_group = oom_group;
5816
5817 return nbytes;
5818}
5819
241994ed
JW
5820static struct cftype memory_files[] = {
5821 {
5822 .name = "current",
f5fc3c5d 5823 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5824 .read_u64 = memory_current_read,
5825 },
bf8d5d52
RG
5826 {
5827 .name = "min",
5828 .flags = CFTYPE_NOT_ON_ROOT,
5829 .seq_show = memory_min_show,
5830 .write = memory_min_write,
5831 },
241994ed
JW
5832 {
5833 .name = "low",
5834 .flags = CFTYPE_NOT_ON_ROOT,
5835 .seq_show = memory_low_show,
5836 .write = memory_low_write,
5837 },
5838 {
5839 .name = "high",
5840 .flags = CFTYPE_NOT_ON_ROOT,
5841 .seq_show = memory_high_show,
5842 .write = memory_high_write,
5843 },
5844 {
5845 .name = "max",
5846 .flags = CFTYPE_NOT_ON_ROOT,
5847 .seq_show = memory_max_show,
5848 .write = memory_max_write,
5849 },
5850 {
5851 .name = "events",
5852 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5853 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5854 .seq_show = memory_events_show,
5855 },
1e577f97
SB
5856 {
5857 .name = "events.local",
5858 .flags = CFTYPE_NOT_ON_ROOT,
5859 .file_offset = offsetof(struct mem_cgroup, events_local_file),
5860 .seq_show = memory_events_local_show,
5861 },
587d9f72
JW
5862 {
5863 .name = "stat",
5864 .flags = CFTYPE_NOT_ON_ROOT,
5865 .seq_show = memory_stat_show,
5866 },
3d8b38eb
RG
5867 {
5868 .name = "oom.group",
5869 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5870 .seq_show = memory_oom_group_show,
5871 .write = memory_oom_group_write,
5872 },
241994ed
JW
5873 { } /* terminate */
5874};
5875
073219e9 5876struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5877 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5878 .css_online = mem_cgroup_css_online,
92fb9748 5879 .css_offline = mem_cgroup_css_offline,
6df38689 5880 .css_released = mem_cgroup_css_released,
92fb9748 5881 .css_free = mem_cgroup_css_free,
1ced953b 5882 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5883 .can_attach = mem_cgroup_can_attach,
5884 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5885 .post_attach = mem_cgroup_move_task,
f00baae7 5886 .bind = mem_cgroup_bind,
241994ed
JW
5887 .dfl_cftypes = memory_files,
5888 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5889 .early_init = 0,
8cdea7c0 5890};
c077719b 5891
241994ed 5892/**
bf8d5d52 5893 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5894 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5895 * @memcg: the memory cgroup to check
5896 *
23067153
RG
5897 * WARNING: This function is not stateless! It can only be used as part
5898 * of a top-down tree iteration, not for isolated queries.
34c81057 5899 *
bf8d5d52
RG
5900 * Returns one of the following:
5901 * MEMCG_PROT_NONE: cgroup memory is not protected
5902 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5903 * an unprotected supply of reclaimable memory from other cgroups.
5904 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5905 *
bf8d5d52 5906 * @root is exclusive; it is never protected when looked at directly
34c81057 5907 *
bf8d5d52
RG
5908 * To provide a proper hierarchical behavior, effective memory.min/low values
5909 * are used. Below is the description of how effective memory.low is calculated.
5910 * Effective memory.min values is calculated in the same way.
34c81057 5911 *
23067153
RG
5912 * Effective memory.low is always equal or less than the original memory.low.
5913 * If there is no memory.low overcommittment (which is always true for
5914 * top-level memory cgroups), these two values are equal.
5915 * Otherwise, it's a part of parent's effective memory.low,
5916 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5917 * memory.low usages, where memory.low usage is the size of actually
5918 * protected memory.
34c81057 5919 *
23067153
RG
5920 * low_usage
5921 * elow = min( memory.low, parent->elow * ------------------ ),
5922 * siblings_low_usage
34c81057 5923 *
23067153
RG
5924 * | memory.current, if memory.current < memory.low
5925 * low_usage = |
82ede7ee 5926 * | 0, otherwise.
34c81057 5927 *
23067153
RG
5928 *
5929 * Such definition of the effective memory.low provides the expected
5930 * hierarchical behavior: parent's memory.low value is limiting
5931 * children, unprotected memory is reclaimed first and cgroups,
5932 * which are not using their guarantee do not affect actual memory
5933 * distribution.
5934 *
5935 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5936 *
5937 * A A/memory.low = 2G, A/memory.current = 6G
5938 * //\\
5939 * BC DE B/memory.low = 3G B/memory.current = 2G
5940 * C/memory.low = 1G C/memory.current = 2G
5941 * D/memory.low = 0 D/memory.current = 2G
5942 * E/memory.low = 10G E/memory.current = 0
5943 *
5944 * and the memory pressure is applied, the following memory distribution
5945 * is expected (approximately):
5946 *
5947 * A/memory.current = 2G
5948 *
5949 * B/memory.current = 1.3G
5950 * C/memory.current = 0.6G
5951 * D/memory.current = 0
5952 * E/memory.current = 0
5953 *
5954 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5955 * (see propagate_protected_usage()), as well as recursive calculation of
5956 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5957 * path for each memory cgroup top-down from the reclaim,
5958 * it's possible to optimize this part, and save calculated elow
5959 * for next usage. This part is intentionally racy, but it's ok,
5960 * as memory.low is a best-effort mechanism.
241994ed 5961 */
bf8d5d52
RG
5962enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5963 struct mem_cgroup *memcg)
241994ed 5964{
23067153 5965 struct mem_cgroup *parent;
bf8d5d52
RG
5966 unsigned long emin, parent_emin;
5967 unsigned long elow, parent_elow;
5968 unsigned long usage;
23067153 5969
241994ed 5970 if (mem_cgroup_disabled())
bf8d5d52 5971 return MEMCG_PROT_NONE;
241994ed 5972
34c81057
SC
5973 if (!root)
5974 root = root_mem_cgroup;
5975 if (memcg == root)
bf8d5d52 5976 return MEMCG_PROT_NONE;
241994ed 5977
23067153 5978 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5979 if (!usage)
5980 return MEMCG_PROT_NONE;
5981
5982 emin = memcg->memory.min;
5983 elow = memcg->memory.low;
34c81057 5984
bf8d5d52 5985 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5986 /* No parent means a non-hierarchical mode on v1 memcg */
5987 if (!parent)
5988 return MEMCG_PROT_NONE;
5989
23067153
RG
5990 if (parent == root)
5991 goto exit;
5992
bf8d5d52
RG
5993 parent_emin = READ_ONCE(parent->memory.emin);
5994 emin = min(emin, parent_emin);
5995 if (emin && parent_emin) {
5996 unsigned long min_usage, siblings_min_usage;
5997
5998 min_usage = min(usage, memcg->memory.min);
5999 siblings_min_usage = atomic_long_read(
6000 &parent->memory.children_min_usage);
6001
6002 if (min_usage && siblings_min_usage)
6003 emin = min(emin, parent_emin * min_usage /
6004 siblings_min_usage);
6005 }
6006
23067153
RG
6007 parent_elow = READ_ONCE(parent->memory.elow);
6008 elow = min(elow, parent_elow);
bf8d5d52
RG
6009 if (elow && parent_elow) {
6010 unsigned long low_usage, siblings_low_usage;
23067153 6011
bf8d5d52
RG
6012 low_usage = min(usage, memcg->memory.low);
6013 siblings_low_usage = atomic_long_read(
6014 &parent->memory.children_low_usage);
23067153 6015
bf8d5d52
RG
6016 if (low_usage && siblings_low_usage)
6017 elow = min(elow, parent_elow * low_usage /
6018 siblings_low_usage);
6019 }
23067153 6020
23067153 6021exit:
bf8d5d52 6022 memcg->memory.emin = emin;
23067153 6023 memcg->memory.elow = elow;
bf8d5d52
RG
6024
6025 if (usage <= emin)
6026 return MEMCG_PROT_MIN;
6027 else if (usage <= elow)
6028 return MEMCG_PROT_LOW;
6029 else
6030 return MEMCG_PROT_NONE;
241994ed
JW
6031}
6032
00501b53
JW
6033/**
6034 * mem_cgroup_try_charge - try charging a page
6035 * @page: page to charge
6036 * @mm: mm context of the victim
6037 * @gfp_mask: reclaim mode
6038 * @memcgp: charged memcg return
25843c2b 6039 * @compound: charge the page as compound or small page
00501b53
JW
6040 *
6041 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6042 * pages according to @gfp_mask if necessary.
6043 *
6044 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6045 * Otherwise, an error code is returned.
6046 *
6047 * After page->mapping has been set up, the caller must finalize the
6048 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6049 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6050 */
6051int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6052 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6053 bool compound)
00501b53
JW
6054{
6055 struct mem_cgroup *memcg = NULL;
f627c2f5 6056 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6057 int ret = 0;
6058
6059 if (mem_cgroup_disabled())
6060 goto out;
6061
6062 if (PageSwapCache(page)) {
00501b53
JW
6063 /*
6064 * Every swap fault against a single page tries to charge the
6065 * page, bail as early as possible. shmem_unuse() encounters
6066 * already charged pages, too. The USED bit is protected by
6067 * the page lock, which serializes swap cache removal, which
6068 * in turn serializes uncharging.
6069 */
e993d905 6070 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6071 if (compound_head(page)->mem_cgroup)
00501b53 6072 goto out;
e993d905 6073
37e84351 6074 if (do_swap_account) {
e993d905
VD
6075 swp_entry_t ent = { .val = page_private(page), };
6076 unsigned short id = lookup_swap_cgroup_id(ent);
6077
6078 rcu_read_lock();
6079 memcg = mem_cgroup_from_id(id);
6080 if (memcg && !css_tryget_online(&memcg->css))
6081 memcg = NULL;
6082 rcu_read_unlock();
6083 }
00501b53
JW
6084 }
6085
00501b53
JW
6086 if (!memcg)
6087 memcg = get_mem_cgroup_from_mm(mm);
6088
6089 ret = try_charge(memcg, gfp_mask, nr_pages);
6090
6091 css_put(&memcg->css);
00501b53
JW
6092out:
6093 *memcgp = memcg;
6094 return ret;
6095}
6096
2cf85583
TH
6097int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6098 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6099 bool compound)
6100{
6101 struct mem_cgroup *memcg;
6102 int ret;
6103
6104 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6105 memcg = *memcgp;
6106 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6107 return ret;
6108}
6109
00501b53
JW
6110/**
6111 * mem_cgroup_commit_charge - commit a page charge
6112 * @page: page to charge
6113 * @memcg: memcg to charge the page to
6114 * @lrucare: page might be on LRU already
25843c2b 6115 * @compound: charge the page as compound or small page
00501b53
JW
6116 *
6117 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6118 * after page->mapping has been set up. This must happen atomically
6119 * as part of the page instantiation, i.e. under the page table lock
6120 * for anonymous pages, under the page lock for page and swap cache.
6121 *
6122 * In addition, the page must not be on the LRU during the commit, to
6123 * prevent racing with task migration. If it might be, use @lrucare.
6124 *
6125 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6126 */
6127void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6128 bool lrucare, bool compound)
00501b53 6129{
f627c2f5 6130 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6131
6132 VM_BUG_ON_PAGE(!page->mapping, page);
6133 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6134
6135 if (mem_cgroup_disabled())
6136 return;
6137 /*
6138 * Swap faults will attempt to charge the same page multiple
6139 * times. But reuse_swap_page() might have removed the page
6140 * from swapcache already, so we can't check PageSwapCache().
6141 */
6142 if (!memcg)
6143 return;
6144
6abb5a86
JW
6145 commit_charge(page, memcg, lrucare);
6146
6abb5a86 6147 local_irq_disable();
f627c2f5 6148 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6149 memcg_check_events(memcg, page);
6150 local_irq_enable();
00501b53 6151
7941d214 6152 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6153 swp_entry_t entry = { .val = page_private(page) };
6154 /*
6155 * The swap entry might not get freed for a long time,
6156 * let's not wait for it. The page already received a
6157 * memory+swap charge, drop the swap entry duplicate.
6158 */
38d8b4e6 6159 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6160 }
6161}
6162
6163/**
6164 * mem_cgroup_cancel_charge - cancel a page charge
6165 * @page: page to charge
6166 * @memcg: memcg to charge the page to
25843c2b 6167 * @compound: charge the page as compound or small page
00501b53
JW
6168 *
6169 * Cancel a charge transaction started by mem_cgroup_try_charge().
6170 */
f627c2f5
KS
6171void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6172 bool compound)
00501b53 6173{
f627c2f5 6174 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6175
6176 if (mem_cgroup_disabled())
6177 return;
6178 /*
6179 * Swap faults will attempt to charge the same page multiple
6180 * times. But reuse_swap_page() might have removed the page
6181 * from swapcache already, so we can't check PageSwapCache().
6182 */
6183 if (!memcg)
6184 return;
6185
00501b53
JW
6186 cancel_charge(memcg, nr_pages);
6187}
6188
a9d5adee
JG
6189struct uncharge_gather {
6190 struct mem_cgroup *memcg;
6191 unsigned long pgpgout;
6192 unsigned long nr_anon;
6193 unsigned long nr_file;
6194 unsigned long nr_kmem;
6195 unsigned long nr_huge;
6196 unsigned long nr_shmem;
6197 struct page *dummy_page;
6198};
6199
6200static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6201{
a9d5adee
JG
6202 memset(ug, 0, sizeof(*ug));
6203}
6204
6205static void uncharge_batch(const struct uncharge_gather *ug)
6206{
6207 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6208 unsigned long flags;
6209
a9d5adee
JG
6210 if (!mem_cgroup_is_root(ug->memcg)) {
6211 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6212 if (do_memsw_account())
a9d5adee
JG
6213 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6214 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6215 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6216 memcg_oom_recover(ug->memcg);
ce00a967 6217 }
747db954
JW
6218
6219 local_irq_save(flags);
c9019e9b
JW
6220 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6221 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6222 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6223 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6224 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6225 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6226 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6227 local_irq_restore(flags);
e8ea14cc 6228
a9d5adee
JG
6229 if (!mem_cgroup_is_root(ug->memcg))
6230 css_put_many(&ug->memcg->css, nr_pages);
6231}
6232
6233static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6234{
6235 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6236 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6237 !PageHWPoison(page) , page);
a9d5adee
JG
6238
6239 if (!page->mem_cgroup)
6240 return;
6241
6242 /*
6243 * Nobody should be changing or seriously looking at
6244 * page->mem_cgroup at this point, we have fully
6245 * exclusive access to the page.
6246 */
6247
6248 if (ug->memcg != page->mem_cgroup) {
6249 if (ug->memcg) {
6250 uncharge_batch(ug);
6251 uncharge_gather_clear(ug);
6252 }
6253 ug->memcg = page->mem_cgroup;
6254 }
6255
6256 if (!PageKmemcg(page)) {
6257 unsigned int nr_pages = 1;
6258
6259 if (PageTransHuge(page)) {
6260 nr_pages <<= compound_order(page);
6261 ug->nr_huge += nr_pages;
6262 }
6263 if (PageAnon(page))
6264 ug->nr_anon += nr_pages;
6265 else {
6266 ug->nr_file += nr_pages;
6267 if (PageSwapBacked(page))
6268 ug->nr_shmem += nr_pages;
6269 }
6270 ug->pgpgout++;
6271 } else {
6272 ug->nr_kmem += 1 << compound_order(page);
6273 __ClearPageKmemcg(page);
6274 }
6275
6276 ug->dummy_page = page;
6277 page->mem_cgroup = NULL;
747db954
JW
6278}
6279
6280static void uncharge_list(struct list_head *page_list)
6281{
a9d5adee 6282 struct uncharge_gather ug;
747db954 6283 struct list_head *next;
a9d5adee
JG
6284
6285 uncharge_gather_clear(&ug);
747db954 6286
8b592656
JW
6287 /*
6288 * Note that the list can be a single page->lru; hence the
6289 * do-while loop instead of a simple list_for_each_entry().
6290 */
747db954
JW
6291 next = page_list->next;
6292 do {
a9d5adee
JG
6293 struct page *page;
6294
747db954
JW
6295 page = list_entry(next, struct page, lru);
6296 next = page->lru.next;
6297
a9d5adee 6298 uncharge_page(page, &ug);
747db954
JW
6299 } while (next != page_list);
6300
a9d5adee
JG
6301 if (ug.memcg)
6302 uncharge_batch(&ug);
747db954
JW
6303}
6304
0a31bc97
JW
6305/**
6306 * mem_cgroup_uncharge - uncharge a page
6307 * @page: page to uncharge
6308 *
6309 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6310 * mem_cgroup_commit_charge().
6311 */
6312void mem_cgroup_uncharge(struct page *page)
6313{
a9d5adee
JG
6314 struct uncharge_gather ug;
6315
0a31bc97
JW
6316 if (mem_cgroup_disabled())
6317 return;
6318
747db954 6319 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6320 if (!page->mem_cgroup)
0a31bc97
JW
6321 return;
6322
a9d5adee
JG
6323 uncharge_gather_clear(&ug);
6324 uncharge_page(page, &ug);
6325 uncharge_batch(&ug);
747db954 6326}
0a31bc97 6327
747db954
JW
6328/**
6329 * mem_cgroup_uncharge_list - uncharge a list of page
6330 * @page_list: list of pages to uncharge
6331 *
6332 * Uncharge a list of pages previously charged with
6333 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6334 */
6335void mem_cgroup_uncharge_list(struct list_head *page_list)
6336{
6337 if (mem_cgroup_disabled())
6338 return;
0a31bc97 6339
747db954
JW
6340 if (!list_empty(page_list))
6341 uncharge_list(page_list);
0a31bc97
JW
6342}
6343
6344/**
6a93ca8f
JW
6345 * mem_cgroup_migrate - charge a page's replacement
6346 * @oldpage: currently circulating page
6347 * @newpage: replacement page
0a31bc97 6348 *
6a93ca8f
JW
6349 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6350 * be uncharged upon free.
0a31bc97
JW
6351 *
6352 * Both pages must be locked, @newpage->mapping must be set up.
6353 */
6a93ca8f 6354void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6355{
29833315 6356 struct mem_cgroup *memcg;
44b7a8d3
JW
6357 unsigned int nr_pages;
6358 bool compound;
d93c4130 6359 unsigned long flags;
0a31bc97
JW
6360
6361 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6362 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6363 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6364 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6365 newpage);
0a31bc97
JW
6366
6367 if (mem_cgroup_disabled())
6368 return;
6369
6370 /* Page cache replacement: new page already charged? */
1306a85a 6371 if (newpage->mem_cgroup)
0a31bc97
JW
6372 return;
6373
45637bab 6374 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6375 memcg = oldpage->mem_cgroup;
29833315 6376 if (!memcg)
0a31bc97
JW
6377 return;
6378
44b7a8d3
JW
6379 /* Force-charge the new page. The old one will be freed soon */
6380 compound = PageTransHuge(newpage);
6381 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6382
6383 page_counter_charge(&memcg->memory, nr_pages);
6384 if (do_memsw_account())
6385 page_counter_charge(&memcg->memsw, nr_pages);
6386 css_get_many(&memcg->css, nr_pages);
0a31bc97 6387
9cf7666a 6388 commit_charge(newpage, memcg, false);
44b7a8d3 6389
d93c4130 6390 local_irq_save(flags);
44b7a8d3
JW
6391 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6392 memcg_check_events(memcg, newpage);
d93c4130 6393 local_irq_restore(flags);
0a31bc97
JW
6394}
6395
ef12947c 6396DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6397EXPORT_SYMBOL(memcg_sockets_enabled_key);
6398
2d758073 6399void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6400{
6401 struct mem_cgroup *memcg;
6402
2d758073
JW
6403 if (!mem_cgroup_sockets_enabled)
6404 return;
6405
edbe69ef
RG
6406 /*
6407 * Socket cloning can throw us here with sk_memcg already
6408 * filled. It won't however, necessarily happen from
6409 * process context. So the test for root memcg given
6410 * the current task's memcg won't help us in this case.
6411 *
6412 * Respecting the original socket's memcg is a better
6413 * decision in this case.
6414 */
6415 if (sk->sk_memcg) {
6416 css_get(&sk->sk_memcg->css);
6417 return;
6418 }
6419
11092087
JW
6420 rcu_read_lock();
6421 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6422 if (memcg == root_mem_cgroup)
6423 goto out;
0db15298 6424 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6425 goto out;
f7e1cb6e 6426 if (css_tryget_online(&memcg->css))
11092087 6427 sk->sk_memcg = memcg;
f7e1cb6e 6428out:
11092087
JW
6429 rcu_read_unlock();
6430}
11092087 6431
2d758073 6432void mem_cgroup_sk_free(struct sock *sk)
11092087 6433{
2d758073
JW
6434 if (sk->sk_memcg)
6435 css_put(&sk->sk_memcg->css);
11092087
JW
6436}
6437
6438/**
6439 * mem_cgroup_charge_skmem - charge socket memory
6440 * @memcg: memcg to charge
6441 * @nr_pages: number of pages to charge
6442 *
6443 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6444 * @memcg's configured limit, %false if the charge had to be forced.
6445 */
6446bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6447{
f7e1cb6e 6448 gfp_t gfp_mask = GFP_KERNEL;
11092087 6449
f7e1cb6e 6450 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6451 struct page_counter *fail;
f7e1cb6e 6452
0db15298
JW
6453 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6454 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6455 return true;
6456 }
0db15298
JW
6457 page_counter_charge(&memcg->tcpmem, nr_pages);
6458 memcg->tcpmem_pressure = 1;
f7e1cb6e 6459 return false;
11092087 6460 }
d886f4e4 6461
f7e1cb6e
JW
6462 /* Don't block in the packet receive path */
6463 if (in_softirq())
6464 gfp_mask = GFP_NOWAIT;
6465
c9019e9b 6466 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6467
f7e1cb6e
JW
6468 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6469 return true;
6470
6471 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6472 return false;
6473}
6474
6475/**
6476 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6477 * @memcg: memcg to uncharge
6478 * @nr_pages: number of pages to uncharge
11092087
JW
6479 */
6480void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6481{
f7e1cb6e 6482 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6483 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6484 return;
6485 }
d886f4e4 6486
c9019e9b 6487 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6488
475d0487 6489 refill_stock(memcg, nr_pages);
11092087
JW
6490}
6491
f7e1cb6e
JW
6492static int __init cgroup_memory(char *s)
6493{
6494 char *token;
6495
6496 while ((token = strsep(&s, ",")) != NULL) {
6497 if (!*token)
6498 continue;
6499 if (!strcmp(token, "nosocket"))
6500 cgroup_memory_nosocket = true;
04823c83
VD
6501 if (!strcmp(token, "nokmem"))
6502 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6503 }
6504 return 0;
6505}
6506__setup("cgroup.memory=", cgroup_memory);
11092087 6507
2d11085e 6508/*
1081312f
MH
6509 * subsys_initcall() for memory controller.
6510 *
308167fc
SAS
6511 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6512 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6513 * basically everything that doesn't depend on a specific mem_cgroup structure
6514 * should be initialized from here.
2d11085e
MH
6515 */
6516static int __init mem_cgroup_init(void)
6517{
95a045f6
JW
6518 int cpu, node;
6519
84c07d11 6520#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6521 /*
6522 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6523 * so use a workqueue with limited concurrency to avoid stalling
6524 * all worker threads in case lots of cgroups are created and
6525 * destroyed simultaneously.
13583c3d 6526 */
17cc4dfe
TH
6527 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6528 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6529#endif
6530
308167fc
SAS
6531 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6532 memcg_hotplug_cpu_dead);
95a045f6
JW
6533
6534 for_each_possible_cpu(cpu)
6535 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6536 drain_local_stock);
6537
6538 for_each_node(node) {
6539 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6540
6541 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6542 node_online(node) ? node : NUMA_NO_NODE);
6543
ef8f2327 6544 rtpn->rb_root = RB_ROOT;
fa90b2fd 6545 rtpn->rb_rightmost = NULL;
ef8f2327 6546 spin_lock_init(&rtpn->lock);
95a045f6
JW
6547 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6548 }
6549
2d11085e
MH
6550 return 0;
6551}
6552subsys_initcall(mem_cgroup_init);
21afa38e
JW
6553
6554#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6555static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6556{
1c2d479a 6557 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6558 /*
6559 * The root cgroup cannot be destroyed, so it's refcount must
6560 * always be >= 1.
6561 */
6562 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6563 VM_BUG_ON(1);
6564 break;
6565 }
6566 memcg = parent_mem_cgroup(memcg);
6567 if (!memcg)
6568 memcg = root_mem_cgroup;
6569 }
6570 return memcg;
6571}
6572
21afa38e
JW
6573/**
6574 * mem_cgroup_swapout - transfer a memsw charge to swap
6575 * @page: page whose memsw charge to transfer
6576 * @entry: swap entry to move the charge to
6577 *
6578 * Transfer the memsw charge of @page to @entry.
6579 */
6580void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6581{
1f47b61f 6582 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6583 unsigned int nr_entries;
21afa38e
JW
6584 unsigned short oldid;
6585
6586 VM_BUG_ON_PAGE(PageLRU(page), page);
6587 VM_BUG_ON_PAGE(page_count(page), page);
6588
7941d214 6589 if (!do_memsw_account())
21afa38e
JW
6590 return;
6591
6592 memcg = page->mem_cgroup;
6593
6594 /* Readahead page, never charged */
6595 if (!memcg)
6596 return;
6597
1f47b61f
VD
6598 /*
6599 * In case the memcg owning these pages has been offlined and doesn't
6600 * have an ID allocated to it anymore, charge the closest online
6601 * ancestor for the swap instead and transfer the memory+swap charge.
6602 */
6603 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6604 nr_entries = hpage_nr_pages(page);
6605 /* Get references for the tail pages, too */
6606 if (nr_entries > 1)
6607 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6608 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6609 nr_entries);
21afa38e 6610 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6611 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6612
6613 page->mem_cgroup = NULL;
6614
6615 if (!mem_cgroup_is_root(memcg))
d6810d73 6616 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6617
1f47b61f
VD
6618 if (memcg != swap_memcg) {
6619 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6620 page_counter_charge(&swap_memcg->memsw, nr_entries);
6621 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6622 }
6623
ce9ce665
SAS
6624 /*
6625 * Interrupts should be disabled here because the caller holds the
b93b0163 6626 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6627 * important here to have the interrupts disabled because it is the
b93b0163 6628 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6629 */
6630 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6631 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6632 -nr_entries);
21afa38e 6633 memcg_check_events(memcg, page);
73f576c0
JW
6634
6635 if (!mem_cgroup_is_root(memcg))
d08afa14 6636 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6637}
6638
38d8b4e6
HY
6639/**
6640 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6641 * @page: page being added to swap
6642 * @entry: swap entry to charge
6643 *
38d8b4e6 6644 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6645 *
6646 * Returns 0 on success, -ENOMEM on failure.
6647 */
6648int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6649{
38d8b4e6 6650 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6651 struct page_counter *counter;
38d8b4e6 6652 struct mem_cgroup *memcg;
37e84351
VD
6653 unsigned short oldid;
6654
6655 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6656 return 0;
6657
6658 memcg = page->mem_cgroup;
6659
6660 /* Readahead page, never charged */
6661 if (!memcg)
6662 return 0;
6663
f3a53a3a
TH
6664 if (!entry.val) {
6665 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6666 return 0;
f3a53a3a 6667 }
bb98f2c5 6668
1f47b61f
VD
6669 memcg = mem_cgroup_id_get_online(memcg);
6670
37e84351 6671 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6672 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6673 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6674 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6675 mem_cgroup_id_put(memcg);
37e84351 6676 return -ENOMEM;
1f47b61f 6677 }
37e84351 6678
38d8b4e6
HY
6679 /* Get references for the tail pages, too */
6680 if (nr_pages > 1)
6681 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6682 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6683 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6684 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6685
37e84351
VD
6686 return 0;
6687}
6688
21afa38e 6689/**
38d8b4e6 6690 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6691 * @entry: swap entry to uncharge
38d8b4e6 6692 * @nr_pages: the amount of swap space to uncharge
21afa38e 6693 */
38d8b4e6 6694void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6695{
6696 struct mem_cgroup *memcg;
6697 unsigned short id;
6698
37e84351 6699 if (!do_swap_account)
21afa38e
JW
6700 return;
6701
38d8b4e6 6702 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6703 rcu_read_lock();
adbe427b 6704 memcg = mem_cgroup_from_id(id);
21afa38e 6705 if (memcg) {
37e84351
VD
6706 if (!mem_cgroup_is_root(memcg)) {
6707 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6708 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6709 else
38d8b4e6 6710 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6711 }
c9019e9b 6712 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6713 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6714 }
6715 rcu_read_unlock();
6716}
6717
d8b38438
VD
6718long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6719{
6720 long nr_swap_pages = get_nr_swap_pages();
6721
6722 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6723 return nr_swap_pages;
6724 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6725 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6726 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6727 page_counter_read(&memcg->swap));
6728 return nr_swap_pages;
6729}
6730
5ccc5aba
VD
6731bool mem_cgroup_swap_full(struct page *page)
6732{
6733 struct mem_cgroup *memcg;
6734
6735 VM_BUG_ON_PAGE(!PageLocked(page), page);
6736
6737 if (vm_swap_full())
6738 return true;
6739 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6740 return false;
6741
6742 memcg = page->mem_cgroup;
6743 if (!memcg)
6744 return false;
6745
6746 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6747 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6748 return true;
6749
6750 return false;
6751}
6752
21afa38e
JW
6753/* for remember boot option*/
6754#ifdef CONFIG_MEMCG_SWAP_ENABLED
6755static int really_do_swap_account __initdata = 1;
6756#else
6757static int really_do_swap_account __initdata;
6758#endif
6759
6760static int __init enable_swap_account(char *s)
6761{
6762 if (!strcmp(s, "1"))
6763 really_do_swap_account = 1;
6764 else if (!strcmp(s, "0"))
6765 really_do_swap_account = 0;
6766 return 1;
6767}
6768__setup("swapaccount=", enable_swap_account);
6769
37e84351
VD
6770static u64 swap_current_read(struct cgroup_subsys_state *css,
6771 struct cftype *cft)
6772{
6773 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6774
6775 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6776}
6777
6778static int swap_max_show(struct seq_file *m, void *v)
6779{
677dc973
CD
6780 return seq_puts_memcg_tunable(m,
6781 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
6782}
6783
6784static ssize_t swap_max_write(struct kernfs_open_file *of,
6785 char *buf, size_t nbytes, loff_t off)
6786{
6787 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6788 unsigned long max;
6789 int err;
6790
6791 buf = strstrip(buf);
6792 err = page_counter_memparse(buf, "max", &max);
6793 if (err)
6794 return err;
6795
be09102b 6796 xchg(&memcg->swap.max, max);
37e84351
VD
6797
6798 return nbytes;
6799}
6800
f3a53a3a
TH
6801static int swap_events_show(struct seq_file *m, void *v)
6802{
aa9694bb 6803 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
6804
6805 seq_printf(m, "max %lu\n",
6806 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6807 seq_printf(m, "fail %lu\n",
6808 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6809
6810 return 0;
6811}
6812
37e84351
VD
6813static struct cftype swap_files[] = {
6814 {
6815 .name = "swap.current",
6816 .flags = CFTYPE_NOT_ON_ROOT,
6817 .read_u64 = swap_current_read,
6818 },
6819 {
6820 .name = "swap.max",
6821 .flags = CFTYPE_NOT_ON_ROOT,
6822 .seq_show = swap_max_show,
6823 .write = swap_max_write,
6824 },
f3a53a3a
TH
6825 {
6826 .name = "swap.events",
6827 .flags = CFTYPE_NOT_ON_ROOT,
6828 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6829 .seq_show = swap_events_show,
6830 },
37e84351
VD
6831 { } /* terminate */
6832};
6833
21afa38e
JW
6834static struct cftype memsw_cgroup_files[] = {
6835 {
6836 .name = "memsw.usage_in_bytes",
6837 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6838 .read_u64 = mem_cgroup_read_u64,
6839 },
6840 {
6841 .name = "memsw.max_usage_in_bytes",
6842 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6843 .write = mem_cgroup_reset,
6844 .read_u64 = mem_cgroup_read_u64,
6845 },
6846 {
6847 .name = "memsw.limit_in_bytes",
6848 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6849 .write = mem_cgroup_write,
6850 .read_u64 = mem_cgroup_read_u64,
6851 },
6852 {
6853 .name = "memsw.failcnt",
6854 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6855 .write = mem_cgroup_reset,
6856 .read_u64 = mem_cgroup_read_u64,
6857 },
6858 { }, /* terminate */
6859};
6860
6861static int __init mem_cgroup_swap_init(void)
6862{
6863 if (!mem_cgroup_disabled() && really_do_swap_account) {
6864 do_swap_account = 1;
37e84351
VD
6865 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6866 swap_files));
21afa38e
JW
6867 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6868 memsw_cgroup_files));
6869 }
6870 return 0;
6871}
6872subsys_initcall(mem_cgroup_swap_init);
6873
6874#endif /* CONFIG_MEMCG_SWAP */